Science.gov

Sample records for human antibody-secreting cells

  1. Distinctions Among Circulating Antibody Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood1

    PubMed Central

    Quách, Tâm D.; Rodríguez-Zhurbenko, Nely; Hopkins, Thomas J.; Guo, Xiaoti; Vázquez, Ana María Hernández; Li, Wentian; Rothstein, Thomas L.

    2015-01-01

    Human antibody secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20+CD27+CD38lo/intCD43+) cell and the conventional plasmablast (CD20-CD27hiCD38hi) cell populations, here we identified a novel B cell population termed 20+38hi B cells (CD20+CD27hiCD38hi) that spontaneously secretes antibody. At steady state, 20+38hi B cells are distinct from plasmablasts on the basis of CD20 expression, amount of antibody production, frequency of mutation, and diversity of B cell receptor repertoire. However, cytokine treatment of 20+38hi B cells induces loss of CD20 and acquisition of CD138, suggesting that 20+38hi B cells are precursors to plasmablasts, or pre-plasmablasts. We then evaluated similarities and differences between CD20+CD27+CD38lo/intCD43+ B-1 cells, CD20+CD27hiCD38hi 20+38hi B cells, CD20-CD27hiCD38hi plasmablasts, and CD20+CD27+CD38lo/intCD43- memory B cells. We found that B-1 cells differ from 20+38hi B cells and plasmablasts in numbers of ways, including antigen expression, morphological appearance, transcriptional profiling, antibody skewing, antibody repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20+38hi B cells or plasmablasts, but differ in that memory B cells do not express antibody secretion related genes. We found that, B-1 cell antibodies utilize Vh4-34, which is often associated with autoreactivity, 3 to 6-fold more often than other B cell populations. Along with selective production of IgM anti-PC, this data suggests that human B-1 cells might be preferentially selected for autoreactivity/natural-specificity. In sum, our results indicate that human healthy adult peripheral blood at steady state consists of 3 distinct ASC populations. PMID:26740107

  2. Droplet based microfluidics for highthroughput screening of antibody secreting cells

    NASA Astrophysics Data System (ADS)

    Cai, Liheng; Heyman, John; Mazutis, Linas; Ung, Lloyd; Guerra, Rodrigo; Aubrecht, Donald; Weitz, David

    2014-03-01

    We present a droplet based microfluidic platform that allows highthroughput screening of antibody secreting cells. We coencapsulate single cells, fluorescent probes, and detection beads into emulsion droplets with diameter of 40 micron. The beads capture antibodies secreted by cells, resulting in a pronounced fluorescent signal that activates dielectrophoresis sorting at rate about 500 droplets per second. Moreover, we demonstrate that Reverse Transcription Polymerase Chain Reaction (RT-PCR) can be successfully applied to the cell encapsulated in a single sorted droplet. Our work highlights the potential of droplet based microfluidics as a platform to generate recombinant antibodies.

  3. Antibody secreting cell assay for influenza A virus in swine

    USDA-ARS?s Scientific Manuscript database

    An ELISPOT assay to enumerate B-cells producing antibodies specific to a given antigen, also known as an antibody secreting cell (ASC) assay, was adapted to detect B-cells specific for influenza A virus (IAV). The assay is performed ex vivo and enumerates ASC at a single cell level. A simple ASC det...

  4. Virus-specific antibody secreting cell, memory B-cell, and sero-antibody responses in the human influenza challenge model.

    PubMed

    Huang, Kuan-Ying Arthur; Li, Chris Ka-Fai; Clutterbuck, Elizabeth; Chui, Cecilia; Wilkinson, Tom; Gilbert, Anthony; Oxford, John; Lambkin-Williams, Rob; Lin, Tzou-Yien; McMichael, Andrew J; Xu, Xiao-Ning

    2014-05-01

     Antibodies play a major role in the protection against influenza virus in human. However, the antibody level is usually short-lived and the cellular mechanisms underlying influenza virus-specific antibody response to acute infection remain unclear.  We studied the kinetics and magnitude of influenza virus-specific B-cell and serum antibody responses in relation to virus replication during the course of influenza infection in healthy adult volunteers who were previously seronegative and experimentally infected with seasonal influenza H1N1 A/Brisbane/59/07 virus.  Our data demonstrated a robust expansion of the virus-specific antibody-secreting cells (ASCs) and memory B cells in the peripheral blood, which correlated with both the throat viral load and the duration of viral shedding. The ASC response was obviously detected on day 7 post-infection when the virus was completely cleared from nasal samples, and serum hemagglutination-inhibition antibodies were still undetectable. On day 28 postinfection, influenza virus-specific B cells were further identified from the circulating compartment of isotype-switched B cells. Virus-specific ASCs could be the earliest marker of B-cell response to a new flu virus infection, such as H7N9 in humans.

  5. Cellular and Chromatin Dynamics of Antibody-Secreting Plasma Cells

    PubMed Central

    Bortnick, Alexandra; Murre, Cornelis

    2015-01-01

    Plasma cells are terminally differentiated B cells responsible for maintaining protective serum antibody titers. Despite their clinical importance, our understanding of the linear genomic features and chromatin structure of plasma cells is incomplete. The plasma cell differentiation program can be triggered by different signals and in multiple, diverse peripheral B cell subsets. This heterogeneity raises questions about the gene regulatory circuits required for plasma cell specification. Recently, new regulators of plasma cell differentiation have been identified and the enhancer landscapes of naïve B cells have been described. Other studies have revealed that the bone marrow niche harbors heterogeneous plasma cell subsets. Still undefined are the minimal requirements to become a plasma cell and what molecular features make peripheral B cell subsets competent to become antibody-secreting plasma cells. New technologies promise to reveal underlying chromatin configurations that promote efficient antibody secretion. PMID:26488117

  6. Fully Human Monoclonal Antibodies from Antibody Secreting Cells after Vaccination with Pneumovax®23 are Serotype Specific and Facilitate Opsonophagocytosis

    PubMed Central

    Smith, Kenneth; Muther, Jennifer J.; Duke, Angie L.; McKee, Emily; Zheng, Nai-Ying; Wilson, Patrick C.; James, Judith A.

    2012-01-01

    B lymphocyte memory generates antibody-secreting cells (ASCs) that represent a source of protective antibodies that may be exploited for therapeutics. Here we vaccinated four donors with Pneumovax23 and produced human monoclonal antibodies (hmAbs) from ASCs. We have cloned 137 hmAbs and the specificities of these antibodies encompass 19 of the 23 serotypes in the vaccine, as well as cell wall polysaccharide (CWPS). Although the majority of the antibodies are serotype specific, 12% cross-react with two serotypes. The Pneumovax23 ASC antibody sequences are highly mutated and clonal, indicating an anamnestic response, even though this was a primary vaccination. Hmabs from 64% of the clonal families facilitate opsonophagocytosis. Although 9% of the total antibodies bind to CWPS impurity in the vaccine, none of these clonal families showed opsonophagocytic activity. Overall, these studies have allowed us to address unanswered questions in the field of human immune responses to polysaccharide vaccines, including the cross-reactivity of individual antibodies between serotypes and the percentage of antibodies that are protective after vaccination with Pneumovax23. PMID:23084371

  7. Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax®23 are serotype specific and facilitate opsonophagocytosis.

    PubMed

    Smith, Kenneth; Muther, Jennifer J; Duke, Angie L; McKee, Emily; Zheng, Nai-Ying; Wilson, Patrick C; James, Judith A

    2013-05-01

    B lymphocyte memory generates antibody-secreting cells (ASCs) that represent a source of protective antibodies that may be exploited for therapeutics. Here we vaccinated four donors with Pneumovax®23 and produced human monoclonal antibodies (hmAbs) from ASCs. We have cloned 137 hmAbs and the specificities of these antibodies encompass 19 of the 23 serotypes in the vaccine, as well as cell wall polysaccharide (CWPS). Although the majority of the antibodies are serotype specific, 12% cross-react with two serotypes. The Pneumovax®23 ASC antibody sequences are highly mutated and clonal, indicating an anamnestic response, even though this was a primary vaccination. Hmabs from 64% of the clonal families facilitate opsonophagocytosis. Although 9% of the total antibodies bind to CWPS impurity in the vaccine, none of these clonal families showed opsonophagocytic activity. Overall, these studies have allowed us to address unanswered questions in the field of human immune responses to polysaccharide vaccines, including the cross-reactivity of individual antibodies between serotypes and the percentage of antibodies that are protective after vaccination with Pneumovax®23. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Systematic and intestinal antibody-secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease.

    PubMed Central

    Yuan, L; Ward, L A; Rosen, B I; To, T L; Saif, L J

    1996-01-01

    Neonatal gnotobiotic pigs orally inoculated with virulent (intestinal-suspension) Wa strain human rotavirus (which mimics human natural infection) developed diarrhea, and most pigs which recovered (87% protection rate) were immune to disease upon homologous virulent virus challenge at postinoculation day (PID) 21. Pigs inoculated with cell culture-attenuated Wa rotavirus (which mimics live oral vaccines) developed subclinical infections and seroconverted but were only partially protected against challenge (33% protection rate). Isotype-specific antibody-secreting cells (ASC were enumerated at selected PID in intestinal (duodenal and ileal lamina propria and mesenteric lymph node [MLN]) and systemic (spleen and blood) lymphoid tissues by using enzyme-linked immunospot assays. At challenge (PID 21), the numbers of virus-specific immunoglobulin A (IgA) ASC, but not IgG ASC, in intestines and blood were significantly greater in virulent-Wa rotavirus-inoculated pigs than in attenuated-Wa rotavirus-inoculated pigs and were correlated (correlation coefficients: for duodenum and ileum, 0.9; for MLN, 0.8; for blood, 0.6) with the degree of protection induced. After challenge, the numbers of IgA and IgG virus-specific ASC and serum-neutralizing antibodies increased significantly in the attenuated-Wa rotavirus-inoculated pigs but not in the virulent-Wa rotavirus-inoculated pigs (except in the spleen and except for IgA ASC in the duodenum). The transient appearance of IgA ASC in the blood mirrored the IgA ASC responses in the gut, albeit at a lower level, suggesting that IgA ASC in the blood of humans could serve as an indicator for IgA ASC responses in the intestine after rotavirus infection. To our knowledge, this is the first report to study and identify intestinal IgA ASC as a correlate of protective active immunity in an animal model of human-rotavirus-induced disease. PMID:8627786

  9. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion.

    PubMed

    Morita, Rimpei; Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ranganathan, Rajaram; Bourdery, Laure; Zurawski, Gerard; Foucat, Emile; Dullaers, Melissa; Oh, SangKon; Sabzghabaei, Natalie; Lavecchio, Elizabeth M; Punaro, Marilynn; Pascual, Virginia; Banchereau, Jacques; Ueno, Hideki

    2011-01-28

    Although a fraction of human blood memory CD4(+) T cells expresses chemokine (C-X-C motif) receptor 5 (CXCR5), their relationship to T follicular helper (Tfh) cells is not well established. Here we show that human blood CXCR5(+)CD4(+) T cells share functional properties with Tfh cells and appear to represent their circulating memory compartment. Blood CXCR5(+)CD4(+) T cells comprised three subsets: T helper 1 (Th1), Th2, and Th17 cells. Th2 and Th17 cells within CXCR5(+), but not within CXCR5(-), compartment efficiently induced naive B cells to produce immunoglobulins via interleukin-21 (IL-21). In contrast, Th1 cells from both CXCR5(+) and CXCR5(-) compartments lacked the capacity to help B cells. Patients with juvenile dermatomyositis, a systemic autoimmune disease, displayed a profound skewing of blood CXCR5(+) Th cell subsets toward Th2 and Th17 cells. Importantly, the skewing of subsets correlated with disease activity and frequency of blood plasmablasts. Collectively, our study suggests that an altered balance of Tfh cell subsets contributes to human autoimmunity.

  10. Characterization of Humanized Antibodies Secreted by Aspergillus niger

    PubMed Central

    Ward, Michael; Lin, Cherry; Victoria, Doreen C.; Fox, Bryan P.; Fox, Judith A.; Wong, David L.; Meerman, Hendrik J.; Pucci, Jeff P.; Fong, Robin B.; Heng, Meng H.; Tsurushita, Naoya; Gieswein, Christine; Park, Minha; Wang, Huaming

    2004-01-01

    Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function. PMID:15128505

  11. Identification of soluble N-ethylmaleimide-sensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion.

    PubMed

    Reales, Elena; Mora-López, Francisco; Rivas, Verónica; García-Poley, Antonio; Brieva, José A; Campos-Caro, Antonio

    2005-11-15

    Plasma cells (PC) are B-lymphocytes terminally differentiated in a postmitotic state, with the unique purpose of manufacturing and exporting Igs. Despite the importance of this process in the survival of vertebrates, no studies have been made to understand the molecular events that regulate Ig exocytosis by PC. The present study explores the possible presence of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) system in human PC, and examines its functional role in Ig secretion. Syntaxin-2, Syntaxin-3, Syntaxin-4, vesicle-associated membrane protein (VAMP)-2, VAMP-3, and synaptosome-associated protein (SNAP)-23 could be readily detected in normal human PC obtained from intestinal lamina propria and blood, as well as in human PC lines. Because SNAP-23 plays a central role in SNAREs complex formation, it was chosen to examine possible functional implications of the SNARE system in PC Ig secretion. When recombinant SNAP-23 fusion protein was introduced into the cells, a complete abolishment of Ig production was observed in the culture supernatants of PC lines, as well as in those of normal PC. These results provide insights, for the first time, into the molecular machinery of constitutive vesicular trafficking in human PC Ig secretion and present evidence indicating that at least SNAP-23 is essential for Ab production.

  12. Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells into Antibody Secreting Cells

    PubMed Central

    Murtaugh, Michael P.

    2017-01-01

    Immunological prevention of infectious disease, especially viral, is based on antigen-specific long-lived memory B cells. To test for cellular proliferation and differentiation factors in swine, an outbred model for humans, CD21+ B cells were activated in vitro with CD40L and stimulated with purported stimulatory cytokines to characterize functional responses. IL-21 induced a 3-fold expansion in total cell numbers with roughly 15% of all B cells differentiating to IgM or IgG antibody secreting cells (ASCs.) However, even with robust proliferation, cellular viability rapidly deteriorated. Therefore, a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF) were evaluated as survival and maintenance factors. BAFF was effective at enhancing the viability of mature B cells as well as ASCs, while APRIL was only effective for ASCs. Both cytokines increased approximately two-fold the amount of IgM and IgG which was secreted by IL-21 differentiated ASCs. Mature B cells from porcine reproductive and respiratory virus (PRRSV) immune and naïve age-matched pigs were activated and treated with IL-21 and then tested for memory cell differentiation using a PRRSV non-structural protein 7 ELISPOT and ELISA. PRRSV immune pigs were positive on both ELISPOT and ELISA while naïve animals were negative on both assays. These results highlight the IL-21-driven expansion and differentiation of memory B cells in vitro without stimulation of the surface immunoglobulin receptor complex, as well as the establishment of a defined memory B cell culture system for characterization of vaccine responses in outbred animals. PMID:28125737

  13. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells.

    PubMed

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.

  14. Diversity, cellular origin and autoreactivity of antibody-secreting cell expansions in acute Systemic Lupus Erythematosus

    PubMed Central

    Tipton, Christopher M; Fucile, Christopher F; Darce, Jaime; Chida, Asiya; Ichikawa, Travis; Gregoretti, Ivan; Schieferl, Sandra; Hom, Jennifer; Jenks, Scott; Feldman, Ron J; Mehr, Ramit; Wei, Chungwen; Lee, F. Eun-Hyung; Cheung, Wan Cheung; Rosenberg, Alexander F; Sanz, Iñaki

    2015-01-01

    Acute SLE courses with antibody-secreting cells (ASC) surges whose origin, diversity, and contribution to serum autoantibodies remain unknown. Deep sequencing, autoantibody proteome and single-cell analysis demonstrated highly diversified ASC punctuated by VH4-34 clones that produce dominant serum autoantibodies. A fraction of ASC clones contained unmutated autoantibodies, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment derived from a distinct subset of newly activated naïve cells of significant clonality that persist in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation with prolonged recruitment of recently activated naïve B cells. These findings shed light into SLE pathogenesis, help explain the benefit of anti-B cell agents and facilitate the design of future therapies. PMID:26006014

  15. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    PubMed

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  16. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults

    PubMed Central

    Charles, Richelle C.; Mayo-Smith, Leslie M.; Teng, Jessica E.; Xu, Peng; Kováč, Pavol; Ryan, Edward T.; Qadri, Firdausi; Franke, Molly F.; Ivers, Louise C.; Harris, Jason B.

    2016-01-01

    Background The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. Methodology/Principal Findings We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Conclusions/Significance Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area. PMID:27308825

  17. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    PubMed

    Matias, Wilfredo R; Falkard, Brie; Charles, Richelle C; Mayo-Smith, Leslie M; Teng, Jessica E; Xu, Peng; Kováč, Pavol; Ryan, Edward T; Qadri, Firdausi; Franke, Molly F; Ivers, Louise C; Harris, Jason B

    2016-06-01

    The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  18. Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers.

    PubMed

    Hanania, Elie G; Fieck, Annabeth; Stevens, Janine; Bodzin, Leon J; Palsson, Bernhard Ø; Koller, Manfred R

    2005-09-30

    Cloning of highly-secreting recombinant cells is critical for biopharmaceutical manufacturing, but faces numerous challenges including the fact that secreted protein does not remain associated with the producing cell. A fundamentally new approach was developed combining in situ capture and measurement of individual cell protein secretion followed by laser-mediated elimination of all non- and poorly-secreting cells, leaving only the highest-secreting cell in a well. Recombinant cells producing humanized antibody were cultured serum-free on a capture matrix, followed by staining with fluorescently-labeled anti-human antibody fragment. A novel, automated, high-throughput instrument (called LEAP) was used to image and locate every cell, quantify the cell-associated and secreted antibody (surrounding each cell), eliminate all undesired cells from a well via targeted laser irradiation, and then track clone outgrowth and stability. Temporarily sparing an island of helper cells around the clone of interest improved cloning efficiency (particularly when using serum-free medium), and helper cells were easily eliminated with the laser after several days. The in situ nature of this process allowed several serial sub-cloning steps to be performed within days of one another, resulting in rapid generation of clonal populations with significantly increased and more stable, homogeneous antibody secretion. Cell lines with specific antibody secretion rates of > 50 pg/cell per day (in static batch culture) were routinely obtained as a result of this cloning approach, often times representing up to 20% of the clones screened.

  19. Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Hui; Syu, Shih-Han; Chen, Yu-Shiun; Hussain, Saber M.; Aleksandrovich Onischuk, Andrei; Chen, Wen Liang; Huang, G. Steven

    2014-03-01

    Nanoparticles are potential threats to human health and the environment; however, their medical applications as drug carriers targeting cancer cells bring hope to contemporary cancer therapy. As a model drug carrier, gold nanoparticles (GNPs) have been investigated extensively for in vivo toxicity. The effect of GNPs on the immune system, however, has rarely been examined. Antibody-secreting cells were treated with GNPs with diameters ranging from 2 to 50 nm. The GNPs enhanced IgG secretion in a size-dependent manner, with a peak of efficacy at 10 nm. The immune-stimulatory effect reached a maximum at 12 h after treatment but returned to control levels 24 h after treatment. This enhancing effect was validated ex vivo using B-cells isolated from mouse spleen. Evidence from RT-PCR and western blot experiments indicates that GNP-treatment upregulated B-lymphocyte-induced maturation protein 1 (blimp1) and downregulated paired box 5 (pax5). Immunostaining for blimp1 and pax5 in B-cells confirmed that the GNPs stimulated IgG secretion through the blimp1/pax5 pathway. The immunization of mice using peptide-conjugated GNPs indicated that the GNPs were capable of enhancing humoral immunity in a size-dependent manner. This effect was consistent with the bio-distribution of the GNPs in mouse spleen. In conclusion, in vitro, ex vivo, and in vivo evidence supports our hypothesis that GNPs enhance humoral immunity in mouse. The effect on the immune system should be taken into account if nanoparticles are used as carriers for drug delivery. In addition to their toxicity, the immune-stimulatory activity of nanoparticles could play an important role in human health and could have an environmental impact.

  20. CD138 and CD31 Double-Positive Cells Comprise the Functional Antibody-Secreting Plasma Cell Compartment in Primate Bone Marrow

    PubMed Central

    Martinez-Murillo, Paola; Pramanik, Lotta; Sundling, Christopher; Hultenby, Kjell; Wretenberg, Per; Spångberg, Mats; Karlsson Hedestam, Gunilla B.

    2016-01-01

    Plasma cells (PCs) are defined as terminally differentiated B cells that secrete large amounts of immunoglobulin (Ig). PCs that reside in the bone marrow (BM) are responsible for maintaining long-term antibody (Ab) responses after infection and vaccination, while PCs present in the blood are generally short-lived. In rhesus macaques, a species frequently used for the evaluation of human vaccines, B cells resemble those found in humans. However, a detailed characterization of BM-resident rhesus PC phenotype and function is lacking. Here, we examined Ig secretion of distinct rhesus CD138+ populations by B cell ELISpot analysis to couple phenotype with function. We demonstrate that the CD20low/−CD138+CD31+ BM population was highly enriched for antibody-secreting cells with IgG being the predominant isotype (60%), followed by IgA (33%) and IgM (7%). Transmission electron microscopy analysis confirmed PC enrichment in the CD20low/−CD138+CD31+ population with cells containing nuclei with “spokes of a wheel” chromatin structure and prominent rough endoplasmic reticulum. This panel also stained human BM PCs and allowed a clear distinction between BM PCs and short-lived peripheral PCs, providing an improved strategy to isolate PCs from rhesus BM for further analysis. PMID:27446073

  1. Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells

    PubMed Central

    Santos, Margarida Almeida; Sarmento, Leonor Morais; Rebelo, Manuel; Doce, Ana Agua; Maillard, Ivan; Dumortier, Alexis; Neves, Helia; Radtke, Freddy; Pear, Warren S.; Parreira, Leonor; Demengeot, Jocelyne

    2007-01-01

    Notch signaling regulates B and T lymphocyte development and T cell effector class decision. In this work, we tested whether Notch activity affects mature B cell activation and differentiation to antibody-secreting cells (ASC). We show increased frequency of ASC in cultures of splenic B cells activated with LPS or anti-CD40 when provided exogenous Notch ligand Delta-like-1 (Dll1). Our results indicate that Notch–Dll1 interaction releases a default pathway that otherwise inhibits Ig secretion upon B cell activation. Thus, Dll1 enhanced spontaneous Ig secretion by naturally activated marginal zone B and B1 cells and reversed the inhibition of ASC differentiation mediated by B cell receptor crosslinking during LPS. Moreover, suppression of Notch signaling in B cell expression of either a dominant-negative mutant form of Mastermind-like 1 or a null mutation of Notch1 not only prevented Dll1-mediated enhancement of ASC differentiation but also reduced dramatically LPS-induced Ig secretion. Finally, we show that Dll1 and Jagged-1 are differentially expressed in discrete areas of the spleen, and that the effect of Notch engagement on Ig secretion is ligand-specific. These results indicate that Notch ligands participate in the definition of the mature B cell microenvironment that influences their terminal differentiation. PMID:17878313

  2. The Spleen is the Major Source of Anti-Donor Antibody Secreting Cells in Murine Heart Allograft Recipients

    PubMed Central

    Sicard, Antoine; Phares, Timothy W.; Yu, Hong; Fan, Ran; Baldwin, William M.; Fairchild, Robert L.; Valujskikh, Anna

    2012-01-01

    Antibody mediated allograft rejection is an increasingly recognized problem in clinical transplantation. However, the primary location of donor specific alloantibody (DSA) producing cells after transplantation have not been identified. The purpose of this study was to test the contribution of allospecific antibody secreting cells (ASCs) from different anatomical compartments in a mouse transplantation model. Fully MHC-mismatched heart allografts were transplanted into three groups of recipients: non-sensitized wild type, alloantigen-sensitized wild type and CCR5−/− mice that have exaggerated alloantibody responses. We found that previous sensitization to donor alloantigens resulted in the development of anti-donor alloantibody (alloAb) with accelerated kinetics. Nevertheless, the numbers of alloantibody secreting cells and the serum titers of anti-donor IgG alloantibody were equivalent in sensitized and non-sensitized recipients six weeks after transplantation. Regardless of recipient sensitization status, the spleen contained higher numbers of donor-reactive ASCs than bone marrow at days 7–21 after transplantation. Furthermore, individual spleen ASCs produced more anti-donor IgG alloantibody than bone marrow ASCs. Taken together, our results indicate that the spleen rather than bone marrow is the major source of donor-reactive alloAb early after transplantation in both sensitized and non-sensitized recipients. PMID:22420367

  3. Pneumococcal Polysaccharide Abrogates Conjugate-Induced Germinal Center Reaction and Depletes Antibody Secreting Cell Pool, Causing Hyporesponsiveness

    PubMed Central

    Bjarnarson, Stefania P.; Benonisson, Hreinn; Del Giudice, Giuseppe; Jonsdottir, Ingileif

    2013-01-01

    Background Plain pneumococcal polysaccharide (PPS) booster administered during second year of life has been shown to cause hyporesponsiveness. We assessed the effects of PPS booster on splenic memory B cell responses and persistence of PPS-specific long-lived plasma cells in the bone marrow (BM). Methods Neonatal mice were primed subcutanously (s.c.) or intranasally (i.n.) with pneumococcal conjugate (Pnc1-TT) and the adjuvant LT-K63, and boosted with PPS+LT-K63 or saline 1, 2 or 3 times with 16 day intervals. Seven days after each booster, spleens were removed, germinal centers (GC), IgM+, IgG+ follicles and PPS-specific antibody secreting cells (AbSC) in spleen and BM enumerated. Results PPS booster s.c., but not i.n., compromised the Pnc1-TT-induced PPS-specific Abs by abrogating the Pnc1-TT-induced GC reaction and depleting PPS-specific AbSCs in spleen and limiting their homing to the BM. There was no difference in the frequency of PPS-specific AbSCs in spleen and BM between mice that received 1, 2 or 3 PPS boosters s.c.. Repeated PPS+LT-K63 booster i.n. reduced the frequency of PPS-specific IgG+ AbSCs in BM. Conclusions PPS booster-induced hyporesponsiveness is caused by abrogation of conjugate-induced GC reaction and depletion of PPS-specific IgG+ AbSCs resulting in no homing of new PPS-specific long-lived plasma cells to the BM or survival. These results should be taken into account in design of vaccination schedules where polysaccharides are being considered. PMID:24069152

  4. Microencapsulation of an anti-VE-cadherin antibody secreting 1B5 hybridoma cells.

    PubMed

    Orive, G; Hernández, R M; Gascón, A R; Igartua, M; Rojas, A; Pedraz, J L

    2001-12-01

    Accumulating experimental evidence demonstrates that tumor growth and lethality are dependent on angiogenesis. Based on this concept, there is growing interest in the use of antiangiogenesis agents to inhibit tumor expansion. Compelling data implicate vascular endothelium (VE)-cadherin (an endothelium specific protein) as a key factor in the last step of angiogenesis, where the endothelial cells join one to each other and form microtubules (future blood vessels). We propose a novel approach to the inhibition of angiogenesis by immobilizing VE-cadherin-secreting hybridoma cells in alginate-agarose microcapsules. Hybridoma cells can be protected with biocompatible and semipermeable membranes that permit exit of anti-VE-cadherin monoclonal antibodies but not entry of cellular immune mediators. Stability studies were performed to select the suitable microcapsule for cell immobilization. Alginate and agarose solid beads coated with poly-L-lysine and alginate were chosen according to their stability and diffusional properties. 1B5 hybridoma cells were grown within the microcapsules and secreted anti-VE-cadherin antibodies during the 9 days of culture, reaching a cumulative concentration of 1.7 microg/mL. This antibody concentration inhibited microtubule formation (87%) in the in vitro angiogenesis Matrigel assay. Moreover, the antiangiogenic effect observed was antibody concentration related. These findings open a new alternative for the inhibition or prevention of angiogenesis and demonstrates the feasibility of using microencapsulated cells as a control-drug delivery system. Copyright 2001 John Wiley & Sons, Inc.

  5. An oral versus intranasal prime/boost regimen using attenuated human rotavirus or VP2 and VP6 virus-like particles with immunostimulating complexes influences protection and antibody-secreting cell responses to rotavirus in a neonatal gnotobiotic pig model.

    PubMed

    Azevedo, Marli S P; Gonzalez, Ana Maria; Yuan, Lijuan; Jeong, Kwang-Il; Iosef, Cristiana; Van Nguyen, Trang; Lovgren-Bengtsson, Karin; Morein, Bror; Saif, Linda J

    2010-03-01

    We determined the impact of mucosal prime/boost regimens and vaccine type (attenuated Wa human rotavirus [AttHRV] or nonreplicating Wa 2/6 rotavirus-like particles [VLP]) on protection and antibody-secreting cell (ASC) responses to HRV in a neonatal gnotobiotic pig disease model. Comparisons of delivery routes for AttHRV and evaluation of nonreplicating VLP vaccines are important as alternative vaccine approaches to overcome risks associated with live oral vaccines. Groups of neonatal gnotobiotic pigs were vaccinated using combinations of oral (PO) and intranasal (IN) inoculation routes as follows: (i) 3 oral doses of AttHRV (AttHRV3xPO); (ii) AttHRV3xIN; (iii) AttHRVPO, then 2/6VLP2xIN; (iv) AttHRVIN, then 2/6VLP2xIN; and (v) mock-inoculated controls. Subsets of pigs from each group were challenged with virulent Wa HRV [P1A(8) G1] (4 weeks post-primary inoculation) to assess protection. The AttHRVPO+2/6VLP2xIN pigs had the highest protection rates against virus shedding and diarrhea (71% each); however, these rates did not differ statistically among the vaccine groups, except for the AttHRVIN+2/6VLPIN group, which had a significantly lower protection rate (17%) against diarrhea. The isotype, magnitude, and tissue distribution of ASCs were analyzed by enzyme-linked immunospot assay. The highest mean numbers of virus-specific IgG and IgA ASCs were observed pre- and postchallenge in both intestinal and systemic lymphoid tissues of the AttHRVPO+2/6VLPIN group. Thus, the AttHRVPO+2/6VLPIN vaccine regimen using immunostimulating complexes (ISCOM) and multiple mucosal inductive sites, followed by AttHRV3xPO or IN regimens, were the most effective vaccine regimens, suggesting that either AttHRVPO+2/6VLPIN or AttHRV3xIN may be an alternative approach to AttHRV3xPO for inducing protective immunity against rotavirus diarrhea.

  6. Impact of Signal Peptides on Furin-2A Mediated Monoclonal Antibody Secretion in CHO Cells.

    PubMed

    Lin, Jian'er; Neo, Shu Hui; Ho, Steven C L; Yeo, Jessna H M; Wang, Tianhua; Zhang, Wei; Bi, Xuezhi; Chao, Sheng-Hao; Yang, Yuansheng

    2017-09-01

    Studies had shown the benefits of using furin-2A peptides for high monoclonal antibody (mAb) expression in mammalian cells. How signal peptides affect furin-2A mediated mAb secretion has yet to be investigated. The impact of signal peptides on mAb secretion in furin-2A based tricistronic vectors in CHO cells is evaluated. In each tricistronic vector, heavy chain (HC) is arranged as the first cistron and followed by a furin recognition sequence, a 2A peptide, light chain (LC), an internal ribosome entry site (IRES), and dihydrofolate reductase (DHFR). Signal peptides for HC and LC are either removed or changed in different vectors. The vectors with signal peptides on both HC and LC genes gIve the highest mAb secretion levels. Changing to signal peptides with different strengths on either HC or LC do not change the mAb secretion level. IgG is still secreted when the signal peptide on the LC gene is removed but at a lower level compared to the vectors containing signal peptides on both HC and LC genes. Removing the HC signal peptide results in almost no IgG secretion regardless of whether the downstream LC carries any signal peptide. Removing the furin cleavage site does not affect mAb secretion levels while removing the 2A sequence results in low mAb secretion. The results present here will be beneficial for designing furin-2A based vectors for expressing mAb in mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Potent Virus-Specific Antibody-Secreting Cell Response to Acute Enterovirus 71 Infection in Children.

    PubMed

    Huang, Kuan-Ying Arthur; Lin, Jainn-Jim; Chiu, Cheng-Hsun; Yang, Shuan; Tsao, Kuo-Chien; Huang, Yhu-Chering; Lin, Tzou-Yien

    2015-09-01

    Enterovirus 71 (EV71) remains a leading pathogen for acute infectious diseases in children, especially in Asia. The cellular basis for establishing a virus-specific antibody response to acute EV71 infections is unclear in children. We studied the magnitude of virus-specific antibody-secreting B cells (ASCs) and its relationship with serological response, clinical parameters, and virological parameters among children with laboratory-confirmed EV71 infection. A potent EV71 genogroup B- and virus-specific ASC response was detected in the first week of illness among genotype B5 EV71-infected children. The cross-reactive EV71-specific ASC response to genogroup C viral antigens composed about 10% of the response. The EV71-specific ASC response in children aged ≥3 years produced immunoglobulin G predominantly, but immunoglobulin M was predominant in younger children. Proliferation marker was expressed by the majority of circulating ASCs in the acute phase of EV71 infection. Virus-specific ASC responses significantly correlated with throat viral load, fever duration, and serological genogroup-specific neutralization titer. The presence of a virus-specific ASC response serves an early cellular marker of an EV71-specific antibody response. Further detailed study of EV71-specific ASCs at the monoclonal level is crucial to delineate the specificity and function of antibody immunity in children. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Factors involved in CLL pathogenesis and cell survival are disrupted by differentiation of CLL B-cells into antibody-secreting cells

    PubMed Central

    Ghamlouch, Hussein; Darwiche, Walaa; Hodroge, Ahmed; Ouled-Haddou, Hakim; Dupont, Sébastien; Singh, Amrathlal Rabbind; Guignant, Caroline; Trudel, Stéphanie; Royer, Bruno

    2015-01-01

    Recent research has shown that chronic lymphocytic leukemia (CLL) B-cells display a strong tendency to differentiate into antibody-secreting cells (ASCs) and thus may be amenable to differentiation therapy. However, the effect of this differentiation on factors associated with CLL pathogenesis has not been reported. In the present study, purified CLL B-cells were stimulated to differentiate into ASCs by phorbol myristate acetate or CpG oligodeoxynucleotide, in combination with CD40 ligand and cytokines in a two-step, seven-day culture system. We investigated (i) changes in the immunophenotypic, molecular, functional, morphological features associated with terminal differentiation into ASCs, (ii) the expression of factors involved in CLL pathogenesis, and (iii) the expression of pro- and anti-apoptotic proteins in the differentiated cells. Our results show that differentiated CLL B-cells are able to display the transcriptional program of ASCs. Differentiation leads to depletion of the malignant program and deregulation of the apoptosis/survival balance. Analysis of apoptosis and the cell cycle showed that differentiation is associated with low cell viability and a low rate of cell cycle entry. Our findings shed new light on the potential for differentiation therapy as a part of treatment strategies for CLL. PMID:26050196

  9. TLR9 Ligand (CpG Oligodeoxynucleotide) Induces CLL B-Cells to Differentiate into CD20(+) Antibody-Secreting Cells.

    PubMed

    Ghamlouch, Hussein; Ouled-Haddou, Hakim; Guyart, Aude; Regnier, Aline; Trudel, Stéphanie; Claisse, Jean-François; Fuentes, Vincent; Royer, Bruno; Marolleau, Jean-Pierre; Gubler, Brigitte

    2014-01-01

    B-cell chronic lymphocytic leukemia (CLL) is the most frequent adult leukemia in the Western world. It is a heterogeneous disease characterized by clonal proliferation and the accumulation of CD5(+) mature B lymphocytes. However, the normal counterpart from which the latter cells arise has not yet been identified. CD27 expression and gene expression profiling data suggest that CLL cells are related to memory B-cells. In vitro, memory B-cells differentiate into plasma cells when stimulated with CpG oligodeoxynucleotide (CpG). The objective of the present study was therefore to investigate the ability of CpG, in the context of CD40 ligation, to induce the differentiation of CLL B-cells into antibody-secreting cells (ASCs). CD20(+)CD38(-) CLL B-cells were stimulated with a combination of CpG, CD40 ligand and cytokines (CpG/CD40L/c) in a two-step, 7-day culture system. We found that the CpG/CD40L/c culture system prompted CLL B-cells to differentiate into CD19(+)CD20(+)CD27(+)CD38(-)ASCs. These cells secreted large amounts of IgM and had the same shape as plasma cells. However, only IgMs secreted by ASCs that had differentiated from unmutated CLL B-cells were poly/autoreactive. Class-switch recombination (CSR) to IgG and IgA was detected in cells expressing the activation-induced cytidine deaminase gene (AICDA). Although these ASCs expressed high levels of the transcription factors PRDM1 (BLIMP1), IRF4, and XBP1s, they did not downregulate expression of PAX5. Our results suggest that CLL B-cells can differentiate into ASCs, undergo CSR and produce poly/autoreactive antibodies. Furthermore, our findings may be relevant for (i) identifying the normal counterpart of CLL B-cells and (ii) developing novel treatment strategies in CLL.

  10. Epstein–Barr virus infection transforms CD25+ B cells into antibody-secreting cells in rheumatoid arthritis patients

    PubMed Central

    Brisslert, Mikael; Rehnberg, Maria; Bokarewa, Maria I

    2013-01-01

    Epstein–Barr virus (EBV) infection may initiate production of autoantibodies and development of cancer and autoimmune diseases. Here we outline phenotypic and functional changes in B cells of patients with rheumatoid arthritis (RA) related to EBV infection. The B-cell phenotype was analysed in blood and bone marrow (BM) of RA patients who had EBV transcripts in BM (EBV+, n = 13) and in EBV− (n = 22) patients with RA. The functional effect of EBV was studied in the sorted CD25+ and CD25− peripheral B cells of RA patients (n = 18) and healthy controls (n = 9). Rituximab treatment results in enrichment of CD25+ B cells in peripheral blood (PB) of EBV+ RA patients. The CD25+ B-cell subset displayed a more mature phenotype accumulating IgG-expressing cells. It was also enriched with CD27+ and CD95+ cells in PB and BM. EBV stimulation of the sorted CD25+ B cells in vitro induced a polyclonal IgG and IgM secretion in RA patients, while CD25+ B cells of healthy subjects did not respond to EBV stimulation. CD25+ B cells were enriched in PB and synovial fluid of RA patients. EBV infection affects the B-cell phenotype in RA patients by increasing the CD25+ subset and by inducing their immunoglobulin production. These findings clearly link CD25+ B cells to the EBV-dependent sequence of reactions in the pathogenesis of RA. PMID:23844744

  11. Enzyme-Linked Immunospot Assay Detection of Mumps-Specific Antibody-Secreting B Cells as an Alternative Method of Laboratory Diagnosis ▿

    PubMed Central

    Latner, Donald R.; McGrew, Marcia; Williams, Nobia; Lowe, Luis; Werman, Roniel; Warnock, Eli; Gallagher, Kathleen; Doyle, Peter; Smole, Sandra; Lett, Susan; Cocoros, Noelle; DeMaria, Alfred; Konomi, Raimond; Brown, Cedric J.; Rota, Paul A.; Bellini, William J.; Hickman, Carole J.

    2011-01-01

    Although high measles, mumps, and rubella (MMR) vaccination coverage has been successful in dramatically reducing mumps disease in the United States, mumps (re)infections occasionally occur in individuals who have been either previously vaccinated or naturally infected. Standard diagnostics that detect virus or virus-specific antibody are dependable for confirming primary mumps infection in immunologically naïve persons, but these methods perform inconsistently for individuals with prior immune exposure. We hypothesized that detection of activated mumps-specific antibody-secreting B cells (ASCs) by enzyme-linked immunospot (ELISPOT) assay could be used as a more reliable diagnostic. To test this, a time course of virus-specific ASC responses was measured by ELISPOT assay following MMR vaccination of 16 previously vaccinated or naturally exposed adult volunteers. Mumps-specific ASCs were detectable in 68% of these individuals at some point during the first 3 weeks following revaccination. In addition, mumps-specific ASCs were detected in 7/7 previously vaccinated individuals who recently had been infected as part of a confirmed mumps outbreak. These data suggest that ELISPOT detection of mumps-specific ASCs has the potential for use as an alternative method of diagnosis when suspect cases cannot be confirmed by detection of IgM or virus. In addition, it was determined that mumps-specific memory B cells are detected at a much lower frequency than measles- or rubella-specific cells, suggesting that mumps infection may not generate robust B-cell memory. PMID:21047998

  12. Total and Envelope Protein-Specific Antibody-Secreting Cell Response in Pediatric Dengue Is Highly Modulated by Age and Subsequent Infections

    PubMed Central

    Toro, Jessica F.; Salgado, Doris M.; Vega, Rocío; Rodríguez, Jairo A.; Rodríguez, Luz-Stella; Angel, Juana; Franco, Manuel A.; Greenberg, Harry B.; Narváez, Carlos F.

    2016-01-01

    The response of antibody-secreting cells (ASC) induced by dengue has only recently started to be characterized. We propose that young age and previous infections could be simple factors that affect this response. Here, we evaluated the primary and secondary responses of circulating ASC in infants (6–12 months old) and children (1–14 years old) infected with dengue showing different degrees of clinical severity. The ASC response was delayed and of lower magnitude in infants, compared with older children. In primary infection (PI), the total and envelope (E) protein-specific IgM ASC were dominant in infants but not in children, and a negative correlation was found between age and the number of IgM ASC (rho = −0.59, P = 0.03). However, infants with plasma dengue-specific IgG detectable in the acute phase developed an intense ASC response largely dominated by IgG and comparable to that of children with secondary infection (SI). IgM and IgG produced by ASC circulating in PI or SI were highly cross-reactive among the four serotypes. Dengue infection caused the disturbance of B cell subsets, particularly a decrease in the relative frequency of naïve B cells. Higher frequencies of total and E protein-specific IgM ASC in the infants and IgG in the children were associated with clinically severe forms of infection. Therefore, the ASC response induced by dengue is highly influenced by the age at which infection occurs and previous immune status, and its magnitude is a relevant element in the clinical outcome. These results are important in the search for correlates of protection and for determining the ideal age for vaccinating against dengue. PMID:27560782

  13. Total and Envelope Protein-Specific Antibody-Secreting Cell Response in Pediatric Dengue Is Highly Modulated by Age and Subsequent Infections.

    PubMed

    Toro, Jessica F; Salgado, Doris M; Vega, Rocío; Rodríguez, Jairo A; Rodríguez, Luz-Stella; Angel, Juana; Franco, Manuel A; Greenberg, Harry B; Narváez, Carlos F

    2016-01-01

    The response of antibody-secreting cells (ASC) induced by dengue has only recently started to be characterized. We propose that young age and previous infections could be simple factors that affect this response. Here, we evaluated the primary and secondary responses of circulating ASC in infants (6-12 months old) and children (1-14 years old) infected with dengue showing different degrees of clinical severity. The ASC response was delayed and of lower magnitude in infants, compared with older children. In primary infection (PI), the total and envelope (E) protein-specific IgM ASC were dominant in infants but not in children, and a negative correlation was found between age and the number of IgM ASC (rho = -0.59, P = 0.03). However, infants with plasma dengue-specific IgG detectable in the acute phase developed an intense ASC response largely dominated by IgG and comparable to that of children with secondary infection (SI). IgM and IgG produced by ASC circulating in PI or SI were highly cross-reactive among the four serotypes. Dengue infection caused the disturbance of B cell subsets, particularly a decrease in the relative frequency of naïve B cells. Higher frequencies of total and E protein-specific IgM ASC in the infants and IgG in the children were associated with clinically severe forms of infection. Therefore, the ASC response induced by dengue is highly influenced by the age at which infection occurs and previous immune status, and its magnitude is a relevant element in the clinical outcome. These results are important in the search for correlates of protection and for determining the ideal age for vaccinating against dengue.

  14. Astrocyte-Derived CXCL10 Drives Accumulation of Antibody-Secreting Cells in the Central Nervous System during Viral Encephalomyelitis

    PubMed Central

    Phares, Timothy W.; Stohlman, Stephen A.; Hinton, David R.

    2013-01-01

    Microbial infections of the central nervous system (CNS) are often associated with local accumulation of antibody (Ab)-secreting cells (ASC). By providing a source of Ab at the site of infection, CNS-localized ASC play a critical role in acute viral control and in preventing viral recrudescence. Following coronavirus-induced encephalomyelitis, the CNS accumulation of ASC is chemokine (C-X-C motif) receptor 3 (CXCR3) dependent. This study demonstrates that CNS-expressed CXCR3 ligand CXCL10 is the critical chemokine regulating ASC accumulation. Impaired ASC recruitment in CXCL10−/− but not CXCL9−/− mice was consistent with reduced CNS IgG and κ-light chain mRNA and virus-specific Ab. Moreover, the few ASC recruited to the CNS in CXCL10−/− mice were confined to the vasculature, distinct from the parenchymal localization in wild-type and CXCL9−/− mice. However, neither CXCL9 nor CXCL10 deficiency diminished neutralizing serum Ab, supporting a direct role for CXCL10 in ASC migration. T cell accumulation, localization, and effector functions were also not affected in either CXCL9−/− or CXCL10−/− mice, consistent with similar control of infectious virus. There was also no evidence for dysregulation of chemokines or cytokines involved in ASC regulation. The distinct roles of CXCL9 and CXCL10 in ASC accumulation rather coincided with their differential localization. While CXCL10 was predominantly expressed by astrocytes, CXCL9 expression was confined to the vasculature/perivascular spaces. These results suggest that CXCL10 is critical for two phases: recruitment of ASC to the CNS vasculature and ASC entry into the CNS parenchyma. PMID:23302888

  15. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis.

    PubMed

    Phares, Timothy W; Stohlman, Stephen A; Hinton, David R; Bergmann, Cornelia C

    2013-03-01

    Microbial infections of the central nervous system (CNS) are often associated with local accumulation of antibody (Ab)-secreting cells (ASC). By providing a source of Ab at the site of infection, CNS-localized ASC play a critical role in acute viral control and in preventing viral recrudescence. Following coronavirus-induced encephalomyelitis, the CNS accumulation of ASC is chemokine (C-X-C motif) receptor 3 (CXCR3) dependent. This study demonstrates that CNS-expressed CXCR3 ligand CXCL10 is the critical chemokine regulating ASC accumulation. Impaired ASC recruitment in CXCL10(-/-) but not CXCL9(-/-) mice was consistent with reduced CNS IgG and κ-light chain mRNA and virus-specific Ab. Moreover, the few ASC recruited to the CNS in CXCL10(-/-) mice were confined to the vasculature, distinct from the parenchymal localization in wild-type and CXCL9(-/-) mice. However, neither CXCL9 nor CXCL10 deficiency diminished neutralizing serum Ab, supporting a direct role for CXCL10 in ASC migration. T cell accumulation, localization, and effector functions were also not affected in either CXCL9(-/-) or CXCL10(-/-) mice, consistent with similar control of infectious virus. There was also no evidence for dysregulation of chemokines or cytokines involved in ASC regulation. The distinct roles of CXCL9 and CXCL10 in ASC accumulation rather coincided with their differential localization. While CXCL10 was predominantly expressed by astrocytes, CXCL9 expression was confined to the vasculature/perivascular spaces. These results suggest that CXCL10 is critical for two phases: recruitment of ASC to the CNS vasculature and ASC entry into the CNS parenchyma.

  16. Kinetics of antibody-secreting cell and fecal IgA responses after oral cholera vaccination in different age groups in a cholera endemic country.

    PubMed

    Akhtar, Marjahan; Qadri, Firdausi; Bhuiyan, Taufiqur R; Akter, Sarmin; Rafique, Tanzeem A; Khan, Arifuzzaman; Islam, Laila N; Saha, Amit; Svennerholm, Ann-Mari; Lundgren, Anna

    2017-01-05

    Immune responses to oral enteric vaccines in children and infants may be influenced by factors such as age, previous priming with related microorganisms and breast feeding. In this study, we aimed to determine optimal time points to assess immune responses to oral enteric vaccines in different clinical specimens. This was done by investigating antibody secreting cell (ASC) and fecal antibody responses on different days after vaccination using the licensed oral cholera vaccine Dukoral, containing cholera toxin B-subunit (rCTB) and inactivated Vibrio cholerae bacteria, as a model vaccine. Two vaccine doses were given 2weeks apart to infants (6-11months), young children (12-18months), toddlers (19months-5years) and adults in a cholera endemic country (Bangladesh). IgA ASC responses, as determined by the antibodies in lymphocyte supernatant (ALS) assay, plasma IgA and IgG responses and secretory IgA (SIgA) responses in extracts of fecal samples were evaluated 4/5 and 7days after each vaccination. After the first vaccine dose, anti-CTB ALS IgA responses in adults and toddlers were high and comparable on day 5 and 7, while responses were low and infrequent in young children. After the second dose, highest ALS responses were detected on day 5 among the time points studied in all age groups and the responses declined until day 7. In contrast, plasma IgA and IgG anti-CTB responses were high both on day 5 and 7 after the second dose. Fecal SIgA responses in young children and infants were highest on day 7 after the second dose. Our results suggest that ASC/ALS responses to two doses of the oral cholera vaccine Dukoral and related oral vaccines should be analyzed earlier than previously recommended (day 7) at all ages. Fecal antibody responses should preferably be analyzed later than ASC/ALS responses to detect the highest antibody responses.

  17. Antibody-secreting cell responses after Vibrio cholerae O1 infection and oral cholera vaccination in adults in Bangladesh.

    PubMed

    Rahman, Atiqur; Rashu, Rasheduzzaman; Bhuiyan, Taufiqur Rahman; Chowdhury, Fahima; Khan, Ashraful Islam; Islam, Kamrul; LaRocque, Regina C; Ryan, Edward T; Wrammert, Jens; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2013-10-01

    Infection with Vibrio cholerae and oral cholera vaccines (OCVs) induce transient circulating plasmablast responses that peak within approximately 7 days after infection or vaccination. We previously demonstrated that plasmablast responses strongly correlate with subsequent levels of V. cholerae-specific duodenal antibodies up to 6 months after V. cholerae infection. Hence, plasmablast responses provide an early window into the immunologic memory at the mucosal surface. In this study, we characterized plasmablast responses following V. cholerae infection using a flow cytometrically defined population and compared V. cholerae-specific responses in adult patients with V. cholerae O1 infection and vaccinees who received the OCV Dukoral (Crucell Vaccines Canada). Among flow cytometrically sorted populations of gut-homing plasmablasts, almost 50% of the cells recognized either cholera toxin B subunit (CtxB) or V. cholerae O1 lipopolysaccharide (LPS). Using a traditional enzyme-linked immunosorbent spot assay (ELISPOT), we found that infection with V. cholerae O1 and OCVs induce similar responses to the protein antigen CtxB, but responses to LPS were diminished after OCV compared to those after natural V. cholerae infection. A second dose of OCV on day 14 failed to boost circulating V. cholerae-specific plasmablast responses in Bangladeshi adults. Our results differ from those in studies from areas where cholera is not endemic, in which a second vaccination on day 14 significantly boosts plasmablast responses. Given these results, it is likely that the optimal boosting strategies for OCVs differ significantly between areas where V. cholerae infection is endemic and those where it is not.

  18. Systemic Foot-and-Mouth Disease Vaccination in Cattle Promotes Specific Antibody-Secreting Cells at the Respiratory Tract and Triggers Local Anamnestic Responses upon Aerosol Infection.

    PubMed

    Pega, J; Di Giacomo, S; Bucafusco, D; Schammas, J M; Malacari, D; Barrionuevo, F; Capozzo, A V; Rodríguez, L L; Borca, M V; Pérez-Filgueira, M

    2015-09-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated FMD virus (FMDV), are regularly used worldwide to control the disease. Here, we studied the generation of antibody responses in local lymphoid tissues along the respiratory system in vaccinated and further aerosol-infected cattle. Animals immunized with a high-payload monovalent FMD vaccine developed high titers of neutralizing antibodies at 7 days postvaccination (dpv), reaching a plateau at 29 dpv. FMDV-specific antibody-secreting cells (ASC), predominantly IgM, were evident at 7 dpv in the prescapular lymph node (LN) draining the vaccination site and in distal LN draining the respiratory mucosa, although in lower numbers. At 29 dpv, a significant switch to IgG1 was clear in prescapular LN, while FMDV-specific ASC were detected in all lymphoid tissues draining the respiratory tract, mostly as IgM-secreting cells. None of the animals (n = 10) exhibited FMD symptoms after oronasal challenge at 30 dpv. Three days postinfection, a large increase in ASC numbers and rapid isotype switches to IgG1 were observed, particularly in LN-draining virus replication sites already described. These results indicate for the first time that systemic FMD vaccination in cattle effectively promotes the presence of anti-FMDV ASC in lymphoid tissues associated with the respiratory system. Oronasal infection triggered an immune reaction compatible with a local anamnestic response upon contact with the replicating FMDV, suggesting that FMD vaccination induces the circulation of virus-specific B lymphocytes, including memory B cells that differentiate into ASC soon after contact with the infective virus. Over recent decades, world animal health organizations as well as national sanitary authorities have supported the use of vaccination as an essential component of the official FMD control programs in both endemic and disease-free settings. Very few

  19. Systemic Foot-and-Mouth Disease Vaccination in Cattle Promotes Specific Antibody-Secreting Cells at the Respiratory Tract and Triggers Local Anamnestic Responses upon Aerosol Infection

    PubMed Central

    Pega, J.; Di Giacomo, S.; Bucafusco, D.; Schammas, J. M.; Malacari, D.; Barrionuevo, F.; Capozzo, A. V.; Rodríguez, L. L.; Borca, M. V.

    2015-01-01

    ABSTRACT Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated FMD virus (FMDV), are regularly used worldwide to control the disease. Here, we studied the generation of antibody responses in local lymphoid tissues along the respiratory system in vaccinated and further aerosol-infected cattle. Animals immunized with a high-payload monovalent FMD vaccine developed high titers of neutralizing antibodies at 7 days postvaccination (dpv), reaching a plateau at 29 dpv. FMDV-specific antibody-secreting cells (ASC), predominantly IgM, were evident at 7 dpv in the prescapular lymph node (LN) draining the vaccination site and in distal LN draining the respiratory mucosa, although in lower numbers. At 29 dpv, a significant switch to IgG1 was clear in prescapular LN, while FMDV-specific ASC were detected in all lymphoid tissues draining the respiratory tract, mostly as IgM-secreting cells. None of the animals (n = 10) exhibited FMD symptoms after oronasal challenge at 30 dpv. Three days postinfection, a large increase in ASC numbers and rapid isotype switches to IgG1 were observed, particularly in LN-draining virus replication sites already described. These results indicate for the first time that systemic FMD vaccination in cattle effectively promotes the presence of anti-FMDV ASC in lymphoid tissues associated with the respiratory system. Oronasal infection triggered an immune reaction compatible with a local anamnestic response upon contact with the replicating FMDV, suggesting that FMD vaccination induces the circulation of virus-specific B lymphocytes, including memory B cells that differentiate into ASC soon after contact with the infective virus. IMPORTANCE Over recent decades, world animal health organizations as well as national sanitary authorities have supported the use of vaccination as an essential component of the official FMD control programs in both endemic and disease

  20. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies.

    PubMed

    Kerkman, Priscilla F; Kempers, Ayla C; van der Voort, Ellen I H; van Oosterhout, Maikel; Huizinga, Tom W J; Toes, René E M; Scherer, Hans U

    2016-12-01

    In rheumatoid arthritis (RA), observations point to a crucial role for (autoreactive) B cells in disease pathogenesis. Here, we studied whether cells from the synovial environment impact on the longevity of autoreactive B cell responses against citrullinated antigens. Synovial fluid mononuclear cells and peripheral blood mononuclear cells (SFMC/PBMC) were obtained from patients with established RA and assessed for the presence of B cell subpopulations. Cells spontaneously secreting anti-citrullinated protein antibodies (ACPA-IgG) directly ex vivo were detected by antigen-specific Enzyme-Linked ImmunoSpot (ELISpot) assay. SFMC and PBMC were cultured to assess the degree of spontaneous ACPA-IgG secretion. Cells surviving for several weeks were characterised by carboxyfluorescein succinimidyl ester (CFSE) labelling and Ki-67 staining. Cells spontaneously secreting ACPA-IgG were readily detectable in peripheral blood and synovial fluid (SF) of patients with ACPA-positive RA. SFMC showed an up to 200-fold increase in ex vivo ACPA-IgG secretion compared with PBMC despite lower numbers of B cells in SFMC. ELISpot confirmed the presence of spontaneously ACPA-IgG-secreting cells, accounting for up to 50% (median 12%) of all IgG-secreting cells in SF. ACPA-IgG secretion was remarkably stable in SFMC cultures, maintained upon depletion of the CD20(+) B cell compartment and detectable for several months. CFSE labelling and Ki-67 staining confirmed the long-term survival of non-dividing plasma cells (PCs). This study demonstrates a high frequency of differentiated, spontaneously ACPA-IgG-secreting cells in SF. These cells are supported by SFMC for prolonged survival and autoantibody secretion, demonstrating that the synovial compartment is equipped to function as inflammatory niche for PC survival. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. The Hierarchical Process of Differentiation of Long-Lived Antibody-Secreting Cells Is Dependent on Integrated Signals Derived from Antigen and IL-17A

    PubMed Central

    Grund, Lidiane Zito; Lopes-Ferreira, Monica; Lima, Carla

    2013-01-01

    Switched CD19-positive memory B cells purified from mice with chronic immune response against Thalassophrynenattereri venom proteins were cultured with venom or cytokines. Our results confirm the existence of a hierarchic process of differentiation: activated memory B cells progressively acquire increasing levels of CD138 and decreasing levels of CD45R/B220 to finally arrive at ASC with B220neg phenotype, which are IgG1-secreting cells. Only Bmem from peritoneal cavity or bone marrow of VTn immunized mice presented the capacity to generate ASC functionally active. IL-17A or IL-21/IL-23/IL-33 improves the ability of venom to induce intracellular IgG of peritoneal derived-ASC. Cognate stimulation with venom and IL-17A is sufficient to down-regulate the expression of CD45R/B220. BAFF-R is up-regulated in splenic or medullar derived-ASC stimulated by venom, CpG or cytokines. Only splenic derived-ASC up-regulate Bcl-2 expression after CpG or the combination of IL-21/IL-23/IL-33 stimulation. Finally, the activation of ASC for IgG1 secretion is triggered by venom proteins in peritoneal cavity and by IL-17A in medullar niche. These results show the importance of the integration of signals downstream of BCR and IL17-A receptors in modulating ASC differentiation, focusing in the microenvironment niche of their generation. PMID:24058589

  2. Procaryotic Expression of Single-Chain Variable-Fragment (scFv) Antibodies: Secretion in L-Form Cells of Proteus mirabilis Leads to Active Product and Overcomes the Limitations of Periplasmic Expression in Escherichia coli

    PubMed Central

    Rippmann, Jörg F.; Klein, Michaela; Hoischen, Christian; Brocks, Bodo; Rettig, Wolfgang J.; Gumpert, Johannes; Pfizenmaier, Klaus; Mattes, Ralf; Moosmayer, Dieter

    1998-01-01

    Recently it has been demonstrated that L-form cells of Proteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coli JM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic

  3. Human regulatory B cells control the TFH cell response.

    PubMed

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on TFH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138(+) plasma and IgD(-)CD27(+) memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3(+)CXCR5(+)PD-1(+) follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Increased secretion of hyperimmune antibodies following lipopolysaccharide stimulation of CD40-activated human B cells in vitro.

    PubMed

    Dumont, Nellie; Aubin, Eric; Proulx, Dominic P; Lemieux, Réal; Bazin, Renée

    2009-04-01

    Human B cells can be cultured ex vivo for a few weeks, following stimulation of the CD40 cell surface molecule in the presence of recombinant cytokines such as interleukin-4 (IL-4). However, attempts to produce polyclonal antigen-specific human antibodies by in vitro culture of human B cells obtained from immunized donors have not been successful. It has been shown in mice that lipopolysaccharide (LPS) is a potent mitogen for B cells and plays an important role in the generation of antigen-specific antibody responses. Although it has long been believed that LPS has no direct effect on human B cells, recent data indicating that IL-4-activated human B cells are induced to express Toll-like receptor-4, the main LPS receptor, prompted us to study the effects of LPS on the proliferation and antibody secretion of human B cells. Our results showed that LPS caused a reduction in the expansion of CD40-activated human B cells, accompanied by an increase in antigen-specific antibody secretion. This result suggested that some, but not all, B cells were able to differentiate into antibody-secreting cells in response to LPS. This increased differentiation could be explained by the observation that LPS-stimulated human B cells were induced to secrete higher amounts of IL-6, a pleiotropic cytokine well-known for its B-cell differentiation activity. In vivo, the effect of LPS on cytokine secretion by B cells may not only enhance B-cell differentiation but also help to sustain a local ongoing immune response to invading Gram-negative bacteria, until all pathogens have been cleared from the organism.

  5. Cells involved in the immune response. XXXVI. The thymic antigen-specific suppressor cell in the immunized rabbit is a T cell with receptors for FcG and the antigen and it acts, via a secreted suppressor factor, directly on the immune splenic AFC B cell to inhibit antibody secretion.

    PubMed Central

    Talor, E; Jodouin, C A; Richter, M

    1988-01-01

    Following i.v. immunization of the normal outbred rabbit with sheep (SRBC) or horse (HRBC) erythrocytes, antigen-specific suppressor cells are generated in the thymus capable of inhibiting the generation of haemolytic plaques by the autologous or allogeneic splenic antibody-forming cells (AFC) in the plaque-forming cell (PFC) assay. These suppressor cells secrete an antigen-specific suppressor factor in short-term (4-24 hr) culture in vitro. The suppressor cells are not detected in the thymus prior to Day 4, exhibit peak activity between Days 5 and 11 post-immunization, and decline slowly thereafter. Suppressor cells can no longer be detected in the thymus by Day 60 postimmunization. Suppressor cells are not detected in any of the other lymphoid organs of the immunized rabbit nor in any lymphoid organ in the unimmunized rabbit. The thymic suppressor cell is a T cell with surface receptors for the antigen (SRBC or HRBC) and for FcG. On the other hand, the AFC B cells generated in the spleen of the immunized rabbit possess cell-surface receptors for only the antigen and not for FcG. Both the suppressor cells and the secreted suppressor factor act directly on the AFC B lymphocytes to inhibit the generation of antigen-specific haemolytic plaques in the PFC assay. PMID:2455684

  6. TGF-β3 Inhibits Antibody Production by Human B Cells

    PubMed Central

    Tsuchida, Yumi; Sumitomo, Shuji; Ishigaki, Kazuyoshi; Suzuki, Akari; Kochi, Yuta; Tsuchiya, Haruka; Ota, Mineto; Komai, Toshihiko; Inoue, Mariko; Morita, Kaoru; Okamura, Tomohisa; Yamamoto, Kazuhiko; Fujio, Keishi

    2017-01-01

    TGF-β is a pleotropic cytokine involved in various biological processes. Of the three isoforms of TGF-β, TGF-β1 has long been recognized as an important inhibitory cytokine in the immune system and has been reported to inhibit B cell function in both mice and humans. Recently, it has been suggested that TGF-β3 may play an important role in the regulation of immune system in mice. Murine CD4+CD25-LAG3+ regulatory T cells suppress B cell function through the production of TGF-β3, and it has been reported that TGF-β3 is therapeutic in a mouse model of systemic lupus erythematosus. The effect of TGF-β3 on human B cells has not been reported, and we herein examined the effect of TGF-β3 on human B cells. TGF-β3 suppressed B cell survival, proliferation, differentiation into plasmablasts, and antibody secretion. Although the suppression of human B cells by TGF-β1 has long been recognized, the precise mechanism for the suppression of B cell function by TGF-β1 remains elusive; therefore, we examined the effect of TGF-β1 and β3 on pathways important in B cell activation and differentiation. TGF-β1 and TGF-β3 inhibited some of the key molecules of the cell cycle, as well as transcription factors important in B cell differentiation into antibody secreting cells such as IRF4, Blimp-1, and XBP1. TGF-β1 and β3 also inhibited B cell receptor signaling. Our results suggest that TGF-β3 modifying therapy might be therapeutic in autoimmune diseases with B cell dysregulation in humans. PMID:28052118

  7. Induction of type I interferon secretion through recombinant Newcastle disease virus expressing measles virus hemagglutinin stimulates antibody secretion in the presence of maternal antibodies.

    PubMed

    Kim, Dhohyung; Martinez-Sobrido, Luis; Choi, Changsun; Petroff, Natasha; García-Sastre, Adolfo; Niewiesk, Stefan; Carsillo, Thomas

    2011-01-01

    Measles virus (MV) vaccine effectively protects seronegative individuals against infection. However, inhibition of vaccine-induced seroconversion by maternal antibodies after vaccination remains a problem, as it leaves infants susceptible to MV infection. In cotton rats, passive transfer of MV-specific IgG mimics maternal antibodies and inhibits vaccine-induced seroconversion. Here, we report that immunization in the presence of passively transferred IgG inhibits the secretion of neutralizing antibodies but not the generation of MV-specific B cells. This finding suggested that MV-specific B cells require an additional stimulus to mature into antibody-secreting plasma cells. In order to provide such a stimulus, we generated a recombinant Newcastle disease virus (NDV) expressing the MV hemagglutinin (NDV-H). In contrast to MV, NDV-H induced high levels of type I interferon in plasmacytoid dendritic cells and in lung tissue. In cotton rats immunized with NDV-H, neutralizing antibodies were also generated in the presence of passively transferred antibodies. In the latter case, however, the level and kinetics of antibody generation were reduced. In vitro, alpha interferon stimulated the activation of MV-specific B cells from MV-immune spleen cells. NDV infection (which induces alpha interferon) had the same effect, and stimulation could be abrogated by antibodies neutralizing alpha interferon, but not interleukin 6 (IL-6). In vivo, coapplication of UV-inactivated MV with NDV led to increased MV-specific antibody production in the presence and absence of passively transferred antibodies. These data indicate that MV-specific B cells are being generated after immunization in the presence of maternal antibodies and that the provision of alpha interferon as an additional signal leads to antibody secretion.

  8. Development of a human T-cell hybridoma secreting separate B-cell growth and differentiation factors.

    PubMed Central

    Butler, J L; Falkoff, R J; Fauci, A S

    1984-01-01

    A cloned human T-cell hybridoma (7D5) secreting B-cell growth factor (BCGF) and B-cell differentiation factor (BCDF) was established. Supernatant from this hybrid was capable of maintaining proliferation in anti-IgM-activated normal human B cells. In addition, the hybridoma supernatant induced differentiation and antibody secretion in Staphylococcus aureus Cowan I-stimulated B cells. No interleukin 2 was present in supernatant from this hybridoma. Molecular size of the hybridoma-derived BCGF and BCDF was determined by gel filtration chromatography. BCGF activity was present in the 20-kDa fractions, and BCDF activity eluted in the 30- to 35-kDa fractions. The isoelectric points of the factors, determined by chromatofocusing, were 6.6 for BCGF and 5.9 for BCDF. Finally, absorption experiments were performed using specific target cells. Phytohemagglutinin-stimulated T-cell blasts did not remove either BCGF or BCDF activity. Anti-IgM-activated B cells absorbed BCGF but not BCDF. In contrast, CESS cells removed BCDF but not BCGF. Thus, a human T-cell hybridoma secreting two distinct B-cell lymphokines was developed. Further immunochemical and functional studies of these immunoregulatory molecules should greatly enhance our understanding of the regulation of human B-cell function in normal and disease states. PMID:6609362

  9. Development of a human T-cell hybridoma secreting separate B-cell growth and differentiation factors.

    PubMed

    Butler, J L; Falkoff, R J; Fauci, A S

    1984-04-01

    A cloned human T-cell hybridoma (7D5) secreting B-cell growth factor (BCGF) and B-cell differentiation factor (BCDF) was established. Supernatant from this hybrid was capable of maintaining proliferation in anti-IgM-activated normal human B cells. In addition, the hybridoma supernatant induced differentiation and antibody secretion in Staphylococcus aureus Cowan I-stimulated B cells. No interleukin 2 was present in supernatant from this hybridoma. Molecular size of the hybridoma-derived BCGF and BCDF was determined by gel filtration chromatography. BCGF activity was present in the 20-kDa fractions, and BCDF activity eluted in the 30- to 35-kDa fractions. The isoelectric points of the factors, determined by chromatofocusing, were 6.6 for BCGF and 5.9 for BCDF. Finally, absorption experiments were performed using specific target cells. Phytohemagglutinin-stimulated T-cell blasts did not remove either BCGF or BCDF activity. Anti-IgM-activated B cells absorbed BCGF but not BCDF. In contrast, CESS cells removed BCDF but not BCGF. Thus, a human T-cell hybridoma secreting two distinct B-cell lymphokines was developed. Further immunochemical and functional studies of these immunoregulatory molecules should greatly enhance our understanding of the regulation of human B-cell function in normal and disease states.

  10. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses

    PubMed Central

    Deal, Emily M.; Lahl, Katharina; Narváez, Carlos F.; Butcher, Eugene C.; Greenberg, Harry B.

    2013-01-01

    B cell–dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β–mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity. PMID:23635775

  11. A study on the temperature dependency and time course of the cold capture antibody secretion assay.

    PubMed

    Pichler, Johannes; Hesse, Friedemann; Wieser, Matthias; Kunert, Renate; Galosy, Sybille S; Mott, John E; Borth, Nicole

    2009-04-20

    The cold capture assay as described by Brezinsky et al. [Brezinsky, S.C.G., Chiang, G.G., Szilvasi, A., Mohan, S., Shapiro, R.I., MacLean, A., Sisk, W., Thill, G., 2003. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J. Immunol. Methods 277, 141-155] stands out as the most simple of single cell secretion assays which can be used to sort for high productivity in recombinant cell lines. At low temperatures the process of protein release from transport vesicles is assumed to be delayed as both vesicle fusion and product release is slowed, so that secreted proteins can be stained on the cell surface using a fluorescent antibody. Typically, the fluorescent signal obtained correlates to the cell specific production rate of the analysed cell. In the present study we compared staining of human antibody producing CHO cells performed at different temperatures and we observed the fluorescent signal over 24h. We found that the staining temperature did not influence signal intensity. The fluorescent signal was stable for 24h at 4 degrees C, decreased to 80% at room temperature (21 degrees C), while it decreased significantly already after 2h at 37 degrees C. Initially, the fluorescent signal was observed on the cell surface, however, at later stages it was found in compartments in the cytoplasm. Finally we compared differences in signal stability depending on whether the antibody used for staining bound to the light or heavy chain of the product and on whether the fluorescent label was a relatively stable protein (phycoerythrin) or a pH-dependent small molecule (FITC). Our results indicate that the secreted product is trapped by the staining antibody on the cell surface at all temperatures. Subsequently these aggregates are endocytosed by the cells, a process which is slowed down at low temperatures.

  12. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    SciTech Connect

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cells caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.

  13. Human lymphocyte markers defined by antibodies derived from somatic cell hybrids. III. A marker defining a subpopulation of lymphocytes which cuts across the normal T-B-null classification.

    PubMed

    Zola, H; Beckman, I G; Bradley, J; Brooks, D A; Kupa, A; McNamara, P J; Smart, I J; Thomas, M E

    1980-06-01

    A somatic cell hybrid line which secreted antibody reacting selectively with a proportion of the white cells in human blood was prepared. The hybridoma appeared to be monoclonal, and the antibody secreted stained 67% of the lymphocyte population in blood. It reacted less well with granulocytes and monocytes. The lymphocytes stained comprised 80% of the T cells and 50% of the B cells. The antibody showed no recognizable pattern in its reactivity with cell lines and leukaemic cells, although B cells tended to react less well than T cells, null cells, or myeloid leukaemic cells. The expression of the antigenic determinant is discussed in relation to the classification of leucocytes. This determinant and certain other markers exhibited differential expression on closely related cells, and yet were shared by more distantly related cells.

  14. Human lymphocyte markers defined by antibodies derived from somatic cell hybrids. III. A marker defining a subpopulation of lymphocytes which cuts across the normal T-B-null classification.

    PubMed Central

    Zola, H; Beckman, I G; Bradley, J; Brooks, D A; Kupa, A; McNamara, P J; Smart, I J; Thomas, M E

    1980-01-01

    A somatic cell hybrid line which secreted antibody reacting selectively with a proportion of the white cells in human blood was prepared. The hybridoma appeared to be monoclonal, and the antibody secreted stained 67% of the lymphocyte population in blood. It reacted less well with granulocytes and monocytes. The lymphocytes stained comprised 80% of the T cells and 50% of the B cells. The antibody showed no recognizable pattern in its reactivity with cell lines and leukaemic cells, although B cells tended to react less well than T cells, null cells, or myeloid leukaemic cells. The expression of the antigenic determinant is discussed in relation to the classification of leucocytes. This determinant and certain other markers exhibited differential expression on closely related cells, and yet were shared by more distantly related cells. Images Figure 2 PMID:6157639

  15. Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells.

    PubMed

    De Salort, Jose; Sintes, Jordi; Llinàs, Laia; Matesanz-Isabel, Jessica; Engel, Pablo

    2011-01-30

    The SLAM (CD150) family receptors are leukocyte cell-surface glycoproteins involved in leukocyte activation. These molecules and their adaptor protein SAP contribute to the effective germinal center formation, generation of high-affinity antibody-secreting plasma cells, and memory B cells, thereby facilitating long-term humoral immune response. Multi-color flow cytometric analysis was performed to determine the expression of CD48 (SLAMF2), CD84 (SLAMF5), CD150 (SLAM or SLAMF1), CD229 (Ly9 or SLAMF3), CD244 (2B4 or SLAMF4), CD319 (CRACC, CS1, or SLAMF7), and CD352 (NTB-A or SLAMF6) on human cell lines and B-cell subsets. The following subsets were assessed: pro-B, pre-B, immature-B, and mature-B cells from bone marrow; transitional and B1/B2 subsets from peripheral blood; and naïve, pre-germinal center, germinal center, memory, plasmablasts, and plasma cells from tonsil and spleen. All receptors were expressed on B cells, with the exception of CD244. SLAM family molecules were widely distributed during B-cell development, maturation and terminal differentiation into plasmablasts and plasma cells, but their expression among various B-cell subsets differed significantly. Such heterogeneous expression patterns suggest that SLAM molecules play an essential and non-redundant role in the control of humoral immune responses. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Establishment of hybridomas producing cancer specific human antibodies from B cell line derived from PBL of a patient with adult T cell leukemia.

    PubMed

    Kawahara, T; Ichikawa, A; Katakura, Y; Teruya, K; Yoshida, T; Kikuchi, M; Kamei, M; Hashizume, S; Shirahata, S

    2001-07-01

    Adult T cell leukemia (ATL) is a malignant disease characterized by tumorous proliferation of CD4(+) T cells infected with retrovirus human T cell leukemia virus Type-I (HTLV-I) and concurs with an autoimmune disease and cancer due to attenuated immune response. In this study, we established ATL patient derived B-cell line TM-1 producing cancer-specific IgM antibodies, and further characterized its antigen specificity by establishing hybridomas fused with human-mouse origin hetero-myeloma cell line RF-S1. We established three hybridoma cell lines termed 2E12, 3E9, and 3E10, which continuously secreted human IgM antibodies. Immunohistochemical staining of formalin-fixed tissue section using antibodies secreted from these hybridomas showed that these antibodies specifically recognized tumor sites of human colon adenocarcinomas. Antibody produced from hybridoma 3E9 bound to some of leukemic cell lines, but not to normal human PBL, which was evidenced by the flow cytometric analysis, indicating that antibody produced from 3E9 recognizes cell surface antigen specifically expressed in the leukemic cells.

  17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells.

    PubMed

    Lu, Haitian; Crawford, Robert B; Kaplan, Barbara L F; Kaminski, Norbert E

    2011-09-15

    Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells.

  18. Defining antigen-specific plasmablast and memory B cell subsets in blood following viral infection and vaccination of humans

    PubMed Central

    Ellebedy, Ali H.; Jackson, Katherine J.L.; Kissick, Haydn T.; Nakaya, Helder I.; Davis, Carl W.; Roskin, Krishna M.; McElroy, Anita K.; Oshansky, Christine M.; Elbein, Rivka; Thomas, Shine; Lyon, George M.; Spiropoulou, Christina F.; Mehta, Aneesh K.; Thomas, Paul G.; Boyd, Scott D.; Ahmed, Rafi

    2016-01-01

    Antigen-specific B cells bifurcate into antibody secreting cells (ASC) and memory B cells after infection or vaccination. ASCs or plasmablasts have been extensively studied in humans but less is known about B cells that get activated but do not differentiate into early plasmablasts. Here, we define the phenotype and transcriptional program of an antigen-specific B cell subset, referred to as activated B cells (ABC), that is distinct from ASCs and is committed to the memory B cell lineage. ABCs were detected in humans after infection with Ebola virus or influenza virus and also after vaccination. By simultaneously analyzing antigen-specific ASCs and ABCs in human blood after influenza vaccination we interrogated the clonal overlap and extent of somatic hypermutation (SHM) in the ASC (effector) and ABC (memory) lineages. Longitudinal tracking of vaccination-induced HA-specific clones revealed minimal increase in SHM over time suggesting that repeated annual immunization may have limitations in enhancing the quality of influenza-specific antibody. PMID:27525369

  19. Human memory B cells.

    PubMed

    Seifert, M; Küppers, R

    2016-12-01

    A key feature of the adaptive immune system is the generation of memory B and T cells and long-lived plasma cells, providing protective immunity against recurring infectious agents. Memory B cells are generated in germinal center (GC) reactions in the course of T cell-dependent immune responses and are distinguished from naive B cells by an increased lifespan, faster and stronger response to stimulation and expression of somatically mutated and affinity matured immunoglobulin (Ig) genes. Approximately 40% of human B cells in adults are memory B cells, and several subsets were identified. Besides IgG(+) and IgA(+) memory B cells, ∼50% of peripheral blood memory B cells express IgM with or without IgD. Further smaller subpopulations have additionally been described. These various subsets share typical memory B cell features, but likely also fulfill distinct functions. IgM memory B cells appear to have the propensity for refined adaptation upon restimulation in additional GC reactions, whereas reactivated IgG B cells rather differentiate directly into plasma cells. The human memory B-cell pool is characterized by (sometimes amazingly large) clonal expansions, often showing extensive intraclonal IgV gene diversity. Moreover, memory B-cell clones are frequently composed of members of various subsets, showing that from a single GC B-cell clone a variety of memory B cells with distinct functions is generated. Thus, the human memory B-cell compartment is highly diverse and flexible. Several B-cell malignancies display features suggesting a derivation from memory B cells. This includes a subset of chronic lymphocytic leukemia, hairy cell leukemia and marginal zone lymphomas. The exposure of memory B cells to oncogenic events during their generation in the GC, the longevity of these B cells and the ease to activate them may be key determinants for their malignant transformation.

  20. TLR7 and TLR9 responsive human B cells share phenotypic and genetic characteristics

    PubMed Central

    Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-01-01

    B cells activated by nucleic-acid sensing Toll-like receptor 7 and TLR9 proliferate and secrete immune globulins. Memory B cells are presumably more responsive due to higher TLR expression levels, but selectivity and differential outcomes remain largely unknown. In this study, peripheral blood human B cells were stimulated by TLR7 or TLR9 ligands, with or without IFNα, and compared to activators CD40L plus IL-21, to identify differentially responsive cell populations, defined phenotypically and by BCR characteristics. While all activators induced differentiation and antibody secretion, TLR stimulation expanded IgM+ memory and plasma cell lineage committed populations and favored secretion of IgM, unlike CD40L/IL-21 which drove IgM and IgG more evenly. Patterns of proliferation similarly differed, with CD40L/IL-21 inducing proliferation of most memory and naïve B cells, in contrast to TLRs which induced robust proliferation in a subset of these cells. On deep sequencing of the IgH locus, TLR responsive B cells shared patterns of IgHV and IgHJ usage, clustering apart from CD40L/IL-21 and control conditions. TLR activators, but not CD40L/IL-21, similarly promoted increased sharing of CDR3 sequences. TLR responsive B cells were characterized by more somatic hypermutation, shorter CDR3 segments, and less negative charges. TLR activation also induced long positively charged CDR3 segments, suggestive of autoreactive antibodies. Testing this, culture supernatants from TLR stimulated B cells were found to bind HEp-2 cells, while those from CD40L/IL-21 stimulated cells did not. Human B cells possess selective sensitivity to TLR stimulation, with distinctive phenotypic and genetic signatures. PMID:25740945

  1. The Effect of Prolonged Treatment with Belimumab on B cells in Human SLE

    PubMed Central

    Jacobi, Annett M; Huang, Weiqing; Wang, Tao; Freimuth, William; Sanz, Inaki; Furie, Richard; Mackay, Meggan; Aranow, Cynthia; Diamond, Betty; Davidson, Anne

    2010-01-01

    Objectives To understand the effects of prolonged BLyS inhibition in human SLE. Methods 17 SLE patients enrolled in a clinical trial of belimumab, a BLyS-specific inhibitor, plus standard of care therapy were studied. Phenotypic analysis of lymphocytes was performed using flow cytometry. Circulating antibody-secreting cells were enumerated using ELISpot assay. Serum was analyzed by ELISA using an antibody that recognizes products of the VH4-34 gene. Lymphocyte counts, Ig levels and anti-dsDNA antibody levels were available as part of the clinical trial analyses. Results Samples were collected at days 0, 84, 168, 365, 532 and >730. The total B cell number decreased from baseline starting between days 84–168. This was due to a decrease in naïve and transitional B cells. CD27+/IgD+memory B cells and plasmablasts decreased only after 532 days, whereas CD27+/IgD− memory B cells were not affected, and there were no changes in T cells. Serum IgM levels began to decline between days 84–168, but there were no changes in serum levels of IgG, IgG anti-DNA antibodies or VH4-34 antibodies during the study. SLE patients had more IgM-, IgG-, and autoantibody-producing B cells than normal controls at Day 0. There was only a modest decrease in the frequency of total IgM-producing but not IgG-producing cells at Days 365 and 532, consistent with the phenotypic and serologic data. Conclusions Our data confirm the dependence of newly formed B cells on BLyS for survival in humans. In contrast, memory B cells and plasma cells are less susceptible to selective BLyS inhibition. PMID:20039404

  2. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells

    SciTech Connect

    Lu Haitian Crawford, Robert B. Kaplan, Barbara L.F. Kaminski, Norbert E.

    2011-09-15

    Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells. - Highlights: > In this study primary human and mouse B cell toxicity to TCDD was compared. > TCDD altered the expression of Blimp-1 and Pax5 in mouse but not human B cells. > TCDD markedly suppressed human B cell activation as characterized by CD80, CD86 and CD69 expression. > TCDD inhibited ERK, p38, and Akt phosphorylation in human B cells.

  3. Molecular characterization of the GM 4672 human lymphoblastoid cell line and analysis of its use as a fusion partner in the generation of human-human hybridoma autoantibodies.

    PubMed

    Rioux, J D; Rauch, J; Zdarsky, E; Newkirk, M M

    1993-07-01

    The GM 4672 lymphoblastoid cell line has been used in cell hybridization experiments with peripheral blood lymphocytes (PBLs) in order to generate human-human hybridomas that secrete immunoglobulins directed against a number of different autoantigens. The GM 4672 cells were fused with PBLs isolated from patients with rheumatoid arthritis or systemic lupus erythematosus, or from normal individuals, and the resulting hybridomas were screened for reactivity to platelets, erythrocytes, DNA, cardiolipin, human IgG-Fc, phosphatidylethanolamine, and for lupus anticoagulant activity. This report analyzes the results from 149 fusion experiments completed over a period of nine years. Fifty to sixty-six percent of the fusion experiments resulted in immunoglobulin-secreting clones, with an average of 15 clones/fusion. The hybridoma antibodies were predominantly of the IgM heavy chain isotype, and 67% expressed kappa light chains. Although most hybridoma antibodies (78%) recognized a single autoantigen, 22% recognized more than one autoantigen and were considered polyreactive. In addition, the light and heavy chain variable regions of the antibody secreted by the GM 4672 cell line were amplified by the polymerase chain reaction technique and sequenced. The GM 4672 light chain was encoded by a VkI gene and used a Jk4 minigene. The GM 4672 heavy chain was derived for the rearrangement of a gene from the VH4 subgroup and used a JH4 minigene. The 8 amino acid long diversity region was generated by the fusion of the DK1 and DLR2 genes. The hybridomas generated in fusion experiments, when examined, did not appear to secrete antibodies using the immunoglobulin variable regions derived from the GM 4672 cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. IgG and IgA with Potential Microbial-Binding Activity Are Expressed by Normal Human Skin Epidermal Cells

    PubMed Central

    Jiang, Dongyang; Ge, Jing; Liao, Qinyuan; Ma, Junfan; Liu, Yang; Huang, Jing; Wang, Chong; Xu, Weiyan; Zheng, Jie; Shao, Wenwei; Lee, Gregory; Qiu, Xiaoyan

    2015-01-01

    The innate immune system of the skin is thought to depend largely on a multi-layered mechanical barrier supplemented by epidermis-derived antimicrobial peptides. To date, there are no reports of antimicrobial antibody secretion by the epidermis. In this study, we report the expression of functional immunoglobulin G (IgG) and immunoglobulin A (IgA), previously thought to be only produced by B cells, in normal human epidermal cells and the human keratinocyte line HaCaT. While B cells express a fully diverse Ig, epidermal cell-expressed IgG or IgA showed one or two conservative VHDJH rearrangements in each individual. These unique VDJ rearrangements in epidermal cells were found neither in the B cell-derived Ig VDJ databases published by others nor in our positive controls. IgG and IgA from epidermal cells of the same individual had different VDJ rearrangement patterns. IgG was found primarily in prickle cells, and IgA was mainly detected in basal cells. Both epidermal cell-derived IgG and IgA showed potential antibody activity by binding pathogens like Staphylococcus aureus, the most common pathogenic skin bacteria, but the microbial-binding profile was different. Our data indicates that normal human epidermal cells spontaneously express IgG and IgA, and we speculate that these Igs participate in skin innate immunity. PMID:25625513

  5. Rotavirus Differentially Infects and Polyclonally Stimulates Human B Cells Depending on Their Differentiation State and Tissue of Origin ▿

    PubMed Central

    Narváez, Carlos F.; Franco, Manuel A.; Angel, Juana; Morton, John M.; Greenberg, Harry B.

    2010-01-01

    We have shown previously that rotavirus (RV) can infect murine intestinal B220+ cells in vivo (M. Fenaux, M. A. Cuadras, N. Feng, M. Jaimes, and H. B. Greenberg, J. Virol. 80:5219-5232, 2006) and human blood B cells in vitro (M. C. Mesa, L. S. Rodriguez, M. A. Franco, and J. Angel, Virology 366:174-184, 2007). However, the effect of RV on B cells, especially those present in the human intestine, the primary site of RV infection, is unknown. Here, we compared the effects of the in vitro RV infection of human circulating (CBC) and intestinal B cells (IBC). RV infected four times more IBC than CBC, and in both types of B cells the viral replication was highly restricted to the memory subset. RV induced cell death in 30 and 3% of infected CBC and IBC, respectively. Moreover, RV induced activation and differentiation into antibody-secreting cells (ASC) of CBC but not IBC when the B cells were present with other mononuclear cells. However, RV did not induce these effects in purified CBC or IBC, suggesting the participation of other cells in activating and differentiating CBC. RV infection was associated with enhanced interleukin-6 (IL-6) production by CBC independent of viral replication. The infection of the anti-B-cell receptor, lipopolysaccharide, or CpG-stimulated CBC reduced the secretion of IL-6 and IL-8 and decreased the number of ASC. These inhibitory effects were associated with an increase in viral replication and cell death and were observed in polyclonally stimulated CBC but not in IBC. Thus, RV differentially interacts with primary human B cells depending on their tissue of origin and differentiation stage, and it affects their capacity to modulate the local and systemic immune responses. PMID:20164228

  6. Freezing human ES cells.

    PubMed

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-10-12

    Here we demonstrate how our lab freezes HuES human embryonic stem cell lines. A healthy, exponentially expanding culture is washed with PBS to remove residual media that could otherwise quench the Trypsin reaction. Warmed 0.05% Trypsin-EDTA is then added to cover the cells, and the plate allowed to incubate for up to 5 mins at room temperature. During this time cells can be observed rounding, and colonies lifting off the plate surface. Gentle repeated pipetting will remove cells and colonies from the plate surface. Trypsinized cells are placed in a standard conical tube containing pre-warmed hES cell media to quench remaining trypsin, and then spun. Cells are resuspended growth media at a concentration of approximately one million cells in one mL of media, a concentration such that one frozen aliquot is sufficient to resurrect a culture on a 10 cm plate. After cells are adequately resuspended, ice cold freezing media is added at equal volume. Cell suspensions are mixed thoroughly, aliquoted into freezing vials, and allowed to slowly freeze to -80 C over 24 hours. Frozen cells can then moved to the vapor phase of liquid nitrogen for long term storage, or remain at -80 for approximately six months.

  7. Human innate lymphoid cells.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Human dendritic cell subsets

    PubMed Central

    Collin, Matthew; McGovern, Naomi; Haniffa, Muzlifah

    2013-01-01

    Summary Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology. PMID:23621371

  9. Human mast cell transcriptome project.

    PubMed

    Saito, H; Nakajima, T; Matsumoto, K

    2001-05-01

    After draft reading of the human genome sequence, systemic analysis of the transcriptome (the whole transcripts present in a cell) is progressing especially in commonly available cell types. Until recently, human mast cells were not commonly available. We have succeeded to generate a substantial number of human mast cells from umbilical cord blood and from adult peripheral blood progenitors. Then, we have examined messenger RNA selectively transcribed in these mast cells using high-density oligonucleotide probe arrays. Many unexpected but important transcripts were selectively expressed in human mast cells. We discuss the results obtained from transcriptome screening by introducing our data regarding mast-cell-specific genes.

  10. Dendritic Cells are Critical Accessory Cells for Thymus-Dependent Antibody Responses in Mouse and in Man

    NASA Astrophysics Data System (ADS)

    Inaba, Kayo; Steinman, Ralph M.; van Voorhis, Wesley C.; Muramatsu, Shigeru

    1983-10-01

    We report that dendritic cells (DC) are necessary and potent accessory cells for anti-sheep erythrocyte responses in both mouse and man. In mice, a small number of DC (0.3-1% of the culture) restores the response of B/T-lymphocyte mixtures to that observed in unfractionated spleen. An even lower dose (0.03-0.1% DC) is needed if the T cells have been primed to antigen. Responses are both antigen and T cell dependent. Selective depletion of DC from unfractionated spleen with the monoclonal antibody 33D1 and complement ablates the antibody response. In contrast to DC, purified spleen macrophages are weak or inactive stimulators. However, when mixed with DC, macrophages can increase the yield of antibody-secreting cells about 2-fold. In man, small numbers (0.3-1%) of blood DC stimulate antibody formation in vitro. Purified human monocytes do not stimulate but in low doses (1% of the culture) inhibit the antibody response. Likewise, selective removal of human monocytes with antibody and complement enhances or accelerates the development of antibody-secreting cells. We conclude that DC are required for the development of T-dependent antibody responses by mouse and human lymphocytes in vitro.

  11. Mathematical modeling provides kinetic details of the human immune response to vaccination

    PubMed Central

    Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.

    2015-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280

  12. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    PubMed

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  13. Tissue distribution of mucosal antibody-producing cells specific for respiratory syncytial virus in severe combined immune deficiency (SCID) mice engrafted with human tonsils.

    PubMed Central

    Nadal, D; Albini, B; Schläpfer, E; Chen, C; Brodsky, L; Ogra, P L

    1991-01-01

    Groups of C.B-17 SCID mice were reconstituted intraperitoneally with human tonsillar mononuclear cells (hu-TMC) from children seropositive for antibody to respiratory syncytial virus (RSV) and subsequently challenged intraperitoneally with inactivated RSV or sham-immunized. The synthesis and the distribution characteristics of human antibody to RSV in various murine tissues were studied using an enzyme-linked immunospot assay (ELISPOT). No specific antibody was observed in sham-immunized animals. In contrast, mice engrafted with hu-TMC exhibited the appearance of specific human antibody secreting cells (hu-ASC) after i.p. immunization with inactivated RSV. RSV-specific hu-ASC were detected only in animals engrafted with cells from donors seropositive for antibodies to Epstein-Barr virus. Hu-TMC engrafted mice showed RSV-specific IgM and, in lower numbers, IgG hu-ASC in several tissues including the lungs. Numbers of RSV-specific IgA hu-ASC were low, however, and detected only in the lung. No RSV-specific hu-ASC were detected in the intestine. These data demonstrate for the first time that hu-TMC-SCID chimeras respond to immunization with viral antigen. Furthermore, the results suggest that hu-TMC engraft in lungs but not in the intestinal tissue. PMID:1893614

  14. B-Cell Responses to Intramuscular Administration of a Bivalent Virus-like Particle Human Norovirus Vaccine.

    PubMed

    Ramani, Sasirekha; Neill, Frederick H; Ferreira, Jennifer; Treanor, John J; Frey, Sharon E; Topham, David J; Goodwin, Robert R; Borkowski, Astrid; Baehner, Frank; Mendelman, Paul M; Estes, Mary K; Atmar, Robert L

    2017-03-01

    Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. A virus-like particle (VLP) candidate vaccine induces the production of serum histo-blood group antigen (HBGA) blocking antibodies, the first identified correlate of protection from HuNoV gastroenteritis. Recently, virus-specific IgG memory B-cells were identified as another potential correlate of protection against HuNoV gastroenteritis. We assessed B-cell responses following intramuscular administration of a bivalent (GI.1/GII.4) VLP vaccine using protocols identical to those used to evaluate cellular immunity following experimental HuNoV infection. The kinetics and magnitude of cellular immunity to G1.1 infection versus VLP vaccination were compared. Intramuscular immunization with bivalent VLP vaccine induces the production of antibody-secreting cells (ASCs) and memory B-cells. ASC responses peaked at day 7 post 1st dose of vaccine and returned to nearly baseline levels by day 28. Minimal increases in ASCs were seen after a second vaccine dose at day 28. Antigen-specific IgG memory B-cells persist at day 180 post-vaccination for both GI.1 and GII.4 VLPs. The overall trends in B-cell responses to vaccination were similar to infection, where there was a greater bias of ASC response towards IgA and memory B-cell response to IgG. The magnitude of ASC and memory B-cell responses to the GI.1 VLP component of the vaccine were also comparable to responses following GI.1 infection. The production of IgG memory B-cells and persistence at day 180 is a key finding and underscores the need for future studies to determine if IgG memory B-cells are a correlate of protection following vaccination.

  15. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  16. Detection of cell surface and intracellular antigens by human monoclonal antibodies. Hybrid cell lines derived from lymphocytes of patients with malignant melanoma

    PubMed Central

    1983-01-01

    This study represents an initial attempt to analyze the humoral immune reactions of patients with malignant melanoma by hybridoma methodology. Using lymphocytes from regional lymph nodes, peripheral blood and tumor infiltrates, 158 fusions were performed with SKO-007 (human myeloma line), LICR-LON-HMy2 (LICR-2), GM 4672 (human lymphoblastoid lines), or NS-1 (mouse myeloma line). Fusion of lymph node lymphocytes with NS-1 resulted in a 3-4 times higher frequency of clones than fusion with LICR-2, and a 10 times higher frequency than fusion with SKO-007 or GM 4672. In the case of peripheral blood lymphocytes, fusion with NS-1 gave greater than 25 times higher frequency of clones than fusion with LICR-2 or SKO-007. Production of human mu, gamma, or alpha heavy chains was detected in 50-80% of wells containing growing clones, and the levels of immunoglobulin ranged from 0.3 micrograms to 40 micrograms/ml. NS-1-derived clones could be easily subcultured, while LICR-2 and SKO-007 clones grew more slowly on subculturing. In this study, Ig secretion appeared to be a more stable property of LICR-2- derived clones than NS-1-derived clones. A panel of 20 human cancer cell lines was used to screen 771 Ig-secreting cultures for antibody to cell surface or intracellular antigens. Reactivity with cell surface antigens was found infrequently (6 cultures), whereas reactivity with intracellular antigens was more common (27 cultures). A new cell surface antigen with properties of a glycolipid was defined with an IgM monoclonal antibody secreted by a tetraploid cell derived from a fusion of LICR-2 with lymphocytes from the axillary lymph node of a patient with melanoma. The hybrid cell line has been subcloned four times and secretes 5 micrograms IgM/ml. The antigen detected by this IgM antibody was found on 5 of 23 melanoma cell lines and 12 of 30 epithelial cancer cell lines. No reactions were found with 11 cultures derived from normal cells. Stable cell lines secreting human

  17. Emerging studies of human HIV-specific antibody repertoires

    PubMed Central

    Hicar, Mark D.; Kalams, Spyros A.; Spearman, Paul W.; Crowe, James E.

    2010-01-01

    There has been an explosion of interest in the human B cell response to HIV infection of late. Recent advances in techniques for isolation of human antibodies and antibody secreting cell lines have facilitated a rapid expansion in the number of antibodies available for study. Early analysis of these repertoires reveals interesting features of the HIV-specific antibody response. HIV-specific repertoires exhibit a high level of clonality in circulating cells, and high levels of somatic mutations within the antibody variable gene segments. It appears that many if not most antibodies in circulation bind to virus envelope conformations that are found only in complex oligomeric structures on virion particles or virus-like particles. The rapid isolation of large panels of novel human neutralizing antibodies promises to reveal new insights into the fundamental principles underlying antibody-mediated neutralization of HIV. PMID:20510738

  18. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  19. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  20. Vitamin A Deficiency Impairs Adaptive B and T Cell Responses to a Prototype Monovalent Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Challenge in a Gnotobiotic Piglet Model

    PubMed Central

    Chattha, Kuldeep S.; Kandasamy, Sukumar; Vlasova, Anastasia N.; Saif, Linda J.

    2013-01-01

    Rotaviruses (RV) are a major cause of gastroenteritis in children. Widespread vitamin A deficiency is associated with reduced efficacy of vaccines and higher incidence of diarrheal infections in children in developing countries. We established a vitamin A deficient (VAD) gnotobiotic piglet model that mimics subclinical vitamin A deficiency in children to study its effects on an oral human rotavirus (HRV) vaccine and virulent HRV challenge. Piglets derived from VAD and vitamin A sufficient (VAS) sows were orally vaccinated with attenuated HRV or mock, with/without supplemental vitamin A and challenged with virulent HRV. Unvaccinated VAD control piglets had significantly lower hepatic vitamin A, higher severity and duration of diarrhea and HRV fecal shedding post-challenge as compared to VAS control pigs. Reduced protection coincided with significantly higher innate (IFNα) cytokine and CD8 T cell frequencies in the blood and intestinal tissues, higher pro-inflammatory (IL12) and 2-3 fold lower anti-inflammatory (IL10) cytokines, in VAD compared to VAS control pigs. Vaccinated VAD pigs had higher diarrhea severity scores compared to vaccinated VAS pigs, which coincided with lower serum IgA HRV antibody titers and significantly lower intestinal IgA antibody secreting cells post-challenge in the former groups suggesting lower anamnestic responses. A trend for higher serum HRV IgG antibodies was observed in VAD vs VAS vaccinated groups post-challenge. The vaccinated VAD (non-vitamin A supplemented) pigs had significantly higher serum IL12 (PID2) and IFNγ (PID6) compared to vaccinated VAS groups suggesting higher Th1 responses in VAD conditions. Furthermore, regulatory T-cell responses were compromised in VAD pigs. Supplemental vitamin A in VAD pigs did not fully restore the dysregulated immune responses to AttHRV vaccine or moderate virulent HRV diarrhea. Our findings suggest that that VAD in children in developing countries may partially contribute to more severe

  1. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.

    PubMed

    Li, Ling; Qin, Jun; Feng, Qiang; Tang, Hao; Liu, Rong; Xu, Liqing; Chen, Zhinan

    2011-01-01

    While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P < 0.001). Heparin also exhibited a cell aggregation elimination role at all concentrations (P < 0.001). Furthermore, heparin promoted cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P < 0.001) both occurring at 250 μg/ml heparin. When agitated, cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.

  2. Human natural killer cell development.

    PubMed

    Freud, Aharon G; Caligiuri, Michael A

    2006-12-01

    Our understanding of human natural killer (NK) cell development lags far behind that of human B- or T-cell development. Much of our recent knowledge of this incomplete picture comes from experimental animal models that have aided in identifying fundamental in vivo processes, including those controlling NK cell homeostasis, self-tolerance, and the generation of a diverse NK cell repertoire. However, it has been difficult to fully understand the mechanistic details of NK cell development in humans, primarily because the in vivo cellular intermediates and microenvironments of this developmental pathway have remained elusive. Although there is general consensus that NK cell development occurs primarily within the bone marrow (BM), recent data implicate secondary lymphoid tissues as principal sites of NK cell development in humans. The strongest evidence stems from the observation that the newly described stages of human NK cell development are naturally and selectively enriched within lymph nodes and tonsils compared with blood and BM. In the current review, we provide an overview of these recent findings and discuss these in the context of existing tenets in the field of lymphocyte development.

  3. Cells of human breast milk.

    PubMed

    Witkowska-Zimny, Malgorzata; Kaminska-El-Hassan, Ewa

    2017-01-01

    Human milk is a complex fluid that has developed to satisfy the nutritional requirements of infants. In addition to proteins, lipids, carbohydrates and other biologically active components, breast milk contains a diverse microbiome that is presumed to colonize the infant gastrointestinal tract and a heterogeneous population of cells with unclear physiological roles and health implications. Noteworthy cellular components of breast milk include progenitor/stem cells. This review summarizes the current state of knowledge of breast milk cells, including leukocytes, epithelial cells, stem cells and potentially probiotic bacteria.

  4. Perspectives on human stem cell research.

    PubMed

    Jung, Kyu Won

    2009-09-01

    Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together.

  5. Diffusion inside living human cells

    NASA Astrophysics Data System (ADS)

    Leijnse, N.; Jeon, J.-H.; Loft, S.; Metzler, R.; Oddershede, L. B.

    2012-04-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell periphery, occurrences of weak ergodicity breaking are observed, similar to the recent observations inside living fission yeast cells [1].

  6. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  7. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  8. Human fetal mesenchymal stem cells.

    PubMed

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  9. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-05

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  10. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  11. Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model

    PubMed Central

    Kandasamy, Sukumar; Chattha, Kuldeep S; Vlasova, Anastasia N; Rajashekara, Gireesh; Saif, Linda J

    2014-01-01

    B cells play a key role in generation of protective immunity against rotavirus infection, a major cause of gastroenteritis in children. Current RV vaccines are less effective in developing countries compared to developed countries. Commensals/probiotics influence mucosal immunity, but the role of early gut colonizing bacteria in modulating intestinal B cell responses to RV vaccines is largely unknown. We co-colonized neonatal gnotobiotic pigs, the only animal model susceptible to HRV diarrhea, with 2 dominant bacterial species present in the gut of breastfed infants, Lactobacillus rhamnosus strain GG and Bifidobacterium animalis lactis Bb12 to evaluate their impact on B cell responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine. Following HRV challenge, probiotic-colonized, AttHRV vaccinated piglets had significantly lower fecal scores and reduced HRV shedding titers compared to uncolonized, AttHRV vaccinated pigs. The reduction in HRV diarrhea was significantly correlated with higher intestinal IgA HRV antibody titers and intestinal HRV-specific IgA antibody secreting cell (ASC) numbers in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs. The significantly higher small intestinal HRV IgA antibody responses coincided with higher IL-6, IL-10 and APRIL responses of ileal mononuclear cells (MNCs) and the immunomodulatory effects of probiotics genomic DNA on TGF-β and IL-10 responses. However, serum RV IgG antibody titers and total IgG titers were significantly lower in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs, both pre- and post-challenge. In summary, LGG and Bb12 beneficially modulated intestinal B cell responses to HRV vaccine. PMID:25483333

  12. Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model.

    PubMed

    Kandasamy, Sukumar; Chattha, Kuldeep S; Vlasova, Anastasia N; Rajashekara, Gireesh; Saif, Linda J

    2014-01-01

    B cells play a key role in generation of protective immunity against rotavirus infection, a major cause of gastroenteritis in children. Current RV vaccines are less effective in developing countries compared to developed countries. Commensals/probiotics influence mucosal immunity, but the role of early gut colonizing bacteria in modulating intestinal B cell responses to RV vaccines is largely unknown. We co-colonized neonatal gnotobiotic pigs, the only animal model susceptible to HRV diarrhea, with 2 dominant bacterial species present in the gut of breastfed infants, Lactobacillus rhamnosus strain GG and Bifidobacterium animalis lactis Bb12 to evaluate their impact on B cell responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine. Following HRV challenge, probiotic-colonized, AttHRV vaccinated piglets had significantly lower fecal scores and reduced HRV shedding titers compared to uncolonized, AttHRV vaccinated pigs. The reduction in HRV diarrhea was significantly correlated with higher intestinal IgA HRV antibody titers and intestinal HRV-specific IgA antibody secreting cell (ASC) numbers in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs. The significantly higher small intestinal HRV IgA antibody responses coincided with higher IL-6, IL-10 and APRIL responses of ileal mononuclear cells (MNCs) and the immunomodulatory effects of probiotics genomic DNA on TGF-β and IL-10 responses. However, serum RV IgG antibody titers and total IgG titers were significantly lower in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs, both pre- and post-challenge. In summary, LGG and Bb12 beneficially modulated intestinal B cell responses to HRV vaccine.

  13. Embryonic stem cell patents and human dignity.

    PubMed

    Resnik, David B

    2007-09-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells.

  14. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  15. Sublingual immunization with an HIV subunit vaccine induces antibodies and cytotoxic T cells in the mouse female genital tract.

    PubMed

    Hervouet, Catherine; Luci, Carmelo; Cuburu, Nicolas; Cremel, Magali; Bekri, Selma; Vimeux, Lene; Marañon, Concepcion; Czerkinsky, Cecil; Hosmalin, Anne; Anjuère, Fabienne

    2010-08-02

    A vaccine against heterosexual transmission by human immunodeficiency virus (HIV) should generate cytotoxic and antibody responses in the female genital tract and in extra-genital organs. We report that sublingual immunization with HIV-1 gp41 and a reverse transcriptase polypeptide coupled to the cholera toxin B subunit (CTB) induced gp41-specific IgA antibodies and antibody-secreting cells, as well as reverse transcriptase-specific CD8 T cells in the genital mucosa, contrary to intradermal immunization. Conjugation of the reverse transcriptase peptide to CTB favored its cross-presentation by human dendritic cells to a T cell line from an HIV(+) patient. Sublingual vaccination could represent a promising vaccine strategy against heterosexual transmission of HIV-1.

  16. Neoplastic transformation of human cells in vitro.

    PubMed

    Rhim, J S

    1993-01-01

    Efforts to investigate the progression of events that lead normal human cells in culture to become neoplastic in response to carcinogenic agents have been aided by the development of the suitable in vitro model systems. For initial human cell transformation studies, a flat, nontumorigenic clonal line, originally derived from a human osteosarcoma (HOS), was used. When treated with chemical carcinogens such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and 3-methyl-cholanthrene (3MC), the HOS cells underwent morphological alterations and acquired tumorigenic properties. These cell lines were very useful inasmuch as a non-ras cellular transforming gene, met, and an activated H-ras oncogene have been isolated from MNNG-transformed and 3MC-transformed HOS lines, respectively, by DNA transfection procedure. Alteration of p53 gene in chemically transformed HOS cell lines has recently been shown. Although carcinogens cause human cancer, normal human cells in culture have proven difficult to achieve. Neoplastic transformation of human cells in culture has recently been achieved by a stepwise fashion-immortalization and conversion of the immortalized cells to tumorigenic cells. One of the critical initial events in the progression of normal human cells to tumor cells is the escape from cellular senescence. With few exceptions, normal human cells require immortalization to provide a practical system for transformation studies. Thus, the role of carcinogenic agents in the development of human cancers is now being defined using a variety of human cells. The neoplastic transformation in human cell cultures is reviewed. In doing so, this author attempts to put into perspective the history of human cell transformation by carcinogenic agents, and to discuss the current state of the art in transformation of human cells in culture; thus providing insight into the molecular and cellular mechanisms involved in the conversion of normal cells to a neoplastic state of growth.

  17. [Towards an industrial control of the cloning of lymphocytes B human for the manufacturing of monoclonal antibodies stemming from the human repertoire].

    PubMed

    Guillot-Chene, P; Lebecque, S; Rigal, D

    2009-05-01

    Monoclonal antibodies (mAbs) are efficient drugs for treating infectious, inflammatory and cancer diseases. Antibodies secreted by human lymphocytes that have been isolated from either peripheral blood or tissues present the definite interest of being part of the physiological or disease-related response to antigens present in the human body. However, attempts to generate hybridomas with human B cells have been largely unsuccessful, and cloning of human B cells has been achieved only via their inefficient immortalization with Epstein Barr Virus (EBV). However, recent progress in our understanding of the molecular mechanisms of polyclonal B cell activation has dramatically increased the capacity to clone human B cells. In particular, activation of human naïve and memory B cells through CD40 or memory B cells only through TLR9 was shown to greatly facilitate their immortalization by EBV. Industrial development based on these observations will soon provide large collections of high affinity human mAbs of every isotype directly selected by the human immune system directed to recognize epitopes relevant for individual patients. Moreover, after CD40 activation, these mAbs will cover the full human repertoire, including the natural auto-immune repertoire. Full characterization of the biological activity of these mAbs will in turn bring useful information for selecting vaccine epitopes. This breakthrough in human B cell cloning opens the way into new areas for therapeutic use of mAbs.

  18. Human satellite cells: identification on human muscle fibres

    PubMed Central

    Boldrin, Luisa; Morgan, Jennifer E

    2012-01-01

    Satellite cells, normally quiescent underneath the myofibre basal lamina, are skeletal muscle stem cells responsible for postnatal muscle growth, repair and regeneration. Since their scarcity and small size have limited study on transverse muscle sections, techniques to isolate individual myofibres, bearing their attendant satellite cells, were developed. Studies on mouse myofibres have generated much information on satellite cells, but the limited availability and small size of human muscle biopsies have hampered equivalent studies of satellite cells on human myofibres. Here, we identified satellite cells on fragments of human and mouse myofibres, using a method applicable to small muscle biopsies. PMID:22333991

  19. Fat cell turnover in humans.

    PubMed

    Arner, Peter; Spalding, Kirsty L

    2010-05-21

    Obesity is a condition where excess body fat accumulates to such an extent that one's health may be affected. Owing to the cardiovascular and metabolic disorders associated with obesity, and the epidemic of obesity facing most countries today, life expectancy in the developed world may start to decrease for the first time in recent history. Other conditions, such as anorexia nervosa and cachexia, are characterised by subnormal levels of adipose tissue and as with obesity lead to morbidity and mortality. Given the significant personal and economic costs of these conditions and their increasing prevalence in society, understanding the factors that determine the fat mass is therefore of prime interest and may lead to effective treatments and/or interventions for these disorders. Fat mass can be regulated in two ways. The lipid filling of pre-existing fat cells could be altered and the number of fat cells could be changed by the generation of new fat cells or the dying of old ones (i.e. adipocyte turnover). This review summarizes what is known about fat cell turnover in humans and the potential clinical implications. 2010 Elsevier Inc. All rights reserved.

  20. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  1. The human airway epithelial basal cell transcriptome.

    PubMed

    Hackett, Neil R; Shaykhiev, Renat; Walters, Matthew S; Wang, Rui; Zwick, Rachel K; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G

    2011-05-04

    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  2. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  3. Systemic foot-and-mouth disease vaccination in cattle promotes specific antibody secreting cells at the respiratory tract and triggers local anamnestic-compatible responses upon aerosol infection

    USDA-ARS?s Scientific Manuscript database

    Foot and mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated whole FMD virus (FMDV) particles, are regularly used worldwide in regions recognized as free from the disease. Here, we studied the generation of antibody ...

  4. Rapid Proliferation and Differentiation of a Subset of Circulating IgM Memory B Cells to a CpG/Cytokine Stimulus In Vitro.

    PubMed

    Vásquez, Camilo; Franco, Manuel A; Angel, Juana

    2015-01-01

    Circulating human IgM expressing memory B cells have been incompletely characterized. Here, we compared the phenotype and in vitro functional response (capacity to proliferate and differentiate to antibody secreting cells) in response to CpG and a cytokine cocktail (IL-2, IL-6, and IL-10) of sorted naïve B cells, IgM memory B cells and isotype-switched circulating memory B cells. Compared to naïve B cells, IgM memory B cells had lower integrated mean fluorescence intensity (iMFI) of BAFF-R, CD38, CD73, and IL-21R, but higher iMFI of CD95, CD11c, TLR9, PD-1, and CD122. Compared to switched memory B cells, IgM memory B cells had higher iMFI of BAFF-R, PD-1, IL-21R, TLR9, and CD122, but lower iMFI of CD38, CD95, and CD73. Four days after receiving the CpG/cytokine cocktail, higher frequencies of IgM than switched memory B cells-and these in turn greater than naïve cells-proliferated and differentiated to antibody secreting cells. At this time point, a small percentage (median of 7.6%) of stimulated IgM memory B cells changed isotype to IgG. Thus, among the heterogeneous population of human circulating IgM memory B cells a subset is capable of a rapid functional response to a CpG/cytokine stimulus in vitro.

  5. Human immunodeficiency virus can productively infect cultured human glial cells.

    PubMed

    Cheng-Mayer, C; Rutka, J T; Rosenblum, M L; McHugh, T; Stites, D P; Levy, J A

    1987-05-01

    Six isolates of the human immunodeficiency virus (HIV) showed differences in their ability to productively infect glioma-derived cell lines and early-passage human brain cell cultures. Susceptibility to HIV infection correlated well with the expression of the astrocyte marker glial fibrillary acidic protein. The CD4 molecule was expressed on some, but not all, of the brain-derived cells; however, no correlation was observed between CD4 protein expression and susceptibility to virus infection. The results show that HIV can productively infect human brain cells, particularly those of glial origin, and suggest that these cell types in the brain can harbor the virus.

  6. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  7. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  8. Interferon Production by Human Cells In Vitro

    PubMed Central

    Spina, Celsa A.; Chang, R. Shihman; Mishra, L.; Golden, H. Dean

    1972-01-01

    The relative capacity of several types of human cells and tissue to produce interferon was studied. Types of cells and tissue included were fibroblasts from embryos, foreskins, and biopsied skins; amnion cells; peripheral leukocytes; established lymphoid cell lines; established heteroploid cell lines; and chorioamniotic membrane. When Newcastle disease virus was used as the inducer, fibroblasts and amnion cells produced more interferon per 106 cells than leukocytes, lymphoid cells, and heteroploid cells. Only minor variations in interferon-producing capacity were observed among fibroblasts from 36 persons. Culture passage level, cell concentration, and inducer were factors that significantly affected interferon production. PMID:4344957

  9. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  10. Human embryonic stem cells: prospects for development.

    PubMed

    Pera, Martin F; Trounson, Alan O

    2004-11-01

    It is widely anticipated that human embryonic stem (ES) cells will serve as an experimental model for studying early development in our species, and, conversely, that studies of development in model systems, the mouse in particular, will inform our efforts to manipulate human stem cells in vitro. A comparison of primate and mouse ES cells suggests that a common underlying blueprint for the pluripotent state has undergone significant species-specific modification. As we discuss here, technical advances in the propagation and manipulation of human ES cells have improved our understanding of their growth and differentiation, providing the potential to investigate early human development and to develop new clinical therapies.

  11. Evidence for Human Lung Stem Cells

    PubMed Central

    Kajstura, Jan; Rota, Marcello; Hall, Sean R.; Hosoda, Toru; D’Amario, Domenico; Sanada, Fumihiro; Zheng, Hanqiao; Ogórek, Barbara; Rondon-Clavo, Carlos; Ferreira-Martins, João; Matsuda, Alex; Arranto, Christian; Goichberg, Polina; Giordano, Giovanna; Haley, Kathleen J.; Bardelli, Silvana; Rayatzadeh, Hussein; Liu, Xiaoli; Quaini, Federico; Liao, Ronglih; Leri, Annarosa; Perrella, Mark A.; Loscalzo, Joseph; Anversa, Piero

    2011-01-01

    BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.) PMID:21561345

  12. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  13. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  14. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  15. Clinical relevance of circulating anti-ENA and anti-dsDNA secreting cells from SLE patients and their dependence on STAT-3 activation.

    PubMed

    de la Varga Martínez, Raquel; Rodríguez-Bayona, Beatriz; Añez, Gustavo A; Medina Varo, Fermín; Pérez Venegas, José J; Brieva, José A; Rodríguez, Carmen

    2017-07-01

    Disturbances of plasma cell homeostasis and auto-antibody production are hallmarks of systemic lupus erythematosus. The aim of this study was to explore the presence of circulating anti-ENA and anti-dsDNA antibody-secreting cells, to determine their dependence on plasma cell-niche cytokines and to analyze their clinical value. The study was performed in SLE patients with serum anti-ENA and/or anti-dsDNA antibodies (n = 57). Enriched B-cell fractions and sorted antibody-secreting cells (CD19(low) CD38(high) ) were obtained from blood. dsDNA- and ENA-specific antibody-secreting cells were identified as cells capable of active auto-antibody production in culture. The addition of a combination of IL-6, IL-21, BAFF, APRIL, and CXCL12 to the cultures significantly augmented auto-antibody production and antibody-secreting cell proliferation, whereas it diminished apoptosis. The effect on auto-antibody production was dependent on STAT-3 activation as it was abrogated in the presence of the JAK/STAT-3 pathway inhibitors ruxolitinib and stattic. Among patients with serum anti-dsDNA antibodies, the detection of circulating anti-dsDNA-antibody-secreting cells was associated with higher disease activity markers. In conclusion, auto-antibody production in response to plasma cell-niche cytokines that are usually at high levels in SLE patients is dependent on JAK/STAT-3 activation. Thus, patients with circulating anti-dsDNA antibody-secreting cells and active disease could potentially benefit from therapies targeting the JAK/STAT3 pathway. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.

  17. Competition between human cells by entosis

    PubMed Central

    Sun, Qiang; Luo, Tianzhi; Ren, Yixin; Florey, Oliver; Shirasawa, Senji; Sasazuki, Takehiko; Robinson, Douglas N; Overholtzer, Michael

    2014-01-01

    Human carcinomas are comprised of complex mixtures of tumor cells that are known to compete indirectly for nutrients and growth factors. Whether tumor cells could also compete directly, for example by elimination of rivals, is not known. Here we show that human cells can directly compete by a mechanism of engulfment called entosis. By entosis, cells are engulfed, or cannibalized while alive, and subsequently undergo cell death. We find that the identity of engulfing (“winner”) and engulfed (“loser”) cells is dictated by mechanical deformability controlled by RhoA and actomyosin, where tumor cells with high deformability preferentially engulf and outcompete neighboring cells with low deformability in heterogeneous populations. We further find that activated Kras and Rac signaling impart winner status to cells by downregulating contractile myosin, allowing for the internalization of neighboring cells that eventually undergo cell death. Finally, we compute the energy landscape of cell-in-cell formation, demonstrating that a mechanical differential between winner and loser cells is required for entosis to proceed. These data define a mechanism of competition in mammalian cells that occurs in human tumors. PMID:25342560

  18. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and Its Disruption by Dioxin (S)

    EPA Science Inventory

    The terminal differentiation of B cells in lymphoid organs into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The architecture of the B-cell transcriptional regulatory network consists of coupled mutually-repressive fee...

  19. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and Its Disruption by Dioxin (S)

    EPA Science Inventory

    The terminal differentiation of B cells in lymphoid organs into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The architecture of the B-cell transcriptional regulatory network consists of coupled mutually-repressive fee...

  20. Activin A programs human TFH cell differentiation

    PubMed Central

    Locci, Michela; Wu, Jennifer; Arumemi, Fortuna; Mikulski, Zbigniew; Dahlberg, Carol; Miller, Andrew T.; Crotty, Shane

    2016-01-01

    SUMMARY Follicular helper T (TFH) cells are CD4+ T cells specialized in helping B cells and are associated both with protective antibody responses and autoimmune diseases. The promise of targeting TFH cells therapeutically has been limited by fragmentary understanding of extrinsic signals regulating human TFH cell differentiation. A screen of a human protein library identified activin A as new regulator of TFH cell differentiation. Activin A orchestrated expression of multiple TFH-associated genes, independently or in concert with additional signals. TFH programming by activin A was antagonized by the cytokine IL-2. Activin A’s capacity to drive TFH cell differentiation in vitro was conserved for non-human primates but not mice. Finally, activin A-induced TFH programming was dependent on SMAD2 and SMAD3 signaling and blocked by pharmacological inhibitors. PMID:27376469

  1. Human skin cells support thymus-independent T cell development

    PubMed Central

    Clark, Rachael A.; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S.

    2005-01-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  2. Human embryonic stem cells derived by somatic cell nuclear transfer.

    PubMed

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  3. Differentiation of Neural Lineage Cells from Human Pluripotent Stem Cells

    PubMed Central

    Schwartz, Philip H.; Brick, David J.; Stover, Alexander E.; Loring, Jeanne F.; Müller, Franz Josef

    2008-01-01

    Human pluripotent stem cells have the unique properties of being able to proliferate indefinitely in their undifferentiated state and to differentiate into any somatic cell type. These cells are thus posited to be extremely useful for furthering our understanding of both normal and abnormal human development, providing a human cell preparation that can be used to screen for new reagents or therapeutic agents, and generating large numbers of differentiated cells that can be used for transplantation purposes. Critical among the applications for the latter are diseases and injuries of the nervous system, medical approaches to which have been, to date, primarily palliative in nature. Differentiation of human pluripotent stem cells into cells of the neural lineage, therefore, has become a central focus of a number of laboratories. This has resulted in the description in the literature of several dozen methods for neural cell differentiation from human pluripotent stem cells. Among these are methods for the generation of such divergent neural cells as dopaminergic neurons, retinal neurons, ventral motoneurons, and oligodendroglial progenitors. In this review, we attempt to fully describe most of these methods, breaking them down into five basic subdivisions: 1) starting material, 2) induction of loss of pluripotency, 3) neural induction, 4) neural maintenance and expansion, and 5) neuronal/glial differentiation. We also show data supporting the concept that undifferentiated human pluripotent stem cells appear to have an innate neural differentiation potential. In addition, we evaluate data comparing and contrasting neural stem cells differentiated from human pluripotent stem cells with those derived directly from the human brain. PMID:18593611

  4. Modulation of human humoral immune response through orally administered bovine colostrum.

    PubMed

    He, F; Tuomola, E; Arvilommi, H; Salminen, S

    2001-08-01

    Eighteen healthy volunteers were randomized into two treatment groups and consumed liquid prepackaged bovine colostrum whey and placebo for 7 days. On days 1, 3 and 5, an attenuated Salmonella typhi Ty21a oral vaccine was given to all subjects to mimic an enteropathogenic infection. The circulating antibody secreting cells and the expression of phagocytosis receptors of the subjects before and after oral immunization were measured with the ELISPOT assay and flow cytometry. All subjects responded well to the vaccine. No significant differences were observed in ELISPOT values for IgA, IgG, IgM, Fcgamma and CR receptor expression on neutrophils and monocytes between the two groups. There was a trend towards greater increase in specific IgA among the subjects receiving their vaccine with bovine colostrum. These results suggest that bovine colostrum may possess some potential to enhance human special immune responses.

  5. Development of human mast cells in vitro.

    PubMed Central

    Furitsu, T; Saito, H; Dvorak, A M; Schwartz, L B; Irani, A M; Burdick, J F; Ishizaka, K; Ishizaka, T

    1989-01-01

    Nucleated cells of human umbilical cord blood were cocultured with mouse skin-derived 3T3 fibroblasts. After 7-8 weeks in culture, when the number of the other hematopoietic cells declined, metachromatic granule-containing mononuclear cells appeared in the cultures, and the number of the cells increased up to 12 weeks. After 11-14 weeks in culture, the metachromatic mononuclear cells comprised a substantial portion of the cultured cells. These cells contained 1.8-2 micrograms of histamine per 10(6) cells and bore receptors for IgE. All of the cells contained tryptase in their granules. Electron microscopic analysis showed that these cells were mature human mast cells, clearly different from the basophilic granulocytes or eosinophils that arise in a variety of circumstances in cord blood cell cultures. Most of the cultured mast cells expressed some granules with regular crystalline arrays and contained both tryptase and chymase, and thus resembled human skin mast cells. Images PMID:2532357

  6. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  7. Cells immunoreactive for neuropeptide in human thymomas.

    PubMed Central

    Lauriola, L; Maggiano, N; Larocca, L M; Ranelletti, F O; Ricci, R; Piantelli, M; Capelli, A

    1990-01-01

    The presence of opioid peptides, bombesin, and substance P was investigated by immunohistochemistry in tissue sections from six human thymomas. The number of immunoreactive cells seemed to vary from one case to another. Ultrastructural investigation, showing the presence of desmosomes in labelled cells, allowed these cells to be classified as epithelial lineage cells. The occurrence of cells containing neuropeptide in thymomas suggest that peptide molecules could have modulated the behaviour of this tumour, given the reported influence of these molecules on immune functions and their growth promoting activity on several cell types, including mesenchymal and epithelial cells. Images PMID:1699978

  8. Reprogramming of human exocrine pancreas cells to beta cells.

    PubMed

    Staels, Willem; Heremans, Yves; Heimberg, Harry

    2015-12-01

    One of the key promises of regenerative medicine is providing a cure for diabetes. Cell-based therapies are proving their safety and efficiency, but donor beta cell shortages and immunological issues remain major hurdles. Reprogramming of human pancreatic exocrine cells towards beta cells would offer a major advantage by providing an abundant and autologous source of beta cells. Over the past decade our understanding of transdifferentiation processes greatly increased allowing us to design reprogramming protocols that fairly aim for clinical trials.

  9. Ex Vivo Expanded Human NK Cells Survive and Proliferate in Humanized Mice with Autologous Human Immune Cells.

    PubMed

    Vahedi, Fatemeh; Nham, Tina; Poznanski, Sophie M; Chew, Marianne V; Shenouda, Mira M; Lee, Dean; Ashkar, Ali A

    2017-09-21

    Adoptive immune cell therapy is emerging as a promising immunotherapy for cancer. Particularly, the adoptive transfer of NK cells has garnered attention due to their natural cytotoxicity against tumor cells and safety upon adoptive transfer to patients. Although strategies exist to efficiently generate large quantities of expanded NK cells ex vivo, it remains unknown whether these expanded NK cells can persist and/or proliferate in vivo in the absence of exogenous human cytokines. Here, we have examined the adoptive transfer of ex vivo expanded human cord blood-derived NK cells into humanized mice reconstituted with autologous human cord blood immune cells. We report that ex vivo expanded NK cells are able to survive and possibly proliferate in vivo in humanized mice without exogenous cytokine administration, but not in control mice that lack human immune cells. These findings demonstrate that the presence of autologous human immune cells supports the in vivo survival of ex vivo expanded human NK cells. These results support the application of ex vivo expanded NK cells in cancer immunotherapy and provide a translational humanized mouse model to test the lifespan, safety, and functionality of adoptively transferred cells in the presence of autologous human immune cells prior to clinical use.

  10. Human CD4+ T Cell Response to Human Herpesvirus 6

    PubMed Central

    Nastke, Maria-D.; Becerra, Aniuska; Yin, Liusong; Dominguez-Amorocho, Omar; Gibson, Laura; Calvo-Calle, J. Mauricio

    2012-01-01

    Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4+ T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4+ T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4+ T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses. PMID:22357271

  11. Cell proliferation in human coronary arteries.

    PubMed Central

    Gordon, D; Reidy, M A; Benditt, E P; Schwartz, S M

    1990-01-01

    Despite the lack of direct evidence for cell multiplication, proliferation of smooth muscle cells in human atherosclerotic lesions has been assumed to play a central role in ontogeny of the plaque. We used antibodies to cell cycle-related proteins on tissue sections of human arteries and coronary atherosclerotic plaques. Specific cell types were identified by immunochemical reagents for smooth muscle, monocyte-macrophages, and other blood cells. Low rates of smooth muscle cell proliferation were observed. Macrophages were also observed with rates of proliferation comparable to that of the smooth muscle. Additional replicating cells could not be defined as belonging to specific cell types with the reagents used in this study. These findings imply that smooth muscle replication in advanced plaques is indolent and raise the possibility of a role for proliferating leukocytes. Images PMID:1972277

  12. Th17 cells in human disease

    PubMed Central

    Tesmer, Laura A.; Lundy, Steven K.; Sarkar, Sujata; Fox, David A.

    2012-01-01

    Summary Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4+ T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection. PMID:18613831

  13. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  14. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  15. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  16. Identification of human brain tumour initiating cells.

    PubMed

    Singh, Sheila K; Hawkins, Cynthia; Clarke, Ian D; Squire, Jeremy A; Bayani, Jane; Hide, Takuichiro; Henkelman, R Mark; Cusimano, Michael D; Dirks, Peter B

    2004-11-18

    The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

  17. Immortalisation of human urothelial cells.

    PubMed

    Petzoldt, J L; Leigh, I M; Duffy, P G; Sexton, C; Masters, J R

    1995-01-01

    A cell line derived from the urothelium lining the ureter of a 12-year-old girl was immortalised using a temperature-sensitive SV40 large T-antigen gene construct, and designated UROtsa. Following immortalisation, UROtsa cells expressed SV40 large T-antigen, but did not acquire characteristics of neoplastic transformation, including growth in soft agar or the development of tumours in nude mice. Metaphase spreads had a normal chromosomal appearance and number. UROtsa cells remained permissive for cell growth at 39 degrees C, indicating that they did not retain temperature sensitivity. UROtsa provides an in vitro model of "normal" urothelium.

  18. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  19. Nucleofection of human embryonic stem cells.

    PubMed

    Siemen, Henrike; Nix, Michael; Endl, Elmar; Koch, Philipp; Itskovitz-Eldor, Joseph; Brüstle, Oliver

    2005-08-01

    Human embryonic stem (hES) cells provide an important tool for the study of human development, disease, and tissue regeneration. Technologies for efficient genetic modification are required to exploit hES cells fully for these applications. Here we present a customized protocol for the transfection of hES cells with the Nucleofector technology and compare its efficiency with conventional electroporation and lipofection. Cell survival and transfection efficiency were quantified using an enhanced green fluorescent protein (EGFP) reporter construct. Our optimized nucleofection parameters yielded survival rates >70%. Under these conditions, 66% of the surviving cells showed transgene expression 24 h after nucleofection. Transfected cells maintained expression of the pluripotency- associated markers Tra-1-60, Tra-1-81, and Oct4 and could be expanded to stably transgene-expressing clones. The low quantities of hES cells and DNA required for nucleofection could make this method an attractive tool for miniaturized high throughput screening (HTS) applications.

  20. Calcium signaling in human pluripotent stem cells.

    PubMed

    Apáti, Ágota; Berecz, Tünde; Sarkadi, Balázs

    2016-03-01

    Human pluripotent stem cells provide new tools for developmental and pharmacological studies as well as for regenerative medicine applications. Calcium homeostasis and ligand-dependent calcium signaling are key components of major cellular responses, including cell proliferation, differentiation or apoptosis. Interestingly, these phenomena have not been characterized in detail as yet in pluripotent human cell sates. Here we review the methods applicable for studying both short- and long-term calcium responses, focusing on the expression of fluorescent calcium indicator proteins and imaging methods as applied in pluripotent human stem cells. We discuss the potential regulatory pathways involving calcium responses in hPS cells and compare these to the implicated pathways in mouse PS cells. A recent development in the stem cell field is the recognition of so called "naïve" states, resembling the earliest potential forms of stem cells during development, as well as the "fuzzy" stem cells, which may be alternative forms of pluripotent cell types, therefore we also discuss the potential role of calcium homeostasis in these PS cell types.

  1. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  2. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  3. Cadmium increases human fetal germ cell apoptosis.

    PubMed

    Angenard, Gaëlle; Muczynski, Vincent; Coffigny, Hervé; Pairault, Catherine; Duquenne, Clotilde; Frydman, René; Habert, René; Rouiller-Fabre, Virginie; Livera, Gabriel

    2010-03-01

    Cadmium (Cd) is a common environmental pollutant and a major constituent of tobacco smoke. Adverse effects of this heavy metal on reproductive function have been identified in adults; however, no studies have examined its effects on human reproductive organs during development. Using our previously developed organ culture system, we investigated the effects of cadmium chloride on human gonads at the beginning of fetal life, a critical stage in the development of reproductive function. Human fetal gonads were recovered during the first trimester (711 weeks postconception) and cultured with or without Cd. We used different concentrations of Cd and compared results with those obtained with mouse fetal gonads at similar stages. Cd, at concentrations as low as 1 microM, significantly decreased the germ cell density in human fetal ovaries. This correlated with an increase in germ cell apoptosis, but there was no effect on proliferation. Similarly, in the human fetal testis, Cd (1 microM) reduced germ cell number without affecting testosterone secretion. In mouse fetal gonads, Cd increased only female germ cell apoptosis. This is the first experimental demonstration that Cd, at low concentrations, alters the survival of male and female germ cells in humans. Considering data demonstrating extensive human exposure, we believe that current environmental levels of Cd could be deleterious to early gametogenesis.

  4. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  5. Cell senescence in human aging and disease.

    PubMed

    Fossel, Michael

    2002-04-01

    The most common causes of death and suffering, even in most underdeveloped nations, are age-related diseases. These diseases share fundamental and often unappreciated pathology at the cellular and genetic levels, through cell senescence. In cancer, enforcing cell senescence permits us to kill cancer cells without significantly harming normal cells. In other age-related diseases, cell senescence plays a direct role, and we may be able to prevent and reverse much of the pathology. While aging is attributed to "wear and tear," genetic studies show that these effects are avoidable (as is the case in germ cell lines) and occur only when cells down-regulate active (and sufficient) repair mechanisms, permitting degradation to occur. Aging occurs when cells permit accumulative damage by wear and tear, by altering their gene expression rather than vice versa. Using telomerase in laboratory settings, we can currently reset this pattern and its consequences both within cells and between cells. Doing so resets not only cell behavior but the pathological consequences within tissues comprising such cells. We can currently grow histologically young, reconstituted human skin using old human skin cells (keratinocytes and fibroblasts). Technically we could now test this approach in joints, vessels, the immune system, and other tissues. This model is consistent with all available laboratory data and known aging pathology. Within the next decade, we will be able to treat age-related diseases more effectively than ever before.

  6. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and its Disruption by Dioxin

    EPA Science Inventory

    The terminal differentiation of B lymphocytes into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The mutually-repressive interactions among three key regulatory transcription factors underlying B to plasma cell differe...

  7. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and its Disruption by Dioxin

    EPA Science Inventory

    The terminal differentiation of B lymphocytes into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The mutually-repressive interactions among three key regulatory transcription factors underlying B to plasma cell differe...

  8. Human Stem Cells for Craniomaxillofacial Reconstruction

    PubMed Central

    Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor

    2014-01-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  9. Signaling hierarchy regulating human endothelial cell development

    USDA-ARS?s Scientific Manuscript database

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  10. Interspecies chimeras for human stem cell research.

    PubMed

    Masaki, Hideki; Nakauchi, Hiromitsu

    2017-07-15

    Interspecies chimeric assays are a valuable tool for investigating the potential of human stem and progenitor cells, as well as their differentiated progeny. This Spotlight article discusses the different factors that affect interspecies chimera generation, such as evolutionary distance, developmental timing, and apoptosis of the transplanted cells, and suggests some possible strategies to address them. A refined approach to generating interspecies chimeras could contribute not only to a better understanding of cellular potential, but also to understanding the nature of xenogeneic barriers and mechanisms of heterochronicity, to modeling human development, and to the creation of human transplantable organs. © 2017. Published by The Company of Biologists Ltd.

  11. Retrospective birth dating of cells in humans.

    PubMed

    Spalding, Kirsty L; Bhardwaj, Ratan D; Buchholz, Bruce A; Druid, Henrik; Frisén, Jonas

    2005-07-15

    The generation of cells in the human body has been difficult to study, and our understanding of cell turnover is limited. Testing of nuclear weapons resulted in a dramatic global increase in the levels of the isotope 14C in the atmosphere, followed by an exponential decrease after 1963. We show that the level of 14C in genomic DNA closely parallels atmospheric levels and can be used to establish the time point when the DNA was synthesized and cells were born. We use this strategy to determine the age of cells in the cortex of the adult human brain and show that whereas nonneuronal cells are exchanged, occipital neurons are as old as the individual, supporting the view that postnatal neurogenesis does not take place in this region. Retrospective birth dating is a generally applicable strategy that can be used to measure cell turnover in man under physiological and pathological conditions.

  12. Human embryonic stem cells and lung regeneration.

    PubMed

    Varanou, A; Page, C P; Minger, S L

    2008-10-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically.

  13. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2007-10-01

    Epithelial Stem Cells PRINCIPAL INVESTIGATOR: Peter D. Eirew CONTRACTING ORGANIZATION: British Columbia Cancer Agency...NUMBER Characterization of Human Mammary Epithelial Stem Cells 5b. GRANT NUMBER W81XWH-06-1-0702 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Abstract The mammary epithelium in normal adult female mice contains undifferentiated stem cells with extensive in vivo regenerative and self-renewal

  14. Human brain glial cells synthesize thrombospondin.

    PubMed Central

    Asch, A S; Leung, L L; Shapiro, J; Nachman, R L

    1986-01-01

    Thrombospondin, a 450-kDa multinodular glycoprotein with lectin-type activity, is found in human platelets, endothelial cells, fibroblasts, smooth muscle cells, monocytes, and granular pneumocytes. Thrombospondin interacts with heparin, fibrinogen, fibronectin, collagen, histidine-rich glycoprotein, and plasminogen. Recently, thrombospondin synthesis by smooth muscle cells has been reported to be augmented by platelet-derived growth factor. We present evidence that thrombospondin is present within and synthesized by astrocytic neuroglial cells. Heparin-Sepharose affinity chromatography of material derived from a human brain homogenate yielded a protein that, when reduced, had an apparent size of 180 kDa and comigrated with reduced platelet thrombospondin on NaDodSO4/PAGE. Immunoblot analysis with monospecific anti-thrombospondin confirmed the presence of immunoreactive thrombospondin. Indirect immunofluorescence of cultured human glial cells indicated the presence of thrombospondin. Metabolic labeling of glial cell cultures with [35S]methionine followed by immunoprecipitation with monospecific anti-thrombospondin revealed synthesis of a 180-kDa polypeptide that comigrated with platelet thrombospondin on NaDodSO4/PAGE. Cultured human glial cells were incubated for 48 hr in serum-free medium with purified platelet-derived growth factor at concentrations up to 50 ng/ml. Aliquots taken at intervals were analyzed by a quantitative double-antibody ELISA. The growth factor stimulated the release of thrombospondin into the culture medium by as much as 10-fold over control cultures. The presence of thrombospondin within glial cells of the central nervous system and the augmentation of its synthesis by platelet-derived growth factor suggest that thrombospondin may play an important role in regulating cell-cell and cell-matrix interactions during periods of cell division and growth. Images PMID:2939460

  15. Pancreastatin producing cell line from human pancreatic islet cell tumor.

    PubMed

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Ikeda, Y; Kono, A

    1990-04-30

    It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.

  16. Myeloid derived suppressor cells in human diseases

    PubMed Central

    Greten, Tim F.; Manns, Michael P.; Korangy, Firouzeh

    2012-01-01

    Myeloid derived suppressor cells (MDSC) have been described as a heterogeneous cell population with potent immune suppressor function in mice. Limited data are available on MDSC in human diseases. Interpretation of these data is complicated by the fact that different markers have been used to analyze human MDSC subtypes in various clinical settings. Human MDSC are CD11b+, CD33+, HLA-DRneg/low and can be divided into granulocytic CD14− and monocytic CD14+ subtypes. Interleukin 4Rα, VEGFR, CD15 and CD66b have been suggested to be more specific markers for human MDSC, however these markers can only be found on some MDSC subsets. Until today the best marker for human MDSC remains their suppressor function, which can be either direct or indirect through the induction of regulatory T cells. Immune suppressor activity has been associated with high arginase 1 and iNOS activity as well as ROS production by MDSC. Not only in murine models, but even more importantly in patients with cancer, different drugs have been shown to either reverse the immune suppressor function of MDSC or directly target these cells. Systemic treatment with all-trans-retinoic acid has been shown to mature human MDSC and reverse their immune suppressor function. Alternatively, MDSC can be targeted by treatment with the multi-targeted receptor tyrosine kinase inhibitor sunitinib. In this review will provide a comprehensive summary of the recent literature on human MDSC. PMID:21237299

  17. Interaction of Staphylococci with Human B cells

    PubMed Central

    Nygaard, Tyler K.; Kobayashi, Scott D.; Freedman, Brett; Porter, Adeline R.; Voyich, Jovanka M.; Otto, Michael; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen. PMID:27711145

  18. Activation of human T cells in hypertension: Studies of Humanized Mice and Hypertensive Humans

    PubMed Central

    Itani, Hana A.; McMaster, William G.; Saleh, Mohamed A.; Nazarewicz, Rafal R.; Mikolajczyk, Tomasz P.; Kaszuba, Anna; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E.; Chen, Wei; Bonami, Rachel H.; Marshall, Andrew F.; Poffenberger, Greg; Weyand, Cornelia M.; Madhur, Meena S.; Moore, Daniel J.; Harrison, David G.; Guzik, Tomasz J.

    2016-01-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We employed a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 mm Hg vs. 116 mm Hg for sham treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T cell proliferation. We also observed an increase in circulating IL-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce IFN-γ in hypertensive compared to normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. PMID:27217403

  19. Intrinsic radiation resistance in human chondrosarcoma cells

    SciTech Connect

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A. . E-mail: joseph-buckwalter@uiowa.edu

    2006-07-28

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16{sup ink4a}, one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16{sup ink4a} contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16{sup ink4a} expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16{sup ink4a} expression on chondrosarcoma cell resistance to low-dose {gamma}-irradiation (1-5 Gy). p16{sup ink4a} expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16{sup ink4a} transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16{sup ink4a} plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.

  20. Bone tissue engineering with human stem cells

    PubMed Central

    2010-01-01

    Treatment of extensive bone defects requires autologous bone grafting or implantation of bone substitute materials. An attractive alternative has been to engineer fully viable, biological bone grafts in vitro by culturing osteogenic cells within three-dimensional scaffolds, under conditions supporting bone formation. Such grafts could be used for implantation, but also as physiologically relevant models in basic and translational studies of bone development, disease and drug discovery. A source of human cells that can be derived in large numbers from a small initial harvest and predictably differentiated into bone forming cells is critically important for engineering human bone grafts. We discuss the characteristics and limitations of various types of human embryonic and adult stem cells, and their utility for bone tissue engineering. PMID:20637059

  1. CD161-expressing human T cells.

    PubMed

    Fergusson, Joannah R; Fleming, Vicki M; Klenerman, Paul

    2011-01-01

    Expression of the Natural Killer cell receptor CD161 has recently been identified on a subset of T cells, including both CD4+ T helper and CD8+ T cells. Expression of this molecule within the adult circulation is restricted to those T cells with a memory phenotype. However, the distinct properties of these T cell populations is yet to be fully determined, although expression of CD161 has been related to the secretion of interleukin-17, and therefore to a type 17 phenotype. Recent studies have aimed to determine both the origin of these cells and the significance of CD161 expression as either a marker of specific cell types or as an effector and regulator of lymphocyte function, and hence to characterize the role of these CD161+ cells within a variety of human diseases in which they have been implicated.

  2. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  3. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  4. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  5. Human spleen and red blood cells

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  6. Clinical translation of human neural stem cells

    PubMed Central

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  7. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  8. Autophagy in Human Embryonic Stem Cells

    PubMed Central

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659

  9. Autophagy in human embryonic stem cells.

    PubMed

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  10. Mast cells in human health and disease.

    PubMed

    DeBruin, Erin J; Gold, Matthew; Lo, Bernard C; Snyder, Kimberly; Cait, Alissa; Lasic, Nikola; Lopez, Martin; McNagny, Kelly M; Hughes, Michael R

    2015-01-01

    Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.

  11. Laminin receptor on human breast carcinoma cells.

    PubMed Central

    Terranova, V P; Rao, C N; Kalebic, T; Margulies, I M; Liotta, L A

    1983-01-01

    Human MCF-7 breast carcinoma cells possess a receptor-like moiety on their surface that has a high binding affinity (Kd = 2 nM) for laminin, a glycoprotein localized in basement membranes. Laminin preferentially stimulates (8-fold) MCF-7 cells to attach to type IV (basement membrane) collagen, whereas fibronectin stimulates attachment only 2-fold for these cells on type I collagen. The attachment properties of two other human breast carcinoma cell lines to type IV collagen were also studied. The attachment of ZR-75-1 cells was stimulated 4-fold by laminin and 5-fold by fibronectin, whereas T47-D cell attachment was stimulated 2-fold by laminin and 7-fold by fibronectin. By employing protease-derived fragments of laminin, the major domains of the laminin molecule that participate in MCF-7 cell attachment to type IV collagen were identified. The whole laminin molecule has the configuration of a four-armed cross with three short arms and one long arm. A major cell-binding domain was found to reside near the intersection point of the short arms, and the type IV collagen-binding domain was associated with the globular end regions of the short arms. The receptor for laminin on the surface of these tumor cells may be involved in the initial interaction of tumor cells via laminin with the vascular basement membrane to facilitate invasion and subsequent promotion of metastasis. Images PMID:6300843

  12. Cell mechanics and human disease states

    NASA Astrophysics Data System (ADS)

    Suresh, Subra

    2006-03-01

    This presentation will provide summary of our very recent studies exploring the effects of biochemical factors, influenced by foreign organisms or in vivo processes, on intracellular structural reorganization, single-cell mechanical response and motility of a population of cells in the context of two human diseases: malaria induced by Plasmodium falciparum merozoites that invade red blood cells, and gastrointestinal cancer metastasis involving epithelial cells. In both cases, particular attention will be devoted to systematic changes induced in specific molecular species in response to controlled alterations in disease state. The role of critical proteins in influencing the mechanical response of human red bloods during the intra-erythrocytic development of P. falciparum merozoites has also been assessed quantitatively using specific protein knock-out experiments by recourse to gene inactivation methods. Single-cell mechanical response characterization entails such tools as optical tweezers and mechanical plate stretchers whereas cell motility assays and cell-population biorheology characterization involves microfluidic channels. The experimental studies are accompanied by three-dimensional computational simulations at the continuum and mesoscopic scales of cell deformation. An outcome of such combined experimental and computational biophysical studies is the realization of how chemical factors influence single-cell mechanical response, cytoadherence, the biorheology of a large population of cells through microchannels representative of in vivo conditions, and the onset and progression of disease states.

  13. Single-Cell RNA Sequencing of Human T Cells.

    PubMed

    Villani, Alexandra-Chloé; Shekhar, Karthik

    2017-01-01

    Understanding how populations of human T cells leverage cellular heterogeneity, plasticity, and diversity to achieve a wide range of functional flexibility, particularly during dynamic processes such as development, differentiation, and antigenic response, is a core challenge that is well suited for single-cell analysis. Hypothesis-free evaluation of cellular states and subpopulations by transcriptional profiling of single T cells can identify relationships that may be obscured by targeted approaches such as FACS sorting on cell-surface antigens, or bulk expression analysis. While this approach is relevant to all cell types, it is of particular interest in the study of T cells for which classical phenotypic criteria are now viewed as insufficient for distinguishing different T cell subtypes and transitional states, and defining the changes associated with dysfunctional T cell states in autoimmunity and tumor-related exhaustion. This unit describes a protocol to generate single-cell transcriptomic libraries of human blood CD4(+) and CD8(+) T cells, and also introduces the basic bioinformatic steps to process the resulting sequence data for further computational analysis. We show how cellular subpopulations can be identified from transcriptional data, and derive characteristic gene expression signatures that distinguish these states. We believe single-cell RNA-seq is a powerful technique to study the cellular heterogeneity in complex tissues, a paradigm that will be of great value for the immune system.

  14. Creation of human cardiac cell sheets using pluripotent stem cells.

    PubMed

    Matsuura, Katsuhisa; Wada, Masanori; Shimizu, Tatsuya; Haraguchi, Yuji; Sato, Fumiko; Sugiyama, Kasumi; Konishi, Kanako; Shiba, Yuji; Ichikawa, Hinako; Tachibana, Aki; Ikeda, Uichi; Yamato, Masayuki; Hagiwara, Nobuhisa; Okano, Teruo

    2012-08-24

    Although we previously reported the development of cell-dense thickened cardiac tissue by repeated transplantation-based vascularization of neonatal rat cardiac cell sheets, the cell sources for human cardiac cells sheets and their functions have not been fully elucidated. In this study, we developed a bioreactor to expand and induce cardiac differentiation of human induced pluripotent stem cells (hiPSCs). Bioreactor culture for 14 days produced around 8×10(7) cells/100 ml vessel and about 80% of cells were positive for cardiac troponin T. After cardiac differentiation, cardiomyocytes were cultured on temperature-responsive culture dishes and showed spontaneous and synchronous beating, even after cell sheets were detached from culture dishes. Furthermore, extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  16. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  17. The human mast cell: an overview.

    PubMed

    Krishnaswamy, Guha; Ajitawi, Omar; Chi, David S

    2006-01-01

    Mast cells are fascinating, multifunctional, tissue-dwelling cells that have been traditionally associated with the allergic response. However, recent studies suggest these cells may be capable of regulating inflammation, host defense, and innate immunity. The purpose of this review is to present salient aspects of mast cell biology in the context of mast cell function in physiology and disease. After their development from bone marrow-derived progenitor cells that are primed with stem cell factor, mast cells continue their maturation and differentiation in peripheral tissue, developing into two well-described subsets of cells, MC(T) and MC(TC) cells. These cells can be distinguished on the basis of their tissue location, dependence on T lymphocytes, and their granule contents. Mast cells can undergo activation by antigens/allergens, superoxides, complement proteins, neuropeptides, and lipoproteins. After activation, mast cells express histamine, leukotrienes, and prostanoids, as well as proteases, and many cytokines and chemokines. These mediators may be pivotal to the genesis of an inflammatory response. By virtue of their location and mediator expression, mast cells may play an active role in many diseases, such as allergy, parasitic diseases, atherosclerosis, malignancy, asthma, pulmonary fibrosis, and arthritis. Recent data also suggest that mast cells play a vital role in host defense against pathogens by elaboration of tumor necrosis factor alpha. Mast cells also express the Toll-like receptor, which may further accentuate their role in the immune-inflammatory response. This chapter summarizes the many well-known and novel functional aspects of human mast cell biology and emphasizes their unique role in the inflammatory response.

  18. Antibacterial activity of human natural killer cells

    PubMed Central

    1989-01-01

    The in vitro effects of human NK cells on viability of Gram-negative and Gram-positive bacteria was investigated. PBLs depleted of glass- adherent cells showed a significant antibacterial activity that was increased as the concentration of NK cells became higher. Leu-11- enriched cells exhibited the most efficient bactericidal activity. Stimulation of NK cells with staphylococcal enterotoxin B for 16 h produced a significant increase in the antibacterial activity of all NK cells tested. The antibacterial activity of monocyte-depleted cells and Leu-11-enriched cells was also enhanced after culturing in vitro for 16- 24 h without exogenous cytokines. Dependence of the antibacterial activity on the presence of serum in the culture medium was not found. Ultrastructural studies revealed close contact between NK cell membranes and bacteria, no evidence of phagocytosis, and extracellular bacterial ghosts, after incubation at 37 degrees C. Supernatants from purified NK cells exhibited potent bactericidal activity with kinetics and target specificity similar to that of effector cells. These results document the potent antibacterial activity of purified NK cells and suggest an extracellular mechanism of killing. PMID:2642532

  19. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  20. Natural killer cells in human autoimmune disorders

    PubMed Central

    2013-01-01

    Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases. PMID:23856014

  1. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  2. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  3. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2013-05-28

    format (96-,384-well) assays, 2) grow as adherent monolayers, and 3) possess a stable karyotype for multiple (>10) passages with a doubling time of ~36...derived neural progenitor cell line working stock has been amplified, characterized for karyotype and evaluated for the expression of neural progenitor...Orlando R, Stice SL. Membrane proteomic signatures of karyotypically normal and abnormal human embryonic stem cell lines and derivatives. Proteomics. 2011

  4. Photomodification of human immunocompetent blood cells

    SciTech Connect

    Krylenkov, V.A.; Ogurtsov, R.P.; Osmanov, M.A.; Kholmogorov, V.E.

    1987-10-01

    In this paper, processes of photomodification of lymphoid cells in human blood, developing immediately after exposure to visible radiation and also in the late stages after irradiation, were investigated by methods of spontaneous and immune rosette formation and the blast transformation test, combined with treatment with the antioxidant alpha-tocopherol and the radioactive assessment of spontaneous and stimulated DNA synthesis by tritium-thymidine-labelled cells.

  5. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing

    PubMed Central

    Tsioris, Konstantinos; Gupta, Namita T.; Ogunniyi, Adebola O.; Zimnisky, Ross M.; Qian, Feng; Yao, Yi; Wang, Xiaomei; Stern, Joel N. H.; Chari, Raj; Briggs, Adrian W.; Clouser, Christopher R.; Vigneault, Francois; Church, George M.; Garcia, Melissa N.; Murray, Kristy O.; Montgomery, Ruth R.; Kleinstein, Steven H.; Love, J. Christopher

    2015-01-01

    West Nile virus infection (WNV) is an emerging mosquito-borne disease that can lead to severe neurological illness and currently has no available treatment or vaccine. Using microengraving, an integrated single-cell analysis method, we analyzed a cohort of subjects infected with WNV - recently infected and post-convalescent subjects - and efficiently identified four novel WNV neutralizing antibodies. We also assessed the humoral response to WNV on a single-cell and repertoire level by integrating next generation sequencing (NGS) into our analysis. The results from single-cell analysis indicate persistence of WNV-specific memory B cells and antibody-secreting cells in post-convalescent subjects. These cells exhibited class-switched antibody isotypes. Furthermore, the results suggest that the antibody response itself does not predict the clinical severity of the disease (asymptomatic or symptomatic). Using the nucleotide coding sequences for WNV-specific antibodies derived from single cells, we revealed the ontogeny of expanded WNV-specific clones in the repertoires of recently infected subjects through NGS and bioinformatic analysis. This analysis also indicated that the humoral response to WNV did not depend on an anamnestic response, due to an unlikely previous exposure to the virus. The innovative and integrative approach presented here to analyze the evolution of neutralizing antibodies from natural infection on a single-cell and repertoire level can also be applied to vaccine studies, and could potentially aid the development of therapeutic antibodies and our basic understanding of other infectious diseases. PMID:26481611

  6. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells.

    PubMed

    Lan, Haifeng; Hong, Wei; Fan, Pan; Qian, Dongyang; Zhu, Jianwei; Bai, Bo

    2017-09-21

    Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Our findings regarding the inhibitory effects of quercetin on cell migration and invasion suggest that quercetin may have potential as a therapy for human

  7. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  8. Standardized cryopreservation of human primary cells.

    PubMed

    Ramos, Thomas V; Mathew, Aby J; Thompson, Maria L; Ehrhardt, Rolf O

    2014-09-02

    Cryopreservation is the use of low temperatures to preserve structurally intact living cells. The cells that survive the thermodynamic journey from the 37 °C incubator to the -196 °C liquid nitrogen storage tank are free from the influences of time. Thus, cryopreservation is a critical component of cell culture and cell manufacturing protocols. Successful cryopreservation of human cells requires that the cells be derived from patient samples that are collected in a standardized manner, and carefully handled from blood draw through cell isolation. Furthermore, proper equipment must be in place to ensure consistency, reproducibility, and sterility. In addition, the correct choice and amount of cryoprotectant agent must be added at the correct temperature, and a controlled rate of freezing (most commonly 1 °C/min) must be applied prior to a standardized method of cryogenic storage. This appendix describes how human primary cells can be frozen for long-term storage and thawed for growth in a tissue culture vessel.

  9. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  10. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  11. Critical Role of SAP in Progression and Reactivation but Not Maintenance of T Cell-Dependent Humoral Immunity

    PubMed Central

    2013-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (TFH) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway. PMID:23319045

  12. Human ES cells: starting culture from frozen cells.

    PubMed

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-11-09

    Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock. First, a one to two day old ten cm plate of approximately one (to two) million irradiated mouse embryonic fibroblast feeder cells is rinsed with HuES media to remove residual serum and cell debris, and then HuES media added and left to equilibrate in the cell culture incubator. A frozen vial of cells from long term liquid nitrogen storage or a -80 C freezer is sourced and quickly submerged in a 37 C water bath for quick thawing. Cells in freezing media are then removed from the vial and placed in a large volume of HuES media. The large volume of HuES media facilitates removal of excess serum and DMSO, which can cause HuES human embryonic stem cells to differentiate. Cells are gently spun out of suspension, and then re-suspended in a small volume of fresh HuES media that is then used to seed the MEF plate. It is considered important to seed the MEF plate by gently adding the HuES cells in a drop wise fashion to evenly disperse them throughout the plate. The newly established HuES culture plate is returned to the incubator for 48 hrs before media is replaced, then is fed every 24 hours thereafter.

  13. Human mesenchymal stem cell homing induced by SKOV3 cells

    PubMed Central

    Fan, Dongmei; Xie, Xiaojuan; Qi, Pengwei; Yang, Xianan; Jin, Ximeng

    2017-01-01

    Human mesenchymal stem cell (hMSC) homing is the migration of endogenous and exogenous hMSCS to the target organs and the subsequent colonization under the action chemotaxic factors. This is an important process involved in the repair of damaged tissues. However, we know little about the mechanism of hMSC homing. Stromal cell derived factor-1 (SDF-1) is a cytokine secreted by stromal cells. Its only receptor CXCR4 is widely expressed in blood cells, immune cells and cells in the central nervous system. SDF-1/CXCR4 signaling pathway plays an important role in hMSC homing and tissue repair. Human cbll1 gene encodes E3 ubiquitin-protein ligase Hakai (also known as CBLL1) consisting of RING-finger domain that is involved in ubiquitination, endocytosis and degradation of epithelial cadherin (E-cadherin) as well as in the regulation of cell proliferation. We successfully constructed LV3-CXCR4 siRNA lentiviral vector, LV3-CBLL1 RNAi lentiviral vector and the corresponding cell systems which were used to induce hMSC homing in the presence of SKOV3 cells. Thus the mechanism of hMSC homing was studied. PMID:28337256

  14. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    PubMed

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  15. Human embryonic stem cells and cardiac repair.

    PubMed

    Zhu, Wei-Zhong; Hauch, Kip D; Xu, Chunhui; Laflamme, Michael A

    2009-01-01

    The muscle lost after a myocardial infarction is replaced with noncontractile scar tissue, often initiating heart failure. Whole-organ cardiac transplantation is the only currently available clinical means of replacing the lost muscle, but this option is limited by the inadequate supply of donor hearts. Thus, cell-based cardiac repair has attracted considerable interest as an alternative means of ameliorating cardiac injury. Because of their tremendous capacity for expansion and unquestioned cardiac potential, pluripotent human embryonic stem cells (hESCs) represent an attractive candidate cell source for obtaining cardiomyocytes and other useful mesenchymal cell types for such therapies. Human embryonic stem cell-derived cardiomyocytes exhibit a committed cardiac phenotype and robust proliferative capacity, and recent testing in rodent infarct models indicates that they can partially remuscularize injured hearts and improve contractile function. Although the latter successes give good reason for optimism, considerable challenges remain in the successful application of hESCs to cardiac repair, including the need for preparations of high cardiac purity, improved methods of delivery, and approaches to overcome immune rejection and other causes of graft cell death. This review will describe the phenotype of hESC-derived cardiomyocytes and preclinical experience with these cells and will consider strategies to overcoming the aforementioned challenges.

  16. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  17. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  18. Human embryonic stem cells: preclinical perspectives

    PubMed Central

    Deb, Kaushik Dilip; Sarda, Kanchan

    2008-01-01

    Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic. PMID:18230169

  19. Phagocytosis of dying tumor cells by human peritoneal mesothelial cells.

    PubMed

    Wagner, Britta Janina; Lindau, Dennis; Ripper, Dagmar; Stierhof, York-Dieter; Glatzle, Jörg; Witte, Maria; Beck, Henning; Keppeler, Hildegard; Lauber, Kirsten; Rammensee, Hans-Georg; Königsrainer, Alfred

    2011-05-15

    Peritoneal carcinomatosis is an advanced form of metastatic disease characterized by cancer cell dissemination onto the peritoneum. It is commonly observed in ovarian and colorectal cancers and is associated with poor patient survival. Novel therapies consist of cytoreductive surgery in combination with intraperitoneal chemotherapy, aiming at tumor cell death induction. The resulting dying tumor cells are considered to be eliminated by professional as well as semi-professional phagocytes. In the present study, we have identified a hitherto unknown type of 'amateur' phagocyte in this environment: human peritoneal mesothelial cells (HMCs). We demonstrate that HMCs engulf corpses of dying ovarian and colorectal cancer cells, as well as other types of apoptotic cells. Flow cytometric, confocal and electron microscopical analyses revealed that HMCs ingest dying cell fragments in a dose- and time-dependent manner and the internalized material subsequently traffics into late phagolysosomes. Regarding the mechanisms of prey cell recognition, our results show that HMCs engulf apoptotic corpses in a serum-dependent and -independent fashion and quantitative real-time PCR (qRT-PCR) analyses revealed that diverse opsonin receptor systems orchestrating dying cell clearance are expressed in HMCs at high levels. Our data strongly suggest that HMCs contribute to dying cell removal in the peritoneum, and future studies will elucidate in what manner this influences tumor cell dissemination and the antitumor immune response.

  20. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  1. Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies

    PubMed Central

    Bradshaw, Elizabeth M.; Kent, Sally C.; Tripuraneni, Vinay; Orban, Tihamer; Ploegh, Hidde L.; Hafler, David A.; Love, J. Christopher

    2008-01-01

    Cell surface determinants, cytokines and antibodies secreted by hematopoietic cells are used to classify their lineage and function. Currently available techniques are unable to elucidate multiple secreted proteins while also assigning phenotypic surface-displayed markers to the individual living cells. Here, a soft lithographic method, microengraving, was adapted for the multiplexed interrogation of populations of individual human peripheral blood mononuclear cells for secreted cytokines (IFN-γ and IL-6), antigen-specific antibodies, and lineage-specific surface-expressed markers. Application of the method to a clinical sample from a recent onset Type 1 diabetic subject with a positive titer of anti-insulin antibodies showed that ~0.58% of circulating CD19+ B cells secreted proinsulin-reactive antibodies of the IgG isotype and 2–3% of circulating cells secreted IL-6. These data demonstrate the utility of microengraving for interrogating multiple phenotypes of single human cells concurrently and for detecting rare populations of cells by their secreted products. PMID:18675591

  2. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  3. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  4. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. © 2016 American Heart Association, Inc.

  5. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.

  6. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  7. [Telomerase, elixir of life for human cells?].

    PubMed

    Rufer, Nathalie; Nabholz, Markus

    2003-03-01

    Telomeres are specialized structures at the end of eukaryotic chromosomes that in vertebrates constain hundreds to thousands of tandem repeats of the sequence TTAGGG. In most human somatic cells, telomeres shorten with each cell division, eventually triggering an irreversible arrest of proliferation called cellular senescence. These observations have led to a model in which telomere length reflects the mitotic history of somatic cells. Further support for this hypothesis has come from the discovery of telomerase, a unique reverse transcriptase ribonucleoprotein that has the ability to extend 3' end of telomeres. In fibroblasts, senescence is induced by telomere attrition and depends on p53 and pRb pathways triggered by one or a few critically short telomeres. Previous studies have shown that the replicative life span of various primary human cells can be prolonged by transduction of the telomerase reverse transcriptase (hTERT) gene. The hTERT expressing cells proliferate indefinitely, without undergoing any changes associated with transformation to malignancy. Rapid progress has been made towards the goal of using tumor-specific cytolytic CD8+ T lymphocytes for the immunotherapy of cancer. These cells can be expanded in vitro and, in principle, could be used for adoptive immunotherapy. One of the major problems that remains to be solved is the finite life span of normal human T lymphocytes. In an attempt to overcome this barrier three groups have introduced hTERT cDNA into human T lymphocytes and monitored its effect on their life span. In two of these studies, hTERT significantly extended the replicative life span of CD8+ T clones, whereas this was not the case in the third study using bulk T lymphocytes. Possible explanations for these discordant results are that better growth conditions avoided culture-induced stress in the study with clones, or that clones had undergone alterations leading, for example, to the inactivation of the pRb pathway during their

  8. Clinical potentials of human pluripotent stem cells.

    PubMed

    Mora, Cristina; Serzanti, Marialaura; Consiglio, Antonella; Memo, Maurizio; Dell'Era, Patrizia

    2017-02-08

    Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.

  9. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  10. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  11. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  12. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  13. Cell cycle regulation of human endometrial stromal cells during decidualization.

    PubMed

    Logan, Philip C; Steiner, Michael; Ponnampalam, Anna P; Mitchell, Murray D

    2012-08-01

    Differentiation of endometrial stromal cells into decidual cells is crucial for optimal endometrial receptivity. Data from our previous microarray study implied that expression of many cell cycle regulators are changed during decidualization and inhibition of DNA methylation in vitro. In this study, we hypothesized that both the classic progestin treatment and DNA methylation inhibition would inhibit stromal cell proliferation and cell cycle transition. The human endometrial stromal cell line (HESC) was treated from 2 days to 18 days with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (AZA), a mixture of estradiol/progestin/cyclic adenosine monophosphate ([cAMP]; medroxy-progesterone acetate [MPA mix]) or both. Cell growth was measured by cell counting, cell cycle transition and apoptosis were analyzed by flow cytometry, expression of cell cycle regulators were analyzed by quantitative polymerase chain reaction (qPCR) and Western blotting, and change in DNA methylation profiles were detected by methylation-specific PCR. Both AZA and MPA mix inhibited the proliferation of HESC for at least 7 days. Treatment with MPA mix resulted in an early G0/G1 inhibition followed by G2/M phase inhibition at 18 days. In contrast, AZA treatment inhibited cell cycle progression at the G2/M phase throughout. The protein levels of p21(Cip1)and 14-3-3σ were increased with both AZA and MPA mix treatments without any change in the DNA methylation profiles of the genes. Our data imply that the decidualization of HESC is associated with cell cycle arrest at G0/G1 phase initially and G2/M phase at later stages. Our results also suggest that p53 pathway members play a role in the cell cycle regulation of endometrial stromal cells.

  14. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  15. Interdigitating reticulum cells in human renal grafts.

    PubMed

    Wakabayashi, T; Onoda, H

    1991-01-01

    Seventeen human renal graft biopsies taken 1 h to 50 days after transplantation and 3 human renal non-graft biopsies (2 minimal change and 1 non-tumour portion of angiomyolipoma) were investigated with immunoelectron microscopy in order to identify interdigitating reticulum cells (IDC) or dendritic cells (DC) in renal tissues. The antibodies used consisted of a rabbit polyclonal antibody of antihuman S100 beta protein, mouse monoclonal antibodies of antihuman HLA-DR, anti-CD3, and anti-CD1a. IDC or DC were identified in 11 renal grafts. They were found both in the glomerular and interstitial (peritubular) capillary lumens but not in the interstitium of 1 case: both were present in the interstitial capillary lumens and interstitium of another case, and in the interstitium only of 9 cases. In the remaining 6 grafts and 3 non-grafts they were not detected. These 6 grafts and 3 non-grafts did not show any pathological change except for foot process fusion of the glomerular epithelia in 2 cases of minimal change. These findings suggest that IDC or DC are not normally present in human renal tissues. The presence of the cell in the glomerular and peritubular capillary lumens of a biopsy taken after 1 h and their presence in the interstitial capillary lumens of another graft biopsy, suggest that the IDC or DC in human renal grafts are derived from recipients, not donors, and that they migrate from the circulating blood toward the interstitium.

  16. Human T Cell Memory: A Dynamic View

    PubMed Central

    Macallan, Derek C.; Borghans, José A. M.; Asquith, Becca

    2017-01-01

    Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy. PMID:28165397

  17. HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE

    PubMed Central

    Gimbrone, Michael A.; Cotran, Ramzi S.; Folkman, Judah

    1974-01-01

    Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration. PMID:4363161

  18. Human T Cell Memory: A Dynamic View.

    PubMed

    Macallan, Derek C; Borghans, José A M; Asquith, Becca

    2017-02-04

    Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  19. Cardiogenesis from human embryonic stem cells.

    PubMed

    Mignone, John L; Kreutziger, Kareen L; Paige, Sharon L; Murry, Charles E

    2010-11-01

    Over the past decade, the ability to culture and differentiate human embryonic stem cells (ESCs) has offered researchers a novel therapeutic that may, for the first time, repair regions of the damaged heart. Studies of cardiac development in lower organisms have led to identification of the transforming growth factor-β superfamily (eg, activin A and bone morphogenic protein 4) and the Wnt/β-catenin pathway as key inducers of mesoderm and cardiovascular differentiation. These factors act in a context-specific manner (eg, Wnt/β-catenin is required initially to form mesoderm but must be antagonized thereafter to make cardiac muscle). Different lines of ESCs produce different levels of agonists and antagonists for these pathways, but with careful optimization, highly enriched populations of immature cardiomyocytes can be generated. These cardiomyocytes survive transplantation to infarcted hearts of experimental animals, where they create new human myocardial tissue and improve heart function. The grafts generated by cell transplantation have been small, however, leading to an exploration of tissue engineering as an alternate strategy. Engineered tissue generated from preparations of human cardiomyocytes survives poorly after transplantation, most likely because of ischemia. Creation of pre-organized vascular networks in the tissue markedly enhances survival, with human capillaries anastomosed to the host coronary circulation. Thus, pathways controlling formation of the human cardiovascular system are emerging, yielding the building blocks for tissue regeneration that may address the root causes of heart failure.

  20. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  1. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2009-10-01

    Appendix……………………………………………………………………………… 11 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A method for... Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability...Abstracts Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turshvili, Sam Aparicio , Joanne Emerman and Connie Eaves, “Identification of Human Mammary

  2. Cell phoney: human cloning after Quintavalle.

    PubMed

    Morgan, Derek; Ford, Mary

    2004-12-01

    Reproductive cloning has thrown up new scientific possibilities, ethical conundrums, and legal challenges. An initial question, considered by the English courts in 2003, was whether the technique presently available, that of cell nucleus replacement, falls outside the provisions of the Human Fertilisation and Embryology Act 1990. If it does, the creation and use, including use in research protocols, of human embryos would be unregulated, disclosing a need to consider remedial legislation. The resolution by the courts of this legal question dramatically engages them in a resolution of fundamental ethical dilemmas, and discloses the possibilities and limitation of negotiating science policy through the processes of litigation.

  3. A balance between BCR and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels1

    PubMed Central

    Luo, Wei; Mayeux, Jessica; Gutierrez, Toni; Russell, Lisa; Getahun, Andrew; Müller, Jennifer; Tedder, Thomas; Parnes, Jane; Rickert, Robert; Nitschke, Lars; Cambier, John; Garrett-Sinha, Lee Ann

    2014-01-01

    Signaling through the B cell receptor (BCR) can drive B cell activation and contribute to B cell differentiation into antibody-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. Here, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is down regulated in B cells by BCR or TLR signaling through a pathway dependent on PI3 kinase, Btk, IKK2 and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase SHP1 or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells. PMID:24929000

  4. Mice engrafted with human hematopoietic stem cells support a human myeloid cell inflammatory response in vivo.

    PubMed

    Baird, Andrew; Deng, Chenliang; Eliceiri, Matthew H; Haghi, Fatima; Dang, Xitong; Coimbra, Raul; Costantini, Todd W; Torbett, Bruce E; Eliceiri, Brian P

    2016-11-01

    Mice engrafted with human CD34(+) hematopoietic stem and progenitor cells (CD34(+) -HSPCs) have been used to study human infection, diabetes, sepsis, and burn, suggesting that they could be highly amenable to characterizing the human inflammatory response to injury. To this end, human leukocytes infiltrating subcutaneous implants of polyvinyl alcohol (PVA) sponges were analyzed in immunodeficient NSG mice reconstituted with CD34(+) -HSPCs. It was reported that human CD45(+) (hCD45(+) ) leukocytes were present in PVA sponges 3 and 7 days postimplantation and could be localized within the sponges by immunohistochemistry. The different CD45(+) subtypes were characterized by flow cytometry and the profile of human cytokines they secreted into PVA wound fluid was assessed using a human-specific multiplex bead analyses of human IL-12p70, TNFα, IL-10, IL-6, IL1β, and IL-8. This enabled tracking the functional contributions of HLA-DR(+) , CD33(+) , CD19(+) , CD62L(+) , CD11b(+) , or CX3CR1(+) hCD45(+) infiltrating inflammatory leukocytes. PCR of cDNA prepared from these cells enabled the assessment and differentiation of human, mouse, and uniquely human genes. These findings support the hypothesis that mice engrafted with CD34(+) -HSPCs can be deployed as precision avatars to study the human inflammatory response to injury. © 2016 by the Wound Healing Society.

  5. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  6. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  7. Human somatic cell nuclear transfer and cloning.

    PubMed

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Osmotic water permeability of human red cells

    PubMed Central

    1981-01-01

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1. PMID:7229611

  9. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  10. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  11. Chromium oxidation state mapping in human cells

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.

    2003-03-01

    The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.

  12. Programming and reprogramming a human heart cell.

    PubMed

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-03-12

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.

  13. TALEN-Induced Translocations in Human Cells.

    PubMed

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  14. US policies on human embryonic stem cells.

    PubMed

    Hynes, Richard O

    2008-12-01

    The United States is a federal union with separate state jurisdictions. In part owing to the sometimes heated debate about public support for human embryonic stem-cell (ESC) research, there has been restricted federal support and little central regulation of this research to date. Instead, guidelines developed by scientific organizations have set principles for oversight and good practice for this research. These guidelines are functioning well, have influenced developing state regulations and, one hopes, will affect any future federal regulation.

  15. Increased human hybridoma formation by electrofusion of human B cells with heteromyeloma SPAM-8 cells.

    PubMed

    Panova, I; Gustafsson, B

    1995-06-01

    A fusion protocol was designed for the optimal production of hybridomas following electrofusion of human B cells with cells of the heteromyeloma fusion partner SPAM-8. Peripheral blood lymphocytes showed an average fusion efficiency of 0.4 x 10(-4) whereas Epstein-Barr virus-transformed B cells showed fusion efficiencies ranging from 6.2 x 10(-4) to 9.0 x 10(-4). Similar results were obtained with bone marrow-derived lymphocytes. Trypsin treatment of the cells prior to electrofusion further increased the fusion efficiency to 12.3 x 10(-4). In comparison, conventional polyethylene glycol-induced fusion resulted in a fusion efficiency of 0.8 x 10(-4). Thus, electrofusion of human B cells with SPAM-8 heteromyeloma cells introduced a 15-fold increase in hybridoma formation as compared to the conventional fusion method.

  16. The core regulatory network in human cells.

    PubMed

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  17. Inner Ear Hair Cell-Like Cells from Human Embryonic Stem Cells

    PubMed Central

    Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan; Durruthy-Durruthy, Robert; Waldhaus, Joerg; Diaz, Giovanni H.; Joubert, Lydia-Marie; Oshima, Kazuo

    2014-01-01

    In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation. PMID:24512547

  18. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics.

    PubMed

    Casademunt, Elisabeth; Martinelle, Kristina; Jernberg, Mats; Winge, Stefan; Tiemeyer, Maya; Biesert, Lothar; Knaub, Sigurd; Walter, Olaf; Schröder, Carola

    2012-08-01

    Since the early 1990s, recombinant human clotting factor VIII (rhFVIII) produced in hamster cells has been available for haemophilia A treatment. However, the post-translational modifications of these proteins are not identical to those of native human FVIII, which may lead to immunogenic reactions and the development of inhibitors against rhFVIII. For the first time, rhFVIII produced in a human host cell line is available. We describe here the establishment of the first human production cell line for rhFVIII and the manufacturing process of this novel product. A human cell line expressing rhFVIII was derived from human embryonic kidney (HEK) 293 F cells transfected with an FVIII expression plasmid. No virus or virus-like particles could be detected following extensive testing. The stringently controlled production process is completely free from added materials of animal or human origin. Multistep purification employing a combination of filtration and chromatography steps ensures the efficient removal of impurities. Solvent/detergent treatment and a 20 nm pore size nanofiltration step, used for the first time in rhFVIII manufacturing, efficiently eliminate any hypothetically present viruses. In contrast to hamster cell-derived products, this rhFVIII product does not contain hamster-like epitopes, which might be expected to be immunogenic. HEK 293 F cells, whose parental cell line HEK 293 has been used by researchers for decades, are a suitable production cell line for rhFVIII and will help avoid immunogenic epitopes. A modern manufacturing process has been developed to ensure the highest level of purity and pathogen safety. © 2012 John Wiley & Sons A/S.

  19. Cell Culture Assay for Human Noroviruses [response

    SciTech Connect

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  20. Therapeutic efficacy of human embryonic stem cell-derived endothelial cells in humanized mouse models harboring a human immune system.

    PubMed

    Yang, Heung-Mo; Moon, Sung-Hwan; Choi, Young-Sil; Park, Soon-Jung; Lee, Yong-Soo; Lee, Hyun-Joo; Kim, Sung-Joo; Chung, Hyung-Min

    2013-12-01

    Allogeneic transplantation of human embryonic stem cell (hESC) derivatives has the potential to elicit the patient's immune response and lead to graft rejection. Although hESCs and their derivatives have been shown to have advantageous immune properties in vitro, such observations could not be determined experimentally in vivo because of ethical and technical constraints. However, the generation of humanized mice (hu-mice) harboring a human immune system has provided a tool to perform in vivo immunologic studies of human cells and tissues. Using this model, we sought to examine the therapeutic potential of hESC-derived endothelial cells, human embryonic fibroblasts, and cord blood-derived endothelial progenitor cells in a human immune system environment. All cell types transplanted in hu-mice showed significantly reduced cell survival during the first 14 days post-transplantation compared with that observed in immunodeficient mice. During this period, no observable therapeutic effects were detected in the hindlimb ischemic mouse models. After this point, the cells demonstrated improved survival and contributed to a long-term improvement in blood perfusion. All cell types showed reduced therapeutic efficacy in hu-mice compared with NOD scid IL2 receptor gamma chain knockout mice. Interestingly, the eventual improvement in blood flow caused by the hESC-derived endothelial cells in hu-mice was not much lower than that observed in NOD scid IL2 receptor gamma chain knockout mice. These findings suggest that hESC derivatives may be considered a good source for cell therapy and that hu-mice could be used as a preclinical in vivo animal model for the evaluation of therapeutic efficacy to predict the outcomes of human clinical trials.

  1. Colony forming cell (CFC) assay for human hematopoietic cells.

    PubMed

    Sarma, Nayan J; Takeda, Akiko; Yaseen, Nabeel R

    2010-12-18

    Human hematopoietic stem/progenitor cells are usually obtained from bone marrow, cord blood, or peripheral blood and are used to study hematopoiesis and leukemogenesis. They have the capacity to differentiate into lymphoid and myeloid lineages. The colony forming cell (CFC) assay is used to study the proliferation and differentiation pattern of hematopoietic progenitors by their ability to form colonies in a semisolid medium. The number and the morphology of the colonies formed by a fixed number of input cells provide preliminary information about the ability of progenitors to differentiate and proliferate. Cells can be harvested from individual colonies or from the whole plate to further assess their numbers and differentiation states using flow cytometry and morphologic evaluation of Giemsa-stained slides. This assay is useful for assessing myeloid but not lymphoid differentiation. The term myeloid in this context is used in its wider sense to encompass granulocytic, monocytic, erythroid, and megakaryocytic lineages. We have used this assay to assess the effects of oncogenes on the differentiation of primary human CD34+ cells derived from peripheral blood. For this purpose cells are transduced with either control retroviral construct or a construct expressing the oncogene of interest, in this case NUP98-HOXA9. We employ a commonly used retroviral vector, MSCV-IRES-GFP, that expresses a bicistronic mRNA that produces the gene of interest and a GFP marker. Cells are pre-activated by growing in the presence of cytokines for two days prior to retroviral transduction. After another two days, GFP+ cells are isolated by fluorescence-activated cell sorting (FACS) and mixed with a methylcellulose-containing semisolid medium supplemented with cytokines and incubated till colonies appear on the surface, typically 14 days. The number and morphology of the colonies are documented. Cells are then removed from the plates, washed, counted, and subjected to flow cytometry and

  2. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    SciTech Connect

    Hashimoto, Naohiro . E-mail: nao@nils.go.jp; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-10-06

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.

  3. Transcriptional landscape of the human cell cycle.

    PubMed

    Liu, Yin; Chen, Sujun; Wang, Su; Soares, Fraser; Fischer, Martin; Meng, Feilong; Du, Zhou; Lin, Charles; Meyer, Clifford; DeCaprio, James A; Brown, Myles; Liu, X Shirley; He, Housheng Hansen

    2017-03-28

    Steady-state gene expression across the cell cycle has been studied extensively. However, transcriptional gene regulation and the dynamics of histone modification at different cell-cycle stages are largely unknown. By applying a combination of global nuclear run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-modification Chip sequencing (ChIP-seq), we depicted a comprehensive transcriptional landscape at the G0/G1, G1/S, and M phases of breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis identified different cell-cycle-regulated genes, suggesting a lag between transcription and steady-state expression during the cell cycle. Interestingly, we identified genes actively transcribed at early M phase that are longer in length and have low expression and are accompanied by a global increase in active histone 3 lysine 4 methylation (H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifications. In addition, we identified 2,440 cell-cycle-regulated enhancer RNAs (eRNAs) that are strongly associated with differential active transcription but not with stable expression levels across the cell cycle. Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4) as a key regulator of G1/S transition, and this identification was validated experimentally. Taken together, our combined analysis characterized the transcriptional and histone-modification profile of the human cell cycle and identified dynamic transcriptional signatures across the cell cycle.

  4. Nicotinamide extends replicative lifespan of human cells.

    PubMed

    Kang, Hyun Tae; Lee, Hyung Il; Hwang, Eun Seong

    2006-10-01

    We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.

  5. Effect of puerarin on human choriocarcinoma cells

    PubMed Central

    Lidao, Bao; Yi, Wang; Ruilian, Ma; Xianhua, Ren; Agula, B

    2015-01-01

    Objective To discuss the effect of puerarin on human choriocarcinoma cells. Methods Survival rates under puerarin monotherapy, fluorouracil (5-FU) monotherapy and puerarin in combination with 5-FU were detected by MTT assay. Apoptotic morphology was observed with Hoechst 33258 staining. Apoptosis rates were detected with flow cytometry. Expressions of AKT, mechanistic target of rapamycin (mTOR), and P70S6K mRNAs and phosphorylated proteins were detected by RT-PCR and Western blot. Tumor-bearing mice were administered puerarin and puerarin+5-FU, and serum levels of β-human chorionic gonadotropin (β-HCG) were measured. Results Proliferation inhibition and apoptosis rates of JEG-3 cells were positively correlated with puerarin concentration, which increased in the puerarin+5-FU group. Expression levels of AKT, mTOR, P70S6K mRNAs, and phosphorylated proteins decreased significantly after action of puerarin at different concentrations. With increasing puerarin concentration, expression of cleaved-caspase-3 in JEG-3 cells increased, whereas that of Bcl-2 decreased. Puerarin significantly inhibited tumor growth in choriocarcinoma-bearing SCID mice. Serum β-HCG levels were significantly lower than those of control group after administration. Magnitude of β-HCG decline was positively correlated with concentration.. Conclusion Puerarin+5-FU inhibited proliferation of JEG-3 choriocarcinoma cells and promoted their apoptosis, being associated with the mTOR signaling pathway. PMID:28352705

  6. Human embryonic stem cells and gene therapy.

    PubMed

    Strulovici, Yael; Leopold, Philip L; O'Connor, Timothy P; Pergolizzi, Robert G; Crystal, Ronald G

    2007-05-01

    Human embryonic stem cells (hESCs) theoretically represent an unlimited supply of normal differentiated cells to engineer diseased tissues to regain normal function. However, before hESCs can be useful as human therapeutics, technologies must be developed to provide them with the specific signals required to differentiate in a controlled fashion, to regulate and/or shut down the growth of hESCs and their progeny once they have been transferred to the recipient, and to circumvent the recognition of non-autologous hESC-derived cells as foreign. In the context that gene therapy technologies represent strategies to deliver biological signals to address all of these challenges, this review sets out a framework for combined gene transfer/hESC therapies. We discuss how hESCs are derived, characterized, and differentiated into specific cell lineages, and we summarize the characteristics of the 500 hESC lines reported to date. The successes and failures of gene transfer to hESCs are reviewed for both non-viral and viral vectors, as are the challenges to successful use of gene transfer in developing hESC therapy. We also consider gene transfer as a means of facilitating growth and isolation of genetically modified hESCs and as a mechanism for mitigating adverse effects associated with administration of hESCs or their derivatives. Finally, we evaluate the challenges that are likely to be encountered in translating the promise of hESCs to the clinic.

  7. Landscape of transcription in human cells.

    PubMed

    Djebali, Sarah; Davis, Carrie A; Merkel, Angelika; Dobin, Alex; Lassmann, Timo; Mortazavi, Ali; Tanzer, Andrea; Lagarde, Julien; Lin, Wei; Schlesinger, Felix; Xue, Chenghai; Marinov, Georgi K; Khatun, Jainab; Williams, Brian A; Zaleski, Chris; Rozowsky, Joel; Röder, Maik; Kokocinski, Felix; Abdelhamid, Rehab F; Alioto, Tyler; Antoshechkin, Igor; Baer, Michael T; Bar, Nadav S; Batut, Philippe; Bell, Kimberly; Bell, Ian; Chakrabortty, Sudipto; Chen, Xian; Chrast, Jacqueline; Curado, Joao; Derrien, Thomas; Drenkow, Jorg; Dumais, Erica; Dumais, Jacqueline; Duttagupta, Radha; Falconnet, Emilie; Fastuca, Meagan; Fejes-Toth, Kata; Ferreira, Pedro; Foissac, Sylvain; Fullwood, Melissa J; Gao, Hui; Gonzalez, David; Gordon, Assaf; Gunawardena, Harsha; Howald, Cedric; Jha, Sonali; Johnson, Rory; Kapranov, Philipp; King, Brandon; Kingswood, Colin; Luo, Oscar J; Park, Eddie; Persaud, Kimberly; Preall, Jonathan B; Ribeca, Paolo; Risk, Brian; Robyr, Daniel; Sammeth, Michael; Schaffer, Lorian; See, Lei-Hoon; Shahab, Atif; Skancke, Jorgen; Suzuki, Ana Maria; Takahashi, Hazuki; Tilgner, Hagen; Trout, Diane; Walters, Nathalie; Wang, Huaien; Wrobel, John; Yu, Yanbao; Ruan, Xiaoan; Hayashizaki, Yoshihide; Harrow, Jennifer; Gerstein, Mark; Hubbard, Tim; Reymond, Alexandre; Antonarakis, Stylianos E; Hannon, Gregory; Giddings, Morgan C; Ruan, Yijun; Wold, Barbara; Carninci, Piero; Guigó, Roderic; Gingeras, Thomas R

    2012-09-06

    Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.

  8. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  9. Tryptophan hydroxylase expression in human skin cells.

    PubMed

    Slominski, Andrzej; Pisarchik, Alexander; Johansson, Olle; Jing, Chen; Semak, Igor; Slugocki, George; Wortsman, Jacobo

    2003-10-15

    We attempted to further characterize cutaneous serotoninergic and melatoninergic pathways evaluating the key biosynthetic enzyme tryptophan hydroxylase (TPH). There was wide expression of TPH mRNA in whole human skin, cultured melanocytes and melanoma cells, dermal fibroblasts, squamous cell carcinoma cells and keratinocytes. Gene expression was associated with detection of TPH immunoreactive species by Western blotting. Characterization of the TPH immunoreactive species performed with two different antibodies showed expression of the expected protein (55-60 kDa), and of forms with higher and lower molecular weights. This pattern of broad spectrum of TPH expression including presumed degradation products suggests rapid turnover of the enzyme, as previously reported in mastocytoma cells. RP-HPLC of skin extracts showed fluorescent species with the retention time of serotonin and N-acetylserotonin. Immunocytochemistry performed in skin biopsies localized TPH immunoreactivity to normal and malignant melanocytes. We conclude that while the TPH mRNA and protein are widely expressed in cultured normal and pathological epidermal and dermal skin cells, in vivo TPH expression is predominantly restricted to cells of melanocytic origin.

  10. Troglitazione affects survival of human osteosarcoma cells.

    PubMed

    Lucarelli, Enrico; Sangiorgi, Luca; Maini, Veronica; Lattanzi, Giovanna; Marmiroli, Sandra; Reggiani, Matteo; Mordenti, Marina; Alessandra Gobbi, Giuliana; Scrimieri, Francesca; Zambon Bertoja, Annarosa; Picci, Piero

    2002-03-20

    Activation of PPAR gamma, a transcription factor member of the family of peroxisome proliferator-activated receptors, induces apoptosis in several normal and tumor cell lines. In our study, we investigated whether treatment with troglitazone (TRO), a known PPAR gamma agonist, induced apoptosis in the human osteosarcoma (OS) cell lines G292, MG63, SAOS and U2OS that express PPAR gamma. In our experiments, TRO never induced apoptosis of OS cells; on the contrary, TRO increased cell number, based on MTT proliferation assay. Remarkably, the TRO-induced cell number increase depended on a decrease of apoptosis that naturally occurred in the culture and was not due to an increased cell proliferation rate. TRO also prevented staurosporin-induced apoptosis. The TRO-mediated survival effect correlated with the activation of Akt, a well-known mediator of survival stimuli. Our work describes a new function for TRO and indicates that the Akt survival pathway may be a mediator of TRO-induced increase of survival. Copyright 2002 Wiley-Liss, Inc.

  11. Osmotic properties of human red cells.

    PubMed

    Solomon, A K; Toon, M R; Dix, J A

    1986-01-01

    When an osmotic pressure gradient is applied to human red cells, the volume changes anomalously, as if there were a significant fraction of "nonosmotic water" which could not serve as solvent for the cell solutes, a finding which has been discussed widely in the literature. In 1968, Gary-Bobo and Solomon (J. Gen. Physiol. 52:825) concluded that the anomalies could not be entirely explained by the colligative properties of hemoglobin (Hb) and proposed that there was an additional concentration dependence of the Hb charge (ZHb). A number of investigators, particularly Freedman and Hoffman (1979, J. Gen. Physiol. 74:157) have been unable to confirm Gary-Bobo and Solomon's experimental evidence for this concentration dependence of ZHb and we now report that we are also unable to repeat the earlier experiments. Nonetheless, there still remains a significant anomaly which amounts to 12.5 +/- 0.8% of the total isosmotic cell water (P much less than 0.0005, t test), even after taking account of the concentration dependence of the Hb osmotic coefficient and all the other known physical chemical constraints, ideal and nonideal. It is suggested that the anomalies at high Hb concentration in shrunken cells may arise from the ionic strength dependence of the Hb osmotic coefficient. In swollen red cells at low ionic strength, solute binding to membrane and intracellular proteins is increased and it is suggested that this factor may account, in part, for the anomalous behavior of these cells.

  12. Characterizing motility dynamics in human RPE cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  13. The "brainy side" of human embryonic stem cells.

    PubMed

    Hornstein, Eran; Benvenisty, Nissim

    2004-04-15

    The recent isolation of human embryonic stem (ES) cells is evoking great hopes for their future utilization in cell-replacement therapies and human development research. The hallmarks of ES cells, pluripotency and self-renewal capacity, suggest an infinite source for tissues of virtually all desired types. Specifically, human ES cells may potentially be the basis for effective treatments of a wide range of human neurodegenerative disorders. To enable the translation of this novel biomedical field into the clinic, mechanisms that control the differentiation of human embryonic stem cells into fully functional neuronal cells should be analyzed and controlled.

  14. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    SciTech Connect

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A. )

    1990-11-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ((3H)thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens.

  15. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  16. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    PubMed Central

    Kikuchi, Kentaro; Lian, Zhe-Xiong; He, Xiao-Song; Ansari, Aftab A.; Ishibashi, Miyuki; Miyakawa, Hiroshi; Shultz, Leonard D.; Ikehara, Susumu; Gershwin, M. Eric

    2003-01-01

    Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC) directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plasma cells in spleen increased by 100 fold after transplantation. Plasma cell numbers correlated with the detection of human IgM and IgG in serum, indicating that human B cells had differentiated into mature plasma cells in the murine spleen. In addition to CD19+ plasma cells, a distinct CD19- plasma cell population was detected, suggesting that downregulation of CD19 associated with maturation of plasma cells occurred. When purified human B cells were transplanted, those findings were not observed. Our results indicate that differentiation and maturation of human B cells and plasma cells can be investigated by transplantation of human PBMC into the spleen of NOD/SCID mice. The model will be useful for studying the differentiation of human B cells and generation of plasma cells. PMID:14768952

  17. Functional Neuronal Cells Generated by Human Parthenogenetic Stem Cells

    PubMed Central

    Ahmad, Ruhel; Wolber, Wanja; Eckardt, Sigrid; Koch, Philipp; Schmitt, Jessica; Semechkin, Ruslan; Geis, Christian; Heckmann, Manfred; Brüstle, Oliver; McLaughlin, John K.; Sirén, Anna-Leena; Müller, Albrecht M.

    2012-01-01

    Parent of origin imprints on the genome have been implicated in the regulation of neural cell type differentiation. The ability of human parthenogenetic (PG) embryonic stem cells (hpESCs) to undergo neural lineage and cell type-specific differentiation is undefined. We determined the potential of hpESCs to differentiate into various neural subtypes. Concurrently, we examined DNA methylation and expression status of imprinted genes. Under culture conditions promoting neural differentiation, hpESC-derived neural stem cells (hpNSCs) gave rise to glia and neuron-like cells that expressed subtype-specific markers and generated action potentials. Analysis of imprinting in hpESCs and in hpNSCs revealed that maternal-specific gene expression patterns and imprinting marks were generally maintained in PG cells upon differentiation. Our results demonstrate that despite the lack of a paternal genome, hpESCs generate proliferating NSCs that are capable of differentiation into physiologically functional neuron-like cells and maintain allele-specific expression of imprinted genes. Thus, hpESCs can serve as a model to study the role of maternal and paternal genomes in neural development and to better understand imprinting-associated brain diseases. PMID:22880113

  18. Photoaffinity antigens for human gammadelta T cells.

    PubMed

    Sarikonda, Ghanashyam; Wang, Hong; Puan, Kia-Joo; Liu, Xiao-hui; Lee, Hoi K; Song, Yongcheng; Distefano, Mark D; Oldfield, Eric; Prestwich, Glenn D; Morita, Craig T

    2008-12-01

    Vgamma2Vdelta2 T cells comprise the major subset of peripheral blood gammadelta T cells in humans and expand during infections by recognizing small nonpeptide prenyl pyrophosphates. These molecules include (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP), a microbial isoprenoid intermediate, and isopentenyl pyrophosphate, an endogenous isoprenoid intermediate. Recognition of these nonpeptide Ags is mediated by the Vgamma2Vdelta2 T cell Ag receptor. Several findings suggest that prenyl pyrophosphates are presented by an Ag-presenting molecule: contact between T cells and APC is required, the Ags do not bind the Vgamma2Vdelta2 TCR directly, and Ag recognition is abrogated by TCR mutations in CDRs distant from the putative Ag recognition site. Identification of the putative Ag-presenting molecule, however, has been hindered by the inability to achieve stable association of nonpeptide prenyl pyrophosphate Ags with the presenting molecule. In this study, we show that photoaffinity analogues of HMBPP, meta/para-benzophenone-(methylene)-prenyl pyrophosphates (m/p-BZ-(C)-C(5)-OPP), can crosslink to the surface of tumor cell lines and be presented as Ags to gammadelta T cells. Mutant tumor cell lines lacking MHC class I, MHC class II, beta(2)-microglobulin, and CD1, as well as tumor cell lines from a variety of tissues and individuals, will all crosslink to and present m-BZ-C(5)-OPP. Finally, pulsing of BZ-(C)-C(5)-OPP is inhibited by isopentenyl pyrophosphate and an inactive analog, suggesting that they bind to the same molecule. Taken together, these results suggest that nonpeptide Ags are presented by a novel-Ag-presenting molecule that is widely distributed and nonpolymorphic, but not classical MHC class I, MHC class II, or CD1.

  19. Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6-deficient process.

    PubMed

    Patten, Piers E M; Ferrer, Gerardo; Chen, Shih-Shih; Simone, Rita; Marsilio, Sonia; Yan, Xiao-Jie; Gitto, Zachary; Yuan, Chaohui; Kolitz, Jonathan E; Barrientos, Jacqueline; Allen, Steven L; Rai, Kanti R; MacCarthy, Thomas; Chu, Charles C; Chiorazzi, Nicholas

    2016-04-07

    Xenografting primary tumor cells allows modeling of the heterogeneous natures of malignant diseases and the influences of the tissue microenvironment. Here, we demonstrate that xenografting primary chronic lymphocytic leukemia (CLL) B lymphocytes with activated autologous T cells into alymphoid mice results in considerable CLL B cell division and sizable T cell expansion. Nevertheless, most/all CD5(+)CD19(+) cells are eventually lost, due in part to differentiation into antibody-secreting plasmablasts/plasma cells. CLL B cell differentiation is associated with isotype class switching and development of new IGHV-D-J mutations and occurs via an activation-induced deaminase-dependent pathway that upregulates IRF4 and Blimp-1 without appreciable levels of the expected Bcl-6. These processes were induced in IGHV-unmutated and IGHV-mutated clones by Th1-polarized T-bet(+) T cells, not classical T follicular helper (Tfh) cells. Thus, the block in B cell maturation, defects in T cell action, and absence of antigen-receptor diversification, which are often cardinal characteristics of CLL, are not inherent but imposed by external signals and the microenvironment. Although these activities are not dominant features in human CLL, each occurs in tissue proliferation centers where the mechanisms responsible for clonal evolution operate. Thus, in this setting, CLL B cell diversification and differentiation develop by a nonclassical germinal center-like reaction that might reflect the cell of origin of this leukemia.

  20. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  1. Systemic and mucosal immune responses following oral adenoviral delivery of influenza vaccine to the human intestine by radio controlled capsule

    PubMed Central

    Kim, Leesun; Martinez, C. Josefina; Hodgson, Katie A.; Trager, George R.; Brandl, Jennifer R.; Sandefer, Erik P.; Doll, Walter J.; Liebowitz, Dave; Tucker, Sean N.

    2016-01-01

    There are several benefits of oral immunization including the ability to elicit mucosal immune responses that may protect against pathogens that invade through a mucosal surface. Our understanding of human immune biology is hampered by the difficulty in isolating mucosal cells from humans, and the fact that animal models may or may not completely mirror human intestinal immunobiology. In this human pharmacodynamic study, a novel adenovirus vector-based platform expressing influenza hemagglutinin was explored. We used radio-controlled capsules to deliver the vaccine to either the jejunum or the ileum. The resulting immune responses induced by immunization at each of the intestinal sites were investigated. Both intestinal sites were capable of inducing mucosal and systemic immune responses to influenza hemagglutinin, but ileum delivery induced higher numbers of antibody secreting cells of IgG and IgA isotypes, increased mucosal homing B cells, and higher number of vaccine responders. Overall, these data provided substantial insights into human mucosal inductive sites, and aided in the design and selection of indications that could be used with this oral vaccine platform. PMID:27881837

  2. Cell entry by human pathogenic arenaviruses.

    PubMed

    Rojek, Jillian M; Kunz, Stefan

    2008-04-01

    The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15-35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ alpha-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.

  3. Cell Cycle Regulators during Human Atrial Development

    PubMed Central

    Kim, Won Ho; Joo, Chan Uhng; Ku, Ja Hong; Ryu, Chul Hee; Koh, Keum Nim; Koh, Gou Young; Ko, Jae Ki

    1998-01-01

    Objectives The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. Methods Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery, Cyclin and CDK proteins were determined by Western blot analysis, CDK activities were determined by phosphorylation amount using specific substrate. Results Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP 1 protein increased markedly in the adult period, while p21C IP 1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. Conclusion These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP 1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans. PMID:9735660

  4. Molecular imaging of human embryonic stem cells.

    PubMed

    Narsinh, Kazim H; Cao, Feng; Wu, Joseph C

    2009-01-01

    Human embryonic stem cells (hESCs) are a renewable source of differentiated cell types that may be employed in various tissue regeneration strategies. However, clinical implementation of cell transplantation therapy is hindered by legitimate concerns regarding the in vivo teratoma formation of undifferentiated hESCs and host immune reactions to allogenic cells. Investigating in vivo hESC behaviour and the ultimate feasibility of cell transplantation therapy necessitates the development of novel molecular imaging techniques to longitudinally monitor hESC localization, proliferation, and viability in living subjects. An innovative approach to harness the respective strengths of various imaging platforms is the creation and use of a fusion reporter construct composed of red fluorescent protein (RFP), firefly luciferase (fluc), and herpes simplex virus thymidine kinase (HSV-tk). The imaging modalities made available by use of this construct, including optical fluorescence, bioluminescence, and positron emission tomography (PET), mat be adapted to investigate a variety of physiological phenomena, including the spatio-temporal kinetics of hESC engraftment and proliferation in living subjects. This chapter describes the applications of reporter gene imaging to accelerate basic science research and clinical studies involving hESCs through (1) isolation of a homogenous hESC population, (2) noninvasive, longitudinal tracking of the location and proliferation of hESCs administered to a living subject, and (3) ablation of the hESC graft in the event of cellular misbehavior.

  5. Generation and characteristics of human Sertoli cell line immortalized by overexpression of human telomerase.

    PubMed

    Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping

    2017-03-07

    Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine.

  6. Arecoline is cytotoxic for human endothelial cells.

    PubMed

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass

    PubMed Central

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-01-01

    Summary Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. PMID:26947977

  8. Glycolate kinase activity in human red cells.

    PubMed

    Fujii, S; Beutler, E

    1985-02-01

    Human red cells manifest glycolate kinase activity. This activity copurifies with pyruvate kinase and is decreased in the red cells of subjects with hereditary pyruvate kinase deficiency. Glycolate kinase activity was detected in the presence of FDP or glucose-1,6-P2. In the presence of 1 mmol/L FDP, the Km for adenosine triphosphate (ATP) was 0.28 mmol/L and a half maximum velocity for glycolate was obtained at 40 mmol/L. The pH optimum of the reaction was over 10.5 With 10 mumol/L FDP, 500 mumol/L glucose-1,6-P2, 2 mmol/L ATP, 5 mmol/L MgCl2, and 50 mmol/L glycolate at pH 7.5, glycolate kinase activity was calculated to be approximately 0.0013 U/mL RBC. In view of this low activity even in the presence of massive amounts of glycolate, the glycolate kinase reaction cannot account for the maintenance of the reported phosphoglycolate level in human red cells.

  9. Adherence of skin bacteria to human epithelial cells.

    PubMed Central

    Romero-Steiner, S; Witek, T; Balish, E

    1990-01-01

    Aerobic and anaerobic bacteria isolated from human axillae were tested for their capacity to adhere to buccal epithelial cells, immortalized human epithelial (HEp-2) cells, and undifferentiated and differentiated human epithelial cells. In general, both aerobic and anaerobic diphtheroids adhered better to differentiated human epithelial cells than to HEp-2 and undifferentiated human epithelial cells (P less than 0.05). Mannose, galactose, fucose, N-acetyl-D-glucosamine, and fibronectin were also assayed for their capacity to inhibit the adherence of diphtheroids to human epithelial cells. A great deal of variability was observed in the capacity of the latter compounds to inhibit the attachment of aerobic diphtheroids to undifferentiated and differentiated epithelial cells. Overall, mannose appeared to be best at inhibiting the adherence of the aerobic diphtheroids to undifferentiated human epithelial cells. Galactose, fucose, N-acetyl-D-glucosamine, and fibronectin showed a greater capacity to inhibit attachment of aerobic diphtheroids to differentiated than to undifferentiated human epithelial cells. The inhibition of adherence to differentiated human epithelial cells varied with the microorganism and the compound tested; however, the highest and most consistent inhibition of adherence (76.1 to 88.6%) was observed with a 5% solution of N-acetyl-D-glucosamine. The in vitro adherence and adherence inhibition assays presented here demonstrate that a number of adhesins and receptors are involved in the adherence of skin bacteria to human epithelial cells and receptors on human epithelial cells are apparently altered during differentiation. PMID:2298877

  10. Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies

    PubMed Central

    Sanjuan Nandin, Irene; Fong, Carol; Deantonio, Cecilia; Torreno-Pina, Juan A.; Pecetta, Simone; Maldonado, Paula; Gasparrini, Francesca; Ordovas-Montanes, Jose; Kazer, Samuel W.; Kjaer, Svend; Borley, Daryl W.; Nair, Usha; Poignard, Pascal; Burton, Dennis R.

    2017-01-01

    Vaccines remain the most effective tool to prevent infectious diseases. Here, we introduce an in vitro booster vaccination approach that relies on antigen-dependent activation of human memory B cells in culture. This stimulation induces antigen-specific B cell proliferation, differentiation of B cells into plasma cells, and robust antibody secretion after a few days of culture. We validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9. Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, we also obtained gp120-reactive antibodies from non–HIV-infected donors, indicating that we can generate antibodies without prior antigenic exposure. Overall, our novel approach can be used to rapidly produce therapeutic antibodies and has the potential to assess the immunogenicity of candidate antigens, which could be exploited in future vaccine development. PMID:28739603

  11. Interaction between arsenic trioxide and human primary cells: emphasis on human cells of myeloid origin.

    PubMed

    Binet, François; Antoine, Francis; Girard, Denis

    2009-03-01

    Arsenic trioxide (As(2)O(3); ATO) is considered to be one of the most potent drugs in cancer chemotherapy and is highly effective in the treatment of acute promyelocytic leukemia (APL). It is well established that treatment of APL patients with ATO is associated with the disappearance of the PML-RARalpha fusion transcript, the characteristic APL gene product of the chromosomal translocation t(15;17). Although its mode of action is still not fully understood, ATO is known to induce cell apoptosis via generation of reactive oxygen species and activation of caspases. Several reports have indicated that ATO acts principally by inducing cell apoptosis not only in APL, but in a variety of non-APL cells including myeloma cells, chronic myeloid leukemia cells and cells of immune origin, including B or T lymphocytes, macrophages and, more recently, neutrophils. There is an increasing amount of data, including some from our laboratory, concerning the interaction between ATO and human primary cells. The focus of this review will be to cover the role of ATO in human immune primary cells with special emphasis on cells of myeloid origin.

  12. Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity

    PubMed Central

    2012-01-01

    Anti-CD20 therapy using rituximab directly targeting B cells has been approved for treatment of non-Hodgkin lymphoma, rheumatoid arthritis and anti-neutrophil cytoplasmic antibody-associated vasculitides and has led to reappreciation of B-lineage cells for anti-rheumatic treatment strategies. Moreover, blocking B-cell activating factor with belimumab, a drug that is licensed for treatment of active, seropositive systemic lupus erythematosus (SLE), represents an alternative, indirect anti-B-cell approach interfering with proper B-cell development. While these approaches apparently have no substantial impact on antibody-secreting plasma cells, challenges to improve the treatment of difficult-to-treat patients with SLE remain. In this context, anti-CD19 antibodies have the promise to directly target autoantibody-secreting plasmablasts and plasma cells as well as early B-cell differentiation stages not covered by anti-CD20 therapy. Currently known distinct expression profiles of CD19 by human plasma cell subsets, experiences with anti-CD19 therapies in malignant conditions as well as the rationale of targeting autoreactive plasma cells in patients with SLE are discussed in this review. PMID:23281743

  13. Use of human epidermal cells in the study of carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Hosomi, J.; Kondo, S. )

    1989-05-01

    Because of the importance of human cells, particularly human epithelial cells, in cancer research, we have studied certain phases or events of carcinogenesis using human epidermal cells in primary culture. (1) We found that human epidermal cells are capable of metabolizing benzo(a)pyrene. Large inter-individual variations are found in the basal and induced arylhydrocarbon-hydroxylase activities. (2) UV-induced unscheduled DNA synthesis was demonstrated in human epidermal cells on autoradiographs. We also found that DNA repair is defective in epidermal cells isolated from xeroderma pigmentosum by a new explant-outgrowth culture. (3) Human epidermal cells are unique in that there is a large number of binding sites to phorbol esters compared with mouse epidermal cells, but there is no down-regulation. Further, human epidermal cells show essentially negative responses to tumor promoters, i.e., no stimulation of DNA synthesis, sugar uptake, and no induction of ornithine decarboxylase activity. (4) Human epidermal cells contain 1.5 x 10(5) binding sites per cell for epidermal growth factor (EGF), whereas squamous cell carcinomas of skin and oral cavity have larger amounts of EGF receptors in the order of 10(6) per cell. (5) Based on the above results, we attempted to transform human epidermal cells by the treatment with chemical carcinogens, but until now no transformation was obtained. 16 references.

  14. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  15. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2008-10-01

    9 Appendix……………………………………………………………………………… 10 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A...Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turashvili, Samuel Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human...Eirew, Afshin Raouf, John Stingl, Gulisa Turashvili, Allen Delaney, Joanne Emerman, Marco Marra and Samuel Aparicio . “Stem Cells in the Mammary Gland

  16. Human embryonic stem cells and respect for life

    PubMed Central

    Meyer, J.

    2000-01-01

    The purpose of this essay is to stimulate academic discussion about the ethical justification of using human primordial stem cells for tissue transplantation, cell replacement, and gene therapy. There are intriguing alternatives to using embryos obtained from elective abortions and in vitro fertilisation to reconstitute damaged or dysfunctional human organs. These include the expansion and transplantation of latent adult progenitor cells. Key Words: Primordial stem cell research • embryonic stem cells • pluripotent stem cells • embryo research PMID:10860206

  17. [Umbilical cord mesenchymal stem cell transplantation for treatment of experimental autoimmune myasthenia gravis in rats].

    PubMed

    Yu, Jing-Xia; Chen, Fang; Sun, Jun; Wang, Ji-Ming; Zhao, Qin-Jun; Ren, Xin-Jun; Ma, Feng-Xia; Yang, Shao-Guang; Han, Zhi-Bo; Han, Zhong-Chao

    2011-06-01

    Umbilical cord mesenchymal stem cell (UCMSC) transplantation has been widely used in the treatment of a variety of diseases due to their advantages such as abundant resources, low immunogenicity and large ex vivo expansion capacity. This study was aimed to investigate the effects of UCMSC on experimental autoimmune myasthenia gravis (EAMG) rats. The distribution of human-derived cells was observed by immunofluorescence method, the effect of MSC on B-cell in situ-secreted antibodies was assayed by ELISPOT, the secreted IFN-γ level was detected by using Transwell test. The results showed that UCMSC were able to migrate to inflammation region and lymph nudes, moreover human-derived cells could be detected in medulla zone of lymph nudes. In vitro in situ detection of AchR specific antibody secretion revealed that the full contact of MSC with lymphnode-derived lymphocytes could effectively inhibit production of AchR antibody. Transwell test indicated that the direct contact of UCMSC with CD4 T cells could effectively decrease production of IFN-γ, which modulated the unbalance between Th1/Th2 to a certain extent. It is concluded that UCMSC can regulate the immune system by direct cell-cell contact or/and release of cytokines, which bring a new insight into knowledge about MSC-based therapy for EAMG.

  18. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    PubMed

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  19. Human Retinal Progenitor Cell Transplantation Preserves Vision*

    PubMed Central

    Luo, Jing; Baranov, Petr; Patel, Sherrina; Ouyang, Hong; Quach, John; Wu, Frances; Qiu, Austin; Luo, Hongrong; Hicks, Caroline; Zeng, Jing; Zhu, Jing; Lu, Jessica; Sfeir, Nicole; Wen, Cindy; Zhang, Meixia; Reade, Victoria; Patel, Sara; Sinden, John; Sun, Xiaodong; Shaw, Peter; Young, Michael; Zhang, Kang

    2014-01-01

    Cell transplantation is a potential therapeutic strategy for retinal degenerative diseases involving the loss of photoreceptors. However, it faces challenges to clinical translation due to safety concerns and a limited supply of cells. Human retinal progenitor cells (hRPCs) from fetal neural retina are expandable in vitro and maintain an undifferentiated state. This study aimed to investigate the therapeutic potential of hRPCs transplanted into a Royal College of Surgeons (RCS) rat model of retinal degeneration. At 12 weeks, optokinetic response showed that hRPC-grafted eyes had significantly superior visual acuity compared with vehicle-treated eyes. Histological evaluation of outer nuclear layer (ONL) characteristics such as ONL thickness, spread distance, and cell count demonstrated a significantly greater preservation of the ONL in hRPC-treated eyes compared with both vehicle-treated and control eyes. The transplanted hRPCs arrested visual decline over time in the RCS rat and rescued retinal morphology, demonstrating their potential as a therapy for retinal diseases. We suggest that the preservation of visual acuity was likely achieved through host photoreceptor rescue. We found that hRPC transplantation into the subretinal space of RCS rats was well tolerated, with no adverse effects such as tumor formation noted at 12 weeks after treatment. PMID:24407289

  20. Memory B Cells of Mice and Humans.

    PubMed

    Weisel, Florian; Shlomchik, Mark

    2017-01-30

    Wecomprehensively review memory B cells (MBCs), covering the definition of MBC and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Lipoprotein binding to cultured human hepatoma cells.

    PubMed Central

    Krempler, F; Kostner, G M; Friedl, W; Paulweber, B; Bauer, H; Sandhofer, F

    1987-01-01

    Binding of various 125I-lipoproteins to hepatic receptors was studied on cultured human hepatoma cells (Hep G2). Chylomicrons, isolated from a chylothorax, chylomicron remnants, hypertriglyceridemic very low-density lipoproteins, normotriglyceridemic very low-density lipoproteins (NTG-VLDL), their remnants, low-density lipoproteins (LDL), and HDL-E (an Apo E-rich high-density lipoprotein isolated from the plasma of a patient with primary biliary cirrhosis) were bound by high-affinity receptors. Chylomicron remnants and HDL-E were bound with the highest affinity. The results, obtained from competitive binding experiments, are consistent with the existence of two distinct receptors on Hep G2 cells: (a) a remnant receptor capable of high-affinity binding of triglyceride-rich lipoproteins and HDL-E, but not of Apo E free LDL, and (b) a LDL receptor capable of high-affinity binding of LDL, NTG-VLDL, and HDL-E. Specific binding of Apo E-free LDL was completely abolished in the presence of 3 mM EDTA, indicating that binding to the LDL receptor is calcium dependent. Specific binding of chylomicron remnants was not inhibited by the presence of even 10 mM EDTA. Preincubation of the Hep G2 cells in lipoprotein-containing medium resulted in complete suppression of LDL receptors but did not affect the remnant receptors. Hep G2 cells seem to be a suitable model for the study of hepatic receptors for lipoprotein in man. Images PMID:3038957

  2. Improved human mesenchymal stem cell isolation.

    PubMed

    Chan, Tzu-Min; Harn, Horng-Jyh; Lin, Hui-Ping; Chou, Pei-Wen; Chen, Julia Yi-Ru; Ho, Tsung-Jung; Chiou, Tzyy-Wen; Chuang, Hong-Meng; Chiu, Shao-Chih; Chen, Yen-Chung; Yen, Ssu-Yin; Huang, Mao-Hsuan; Liang, Bing-Chiang; Lin, Shinn-Zong

    2014-01-01

    Human mesenchymal stem cells (hMSCs) are currently available for a range of applications and benefits and have become a good material for regenerative medicine, tissue engineering, and disease therapy. Before ex vivo expansion, isolation and characterization of primary hMSCs from peripheral tissues are key steps for obtaining adequate materials for clinical application. The proportion of peripheral stem cells is very low in surrounding tissues and organs; thus the recovery ratio will be a limiting factor. In this review, we summarized current common methods used to isolate peripheral stem cells, as well as the new insights revealed to improve the quantity of stem cells and their stemness. These strategies offer alternative ways to acquire hMSCs in a convenient and/or effective manner, which is important for clinical treatments. Improved isolation and mass amplification of the hMSCs while ensuring their stemness and quantity will be an important step for clinical use. Enlarged suitable hMSCs are more clinically applicable for therapeutic transplants and may help people live longer and better.

  3. In vitro inhibition of Cryptosporidium parvum infection by human monoclonal antibodies.

    PubMed Central

    Elliot, B C; Wisnewski, A V; Johnson, J; Fenwick-Smith, D; Wiest, P; Hamer, D; Kresina, T; Flanigan, T P

    1997-01-01

    Cryptosporidium parvum infection of the small epithelial intestine causes unremitting diarrhea and malabsorption that can lead to chronic and sometimes fatal illness in patients with AIDS. The illness may be ameliorated by passive oral immunoglobulin therapy. The objective of this study was to produce anti-Cryptosporidium human monoclonal antibodies for evaluation as potential therapy. All human monoclonal cell lines that produced C. parvum antibodies were originally generated from the peripheral blood lymphocytes of a human immunodeficiency virus-seronegative woman. She had recovered from C. parvum infection and had a high specific antibody titer. Hybridization of these lymphocytes with a tumor cell line was accomplished by hypo-osmolar electrofusion. Twelve clones were identified by enzyme-linked immunosorbent assay (ELISA) as secreting anti-Cryptosporidium antibodies after the initial hybridization. From the 12 positive clones, two high antibody-secreting clones, 17A and 17B, were maintained in long-term culture. A second hybridization produced two other human monoclonal cell lines, EC5 and BB2. Human monoclonal antibody from the first two cell lines bound to C. parvum sporozoites and oocysts by immunofluorescence. The ability of human monoclonal antibodies to inhibit C. parvum infection in vitro was assessed by using a human enterocyte cell line, HT29.74. The antibodies of the four different human hybridomas inhibited infection by 35 to 68% (P < 0.05) compared to a control irrelevant human monoclonal antibody derived in a similar fashion. Human monoclonal antibodies are candidate molecules for immunotherapy of C. parvum infection. PMID:9284173

  4. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies.

    PubMed

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγ(null) (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4(+) T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy.

  5. T helper cell activation and human retroviral pathogenesis.

    PubMed Central

    Copeland, K F; Heeney, J L

    1996-01-01

    T helper (Th) cells are of central importance in regulating many critical immune effector mechanisms. The profile of cytokines produced by Th cells correlates with the type of effector cells induced during the immune response to foreign antigen. Th1 cells induce the cell-mediated immune response, while Th2 cells drive antibody production. Th cells are the preferential targets of human retroviruses. Infections with human T-cell leukemia virus (HTLV) or human immunodeficiency virus (HIV) result in the expansion of Th cells by the action of HTLV (adult T-cell leukemia) or the progressive loss of T cells by the action of HIV (AIDS). Both retrovirus infections impart a high-level activation state in the host immune cells as well as systemically. However, diverging responses to this activation state have contrasting effects on the Th-cell population. In HIV infection, Th-cell loss has been attributed to several mechanisms, including a selective elimination of cells by apoptosis. The induction of apoptosis in HIV infection is complex, with many different pathways able to induce cell death. In contrast, infection of Th cells with HTLV-1 affords the cell a protective advantage against apoptosis. This advantage may allow the cell to escape immune surveillance, providing the opportunity for the development of Th-cell cancer. In this review, we will discuss the impact of Th-cell activation and general immune activation on human retrovirus expression with a focus upon Th-cell function and the progression to disease. PMID:8987361

  6. Introduction: characterization and functions of human T regulatory cells.

    PubMed

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  7. Studies of innate immune systems against human cells.

    PubMed

    Sakai, Rieko; Kitano, Etsuko; Maeda, Akira; Lo, Pei-Chi; Eguchi, Hiroshi; Watanabe, Masahito; Nagashima, Hiroshi; Okuyama, Hiroomi; Miyagawa, Shuji

    2017-02-01

    Pigs are frequently used as animal models for experiments in the surgical field, including allo- and xeno-transplantation. Regeneration studies, including studies dealing with human- and monkey-induced pluripotent stem cells (iPSC), have gradually progressed, with pigs sometimes being used as the scaffold. However, the immunological response of pigs against humans, especially innate immunities, remain unclear. This study reports on a comprehensive study of pig innate immunity against humans. Hemolytic complement activity of pig serum was measured using a microtitration technique. The pig natural anti-human antibody (Ab) was examined using human peripheral blood mononuclear cells (PBMC). The reaction of pig natural killer (NK) cells and monocytes/macrophages against human cells was also assessed. Most of the pig complement titers were measured based on methods used in human complement assays. The alternative pathway for pig complement reacts with human cells, indicating that pig complement can react with human cells. Pig serum contains relatively high levels of natural antibodies, IgM and IgG, to human PBMC. Furthermore, the killing of NK cells- and monocyte/macrophage-mediated human cells was clearly confirmed. The collective findings indicate that the pig innate immunological systems, not only serum but also cellular factors, are able to recognize and injure human cells. Copyright © 2016. Published by Elsevier B.V.

  8. Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6–deficient process

    PubMed Central

    Patten, Piers E.M.; Ferrer, Gerardo; Chen, Shih-Shih; Simone, Rita; Marsilio, Sonia; Yan, Xiao-Jie; Gitto, Zachary; Yuan, Chaohui; Kolitz, Jonathan E.; Barrientos, Jacqueline; Allen, Steven L.; Rai, Kanti R.; MacCarthy, Thomas; Chu, Charles C.

    2016-01-01

    Xenografting primary tumor cells allows modeling of the heterogeneous natures of malignant diseases and the influences of the tissue microenvironment. Here, we demonstrate that xenografting primary chronic lymphocytic leukemia (CLL) B lymphocytes with activated autologous T cells into alymphoid mice results in considerable CLL B cell division and sizable T cell expansion. Nevertheless, most/all CD5+CD19+ cells are eventually lost, due in part to differentiation into antibody-secreting plasmablasts/plasma cells. CLL B cell differentiation is associated with isotype class switching and development of new IGHV-D-J mutations and occurs via an activation-induced deaminase-dependent pathway that upregulates IRF4 and Blimp-1 without appreciable levels of the expected Bcl-6. These processes were induced in IGHV-unmutated and IGHV-mutated clones by Th1-polarized T-bet+ T cells, not classical T follicular helper (Tfh) cells. Thus, the block in B cell maturation, defects in T cell action, and absence of antigen-receptor diversification, which are often cardinal characteristics of CLL, are not inherent but imposed by external signals and the microenvironment. Although these activities are not dominant features in human CLL, each occurs in tissue proliferation centers where the mechanisms responsible for clonal evolution operate. Thus, in this setting, CLL B cell diversification and differentiation develop by a nonclassical germinal center–like reaction that might reflect the cell of origin of this leukemia. PMID:27158669

  9. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.

    PubMed

    Irie, Naoko; Surani, M Azim

    2017-01-01

    We recently reported a robust and defined culture system for the specification of human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs), both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro (Irie et al. Cell 160: 253-268, 2015). Similar attempts previously produced hPGCLCs from hPSCs at a very low efficiency, and the resulting cells were not fully characterized. A key step, which facilitated efficient hPGCLC specification from hPSCs, was the induction of a "competent" state for PGC fate via the medium containing a cocktail of four inhibitors. The competency of hPSCs can be maintained indefinitely and interchangeably with the conventional/low-competent hPSCs. Specification of hPGCLC occurs following sequential expression of key germ cell fate regulators, notably SOX17 and BLIMP1, as well as initiation of epigenetic resetting over 5 days. The hPGCLCs can be isolated using specific cell surface markers without the need for generating germ cell-specific reporter hPSC lines. This powerful method for the induction and isolation of hPGCLCs can be applied to both hESCs and iPSCs, which can be used for advances in human germ line biology.

  10. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells.

    PubMed

    Zheng, Li-Wei; Linthicum, Logan; DenBesten, Pamela K; Zhang, Yan

    2013-03-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCl) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which was also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  11. The effect of cell phones on human health

    NASA Astrophysics Data System (ADS)

    Abu-Isbeih, Ibrahim N.; Saad, Dina

    2011-10-01

    The effect of cell phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in cell phone usage throughout the world. Cell phones use electromagnetic radiation in the microwave range, which some believe may be harmful to human health. Other digital wireless systems, such as data communication networks, produce similar radiation. The objective of this survey is to review the effects of cell phones on human health: A large body of research exists, both epidemiological and experimental, in non-human animals and in humans, of which the majority shows no definite causative relationship between exposure to cell phones and harmful biological effects in humans. This is often paraphrased simply as the balance of evidence showing no harm to humans from cell phones, although a significant number of individual studies do suggest such a relationship, or are inconclusive.

  12. Human Cytomegalovirus Manipulation of Latently Infected Cells

    PubMed Central

    Sinclair, John H.; Reeves, Matthew B.

    2013-01-01

    Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV. PMID:24284875

  13. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    PubMed

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  14. Trichloroethylene toxicity in a human hepatoma cell line

    SciTech Connect

    Thevenin, E.; McMillian, J.

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  15. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  16. Polysialic acid in human neuroblastoma cells

    SciTech Connect

    Livingston, B.D.; Jacobs, J.; Shaw, G.W.; Glick, M.C.; Troy, F.A.

    1987-05-01

    Prokaryotic-derived probes that specifically detect ..cap alpha..-2,8-linked polysialic acid (PSA) units on embryonic neural cell adhesion molecules (N-CAM) were used to show that membrane glycoproteins (GPs) from metastatic human neuroblastoma cells (CHP-134) also contain these unique carbohydrate moieties. This conclusion was based on the following evidence: (1) membranes from CHP-134 cells served as an exogenous acceptor of (/sup 14/C)NeuNAc units in an E. coli K1 sialyltransferase (ST) assay. The bacterial ST is specific for the transfer of (/sup 14/C)NeuNAc to exogenous acceptors containing at least 3 sialyl units (DP3); (2) in SDS-PAGE, the (/sup 14/C)NeuNAc-labeled CHP-134 membranes showed a major peak of radioactivity that was polydisperse. N-CAM shows a similar Mr heterogeneity; (3) treatment of the high Mr CHP-134 product with Endo-N-acetylneuraminidase (Endo-N) released the (/sup 14/C)NeuNAc label as a DP4. Endo-N is specific for hydrolysing ..cap alpha..-2,8-linked PSA chains containing a minimum of 5 sialyl residues; (4) treatment of the DP4 with sialidase converted the label to (/sup 14/C)NeuNAc, thus proving the tetramer contained sialic acid; (5) CHP-134 cells were labeled in vivo with (/sup 3/H)GlcN. A glycopeptide fraction representing ca. 1% of the (/sup 3/H)GlcN incorporated was isolated. Based on Endo-N sensitivity, this glycopeptide contained at least 15-20% of the (/sup 3/H)GlcN label as PSA. Endo-N digestion of the (/sup 3/H)-labeled glycopeptide released (/sup 3/H)-DP4. These results suggest that the surface expression of PSA-containing GPs may be important in neuroblastoma metastasis.

  17. Interleukin 7 independent development of human B cells.

    PubMed Central

    Prieyl, J A; LeBien, T W

    1996-01-01

    Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis. PMID:8816803

  18. Mesenchymal Stem Cells Derived from Human Adipose Tissue.

    PubMed

    Mahmoudifar, Nastaran; Doran, Pauline M

    2015-01-01

    Human adult mesenchymal stem cells are present in fat tissue, which can be obtained using surgical procedures such as liposuction. The multilineage capacity of mesenchymal stem cells makes them very valuable for cell-based medical therapies. In this chapter, we describe how to isolate mesenchymal stem cells from human adult fat tissue, propagate the cells in culture, and cryopreserve the cells for tissue engineering applications. Flow cytometry methods are also described for identification and characterization of adipose-derived stem cells and for cell sorting.

  19. Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells.

    PubMed

    Boison, Detlev

    2009-04-01

    Adenosine is a modulator of neuronal activity with anticonvulsant and neuroprotective properties. Conversely, focal deficiency in adenosine contributes to ictogenesis. Thus, focal reconstitution of adenosine within an epileptogenic brain region constitutes a rational therapeutic approach, whereas systemic augmentation of adenosine is precluded by side effects. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme, adenosine kinase (ADK) in rodent cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. Currently, the second generation of adenosine-releasing cells is under development based on the rationale to use human stem cell-derived brain implants to avoid xenotransplantation. To effectively engineer human stem cells to release adenosine, a lentiviral vector was constructed to express inhibitory micro-RNA directed against ADK. Lentiviral knockdown of ADK induced therapeutic adenosine release in human mesenchymal stem cells, which reduced acute injury and seizures, as well as chronic seizures, when grafted into the mouse hippocampus. The therapeutic potential of this approach suggests the feasibility to engineer autologous adenosine-releasing stem cells derived from a patient. Human embryonic stem cells (hESCs) have a high proliferative capacity and can be subjected to specific cellular differentiation pathways. hESCs, differentiated in vitro into neuroepithelial cells and grafted into the mouse brain, displayed intrahippocampal location and neuronal morphology. Using the same lentiviral micro-RNA vector, we demonstrated knockdown of ADK in hESCs. New developments and therapeutic challenges in using human mesenchymal stem cells and hESCs for epilepsy therapy will be critically evaluated.

  20. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    PubMed Central

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  1. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    PubMed

    Dormeyer, Wilma; van Hoof, Dennis; Braam, Stefan R; Heck, Albert J R; Mummery, Christine L; Krijgsveld, Jeroen

    2008-07-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosomal abnormalities in culture are essentially indistinguishable from hECC. Direct comparison of karyotypically normal hESCs with hECCs could lead to understanding differences between their mechanisms of growth control and contribute to implementing safe therapeutic use of stem cells without the development of germ cell cancer. While several comparisons of hECCs and hESCs have been reported, their cell surface proteomes are largely unknown, partly because plasma membrane proteomics is still a major challenge. Here, we present a strategy for the identification of plasma membrane proteins that has been optimized for application to the relatively small numbers of stem cells normally available, and that does not require tedious cell fractionation. The method led to the identification of 237 and 219 specific plasma membrane proteins in the hESC line HUES-7 and the hECC line NT2/D1, respectively. In addition to known stemness-associated cell surface markers like ALP, CD9, and CTNNB, a large number of receptors, transporters, signal transducers, and cell-cell adhesion proteins were identified. Our study revealed that several Hedgehog and Wnt pathway members are differentially expressed in hESCs and hECCs including NPC1, FZD2, FZD6, FZD7, LRP6, and SEMA4D, which play a pivotal role in stem cell self-renewal and cancer growth. Various proteins encoded on chromosome 12p, duplicated in testicular cancer, were uniquely identified in hECCs. These included GAPDH, LDHB, YARS2, CLSTN3, CSDA, LRP6, NDUFA9, and NOL1, which are known to be upregulated in testicular cancer. Distinct HLA molecules were revealed on the surface of hESCs and hECCs, despite their low abundance. Results were

  2. Ex-vivo generation of human red cells for transfusion.

    PubMed

    Anstee, David J; Gampel, Alexandra; Toye, Ashley M

    2012-05-01

    The present article reviews the recent data concerning the generation of red blood cells from haematopoietic stem cells using laboratory culture and discusses the potential for generating cultured red cells in sufficient quantity for use in transfusion practice. Functional human reticulocytes have been generated from adult peripheral blood haematopoietic stem cells in laboratory culture without the use of heterologous feeder cells and their viability was demonstrated in vivo. Human erythroid progenitor cells lines have been produced from cord and human induced pluripotent stem cell (hiPSC) haematopoietic progenitors. Availability of cultured human red cells from haematopoietic stem cells in the quantities required for transfusion therapy would have a major impact on healthcare provision worldwide. Recent studies provide cause for optimism that this ambitious goal is achievable. Functional adult reticulocytes have been made in culture and shown to survive in vivo. Erythroid progenitor cell lines have been derived from cord blood and from human induced pluripotent stem cells, suggesting that large-scale culture of erythroid cell lines and their differentiation to reticulocytes will be possible. Significant problems remain. More efficient enucleation and induction of maturation to an adult phenotype will be required in order to exploit high proliferative capacity of human embryonic stem cells and hiPSCs. Novel bioengineering solutions will be required to generate cultured red cells in the large quantities required, and in this context, use of synthetic three-dimensional scaffolds to mimic the bone marrow niche holds great promise for the future.

  3. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    EPA Pesticide Factsheets

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  4. Human cementum tumor cells have different features from human osteoblastic cells in vitro.

    PubMed

    Arzate, H; Alvarez-Pérez, M A; Aguilar-Mendoza, M E; Alvarez-Fregoso, O

    1998-07-01

    Cells obtained from human cementoblastoma and alveolar bone were isolated and cultured. Initial and late stages of mineralization were assessed by using atomic force microscopy, scanning electron microscopy and X-ray microanalysis. In cultures of cementoblastoma-derived cells the initial stages of mineralization showed well-defined spherical-shaped structures, while the osteoblastic cells showed plaque-like deposits. These morphological patterns of mineral deposition could serve as nucleation centers for hydroxyapatite crystals. Late stages of mineralization at 28 and 35 d maintained those morphological differences established in initial cultures. The material deposited by cementoblastoma and osteoblastic cells, analyzed by EDX spectra, revealed similar Ca/P ratios for both cell types. These values were similar to those reported for hydroxyapatite in enamel and bone. Alkaline phosphatase specific activity (AlP), of osteoblastic cells at 3, 7 and 11 d, showed an increase of 27.9, 50.9 and 37.0% (p < 0.001), respectively. However, at 15 and 19 d there was an increase of AlP activity of cementoblastoma cells by 39.4 and 34.5% over osteoblastic cells (p < 0.001). Immunostaining of cementoblastoma and osteoblastic cells using a specific mAb against a cementum-derived attachment protein revealed strong immunostaining of cementoblastoma cells which was localized to the cell membrane and fibril-like structures (96.2 +/- 1.3). A few osteoblastic cells also stained weakly with the anti-CAP mAb (6.4 +/- 0.6). Sections of decalcified paraffin embedded cementoblastoma specimens, when immunostained with anti-CAP mAb, showed strong immunostaining of the cells surrounding the regular and irregularly-shaped calcified masses of the tumor. Putative cementocytes also stained positively. Immunostaining with a polyclonal antibody against osteopontin strongly stained the osteoblastic cells (89.0 +/- 3.6). Cementoblastoma cells showed weaker staining (54.2 +/- 2.4). The results suggest

  5. Human pancreatic β-cell G1/S molecule cell cycle atlas.

    PubMed

    Fiaschi-Taesch, Nathalie M; Kleinberger, Jeffrey W; Salim, Fatimah G; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E; Takane, Karen K; Scott, Donald K; Stewart, Andrew F

    2013-07-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion.

  6. Human Pancreatic β-Cell G1/S Molecule Cell Cycle Atlas

    PubMed Central

    Fiaschi-Taesch, Nathalie M.; Kleinberger, Jeffrey W.; Salim, Fatimah G.; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E.; Takane, Karen K.; Scott, Donald K.; Stewart, Andrew F.

    2013-01-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical “atlas” of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion. PMID:23493570

  7. Neural signaling in the spleen controls B-cell responses to blood-borne antigen.

    PubMed

    Mina-Osorio, Paola; Rosas-Ballina, Mauricio; Valdes-Ferrer, Sergio I; Al-Abed, Yousef; Tracey, Kevin J; Diamond, Betty

    2012-05-09

    Entry of blood-borne pathogens into the spleen elicits a series of changes in cellular architecture that culminates in the systemic release of protective antibodies. Despite an abundance of work that has characterized these processes, the regulatory mechanisms that coordinate cell trafficking and antibody production are still poorly understood. Here, marginal zone (MZ) B cells responding to streptococcus in the blood were observed to migrate along splenic nerves, arriving at the red pulp venous sinuses where they become antibody-secreting cells. Electrical stimulation of the vagus nerve, which in turn regulates the splenic nerve, arrested B-cell migration and decreased antibody secretion. Thus, neural circuits regulate the first wave of antibody production following B-cell exposure to blood-borne antigen.

  8. Neural Signaling in the Spleen Controls B-Cell Responses to Blood-Borne Antigen

    PubMed Central

    Mina-Osorio, Paola; Rosas-Ballina, Mauricio; Valdes-Ferrer, Sergio I; Al-Abed, Yousef; Tracey, Kevin J; Diamond, Betty

    2012-01-01

    Entry of blood-borne pathogens into the spleen elicits a series of changes in cellular architecture that culminates in the systemic release of protective antibodies. Despite an abundance of work that has characterized these processes, the regulatory mechanisms that coordinate cell trafficking and antibody production are still poorly understood. Here, marginal zone (MZ) B cells responding to streptococcus in the blood were observed to migrate along splenic nerves, arriving at the red pulp venous sinuses where they become antibody-secreting cells. Electrical stimulation of the vagus nerve, which in turn regulates the splenic nerve, arrested B-cell migration and decreased antibody secretion. Thus, neural circuits regulate the first wave of antibody production following B-cell exposure to blood-borne antigen. PMID:22354214

  9. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  10. The effect of environmental temperature on reptilian peripheral blood B cell functions.

    PubMed

    Palackdharry, Sarah; Sadd, Ben M; Vogel, Laura A; Bowden, Rachel M

    2017-02-01

    Recent studies have identified phagocytic B cells in a variety of species, yet little is understood about their function and how it is influenced by natural environmental variation, such as temperature. Phagocytic B-cells are present in red-eared slider turtles, Trachemys scripta, and the wide range of temperatures experienced by these ectotherms may have an effect on immunity, including B cell antibody secretion and phagocytosis. We examined the impact of environmental temperature on B cell function in vitro using phagocytic and ELISpot assays conducted at biologically relevant temperatures. We found a significant effect of temperature on antibody secretion, with maximal antibody secretion occurring at intermediate temperatures (estimated maximum of 28.8°C). There was no effect of temperature on phagocytosis. We also noted a difference in the efficiency of phagocytosis in this assay between B cells and non-B cells. Interestingly, in our in vitro assay, phagocytic B cells engulfed more foreign fluorescent beads per cell than phagocytes lacking surface immunoglobulin. This work sheds light on our understanding of phagocytic B cells and the importance of environmental temperature on the behavior of reptilian immune cells, which may have relevance for organismal fitness. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. How human neuroblastoma cells make morphine.

    PubMed

    Boettcher, Chotima; Fellermeier, Monika; Boettcher, Christian; Dräger, Birgit; Zenk, Meinhart H

    2005-06-14

    Recently, our laboratory demonstrated that human neuroblastoma cells (SH-SY5Y) are capable of synthesizing morphine, the major active metabolite of opium poppy. Now our experiments are further substantiated by extending the biochemical studies to the entire morphine pathway in this human cell line. L-[1,2,3-13C3]- and [ring-2',5',6'-2H3]dopa showed high isotopic enrichment and incorporation in both the isoquinoline and the benzyl moiety of the endogenous morphine. [2,2-2H2]Dopamine, however, was exclusively incorporated only into the isoquinoline moiety. Neither the trioxygenated (R,S)-[1,3-13C2]norcoclaurine, the precursor of morphine in the poppy plant, nor (R)-[1,3,4-2H3]norlaudanosoline showed incorporation into endogenous morphine. However, (S)-[1,3,4-2H3]norlaudanosoline furnished a good isotopic enrichment and the loss of a single deuterium atom at the C-9 position of the morphine molecule, indicating that the change of configuration from (S)- to (R)-reticuline occurs via the intermediacy of 1,2-dehydroreticuline. Additional feeding experiments with potential morphinan precursors demonstrated substantial incorporation of [7-2H]salutaridinol, but not 7-[7-2H]episalutaridinol, and [7-2H,N-C2H3]oripavine, and [6-2H]codeine into morphine. Human morphine biosynthesis involves at least 19 chemical steps. For the most part, it is a reflection of the biosynthesis in opium poppy; however, there is a fundamental difference in the formation of the key intermediate (S)-reticuline: it proceeds via the tetraoxygenated initial isoquinoline alkaloid (S)-norlaudanosoline, whereas the plant morphine biosynthesis proceeds via the trioxygenated (S)-norcoclaurine. Following the plant biosynthetic pathway, (S)-reticuline undergoes a change of configuration at C-1 during its transformation to salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals.

  12. How human neuroblastoma cells make morphine

    PubMed Central

    Boettcher, Chotima; Fellermeier, Monika; Boettcher, Christian; Dräger, Birgit; Zenk, Meinhart H.

    2005-01-01

    Recently, our laboratory demonstrated that human neuroblastoma cells (SH-SY5Y) are capable of synthesizing morphine, the major active metabolite of opium poppy. Now our experiments are further substantiated by extending the biochemical studies to the entire morphine pathway in this human cell line. l-[1,2,3-13C3]- and [ring-2′,5′,6′-2H3]dopa showed high isotopic enrichment and incorporation in both the isoquinoline and the benzyl moiety of the endogenous morphine. [2,2-2H2]Dopamine, however, was exclusively incorporated only into the isoquinoline moiety. Neither the trioxygenated (R,S)-[1,3-13C2]norcoclaurine, the precursor of morphine in the poppy plant, nor (R)-[1,3,4-2H3]norlaudanosoline showed incorporation into endogenous morphine. However, (S)-[1,3,4-2H3]norlaudanosoline furnished a good isotopic enrichment and the loss of a single deuterium atom at the C-9 position of the morphine molecule, indicating that the change of configuration from (S)- to (R)-reticuline occurs via the intermediacy of 1,2-dehydroreticuline. Additional feeding experiments with potential morphinan precursors demonstrated substantial incorporation of [7-2H]salutaridinol, but not 7-[7-2H]episalutaridinol, and [7-2H,N-C2H3]oripavine, and [6-2H]codeine into morphine. Human morphine biosynthesis involves at least 19 chemical steps. For the most part, it is a reflection of the biosynthesis in opium poppy; however, there is a fundamental difference in the formation of the key intermediate (S)-reticuline: it proceeds via the tetraoxygenated initial isoquinoline alkaloid (S)-norlaudanosoline, whereas the plant morphine biosynthesis proceeds via the trioxygenated (S)-norcoclaurine. Following the plant biosynthetic pathway, (S)-reticuline undergoes a change of configuration at C-1 during its transformation to salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals. PMID:15937106

  13. Molecular aging and rejuvenation of human muscle stem cells

    PubMed Central

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J; Aagaard, Per; Mackey, Abigail; Kjaer, Michael; Conboy, Irina

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans. Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth factor beta (TGF-β)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular understanding, combined with data that human satellite cells remain intrinsically young, introduced novel therapeutic targets. Indeed, activation of MAPK/Notch restored ‘youthful’ myogenic responses to satellite cells from 70-year-old humans, rendering them similar to cells from 20-year-old humans. These findings strongly suggest that aging of human muscle maintenance and repair can be reversed by ‘youthful’ calibration of specific molecular pathways. PMID:20049743

  14. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  15. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair.

    PubMed

    Barad, Lili; Schick, Revital; Zeevi-Levin, Naama; Itskovitz-Eldor, Joseph; Binah, Ofer

    2014-11-01

    Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure. Unfortunately, for patients with end-stage heart failure, heart transplantation remains the main alternative, and it is insufficient, mainly because of the limited availability of donor organs. Although left ventricular assist devices are progressively entering clinical practice as a bridge to transplantation and even as an optional therapy, cell replacement therapy presents a plausible alternative to donor organ transplantation. During the past decade, multiple candidate cells were proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. The purpose of this article is to critically review the comprehensive research involving the use of hESCs and hiPSCs in MI models and to discuss current controversies, unresolved issues, challenges, and future directions.

  16. Natural killer cells kill human melanoma cells with characteristics of cancer stem cells.

    PubMed

    Pietra, Gabriella; Manzini, Claudia; Vitale, Massimo; Balsamo, Mirna; Ognio, Emanuela; Boitano, Monica; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina

    2009-07-01

    Experimental and clinical data suggest that tumours harbour a cell population retaining stem cell characteristics that can drive tumorigenesis. CD133 is considered an important cancer stem cells (CSC)-associated marker. In a large variety of human malignancies, including melanoma, CD133(+) cells have been reported to comprise CSC. In this study, we show that melanoma cell lines are highly heterogeneous for the expression of several stem cell-associated markers including CD133, c-kit/CD117 and p75 neurotrophin receptor/CD271. Since no information is available on the ability of NK cells to recognize and lyse melanoma stem cells, we assessed whether melanoma cell lines, characterized by stem cell-like features, were susceptible to lysis by IL-2-activated NK cells. We show that activated NK cells efficiently kill malignant melanoma cell lines that were enriched in putative CSC by the use of different selection methods (i.e. CD133 expression, radioresistance or the ability to form melanospheres in stem cell-supportive medium). NK cell-mediated recognition and lysis of melanoma cells involved different combinations of activating NK receptors. Since CSC have been reported to be both drug resistant and radioresistant, our present data suggest that NK-based adoptive immunotherapy could represent a novel therapeutic approach to possibly eradicate metastatic melanoma.

  17. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    PubMed

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  18. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  19. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    PubMed Central

    Xu, Xiaoti; Wilschut, Karlijn J.; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P. Daniel; Hoffman, William Y.; Pomerantz, Jason H.

    2015-01-01

    Summary Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications. PMID:26352798

  20. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles.

    PubMed

    Xu, Xiaoti; Wilschut, Karlijn J; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P Daniel; Hoffman, William Y; Pomerantz, Jason H

    2015-09-08

    Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2-4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50-70 fiber-associated, or 1,000-5,000 FACS-enriched CD56(+)/CD29(+) human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  1. Establishment of human tumoral ependymal cell lines and coculture with tubular-like human endothelial cells.

    PubMed

    Brisson, C; Lelong-Rebel, I; Mottolèse, C; Jouvet, A; Fèvre-Montange, M; Saint Pierre, G; Rebel, G; Belin, M F

    2002-10-01

    Ependymomas, rare neoplasms of the central nervous system, occur predominantly in children. They are highly vascularized, and histological findings show many perivascular rosettes of tumoral cells radially organized around capillaries. Treatment of ependymomas relies on surgery combined with radio- or chemotherapy, but the efficiency of chemotherapy is limited, probably because of their multidrug resistance (MDR) phenotype. Progress in the therapy of these neoplasms is dramatically limited by the absence of cell line models. We established conditions for the long-term culture of human tumoral ependymocytes and their 3D coculture in Matrigel with endothelial cells. Histological, immunological, and ultrastructural studies showed that the morphological features (microvilli, cilia, and caveolae) of these cultured cells were similar to those of the tumor in vivo. The cells expressed potential oncological markers related to the immature state of tumoral cells (nestin and Notch-1), their tumorigenicity [caveolae and epidermal growth factor-receptor (EGF-R)], or the MDR phenotype [P-glycoprotein (P-gp)]. The expression of P-gp, EGF-R, and caveolin-1 by these tumoral ependymocytes could be useful in studies on new drugs. This coculture model might represent a new powerful tool to study new therapeutic delivery strategies in tumoral cells.

  2. Derivation and spontaneous differentiation of human embryonic stem cells*

    PubMed Central

    Amit, Michal; Itskovitz-Eldor, Joseph

    2002-01-01

    Abstract Embryonic stem (ES) cells are unique cells derived from the inner cell mass of the mammalian blastocyst. These cells are immortal and pluripotent, retain their developmental potential after prolonged culture, and can be continuously cultured in an undifferentiated state. Many in vitro differentiation systems have been developed for mouse ES cells, including reproducible methods for mouse ES cell differentiation into haematopoietic and neural precursors, cardiomyocytes, insulin-secreting cells, endothelial cells and various other cell types. The derivation of new human ES cell lines provides the opportunity to develop unique models for developmental research and for cell therapies. In this review we consider the derivation and spontaneous differentiation of human ES cells. PMID:12033726

  3. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  4. Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

    PubMed Central

    Jung, Juwon; Baek, Jin Ah; Seol, Hye Won; Choi, Young Min

    2016-01-01

    Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feederlayers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KOSR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xenofree conditions for clinical grade hESCs culture will be useful data in future clinical studies. PMID:27294211

  5. Identification of cell lines permissive for human coronavirus NL63.

    PubMed

    Schildgen, Oliver; Jebbink, Maarten F; de Vries, Michel; Pyrc, Krzysztov; Dijkman, Ronald; Simon, Arne; Müller, Andreas; Kupfer, Bernd; van der Hoek, Lia

    2006-12-01

    Six cell lines routinely used in laboratories were tested for permissiveness to the infection with the newly identified human coronavirus NL63. Two monkey epithelial cell lines, LLC-MK2 and Vero-B4, showed a cytopathic effect (CPE) and clear viral replication, whereas no CPE or replication was observed in human lung fibroblasts MRC-5s. In Rhabdomyosarcoma cells, Madin-Darby-Canine-kidney cells and in an undefined monkey kidney cell line some replication was observed but massive exponential rise in virus yield lacked The results will lead to an improved routine diagnostic algorithm for the detection of the human coronavirus NL63.

  6. Stem Cells: A Renaissance in Human Biology Research.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  7. Human mast cells costimulate T cells through a CD28-independent interaction.

    PubMed

    Suurmond, Jolien; Dorjée, Annemarie L; Huizinga, Tom W J; Toes, René E M

    2016-05-01

    Mast cells are innate immune cells usually residing in peripheral tissues, where they are likely to activate T-cell responses. Similar to other myeloid immune cells, mast cells can function as antigen-presenting cells. However, little is known about the capacity of human mast cells to costimulate CD4(+) T cells. Here, we studied the T-cell stimulatory potential of human mast cells. Peripheral blood derived mast cells were generated and cocultured with isolated CD4(+) T cells. In the presence of T-cell receptor triggering using anti-CD3, mast cells promoted strong proliferation of T cells, which was two- to fivefold stronger than the "T-cell promoting capacity" of monocytes. The interplay between mast cells and T cells was dependent on cell-cell contact, suggesting that costimulatory molecules on the mast cell surface are responsible for the effect. However, in contrast to monocytes, the T-cell costimulation by mast cells was independent of the classical costimulatory molecule CD28, or that of OX40L, ICOSL, or LIGHT. Our data show that mast cells can costimulate human CD4(+) T cells to induce strong T-cell proliferation, but that therapies aiming at disrupting the interaction of CD28 and B7 molecules do not inhibit mast cell mediated T-cell activation.

  8. Comparative mutagenesis of human cells in vivo and in vitro

    SciTech Connect

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  9. Identification of a candidate stem cell in human gallbladder

    PubMed Central

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R.; LaFramboise, William A.; Lagasse, Eric

    2015-01-01

    There are currently no reports of the identification of stem cells in the human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13− cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells. PMID:25765520

  10. Comparative mutagenesis of human cells in vivo and in vitro

    SciTech Connect

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  11. Efficient Gene Editing in Primary Human T Cells.

    PubMed

    Chen, Yvonne Y

    2015-11-01

    Recent advances in T-cell therapy for cancer, viral infections, and autoimmune diseases highlight the broad therapeutic potential of T-cell engineering. However, site-specific genetic manipulation in primary human T cells remains challenging. Two recent studies describe efficient genome editing in T cells using CRISPR and TALEN approaches.

  12. Fusion of human bone hemopoietic stem cell with esophageal carcinoma cells didn't generate esophageal cancer stem cell.

    PubMed

    Fan, H; Lu, S

    2014-01-01

    Prior studies showed that cell fusion between bone marrow-derived cell (BMDC) and somatic cell might be the origin of cancer stem cell. Our previous study suggested that cell fusion of human bone marrow-derived mesenchymal stem cell (MSC) with esophageal cancer cell did not generate cancer stem cells. But up to now, the origin of cancer stem cell is still ambiguous. In this study, we carried out the cell fusion experiment between hemopoietic stem cells (HSCs) and human esophageal cancer cells, and found that cell fusion slowed the growth speed of esophageal cancer cells and decreased the clone formation ability and tumorigenicity in NOD/SCID mice. In addition, cell fusion did not increase the ratio of side population (SP) cells and the resistance to chemotherapeutic drugs. Collectively, our data indicated that cell fusion between HSCs and esophageal cancer cells has a therapeutic effect rather than generate cells with characteristics of esophageal cancer stem cells.

  13. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis

    PubMed Central

    Martinez-Hernandez, E.; Horvath, J.; Shiloh-Malawsky, Y.; Sangha, N.; Martinez-Lage, M.

    2011-01-01

    Objectives: Most patients with anti-NMDA receptor (NMDAR) encephalitis have intrathecal synthesis of antibodies, which cause a decrease of cell surface and synaptic NMDAR. Antibodies are immunoglobulin G (IgG)1 and IgG3 subtypes and can potentially activate complement. We examined whether complement immunoreactivity and antibody-secreting cells (plasma cells/plasmablasts) are present in the brain of these patients. Methods: Cultured rat hippocampal neurons were used in an immunocytochemical assay to test whether patients' antibodies can fix complement. Using the same reagents (antibodies to C9neo, C5b-9, C3), complement immunoreactivity was determined in the brain of 5 patients, the teratoma of 21 patients, and appropriate control tissues. A set of markers for B (CD20), T (CD3, CD4, CD8) and antibody-secreting cells (plasma cells/plasmablasts, CD138) were used to examine the brain inflammatory infiltrates. Results: Patients' antibodies were able to bind complement in vitro, but deposits of complement were not detected in patients' brain. Parallel experiments with teratomas showed that in contrast to the brain, the neural tissue of the tumors contained complement. Analysis of the inflammatory infiltrates in brain samples from autopsy or biopsy performed 3–4 weeks after symptom presentation demonstrated numerous antibody-secreting cells (CD138+) in perivascular, interstitial, and Virchow-Robin spaces, and B and T cells predominantly located in perivascular regions. Conclusions: Complement-mediated mechanisms do not appear to play a substantial pathogenic role in anti-NMDAR encephalitis. In contrast, there are copious infiltrates of antibody-secreting cells (plasma cells/plasmablasts) in the CNS of these patients. The demonstration of these cells provides an explanation for the intrathecal synthesis of antibodies and has implications for treatment. PMID:21795662

  14. Development of T follicular helper cells and their role in disease and immune system.

    PubMed

    Eivazi, Sadegh; Bagheri, Salman; Hashemzadeh, Mohammad Sadegh; Ghalavand, Majdedin; Qamsari, Elmira Safaie; Dorostkar, Ruhollah; Yasemi, Maryam

    2016-12-01

    The T follicular helper cells (TFH) are a subset of CD4+ T cells specialized to regulate antibody responses. The production of these cells is associated with the dendritic cells (DCs) and B cells. TFH cells help B cells form germinal centers (GC) differentiate into memory and plasma cells (antibody-secreting cells) as humoral responses. In addition, there is strong evidence that TFH cells play a pivotal role in the development of long-lived humoral immunity. Molecular factors such as transcription factors, surface receptors, cytokine and micro RNAs are involved in the formation of TFH cells. Such TFH cells are diagnosed by transcription factor (BCL-6), surface marker expression (including CXCR5, PD-1, ICOS and CD40L) and a unique cytokine production pattern (such as IL-21 and IL-6). Memory TFH cells, accompanied by memory B cells, are known to be formed during antibody responses. It is now clear that the precise control of TFH cells is critically important for both inducing the optimal affinity maturation of antibody responses and preventing self-reactivity. Exclusive controls of TFH cell function and production are essential for human health. However, it is important to note that excessive activities may lead to autoimmune diseases, while reduced activity often results in immunodeficiency. It has also been shown that TFH cells are associated with cancers such as angioimmunoblastic T-cell lymphoma (AITL), follicular T-cell lymphoma (FTCL) and nonspecific Peripheral T-cell lymphomas (PTCLs). The biology of TFH cells, including their differentiation and transcriptional regulation will be described in the present review. Some of The developments of these cells in immunodeficiency diseases, autoimmunity and cancer will also be taken into account.

  15. The Evolution of Human Cells in Terms of Protein Innovation

    PubMed Central

    Sardar, Adam J.; Oates, Matt E.; Fang, Hai; Forrest, Alistair R.R.; Kawaji, Hideya; Gough, Julian; Rackham, Owen J.L.

    2014-01-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type–specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type–specific domain architectures. PMID:24692656

  16. The evolution of human cells in terms of protein innovation.

    PubMed

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  17. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  18. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  19. Development of human epithelial cell systems for radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Craise, L. M.

    1994-10-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  20. Adult human brain cell culture for neuroscience research.

    PubMed

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders.

  1. A journey with T cells, primate/human retroviruses and other persisting human T-cell tropic viruses.

    PubMed

    Gallo, Robert C

    2003-12-01

    A study of the growth of primate/human T cells led to mechanisms for temporary laboratory culture of these cells (discovery of interleukin-2) and also their continuous culture (by immortalization after infection with human T-cell lymphotropic virus type 1 or 2 (HTLV-1 or 2)). Cultures of lymphocytes also led us to isolate five persisting T-tropic viruses: 1. the Hall's Island strain of gibbon ape leukemia virus, 2. HTLV-1, 3. HTLV-2, 4. human immunodeficiency virus and 5. human herpes virus-6 (HHV-6). This report is a brief synopsis of the discoveries of the first human retroviruses, the HTLV.

  2. Programming human pluripotent stem cells into white and brown adipocytes

    PubMed Central

    Ahfeldt, Tim; Schinzel, Robert T.; Lee, Youn-Kyoung; Hendrickson, David; Kaplan, Adam; Lum, David H.; Camahort, Raymond; Xia, Fang; Shay, Jennifer; Rhee, Eugene P.; Clish, Clary B.; Deo, Rahul C.; Shen, Tony; Lau, Frank H.; Cowley, Alicia; Mowrer, Greg; Al-Siddiqi, Heba; Nahrendorf, Matthias; Musunuru, Kiran; Gerszten, Robert E.; Rinn, John L.; Cowan, Chad A.

    2012-01-01

    The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%–90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease. PMID:22246346

  3. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    PubMed Central

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  4. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells.

    PubMed

    Lawson, Devon A; Bhakta, Nirav R; Kessenbrock, Kai; Prummel, Karin D; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-10-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated

  5. Human Embryonic Stem Cell Derived Vascular Progenitor Cells Capable of Endothelial and Smooth Muscle Cell Function

    PubMed Central

    Hill, Katherine L; Obrtlikova, Petra; Alvarez, Diego F; King, Judy A; Keirstead, Susan A; Allred, Jeremy R; Kaufman, Dan S

    2010-01-01

    OBJECTIVE Previous studies have demonstrated development of endothelial cells (ECs) and smooth muscle cells (SMCs) as separate cell lineages derived from human embryonic stem cells (hESCs). We demonstrate CD34+ cells isolated from differentiated hESCs function as vascular progenitor cells capable of producing both ECs and SMCs. These studies better define the developmental origin and reveal the relationship between these two cell types, as well as provide a more complete biological characterization. MATERIALS AND METHODS hESCs are co-cultured on M2-10B4 stromal cells or Wnt1 expressing M2-10B4 for 13–15 days to generate a CD34+ cell population. These cells are isolated using a magnetic antibody separation kit and cultured on fibronectin coated dishes in EC medium. To induce SMC differentiation, culture medium is changed and a morphological and phenotypic change occurs within 24–48 hours. RESULTS CD34+ vascular progenitor cells give rise to ECs and SMCs. The two populations express respective cell specific transcripts and proteins, exhibit intracellular calcium in response to various agonists, and form robust tube-like structures when co-cultured in Matrigel. Human umbilical vein endothelial cells (HUVEC) cultured under SMC conditions do not exhibit a change in phenotype or genotype. Wnt1 overexpressing stromal cells produced an increased number of progenitor cells. CONCLUSIONS The ability to generate large numbers of ECs and SMCs from a single vascular progenitor cell population is promising for therapeutic use to treat a variety of diseased and ischemic conditions. The step-wise differentiation outlined here is an efficient, reproducible method with potential for large scale cultures suitable for clinical applications. PMID:20067819

  6. Analysis of lead toxicity in human cells

    PubMed Central

    2012-01-01

    Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high

  7. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells.

    PubMed

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-02-13

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na(+)/H(+) exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade.

  8. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    PubMed Central

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  9. Generation of Corneal Keratocytes from Human Embryonic Stem Cells

    PubMed Central

    Hertsenberg, Andrew J.; Funderburgh, James L.

    2017-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype. PMID:26026882

  10. A cell-based approach to the human proteome project.

    PubMed

    Kelleher, Neil L

    2012-10-01

    The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.

  11. A Cell-Based Approach to the Human Proteome Project

    NASA Astrophysics Data System (ADS)

    Kelleher, Neil L.

    2012-10-01

    The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.

  12. Nucleosome Organization in Human Embryonic Stem Cells.

    PubMed

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  13. Effect of immunosuppression on the human mesangial cell cycle

    PubMed Central

    ZHOU, XIAOSHUANG; WORKENEH, BIRUH; HU, ZHAOYONG; LI, RONGSHAN

    2015-01-01

    The present study investigated the effects of immunosuppressive agents [tacrolimus (Tac), cyclosporine A (CsA), mycophenolic acid (MMF) and methylprednisone (MP)] on the proliferation, cell cycle progression and apoptotic rate of human mesangial cells. Cultured human mesangial cells were treated with several concentrations of the immunosuppressive agents for 24, 48 or 72 h. Cell cycle progression, proliferation and apoptosis were analyzed using an MTT assay and flow cytometry. Tac and CsA significantly inhibited the proliferation of human mesangial cells in a dose- and time-dependent manner. Cell cycle analysis revealed that Tac and CsA arrested mesangial cells in the G0/G1 phase, preventing them from entering S phase. Similarly, MP inhibited human mesangial cell growth by causing cell cycle arrest in G0/G1 phase. MMF also inhibited mesangial cell proliferation, but accomplished this by preventing progression from S phase to the G2/M phase. The combination of MP and MMF synergistically inhibited mesangial cell proliferation. Tac, CsA, MP and MMF inhibited proliferation of human mesangial cells by blocking progression of the cell cycle. In conclusion, these agents, sequentially or in combination, may be used to effectively treat mesangial proliferative glomerular disease. PMID:25370945

  14. Spontaneous Production of Immunoglobulin M in Human Epithelial Cancer Cells

    PubMed Central

    Hu, Fanlei; Zhang, Li; Zheng, Jie; Zhao, Ling; Huang, Jing; Shao, Wenwei; Liao, Qinyuan; Ma, Teng; Geng, Li; Yin, C. Cameron; Qiu, Xiaoyan

    2012-01-01

    It is well known that B-1 B cells are the main cell type that is responsible for the production of natural immunoglobulin M (IgM) and can respond to infection by increasing IgM secretion. However, we unexpectedly found that some epithelial cells also can express rearranged IgM transcript that has natural IgM characteristics, such as germline-encoded and restricted rearrangement patterns. Here we studied IgM expression in human non-B cells and found that IgM was frequently expressed by many human epithelial cancer cells as well as non-cancer epithelial cells. Moreover, CD79A and CD79B, two molecules that are physically linked to membranous IgM on the surface of B cells to form the B cell antigen receptor complex, were also expressed on the cell surface of epithelial cancer cells and co-located with IgM. Like the natural IgM, the epithelial cancer cell-derived IgM recognized a series of microbial antigens, such as single-stranded DNA, double-stranded DNA, lipopolysaccharide, and the HEp-2 cell antigen. More important, stimulation of the toll-like receptor 9 (TLR9), which mimics bacterial infection, substantially increased the secretion of IgM in human epithelial cancer cells. These findings indicate that human epithelial cancer cells as well as non-cancer epithelial cells can spontaneously produce IgM with natural antibody activity. PMID:23251529

  15. Cognate HLA absence in trans diminishes human NK cell education

    PubMed Central

    Landtwing, Vanessa; Raykova, Ana; Pezzino, Gaetana; Béziat, Vivien; Graf, Claudine; Moretta, Alessandro; Capaul, Riccarda; Zbinden, Andrea; Malmberg, Karl-Johan; Chijioke, Obinna; Münz, Christian

    2016-01-01

    NK cells are innate lymphocytes with protective functions against viral infections and tumor formation. Human NK cells carry inhibitory killer cell Ig-like receptors (KIRs), which recognize distinct HLAs. NK cells with KIRs for self-HLA molecules acquire superior cytotoxicity against HLA– tumor cells during education for improved missing-self recognition. Here, we reconstituted mice with human hematopoietic cells from donors with homozygous KIR ligands or with a mix of hematopoietic cells from these homozygous donors, allowing assessment of the resulting KIR repertoire and NK cell education. We found that co-reconstitution with 2 KIR ligand–mismatched compartments did not alter the frequency of KIR-expressing NK cells. However, NK cell education was diminished in mice reconstituted with parallel HLA compartments due to a lack of cognate HLA molecules on leukocytes for the corresponding KIRs. This change in NK cell education in mixed human donor–reconstituted mice improved NK cell–mediated immune control of EBV infection, indicating that mixed hematopoietic cell populations could be exploited to improve NK cell reactivity against leukotropic pathogens. Taken together, these findings indicate that leukocytes lacking cognate HLA ligands can disarm KIR+ NK cells in a manner that may decrease HLA– tumor cell recognition but allows for improved NK cell–mediated immune control of a human γ-herpesvirus. PMID:27571408

  16. Delivery of iron to human cells by bovine transferrin. Implications for the growth of human cells in vitro.

    PubMed Central

    Young, S P; Garner, C

    1990-01-01

    Following suggestions that transferrin present in fetal-bovine serum, a common supplement used in tissue-culture media, may not bind well to human cells, we have isolated the protein and investigated its interaction with both human and bovine cells. Bovine transferrin bound to a human cell line, K562, at 4 degrees C with a kd of 590 nM, whereas human transferrin bound with a kd of 3.57 nM, a 165-fold difference. With a bovine cell line, NBL4, bovine transferrin bound with the higher affinity, kd 9.09 nM, whereas human transferrin bound with a kd of 41.7 nM, only a 5-fold difference. These values were reflected in an 8.6-fold difference in the rate of iron delivery by the two proteins to human cells, whereas delivery to bovine cells was the same. Nevertheless, the bovine transferrin was taken up by the human cells by a specific receptor-mediated process. Human cells cultured in bovine diferric transferrin at 40 micrograms/ml, the concentration expected in the presence of 10% fetal-bovine serum, failed to thrive, whereas cells cultured in the presence of human transferrin proliferated normally. These results suggest that growth of human cells in bovine serum could give rise to a cellular iron deficiency, which may in turn lead to the selection of clones of cells adapted for survival with less iron. This has important consequences for the use of such cells as models, since they may have aberrant iron-dependent pathways and perhaps other unknown alterations in cell function. PMID:2302189

  17. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis.

    PubMed

    Stathopoulos, Panos; Kumar, Aditya; Nowak, Richard J; O'Connor, Kevin C

    2017-09-07

    Myasthenia gravis (MG) is a B cell-mediated autoimmune disorder of neuromuscular transmission. Pathogenic autoantibodies to muscle-specific tyrosine kinase (MuSK) can be found in patients with MG who do not have detectable antibodies to the acetylcholine receptor (AChR). MuSK MG includes immunological and clinical features that are generally distinct from AChR MG, particularly regarding responsiveness to therapy. B cell depletion has been shown to affect a decline in serum autoantibodies and to induce sustained clinical improvement in the majority of MuSK MG patients. However, the duration of this benefit may be limited, as we observed disease relapse in MuSK MG patients who had achieved rituximab-induced remission. We investigated the mechanisms of such relapses by exploring autoantibody production in the reemerging B cell compartment. Autoantibody-expressing CD27+ B cells were observed within the reconstituted repertoire during relapse but not during remission or in controls. Using two complementary approaches, which included production of 108 unique human monoclonal recombinant immunoglobulins, we demonstrated that antibody-secreting CD27hiCD38hi B cells (plasmablasts) contribute to the production of MuSK autoantibodies during relapse. The autoantibodies displayed hallmarks of antigen-driven affinity maturation. These collective findings introduce potential mechanisms for understanding both MuSK autoantibody production and disease relapse following B cell depletion.

  18. The decision on the "optimal" human pluripotent stem cell.

    PubMed

    Rosner, Margit; Schipany, Katharina; Hengstschläger, Markus

    2014-05-01

    Because of recent advances, the array of human pluripotent stem cells now contains embryonic stem cells, derived from "surplus" in vitro fertilization embryos or from cloned embryos; induced pluripotent stem cells; and amniotic fluid stem cells. Here, we compare these stem cell types regarding ethical and legal concerns, cultivation conditions, genomic stability, tumor developing potentials, and applicability for disease modeling and human therapy. This overview highlights that in the future appropriate methodological management must include a decision on the "optimal" stem cell to use before the specific application.

  19. [In vitro strategies for human gametes production from stem cells].

    PubMed

    Tosca, Lucie; Courtot, Anne-Marie; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2011-10-01

    Embryonic stem cells (ESC) are self-renewal and pluripotent cells that are able to differentiate in vitro into several cell types in favourable conditions. Technical protocols for in vitro gametes production have been developed in mice and human species. The functionality of such differentiated cells is not always analysed and an early meiotic arrest is a current observation. These kinds of experimentations have also been tested from human induced pluripotent stem cells (IPSC). However, differentiation ends shortly at the primordial germ cell stage. © 2011 médecine/sciences – Inserm / SRMS.

  20. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Overexpression of Numb suppresses growth, migration, and invasion of human clear cell renal cell carcinoma cells.

    PubMed

    Sima, Jin; Zhang, Bao; Yu, Yuanzi; Sima, Xinyuan; Mao, Yanxin

    2015-04-01

    The objective of the study was to investigate the impact of Numb on cell growth, cell migration, and invasion in human clear cell renal cell carcinoma (ccRCC). Endogenous expression of Numb was evaluated in the ccRCC cell lines (786-O, Caki-1, and Caki-2) and control reference human renal proximal tubular epithelial cells. Numb expression was decreased in the ccRCC cells compared with the control cells (P < 0.01). Then, 786-O and Caki-1 cells described as suitable transfection hosts were used in transfection to carry out biological function studies. The three experimental groups were as follows: Numb-ORF (transfected with Numb-ORF plasmid), blank-vector (transfected with pCMV6-entry), and cell-alone group (no DNA). Numb expression in the Numb-ORF groups was significantly higher than that in the controls (P < 0.01). Cell growth was remarkably reduced (P < 0.01), and the number of migrating or invading cells was reduced (P < 0.01) in the Numb-ORF groups compared with controls. Furthermore, the ratio of G0/G1 phase in the Numb-ORF group of 786-O cells was increased, and the S phase fraction and proliferation index was decreased (P < 0.01). Cyclin D1 and MMP-9 expression was reduced in the Numb-ORF groups compared with controls. Here, we have provided data for attenuated Numb expression in the ccRCC cells. Overexpression of Numb could induce G0/G1 phase arrest and inhibit cell proliferation, migration, and invasion. The suppressive effects might be due to downregulation of cyclin D1 or MMP-9 expression. Taken together, our data suggest that Numb may possibly function as a tumor suppressor involved in the carcinogenesis of ccRCC.

  2. Evidence for G-quadruplex DNA in human cells.

    PubMed

    Xu, Yan; Komiyama, Makoto

    2013-05-27

    Seen in human cells: A fluorochrome-labeled antibody probe selectively and efficiently binds all types of DNA G-quadruplex with similar binding affinities, but hardly binds single- or double-stranded DNA, or RNA hairpins. Thus, this antibody strictly discriminates between G-quadruplex structures and other conformations of DNA and provides evidence for G-quadruplex DNA in human cells.

  3. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section 864.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products §...

  4. Human retrovirus in adult T-cell leukemia/lymphoma.

    PubMed

    Sugamura, K; Hinuma, Y

    1985-03-01

    In this review Kazuo Sugamura and Yorio Hinuma summarize developments in studies on the human retrovirus associated with a unique human T-cell malignancy, adult T-cell leukemia; they also discuss the possible mechanisms of retrovirus-induced leukemogenesis. Copyright © 1985. Published by Elsevier B.V.

  5. Ethical sourcing of human embryonic stem cells--rational solutions?

    PubMed

    Evans, Martin

    2005-08-01

    At the heart of the extensive ethical and regulatory debates that have surrounded human embryonic stem cells is the human pre-implantation embryo. Advances in the understanding of cellular reprogramming, both by cell nuclear replacement and by potential new protocols, should lead to methods that circumvent the use of a practicably viable embryo.

  6. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    PubMed

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  7. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  8. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  9. Human white blood cells contain cyclobutyl pyrimidine dimer photolyase

    SciTech Connect

    Sutherland, B.M.; Bennett, P.V.

    1995-10-10

    Although enzymatic photoreactivation of cyclobutyl pyrimidine dimers in DNA is present in almost all organisms, its presence in placental mammals is controversial. We tested human white blood cells for photolyase by using three defined DNAs (suprecoiled pET-2, nonsupercoiled bacteriphage {lambda}, and a defined-sequence 287-bp oligonucleotide), two dimer-specific endonucleases (T4 endonuclease V and UV endonuclease from Micrococcus luteus), and three assay methods. We show that human white blood cells contain photolyase that can photorepair pyrimidine dimers in defined supercoiled and linear DNAs and in a 287-bp oligonucleotide and that human photolyase is active on genomic DNA in intact human cells. 44 refs., 3 figs.

  10. Culture, Immortalization, and Characterization of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Hatton, Mark P.; Khandelwal, Payal

    2010-01-01

    Purpose. Meibomian gland epithelial cells are essential in maintaining the health and integrity of the ocular surface. However, very little is known about their physiological regulation. In this study, the cellular control mechanisms were explored, first to establish a defined culture system for the maintenance of primary epithelial cells from human meibomian glands and, second, to immortalize these cells, thereby developing a preclinical model that could be used to identify factors that regulate cell activity. Methods. Human meibomian glands were removed from lid segments after surgery, enzymatically digested, and dissociated. Isolated epithelial cells were cultured in media with or without serum and/or 3T3 feeder layers. To attempt immortalization, the cells were exposed to retroviral human telomerase reverse transcriptase (hTERT) and/or SV40 large T antigen cDNA vectors, and antibiotic-resistant cells were selected, expanded, and subcultured. Analyses for possible biomarkers, cell proliferation and differentiation, lipid-related enzyme gene expression, and the cellular response to androgen were performed with biochemical, histologic, and molecular biological techniques. Results. It was possible to isolate viable human meibomian gland epithelial cells and to culture them in serum-free medium. These cells proliferated, survived through at least the fifth passage, and contained neutral lipids. Infection with hTERT immortalized these cells, which accumulated neutral lipids during differentiation, expressed multiple genes for lipogenic enzymes, responded to androgen, and continued to proliferate. Conclusions. The results show that human meibomian gland epithelial cells may be isolated, cultured, and immortalized. PMID:20335607

  11. Human dental pulp stem cells: Applications in future regenerative medicine.

    PubMed

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  12. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  13. Asbestos-associated chromosomal changes in human mesothelial cells

    SciTech Connect

    Lechner, J.F.; Tokiwa, T.; LaVeck, M.; Benedict, W.F.; Banks-Schlegel, S.; Yeager, H. Jr.; Banerjee, A.; Harris, C.C.

    1985-06-01

    Replicative cultures of human pleural mesothelial cells were established from noncancerous adult donors. The cells exhibited normal mesothelial cell characteristics including keratin, hyaluronic acid mucin, and long branched microvilli, and they retained the normal human karyotype until senescence. The mesothelial cells were 10 and 100 times more sensitive to the cytotoxic effects of asbestos fibers than normal human bronchial epithelial or fibroblastic cells, respectively. In addition, cultures of mesothelial cells that survived two cytotoxic exposures of amosite fibers were aneuploid with consistent specific chromosomal losses indicative of clonal origin. These aneuploid cells exhibit both altered growth control properties and a population doubling potential of >50 divisions beyond the culture life span (30 doublings) of the control cells.

  14. Effects of mesenchymal stromal cells on human myeloid dendritic cell differentiation and maturation in a humanized mouse model.

    PubMed

    Chen, Ping; Huang, Yanfei; Womer, Karl L

    2015-12-01

    Mesenchymal stromal cells (MSCs) have shown promise as cellular therapy in allogeneic transplantation, although the precise mechanisms underlying their benefit in clinical trials are difficult to study. We previously demonstrated that MSCs exert immunoregulatory effects in mouse bone marrow-derived dendritic cell (DC) culture. Since mouse studies do not reliably reproduce human events, we used a humanized mouse model to study the immunomodulatory effects of human MSCs on human DC immunobiology. Humanized mice were established by injection of cord blood CD34(+) cells into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl/SzJ) (NOD scid gamma, NSG) mice. Human cells were detected in the mouse bone marrow, blood, and spleen 12weeks after transplantation. Human DCs were differentiated from humanized mouse bone marrow cells during human MSC co-culture. MSCs inhibited DC differentiation and kept DCs in an immature state as demonstrated by phenotype and function. In conclusion, humanized mouse models represent a useful method to study the function of human MSCs on human DC immunobiology.

  15. Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells

    PubMed Central

    Billerbeck, Eva; Mommersteeg, Michiel C.; Shlomai, Amir; Xiao, Jing W.; Andrus, Linda; Bhatta, Ankit; Vercauteren, Koen; Michailidis, Eleftherios; Dorner, Marcus; Krishnan, Anuradha; Charlton, Michael R.; Chiriboga, Luis; Rice, Charles M.; de Jong, Ype P.

    2016-01-01

    Background & Aims Human liver chimeric mice are useful models of human hepatitis virus infection, including hepatitis B and C virus infections. Independently, immunodeficient mice reconstituted with CD34+ hematopoietic stem cells (HSC) derived from fetal liver reliably develop human T and B lymphocytes. Combining these systems has long been hampered by inefficient liver reconstitution of human fetal hepatoblasts. Our study aimed to enhance hepatoblast engraftment in order to create a mouse model with syngeneic human liver and immune cells. Methods The effects of human oncostatin-M administration on fetal hepatoblast engraftment into immunodeficient fah−/− mice was tested. Mice were then transplanted with syngeneic human hepatoblasts and HSC after which human leukocyte chimerism and functionality were analyzed by flow cytometry, and mice were challenged with HBV. Results Addition of human oncostatin-M enhanced human hepatoblast engraftment in immunodeficient fah−/− mice by 5–100 fold. In contrast to mice singly engrafted with HSC, which predominantly developed human T and B lymphocytes, mice co-transplanted with syngeneic hepatoblasts also contained physiological levels of human monocytes and natural killer cells. Upon infection with HBV, these mice displayed rapid and sustained viremia. Conclusions Our study provides a new mouse model with improved human fetal hepatoblast engraftment and an expanded human immune cell repertoire. With further improvements, this model may become useful for studying human immunity against viral hepatitis. Lay summary Important human pathogens such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus only infect human cells which complicates the development of mouse models for the study of these pathogens. One way to make mice permissive for human pathogens is the transplantation of human cells into immune-compromised mice. For instance, the transplantation of human liver cells will allow the infection of

  16. Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation.

    PubMed

    Salguero, Gustavo; Daenthanasanmak, Anusara; Münz, Christian; Raykova, Ana; Guzmán, Carlos A; Riese, Peggy; Figueiredo, Constanca; Länger, Florian; Schneider, Andreas; Macke, Laura; Sundarasetty, Bala Sai; Witte, Torsten; Ganser, Arnold; Stripecke, Renata

    2014-05-15

    De novo regeneration of immunity is a major problem after allogeneic hematopoietic stem cell transplantation (HCT). HCT modeling in severely compromised immune-deficient animals transplanted with human stem cells is currently limited because of incomplete maturation of lymphocytes and scarce adaptive responses. Dendritic cells (DC) are pivotal for the organization of lymph nodes and activation of naive T and B cells. Human DC function after HCT could be augmented with adoptively transferred donor-derived DC. In this study, we demonstrate that adoptive transfer of long-lived human DC coexpressing high levels of human IFN-α, human GM-CSF, and a clinically relevant Ag (CMV pp65 protein) promoted human lymphatic remodeling in immune-deficient NOD.Rag1(-/-).IL-2rγ(-/-) mice transplanted with human CD34(+) cells. After immunization, draining lymph nodes became replenished with terminally differentiated human follicular Th cells, plasma B cells, and memory helper and cytotoxic T cells. Human Igs against pp65 were detectable in plasma, demonstrating IgG class-switch recombination. Human T cells recovered from mice showed functional reactivity against pp65. Adoptive immunotherapy with engineered DC provides a novel strategy for de novo immune reconstitution after human HCT and a practical and effective tool for studying human lymphatic regeneration in vivo in immune deficient xenograft hosts.

  17. A NEW CRYSTAL-CONTAINING CELL IN HUMAN ADRENAL CORTEX

    PubMed Central

    Magalhães, Maria C.

    1972-01-01

    Electron microscope examination of the adrenal cortex from three male human subjects revealed a special type of cell occurring in periendothelial spaces, in all adrenal cortex zones. It is a clear, spindle-shaped cell the principal cytoplasmic features of which are crystalline inclusions with a structure similar to that of the Reinke crystals of human testicular interstitial cells and an abundance of microfilaments. Enzymatic digestions with pronase, pepsin, and ribonuclease were performed, and no digestion of the crystals was obtained. The crystals had no peroxidase or acid phosphatase activities. This cell appears to be exclusive to human males and it may be related to adrenal androgen secretion. PMID:4347248

  18. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  19. Genetic engineering of human pluripotent cells using TALE nucleases.

    PubMed

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  20. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells.

    PubMed

    Hovatta, Outi; Mikkola, Milla; Gertow, Karin; Strömberg, Anne-Marie; Inzunza, José; Hreinsson, Julius; Rozell, Björn; Blennow, Elisabeth; Andäng, Michael; Ahrlund-Richter, Lars

    2003-07-01

    Human embryonic stem (hES) cell lines were first cultured using fetal mouse fibroblasts as feeder cells. To avoid feeders and to reduce the amount of xeno-components, Matrigel- and laminin-coated dishes, and conditioned mouse feeder cell medium have been used, and hES cells have also been cultured on human fetal muscle and skin, and adult Fallopian tube epithelial cells. We used post-natal, commercially available human foreskin fibroblasts as feeder cells. Inner cell masses (ICM) were isolated from five supernumerary blastocysts, obtained as donations from couples undergoing IVF treatment. Two ICM showed continuous growth. One line, HS181, has been in culture for 41 weeks with a doubling time of 24-36 h. It continues to express stem cell markers alkaline phosphatase, Oct-4, stage-specific embryonic antigen (SSEA)-4 and tumour-related antigen (TRA)-1-60. The karyotype is 46,XX. Pluripotency was demonstrated by teratoma formation in immunodeficient mice. In high-density cultures, spontaneous differentiation to beating cells and neuron-like cells was seen. The second line, HS207, was cultured for 9 weeks and cryopreserved, as were samples of line HS181. Both lines began to grow after thawing. We used successfully human foreskin fibroblasts as feeder cells for derivation and continued undifferentiated growth of hES cells. These feeder cells are convenient for IVF units, because no fetal human tissues or tissue from operations are needed.

  1. CD1 and mycobacterial lipids activate human T cells

    PubMed Central

    Van Rhijn, Ildiko; Moody, D. Branch

    2014-01-01

    Summary For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease. PMID:25703557

  2. On the development of extragonadal and gonadal human germ cells.

    PubMed

    Heeren, A Marijne; He, Nannan; de Souza, Aline F; Goercharn-Ramlal, Angelique; van Iperen, Liesbeth; Roost, Matthias S; Gomes Fernandes, Maria M; van der Westerlaken, Lucette A J; Chuva de Sousa Lopes, Susana M

    2016-02-01

    Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where 'adrenal' and 'ovarian' germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human 'adrenal' germ cells until W22. By contrast, 'ovarian' germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development. © 2016. Published by The Company of Biologists Ltd.

  3. On the development of extragonadal and gonadal human germ cells

    PubMed Central

    Heeren, A. Marijne; He, Nannan; de Souza, Aline F.; Goercharn-Ramlal, Angelique; van Iperen, Liesbeth; Roost, Matthias S.; Gomes Fernandes, Maria M.; van der Westerlaken, Lucette A. J.; Chuva de Sousa Lopes, Susana M.

    2016-01-01

    ABSTRACT Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development. PMID:26834021

  4. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  5. Embryonic death and the creation of human embryonic stem cells.

    PubMed

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  6. Identification of Germinal Center B Cells in Blood from HIV-infected Drug-naive Individuals in Central Africa

    PubMed Central

    Béniguel, Lydie; Bégaud, Evelyne; Cognasse, Fabrice; Gabrié, Philippe; Mbolidi, Christophe D.; Sabido, Odile; Marovich, Mary A.; deFontaine, Christiane; Frésard, Anne; Lucht, Frédéric; Genin, Christian; Garraud, Olivier

    2004-01-01

    To better understand the pathophysiology of B cell populations—the precursors of antibody secreting cells—during chronic human immunodeficiency virus (HIV) infection, we examined the phenotype of circulating B cells in newly diagnosed Africans. We found that all African individuals displayed low levels of naive B cells and of memory-type CD27+ B cells, and high levels of differentiated B cells. On the other hand, HIV-infected African patients had a population of germinal center B cells (i.e. CD20+, sIgM-, sIgD+, CD77+, CD138±), which are generally restricted to lymph nodes and do not circulate unless the lymph node architecture is altered. The first observations could be linked to the tropical environment whereas the presence of germinal center B cells may be attributable to chronic exposure to HIV as it is not observed in HIV-negative African controls and HAART treated HIV-infected Europeans. It may impact the management of HIV infection in countries with limited access to HIV drugs and urges consideration for implementation of therapeutic vaccines. PMID:15154608

  7. Downregulation of Rap1GAP in Human Tumor Cells Alters Cell/Matrix and Cell/Cell Adhesion▿ †

    PubMed Central

    Tsygankova, Oxana M.; Ma, Changqing; Tang, Waixing; Korch, Christopher; Feldman, Michael D.; Lv, Yu; Brose, Marcia S.; Meinkoth, Judy L.

    2010-01-01

    Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression. PMID:20439492

  8. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  9. [Research with human embryo stem cells. Foundations and judicial limits].

    PubMed

    Eser, Albin; Koch, Hans-Georg

    2004-01-01

    Research with human embryos, and particularly, the use for scientific purposes of human embryonic stem cells has given raise to different sort of problems at the international level. One of the most strict regulation in this field, is this lecture Professors Albin Eser and Hans-Georg Koch analyse the german legal framework in relation with the use of embryos and human embryonic stem cells for scientific purposes.

  10. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-06-11

    astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) HTS amenable assays for proliferation...progenitors into dopaminergic neurons, motoneurons and astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin...cell line developed for potential commercial distribution. (3) Development of cell based methods to detect botulinum toxin There has been

  11. Histamine release from human buffy coat-derived mast cells.

    PubMed

    Wang, Xian Song; Lau, Hang Yung Alaster

    2007-04-01

    Mast cells are unique immune cells that release a spectrum of chemical mediators contributing to the inflammatory symptoms of allergic disorders. Although mast cell biology has been extensively studied in the rodents, research on human mast cells is hampered by the lack of a convenient preparation source. This problem has now been addressed by culturing human mast cells from CD34(+) progenitors. We have recently discovered that human buffy coat preparations from local blood banks are an abundant and convenient source of progenitors for culturing mature mast cells which express functional high affinity IgE receptors and contain histamine and tryptase in their granules. In the current study, we further characterize these buffy coat-derived mast cells by studying their responses to common mast cell secretagogues and stabilizers. Mature human mast cells were obtained by culturing isolated progenitors in methylcellulose containing stem cell factor (SCF), IL-3 and IL-6 for 6 weeks and subsequently in liquid medium containing SCF and IL-6 for another 6 to 8 weeks. Following sensitisation with human IgE, these cells released histamine dose-dependently upon activation by anti-IgE and calcium ionophores while compound 48/80 and substance P were relatively ineffective. When the effects of anti-asthmatic agents on anti-IgE-induced mediator release from these cells were compared, only the beta(2)-adrenoceptor agonists and phosphodiesterase inhibitors produced dose-dependent inhibition but not cromolyn or nedocromil. In total, mast cells cultured from human buffy coat progenitors shared similar functional properties of MC(T) subtype of mast cells found predominantly in human lung parenchyma and intestinal mucosa.

  12. Regulation of Human Helper T Cell Subset Differentiation by Cytokines

    PubMed Central

    Schmitt, Nathalie; Ueno, Hideki

    2015-01-01

    Since the discovery of Th1 and Th2 cells in the late 80’s, the family of effector CD4+ helper T (Th) cell subsets has expanded. The differentiation of naïve CD4+ T cells is largely determined when they interact with dendritic cells in lymphoid organs, and cytokines play a major role in the regulation of Th differentiation in the early stages. Recent studies show that the developmental mechanism of certain Th subsets is not fully shared between mice and humans. Here we will review recent discoveries on the roles of cytokines in the regulation of Th differentiation in humans, and discuss the differences between mice and humans in the developmental mechanisms of several Th subsets, including Th17 cells and T follicular helper (Tfh) cells. We propose that the differentiation of human Th subsets is largely regulated by the three cytokines, IL-12, IL-23, and TGF-β. PMID:25879814

  13. Rapid induction of senescence in human cervical carcinoma cells

    NASA Astrophysics Data System (ADS)

    Goodwin, Edward C.; Yang, Eva; Lee, Chan-Jae; Lee, Han-Woong; Dimaio, Daniel; Hwang, Eun-Seong

    2000-09-01

    Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

  14. Insights from zebrafish on human pigment cell disease and treatment.

    PubMed

    Cooper, Cynthia D

    2017-07-14

    Black pigment cells, melanocytes, arise early during development from multipotent neural crest cells. Melanocytes protect human skin from DNA damaging sunrays and provide color for hair, eyes, and skin. Several disorders and diseases originate from these cells, including the deadliest skin cell cancer, melanoma. Thus, melanocytes are critical for a healthy life and for protecting humans from disease. Due to the ease of visualizing pigment cells through transparent larvae skin and conserved roles for zebrafish melanophore genes to mammalian melanocyte genes, zebrafish larvae offer a biologically relevant model for understanding pigment cell development and disease in humans. This review discusses our current knowledge of melanophore biology and how zebrafish are contributing to improving how diseases of melanocytes are understood and treated in humans. Developmental Dynamics, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Isolation of inflammatory cells from human tumours.

    PubMed

    Polak, Marta E

    2011-01-01

    Inflammatory cells are present in many tumours, and understanding their function is of increasing importance, particularly to studies of tumour immunology. The tumour-infiltrating leukocytes encompass a variety of cell types, e.g. T lymphocytes, macrophages, dendritic cells, NK cells, and mast cells. Choice of the isolation method greatly depends on the tumour type and the leukocyte subset of interest, but the protocol usually includes tissue disaggregation and cell enrichment. We recommend density centrifugation for initial enrichment, followed by specific magnetic bead negative or positive panning with leukocyte and tumour cell selective antibodies.

  16. The response of human and rodent cells to hyperthermia

    SciTech Connect

    Roizin-Towle, L.; Pirro, J.P. )

    1991-04-01

    Inherent cellular radiosensitivity in vitro has been shown to be a good predictor of human tumor response in vivo. In contrast, the importance of the intrinsic thermosensitivity of normal and neoplastic human cells as a factor in the responsiveness of human tumors to adjuvant hyperthermia has never been analyzed systematically. A comparison of thermal sensitivity and thermo-radiosensitization in four rodent and eight human-derived cell lines was made in vitro. Arrhenius plots indicated that the rodent cells were more sensitive to heat killing than the human, and the break-point was 0.5 degrees C higher for the human than rodent cells. The relationship between thermal sensitivity and the interaction of heat with X rays at low doses was documented by thermal enhancement ratios (TER's). Cells received either a 1 hr exposure to 43 degrees C or a 20 minute treatment at 45 degrees C before exposure to 300 kVp X rays. Thermal enhancement ratios ranged from 1.0 to 2.7 for human cells heated at 43 degrees C and from 2.1 to 5.3 for heat exposures at 45 degrees C. Thermal enhancement ratios for rodent cells were generally 2 to 3 times higher than for human cells, because of the fact that the greater thermosensitivity of rodent cells results in a greater enhancement of radiation damage. Intrinsic thermosensitivity of human cells has relevance to the concept of thermal dose; intrinsic thermo-radiosensitization of a range of different tumor cells is useful in documenting the interactive effects of radiation combined with heat.

  17. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells

    PubMed Central

    1991-01-01

    The ability of carcinomas to invade and to metastasize largely depends on the degree of epithelial differentiation within the tumors, i.e., poorly differentiated being more invasive than well-differentiated carcinomas. Here we confirmed this correlation by examining various human cell lines derived from bladder, breast, lung, and pancreas carcinomas. We found that carcinoma cell lines with an epithelioid phenotype were noninvasive and expressed the epithelium-specific cell- cell adhesion molecule E-cadherin (also known as Arc-1, uvomorulin, and cell-CAM 120/80), as visualized by immunofluorescence microscopy and by Western and Northern blotting, whereas carcinoma cell lines with a fibroblastoid phenotype were invasive and had lost E-cadherin expression. Invasiveness of these latter cells could be prevented by transfection with E-cadherin cDNA and was again induced by treatment of the transfected cells with anti-E-cadherin mAbs. These findings indicate that the selective loss of E-cadherin expression can generate dedifferentiation and invasiveness of human carcinoma cells, and they suggest further that E-cadherin acts as an invasion suppressor. PMID:2007622

  18. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance.

    PubMed

    Ziegler, Patrick; Boettcher, Steffen; Takizawa, Hitoshi; Manz, Markus G; Brümmendorf, Tim H

    2016-01-01

    The nonhematopoietic bone marrow (BM) microenvironment provides a functional niche for hematopoietic cell maintenance, recruitment, and differentiation. It consists of multiple cell types including vasculature, bone, adipose tissue, and fibroblast-like bone marrow stromal cells (BMSC), which can be summarized under the generic term niche cells. BMSC express Toll-like receptors (TLRs) and are capable to respond to TLR-agonists by changing their cytokine expression pattern in order to more efficiently support hematopoiesis. Here, we show that in addition to enhanced myeloid colony formation from human CD34+ cells, lipopolysaccharide (LPS) stimulation retains overall higher numbers of CD34+ cells in co-culture assays using BMSC, with eightfold more CD34+ cells that underwent up to three divisions as compared to non-stimulated assays. When subjected to cytokine-supplemented myeloid colony-forming unit (CFU) assays or transplanted into newborn RAG2(-/-) γc (-/-) mice, CD34(+) cells from LPS-stimulated BMSC cultures give rise to the full spectrum of myeloid colonies and T and B cells, respectively, thus supporting maintenance of myeloid and lymphoid primed hematopoietic progenitor cells (HPCs) under inflammatory conditions. Collectively, we suggest that BMSC enhance hematopoiesis during inflammatory conditions to support the replenishment of innate immune effector cells and to prevent the exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool.

  19. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  20. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  1. Generating trunk neural crest from human pluripotent stem cells.

    PubMed

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  2. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  3. Immunohistochemical toolkit for tracking and quantifying xenotransplanted human stem cells

    PubMed Central

    Allard, Justine; Li, Ké; Lopez, Xavier Moles; Blanchard, Stéphane; Barbot, Paul; Rorive, Sandrine; Decaestecker, Christine; Pochet, Roland; Bohl, Delphine; Lepore, Angelo C; Salmon, Isabelle; Nicaise, Charles

    2014-01-01

    Aim Biomarker-based tracking of human stem cells xenotransplanted into animal models is crucial for studying their fate in the field of cell therapy or tumor xenografting. Materials & methods Using immunohistochemistry and in situ hybridization, we analyzed the expression of three human-specific biomarkers: Ku80, human mitochondria (hMito) and Alu. Results We showed that Ku80, hMito and Alu biomarkers are broadly expressed in human tissues with no or low cross-reactivity toward rat, mouse or pig tissues. In vitro, we demonstrated that their expression is stable over time and does not change along the differentiation of human-derived induced pluripotent stem cells or human glial-restricted precursors. We tracked in vivo these cell populations after transplantation in rodent spinal cords using aforementioned biomarkers and human-specific antibodies detecting apoptotic, proliferating or neural-committed cells. Conclusion This study assesses the human-species specificity of Ku80, hMito and Alu, and proposes useful biomarkers for characterizing human stem cells in xenotransplantation paradigms. PMID:25159062

  4. Cell polarity proteins: common targets for tumorigenic human viruses

    PubMed Central

    Javier, RT

    2012-01-01

    Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein. PMID:19029943

  5. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    DTIC Science & Technology

    2015-05-01

    following significant findings/observations: i) 3D culture of human prostate cancer cells with magnetic nanoparticles is not optimal for tumor initiation...include: magnetic nanoparticles and using a stable (non-transformed) human prostate fibroblast cell line as a feeder layer. The former uses inert magnetic... nanoparticles (3D Biosciences, Inc.) that passively diffuse into live cells that then allow 3D growth in an applied magnetic field1. Such a

  6. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  7. Generation of kidney tubular organoids from human pluripotent stem cells

    PubMed Central

    Yamaguchi, Shintaro; Morizane, Ryuji; Homma, Koichiro; Monkawa, Toshiaki; Suzuki, Sayuri; Fujii, Shizuka; Koda, Muneaki; Hiratsuka, Ken; Yamashita, Maho; Yoshida, Tadashi; Wakino, Shu; Hayashi, Koichi; Sasaki, Junichi; Hori, Shingo; Itoh, Hiroshi

    2016-01-01

    Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell transplantation, and disease modeling, it would be useful to establish those methods to obtain pure populations of specific types of kidney cells. Here, we report a simple two-step differentiation protocol to generate kidney tubular organoids from hPSCs with direct purification of KSP (kidney specific protein)-positive cells using anti-KSP antibody. We first differentiated hPSCs into mesoderm cells using a glycogen synthase kinase-3β inhibitor for 3 days, then cultured cells in renal epithelial growth medium to induce KSP+ cells. We purified KSP+ cells using flow cytometry with anti-KSP antibody, which exhibited characteristics of all segments of kidney tubular cells and cultured KSP+ cells in 3D Matrigel, which formed tubular organoids in vitro. The formation of tubular organoids by KSP+ cells induced the acquisition of functional kidney tubules. KSP+ cells also allowed for the generation of chimeric kidney cultures in which human cells self-assembled into 3D tubular structures in combination with mouse embryonic kidney cells. PMID:27982115

  8. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    PubMed Central

    2011-01-01

    Background Cancer stem cells (CSCs) are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44). Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans) -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs. PMID:21669008

  9. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells.

  10. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    PubMed

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-04-23

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  11. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    PubMed

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  12. Growth suppressive efficacy of human lak cells against human lung-cancer implanted into scid mice.

    PubMed

    Teraoka, S; Kyoizumi, S; Suzuki, T; Yamakido, M; Akiyama, M

    1995-06-01

    The purpose of our study was to determine the efficacy of immunotherapy using human lymphokine activated killer (LAK) cells against a human-lung squamous-cell carcinoma cell line (RERF-LC-AI) implanted into severe combined immunodeficient (SCID) mice. A statistically significant growth suppressive effect on RERF-LC-AI implanted into SCID mice was observed when human LAK cells were administered into the caudal vein of the mice treated with a continuous supply (initiated prior to LAK cells injection) of rIL-2. The human LAK cells stained with PKH 2, a fluorescent dye, for later detection using flow cytometry were administered into the caudal vein of RERF-LC-AI bearing SCID mice; the cells persisted for 7 days in the implanted lung cancer tissue and in the mouse peripheral blood, but for 5 days in the mouse spleen. The number of infiltrated human LAK cells in each tissue increased dose-dependently with the number of injected cells. The results indicate that the antitumor effect most likely occurred during the early implantation period of the human LAK cells. These results demonstrate the applicability of this model to the in vivo study of human lung cancer therapy.

  13. Immunohistochemical analyses point to epidermal origin of human Merkel cells.

    PubMed

    Tilling, Thomas; Wladykowski, Ewa; Failla, Antonio Virgilio; Houdek, Pia; Brandner, Johanna M; Moll, Ingrid

    2014-04-01

    Merkel cells, the neurosecretory cells of skin, are essential for light-touch responses and may probably fulfill additional functions. Whether these cells derive from an epidermal or a neural lineage has been a matter of dispute for a long time. In mice, recent studies have clearly demonstrated an epidermal origin of Merkel cells. Given the differences in Merkel cell distribution between human and murine skin, it is, however, unclear whether the same holds true for human Merkel cells. We therefore attempted to gain insight into the human Merkel cell lineage by co-immunodetection of the Merkel cell marker protein cytokeratin 20 (CK20) with various proteins known to be expressed either in epidermal or in neural stem cells of the skin. Neither Sox10 nor Pax3, both established markers of the neural crest lineage, exhibited any cell co-labeling with CK20. By contrast, β1 integrin, known to be enriched in epidermal stem cells, was found in nearly 70 % of interfollicular epidermal and 25 % of follicular Merkel cells. Moreover, LRIG1, also enriched in epidermal stem cells, displayed significant co-immunolabeling with CK20 as well (approximately 20 % in the interfollicular epidermis and 7 % in the hair follicle, respectively). Further epidermal markers were detected in sporadic Merkel cells. Cells co-expressing CK20 with epidermal markers may represent a transitory state between stem cells and differentiated cells. β1 integrin is probably also synthesized by a large subset of mature Merkel cells. Summarizing, our data suggest that human Merkel cells may originate from epidermal rather than neural progenitors.

  14. Patenting human genes and stem cells.

    PubMed

    Martin-Rendon, Enca; Blake, Derek J

    2007-01-01

    Cell lines and genetically modified single cell organisms have been considered patentable subjects for the last two decades. However, despite the technical patentability of genes and stem cell lines, social and legal controversy concerning their 'ownership' has surrounded stem cell research in recent years. Some granted patents on stem cells with extremely broad claims are casting a shadow over the commercialization of these cells as therapeutics. However, in spite of those early patents, the number of patent applications related to stem cells is growing exponentially. Both embryonic and adult stem cells have the ability to differentiate into several cell lineages in an organism as a result of specific genetic programs that direct their commitment and cell fate. Genes that control the pluripotency of stem cells have been recently identified and the genetic manipulation of these cells is becoming more efficient with the advance of new technologies. This review summarizes some of the recent published patents on pluripotency genes, gene transfer into stem cells and genetic reprogramming and takes the hematopoietic and embryonic stem cell as model systems.

  15. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    PubMed

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.

  16. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  17. Human induced pluripotent stem cells: A disruptive innovation.

    PubMed

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Genome editing: a robust technology for human stem cells.

    PubMed

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  19. Phenotype and functions of memory Tfh cells in human blood.

    PubMed

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  20. Characterization of Human Fungiform Papillae Cells in Culture

    PubMed Central

    Brand, Joseph G.; Spielman, Andrew I.; Lischka, Fritz W.; Teeter, John H.; Breslin, Paul A.S.; Rawson, Nancy E.

    2011-01-01

    The ability to maintain human fungiform papillae cells in culture for multiple cell cycles would be of considerable utility for characterizing the molecular, regenerative, and functional properties of these unique sensory cells. Here we describe a method for enzymatically isolating human cells from fungiform papillae obtained by biopsy and maintaining them in culture for more than 7 passages (7 months) without loss of viability and while retaining many of the functional properties of acutely isolated taste cells. Cells in these cultures exhibited increases in intracellular calcium when stimulated with perceptually appropriate concentrations of several taste stimuli, indicating that at least some of the native signaling pathways were present. This system can provide a useful model for molecular studies of the proliferation, differentiation, and physiological function of human fungiform papillae cells. PMID:21471186

  1. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  2. Continuous human cell lines and method of making same

    SciTech Connect

    Stampfer, M.R.

    1989-02-28

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. No Drawings

  3. Human Term Placenta as a Source of Hematopoietic Cells

    PubMed Central

    Serikov, Vladimir; Hounshell, Catherine; Larkin, Sandra; Green, William; Ikeda, Hirokazu; Walters, Mark C.

    2012-01-01

    The main barrier to a broader clinical application of umbilical cord blood (UCB) transplantation is its limiting cellular content. Thus, the discovery of hematopoietic progenitor cells in murine placental tissue led us investigate whether the human placenta contains hematopoietic cells, sites of hematopoiesis, and to develop a procedure of processing and storing placental hematopoietic cells for transplantation. Here we show that the human placenta contains large numbers of CD34-expressing hematopoietic cells, with the potential to provide a cellular yield several-fold greater than that of a typical UCB harvest. Cells from fresh or cryopreserved placental tissue generated erythroid and myeloid colonies in culture, and also produced lymphoid cells after transplantation in immunodeficient mice. These results suggest that human placenta could become an important new source of hematopoietic cells for allogeneic transplantation. PMID:19429852

  4. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  5. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    PubMed Central

    Lestard, Nathalia R.

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  6. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    PubMed

    Lestard, Nathalia R; Capella, Marcia A M

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  7. Human hepatocyte and kidney cell metabolism of 2-acetylaminofluorene and comparison to the respective rat cells.

    PubMed

    Langenbach, R; Rudo, K

    1988-12-01

    The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.

  8. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  9. Cytotoxicity of fig fruit latex against human cancer cells.

    PubMed

    Wang, Jing; Wang, Xiujie; Jiang, Shu; Lin, Ping; Zhang, Jie; Lu, Yanrong; Wang, Qi; Xiong, Zhujuan; Wu, Yaying; Ren, Jingjing; Yang, Hongliang

    2008-03-01

    Fig fruit latex (FFL) contains significant amounts of polyphenolic compounds and can serve as a source of antioxidants after human consumption. The purpose of this study is to confirm anticancer activity of FFL against human cancer cells and to further elucidate its mechanism of activity. Human glioblastoma, hepatocellular carcinoma, and normal liver cells were used for in vitro tests of FFL effects. Those tests included cytotoxicity, colony formation inhibition, Brdu incorporation, acridine orange/ethidium bromide (AO/EB) staining for apoptotic cells, cell cycle distribution through flow cytometry (FCM), and ADP-ribosyltransferase (NAD+; poly(ADP-ribose) polymerase)-like 1 (ADPERL1) mRNA expression through RT-PCR in response to FFL treatment. After FFL treatment, the proliferation, colony formation, and Brdu labeling indices of cancer cells decreased (P<0.05), while the AO/EB stained apoptotic cells increased (P<0.05). By FCM analysis, an increase of G(0)/G(1) phase cell population and decrease of S and G(2)/M phase cells were observed (P<0.01), while both ADPRTL1 mRNA expression and apoptotic indices increased (P<0.01). The findings in these studies suggested that FFL exhibited potent cytotoxicity in some human cancer cells with little effect in normal cells at certain concentration. The mechanism for such effects might be associated with the inhibition of DNA synthesis, induction of apoptosis, and cell cycle arrest of cancer cells.

  10. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    PubMed

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  11. Human Adipose Stromal Vascular Cell Delivery in a Fibrin Spray

    PubMed Central

    Zimmerlin, Ludovic; Rubin, J. Peter; Pfeifer, Melanie E.; Moore, L.R.; Donnenberg, Vera S.; Donnenberg, Albert D.

    2014-01-01

    Background Adipose tissue represents a practical source of autologous mesenchymal stromal cells (MSC) and vascular-endothelial progenitor cells, available for regenerative therapy without in vitro expansion. One of the problems confronting the therapeutic application of such cells is how to immobilize them at the wound site. Here, we evaluated in vitro the growth and differentiation of human adipose stromal vascular fraction (SVF) cells after delivery using a fibrin spray system. Methods SVF cells were harvested from four human adult patients undergoing elective abdominoplasty using the LipiVage™ system. After collagenase digestion, mesenchymal and endothelial progenitor cells (pericytes, supra-adventitial stromal cells, endothelial progenitors) were quantified by flow cytometry before culture. SVF cells were applied to culture vessels using the Tisseel™ fibrin spray system. SVF cell growth and differentiation was documented by immunofluorescence staining and photomicrography. Results SVF cells remained viable following application and were expanded up to three weeks, when they reached confluence and adipogenic differentiation. Under angiogenic conditions, SVF cells formed endothelial (vWF+, CD31+ and CD34+) tubules surrounded by CD146+ and α-SMA+ perivascular/stromal cells. Discussion Human adipose tissue is a rich source of autologous stem cells, which are readily available for regenerative applications such as wound healing, without in vitro expansion. Our results indicate that mesenchymal and endothelial progenitor cells, prepared in a closed system from unpassaged lipoaspirate samples, retain their growth and differentiation capacity when applied and immobilized on a substrate using a clinically approved fibrin sealant spray system. PMID:23260090

  12. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    PubMed

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  13. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    PubMed Central

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  14. Calcineurin Signaling Regulates Human Islet β-Cell Survival*

    PubMed Central

    Soleimanpour, Scott A.; Crutchlow, Michael F.; Ferrari, Alana M.; Raum, Jeffrey C.; Groff, David N.; Rankin, Matthew M.; Liu, Chengyang; De León, Diva D.; Naji, Ali; Kushner, Jake A.; Stoffers, Doris A.

    2010-01-01

    The calcium-regulated phosphatase calcineurin intersects with both calcium and cAMP-mediated signaling pathways in the pancreatic β-cell. Pharmacologic calcineurin inhibition, necessary to prevent rejection in the setting of organ transplantation, is associated with post-transplant β-cell failure. We sought to determine the effect of calcineurin inhibition on β-cell replication and survival in rodents and in isolated human islets. Further, we assessed whether the GLP-1 receptor agonist and cAMP stimulus, exendin-4 (Ex-4), could rescue β-cell replication and survival following calcineurin inhibition. Following treatment with the calcineurin inhibitor tacrolimus, human β-cell apoptosis was significantly increased. Although we detected no human β-cell replication, tacrolimus significantly decreased rodent β-cell replication. Ex-4 nearly normalized both human β-cell survival and rodent β-cell replication when co-administered with tacrolimus. We found that tacrolimus decreased Akt phosphorylation, suggesting that calcineurin could regulate replication and survival via the PI3K/Akt pathway. We identify insulin receptor substrate-2 (Irs2), a known cAMP-responsive element-binding protein target and upstream regulator of the PI3K/Akt pathway, as a novel calcineurin target in β-cells. Irs2 mRNA and protein are decreased by calcineurin inhibition in both rodent and human islets. The effect of calcineurin on Irs2 expression is mediated at least in part through the nuclear factor of activated T-cells (NFAT), as NFAT occupied the Irs2 promoter in a calcineurin-sensitive manner. Ex-4 restored Irs2 expression in tacrolimus-treated rodent and human islets nearly to baseline. These findings reveal calcineurin as a regulator of human β-cell survival in part through regulation of Irs2, with implications for the pathogenesis and treatment of diabetes following organ transplantation. PMID:20943662

  15. Calcineurin signaling regulates human islet {beta}-cell survival.

    PubMed

    Soleimanpour, Scott A; Crutchlow, Michael F; Ferrari, Alana M; Raum, Jeffrey C; Groff, David N; Rankin, Matthew M; Liu, Chengyang; De León, Diva D; Naji, Ali; Kushner, Jake A; Stoffers, Doris A

    2010-12-17

    The calcium-regulated phosphatase calcineurin intersects with both calcium and cAMP-mediated signaling pathways in the pancreatic β-cell. Pharmacologic calcineurin inhibition, necessary to prevent rejection in the setting of organ transplantation, is associated with post-transplant β-cell failure. We sought to determine the effect of calcineurin inhibition on β-cell replication and survival in rodents and in isolated human islets. Further, we assessed whether the GLP-1 receptor agonist and cAMP stimulus, exendin-4 (Ex-4), could rescue β-cell replication and survival following calcineurin inhibition. Following treatment with the calcineurin inhibitor tacrolimus, human β-cell apoptosis was significantly increased. Although we detected no human β-cell replication, tacrolimus significantly decreased rodent β-cell replication. Ex-4 nearly normalized both human β-cell survival and rodent β-cell replication when co-administered with tacrolimus. We found that tacrolimus decreased Akt phosphorylation, suggesting that calcineurin could regulate replication and survival via the PI3K/Akt pathway. We identify insulin receptor substrate-2 (Irs2), a known cAMP-responsive element-binding protein target and upstream regulator of the PI3K/Akt pathway, as a novel calcineurin target in β-cells. Irs2 mRNA and protein are decreased by calcineurin inhibition in both rodent and human islets. The effect of calcineurin on Irs2 expression is mediated at least in part through the nuclear factor of activated T-cells (NFAT), as NFAT occupied the Irs2 promoter in a calcineurin-sensitive manner. Ex-4 restored Irs2 expression in tacrolimus-treated rodent and human islets nearly to baseline. These findings reveal calcineurin as a regulator of human β-cell survival in part through regulation of Irs2, with implications for the pathogenesis and treatment of diabetes following organ transplantation.

  16. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    PubMed

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  17. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  18. Freeze-Dried Human Red Blood Cells

    DTIC Science & Technology

    1991-11-08

    which we thought may improve the resealing and phospholipid packing of the cell membranes. Neither treatment appeared to significantly improve the cell...cells were experiencing subtle membrane damage. This hypothesis was based on our model of transient lysis- resealing of the cells during the shock of...appreciable rates of chemical reactions. This theory has already found general application in the food and pharmaceuticals (i.e., lyophilized protein

  19. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-03-11

    neurons, motoneurons and astrocytes using defined medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) fluorescence based assays...medium conditions, (3) cell-based methods to detect botulinum toxin, and (4) fluorescence based assays for proliferation, cell migration, mitochondrial...line will begin shortly. (3) Development of cell based methods to detect botulinum toxin There has been substantial progress in the development

  20. Virus-Infected Human Mast Cells Enhance Natural Killer Cell Functions.

    PubMed

    Portales-Cervantes, Liliana; Haidl, Ian D; Lee, Patrick W; Marshall, Jean S

    2017-01-01

    Mucosal surfaces are protected from infection by both structural and sentinel cells, such as mast cells. The mast cell's role in antiviral responses is poorly understood; however, they selectively recruit natural killer (NK) cells following infection. Here, the ability of virus-infected mast cells to enhance NK cell functions was examined. Cord blood-derived human mast cells infected with reovirus (Reo-CBMC) and subsequent mast cell products were used for the stimulation of human NK cells. NK cells upregulated the CD69 molecule and cytotoxicity-related genes, and demonstrated increased cytotoxic activity in response to Reo-CBMC soluble products. NK cell interferon (IFN)-γ production was also promoted in the presence of interleukin (IL)-18. In vivo, SCID mice injected with Reo-CBMC in a subcutaneous Matrigel model, could recruit and activate murine NK cells, a property not shared by normal human fibroblasts. Soluble products of Reo-CBMC included IL-10, TNF, type I and type III IFNs. Blockade of the type I IFN receptor abrogated NK cell activation. Furthermore, reovirus-infected mast cells expressed multiple IFN-α subtypes not observed in reovirus-infected fibroblasts or epithelial cells. Our data define an important mast cell IFN response, not shared by structural cells, and a subsequent novel mast cell-NK cell immune axis in human antiviral host defense.

  1. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-10-11

    mitochondrial health, reactive oxygen species generation and cell migration in our neural progenitor and differentiated neural cells. These assays...measure reactive oxygen species (ROS) generation in hNP1™ and hN2™ cells under conditions that induce oxidative stress, we are developing an assay