Sample records for human biology program

  1. Human Ecology: A Perspective for Biology Education. Monograph Series II.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This monograph provides a framework for biology teachers who are rethinking and redesigning their programs. The major focus is on the human ecology perspective in biology programs. The first chapter attempts to define and clarify human ecology through historical review. The second chapter provides support, based on a survey of citizens…

  2. Research Programs Constituting U.S. Participation in the International Biological Program.

    ERIC Educational Resources Information Center

    National Academy of Sciences--National Research Council, Washington, DC. Div. of Biology and Agriculture.

    The United States contribution to the International Biological Program, which aims to understand more clearly the interrelationships within ecosystems, is centered on multidisciplinary research programs investigating the biological basis of ecological productivity and human welfare. Integrated research programs have been established for the…

  3. Integrated Modular Teaching of Human Biology for Primary Care Practitioners

    ERIC Educational Resources Information Center

    Glasgow, Michael S.

    1977-01-01

    Describes the use of integrated modular teaching of the human biology component of the Health Associate Program at Johns Hopkins University, where the goal is to develop an understanding of the sciences as applied to primary care. Discussion covers the module sequence, the human biology faculty, goals of the human biology faculty, laboratory…

  4. Human Genome: DOE Origins

    Science.gov Websites

    Health and Environmental Research [OHER], the program that supported most Biology in the Department. The origins of DOE's biology program traced to the Manhattan Project, the World War II program that produced Technical Report; 1964 Impact of Radiation Biology on Fundamental Insights in Biology; DOE Technical Report

  5. 78 FR 8128 - Request for Nominations of Experts to the EPA Office of Research and Development's Board of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Program; Homeland Security Research Program; Human Health Risk Assessment Research Program; Safe and... --atmospheric physics Biology --biogeochemistry --cell biology --endocrinology (endocrine disruptors... analysis --uncertainty analysis Nanotechnology Public Health --children's health --community health...

  6. 75 FR 76472 - Biologics Price Competition and Innovation Act of 2009; Meetings on User Fee Program for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0602] Biologics Price Competition and Innovation Act of 2009; Meetings on User Fee Program for Biosimilar and Interchangeable Biological Product Applications; Request for Notification of Stakeholder Intention To Participate...

  7. NASA Human Research Program Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik; hide

    2013-01-01

    The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.

  8. Effects of a Hands-on Multicultural Education Program: A Model for Student Learning.

    ERIC Educational Resources Information Center

    Kim, Simon; Clarke-Ekong, Sheilah; Ashmore, Pamela

    1999-01-01

    Describes the Center for Human Origin and Cultural Diversity program that is a model for multicultural education in which students learn about the human fossil record, the value of biological variation, and the characteristics common to all humans. Presents results from a study that support the use of this program. (CMK)

  9. Human Sexuality Education Program.

    ERIC Educational Resources Information Center

    Claremont Univ. Center, CA.

    This program provides information to students about human sexual biology, behavior and attitudes. The primary intent of the workshops described is to provide fuller information and opportunity for self awareness to encourage participants to be more responsible as sexual beings, and to restructure their attitudes. The program presents the…

  10. INEL Geothermal Environmental Program. Final environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs aremore » summarized.« less

  11. Multimedia presentations on the human genome: Implementation and assessment of a teaching program for the introduction to genome science using a poster and animations.

    PubMed

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-11-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from Mendel's peas not only because many students do not understand that plants are organisms, but also because human biology contains important social and health issues. Therefore, we have developed a teaching program for the introduction to genome science, whose subjects are focused on the human genome. This program comprises mixed multimedia presentations: a large poster with illustrations and text on the human genome (a human genome map for every home), and animations on the basics of genome science. We implemented and assessed this program at four high schools. Our results indicate that students felt that they learned about the human genome from the program and some increases in students' understanding were observed with longer exposure to the mixed multimedia presentations. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  12. Senior Computational Scientist | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  13. Secretary | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides

  14. Programming by early nutrition: an experimental approach.

    PubMed

    Lucas, A

    1998-02-01

    That events during critical or sensitive periods of development may "program" long-term or life-time structure or function of the organism is well recognized. Evidence for programming by nutrition is established in animals, in whom brief pre- or postnatal nutritional manipulations may program adult size, metabolism, blood lipids, diabetes, blood pressure, obesity, atherosclerosis, learning, behavior and life span. Human epidemiological data link potential markers of early nutrition (size at birth or in infancy) to cardiovascular disease and its risk factors in adulthood. However, these retrospective data cannot prove nutritional cause or underpin health policies. After 16 y, however, of ethical, randomized intervention studies of early nutrition in humans with long-term follow-up to test experimentally the nutritional programming hypothesis, we find that humans, like other species, have sensitive windows for nutrition in terms of later outcomes; for instance, perinatal diet influences neurodevelopment and bone mineralization into mid-childhood. Possible biological mechanisms for storing throughout life the "memory" of early nutritional experience and its expression in adulthood include adaptive changes in gene expression, preferential clonal selection of adapted cells in programmed tissues and programmed differential proliferation of tissue cell types. Animal and human evidence supporting nutritional programming has major potential biological and medical significance.

  15. Research opportunities in human behavior and performances

    NASA Technical Reports Server (NTRS)

    Christensen, J. M.; Talbot, J. M.

    1985-01-01

    The NASA research program in the biological and medical aspects of space flight includes investigations of human behavior and performance. The research focuses on psychological and psychophysiological responses to operational and environmental stresses and demands of spaceflight, and encompasses problems in perception, cognition, motivation, psychological stability, small group dynamics, and performance. The primary objective is to acquire the knowledge and methodology to aid in achieving high productivity and essential psychological support of space and ground crews in the Space Shuttle and space station programs. The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology reviewed its program in psychology and identified its research for future program planning to be in line with NASA's goals.

  16. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.F.

    This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studiesmore » for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.« less

  17. Wundt, Vygotsky and Bandura: a cultural-historical science of consciousness in three acts.

    PubMed

    Ferrari, Michel; Robinson, David K; Yasnitsky, Anton

    2010-01-01

    This article looks at three historical efforts to coordinate the scientific study of biological and cultural aspects of human consciousness into a single comprehensive theory of human development that includes the evolution of the human body, cultural evolution and personal development: specifically, the research programs of Wilhelm Wundt, Lev Vygotsky and Albert Bandura. The lack of historical relations between these similar efforts is striking, and suggests that the effort to promote cultural and personal sources of consciousness arises as a natural foil to an overemphasis on the biological basis of consciousness, sometimes associated with biological determinism.

  18. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  19. Summer Prostate Cancer Research Training Program

    DTIC Science & Technology

    2017-09-01

    Biology, and Human Toxicology Graduate Programs. Michael Henry, PhD; Associate Professor, Department of Physiology & Biophysics (319-335- 7886) http...addition, PSA has also been demonstrated to be antigenic and capable of inducing specific immune responses in both humans and mice. However, up to...for animal immunization. Both BCG and Ad microbes have been demonstrated to be safe and effective for antigen delivery in humans and mice. Since

  20. Genetically-Based Biologic Technologies. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Mayer, William V.; McInerney, Joseph D.

    The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…

  1. 34 CFR 600.5 - Proprietary institution of higher education.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...

  2. 34 CFR 600.5 - Proprietary institution of higher education.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...

  3. 34 CFR 600.5 - Proprietary institution of higher education.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...

  4. 34 CFR 600.5 - Proprietary institution of higher education.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...

  5. Automated Discovery of Functional Generality of Human Gene Expression Programs

    PubMed Central

    Gerber, Georg K; Dowell, Robin D; Jaakkola, Tommi S; Gifford, David K

    2007-01-01

    An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-κB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal “cross-talk,” and genes from high generality programs may maintain common physiological responses that go awry in disease states. Further, our method is multipurpose, and can be applied readily to novel compendia of biological data. PMID:17696603

  6. Authorized Course of Instruction for the Quinmester Program. Science: Introduction to Anatomy and Physiology; Human Reproduction; Man and Disease; Man's Senses; and Introduction to the Human Body.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for each of the five secondary school units included in this package of instructional guides prepared for the Dade County Florida Quinmester Program. All five units are concerned with aspects of physiology; three require no prerequisite study of biology ("Introduction to the Human Body,""Man and…

  7. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course †

    PubMed Central

    Walton, Kristen L. W.

    2014-01-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research. PMID:25574289

  8. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    PubMed

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  9. DNA Barcoding Investigations Bring Biology to Life

    ERIC Educational Resources Information Center

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  10. 42 CFR 419.66 - Transitional pass-through payments: Medical devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... replace human skin (for example, a biological skin replacement material or synthetic skin replacement... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEM FOR HOSPITAL OUTPATIENT... human tissue, and is surgically implanted or inserted whether or not it remains with the patient when...

  11. 42 CFR 419.66 - Transitional pass-through payments: Medical devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... replace human skin (for example, a biological skin replacement material or synthetic skin replacement... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEM FOR HOSPITAL OUTPATIENT... human tissue, and is surgically implanted or inserted whether or not it remains with the patient when...

  12. Multidisciplinary Russian biomedical research in space

    NASA Astrophysics Data System (ADS)

    Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.

    2014-08-01

    Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.

  13. A Research Program on the Potential for Effects of Engineered Nanomaterials on Biological Systems

    EPA Science Inventory

    The US Environmental Protection Agency (EPA), Office of Research and Development, has developed a research program to evaluate the potential implications of engineered nanomaterials for human health and the environment. Among the major themes of the program are evaluating the in...

  14. Activation of human herpesvirus replication by apoptosis.

    PubMed

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  15. Activation of Human Herpesvirus Replication by Apoptosis

    PubMed Central

    Prasad, Alka; Remick, Jill

    2013-01-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073

  16. Overview of NASARTI (NASA Radiation Track Image) Program: Highlights of the Model Improvement and the New Results

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu

    2014-01-01

    This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.

  17. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  18. Reaching for Excellence.

    ERIC Educational Resources Information Center

    Wright, Emmett L.; Perna, Jack A.

    1992-01-01

    Presents the four program goals for biology set forth in the National Science Teacher Association's "A Focus on Excellence: Biology Revisited" to (1) address biosphere, human society, and individual needs; (2) encourage students to experience, understand, and appreciate of natural systems; (3) apply the basic concept of the biosphere; and (4)…

  19. Child health developmental plasticity, and epigenetic programming

    USDA-ARS?s Scientific Manuscript database

    Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developm...

  20. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    PubMed

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  1. Leveraging culture collections for the discovery and development of microbial biological control agents

    USDA-ARS?s Scientific Manuscript database

    The incorporation of living microbial biological control agents into integrated pest management programs is highly desirable because it reduces the use of chemical insecticides harmful to livestock, humans and the environment. In addition, it provides an alternative means to combat resistance to che...

  2. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciencesmore » Research section reports research conducted for the OHER human genome program.« less

  3. Using the brain's fight-or-flight response for predicting mental illness on the human space flight program

    NASA Astrophysics Data System (ADS)

    Losik, L.

    A predictive medicine program allows disease and illness including mental illness to be predicted using tools created to identify the presence of accelerated aging (a.k.a. disease) in electrical and mechanical equipment. When illness and disease can be predicted, actions can be taken so that the illness and disease can be prevented and eliminated. A predictive medicine program uses the same tools and practices from a prognostic and health management program to process biological and engineering diagnostic data provided in analog telemetry during prelaunch readiness and space exploration missions. The biological and engineering diagnostic data necessary to predict illness and disease is collected from the pre-launch spaceflight readiness activities and during space flight for the ground crew to perform a prognostic analysis on the results from a diagnostic analysis. The diagnostic, biological data provided in telemetry is converted to prognostic (predictive) data using the predictive algorithms. Predictive algorithms demodulate telemetry behavior. They illustrate the presence of accelerated aging/disease in normal appearing systems that function normally. Mental illness can predicted using biological diagnostic measurements provided in CCSDS telemetry from a spacecraft such as the ISS or from a manned spacecraft in deep space. The measurements used to predict mental illness include biological and engineering data from an astronaut's circadian and ultranian rhythms. This data originates deep in the brain that is also damaged from the long-term exposure to cortisol and adrenaline anytime the body's fight or flight response is activated. This paper defines the brain's FOFR; the diagnostic, biological and engineering measurements needed to predict mental illness, identifies the predictive algorithms necessary to process the behavior in CCSDS analog telemetry to predict and thus prevent mental illness from occurring on human spaceflight missions.

  4. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.F.

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiologicalmore » studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.« less

  5. What's a Nice Biology Teacher Like You Doing Teaching Humanities?

    ERIC Educational Resources Information Center

    Biermann, Carol A.

    1990-01-01

    Described is the College Success Program designed to enhance retention of at-risk individuals. The goals, bioethics course offerings at various colleges, course outline for a bioethics course taught in the humanities, and evaluation of the course are discussed. (CW)

  6. The Development of a Post-Baccalaureate Certificate Program in Molecular Diagnostics

    PubMed Central

    Williams, Gail S.; Brown, Judith D.; Keagle, Martha B.

    2000-01-01

    A post-baccalaureate certificate program in diagnostic molecular sciences was created in 1995 by the Diagnostic Genetic Sciences Program in the School of Allied Health at the University of Connecticut. The required on-campus lecture and laboratory courses include basic laboratory techniques, health care issues, cell biology, immunology, human genetics, research, management, and molecular diagnostic techniques and laboratory in molecular diagnostics. These courses precede a 6-month, full-time practicum at an affiliated full-service molecular laboratory. The practicum includes amplification and blotting methods, a research project, and a choice of specialized electives including DNA sequencing, mutagenesis, in situ hybridization methods, or molecular diagnostic applications in microbiology. Graduates of the program are immediately eligible to sit for the National Credentialing Agency examination in molecular biology to obtain the credential Clinical Laboratory Specialist in Molecular Biology (CLSp(MB). This description of the University of Connecticut program may assist other laboratory science programs in creating similar curricula. PMID:11232107

  7. Astrobiology from exobiology: Viking and the current Mars probes.

    PubMed

    Soffen, G A

    1997-01-01

    The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.

  8. Biological and Chemical Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defensemore » Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.« less

  9. Evolution of Aging Theories: Why Modern Programmed Aging Concepts Are Transforming Medical Research.

    PubMed

    Goldsmith, Theodore C

    2016-12-01

    Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.

  10. 76 FR 4919 - Regulatory Site Visit Training Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0046] Regulatory Site Visit Training Program AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration's (FDA's) Center for Biologics Evaluation and Research (CBER) is...

  11. 75 FR 6404 - Regulatory Site Visit Training Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2008-N-0045] (formerly Docket No. 2004N-0408) Regulatory Site Visit Training Program AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration's (FDA's) Center for Biologics...

  12. Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland.

    PubMed

    Goś, Daria; Szymańska, Ewelina; Białek-Wyrzykowska, Urszula; Wiweger, Małgorzata; Kuźnicki, Jacek

    2016-08-01

    The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9-11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is "healthy as a fish" meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of "healthy fish" results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords-health and fish-which, in our opinion, makes it a good title for a successful educational program.

  13. Using Biology to Teach Adolescents about STD Transmission and Self-Protective Behaviors

    ERIC Educational Resources Information Center

    Zamora, Angela; Romo, Laura F.; Kit-fong Au, Terry

    2006-01-01

    The effects of a prevention program designed to teach 7th grade students about the different risk behaviors associated with human immunodeficiency virus (HIV), chlamydia, and gonorrhea transmission were examined. Over 3 days, the students were taught how to reason about self-protective behaviors using information about the biological causal…

  14. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  15. 75 FR 54343 - Center for Biologics Evaluation and Research eSubmitter Pilot Evaluation Program for Blood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0436... That Collect Whole Blood and Blood Components AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA), Center for Biologics Evaluation and Research (CBER) is...

  16. Annual National Teachers Workshop on ’Human Biology’ Held in San Jose, California on 7-13 November 1995.

    DTIC Science & Technology

    1994-11-01

    Conference teacher program were to enable participating teachers to: (1) understand basic human anatomy and physiology content. (2) understand appropriate...teaching methodology for American Indian students. (3) engage in classroom activities that focus on human anatomy and physiology which can be transferred and applied to their own classrooms.

  17. Authorized Course of Instruction for the Quinmester Program. Science: Man and Nature.

    ERIC Educational Resources Information Center

    McCarthy, Nancy D.; Silver, Barbara A.

    Performance objectives are stated for this secondary school unit prepared for the Dade County Florida Quinmester Program. The unit examines scientific method, biological classification, evolution, population ecology, and pays attention to problems of the human environment. The booklet lists related state-adopted textbooks, cites descriptions of…

  18. Darwin, dogs and DNA: Freshman writing about biology

    NASA Astrophysics Data System (ADS)

    Grant, Michael C.; Piirto, John

    1994-12-01

    We describe a successful interdepartmental program at a major research-oriented university that melds freshman writing with freshman biology to the significant benefit of both disciplines. Extensive, repeated feedback on individual student writing projects from two instructors, one a humanities professor, one a biology professor, appears to work synergistically so that learning by the students is significantly enhanced. Particulars derived from five years of experience with intensive, student-centered strategy are included.

  19. Life sciences and space research 25 (1). Gravitational biology; Interdisciplinary Scientific Commission F of the COSPAR Plenary Meeting, 29th, Washington, DC, Aug. 28-Sep. 5, 1992

    NASA Technical Reports Server (NTRS)

    Cogoli, A. (Editor); Cogoli-Greuter, M. (Editor); Gruener, R. (Editor); Sievers, A. (Editor); Ubbels, G. A. (Editor); Halstead, T. W. (Editor); Ross, M. D. (Editor); Roux, S. J. (Editor); Oser, H. (Editor); Lujan, B. F. (Editor)

    1994-01-01

    The conference includes papers describing theories and models of cell biology in microgravity and weightlessness; experimental research on cellular responses to altered gravity in plants and animals, natural and simulated; graviresponses in plants; gravitational effects in developmental biology; mechanisms of gravisensing; effects on animals and humans; and educational programs in Space Life Sciences.

  20. 76 FR 79203 - Prospective Grant of Exclusive License: Avian Influenza Vaccines for Domesticated Poultry/Wild...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of... National Veterinary Stockpile Program and Avian Influenza Vaccines To Be Sold as Veterinary Biological... Institutes of Health (NIH), Department of Health and Human Services, is contemplating the grant of an...

  1. Digestion, Excretion and Metabolism, Science (Experimental): 5346.03.

    ERIC Educational Resources Information Center

    Weiss, Alan; And Others

    This unit of instruction deals with a study of human physiology with emphasis on the process of digestion. The urinary system and urinary disorders are also discussed. The course is for the interested student and requires credit or background in previous biology programs. It is, in part, a second course in biology, but it is well within the range…

  2. Biology as an integrated component of the U.S. Geological Survey's National Water-Quality Assessment Program

    USGS Publications Warehouse

    Meador, Michael R.; Gurtz, Martin E.

    1994-01-01

    The U.S. Geological Survey?s (USGS) National Water-Quality Assessment (NAWQA) Program is designed to integrate chemical, physical, and biological data to assess the status of and trends in the Nation?s water quality at local, regional, and national levels. The Program consists of 60 study units (major river basins and large parts of aquifers) located throughout the Nation (fig. 1). Data are collected at stream, river, and ground-water sites that represent the Nation?s mix of major natural and human factors that influence water quality. Biological data are collected from streams and rivers, and include (1) fish and other aquatic organisms whose tissues are analyzed for a wide array of chemical contaminants; (2) characterizations of algal, benthic invertebrate, and fish communities; and (3) characterizations of vegetation growing in streams and along streambanks. These biological data are collected in conjunction with physical (streamflow, characterizations of instream, bank, and flood-plain habitats) and chemical data.

  3. Biology Division progress report for period of October 1, 1988--September 30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-01

    The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessmentmore » of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.« less

  4. Combining tactics to exploit allee effects for eradication of alien insect populations

    Treesearch

    David Maxwell Suckling; Patrick C. Tobin; Deborah G. McCullough; Daniel A. Herms

    2012-01-01

    Invasive species increasingly threaten ecosystems, food production, and human welfare worldwide. Hundreds of eradication programs have targeted a wide range of nonnative insect species to mitigate the economic and ecological impacts of biological invasions. Many such programs used multiple tactics to achieve this goal, but interactions between tactics have received...

  5. 78 FR 20924 - Center for Biologics Evaluation and Research eSubmitter Pilot Evaluation Program for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0248... Drug Applications AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug... sponsors of investigational new drug (IND) applications to participate in a pilot evaluation program for...

  6. Seventh Grade Social Studies. A Program in Sociology and American History.

    ERIC Educational Resources Information Center

    Clancy, Patricia; And Others

    GRADES OR AGES: Seventh grade. SUBJECT MATTER: Sociology and American history. ORGANIZATION AND PHYSICAL APPEARANCE: The guide covers five units: "Biological Basis of Human Behavior,""How We Become Human,""The Family and Other Socializing Institutions,""Man's Behavior in Groups and Crowds," and "Minority Group Problems." The presentation of the…

  7. Simulation for Authentic Learning in Informal Education

    ERIC Educational Resources Information Center

    Dupuis, Jason; Ludwig-Palit, DeDee

    2016-01-01

    In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular…

  8. Learning about the Human Body. Superific Science Book IV. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    Designed to supplement a basic life science or biology program, this document provides teachers with experiential learning activities dealing with the human body. The learning activities vary in the length of time needed for their completion, and require a minimum of equipment and materials. The activities focus on: (1) the human skeleton; (2)…

  9. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Environmental Measurements and Modeling

    EPA Pesticide Factsheets

    Environmental measurement is any data collection activity involving the assessment of chemical, physical, or biological factors in the environment which affect human health. Learn more about these programs and tools that aid in environmental decisions

  11. Monitoring osseointegration and developing intelligent systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salvino, Liming W.

    2017-05-01

    Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.

  12. Consumer of concern early entry program (C-CEEP): protecting against the biological suicidal warfare host

    NASA Astrophysics Data System (ADS)

    Fish, Janet D.

    2014-05-01

    Man has used poisons for assassination purposes ever since the dawn of civilization, not only against individual enemies but also occasionally against armies. According to (Frischknecht, 2003)11 article on the History of Biological Warfare, during the past century, more than 500 million people died of infectious diseases. Several tens of thousands of these deaths were due to the deliberate release of pathogens or toxins. Two international treaties outlawed biological weapons in 1925 and 1972, but they have largely failed to stop countries from conducting offensive weapons research and large-scale production of biological weapons. Before the 20th century, biological warfare took on three main forms: (1) deliberate poisoning of food and water with infectious material, (2) use of microorganisms or toxins in some form of weapon system, and (3) use of biologically inoculated fabrics (Dire, 2013)8. This action plan is aimed at the recognition of the lack of current processes in place under an unidentified lead agency to detect, identify, track, and contain biological agents that can enter into the United States through a human host. This action plan program has been identified as the Consumer of Concern Early Entry Program or a simpler title is C-CEEP.

  13. The Intersection of Physics and Biology

    ScienceCinema

    Liphardt, Jan

    2017-12-22

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.

  14. 17th Chromosome-Centric Human Proteome Project Symposium in Tehran.

    PubMed

    Meyfour, Anna; Pahlavan, Sara; Sobhanian, Hamid; Salekdeh, Ghasem Hosseini

    2018-04-01

    This report describes the 17th Chromosome-Centric Human Proteome Project which was held in Tehran, Iran, April 27 and 28, 2017. A brief summary of the symposium's talks including new technical and computational approaches for the identification of novel proteins from non-coding genomic regions, physicochemical and biological causes of missing proteins, and the close interactions between Chromosome- and Biology/Disease-driven Human Proteome Project are presented. A synopsis of decisions made on the prospective programs to maintain collaborative works, share resources and information, and establishment of a newly organized working group, the task force for missing protein analysis are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 78 FR 69857 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... research opportunities and needs; Renewing research infrastructure network program. Place: Hyatt Regency...., Acting Director, National Center for Medical Rehabilitation Research (NCMRR), Director, Biological...

  16. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents 28 activities, games, demonstrations, experiments, and computer programs for biology, chemistry, physics, and conservation education. Background information, laboratory procedures, equipment lists, and instructional strategies are included. Topics include nature conservation, chickens in school, human anatomy, nitrogen cycle, mechanism…

  17. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; hide

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  18. Is there anything unique in the ethics of synthetic biology?

    PubMed

    Heyd, David

    2012-01-01

    Synthetic biology does not create any ethical dilemmas that have not already been raised in the development of practices such as genetic screening, genetic engineering, and other interventions in the evolutionary processes. The issue is, nevertheless, ethically serious. Two different angles are examined: the philosophical legitimacy of human intervention in the shaping of human nature, and the more pragmatic (though by no means less important) question of the risks involved in such a novel line of research. As for the first, the claim made here is that in principle there is no constraint in human intervention in the world, since ultimately the source of any value lies in human interests, welfare, and values. This is an approach that is opposite to Habermas's. As for the practical problem of risk, research in synthetic biology calls for particular caution, since in at least the first stages of a new research or program, there is no social regulation, and society is wholly dependent on the scientist's ethical integrity.

  19. Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland

    PubMed Central

    Szymańska, Ewelina; Białek-Wyrzykowska, Urszula; Wiweger, Małgorzata; Kuźnicki, Jacek

    2016-01-01

    Abstract The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9–11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is “healthy as a fish” meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of “healthy fish” results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords—health and fish—which, in our opinion, makes it a good title for a successful educational program. PMID:27028803

  20. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  1. Roadmap to a Sustainable Structured Trusted Employee Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W; Eisele, Gerhard R

    2013-08-01

    Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trustedmore » Employee Program (STEP).« less

  2. Research in progress: FY 1992. Summaries of projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Biological and Environmental Research (BER) Program of OHER has two main missions: (1) to develop the knowledge base necessary to identify, understand, and anticipate the long-term health and environmental consequences of energy use and development and (2) to utilize the Department`s unique scientific and technological capabilities to solve major scientific problems in medicine, biology, and the environment. These missions reflect a commitment to develop the beneficial uses of advanced energy technologies while at the same time assuring that any potentially adverse health and environmental impacts of the Nation`s energy policies are fully identified and understood. The BER Program includesmore » research in atmospheric, marine, and terrestrial processes, including the linkage between the use in greenhouse gases, carbon dioxide, and regional and global climate change; in molecular and subcellular mechanisms underlying human somatic and genetic processes and their responses to energy-related environmental toxicants; in nuclear medicine, structural biology, the human genome, measurement sciences and instrumentation, and other areas that require the unique capabilities of the Department`s laboratory system. The principal areas of research are Health Research and Environmental Research.« less

  3. 04-ERD-052-Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, G G; Ovcharenko, I; Collette, N

    2007-02-26

    Generating the sequence of the human genome represents a colossal achievement for science and mankind. The technical use for the human genome project information holds great promise to cure disease, prevent bioterror threats, as well as to learn about human origins. Yet converting the sequence data into biological meaningful information has not been immediately obvious, and we are still in the preliminary stages of understanding how the genome is organized, what are the functional building blocks and how do these sequences mediate complex biological processes. The overarching goal of this program was to develop novel methods and high throughput strategiesmore » for determining the functions of ''anonymous'' human genes that are evolutionarily deeply conserved in other vertebrates. We coupled analytical tool development and computational predictions regarding gene function with novel high throughput experimental strategies and tested biological predictions in the laboratory. The tools required for comparative genomic data-mining are fundamentally the same whether they are applied to scientific studies of related microbes or the search for functions of novel human genes. For this reason the tools, conceptual framework and the coupled informatics-experimental biology paradigm we developed in this LDRD has many potential scientific applications relevant to LLNL multidisciplinary research in bio-defense, bioengineering, bionanosciences and microbial and environmental genomics.« less

  4. Biological control of invasive plant species: a reassessment for the Anthropocene.

    PubMed

    Seastedt, Timothy R

    2015-01-01

    The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources. © 2014 The Author New Phytologist © 2014 New Phytologist Trust.

  5. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  6. Our changing planet: The FY 1993 US global change research program. A supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An improved predictive understanding of the integrated Earth system, including human interactions, will provide direct benefits by anticipating and planning for possible impacts on commerce, agriculture, energy, resource utilization, human safety, and environmental quality. The central goal of the U.S. Global Change Research Program (USGCRP) is to help establish the scientific understanding and the basis for national and international policymaking related to natural and human-induced changes in the global Earth system. This will be accomplished through: (1) establishing an integrated, comprehensive, long-term program of documenting the Earth system on a global scale; (2) conducting a program of focused studies to improve our understanding of the physical, geological, chemical, biological, and social processes that influence the Earth system processes; and (3) developing integrated conceptual and predictive Earth system models.

  7. 75 FR 12244 - National Toxicology Program (NTP); Office of Liaison, Policy and Review; Meeting of the NTP Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... of Risks to Human Reproduction evaluation of low-level lead. (An evaluation of low-level lead was..., risk assessment, carcinogenesis, mutagenesis, molecular biology, behavioral toxicology, neurotoxicology...

  8. Installation Restoration Program. Phase 1: Records Search, Beale AFB, California

    DTIC Science & Technology

    1984-04-25

    following reasons: (1) to provide the continued protaction of human health, welfare, and the environment; (2) to insure that the migration c:-. potential...Education B.S. in Biology (magna cum laude), 1975, Stetson University, Deland, Florida Ph.D. in Ecology, 1982, State University of New York, Stony Brook...ecology, entomology, plant ecology, population bio- logy, genetics, and general biology . Developed and coordinated laboratory and field exercises

  9. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    PubMed

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  10. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  11. Democratizing Human Genome Project Information: A Model Program for Education, Information and Debate in Public Libraries.

    ERIC Educational Resources Information Center

    Pollack, Miriam

    The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library…

  12. Space Radiation and Risks to Human Health

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  13. Biology-inspired Microphysiological System Approaches to Solve the Prediction Dilemma of Substance Testing

    PubMed Central

    Marx, Uwe; Andersson, Tommy B.; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R.; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B.; Hoeng, Julia; de Jong, Wim H.; Kojima, Hajime; Kuehnl, Jochen; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J. A. M.; Steger-Hartmann, Thomas; Tagle, Danilo A.; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2017-01-01

    Summary The recent advent of microphysiological systems – microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro – is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-five experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale. PMID:27180100

  14. The Controlled Ecological Life Support Systems (CELSS) research program

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1990-01-01

    The goal of the Controlled Ecological Life Support Systems (CELSS) program is to develop systems composed of biological, chemical and physical components for purposes of human life support in space. The research activities supported by the program are diverse, but are focused on the growth of higher plants, food and waste processing, and systems control. Current concepts associated with the development and operation of a bioregenerative life support system will be discussed in this paper.

  15. Joint Service Chemical and Biological Defense Program: FY 06-07 Overview

    DTIC Science & Technology

    2006-01-01

    Performers Molecular model of human plasma-derived butyryl Electronmicrograph of bacillus spores adhering to cell membrane processes 38866_BATT_TX 11...agents, and radioactive fallout. CPS is integrated with the ship’s Heating, Ventilation, and Air-Conditioning ( HVAC ) systems and provides filtered air...molecules for intervention against protein NTA. • Identify and evaluate effectiveness of spore germination inhibitors. • Expand drug discovery program

  16. Office of Biological and Physical Research: Overview Transitioning to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crouch, Roger

    2004-01-01

    Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.

  17. Simulation for Authentic Learning in Informal Education

    PubMed Central

    Dupuis, Jason; Ludwig-Palit, DeDee

    2016-01-01

    In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular focus on how these fields apply to learners’ lives. The program content is made relevant through an emphasis on personal health, community health, and medical science career pathways. This article explores the development, implementation, use of technology, and outcomes of MedLab. PMID:27980372

  18. Deadly medicine.

    PubMed

    Bachrach, Susan

    2007-01-01

    This article discusses the methods the United States Holocaust Memorial Museum used to make an exhibition on the complex history of Nazi eugenics accessible to the museum's mass public and at the same time, provocative for special audiences consisting of professionals and students from the biomedical fields. Deadly Medicine: Creating the Master Race showed how both eugenics and related "euthanasia" programs in Nazi Germany helped pave the road to the Holocaust. The exhibition implicitly evoked the present-day appeal of biological explanations for human behavior and of new visions of human perfection. Educational programs used the exhibition as a springboard for discussions of bioethics and medical ethics.

  19. Simulation for Authentic Learning in Informal Education.

    PubMed

    Dupuis, Jason; Ludwig-Palit, DeDee

    2016-01-01

    In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular focus on how these fields apply to learners' lives. The program content is made relevant through an emphasis on personal health, community health, and medical science career pathways. This article explores the development, implementation, use of technology, and outcomes of MedLab.

  20. [327] Biomedical Research Deferred in the Aftermath of the Apollo Fire: Impact to Progress in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2017-01-01

    Before Apollo fire, early Apollo missions were expected to continue pattern established in Gemini program of accommodating significant scientific and biological experimentation, including human biomedical studies, during flights. Apollo1 and Apollo2, both 2-week engineering test flights, were to carry almost as many biomedical studies as Gemini 7, a 2-week medical test mission.

  1. World Epidemiology Review, Number 105.

    DTIC Science & Technology

    1978-09-13

    human , animal, and plant diseases, insect pests and control, sanitation conditions, immunization and public health programs. 17. Key Words and...Document Analysis. 17a. Descriptors Worldwide Clinical Medicine Environmental Biology Hygiene and Sanitation Microbiology 17b. Identifiers /Open...KIV. ••71) THIS FORM MAY BE REPRODUCED USCOMM-OC UM1-*T1 JPRS 71863 13 September 19 78 WORLD EPIDEMIOLOGY REVIEW No. 105 CONTENTS PAGE HUMAN

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liphardt, Jan

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods showmore » how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.« less

  3. Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research

    PubMed Central

    Weis, Brenda K.; Balshaw, David; Barr, John R.; Brown, David; Ellisman, Mark; Lioy, Paul; Omenn, Gilbert; Potter, John D.; Smith, Martyn T.; Sohn, Lydia; Suk, William A.; Sumner, Susan; Swenberg, James; Walt, David R.; Watkins, Simon; Thompson, Claudia; Wilson, Samuel H.

    2005-01-01

    New technologies and methods for assessing human exposure to chemicals, dietary and lifestyle factors, infectious agents, and other stressors provide an opportunity to extend the range of human health investigations and advance our understanding of the relationship between environmental exposure and disease. An ad hoc Committee on Environmental Exposure Technology Development was convened to identify new technologies and methods for deriving personalized exposure measurements for application to environmental health studies. The committee identified a “toolbox” of methods for measuring external (environmental) and internal (biologic) exposure and assessing human behaviors that influence the likelihood of exposure to environmental agents. The methods use environmental sensors, geographic information systems, biologic sensors, toxicogenomics, and body burden (biologic) measurements. We discuss each of the methods in relation to current use in human health research; specific gaps in the development, validation, and application of the methods are highlighted. We also present a conceptual framework for moving these technologies into use and acceptance by the scientific community. The framework focuses on understanding complex human diseases using an integrated approach to exposure assessment to define particular exposure–disease relationships and the interaction of genetic and environmental factors in disease occurrence. Improved methods for exposure assessment will result in better means of monitoring and targeting intervention and prevention programs. PMID:16002370

  4. 42 CFR 414.914 - Terms of contract.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... disabled, the hearing impaired, and Spanish-speaking inquirers in all customer service operations. (9) Meet... Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  5. Human developmental biology viewed from a microbial perspective

    PubMed Central

    Charbonneau, Mark R.; Blanton, Laura V.; DiGiulio, Daniel B.; Relman, David A.; Lebrilla, Carlito B.; Mills, David A.; Gordon, Jeffrey I.

    2017-01-01

    Preface Most people think of human development only in terms of ‘human’ cells and organs. Here, we discuss another facet involving human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy pre- and postnatal growth and to develop new strategies for disease prevention and treatment. Considering the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for human microbial observatory programs designed to examine microbial community development in birth cohorts representing populations with diverse anthropologic characteristics, including those undergoing rapid change. PMID:27383979

  6. Deep Space Gateway Science Opportunities

    NASA Technical Reports Server (NTRS)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  7. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  8. Biological challenges of true space settlement

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  9. The space program's impact on society

    NASA Astrophysics Data System (ADS)

    Toffler, Alvin

    In terms of human evolution, when viewed from 500 or 1000 years from now, today's primitive, still faltering steps beyond the Earth will be recognized as the most important human project of our era, matched only by what is going on in computers and biology. In this paper the social effects of space activity are addressed at three different levels: key social institutions, key social groups, and key social processes.

  10. Joint Service Chemical and Biological Defense Program FY 08-09 Overview

    DTIC Science & Technology

    2007-10-01

    of human plasma-derived butyrylcholinesterase Electronmicrograph of bacillus spores adhering to cell membrane processes Jo i n t Se rv i c e ch e m i...human performance within CB-protective systems. Carbon monolith for electro-swing adsorption Bacillus globigii spores collecting on an...integrated with the ship’s heating, ventilation, and air-conditioning ( HVAC ) systems and provides a filter air supply air for overpressurization of

  11. Status of marine biomedical research.

    PubMed Central

    Bessey, O

    1976-01-01

    A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630

  12. Back to the future: the human protein index (HPI) and the agenda for post-proteomic biology.

    PubMed

    Anderson, N G; Matheson, A; Anderson, N L

    2001-01-01

    The effort to produce an index of all human proteins (the human protein index, or HPI) began twenty years ago, before the initiation of the human genome program. Because DNA sequencing technology is inherently simpler and more scalable than protein analytical technology, and because the finiteness of genomes invited a spirit of rapid conquest, the notion of genome sequencing has displaced that of protein databases in the minds of most molecular biologists for the last decade. However, now that the human genome sequence is nearing completion, a major realignment is under way that brings proteins back to the center of biological thinking. Using an influx of new and improved protein technologies--from mass spectrometry to re-engineered two-dimensional (2-D) gel systems, the original objectives of the HPI have been expanded and the time frame for its execution radically shortened. Several additional large scale technology efforts flowing from the HPI are also described.

  13. The EPA CompTox Chemistry Dashboard - an online resource for environmental chemists (ACS Spring Meeting)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  14. The EPA Comptox Chemistry Dashboard: A Web-Based Data Integration Hub for Toxicology Data (SOT)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  15. Intersection of toxicogenomics and high throughput screening in the Tox21 program: an NIEHS perspective.

    PubMed

    Merrick, B Alex; Paules, Richard S; Tice, Raymond R

    Humans are exposed to thousands of chemicals with inadequate toxicological data. Advances in computational toxicology, robotic high throughput screening (HTS), and genome-wide expression have been integrated into the Tox21 program to better predict the toxicological effects of chemicals. Tox21 is a collaboration among US government agencies initiated in 2008 that aims to shift chemical hazard assessment from traditional animal toxicology to target-specific, mechanism-based, biological observations using in vitro assays and lower organism models. HTS uses biocomputational methods for probing thousands of chemicals in in vitro assays for gene-pathway response patterns predictive of adverse human health outcomes. In 1999, NIEHS began exploring the application of toxicogenomics to toxicology and recent advances in NextGen sequencing should greatly enhance the biological content obtained from HTS platforms. We foresee an intersection of new technologies in toxicogenomics and HTS as an innovative development in Tox21. Tox21 goals, priorities, progress, and challenges will be reviewed.

  16. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  17. A strategy for space biology and medical science for the 1980s and 1990s

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A guideline is provided for developing NASA's long-term mission plans and a rational, coherent research program. Ten topical areas for research are addressed: developmental biology, gravitropism in plants, sensorimotor integration, bone and mineral metabolism, cardiovascular/pulmonary function, muscle remodeling, nutrition, human reproduction, space anemia, and human behavior. Scientific goals, objectives, and required measurements and facilities for each of the major areas of space biology and medicine are identified and described along with primary goals and objectives for each of these disciplines. Proposals are made concerning the use of scientific panels to oversee the implementation of the strategy, life sciences' need for continuous access to spaceflight opportunities, the advantages of a focused mission strategy, certain design features that will enhance spaceflight experimentation, and general facilities. Other topics that are considered include mission planning, crew selection and training, and interagency and international cooperation.

  18. CELSS research and development program

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1990-01-01

    Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.

  19. The NASA light-emitting diode medical program-progress in space flight and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen

    2000-01-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .

  20. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.

  1. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of the medico-biological results of the SSP along with the data collected during the missions on the space stations (Mir and ISS) provides a good starting point in seeking the answer to this question.

  2. Classification and disease prediction via mathematical programming

    NASA Astrophysics Data System (ADS)

    Lee, Eva K.; Wu, Tsung-Lin

    2007-11-01

    In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  3. 42 CFR 414.918 - Assignment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Assignment. 414.918 Section 414.918 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals Under Part...

  4. 42 CFR 414.910 - Bidding process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Bidding process. 414.910 Section 414.910 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  5. 42 CFR 414.920 - Judicial review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Judicial review. 414.920 Section 414.920 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  6. 42 CFR 414.920 - Judicial review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Judicial review. 414.920 Section 414.920 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  7. 42 CFR 414.918 - Assignment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Assignment. 414.918 Section 414.918 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals Under Part...

  8. 42 CFR 414.910 - Bidding process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Bidding process. 414.910 Section 414.910 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  9. High-Throughput Exposure Potential Prioritization for ToxCast Chemicals

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when prioritizing research resources in order to identify risk to human populations and the environment. High-throughput assays to identify biological activity in vitro have allowed the ToxCastTM program to i...

  10. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when allocating resources to identify risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro have allowed the ToxCastTM program to identify...

  11. 42 CFR 409.49 - Excluded services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM... an aid in the diagnosis, treatment or prevention of disease or other condition or for the relief of pain or suffering or to control or improve any physiological pathologic condition. (2) A biological is...

  12. 42 CFR 409.49 - Excluded services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM... an aid in the diagnosis, treatment or prevention of disease or other condition or for the relief of pain or suffering or to control or improve any physiological pathologic condition. (2) A biological is...

  13. 42 CFR 409.49 - Excluded services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM... an aid in the diagnosis, treatment or prevention of disease or other condition or for the relief of pain or suffering or to control or improve any physiological pathologic condition. (2) A biological is...

  14. 42 CFR 409.49 - Excluded services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM... an aid in the diagnosis, treatment or prevention of disease or other condition or for the relief of pain or suffering or to control or improve any physiological pathologic condition. (2) A biological is...

  15. 75 FR 72834 - Blood Products Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Pearline Muckelvene, Center for Biologics Evaluation and Research, Food and Drug Administration (HFM- 71... following topics: (1) November 4 and 5, 2010, meeting of the Health and Human Services Advisory Committee on... (3) Research programs in the Laboratories of Hemostasis and Plasma Derivatives, Division of...

  16. All the King's Men.

    ERIC Educational Resources Information Center

    Seeberg, Mark S.

    1980-01-01

    Reports on a four-year-old, team-taught secondary interdisciplinary program that combined English, social studies, biology, and geometry. The course was organized into three phases: (1) the "Paper Chase," teaching learning skills; (2) "Welcome to the Monkey House," which addressed fundamental human issues; and (3) "Phase Out," or personal…

  17. Investigating Impact Metrics for Performance for the US EPA National Center for Computational Toxicology (ACS Fall meeting)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  18. 76 FR 76168 - Regulatory Site Visit Training Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0824... routine manufacturing practices and to give CBER staff a better understanding of the biologics industry... quality of its regulatory efforts and interactions, by providing CBER staff with a better understanding of...

  19. The TCAR Report: Translational Cell and Animal Research Space (1965-2011) Sponsored by NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Mains, Richard; Alwood, J. S.; French, A. J.; Smith, J. D.; Miller, Virginia; Tash, Joseph; Jenkins, Marjorie

    2015-01-01

    Five decades ago, NASA Ames Research Center (ARC) began a vigorous program of space biology research utilizing animal cells, tissues and whole organisms. Since its inception, this program has yielded exciting new insights into how spaceflight influences fundamental processes of living systems. These are findings with important translational implications for human health in space and on Earth. The TCAR Report is a compilation of 394 flight experiments conducted across the period spanning 1965 - 2011 with individual chapters devoted to: (1) Bone Physiology, (2) Cardiovascular/Cardiopulmonary Physiology, (3) Developmental Biology, (4) Immunology, (5) Microbial Growth and Virulence, (6) Muscle Physiology, (7) Neurophysiology and (8) Regulatory Physiology. Specialists in those disciplines reviewed the research and each prepared an overview including the translational relevance of the findings for human health in space and on Earth. The Report will be made available in early 2015 through standard NASA publication resources and on the NASA Life Sciences Data Archive (http://lsda.jsc.nasa.gov/lsda_home1.aspx). The LSDA can be mined for detailed information, including Experiment, Mission, Available Biospecimens, Document, Hardware, Dataset, Personnel, and includes a searchable Photo Gallery. Space biology translational topic highlights include: Inflight centrifugation protection of bone strength losses; Assessment of evidence related to visual impairment in astronauts; Mammalian development including vestibular system plasticity and vestibular-visual integration; Verification of limb unloading ground-based studies as a model for spaceflight unloading; Immune system impairment and increased microbiological virulence aligned with immune dysfunction; and Rapid bone and muscle tissue and functional losses associated with unloading. In addition to astronauts, these results may help humans on Earth, by providing insight into the definition of fundamental mechanisms and potential treatments for debilitating changes that result from human aging and disease. The TCAR effort has resulted in significant new insights. Modern tools now widely available for "Omics" research with model organisms and humans provide new opportunities for translational research. Omics research at various levels is greatly complemented by studies at the tissue and organismal levels. Key discoveries can occur at either the basic research or the health surveillance level such as vision problems observed in astronauts stimulating studies of eye tissues in rodents that identified relevant changes. The Ames Biospecimen Sharing Program (BSP), serving the NASA Space Biology and HRP programs, was created to maximize utilization and scientific return from unique animal specimens derived from rare, complex and costly NASA spaceflight and ground-based analog experiments. The BSP is a valuable tool for advancing translational science at NASA. Dynamic methods for tracking translational linkages across NASA space life sciences and medicine are strongly encouraged for translational science.

  20. 40 Years of Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, B; Heller, A

    2003-07-08

    History is most interesting when seen through the eyes of those who lived it. In this 40th anniversary retrospective of bioscience research at Lawrence Livermore National Laboratory, we've asked 19 scientists to share their personal recollections about a major accomplishment in the program's history. We have not tried to create a comprehensive or seamless story. Rather, we've attempted to capture the perspectives of key individuals, each of whom worked on a research program that met significant milestones. We have focused particularly on programs and accomplishments that have shaped the current Biology and Biotechnology Research Program (BBRP). In addition, we havemore » included a timeline of biosciences at LLNL, a history of the directorate that appeared in the Laboratory's magazine, ''Science & Technology Review'', in 2002, and a list of bioscience-related articles that have appeared over the years in ''Science & Technology Review and its predecessor, Energy & Technology Review''. The landscape of biological science today is stunningly different from 40 years ago. When LLNL bioscience began in 1963, we knew about the structure of DNA and that it was the carrier of genetic information. However, it would be another year before scientists would understand how DNA codes for the production of proteins and more than a decade before the earliest DNA sequence would be known. It is sometimes difficult to remember that it was only 15 years ago that the polymerase chain reaction, a synthetic method to amplify pieces of DNA was developed, and that only within the last half-dozen years has sequence data for entire organisms begun to be available. In this publication, we have tried to capture some of the landmark and seminal research history: radiation effects studies, which were a major reason for founding the biological research program, and flow sorting and chromosome painting, which dramatically changed our ability to study DNA damage and enabled the creation of chromosome-specific clone libraries, a key step toward sequencing the human genome. Several histories relate to the Human Genome Project itself and surrounding technologies, and several to long-standing research themes such as DNA repair, food mutagens, and reproductive biology. Others describe more recent developments such as computational biology, health-care technologies, and biodefense research.« less

  1. Evaluating the feasibility of biological waste processing for long term space missions.

    PubMed

    Garland, J L; Alazraki, M P; Atkinson, C F; Finger, B W

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  2. Evaluating the feasibility of biological waste processing for long term space missions

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  3. Advancing Translational Space Research Through Biospecimen Sharing: Amplified Impact of Studies Utilizing Analogue Space Platforms

    NASA Technical Reports Server (NTRS)

    Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.

    2016-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.

  4. The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments

    NASA Technical Reports Server (NTRS)

    Torrez, Jonathan

    2009-01-01

    The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.

  5. 42 CFR 414.707 - Basis of payment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Basis of payment. 414.707 Section 414.707 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  6. 42 CFR 414.707 - Basis of payment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Basis of payment. 414.707 Section 414.707 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Drugs and Biologicals...

  7. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization (Annual Meeting of ISES)

    EPA Science Inventory

    The U.S. EPA must consider thousands of chemicals when allocating resources to assess risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro are being implemented in the ToxCastTM program to rapidly characteri...

  8. Chapter 6. Temporal and spatial scales

    Treesearch

    Robert R. Ziemer

    1997-01-01

    Human activities have degraded substantial portions of the nation’s ecological resources, including physical and biological aquatic systems. The effects are continuing and cumulative, and few high-quality aquatic ecosystems remain in the United States. Concern about these diminishing resources has resulted in numerous restoration programs. Some are well conceived...

  9. 78 FR 14094 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Program Office to determine the ability of the Network to respond to a biological or chemical threat event... comments should be received within 30 days of this notice. Proposed Project Laboratory Response Network... Laboratory Response Network (LRN) was established by the Department of Health and Human Services (HHS...

  10. UW Team Reaches Out to Grade- and High-School Students.

    ERIC Educational Resources Information Center

    Hood, Leroy

    1994-01-01

    Describes an outreach program designed to expose high school students to cutting-edge science. High school students are provided with hands-on experience in molecular biology (polymerase chain reaction, restriction mapping, chromatography, gel electrophoresis, human DNA sequencing, etc.) and may have an opportunity to participate in the Human…

  11. Comptox Chemistry Dashboard: Web-Based Data Integration Hub for Environmental Chemistry and Toxicology Data (ACS Fall meeting 4 of 12)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrate advances in biology, chemistry, exposure and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and da...

  12. Delivering an Informational Hub for Data at the National Center for Computational Toxicology (ACS Spring Meeting) 7 of 7

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  13. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is available in the Viral Recombination Section (VRS), HIV Dynamics and Replication Program, CCR.  The VRS studies retroviral replication using human immunodeficiency viruses and other retroviruses, with a particular emphasis on the mechanisms of viral RNA biology, specific RNA packaging, virus assembly, and HIV replication.  Molecular tools and

  14. 77 FR 10758 - Submission for OMB Review; Comment Request; Application for Collaboration With the NIH Center for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... programs delivering assay development, screening, hit to lead chemistry, lead optimization, chemical biology studies, drug development capabilities, expertise, and clinical/regulatory resources in a collaborative environment with the goal of moving promising therapeutics into human clinical trials. NCTT uses...

  15. Adverse Outcome Pathways (AOPs) in Human Systems Biology: Gas-Phase Probes for Assessing In Vitro Enzyme System Perturbations

    EPA Science Inventory

    The Air, Climate, and Energy (ACE) and Chemical Safety for Sustainability (CSS) programs at the U.S. EnvironmentalProtection Agency (EPA) encompass broad-based research that includes assessment of the health and environmentalimpacts of anthropogenic and manufactured chemicals. On...

  16. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-01-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…

  17. The Science and Issues of Human DNA Polymorphisms: A Training Workshop for High School Biology Teachers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklos, David A.

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms â which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, andmore » computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nationâÂÂs oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism kits by Carolina Biological rose from 700 units in 1999 to 1,132 in 2000 â a 62% increase. Competing kits using the Alu system, and based substantially on our earlier work, are also marketed by Biorad and Edvotek. In parallel with the lab experiments, we developed a suite of database/statistical applications and easy-to-use interfaces that allow students to use their own DNA data to explore human population genetics and to test theories of human evolution. Database searches and statistical analyses are launched from a centralized workspace. Workshop participants were introduced to these and other resources available at the DNALC WWW site (http://vector.cshl.org/bioserver/): 1) Allele Server tests Hardy-Weinberg equilibrium and statistically compares PV92 data from world populations. 2) Sequence Server uses DNA sequence data to search Genbank using BLASTN, compare sequences using CLUSTALW, and create phylogenetic trees using PHYLIP. 3) Simulation Server uses a Monte Carlo generator to model the long-term effects of drift, selection, and population bottlenecks. By targeting motivated and innovative biology faculty, we believe that this project offered a cost-effective means to bring high school biology education up-to-the-minute with genomic biology. The workshop reached a target audience of highly professional faculty who have already implemented hands-on labs in molecular genetics and many of whom offer laboratory electives in biotechnology. Many attend professional meetings, develop curriculum, collaborate with scientists, teach faculty workshops, and manage equipment-sharing programs. These individuals are life-long learners, anxious for deeper insight and additional training to further extend their leadership. This contention was supported by data from a mail survey, conducted in February-March 2000 and 2001, of 256 faculty who participated in workshops conducted during the current term of DOE support. Seventy percent of participants responded, providing direct reports on how their teaching behavior had changed since taking the DOE workshop. About nine of ten respondents said they had provided new classroom materials and first-hand accounts of DNA typing, sequencing, or PCR. Three-fourths had introduced new units on human molecular genetics. Most strikingly, half had students use PCR to amplify their own insertion polymorphisms (PV92), and better than one-fourth amplified a VNTR polymorphism and the mitochondrial control region. One in five had mitochondrial DNA sequenced by the DNALC Sequencing Service. A majority (58%) used online materials at the DNALC WWW site, and 28% analyzed student polymorphism data with Bioservers at the DNALC site. A majority (58%) assisted other faculty with student labs on polymorphisms, reaching an additional 786 teachers.« less

  18. The Science and Issues of Human DNA Polymoprhisms: A Training Workshop for High School Biology Teachers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David. A Micklos

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms – which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, andmore » computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nation’s oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism kits by Carolina Biological rose from 700 units in 1999 to 1,132 in 2000 – a 62% increase. Competing kits using the Alu system, and based substantially on our earlier work, are also marketed by Biorad and Edvotek. In parallel with the lab experiments, we developed a suite of database/statistical applications and easy-to-use interfaces that allow students to use their own DNA data to explore human population genetics and to test theories of human evolution. Database searches and statistical analyses are launched from a centralized workspace. Workshop participants were introduced to these and other resources available at the DNALC WWW site (http://vector.cshl.org/bioserver/): 1) Allele Server tests Hardy-Weinberg equilibrium and statistically compares PV92 data from world populations. 2) Sequence Server uses DNA sequence data to search Genbank using BLASTN, compare sequences using CLUSTALW, and create phylogenetic trees using PHYLIP. 3) Simulation Server uses a Monte Carlo generator to model the long-term effects of drift, selection, and population bottlenecks. By targeting motivated and innovative biology faculty, we believe that this project offered a cost-effective means to bring high school biology education up-to-the-minute with genomic biology. The workshop reached a target audience of highly professional faculty who have already implemented hands-on labs in molecular genetics and many of whom offer laboratory electives in biotechnology. Many attend professional meetings, develop curriculum, collaborate with scientists, teach faculty workshops, and manage equipment-sharing programs. These individuals are life-long learners, anxious for deeper insight and additional training to further extend their leadership. This contention was supported by data from a mail survey, conducted in February-March 2000 and 2001, of 256 faculty who participated in workshops conducted during the current term of DOE support. Seventy percent of participants responded, providing direct reports on how their teaching behavior had changed since taking the DOE workshop. About nine of ten respondents said they had provided new classroom materials and first-hand accounts of DNA typing, sequencing, or PCR. Three-fourths had introduced new units on human molecular genetics. Most strikingly, half had students use PCR to amplify their own insertion polymorphisms (PV92), and better than one-fourth amplified a VNTR polymorphism and the mitochondrial control region. One in five had mitochondrial DNA sequenced by the DNALC Sequencing Service. A majority (58%) used online materials at the DNALC WWW site, and 28% analyzed student polymorphism data with Bioservers at the DNALC site. A majority (58%) assisted other faculty with student labs on polymorphisms, reaching an additional 786 teachers.« less

  19. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes

    PubMed Central

    Kuang, Zheng; Ji, Zhicheng

    2018-01-01

    Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176

  20. [The interpretation and integration of traditional Chinese phytotherapy into Western-type medicine with the possession of knowledge of the human genome].

    PubMed

    Blázovics, Anna

    2018-05-01

    The terminology of traditional Chinese medicine (TCM) is hardly interpretable in the context of human genome, therefore the human genome program attracted attention towards the Western practice of medicine in China. In the last two decades, several important steps could be observed in China in relation to the approach of traditional Chinese and Western medicine. The Chinese government supports the realization of information databases for research in order to clarify the molecular biology level to detect associations between gene expression signal transduction pathways and protein-protein interactions, and the effects of bioactive components of Chinese drugs and their effectiveness. The values of TCM are becoming more and more important for Western medicine as well, because molecular biological therapies did not redeem themselves, e.g., in tumor therapy. Orv Hetil. 2018; 159(18): 696-702.

  1. Envisioning, quantifying, and managing thermal regimes on river networks

    USGS Publications Warehouse

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  2. [Biopsychosocial understanding of human sexuality. Prerequisite for diagnostics and treatment in sexual medicine].

    PubMed

    Beier, K M

    2006-08-01

    Sexual medicine is a subdiscipline of clinical medicine that deals with human sexuality and disorders. Sexuality eludes a unilateral definition. As a biologically, psychologically, and socially determined experience dimension of the human being, its individual form depends on biological factors and developments in the person's life. Moreover, sexuality exhibits different dimensions--lust, reproduction, and relationship--that are indeed closely interrelated. For this reason, directing therapy at only one of these dimensions is not adequate. All human beings are programmed toward fulfillment of elementary biopsychosocial needs such as acceptance, closeness, warmth, and security. If these basic needs are shortchanged in terms of fulfillment, all sorts of restrictions in the quality of life ensue, even to the point of resultant disorders of sexual function. Treatment then approaches the roots when it does not center on the sexual dysfunction but rather on the underlying frustrated relationship of the partners. Syndyastic sexual therapy is an important treatment method in sexual medicine.

  3. Instructional Methods for Human Anatomy and Cell Biology in Nurse Anesthesia Graduate Programs: A Survey With a Focus on Regional Anesthesia

    DTIC Science & Technology

    1997-07-14

    and Wieland (1995) examined Anatomy and Physiology as a predictor of success in undergraduate nursing students . They concluded that students who did... Student Registered Nurse Anesthetist (SRNA). 1991 -1995 1 st Medical Group, Langley Air Force Base, Virginia. Clinical Nurse, Special Care Unit...anesthetic techniques in situ, and 3 (4%) of the programs afford the students the opportunity to practice regional anesthetic techniques on the specimens

  4. Plant biology research and training for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledgemore » about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.« less

  5. Plant biology research and training for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledgemore » about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.« less

  6. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    NASA Technical Reports Server (NTRS)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  7. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    PubMed

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.

  8. NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  9. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  10. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  11. Building Successes out of At-Risk Students: The Role of a Biology Foundations Course

    ERIC Educational Resources Information Center

    Beeber, Carla; Biermann, Carol A.

    2007-01-01

    The majority of students arriving at Kingsborough Community College with hopes of entering the nursing, physical therapist assistant, and other allied health programs (concentrations in pre-physical therapy, pre-occupational therapy, pre-pharmacy, and pre-physician's assistant) are at-risk students. A Foundations of Human Anatomy and Physiology…

  12. Teaching Activities for Defensive Living and Emergency Preparedness. Education Modules.

    ERIC Educational Resources Information Center

    Peterson, Grit, Ed.; And Others

    Designed for teaching a generalized program in emergency preparedness education, the eight units of the manual can be used together or alone in any course that teaches human response to emergency preparedness or in physical education, recreation, health, biology, physiology, or science classes. The guide includes an introduction and seven major…

  13. Physical Activity: A Tool for Improving Health (Part 2-Mental Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2016-01-01

    By promoting physical activities and incorporating them into their community-based programs, Extension professionals are improving the health of individuals, particularly those with limited resources. This article is the second in a three-part series describing the benefits of physical activity for human health: (1) biological health benefits of…

  14. Education and Conservation Benefits of Marine Wildlife Tours: Developing Free-Choice Learning Experiences

    ERIC Educational Resources Information Center

    Zeppel, Heather

    2008-01-01

    Marine wildlife tours can provide a range of education and conservation benefits for visitors, including emotional (i.e., affective) responses and learning (i.e., cognition). Interpretive programs cover the biology, ecology, and behavior of marine species; best practice guidelines; and human threats to marine areas. The author reviews the…

  15. Human Performance and Biosystems (Spring Review)

    DTIC Science & Technology

    2014-03-01

    public release; distribution is unlimited Areas of Emphasis Biofilms/Nanowires – microbe communication, extracellular electron transfer, cyborg ...Artificial Photosynthesis • Algal oil generation • Biofilm, Nanowires, Cyborg Cell • tDCS • Biomarkers 5 Distribution A: Approved for public...release; distribution is unlimited Program Interactions BRI magnetic navigation Microbes/nanowires tDCS/ Cyborg cell Synthetic Biology

  16. Pathobiology of HIV in the Human Monocyte-Macrophage

    DTIC Science & Technology

    1993-12-03

    dementia, was obtained from I S Y Chen through sues of tropism and cytopathicity of HIV in megakaryo- the AIDS Researh anid Rekferenc Re~nt Program...Natl. Acad. Sci. USA 88:6632-6636. 10. Bielawska, A., Linardic, C. N. and Y. A. Hannun, Y. A. 1992. Ceramide-mediated Biology . J. Biol. Chem. 267:18493

  17. Evaluation of High-Throughput Chemical Exposure Models via Analysis of Matched Environmental and Biological Media Measurements

    EPA Science Inventory

    The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer ...

  18. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.

    PubMed

    Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott

    2018-05-01

    The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Harnessing what lies within: Programming immunity with biocompatible devices to treat human disease

    NASA Astrophysics Data System (ADS)

    Roberts, Reid Austin

    Advances in our mechanistic insight of cellular function and how this relates to host physiology have revealed a world which is intimately connected at the macro and micro level. Our increasing understanding of biology exemplifies this, where cells respond to environmental cues through interconnected networks of proteins which function as receptors and adaptors to elicit gene expression changes that drive appropriate cellular programs for a given stimulus. Consequently, our deeper molecular appreciation of host homeostasis implicates aberrations of these pathways in nearly all major human disease categories, including those of infectious, metabolic, neurologic, oncogenic, and autoimmune etiology. We have come to recognize the mammalian immune system as a common network hub among all these varied pathologies. As such, the major goal of this dissertation is to identify a platform to program immune responses in mammals so that we may enhance our ability to treat disease and improve health in the 21st century. Using advances in materials science, in particular a recently developed particle fabrication technology termed Particle Replication in Non-wetting Templates (PRINT), our studies systematically assess the murine and human immune response to precisely fabricated nano- and microscale particles composed of biodegradable and biocompatible materials. We then build on these findings and present particle design parameters to program a number of clinically attractive immune responses by targeting endogenous cellular signaling pathways. These include control of particle uptake through surface modification, design parameters that modulate the magnitude and kinetics of biological signaling dynamics that can be used to exacerbate or dampen inflammatory responses, as well as particle designs which may be of use in treating allergies and autoimmune disorders. In total, this dissertation provides evidence that rational design of biocompatible nano- and microparticles is a viable means to instruct therapeutic immune responses that may fundamentally improve how we treat human disease.

  20. Open-Air Biowarfare Testing and the Evolution of Values

    PubMed Central

    2016-01-01

    The United States and the United Kingdom ended outdoor biological warfare testing in populated areas nearly half a century ago. Yet, the conduct, health effects, and propriety of those tests remain controversial. The varied views reflect the limits of currently available test information and evolving societal values on research involving human subjects. Western political culture has changed since the early days of the American and British testing programs. People have become less reluctant to question authority, and institutional review boards must now pre-approve research involving human subjects. Further, the heightened stringency of laboratory containment has accentuated the safety gap between a confined test space and one without physical boundaries. All this makes it less likely that masses of people would again be unwittingly subjected to secret open-air biological warfare tests. PMID:27564984

  1. LifeSat engineering in-house vehicle design

    NASA Technical Reports Server (NTRS)

    Adkins, A.; Badhwar, G.; Bryant, L.; Caram, J.; Conley, G.; Crull, T.; Cuthbert, P.; Darcy, E.; Delaune, P.; Edeen, M.

    1992-01-01

    The LifeSat program was initiated to research the effects of microgravity and cosmic radiation on living organisms. The effects of long-term human exposure to free-space radiation fields over a range of gravitational environments has long been recognized as one of the primary design uncertainties for human space exploration. A critical design issue in the radiation biology requirements was the lack of definition of the minimum radiation absorbed dosage required to produce statistically meaningful data. The Phase A study produced a spacecraft conceptual design resembling a Discoverer configuration with a total weight of approximately 2800 pounds that would carry a 525-pound payload module (45 inches in diameter and 36 inches long) and support up to 12 rodents and a general biology module supporting lower life forms for an on-orbit duration of up to 60 days. The phase B conceptual designs focused on gravitational biology requirements and only briefly addressed the design impacts of the shift toward radiobiological science that occurred during the latter half of the Phase B studies.

  2. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  3. [Important issues of biological safety].

    PubMed

    Onishchenko, G G

    2007-01-01

    The problem of biological security raises alarm due to the real growth of biological threats. Biological security includes a wide scope of problems, the solution of which becomes a part of national security as a necessary condition for the constant development of the country. A number of pathogens, such as human immunodeficiency virus, exotic Ebola and Lassa viruses causing hemorrhagic fever,rotaviruses causing acute intestinal diseases, etc. were first discovered in the last century. Terrorist actions committed in the USA in 2001 using the anthrax pathogen made the problem of biological danger even more important. In Russian Federation, biological threats are counteracted through the united state policy being a part of general state security policy. The biological Security legislation of Russian Federation is chiefly based on the 1992 Federal Law on Security. On the basis of cumulated experience, the President of Russia ratified Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond on 4 December, 2003. The document determines the main directions and stages of the state development in the area of chemical and biological security. The Federal target program Russian Federation's National Program for Chemical and Biological Security is being developed, and its development is to be completed soon in order to perfect the national system for biological security and fulfill Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond, ratified by the President. The new global strategy for control over infectious diseases, presented in the materials of Saint Petersburg summit of the Group of Eight, as well as the substantive part of its elements in Sanitary International Standards, are to a large degree an acknowledgement of the Russian Federation's experience and the algorithm for fighting extremely dangerous infections. This Russia's experience has resulted in the following global achievements: smallpox elimination in the USSR (1936); the USSR's suggestions on the program of smallpox elimination in the world and 2 billion doses of the vaccine transferred to the possession of the WHO (since 1958); the global elimination of the disease (1980); effective control over avian influenza at the epizootic stage, recognized internationally at Beijing International Congress, 17-18 January, 2006.

  4. Bioassay of safinamide in biological fluids of humans and various animal species.

    PubMed

    Dal Bo, Lorenzo; Mazzucchelli, Paolo; Fibbioli, Monia; Marzo, Antonio

    2006-01-01

    This paper describes three methods to bioassay safinamide (CAS 133865-89-1) in biological fluids of humans and laboratory animals for pharmacokinetic, toxicokinetic and bioavailability studies. Two methods profited from liquid chromatography tandem mass spectrometry (LC-MS-MS) system, one (micro bioassay) working in the low dynamic range 0.5-20 ng/ml, the other in the range 20-6000 ng/ml. A third method used high-performance liquid chromatrography with fluorimetric detection (HPLC-FD), working in the dynamic range 20-1000 ng/ml. All the three methods were validated in compliance with the accreditated views on analytical bioassays. The shorter run time (5.5 min vs 16 min) has led the authors to prefer the two LC-MS-MS methods to the HPLC-FD bioassay, even if all the performances of the three methods were excellent. The methods described in this paper were and are still now extensively used to assay safinamide in more than 10,000 specimens of biological fluids from humans and laboratory animals in the development program of the drug. Main pharmacokinetic results obtained in various Phase I trials on healthy volunteers are briefly reported.

  5. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies

    PubMed Central

    Fröhlich, Eleonore; Salar-Behzadi, Sharareh

    2014-01-01

    The alveolar epithelium of the lung is by far the most permeable epithelial barrier of the human body. The risk for adverse effects by inhaled nanoparticles (NPs) depends on their hazard (negative action on cells and organism) and on exposure (concentration in the inhaled air and pattern of deposition in the lung). With the development of advanced in vitro models, not only in vivo, but also cellular studies can be used for toxicological testing. Advanced in vitro studies use combinations of cells cultured in the air-liquid interface. These cultures are useful for particle uptake and mechanistic studies. Whole-body, nose-only, and lung-only exposures of animals could help to determine retention of NPs in the body. Both approaches also have their limitations; cellular studies cannot mimic the entire organism and data obtained by inhalation exposure of rodents have limitations due to differences in the respiratory system from that of humans. Simulation programs for lung deposition in humans could help to determine the relevance of the biological findings. Combination of biological data generated in different biological models and in silico modeling appears suitable for a realistic estimation of potential risks by inhalation exposure to NPs. PMID:24646916

  6. Race and diversity in U.S. Biological Anthropology: A decade of AAPA initiatives.

    PubMed

    Antón, Susan C; Malhi, Ripan S; Fuentes, Agustín

    2018-01-01

    Biological Anthropology studies the variation and evolution of living humans, non-human primates, and extinct ancestors and for this reason the field should be in an ideal position to attract scientists from a variety of backgrounds who have different views and experiences. However, the origin and history of the discipline, anecdotal observations, self-reports, and recent surveys suggest the field has significant barriers to attracting scholars of color. For a variety of reasons, including quantitative research that demonstrates that diverse groups do better science, the discipline should strive to achieve a more diverse composition. Here we discuss the background and underpinnings of the current and historical dearth of diversity in Biological Anthropology in the U.S. specifically as it relates to representation of minority and underrepresented minority (URM) (or racialized minority) scholars. We trace this lack of diversity to underlying issues of recruitment and retention in the STEM sciences generally, to the history of Anthropology particularly around questions of race-science, and to the absence of Anthropology at many minority-serving institutions, especially HBCUs, a situation that forestalls pathways to the discipline for many minority students. The AAPA Committee on Diversity (COD) was conceived as a means of assessing and improving diversity within the discipline, and we detail the history of the COD since its inception in 2006. Prior to the COD there were no systematic AAPA efforts to consider ethnoracial diversity in our ranks and no programming around questions of diversity and inclusion. Departmental survey data collected by the COD indicate that undergraduate majors in Biological Anthropology are remarkably diverse, but that the discipline loses these scholars between undergraduate and graduate school and systematically up rank. Our analysis of recent membership demographic survey data (2014 and 2017) shows Biological Anthropology to have less ethnoracial diversity than even the affiliated STEM disciplines of Biology and Anatomy; nearly 87% of AAPA members in the United States identify as white and just 7% as URM scholars. These data also suggest that the intersection of race and gender significantly influence scholarly representation. In response to these data, we describe a substantial body of programs that have been developed by the COD to improve diversity in our ranks. Through these programs we identify principal concerns that contribute to the loss of scholars of color from the discipline at different stages in their careers, propose other directions that programming for recruitment should take, and discuss the beginnings of how to develop a more inclusive discipline at all career stages. © 2018 American Association of Physical Anthropologists.

  7. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes.

    PubMed

    Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai

    2018-01-09

    Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The Effects of an Interdisciplinary Undergraduate Human Biology Program on Socioscientific Reasoning, Content Learning, and Understanding of Inquiry

    ERIC Educational Resources Information Center

    Eastwood, Jennifer L.

    2010-01-01

    Preparing students to take informed positions on complex problems through critical evaluation is a primary goal of university education. Socioscientific issues (SSI) have been established as effective contexts for students to develop this competency, as well as reasoning skills and content knowledge. This mixed-methods study investigates the…

  9. Physical Activity: A Tool for Improving Health (Part 3--Recommended Amounts of Physical Activity for Optimal Health)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2016-01-01

    By promoting physical activities and incorporating them into their community-based programs, Extension professionals are improving the health of individuals, particularly those with limited resources. This article is the third in a three-part series describing the benefits of physical activity for human health: (1) biological health benefits of…

  10. Europe Report, Science and Technology.

    DTIC Science & Technology

    1986-06-06

    the question, of course , whether the combined treatment will cause chromosome damage. In the case of chromosomes from in vitro cultivated human ...latest acquisition, this division collaborates to major engine programs, in particular with Snecma ( Atar , CFM 56) and Turbomeca (ARTM 405). 9294 CSO...microbiology, enzymology, molecular and cell biology , organic chemistry, etc. Several large public research organizations are involved: CNRS [National

  11. Senior Computational Scientist | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP), Basic Science Program, HLA Immunogenetics Section, under the leadership of Dr. Mary Carrington, studies the influence of human leukocyte antigens (HLA) and specific KIR/HLA genotypes on risk of and outcomes to infection, cancer, autoimmune disease, and maternal-fetal disease. Recent studies have focused on the impact of HLA gene expression in disease, the molecular mechanism regulating expression levels, and the functional basis for the effect of differential expression on disease outcome. The lab’s further focus is on the genetic basis for resistance/susceptibility to disease conferred by immunogenetic variation. KEY ROLES/RESPONSIBILITIES The Senior Computational Scientist will provide research support to the CIP-BSP-HLA Immunogenetics Section performing bio-statistical design, analysis and reporting of research projects conducted in the lab. This individual will be involved in the implementation of statistical models and data preparation. Successful candidate should have 5 or more years of competent, innovative biostatistics/bioinformatics research experience, beyond doctoral training Considerable experience with statistical software, such as SAS, R and S-Plus Sound knowledge, and demonstrated experience of theoretical and applied statistics Write program code to analyze data using statistical analysis software Contribute to the interpretation and publication of research results

  12. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  13. Review of the results from the International C. elegans first experiment (ICE-FIRST)

    PubMed Central

    Adenle, A.A.; Johnsen, B.; Szewczyk, N.J.

    2009-01-01

    In an effort to speed the rate of discovery in space biology and medicine NASA introduced the now defunct model specimen program. Four nations applied this approach with C. elegans in the ICE-FIRST experiment. Here we review the standardized culturing as well as the investigation of muscle adaptation, space biology radiation, and gene expression in response to spaceflight. Muscle studies demonstrated that decreased expression of myogenic transcription factors underlie the decreased expression of myosin seen in flight, a response that would appear to be evolutionarily conserved. Radiation studies demonstrated that radiation damaged cells should be able to be removed via apoptosis in flight, and that C. elegans can be employed as a biological accumulating dosimeter. Lastly, ICE-FIRST gave us our first glimpse at the genomic response to spaceflight, suggesting that altered Insulin and/or TGF-beta signaling in-flight may underlie many of the biological changes seen in response to spaceflight. The fact that the results obtained with C. elegans appear to have strong similarities in human beings suggests that not only will C. elegans prove an invaluable model for understanding the fundamental biological changes seen during spaceflight but that it may also be invaluable for understanding those changes associated with human health concerns in space. PMID:20161164

  14. Teaching optics in a multi-disciplinary curriculum: experience from optometry programs

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Vasudevan

    2007-06-01

    The Optometry program in Schools and Colleges of Optometry leads to a Doctor of Optometry (OD) degree in north America and is usually a post-baccalaureate course of study of four years duration. Historically Optometry developed out of Physics and/or applied optics programs. Optics, and more specifically, geometric optics and it's applications to the human eye plays a significant role in the education of an optometrist. In addition, optometrists are trained in physical optics as well as in radiometry/photometry. Considering the fact that most optometry students come to the program with a biological sciences background implies that educating these students require elucidation of "real-world" applications and clinical relevance to hold their interest. Even though the trend in optometric education in the past few years is to put more emphasis on biological sciences due to the increased scope of practice of the optometrist, optics still continues to play a major role in the training and career of an optometrist, especially with the advent of new technologies in treating low vision, measurement and correction of aberrations of the eye, etc.

  15. A new flexible plug and play scheme for modeling, simulating, and predicting gastric emptying

    PubMed Central

    2014-01-01

    Background In-silico models that attempt to capture and describe the physiological behavior of biological organisms, including humans, are intrinsically complex and time consuming to build and simulate in a computing environment. The level of detail of description incorporated in the model depends on the knowledge of the system’s behavior at that level. This knowledge is gathered from the literature and/or improved by knowledge obtained from new experiments. Thus model development is an iterative developmental procedure. The objective of this paper is to describe a new plug and play scheme that offers increased flexibility and ease-of-use for modeling and simulating physiological behavior of biological organisms. Methods This scheme requires the modeler (user) first to supply the structure of the interacting components and experimental data in a tabular format. The behavior of the components described in a mathematical form, also provided by the modeler, is externally linked during simulation. The advantage of the plug and play scheme for modeling is that it requires less programming effort and can be quickly adapted to newer modeling requirements while also paving the way for dynamic model building. Results As an illustration, the paper models the dynamics of gastric emptying behavior experienced by humans. The flexibility to adapt the model to predict the gastric emptying behavior under varying types of nutrient infusion in the intestine (ileum) is demonstrated. The predictions were verified with a human intervention study. The error in predicting the half emptying time was found to be less than 6%. Conclusions A new plug-and-play scheme for biological systems modeling was developed that allows changes to the modeled structure and behavior with reduced programming effort, by abstracting the biological system into a network of smaller sub-systems with independent behavior. In the new scheme, the modeling and simulation becomes an automatic machine readable and executable task. PMID:24917054

  16. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming

    PubMed Central

    Moreau, Thomas; Evans, Amanda L.; Vasquez, Louella; Tijssen, Marloes R.; Yan, Ying; Trotter, Matthew W.; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M.; Pask, Dean C.; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H.; Pedersen, Roger A.; Ghevaert, Cedric

    2016-01-01

    The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology. PMID:27052461

  17. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming.

    PubMed

    Moreau, Thomas; Evans, Amanda L; Vasquez, Louella; Tijssen, Marloes R; Yan, Ying; Trotter, Matthew W; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M; Pask, Dean C; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H; Pedersen, Roger A; Ghevaert, Cedric

    2016-04-07

    The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.

  18. On human self-domestication, psychiatry, and eugenics

    PubMed Central

    Brüne, Martin

    2007-01-01

    The hypothesis that anatomically modern homo sapiens could have undergone changes akin to those observed in domesticated animals has been contemplated in the biological sciences for at least 150 years. The idea had already plagued philosophers such as Rousseau, who considered the civilisation of man as going against human nature, and eventually "sparked over" to the medical sciences in the late 19th and early 20th century. At that time, human "self-domestication" appealed to psychiatry, because it served as a causal explanation for the alleged degeneration of the "erbgut" (genetic material) of entire populations and the presumed increase of mental disorders. Consequently, Social Darwinists emphasised preventing procreation by people of "lower genetic value" and positively selecting favourable traits in others. Both tendencies culminated in euthanasia and breeding programs ("Lebensborn") during the Nazi regime in Germany. Whether or not domestication actually plays a role in some anatomical changes since the late Pleistocene period is, from a biological standpoint, contentious, and the currently resurrected debate depends, in part, on the definitional criteria applied. However, the example of human self-domestication may illustrate that scientific ideas, especially when dealing with human biology, are prone to misuse, particularly if "is" is confused with "ought", i.e., if moral principles are deduced from biological facts. Although such naturalistic fallacies appear to be banned, modern genetics may, at least in theory, pose similar ethical problems to medicine, including psychiatry. In times during which studies into the genetics of psychiatric disorders are scientifically more valued than studies into environmental causation of disorders (which is currently the case), the prospects of genetic therapy may be tempting to alter the human genome in patients, probably at costs that no-one can foresee. In the case of "self-domestication", it is proposed that human characteristics resembling domesticated traits in animals should be labelled "domestication-like", or better, objectively described as genuine adaptations to sedentism. PMID:17919321

  19. With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biology-An Introduction to the Symposium.

    PubMed

    Kohl, Kevin D; Dearing, M Denise

    2017-10-01

    The role that host-associated microbes play in animal biology is gaining attention in comparative biology. Numerous research groups study the roles that microbes play in human health and nutrition, or in enhancing the production of agricultural animals. However, inclusion of host-associated microbes into research questions of integrative and comparative biology has lagged behind. We hosted a symposium to bring together top researchers in the field of host-associated microbes who also incorporate aspects of integrative and comparative biology. In this introduction, we highlight recent research demonstrating the profound roles that host-associated microbes play in many aspects of animal biology, such as immune function, endocrinology, and even behavior. It is our hope that integrative and comparative biologists will begin to include aspects of host-associated microbes into their research programs, enhancing both the fields of comparative biology and host-microbe interactions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Genetic control of postnatal human brain growth

    PubMed Central

    van Dyck, Laura I.; Morrow, Eric M.

    2017-01-01

    Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583

  1. Eugenics from the New Deal to the Great Society: genetics, demography and population quality.

    PubMed

    Ramsden, Edmund

    2008-12-01

    The relationship between biological and social scientists as regards the study of human traits and behavior has often been perceived in terms of mutual distrust, even antipathy. In the interwar period, population study seemed an area that might allow for closer relations between them-united as they were by a concern to improve the eugenic quality of populations. Yet these relations were in tension: by the early post-war era, social demographers were denigrating the contributions of biologists to the study of population problems as embodying the elitist ideology of eugenics. In response to this loss of credibility, the eugenics movement pursued a simultaneous program of withdrawal and expansion: its leaders helped focus concern with biological quality onto the developing field of medical genetics, while at the same moment, extended their scope to improving the social quality of populations through birth control policies, guided by demography. While this approach maintained boundaries between the social and the biological, in the 1960s, a revitalized American Eugenics Society helped reunite leading demographers and geneticists. This paper will assess the reasons for this period of influence for eugenics, and explore its implications for the social and biological study of human populations.

  2. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  3. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  4. Application of vascular aquatic plants for pollution removal, energy, and food production in a biological system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Barlow, R.M.; Mcdonald, R.C.

    1975-05-12

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications. (Author) (GRA)

  5. Integrative Radiation Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcellos-Hoff, Mary Helen

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive andmore » negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.« less

  6. [Breast milk: its nutritional composition and functional properties].

    PubMed

    Tackoen, M

    2012-09-01

    Human milk is a complex biological fluid with thousands of components. The milk composition in the mammalian species is specific and adapted to the needs of the offspring. It contains macronutrients (proteins, lipids and carbohydrates), micronutrients (minerals and vitamins) and numerous biologically active substrates. Human milk not only covers the nutritional needs of the newborn but protects the baby against infection, inflammation and oxidative stress. It has immunomodulation properties and confers trophical protection to the intestinal mucosa. The newborn infant is particularly immature: innate immunity, adaptive immunity and intestinal immaturity. Human milk will offer this exogenous protective and immunomodulating source. The development of the composition of the intestinal microflora of the neonate will be impacted by pre- and probiotic components of human milk. Current scientific knowledge of human milk properties highlights interdependency of the different components, ontogeny of the intestinal function, development of the mucosal intestinal immune system, colonization by the intestinal microbiota and protection against pathogens. Quality of these interactions influences the newborn's short and long-term health status. The promotion of breastfeeding with the support of the Baby Friendly Hospital Initiative (BFHI) program and labeling has been shown to have positive impact in public health.

  7. Epstein-Barr virus latency switch in human B-cells: a physico-chemical model.

    PubMed

    Werner, Maria; Ernberg, Ingemar; Zou, Jiezhi; Almqvist, Jenny; Aurell, Erik

    2007-08-31

    The Epstein-Barr virus is widespread in all human populations and is strongly associated with human disease, ranging from infectious mononucleosis to cancer. In infected cells the virus can adopt several different latency programs, affecting the cells' behaviour. Experimental results indicate that a specific genetic switch between viral latency programs, reprograms human B-cells between proliferative and resting states. Each of these two latency programs makes use of a different viral promoter, Cp and Qp, respectively. The hypothesis tested in this study is that this genetic switch is controlled by both human and viral transcription factors; Oct-2 and EBNA-1. We build a physico-chemical model to investigate quantitatively the dynamical properties of the promoter regulation and experimentally examine protein level variations between the two latency programs. Our experimental results display significant differences in EBNA-1 and Oct-2 levels between resting and proliferating programs. With the model we identify two stable latency programs, corresponding to a resting and proliferating cell. The two programs differ in robustness and transcriptional activity. The proliferating state is markedly more stable, with a very high transcriptional activity from its viral promoter. We predict the promoter activities to be mutually exclusive in the two different programs, and our relative promoter activities correlate well with experimental data. Transitions between programs can be induced, by affecting the protein levels of our transcription factors. Simulated time scales are in line with experimental results. We show that fundamental properties of the Epstein-Barr virus involvement in latent infection, with implications for tumor biology, can be modelled and understood mathematically. We conclude that EBNA-1 and Oct-2 regulation of Cp and Qp is sufficient to establish mutually exclusive expression patterns. Moreover, the modelled genetic control predict both mono- and bistable behavior and a considerable difference in transition dynamics, based on program stability and promoter activities. Both these phenomena we hope can be further investigated experimentally, to increase the understanding of this important switch. Our results also stress the importance of the little known regulation of human transcription factor Oct-2.

  8. Resveratrol glucuronides as the metabolites of resveratrol in humans: characterization, synthesis, and anti-HIV activity.

    PubMed

    Wang, Lai-Xi; Heredia, Alonso; Song, Haijing; Zhang, Zhaojun; Yu, Biao; Davis, Charles; Redfield, Robert

    2004-10-01

    Resveratrol is a natural product with diverse biological activities. We have previously reported that resveratrol possesses potent synergistic inhibitory activity against human immunodeficiency virus (HIV)-1 infection in combination with nucleoside analogs (Heredia et al. 2000. J Acquir Immune Defic Syndr 25:246-255). As a part of our program in developing resveratrol as a component for anti-HIV chemotherapy, we describe in this article the characterization, chemical synthesis, and biological effects of the human metabolites of resveratrol. We found that resveratrol was metabolized in humans into two metabolites, which were characterized as resveratrol-3-O- and 4'-O-glucuronides. For further biological studies, we reported two simple, alternative methods for the synthesis of the metabolites. The cytotoxic and antiviral activities of resveratrol and its metabolites were compared in cell culture experiments using human peripheral blood mononuclear cells. Whereas resveratrol was cytotoxic at > or =30 microM, no cytotoxicity was observed for the metabolites at concentrations as high as 300 microM. However, resveratrol showed strong synergistic anti-HIV activity with didanosine at 10 microM, but no synergistic effects were observed for either of the metabolites at up to 300 microM. Nevertheless, the in vitro activity of the metabolites (resveratrol glucuronides) may not necessarily reflect their in vivo function, given the fact that the ubiquitously existing human beta-glucuronidase could convert the metabolites back to resveratrol locally or systematically in vivo. The present studies have implications for future development of resveratrol and/or its derivatives as a chemotherapeutic agent. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Forensic molecular pathology: its impacts on routine work, education and training.

    PubMed

    Maeda, Hitoshi; Ishikawa, Takaki; Michiue, Tomomi

    2014-03-01

    The major role of forensic pathology is the investigation of human death in relevance to social risk management to determine the cause and process of death, especially in violent and unexpected sudden deaths, which involve social and medicolegal issues of ultimate, personal and public concerns. In addition to the identification of victims and biological materials, forensic molecular pathology contributes to general explanation of the human death process and assessment of individual death on the basis of biological molecular evidence, visualizing dynamic functional changes involved in the dying process that cannot be detected by morphology (pathophysiological or molecular biological vital reactions); the genetic background (genomics), dynamics of gene expression (up-/down-regulation: transcriptomics) and vital phenomena, involving activated biological mediators and degenerative products (proteomics) as well as metabolic deterioration (metabolomics), are detected by DNA analysis, relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. Thus, forensic molecular pathology involves the application of omic medical sciences to investigate the genetic basis, and cause and process of death at the biological molecular level in the context of forensic pathology, that is, 'advanced molecular autopsy'. These procedures can be incorporated into routine death investigations as well as guidance, education and training programs in forensic pathology for 'dynamic assessment of the cause and process of death' on the basis of autopsy and laboratory data. Postmortem human data can also contribute to understanding patients' critical conditions in clinical management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. What have humans done for evolutionary biology? Contributions from genes to populations.

    PubMed

    Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi

    2017-11-15

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).

  11. What have humans done for evolutionary biology? Contributions from genes to populations

    PubMed Central

    Briga, Michael; Griffin, Robert M.; Berger, Vérane; Pettay, Jenni E.

    2017-01-01

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. PMID:29118130

  12. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  13. Genetic programs can be compressed and autonomously decompressed in live cells

    NASA Astrophysics Data System (ADS)

    Lapique, Nicolas; Benenson, Yaakov

    2018-04-01

    Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.

  14. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. KEY ROLES/RESPONSIBILITIES The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours This position is in support of the Center for Cancer Research (CCR).

  15. Computer-aided biochemical programming of synthetic microreactors as diagnostic devices.

    PubMed

    Courbet, Alexis; Amar, Patrick; Fages, François; Renard, Eric; Molina, Franck

    2018-04-26

    Biological systems have evolved efficient sensing and decision-making mechanisms to maximize fitness in changing molecular environments. Synthetic biologists have exploited these capabilities to engineer control on information and energy processing in living cells. While engineered organisms pose important technological and ethical challenges, de novo assembly of non-living biomolecular devices could offer promising avenues toward various real-world applications. However, assembling biochemical parts into functional information processing systems has remained challenging due to extensive multidimensional parameter spaces that must be sampled comprehensively in order to identify robust, specification compliant molecular implementations. We introduce a systematic methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors embedding biochemical logic circuits, or protosensors , to perform accurate biosensing and biocomputing operations in vitro according to temporal logic specifications. We show that proof-of-concept protosensors integrating diagnostic algorithms detect specific patterns of biomarkers in human clinical samples. Protosensors may enable novel approaches to medicine and represent a step toward autonomous micromachines capable of precise interfacing of human physiology or other complex biological environments, ecosystems, or industrial bioprocesses. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  16. NASA Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.

    2009-01-01

    The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. A NBSR Advisory Board composed of representatives of all participating agencies will be established to evaluate each request by an investigator for use of the samples to ensure the request reflects the mission of the NBSR.

  17. Social & Cooperative Learning in the Solving of Case Histories

    ERIC Educational Resources Information Center

    Gooran, Deena; Braude, Stan

    2007-01-01

    Human Biology courses are typically offered for non-biology majors who, like students in high school biology courses, have varying degrees of motivation and background. The primary focus is on explaining the biology behind human health and disease, but human ecology, human evolution, and human genetics may also be covered. Hence, Human Biology…

  18. Why human evolution should be a basic science for medicine and psychology students.

    PubMed

    Palanza, Paola; Parmigiani, Stefano

    2016-06-20

    Based on our teaching experience in medicine and psychology degree programs, we examine different aspects of human evolution that can help students to understand how the human body and mind work and why they are vulnerable to certain diseases. Three main issues are discussed: 1) the necessity to consider not only the mechanisms, i.e. the "proximate causations", implicated in biological processes but also why these mechanisms have evolved, i.e. the "ultimate causations" or "adaptive significance", to understand the functioning and malfunctioning of human body and mind; 2) examples of how human vulnerabilities to disease are caused by phylogenetic constraints, evolutionary tradeoffs reflecting the combined actions of natural and sexual selection, and/or mismatch between past and present environment (i.e., evolution of the eye, teeth and diets, erect posture and their consequences); 3) human pair-bonding and parent-offspring relationships as the result of socio-sexual selection and evolutionary compromises between cooperation and conflict. These psychobiological mechanisms are interwoven with our brain developmental plasticity and the effects of culture in shaping our behavior and mind, and allow a better understanding of functional (normal) and dysfunctional (pathological) behaviors. Thus, because the study of human evolution offers a powerful framework for clinical practice and research, the curriculum studiorum of medical and psychology students should include evolutionary biology and human phylogeny.

  19. TOXCAST, A TOOL FOR CATEGORIZATION AND ...

    EPA Pesticide Factsheets

    Across several EPA Program Offices (e.g., OPPTS, OW, OAR), there is a clear need to develop strategies and methods to screen large numbers of chemicals for potential toxicity, and to use the resulting information to prioritize the use of testing resources towards those entities and endpoints that present the greatest likelihood of risk to human health and the environment. This need could be addressed using the experience of the pharmaceutical industry in the use of advanced modern molecular biology and computational chemistry tools for the development of new drugs, with appropriate adjustment to the needs and desires of environmental toxicology. A conceptual approach named ToxCast has been developed to address the needs of EPA Program Offices in the area of prioritization and screening. Modern computational chemistry and molecular biology tools bring enabling technologies forward that can provide information about the physical and biological properties of large numbers of chemicals. The essence of the proposal is to conduct a demonstration project based upon a rich toxicological database (e.g., registered pesticides, or the chemicals tested in the NTP bioassay program), select a fairly large number (50-100 or more chemicals) representative of a number of differing structural classes and phenotypic outcomes (e.g., carcinogens, reproductive toxicants, neurotoxicants), and evaluate them across a broad spectrum of information domains that modern technology has pro

  20. Improving the human hazard characterization of chemicals: a Tox21 update.

    PubMed

    Tice, Raymond R; Austin, Christopher P; Kavlock, Robert J; Bucher, John R

    2013-07-01

    In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency's National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on "high throughput screening, toxicity pathway profiling, and biological interpretation of findings." In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21. The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays. Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems. Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology.

  1. Improving the Human Hazard Characterization of Chemicals: A Tox21 Update

    PubMed Central

    Austin, Christopher P.; Kavlock, Robert J.; Bucher, John R.

    2013-01-01

    Background: In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency’s National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on “high throughput screening, toxicity pathway profiling, and biological interpretation of findings.” In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21. Objectives: The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays. Discussion: Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems. Conclusion: Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology. PMID:23603828

  2. Self-restoration as fundamental property of CES providing their sustainability

    NASA Astrophysics Data System (ADS)

    Gitelson, I. I.; Degermendzhy, A. G.; Rodicheva, E. K.

    Sustainability is one of the most important criteria in the creation and evaluation of human life support systems intended for use during long space flights. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. But there are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts — enzymes of protein nature — are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself — in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self-restoration of the function performed by the cells of this species in the ecosystem. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the process of self-restoration in unicellular algae population. Based on the data obtained, we proposed a mathematical model of the restoration process in a cell population that has suffered an acute radiation damage.

  3. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.

  4. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education

    PubMed Central

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs PMID:26200660

  5. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.

    PubMed

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.

  6. Mismatch or cumulative stress: toward an integrated hypothesis of programming effects.

    PubMed

    Nederhof, Esther; Schmidt, Mathias V

    2012-07-16

    This paper integrates the cumulative stress hypothesis with the mismatch hypothesis, taking into account individual differences in sensitivity to programming. According to the cumulative stress hypothesis, individuals are more likely to suffer from disease as adversity accumulates. According to the mismatch hypothesis, individuals are more likely to suffer from disease if a mismatch occurs between the early programming environment and the later adult environment. These seemingly contradicting hypotheses are integrated into a new model proposing that the cumulative stress hypothesis applies to individuals who were not or only to a small extent programmed by their early environment, while the mismatch hypothesis applies to individuals who experienced strong programming effects. Evidence for the main effects of adversity as well as evidence for the interaction between adversity in early and later life is presented from human observational studies and animal models. Next, convincing evidence for individual differences in sensitivity to programming is presented. We extensively discuss how our integrated model can be tested empirically in animal models and human studies, inviting researchers to test this model. Furthermore, this integrated model should tempt clinicians and other intervenors to interpret symptoms as possible adaptations from an evolutionary biology perspective. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples.

    PubMed

    Gil, F; Hernández, A F

    2015-06-01

    Human biomonitoring has become an important tool for the assessment of internal doses of metallic and metalloid elements. These elements are of great significance because of their toxic properties and wide distribution in environmental compartments. Although blood and urine are the most used and accepted matrices for human biomonitoring, other non-conventional samples (saliva, placenta, meconium, hair, nails, teeth, breast milk) may have practical advantages and would provide additional information on health risk. Nevertheless, the analysis of these compounds in biological matrices other than blood and urine has not yet been accepted as a useful tool for biomonitoring. The validation of analytical procedures is absolutely necessary for a proper implementation of non-conventional samples in biomonitoring programs. However, the lack of reliable and useful analytical methodologies to assess exposure to metallic elements, and the potential interference of external contamination and variation in biological features of non-conventional samples are important limitations for setting health-based reference values. The influence of potential confounding factors on metallic concentration should always be considered. More research is needed to ascertain whether or not non-conventional matrices offer definitive advantages over the traditional samples and to broaden the available database for establishing worldwide accepted reference values in non-exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alliances in Human Biology: The Harvard Committee on Industrial Physiology, 1929-1939.

    PubMed

    Oakes, Jason

    2015-08-01

    In 1929 the newly-reorganized Rockefeller Foundation funded the work of a cross-disciplinary group at Harvard University called the Committee on Industrial Physiology (CIP). The committee's research and pedagogical work was oriented towards different things for different members of the alliance. The CIP program included a research component in the Harvard Fatigue Laboratory and Elton May's interpretation of the Hawthorne Studies; a pedagogical aspect as part of Wallace Donham's curriculum for Harvard Business School; and Lawrence Henderson's work with the Harvard Pareto Circle, his course Sociology 23, and the Harvard Society of Fellows. The key actors within the CIP alliance shared a concern with training men for elite careers in government service, business leadership, and academic prominence. But the first communications between the CIP and the Rockefeller Foundation did not emphasize training in human biology. Instead, the CIP presented itself as a coordinating body that would be able to organize all the varied work going on at Harvard that did not fit easily into one department, and it was on this basis that the CIP became legible to the President of Harvard, A. Lawrence Lowell, and to Rockefeller's Division of Social Sciences. The members of the CIP alliance used the term human biology for this project of research, training and institutional coordination.

  9. Determining significant endpoints for ecological risk analyses. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinton, T.G.; Congdon, J.; Rowe, C.

    1997-11-01

    'This report summarizes the first year''s progress of research funded under the Department of Energy''s Environmental Management Science Program. The research was initiated to better determine ecological risks from toxic and radioactive contaminants. More precisely, the research is designed to determine the relevancy of sublethal cellular damage to the performance of individuals and to identify characteristics of non-human populations exposed to chronic, low-level radiation, as is typically found on many DOE sites. The authors propose to establish a protocol to assess risks to non-human species at higher levels of biological organization by relating molecular damage to more relevant responses thatmore » reflect population health. They think that they can achieve this by coupling changes in metabolic rates and energy allocation patterns to meaningful population response variables, and by using novel biological dosimeters in controlled, manipulative dose/effects experiments. They believe that a scientifically defensible endpoint for measuring ecological risks can only be determined once its understood the extent to which molecular damage from contaminant exposure is detrimental at the individual and population levels of biological organization.'« less

  10. Integrative analysis of 111 reference human epigenomes

    PubMed Central

    Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Kheradpour, Pouya; Zhang, Zhizhuo; Heravi-Moussavi, Alireza; Liu, Yaping; Amin, Viren; Ziller, Michael J; Whitaker, John W; Schultz, Matthew D; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Wang, Jianrong; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Pfenning, Andreas; Wang, Xinchen; Claussnitzer, Melina; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven; Li, Wei; Marra, Marco; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis

    2015-01-01

    The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but a similar reference has lacked for epigenomic studies. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis of 111 reference human epigenomes generated as part of the program, profiled for histone modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation, and human disease. PMID:25693563

  11. Screens as light biological variable in microgravitational space environment.

    NASA Astrophysics Data System (ADS)

    Schlacht, S.; Masali, M.

    Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate

  12. Social Regulation of Human Gene Expression: Mechanisms and Implications for Public Health

    PubMed Central

    2013-01-01

    Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific “social programs” to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health. PMID:23927506

  13. Global Change: A Biogeochemical Perspective

    NASA Technical Reports Server (NTRS)

    Mcelroy, M.

    1983-01-01

    A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.

  14. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health.

    PubMed

    Landrigan, Philip J; Wright, Robert O; Cordero, Jose F; Eaton, David L; Goldstein, Bernard D; Hennig, Bernhard; Maier, Raina M; Ozonoff, David M; Smith, Martyn T; Tukey, Robert H

    2015-10-01

    The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. SRP has had many successes: discovery of arsenic's toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world's worst toxic hot spots are now located in low- and middle-income countries.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residencemore » in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to anticipating biological effects of pollutants are included in this section. They concern geothermal technology and its improvement using techniques based on organic and physical properties of certain materials.« less

  17. Understanding Global Change (UGC) as a Unifying Conceptual Framework for Teaching Ecology: Using UGC in a High School Biology Program to Integrate Earth Science and Biology, and to Demonstrate the Value of Modeling Global Systems in Promoting Conceptual Learning

    NASA Astrophysics Data System (ADS)

    Levine, J.; Bean, J. R.

    2017-12-01

    Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of key terms.

  18. Industrial Fuel Gas Demonstration-Plant Program. Volume II. The environment (Deliverable No. 27). [Baseline environmental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    The proposed site of the Industrial Fuel Gas Demonstration Plant (IFGDP) is located on a small peninsula extending eastward into Lake McKeller from the south shore. The peninsula is located west-southwest of the City of Memphis near the confluence of Lake McKeller and the Mississippi River. The environmental setting of this site and the region around this site is reported in terms of physical, biological, and human descriptions. Within the physical description, this report divides the environmental setting into sections on physiography, geology, hydrology, water quality, climatology, air quality, and ambient noise. The biological description is divided into sections onmore » aquatic and terrestrial ecology. Finally, the human environment description is reported in sections on land use, demography, socioeconomics, culture, and visual features. This section concludes with a discussion of physical environmental constraints.« less

  19. Procurement of State-of-the-Art Research Equipment to Support Faculty Members Within the RNAi Therapeutics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terence Flotte, MD; Patricia McNulty

    2010-06-29

    This project funded the procurement of state-of-the-art research equipment to support world class faculty members within the RNAi Therapeutics Institute, a central program of the Advanced Therapeutics Cluster (ATC) project. The equipment purchased under this grant supports the RNA Therapeutics Institute (RTI) at the University of Massachusetts Medical School which seeks to build a community of scientists passionate about RNA. By uniting researchers studying the fundamental biology and mechanisms of cellular RNAs with those working to devise human therapies using or targeting nucleic acids, the RTI represents a new model for scientific exploration. By interweaving basic and applied nucleic acidmore » scientists with clinicians dedicated to finding new cures, our goal is to create a new paradigm for organizing molecular research that enables the rapid application of new biological discoveries to solutions for unmet challenges in human health.« less

  20. The 'Biologically-Inspired Computing' Column

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike

    2006-01-01

    The field of Biology changed dramatically in 1953, with the determination by Francis Crick and James Dewey Watson of the double helix structure of DNA. This discovery changed Biology for ever, allowing the sequencing of the human genome, and the emergence of a "new Biology" focused on DNA, genes, proteins, data, and search. Computational Biology and Bioinformatics heavily rely on computing to facilitate research into life and development. Simultaneously, an understanding of the biology of living organisms indicates a parallel with computing systems: molecules in living cells interact, grow, and transform according to the "program" dictated by DNA. Moreover, paradigms of Computing are emerging based on modelling and developing computer-based systems exploiting ideas that are observed in nature. This includes building into computer systems self-management and self-governance mechanisms that are inspired by the human body's autonomic nervous system, modelling evolutionary systems analogous to colonies of ants or other insects, and developing highly-efficient and highly-complex distributed systems from large numbers of (often quite simple) largely homogeneous components to reflect the behaviour of flocks of birds, swarms of bees, herds of animals, or schools of fish. This new field of "Biologically-Inspired Computing", often known in other incarnations by other names, such as: Autonomic Computing, Pervasive Computing, Organic Computing, Biomimetics, and Artificial Life, amongst others, is poised at the intersection of Computer Science, Engineering, Mathematics, and the Life Sciences. Successes have been reported in the fields of drug discovery, data communications, computer animation, control and command, exploration systems for space, undersea, and harsh environments, to name but a few, and augur much promise for future progress.

  1. From bedside to blackboard: the benefits of teaching molecular biology within a medical context.

    PubMed

    Sitaraman, Ramakrishnan

    2012-01-01

    Courses in molecular biology are part of practically every degree program in medicine and the life sciences. Historically, many basic discoveries in this field have resulted from investigations by doctors into the nature of diseases. This essay suggests that medical educators deliberately incorporate such material, whether historical or contemporaneous, into their molecular and cell biology courses. An example of such usage, an early report of the detection of bacteriophage activity on pathogenic bacteria, is discussed in detail. Such an approach can potentially narrow the perceived gap between "basic" and "applied" science. As medicine is so intimately and obviously linked with human welfare, this also provides an avenue for educators to discuss issues of scientific integrity and ethics within a "pure science" course.

  2. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  3. Patient care in a biological safety level-4 (BSL-4) environment.

    PubMed

    Marklund, LeRoy A

    2003-06-01

    The greatest threats to America's public health include accidental importation of deadly diseases by international travelers and the release of biologic weapons by our adversaries. The greatest failure is unpreparedness because international travel and dispersion of biologic agents by our enemies are inevitable. An effective medical defense program is the recommended deterrent against these threats. The United States has a federal response plan in place that includes patient care and patient transport by using the highest level of biologic containment: BSL-4. The DoD has the capability to provide intensive care for victims infected with highly infectious yet unknown biologic agents in an environment that protects the caregiver while allowing scientists to study the characteristics of these new agents and assess the effectiveness of treatment. Army critical care nurses are vital in the biologic medical defense against unidentified infectious diseases, accidental occupational exposures, or intentional dispersion of weaponized biologic agents. Research that carefully advances healthcare using BSL-4 technology addresses the challenges of the human element of BSL-4 containment patient care, and BSL-4 patient transport enhances our nation's ability to address the emerging biologic threats we confront in the future.

  4. Relationships, environment, and the brain: how emerging research is changing what we know about the impact of families on human development.

    PubMed

    Patterson, Jo Ellen; Vakili, Susanna

    2014-03-01

    Recent research is providing family therapists with new information about the complex interaction between an individual's biological makeup and his/her social and physical environment. Family and social relationships, particularly during sensitive periods early in life, can affect a child's biological foundation. Additionally, stress during the early years can have a lasting effect on an individual's physical and mental health and contribute to the onset of severe mental illness. Community programs have been developed to intervene early with families who have an at-risk child to prevent or minimize the onset of mental illness including providing partnerships with at-risk mothers of infants to shape attachment relationships. Programs are also developing individual and family interventions to prevent the onset of psychosis. Practicing family therapists can incorporate emerging neuroscience and early intervention research and leverage the growing base of community programs to enhance the effectiveness and sustainability of mental health outcomes for clients. Additionally, family therapy education programs should broaden student training to incorporate the growing body of information about how family relationships affect individual mental health development. © 2013 FPI, Inc.

  5. A Study of the Feasibility of Establishing a College of the Health Sciences at the Claremont Colleges.

    ERIC Educational Resources Information Center

    Nelson, Bernard W.

    This study proposes that the Claremont Colleges establish a College of the Health Sciences. This college would admit students following their graduation from high school and grant the M.D. degree in 6 years. The curriculum that is proposed is constructed about a framework of human biology, an interdisciplinary program for the teaching of biology…

  6. 25 CFR 20.509 - What must the social services worker do when a child is placed in foster care or residential care...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dated by the parties involved that specifies the roles and responsibilities of the biological parents... 25 Indians 1 2013-04-01 2013-04-01 false What must the social services worker do when a child is... AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child...

  7. 25 CFR 20.509 - What must the social services worker do when a child is placed in foster care or residential care...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dated by the parties involved that specifies the roles and responsibilities of the biological parents... 25 Indians 1 2011-04-01 2011-04-01 false What must the social services worker do when a child is... AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child...

  8. 25 CFR 20.509 - What must the social services worker do when a child is placed in foster care or residential care...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dated by the parties involved that specifies the roles and responsibilities of the biological parents... 25 Indians 1 2010-04-01 2010-04-01 false What must the social services worker do when a child is... AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child...

  9. 25 CFR 20.509 - What must the social services worker do when a child is placed in foster care or residential care...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dated by the parties involved that specifies the roles and responsibilities of the biological parents... 25 Indians 1 2012-04-01 2011-04-01 true What must the social services worker do when a child is... AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child...

  10. 25 CFR 20.509 - What must the social services worker do when a child is placed in foster care or residential care...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dated by the parties involved that specifies the roles and responsibilities of the biological parents... 25 Indians 1 2014-04-01 2014-04-01 false What must the social services worker do when a child is... AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child...

  11. S.E.E. Program Parents Manual: How to Raise a Child with Epilepsy. Part Two: Coping with Stigma

    ERIC Educational Resources Information Center

    Mittan, Robert J.

    2005-01-01

    Epilepsy is the most misunderstood of all neurological disorders known to man. Even though modern medicine (a very recent development in human history) learned that epilepsy was a common variation in biology, the roots laid down by centuries of misunderstanding have yet to be pulled from the society's social consciousness. While medicine and now…

  12. Breast Cancer Training Program

    DTIC Science & Technology

    2005-08-01

    trainee support in year 05 Dr. Matulka studies the biology and stem cell features of parity- induced mammary epithelial cells (PI- MECs). In particular...cancer- from discovery to application February 10, 2005 Dr. James Trosko Michigan State University Role of Human Adult Stem Cells and Cell - Cell ...cancer epidemiology September 6, 2001 Dr. Gilbert Smith NCI Mammary stem cells May 24, 2001 Dr. V. Craig Jordan Northwestern University School Henry

  13. Framework for Springs Stewardship Program and proposed action development: Spring Mountains National Recreation Area, Humboldt-Toiyabe National Forest

    Treesearch

    Marc Coles-Ritchie; Stephen J. Solem; Abraham E. Springer; Burton Pendleton

    2014-01-01

    In the desert Southwest, springs are an important ecological feature and serve as a focal point for both biological and human interactions on the landscape. As a result, attention has been placed on the stewardship and protection of these important resources. Management has traditionally focused on the more accessible and heavily used eastern canyons within the Spring...

  14. Interview: Professor Andrew Feinberg speaks to Epigenomics.

    PubMed

    Feinberg, Andrew

    2009-10-01

    Andrew Feinberg studied mathematics and humanities at Yale University (CT, USA) in the Directed Studies honors program, and he received his BA (1973) and MD (1976) from the accelerated medical program at Johns Hopkins University (MD, USA), as well as an MPH from Johns Hopkins (1981). He performed a postdoctoral fellowship in developmental biology at the University of California, San Diego (UCSD, CA, USA), clinical training in medicine and medical genetics at the University of Pennsylvania (PA, USA) and genetics research with Bert Vogelstein at Johns Hopkins, discovering altered DNA methylation in human cancer. Dr Feinberg continued to perform seminal work in cancer epigenetics as a Howard Hughes investigator at the University of Michigan (MI, USA), discovering human imprinted genes and loss of imprinting in cancer, and the molecular basis of Beckwith-Wiedemann syndrome. He returned to John Hopkins in 1994 as King Fahd Professor of Medicine, Molecular Biology & Genetics and Oncology, and he holds an Adjunct Professorship at the Karolinska Institute in Sweden. Dr Feinberg is Director of the Center for Epigenetics, a National Human Genome Research Institute-designated Center of Excellence in Genome Sciences. The Center is pioneering genome-scale tools in molecular, statistical and epidemiological epigenetics, and is applying them to the study of cancer, neuropsychiatric disease and aging. As part of the center, Dr Feinberg has organized a highly innovative program to bring gifted minority high-school students into genetics and genomics. Dr Feinberg has also invented a number of widely used molecular tools, including random priming. His honors include election to the American Society for Clinical Investigation, the Association of American Physicians, the Institute of Medicine of the National Academy of Sciences, and the American Academy of Arts and Sciences, as well as membership on the ISI most-cited authors list, a MERIT Award of the National Cancer Institute, a Doctor of Philosophy (Hon. Caus.) from Uppsala University (Sweden), and the President's Diversity Recognition Award of Johns Hopkins University.

  15. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.

    PubMed

    LaRocca, Timothy J; Stivison, Elizabeth A; Hod, Eldad A; Spitalnik, Steven L; Cowan, Peter J; Randis, Tara M; Ratner, Adam J

    2014-08-26

    A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family. Copyright © 2014 LaRocca et al.

  16. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium.

    PubMed

    Ellis, Matthew J; Gillette, Michael; Carr, Steven A; Paulovich, Amanda G; Smith, Richard D; Rodland, Karin K; Townsend, R Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel C

    2013-10-01

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods. ©2013 AACR.

  17. Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazunori; Pacheco, Marcos T. T.; Brennan, James F., III; Itzkan, Irving; Berger, Andrew J.; Dasari, Ramachandra R.; Feld, Michael S.

    1996-02-01

    We describe a compound parabolic concentrator (CPC)-based probe for enhanced signal collection in the spectroscopy of biological tissues. Theoretical considerations governing signal enhancement compared with conventional collection methods are given. A ray-tracing program was used to analyze the throughput of CPC's with shape deviations and surface imperfections. A modified CPC shape with 99% throughput was discovered. A 4.4-mm-long CPC was manufactured and incorporated into an optical fiber-based near-infrared Raman spectrometer system. For human tissue samples, light collection was enhanced by a factor of 7 compared with collection with 0.29-NA optical fibers.

  18. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  19. Bioinformatics for Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy A.

    2006-01-01

    For the purpose of this paper, bioinformatics is defined as the application of computer technology to the management of biological information. It can be thought of as the science of developing computer databases and algorithms to facilitate and expedite biological research. This is a crosscutting capability that supports nearly all human health areas ranging from computational modeling, to pharmacodynamics research projects, to decision support systems within autonomous medical care. Bioinformatics serves to increase the efficiency and effectiveness of the life sciences research program. It provides data, information, and knowledge capture which further supports management of the bioastronautics research roadmap - identifying gaps that still remain and enabling the determination of which risks have been addressed.

  20. Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis.

    PubMed

    Sadaka, Carmen; Ellsworth, Edmund; Hansen, Paul Robert; Ewin, Richard; Damborg, Peter; Watts, Jeffrey L

    2018-06-06

    Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop- o -benzyl-desmethylabyssomicin C constitute promising candidates for such programs.

  1. Groundbreaking Mars Sample Return for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  2. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions.

    PubMed

    Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. c2004 Published by Elsevier Ltd on behalf of COSPAR.

  3. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  4. Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells.

    PubMed

    Turner, Mallory A; Middha, Sumit; Hofherr, Sean E; Barry, Michael A

    2015-12-01

    Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head-to-head comparison in human lung cells by NGS revealed that the two viruses generally conform to our general understanding of the Ad transcriptional program. However, fine mapping revealed subtle and strong differences in how these two viruses execute these programs, including differences in the balance of E1A and E1B mRNAs and in E3 immune evasion genes. This suggests that not all adenoviruses behave like Ad2 and Ad5 and that they may have unique strategies to infect cells and evade the immune system. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Application of ToxCast to evaluate potential biological effects ...

    EPA Pesticide Factsheets

    With the development of “high throughput” in-vitro biological assays, screening-level information on potential adverse biological effects is available for a rapidly increasing number of chemicals. The U.S. EPA ToxCast program has now evaluated several thousand chemicals with more than 800 assays. The original intent of this data was to evaluate potential for human health effects, but it is now being extended to environmental health evaluations. The R package ToxEval was developed as a screening tool to use ToxCast results for evaluation of potential adverse biological effects from trace organic chemicals in water samples. Using ToxEval, trace organic chemical data from water samples and passive samplers collected at 57 Great Lakes tributaries from 2010-2013 were examined to determine the tributaries with the greatest potential for adverse biological effects with prioritization of the most influential contaminants. Results are being used as part of the Great Lakes Restoration Initiative to focus current and future investigations that will help understand likely adverse outcome pathways in biological organisms, and to formulate possible remediation strategies. not applicable

  6. Human population studies and the World Health Organization.

    PubMed

    de Chadarevian, Soraya

    2015-01-01

    This essay draws attention to the role of the WHO in shaping research agendas in the biomedical sciences in the postwar era. It considers in particular the genetic studies of human populations that were pursued under the aegis of the WHO from the late 1950s to 1970s. The study provides insights into how human and medical genetics entered the agenda of the WHO. At the same time, the population studies become a focus for tracking changing notions of international relations, cooperation, and development and their impact on research in biology and medicine in the post-World War I era. After a brief discussion of the early history of the WHO and its position in Cold War politics, the essay considers the WHO program in radiation protection and heredity and how the genetic study of "vanishing" human populations and a world-wide genetic study of newborns fitted this broader agenda. It then considers in more detail the kind of support offered by the WHO for these projects. The essay highlights the role of single individuals in taking advantage of WHO support for pushing their research agendas while establishing a trend towards cooperative international projects in biology.

  7. Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durant, marco

    2006-01-01

    Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.

  8. Biology Intensive Orientation for Students (BIOS): A Biology "Boot Camp"

    ERIC Educational Resources Information Center

    Wischusen, Sheri Maples; Wischusen, E. William

    2007-01-01

    The Biology Intensive Orientation for Students (BIOS) Program was designed to assess the impact of a 5-d intensive prefreshman program on success and retention of biological science majors at Louisiana State University. The 2005 pilot program combined content lectures and examinations for BIOL 1201, Introductory Biology for Science Majors, as well…

  9. Using the principles of circadian physiology enhances shift schedule design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less

  10. Water Quality Standards for Coral Reef Protection | Science ...

    EPA Pesticide Factsheets

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality standards have not been effectively applied to coral reefs. The Environmental Protection Agency is promoting biocriteria and other water quality standards through collaborative development of bioassessment procedures, indicators and monitoring strategies. To support regulatory action, bioassessment indicators must be biologically meaningful, relevant to management, responsive to human disturbance, and relatively immune to natural variability. A rapid bioassessment protocol for reef-building stony corals was developed and tested for regulatory applicability. Preliminary testing in the Florida Keys found indicators had sufficient precision and provided information relevant to coral reef management. Sensitivity to human disturbance was demonstrated in the U.S. Virgin Islands for five of eight indicators tested. Once established, monitoring programs using these indicators can provide valuable, long-term records of coral condition and regulatory compliance. Development of a rapid bioassement protocol for reef-building stony corals was tested for regulatory applicability.

  11. Culture, Urbanism and Changing Human Biology.

    PubMed

    Schell, L M

    2014-04-03

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia.

  12. Culture, Urbanism and Changing Human Biology

    PubMed Central

    Schell, L.M.

    2014-01-01

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia. PMID:25598655

  13. Source Identification of Human Biological Materials and Its Prospect in Forensic Science.

    PubMed

    Zou, K N; Gui, C; Gao, Y; Yang, F; Zhou, H G

    2016-06-01

    Source identification of human biological materials in crime scene plays an important role in reconstructing the crime process. Searching specific genetic markers to identify the source of different human biological materials is the emphasis and difficulty of the research work of legal medical experts in recent years. This paper reviews the genetic markers which are used for identifying the source of human biological materials and studied widely, such as DNA methylation, mRNA, microRNA, microflora and protein, etc. By comparing the principles and methods of source identification of human biological materials using different kinds of genetic markers, different source of human biological material owns suitable marker types and can be identified by detecting single genetic marker or combined multiple genetic markers. Though there is no uniform standard and method for identifying the source of human biological materials in forensic laboratories at present, the research and development of a series of mature and reliable methods for distinguishing different human biological materials play the role as forensic evidence which will be the future development direction. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Reinhold C.

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutinymore » of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.« less

  15. Flow Cytometry Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture

  16. Driving in the Dark: Ten Propositions About Prediction and National Security

    DTIC Science & Technology

    2011-10-01

    to a predicted threat list. The evolution of modern biology has produced techniques of genetic sequencing and synthesis that will permit the...and Australia, often under the rubric of Capability Based Planning. See, for example, the work of The Technical Cooperation Program at www...attacking humans. See, for example, the website of Functional Genetics , www.functional-genetics.com. 143. Stewart Brand, How Buildings Learn: What

  17. MOCHA - Multi-Study Ocean Acoustics Human Effects Analysis

    DTIC Science & Technology

    2015-09-30

    understanding of the response of marine mammals to navy sonar and other acoustic stimuli, by maximizing the information gain from Behavioral Response Studies...focussed on a functional/taxonomic group of marine mammals (deep divers, other odontocetes, pilot whales and baleen whales). We began with deep divers...Controlled Exposure Experiments component of the Marine Mammals and Biology Program, and it will also address broader commitments of the Navy for

  18. [Progress in synthetic biology of "973 Funding Program" in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  19. WebBio, a web-based management and analysis system for patient data of biological products in hospital.

    PubMed

    Lu, Ying-Hao; Kuo, Chen-Chun; Huang, Yaw-Bin

    2011-08-01

    We selected HTML, PHP and JavaScript as the programming languages to build "WebBio", a web-based system for patient data of biological products and used MySQL as database. WebBio is based on the PHP-MySQL suite and is run by Apache server on Linux machine. WebBio provides the functions of data management, searching function and data analysis for 20 kinds of biological products (plasma expanders, human immunoglobulin and hematological products). There are two particular features in WebBio: (1) pharmacists can rapidly find out whose patients used contaminated products for medication safety, and (2) the statistics charts for a specific product can be automatically generated to reduce pharmacist's work loading. WebBio has successfully turned traditional paper work into web-based data management.

  20. The human biology of Jim Tanner.

    PubMed

    Cameron, Noël

    2012-09-01

    In 1940, during his second year of medical training, Jim Tanner expressed the desire to work, 'where physiology, psychology and sociology meet'. His subsequent exposure to the breadth of an American medical education and to the social and economic environment of post-war Europe distilled his belief in the importance of viewing the human in a broad context. Following his visits to the American longitudinal growth studies in 1948. Jim's dreams of a broad scientific discipline that incorporated both the biology and ecology of the human were strengthened by an inspirational group of embryonic human biologists with whom he developed '… the new Human Biology …' from the '… Physical Anthropology of old…'. With Jo Weiner, Derek Roberts, Geoffrey Harrison, Arthur Mourant, Nigel Barnicot and Kenneth Oakley, Jim was to form the Society for the Study of Human Biology in 1958. The development of human biology over the next 50 years was shaped by the expertise and diversity of that group of visionary scientists who conceived the scientific discipline of 'human biology' in which biology, behaviour and social context define the human species.

  1. Development of a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum)

    DTIC Science & Technology

    2008-08-01

    spicatum). Rawalpindi: Pakistan Station Commonwealth Institute of Biological Control. Gleason, H. A ., and A . Cronquist . 1991. Manual of vascular plants...ER D C/ EL T R- 08 -2 2 Aquatic Plant Control Research Program Development of a Biological Control Program for Eurasian Watermilfoil... a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum) Matthew J. W. Cock, Hariet L. Hinz, Gitta Grosskopf, and Patrick

  2. Biological effectiveness of neutrons: Research needs

    NASA Astrophysics Data System (ADS)

    Casarett, G. W.; Braby, L. A.; Broerse, J. J.; Elkind, M. M.; Goodhead, D. T.; Oleinick, N. L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  3. Diet before and during Pregnancy and Offspring Health: The Importance of Animal Models and What Can Be Learned from Them.

    PubMed

    Chavatte-Palmer, Pascale; Tarrade, Anne; Rousseau-Ralliard, Delphine

    2016-06-14

    This review article outlines epidemiologic studies that support the hypothesis that maternal environment (including early nutrition) plays a seminal role in determining the offspring's long-term health and metabolism, known as the concept of Developmental Origins of Health and Diseases (DOHaD). In this context, current concerns are particularly focused on the increased incidence of obesity and diabetes, particularly in youth and women of child-bearing age. We summarize key similarities, differences and limitations of various animal models used to study fetal programming, with a particular focus on placentation, which is critical for translating animal findings to humans. This review will assist researchers and their scientific audience in recognizing the pros and cons of various rodent and non-rodent animal models used to understand mechanisms involved in fetal programming. Knowledge gained will lead to improved translation of proposed interventional therapies before they can be implemented in humans. Although rodents are essential for fundamental exploration of biological processes, other species such as rabbits and other domestic animals offer more tissue-specific physiological (rabbit placenta) or physical (ovine maternal and lamb birth weight) resemblances to humans. We highlight the important maternal, placental, and fetal/neonatal characteristics that contribute to developmentally programmed diseases, specifically in offspring that were affected in utero by undernutrition, overnutrition or maternal diabetes. Selected interventions aimed at prevention are summarized with a specific focus on the 1000 days initiative in humans, and maternal exercise or modification of the n-3/n-6 polyunsaturated fatty acid (PUFA) balance in the diet, which are currently being successfully tested in animal models to correct or reduce adverse prenatal programming. Animal models are essential to understand mechanisms involved in fetal programming and in order to propose interventional therapies before they can be implemented in humans. Non-rodent animals are particularly important and should not be neglected, as they are often more physiologically-appropriate models to mimic the human situation.

  4. Diet before and during Pregnancy and Offspring Health: The Importance of Animal Models and What Can Be Learned from Them

    PubMed Central

    Chavatte-Palmer, Pascale; Tarrade, Anne; Rousseau-Ralliard, Delphine

    2016-01-01

    This review article outlines epidemiologic studies that support the hypothesis that maternal environment (including early nutrition) plays a seminal role in determining the offspring’s long-term health and metabolism, known as the concept of Developmental Origins of Health and Diseases (DOHaD). In this context, current concerns are particularly focused on the increased incidence of obesity and diabetes, particularly in youth and women of child-bearing age. We summarize key similarities, differences and limitations of various animal models used to study fetal programming, with a particular focus on placentation, which is critical for translating animal findings to humans. This review will assist researchers and their scientific audience in recognizing the pros and cons of various rodent and non-rodent animal models used to understand mechanisms involved in fetal programming. Knowledge gained will lead to improved translation of proposed interventional therapies before they can be implemented in humans. Although rodents are essential for fundamental exploration of biological processes, other species such as rabbits and other domestic animals offer more tissue-specific physiological (rabbit placenta) or physical (ovine maternal and lamb birth weight) resemblances to humans. We highlight the important maternal, placental, and fetal/neonatal characteristics that contribute to developmentally programmed diseases, specifically in offspring that were affected in utero by undernutrition, overnutrition or maternal diabetes. Selected interventions aimed at prevention are summarized with a specific focus on the 1000 days initiative in humans, and maternal exercise or modification of the n-3/n-6 polyunsaturated fatty acid (PUFA) balance in the diet, which are currently being successfully tested in animal models to correct or reduce adverse prenatal programming. Animal models are essential to understand mechanisms involved in fetal programming and in order to propose interventional therapies before they can be implemented in humans. Non-rodent animals are particularly important and should not be neglected, as they are often more physiologically-appropriate models to mimic the human situation. PMID:27314367

  5. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty interaction, student mentoring, and original research. In the future we see the possibility of welcoming even more interdisciplinary work including rigorous studies spanning the arts and humanities.

  6. Effects of geophysical extra-terrestrial and terrestrial physical stimuli on living organisms - Effects of gravity fields on living organisms

    NASA Technical Reports Server (NTRS)

    Saunders, R. J. F.

    1972-01-01

    The biologic effects of greatly reduced gravity resulting from space flight are examined. Aspects of U.S. space biology during the period from 1960 to 1972 are discussed, giving attention to the Discoverer satellites, the Gemini series, the OV1-4 satellite, the biosatellite project, the orbiting frog otolith experiment, and the Apollo program. Other studies considered are related to the effects of galactic particles on nonproliferating cells, a recoverable tissue culture experiment, cell cycle maintenance in human lung cells, and effects of space flight on circadian rhythms. Viking will land on the planet Mars in 1975 in search for life forms.

  7. Inclusion of Biological Foundations of Human Behavior in Counselor Education.

    ERIC Educational Resources Information Center

    Panther, Edward E.

    1987-01-01

    Reports that textbooks and counseling approaches studied by prospective counselors largely omit information on biological foundations of human behavior, although biological factors often affect human behavior profoundly. Uses case study examples to show importance of biological factors. Recommends that counselor educators understand biological…

  8. Using counterfactuals to evaluate the cost-effectiveness of controlling biological invasions.

    PubMed

    McConnachie, Matthew M; van Wilgen, Brian W; Ferraro, Paul J; Forsyth, Aurelia T; Richardson, David M; Gaertner, Mirijam; Cowling, Richard M

    2016-03-01

    Prioritizing limited conservation funds for controlling biological invasions requires accurate estimates of the effectiveness of interventions to remove invasive species and their cost-effectiveness (cost per unit area or individual). Despite billions of dollars spent controlling biological invasions worldwide, it is unclear whether those efforts are effective, and cost-effective. The paucity of evidence results from the difficulty in measuring the effect of invasive species removal: a researcher must estimate the difference in outcomes (e.g. invasive species cover) between where the removal program intervened and what might have been observed if the program had not intervened. In the program evaluation literature, this is called a counterfactual analysis, which formally compares what actually happened and what would have happened in the absence of an intervention. When program implementation is not randomized, estimating counterfactual outcomes is especially difficult. We show how a thorough understanding of program implementation, combined with a matching empirical design can improve the way counterfactual outcomes are estimated in nonexperimental contexts. As a practical demonstration, we estimated the cost-effectiveness of South Africa's Working for Water program, arguably the world's most ambitious invasive species control program, in removing invasive alien trees from different land use types, across a large area in the Cape Floristic Region. We estimated that the proportion of the treatment area covered by invasive trees would have been 49% higher (5.5% instead of 2.7% of the grid cells occupied) had the program not intervened. Our estimates of cost per hectare to remove invasive species, however, are three to five times higher than the predictions made when the program was initiated. Had there been no control (counter-factual), invasive trees would have spread on untransformed land, but not on land parcels containing plantations or land transformed by agriculture or human settlements. This implies that the program might have prevented a larger area from being invaded if it had focused all of its clearing effort on untransformed land. Our results show that, with appropriate empirical designs, it is possible to better evaluate the impacts of invasive species removal and therefore to learn from past experiences.

  9. French research program on the physiological problems caused by weightlessness. Use of the primate model

    NASA Astrophysics Data System (ADS)

    Pesquies, P. C.; Milhaud, C.; Nogues, C.; Klein, M.; Cailler, B.; Bost, R.

    The need to acquire a better knowledge of the main biological problems induced by microgravity implies—in addition to human experimentation—the use of animal models, and primates seem to be particularly well adapted to this type of research. The major areas of investigation to be considered are the phospho-calcium metabolism and the metabolism of supporting tissues, the hydroelectrolytic metabolism, the cardiovascular function, awakeness, sleep-awakeness cycles, the physiology of equilibrium and the pathophysiology of space sickness. Considering this program, the Centre d'Etudes et de Recherches de Medecine Aerospatiale, under the sponsorship of the Centre National d'Etudes Spatiales, developed both a program of research on restrained primates for the French-U.S. space cooperation (Spacelab program) and for the French-Soviet space cooperation (Bio-cosmos program), and simulation of the effects of microgravity by head-down bedrest. Its major characteristics are discussed in the study.

  10. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  11. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  12. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  13. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  14. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  15. An interdepartmental Ph.D. program in computational biology and bioinformatics: the Yale perspective.

    PubMed

    Gerstein, Mark; Greenbaum, Dov; Cheung, Kei; Miller, Perry L

    2007-02-01

    Computational biology and bioinformatics (CBB), the terms often used interchangeably, represent a rapidly evolving biological discipline. With the clear potential for discovery and innovation, and the need to deal with the deluge of biological data, many academic institutions are committing significant resources to develop CBB research and training programs. Yale formally established an interdepartmental Ph.D. program in CBB in May 2003. This paper describes Yale's program, discussing the scope of the field, the program's goals and curriculum, as well as a number of issues that arose in implementing the program. (Further updated information is available from the program's website, www.cbb.yale.edu.)

  16. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.

  17. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  18. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  19. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  20. The inception and evolution of a unique masters program in cancer biology, prevention and control.

    PubMed

    Cousin, Carolyn; Blancato, Jan

    2010-09-01

    The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.

  1. Space medicine research publications: 1984-1986

    NASA Technical Reports Server (NTRS)

    Wallace, Janice S.

    1988-01-01

    A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.

  2. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, andmore » protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.« less

  3. Sonoran Desert: Fragile Land of Extremes

    USGS Publications Warehouse

    Produced and Directed by Wessells, Stephen

    2003-01-01

    'Sonoran Desert: Fragile Land of Extremes' shows how biologists with the U.S. Geological Survey work with other scientists in an effort to better understand native plants and animals such as desert tortoises, saguaro cacti, and Gila monsters. Much of the program was shot in and around Saguaro National Park near Tucson, Arizona. Genetic detective work, using DNA, focuses on understanding the lives of tortoises. Studies of saguaros over many decades clarify how these amazing plants reproduce and thrive in the desert. Threats from fire, diseases in tortoises, and a growing human population motivate the scientists. Their work to identify how these organisms live and survive is a crucial step for the sound management of biological resources on public lands. This 28-minute program, USGS Open-File Report 03-305, was shot entirely in high definition video and produced by the USGS Western Ecological Research Center and Southwest Biological Science Center; produced and directed by Stephen Wessells, Western Region Office of Communications.

  4. Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control.

    PubMed

    Gurarie, David; King, Charles H; Yoon, Nara; Li, Emily

    2016-08-04

    Schistosoma parasites sustain a complex transmission process that cycles between a definitive human host, two free-swimming larval stages, and an intermediate snail host. Multiple factors modify their transmission and affect their control, including heterogeneity in host populations and environment, the aggregated distribution of human worm burdens, and features of parasite reproduction and host snail biology. Because these factors serve to enhance local transmission, their inclusion is important in attempting accurate quantitative prediction of the outcomes of schistosomiasis control programs. However, their inclusion raises many mathematical and computational challenges. To address these, we have recently developed a tractable stratified worm burden (SWB) model that occupies an intermediate place between simpler deterministic mean worm burden models and the very computationally-intensive, autonomous agent models. To refine the accuracy of model predictions, we modified an earlier version of the SWB by incorporating factors representing essential in-host biology (parasite mating, aggregation, density-dependent fecundity, and random egg-release) into demographically structured host communities. We also revised the snail component of the transmission model to reflect a saturable form of human-to-snail transmission. The new model allowed us to realistically simulate overdispersed egg-test results observed in individual-level field data. We further developed a Bayesian-type calibration methodology that accounted for model and data uncertainties. The new model methodology was applied to multi-year, individual-level field data on S. haematobium infections in coastal Kenya. We successfully derived age-specific estimates of worm burden distributions and worm fecundity and crowding functions for children and adults. Estimates from the new SWB model were compared with those from the older, simpler SWB with some substantial differences noted. We validated our new SWB estimates in prediction of drug treatment-based control outcomes for a typical Kenyan community. The new version of the SWB model provides a better tool to predict the outcomes of ongoing schistosomiasis control programs. It reflects parasite features that augment and perpetuate transmission, while it also readily incorporates differences in diagnostic testing and human sub-population differences in treatment coverage. Once extended to other Schistosoma species and transmission environments, it will provide a useful and efficient tool for planning control and elimination strategies.

  5. Raymond Pearl and the shaping of human biology.

    PubMed

    Little, Michael A; Garruto, Ralph M

    2010-02-01

    Raymond Pearl (1879-1940) was a significant figure in the field of biology. He founded the journal Human Biology and almost single-handedly promoted and established the scientific discipline of human biology. His scientific versatility was one of his most important features during the first four decades of the 20th century, and he played a major role in developing the fields of biodemography, human population biology, human life-cycle and life span approaches, fertility, growth, the biology of longevity and senescence, and mortality. He was one of the earliest biologists to combine biometric analyses and experimental studies to explore the dimensions of human biology. Pearl also was broadly educated in the arts, music, literature, history, the classics, and science. His writing was sophisticated and often witty, and his views were sometimes provocative and controversial. His network of colleagues and friends among the literary and science worlds was substantial. The following biographical memoir of Raymond Pearl is designed to commemorate the 80th anniversary of the founding of his journal Human Biology and is a tribute to this great scientist. Pearl's sudden death at age 61 truncated a scientific career that was one of the most productive of the 20th century.

  6. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health

    PubMed Central

    Wright, Robert O.; Cordero, Jose F.; Eaton, David L.; Goldstein, Bernard D.; Hennig, Bernhard; Maier, Raina M.; Ozonoff, David M.; Smith, Martyn T.; Tukey, Robert H.

    2015-01-01

    Background The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. Results SRP has had many successes: discovery of arsenic’s toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. Conclusion SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world’s worst toxic hot spots are now located in low- and middle-income countries. Citation Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, Maier RM, Ozonoff DM, Smith MT, Tukey RH. 2015. The NIEHS Superfund Research Program: 25 years of translational research for public health. Environ Health Perspect 123:909–918; http://dx.doi.org/10.1289/ehp.1409247 PMID:25978799

  7. Tumor necrosis factor (TNF) biology and cell death.

    PubMed

    Bertazza, Loris; Mocellin, Simone

    2008-01-01

    Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.

  8. Biosafety Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce W.

    2010-05-18

    Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may causemore » disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.« less

  9. Preference for point-light human biological motion in newborns: contribution of translational displacement.

    PubMed

    Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard

    2014-01-01

    In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception of human locomotion. Experiment 1 shows that human newborns prefer a point-light walker display representing human locomotion as if on a treadmill over random motion. However, no preference for biological movement is observed in Experiment 2 when both biological and random motion displays are presented with translational displacement. Experiments 3 and 4 show that newborns exhibit preference for translated biological motion (Experiment 3) and random motion (Experiment 4) displays over the same configurations moving without translation. These findings reveal that human newborns have a preference for the translational component of movement independently of the presence of biological kinematics. The outcome suggests that translation constitutes the first step in development of visual preference for biological motion. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. 21 CFR 25.31 - Human drugs and biologics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Human drugs and biologics. 25.31 Section 25.31 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.31 Human drugs and biologics. The classes of...

  11. 21 CFR 25.31 - Human drugs and biologics.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Human drugs and biologics. 25.31 Section 25.31 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.31 Human drugs and biologics. The classes of...

  12. 21 CFR 25.31 - Human drugs and biologics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Human drugs and biologics. 25.31 Section 25.31 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.31 Human drugs and biologics. The classes of...

  13. 21 CFR 25.31 - Human drugs and biologics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Human drugs and biologics. 25.31 Section 25.31 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.31 Human drugs and biologics. The classes of...

  14. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation.

  15. The Spanish biology/disease initiative within the human proteome project: Application to rheumatic diseases.

    PubMed

    Ruiz-Romero, Cristina; Calamia, Valentina; Albar, Juan Pablo; Casal, José Ignacio; Corrales, Fernando J; Fernández-Puente, Patricia; Gil, Concha; Mateos, Jesús; Vivanco, Fernando; Blanco, Francisco J

    2015-09-08

    The Spanish Chromosome 16 consortium is integrated in the global initiative Human Proteome Project, which aims to develop an entire map of the proteins encoded following a gene-centric strategy (C-HPP) in order to make progress in the understanding of human biology in health and disease (B/D-HPP). Chromosome 16 contains many genes encoding proteins involved in the development of a broad range of diseases, which have a significant impact on the health care system. The Spanish HPP consortium has developed a B/D platform with five programs focused on selected medical areas: cancer, obesity, cardiovascular, infectious and rheumatic diseases. Each of these areas has a clinical leader associated to a proteomic investigator with the responsibility to get a comprehensive understanding of the proteins encoded by Chromosome 16 genes. Proteomics strategies have enabled great advances in the area of rheumatic diseases, particularly in osteoarthritis, with studies performed on joint cells, tissues and fluids. In this manuscript we describe how the Spanish HPP-16 consortium has developed a B/D platform with five programs focused on selected medical areas: cancer, obesity, cardiovascular, infectious and rheumatic diseases. Each of these areas has a clinical leader associated to a proteomic investigator with the responsibility to get a comprehensive understanding of the proteins encoded by Chromosome 16 genes. We show how the Proteomic strategy has enabled great advances in the area of rheumatic diseases, particularly in osteoarthritis, with studies performed on joint cells, tissues and fluids. This article is part of a Special Issue entitled: HUPO 2014. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Biological Databases for Human Research

    PubMed Central

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-01-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation. PMID:25712261

  17. Establishing a national biological laboratory safety and security monitoring program.

    PubMed

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  18. Novel cell-biological ideas deducible from morphological observations on "dark" neurons revisited.

    PubMed

    Gallyas, Ferenc

    2007-05-30

    The origin, nature and fate of "dark" (dramatically shrunken and hyperbasophilic) neurons are century-old problems in both human and experimental neuropathology. Until a few years ago, hardly any cell-biological conclusion had been drawn from their histological investigation. On the basis of light and electron microscopic findings in animal experiments performed during the past few years, my research team has put forward novel ideas concerning 1. the nature of "dark" neurons (malfunction of an energy-storing gel-structure that is ubiquitously present in all intracellular spaces between the ultrastructural elements), 2. the mechanism of their formation (non-programmed initiation of a whole-cell phase-transition in this gel-structure), 3. their capability of recovery (programmed for some physiological purpose), 4. their death mode (neither necrotic nor apoptotic), and 5. their relationship with the apoptotic cell death (the gel structure in question is programmed for the morphological execution of ontogenetic apoptosis). Based on morphological observations, this paper revisits these ideas in order to bring them to the attention of researchers who are in a position to investigate their validity by means of experimental paradigms other than those used here.

  19. Child Health, Developmental Plasticity, and Epigenetic Programming

    PubMed Central

    Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.-C.; Boileau, P.; Le Bouc, Y.; Deal, C. L.; Lillycrop, K.; Scharfmann, R.; Sheppard, A.; Skinner, M.; Szyf, M.; Waterland, R. A.; Waxman, D. J.; Whitelaw, E.; Ong, K.; Albertsson-Wikland, K.

    2011-01-01

    Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs. PMID:20971919

  20. Translating human biology (introduction to special issue).

    PubMed

    Brewis, Alexandra A; Mckenna, James J

    2015-01-01

    Introducing a special issue on "Translating Human Biology," we pose two basic questions: Is human biology addressing the most critical challenges facing our species? How can the processes of translating our science be improved and innovated? We analyze articles published in American Journal of Human Biology from 2004-2013, and find there is very little human biological consideration of issues related to most of the core human challenges such as water, energy, environmental degradation, or conflict. There is some focus on disease, and considerable focus on food/nutrition. We then introduce this special volume with reference to the following articles that provide exemplars for the process of how translation and concern for broader context and impacts can be integrated into research. Human biology has significant unmet potential to engage more fully in translation for the public good, through consideration of the topics we focus on, the processes of doing our science, and the way we present our domain expertise. © 2014 Wiley Periodicals, Inc.

  1. Individual and contextual factors associated to the self-perception of oral health in Brazilian adults.

    PubMed

    Silva, Janmille Valdivino da; Oliveira, Angelo Giuseppe Roncalli da Costa

    2018-04-09

    To analyze how individual characteristics and the social context, together, are associated with self-perception of the oral health. A multilevel cross-sectional study with data from the Brazilian National Health Survey 2013, the United Nations Development Program, and the National Registry of Health Establishments. The explanatory variables for the "oral health perception" outcome were grouped, according to the study framework, into biological characteristics (sex, color, age), proximal social determinants (literacy, household crowding, and socioeconomic stratification), and distal (years of schooling expectancy at age 18, GINI, Human Development Index, and per capita income). The described analysis was performed, along with bivariate Poisson analysis and multilevel Poisson analysis for the construction of the explanatory model of oral health perception. All analyzes considered the sample weights. Both the biological characteristics and the proximal and distal social determinants were associated with the perception of oral health in the bivariate analysis. A higher prevalence of bad oral health was associated to lower years of schooling expectancy (PR = 1.31), lower per capita income (PR = 1.45), higher income concentration (PR = 1.41), and worse human development (PR = 1.45). Inversely, oral health services in both primary and secondary care were negatively associated with oral health perception. All the biological and individual social characteristics, except reading and writing, made up the final explanatory model along with the distal social determinants of the Human Development Index and coverage of basic care in the multilevel analysis. Biological factors, individual and contextual social determinants were associate synergistically with the population's perception of oral health. It is necessary to improve individual living conditions and the implementation of public social policies to improve the oral health of the population.

  2. PPARγ coactivator-1α contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans.

    PubMed

    Koves, Timothy R; Sparks, Lauren M; Kovalik, J P; Mosedale, Merrie; Arumugam, Ramamani; DeBalsi, Karen L; Everingham, Karen; Thorne, Leigh; Phielix, Esther; Meex, Ruth C; Kien, C Lawrence; Hesselink, Matthijs K C; Schrauwen, Patrick; Muoio, Deborah M

    2013-02-01

    Intramuscular accumulation of triacylglycerol, in the form of lipid droplets (LD), has gained widespread attention as a hallmark of metabolic disease and insulin resistance. Paradoxically, LDs also amass in muscles of highly trained endurance athletes who are exquisitely insulin sensitive. Understanding the molecular mechanisms that mediate the expansion and appropriate metabolic control of LDs in the context of habitual physical activity could lead to new therapeutic opportunities. Herein, we show that acute exercise elicits robust upregulation of a broad program of genes involved in regulating LD assembly, morphology, localization, and mobilization. Prominent among these was perilipin-5, a scaffolding protein that affects the spatial and metabolic interactions between LD and their surrounding mitochondrial reticulum. Studies in transgenic mice and primary human skeletal myocytes established a key role for the exercise-responsive transcriptional coactivator PGC-1α in coordinating intramuscular LD programming with mitochondrial remodeling. Moreover, translational studies comparing physically active versus inactive humans identified a remarkably strong association between expression of intramuscular LD genes and enhanced insulin action in exercise-trained subjects. These results reveal an intimate molecular connection between intramuscular LD biology and mitochondrial metabolism that could prove relevant to the etiology and treatment of insulin resistance and other disorders of lipid imbalance.

  3. PPARγ coactivator-1α contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans

    PubMed Central

    Koves, Timothy R.; Sparks, Lauren M.; Kovalik, J. P.; Mosedale, Merrie; Arumugam, Ramamani; DeBalsi, Karen L.; Everingham, Karen; Thorne, Leigh; Phielix, Esther; Meex, Ruth C.; Kien, C. Lawrence; Hesselink, Matthijs K. C.; Schrauwen, Patrick; Muoio, Deborah M.

    2013-01-01

    Intramuscular accumulation of triacylglycerol, in the form of lipid droplets (LD), has gained widespread attention as a hallmark of metabolic disease and insulin resistance. Paradoxically, LDs also amass in muscles of highly trained endurance athletes who are exquisitely insulin sensitive. Understanding the molecular mechanisms that mediate the expansion and appropriate metabolic control of LDs in the context of habitual physical activity could lead to new therapeutic opportunities. Herein, we show that acute exercise elicits robust upregulation of a broad program of genes involved in regulating LD assembly, morphology, localization, and mobilization. Prominent among these was perilipin-5, a scaffolding protein that affects the spatial and metabolic interactions between LD and their surrounding mitochondrial reticulum. Studies in transgenic mice and primary human skeletal myocytes established a key role for the exercise-responsive transcriptional coactivator PGC-1α in coordinating intramuscular LD programming with mitochondrial remodeling. Moreover, translational studies comparing physically active versus inactive humans identified a remarkably strong association between expression of intramuscular LD genes and enhanced insulin action in exercise-trained subjects. These results reveal an intimate molecular connection between intramuscular LD biology and mitochondrial metabolism that could prove relevant to the etiology and treatment of insulin resistance and other disorders of lipid imbalance. PMID:23175776

  4. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  5. The current state of bioterrorist attack surveillance and preparedness in the US

    PubMed Central

    Grundmann, Oliver

    2014-01-01

    The use of biological agents as weapons to disrupt established structures, such as governments and especially larger urban populations, has been prevalent throughout history. Following the anthrax letters sent to various government officials in the fall of 2001, the US has been investing in prevention, surveillance, and preparation for a potential bioterrorism attack. Additional funding authorized since 2002 has assisted the Centers for Disease Control and Prevention, the Department of Health and Human Services, and the Environmental Protection Agency to invest in preventative research measures as well as preparedness programs, such as the Laboratory Response Network, Hospital Preparedness Program, and BioWatch. With both sentinel monitoring systems and epidemiological surveillance programs in place for metropolitan areas, the immediate threat of a large-scale bioterrorist attack may be limited. However, early detection is a crucial factor to initiate immediate response measures to prevent further spread following dissemination of a biological agent. Especially in rural areas, an interagency approach to train health care workers and raise awareness for the general public remain primary tasks, which is an ongoing challenge. Risk-management approaches in responding to dissemination of biological agents, as well as appropriate decontamination measures that reduce the probability of further contamination, have been provided, and suggest further investments in preparedness and surveillance. Ongoing efforts to improve preparedness and response to a bioterrorist attack are crucial to further reduce morbidity, mortality, and economic impact on public health. PMID:25328421

  6. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication & navigation packages, remote sensing, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals.

  7. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.

  8. Stress and reproductive failure: past notions, present insights and future directions

    PubMed Central

    Sheps, Sam; Clara Arck, Petra

    2008-01-01

    Problem Maternal stress perception is frequently alleged as a cause of infertility, miscarriages, late pregnancy complications or impaired fetal development. The purpose of the present review is to critically assess the biological and epidemiological evidence that considers the plausibility of a stress link to human reproductive failure. Methods All epidemiological studies published between 1980 and 2007 that tested the link between stress exposure and impaired reproductive success in humans were identified. Study outcomes were evaluated on the basis of how associations were predicted, tested and integrated with theories of etiology arising from recent scientific developments in the basic sciences. Further, published evidence arising from basic science research has been assessed in order to provide a mechanistic concept and biological evidence for the link between stress perception and reproductive success. Results Biological evidence points to an immune–endocrine disequilibrium in response to stress and describes a hierarchy of biological mediators involved in a stress trigger to reproductive failure. Epidemiological evidence presents positive correlations between various pregnancy failure outcomes with pre-conception negative life events and elevated daily urinary cortisol. Strikingly, a relatively new conceptual approach integrating the two strands of evidence suggests the programming of stress susceptibility in mother and fetus via a so-called pregnancy stress syndrome. Conclusions An increasing specificity of knowledge is available about the types and impact of biological and social pathways involved in maternal stress responses. The present evidence is sufficient to warrant a reconsideration of conventional views on the etiology of reproductive failure. Physicians and patients will benefit from the adaptation of this integrated evidence to daily clinical practice. PMID:18274890

  9. Small Groups in Programmed Environments: Behavioral and Biological Interactions.

    DTIC Science & Technology

    1983-04-01

    DISTRIBUTION STATEMENT (of the abettdre entered in Block 20. it differm Iroi Repot) IS. SUPPLEMENTARY NOTES The Pavlovian Journal of Bioloqical Science, in...microsociety. Summarized are previous research emphases and findings in relationship to (1) conditions \\ DD FO 14c13 aj m-n€ or t nov as is ONscmTa. - DO...research on individual and group effectiveness under laboratory conditions would be advantaged by a more effective method for long-ter, analyses of human

  10. Space and radiation protection: scientific requirements for space research

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1995-01-01

    Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.

  11. 21 CFR 601.90 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.90 Scope... subpart applies only to those biological products for which: Definitive human efficacy studies cannot be...

  12. 21 CFR 601.90 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.90 Scope... subpart applies only to those biological products for which: Definitive human efficacy studies cannot be...

  13. 21 CFR 601.90 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.90 Scope... subpart applies only to those biological products for which: Definitive human efficacy studies cannot be...

  14. 21 CFR 601.90 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.90 Scope... subpart applies only to those biological products for which: Definitive human efficacy studies cannot be...

  15. 21 CFR 601.90 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.90 Scope... subpart applies only to those biological products for which: Definitive human efficacy studies cannot be...

  16. The Space Shuttle Program and Its Support for Space Bioresearch

    ERIC Educational Resources Information Center

    Mason, J. A.; Heberlig, J. C.

    1973-01-01

    The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)

  17. Scientific Programs and Funding Opportunities at the National Institute of Biomedical Imaging and Bioengineering

    NASA Astrophysics Data System (ADS)

    Baird, Richard

    2006-03-01

    The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.

  18. Biology. Focus on Excellence. Volume 1, Number 3.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Bonnstetter, Ronald J.

    The 1982 Search for Excellence in Science Education project has identified 10 exemplary programs in biology. Descriptions of the programs and the criteria used in their selection are presented. Chapter 1 discusses the desired state in biology education, examining the goals of biology education and how these goals relate to biology curriculum and…

  19. Integrating Hydrology and Historical Geography in an Interdisciplinary Environmental Masters Program in Northern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Greer, Kirsten; James, April

    2016-04-01

    Research in hydrology and other sciences are increasingly calling for new collaborations that "…simultaneously explore the biogeophysical, social and economic forces that shape an increasingly human-dominated global hydrologic system…" (Vorosmarty et al. 2015, p.104). With many environmental programs designed to help students tackle environmental problems, these initiatives are not without fundamental challenges (for example, they are often developed around a single epistemology of positivism). Many environmental graduate programs provide narrow interdisciplinary training (within the sciences, or bridging to the social sciences) but do not necessarily engage with the humanities. Geography however, has a long tradition and history of bridging the geophysical, social sciences, and humanities. In this paper, we reflect on new programming in an Interdisciplinary Master's program in Northern Ontario, Canada, inspired by the rich tradition of geography. As Canada Research Chairs trained in different geographical traditions (historical geography and hydrology), we aim to bring together approaches in the humanities and geophysical sciences to understand hydrological and environmental change over time. We are teaching in a small, predominantly undergraduate University located in Northern Ontario, Canada, a region shaped significantly by colonial histories and resource development. The Masters of Environmental Studies/Masters of Environmental Sciences (MES/MESc) program was conceived from a decade of interdisciplinary dialogue across three undergraduate departments (Geography, Biology and Chemistry, History) to promote an understanding of both humanistic and scientific approaches to environmental issues. In the fall of 2015, as part of our 2015-2020 Canada Research Chair mandates, we introduced new initiatives to further address the integration of humanities and sciences to our graduate program. We believe the new generation of environmental scientists and practioners should be equipped to deal with the complex histories of colonialism, resource development, and scientific practices in addition to the skills necessary to conduct rigorous scientific environmental research. The following paper discusses some of our initiatives, including (1) a cross-disciplinary 'Workship', which assembled students, faculty and community members on a cruise of the 800 km2 Lake Nipissing to explore imaginative geographies of the lake; (2) a co-taught core course (Perspectives on the Environment) which included a theme specifically on the hydrosocial cycle (Linton and Budds 2014); and (3) student-group projects focused on developing interdisciplinary research proposals. Early reflections on this new programing is illustrating how existing literature in geography is adding ability to help bridge the sciences-humanities divides in our environmental graduate program.

  20. VH Replacement Footprint Analyzer-I, a Java-Based Computer Program for Analyses of Immunoglobulin Heavy Chain Genes and Potential VH Replacement Products in Human and Mouse

    PubMed Central

    Huang, Lin; Lange, Miles D.; Zhang, Zhixin

    2014-01-01

    VH replacement occurs through RAG-mediated secondary recombination between a rearranged VH gene and an upstream unrearranged VH gene. Due to the location of the cryptic recombination signal sequence (cRSS, TACTGTG) at the 3′ end of VH gene coding region, a short stretch of nucleotides from the previous rearranged VH gene can be retained in the newly formed VH–DH junction as a “footprint” of VH replacement. Such footprints can be used as markers to identify Ig heavy chain (IgH) genes potentially generated through VH replacement. To explore the contribution of VH replacement products to the antibody repertoire, we developed a Java-based computer program, VH replacement footprint analyzer-I (VHRFA-I), to analyze published or newly obtained IgH genes from human or mouse. The VHRFA-1 program has multiple functional modules: it first uses service provided by the IMGT/V-QUEST program to assign potential VH, DH, and JH germline genes; then, it searches for VH replacement footprint motifs within the VH–DH junction (N1) regions of IgH gene sequences to identify potential VH replacement products; it can also analyze the frequencies of VH replacement products in correlation with publications, keywords, or VH, DH, and JH gene usages, and mutation status; it can further analyze the amino acid usages encoded by the identified VH replacement footprints. In summary, this program provides a useful computation tool for exploring the biological significance of VH replacement products in human and mouse. PMID:24575092

  1. Change is necessary in a biological engineering curriculum.

    PubMed

    Johnson, Arthur T; Montas, Hubert; Shirmohammadi, Adel; Wheaton, Fredrick W

    2006-01-01

    Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed. The Biological Resources Engineering program has evolved into a program that emphasizes breadth, fundamentals, communications skills, diversity, and practical engineering judgment.

  2. A review of recent patents on macroorganisms as biological control agents.

    PubMed

    Sáenz-de-Cabezón, Francisco Javier; Zalom, Frank G; López-Olguín, Jesús Francisco

    2010-01-01

    The indiscriminate use of synthetic pesticides has brought undesired problems to human health, agriculture, and the environment. Integrated Pest Management (IPM) and Biological Control (BC) programs, which are based on minimum use of pesticides, are seen as alternative, more ecological solutions to the unintended problems associated with pesticide use. These programs combine the introduction, augmentation, and/or conservation of pest natural enemies, with other protection tools. Although patents and the process of commercialization of microorganisms has been the subject of various reviews, macroorganisms used for pest and disease control have stimulated less comprehensive analyses. From our review of patents, there has been an enormous increase in the number of macroorganism-related patents registered in the last two decades. Private companies own 65% of all these patents. Rearing methods and crop protection strategies are the main intellectual property patented, with parasitoid wasps and predatory mites being the primary Biological Control Agent (BCA) focus of patents. Among countries, Japan was the first country with these types of patents, followed by the United States, Canada and China. Increasing concern for pesticide risks by governments and the public is seen as the main impetus for change in "traditional" crop protection practices and for investment in other more ecological products like BCAs.

  3. Evidence for a vast peptide overlap between West Nile virus and human proteomes.

    PubMed

    Capone, Giovanni; Pagoni, Maria; Delfino, Antonella Pesce; Kanduc, Darja

    2013-10-01

    The primary amino acid sequence of West Nile virus (WNV) polyprotein, GenBank accession number M12294, was analyzed by computional biology. WNV is a mosquito-borne neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. Using pentapeptides as scanning units and the perfect peptide match program from PIR International Protein Sequence Database, we compared the WNV polyprotein and the human proteome. WNV polyprotein showed significant sequence similarities to a number of human proteins. Several of these proteins are involved in embryogenesis, neurite outgrowth, cortical neuron branching, formation of mature synapses, semaphorin interactions, and voltage dependent L-type calcium channel subunits. The biocomputional study suggest that common amino acid segments might represent a potential platform for further studies on the neurological pathophysiology of WNV infections. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands

    PubMed Central

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2016-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments. PMID:26834702

  5. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    PubMed

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  6. Division of Biological and Medical Research annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level /sup 60/Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and /sup 60/Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projectionmore » models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications.« less

  7. Research Associate | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  8. Development and implementation of coral reef biocriteria in U.S. jurisdictions.

    PubMed

    Bradley, Patricia; Fisher, William S; Bell, Heidi; Davis, Wayne; Chan, Valerie; LoBue, Charles; Wiltse, Wendy

    2009-03-01

    Coral reefs worldwide are declining at an alarming rate and are under continuous threat from both natural and anthropogenic environmental stressors. Warmer sea temperatures attributed to global climate change and numerous human activities at local scales place these valuable ecosystems at risk. Reefs provide numerous services, including shoreline protection, fishing, tourism and biological diversity, which are lost through physical damage, overfishing, and pollution. Pollution can be controlled under provisions of the Clean Water Act, but these options have not been fully employed to protect coral reefs. No U.S. jurisdiction has implemented coral reef biocriteria, which are narrative or quantitative water quality standards based on the condition of a biological resource or assemblage. The President's Ocean Action Plan directs the U.S. Environmental Protection Agency (EPA) to develop biological assessment methods and biological criteria for evaluating and maintaining the health of coral reef ecosystems. EPA has formed the Coral Reef Biocriteria Working Group (CRBWG) to foster development of coral reef biocriteria through focused research, evaluation and communication among Agency partners and U.S. jurisdictions. Ongoing CRBWG activities include development and evaluation of a rapid bioassessment protocol for application in biocriteria programs; development of a survey design and monitoring strategy for the U.S. Virgin Islands; comprehensive reviews of biocriteria approaches proposed by states and territories; and assembly of data from a variety of monitoring programs for additional metrics. Guidance documents are being prepared to assist U.S. jurisdictions in reaching protective and defensible biocriteria.

  9. Summary of biological and contaminant investigations related to stream water quality and environmental setting in the Upper Colorado River basin, 1938-95

    USGS Publications Warehouse

    Deacon, Jeffrey R.; Stephens, Verlin C.

    1996-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program, an inventory of the biological and contaminant investigations for the Upper Colorado River Basin study unit was conducted. To enhance the sampling design for the biological component of the program, previous studies about the ecology of aquatic organisms and contaminants were compiled from computerized literature searches of biological data bases and by contacting other Federal, State, and local agencies. Biological and contaminant investigations that have been conducted throughout the basin since 1938 were categorized according to four general categories of biological investigations and two categories of contaminant investigations: algal communities, macroinvertebrate communities, fish communities, habitat characterization, contaminants in organism tissue, and contaminants in bed sediment. The studies were identified by their locations in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateau, and by the predominant land use in the area of the investigation. Studies on algal communities and contaminants in organism tissue and in bed sediment are limited throughout the basin. Studies on macroinvertebrate and fish communities and habitat characterization are the most abundant in the study unit. Natural and human factors can affect biological communities and their composition. Natural factors that affect background water-quality conditions are physiography, climate, geology, and soils. Algae, macroinvertebrates, and fish that are present in the Southern Rocky Mountains and the Colorado Plateau physiographic provinces vary with altitude and physical environment. Green algae and diatoms are predominant in the higher altitude streams, and blue-green, golden-brown, and green algae are predominant in the lower altitude streams. Caddisflies, mayflies, and stoneflies are the dominant macroinvertebrates in the higher altitudes, whereas aquatic worms, leeches, and dragonflies are more common at lower altitudes. Cold-water species, such as trout, are present at the higher altitudes, and warmer water species, such as catfish, carp, and suckers, are predominant at the lower altitudes. Human factors that affect water-quality conditions are mining, urbanization, agriculture, and hydrologic modifications. Mining areas can be depleted of organisms or contain a low diversity of species. Acid-tolerant algae, such as certain species of green algae and diatoms, and metal-tolerant caddisflies can be present in mining areas. Urbanized areas are located in the Southern Rocky Mountains and in the Colorado Plateau and contain species characteristic of the physiographic provinces. Agricultural areas contain species, such as blue-green algae, aquatic worms, suckers, and carp, that can tolerate organic enrichment, sedimentation, and lower concentrations of dissolved oxygen.

  10. Human System Drivers for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Steinberg, Susan; Charles, John B.

    2010-01-01

    Evaluation of DRM4 in terms of the human system includes the ability to meet NASA standards, the inclusion of the human system in the design trade space, preparation for future missions and consideration of a robotic precursor mission. Ensuring both the safety and the performance capability of the human system depends upon satisfying NASA Space Flight Human System Standards.1 These standards in turn drive the development of program-specific requirements for Near-earth Object (NEO) missions. In evaluating DRM4 in terms of these human system standards, the currently existing risk models, technologies and biological countermeasures were used. A summary of this evaluation is provided below in a structure that supports a mission architecture planning activities. 1. Unacceptable Level of Risk The duration of the DRM4 mission leads to an unacceptable level of risk for two aspects of human system health: A. The permissible exposure limit for space flight radiation exposure (a human system standard) would be exceeded by DRM4. B. The risk of visual alterations and abnormally high intracranial pressure would be too high. 1

  11. Participation of women in human biology, 1975-2001.

    PubMed

    Stinson, Sara

    2003-01-01

    This study examines trends in women's participation in human biology as indicated by women's membership in the Human Biology Council/Association, first authorship of articles in the Human Biology Council/Association journal, and the extent to which women have been the subjects of research published in the organization's journal. Gender of members was determined from seven membership lists published in the organization's journal from 1977 to 1998, and the gender of the first authors was determined for 1616 articles published in Human Biology or the American Journal of Human Biology from 1975 to 2001. Each journal article was also coded as to the first author's country and whether the subjects of the research were only females, only males, or both males and females. From the late 1970s to the late 1990s, the percent of women members of the Human Biology Council/Association increased from under 25% to over 40%. Women were the first authors of fewer than 20% of articles in the organization's journal in the late 1970s; by the late 1990s over 30% of articles had a female first author. The clearest increase in female authorship through time is seen for articles with a first author from the U.S. Even when women were not well represented as human biologists, a substantial proportion of human biology research published in the organization's journal dealt with females, and over the last 15 years there have been more research articles having only females as research subjects than articles having only males as research subjects. Copyright 2003 Wiley-Liss, Inc.

  12. Velocity-curvature patterns limit human-robot physical interaction

    PubMed Central

    Maurice, Pauline; Huber, Meghan E.; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration. PMID:29744380

  13. Velocity-curvature patterns limit human-robot physical interaction.

    PubMed

    Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.

  14. Delivering The Benefits of Chemical-Biological Integration in ...

    EPA Pesticide Factsheets

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intention of this research program is to quickly evaluate thousands of chemicals for potential risk but with much reduced cost relative to historical approaches. This work involves computational and data driven approaches including high-throughput screening, modeling, text-mining and the integration of chemistry, exposure and biological data. We have developed a number of databases and applications that are delivering on the vision of developing a deeper understanding of chemicals and their effects on exposure and biological processes that are supporting a large community of scientists in their research efforts. This presentation will provide an overview of our work to bring together diverse large scale data from the chemical and biological domains, our approaches to integrate and disseminate these data, and the delivery of models supporting computational toxicology. This abstract does not reflect U.S. EPA policy. Presentation at ACS TOXI session on Computational Chemistry and Toxicology in Chemical Discovery and Assessement (QSARs).

  15. Humans (really) are animals: picture-book reading influences 5-year-old urban children’s construal of the relation between humans and non-human animals

    PubMed Central

    Waxman, Sandra R.; Herrmann, Patricia; Woodring, Jennie; Medin, Douglas L.

    2014-01-01

    What is the relation between humans and non-human animals? From a biological perspective, we view humans as one species among many, but in the fables and films we create for children, we often offer an anthropocentric perspective, imbuing non-human animals with human-like characteristics. What are the consequences of these distinctly different perspectives on children’s reasoning about the natural world? Some have argued that children universally begin with an anthropocentric perspective and that acquiring a biological perspective requires a basic conceptual change (cf. Carey, 1985). But recent work reveals that this anthropocentric perspective, evidenced in urban 5-year-olds, is not evident in 3-year-olds (Herrmann etal., 2010). This indicates that the anthropocentric perspective is not an obligatory first step in children’s reasoning about biological phenomena. In the current paper, we introduced a priming manipulation to assess whether 5-year-olds’ reasoning about a novel biological property is influenced by the perspectives they encounter in children’s books. Just before participating in a reasoning task, each child read a book about bears with an experimenter. What varied was whether bears were depicted from an anthropomorphic (Berenstain Bears) or biological perspective (Animal Encyclopedia). The priming had a dramatic effect. Children reading the Berenstain Bears showed the standard anthropocentric reasoning pattern, but those reading the Animal Encyclopedia adopted a biological pattern. This offers evidence that urban 5-year-olds can adopt either a biological or a human-centered stance, depending upon the context. Thus, children’s books and other media are double-edged swords. Media may (inadvertently) support human-centered reasoning in young children, but may also be instrumental in redirecting children’s attention to a biological model. PMID:24672493

  16. Pharmacophore modeling, docking, and principal component analysis based clustering: combined computer-assisted approaches to identify new inhibitors of the human rhinovirus coat protein.

    PubMed

    Steindl, Theodora M; Crump, Carolyn E; Hayden, Frederick G; Langer, Thierry

    2005-10-06

    The development and application of a sophisticated virtual screening and selection protocol to identify potential, novel inhibitors of the human rhinovirus coat protein employing various computer-assisted strategies are described. A large commercially available database of compounds was screened using a highly selective, structure-based pharmacophore model generated with the program Catalyst. A docking study and a principal component analysis were carried out within the software package Cerius and served to validate and further refine the obtained results. These combined efforts led to the selection of six candidate structures, for which in vitro anti-rhinoviral activity could be shown in a biological assay.

  17. The advancement of human pluripotent stem cell-derived therapies into the clinic.

    PubMed

    Thies, R Scott; Murry, Charles E

    2015-09-15

    Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and 'disease in a dish' assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived therapeutics that offer the most promise for clinical use. Lessons from developmental biology have been instrumental in identifying signaling molecules that can guide these differentiation processes in vitro, and will be described in the context of these cell therapy programs. © 2015. Published by The Company of Biologists Ltd.

  18. Human papillomavirus molecular biology.

    PubMed

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education.

    PubMed

    Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne

    2016-11-12

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  20. Impact of a Short Pre-Freshman Program on Retention

    ERIC Educational Resources Information Center

    Wischusen, Sheri M.; Wischusen, E. William; Pomarico, Steven M.

    2011-01-01

    The Biology Intensive Orientation for Students (BIOS) Program at Louisiana State University was designed to increase the success of incoming freshman biology majors in the first course in their major. The program combined content lectures and examinations for BIOL 1201-Introductory Biology for Science Majors, the first course in their major, as…

  1. Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks

    PubMed Central

    Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.

    2013-01-01

    Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602

  2. Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, D.L.

    1989-04-01

    The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less

  3. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  4. Chemical and biological nonproliferation program. FY99 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overviewmore » of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.« less

  5. Instructional Methods for Human Anatomy and Cell Biology in Nurse Anesthesia Graduate Programs: A Survey with a Focus on Regional Anesthesia

    DTIC Science & Technology

    1997-09-01

    undergraduate nursing students . They concluded that students who did well in this course tended to perform better in nursing school overall...curriculum for the medical student of the 21st century: Gross anatomy. Clinical Anatomy. 9 (2), 71-99. Fitzgerald, M.J.T. (1992). Undergraduate medical...Road, Bethesda, MD 20814-4799. Student Registered Nurse Anesthetist (SRNA). 1991 -1995 1 st Medical Group, Langley Air Force Base, Virginia

  6. Fatty Acid Synthase Inhibitors Engage the Cell Death Program Through the Endoplasmic Reticulum

    DTIC Science & Technology

    2007-12-01

    suite26 (Table 1). The structure was solved by molecular replacement using PHASER27 with the native, uncomplexed structure of the thioesterase domain ( PDB ...groups and molecular weight. Using a 96-well format, we screened compounds at 10 μM and used 40% inhibition at a single time point as our threshold for...thioesterase domain of human fatty acid synthase inhibited by Orlistat. (2007) Nature Structural and Molecular Biology 14(8): 704-709. (Article of the

  7. Swedish Defence Research Abstracts 1980/81-3 (Froe Forsvars Forsknings Referat 1980/81-3).

    DTIC Science & Technology

    1981-11-01

    computes the refractive index or the thickness of thin mono- or multi -layer films. The program is written in Fortran and is adapted to the ellipsometer at...Unmnnounced EtN8PECT: Justlflotl Distribution/ Availability Codes Avail and/or Dist Special 2 Index to FRO 80/81-3 A PROTECTION - ATOMIC Al The nuclear...aberrations in PHA-stimulated human lymphocytes in the GI stage (in English) B PROTECTION - BIOLOGICAL BI Threat scenario (119) Epidemiological aspects

  8. Synthetic Beta-Lactam Antibiotics as a Selective Breast Cancer Cell Apoptosis Inducer: Significance in Breast Cancer Prevention and Treatment

    DTIC Science & Technology

    2008-03-01

    Learned from Diet-Gene-Environment Interaction. Environmental Toxicology Graduate Program and Department of Chemistry , University of California at...College of Chemistry , Central China Normal University, Wuhan, China, June 29, 2007 Dou QP. Invited Speaker. Molecular Prevention of Human Cancer: Role of...Discovery Today 2002; 7: 471-8. 3. Morin RB and Gorman M. Chemistry and Biology of beta-Lactam Antibiotics, Vol. 1-3. New York: Academic Press, 1982. 4

  9. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is available in the Viral Recombination Section (VRS), HIV Dynamics and Replication Program, CCR.  The VRS studies retroviral replication using human immunodeficiency viruses and other retroviruses, with a particular emphasis on the mechanisms of viral RNA biology, specific RNA packaging, virus assembly, and HIV replication.  Molecular tools and advanced imaging approaches are used to dissect various aspects of viral replication mechanisms.  A more complete description of the projects can be found at http://home.ncifcrf.gov/hivdrp/Hu_res.html.

  10. Biological Races in Humans

    PubMed Central

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two most commonly used biological concepts of race, chimpanzees are indeed subdivided into races but humans are not. Adaptive traits, such as skin color, have frequently been used to define races in humans, but such adaptive traits reflect the underlying environmental factor to which they are adaptive and not overall genetic differentiation, and different adaptive traits define discordant groups. There are no objective criteria for choosing one adaptive trait over another to define race. As a consequence, adaptive traits do not define races in humans. Much of the recent scientific literature on human evolution portrays human populations as separate branches on an evolutionary tree. A tree-like structure among humans has been falsified whenever tested, so this practice is scientifically indefensible. It is also socially irresponsible as these pictorial representations of human evolution have more impact on the general public than nuanced phrases in the text of a scientific paper. Humans have much genetic diversity, but the vast majority of this diversity reflects individual uniqueness and not race. PMID:23684745

  11. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.

  12. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  13. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    PubMed Central

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the U.S. Environmental Protection Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry and educators at the local, state, national and international levels to: (1) Establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) Work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  14. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  15. Space Life-Support Engineering Program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  16. Advanced Food Technology Workshop Report. Volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2003-01-01

    The Advanced Human Support Technology (AHST) Program conducts research and technology development to provide new technologies and next-generation system that will enable humans to live and work safely and effectively in space. One program element within the AHST Program is Advanced Life Support (ALS). The goal of the ALS program element is to develop regenerative life support systems directed at supporting National Aeronautics and Space Administration's (NASA) future long-duration missions. Such missions could last from months to years and make resupply impractical, thereby necessitating self-sufficiency. Thus, subsystems must be developed to fully recycle air and water, recover resources from solid wastes grow plants, process raw plant products into nutritious and palatable foods, control the thermal environment, while reducing the overall system mass. ALS systems will be a combination of physico-chemical and biological components depending on the specific mission requirements. In the transit vehicle, the food system will primarily be a prepackaged food system with the possible addition of salad crops that can be picked and eaten with limited preparation. On the lunar or planetary evolved base, the food system will be a combination of the prepackaged menu item and ingredients that are processed from the grown crops. Food processing and food preparation will be part of this food system.

  17. Designing mental health interventions informed by child development and human biology theory: A social ecology intervention for child soldiers in Nepal

    PubMed Central

    Kohrt, Brandon A.; Jordans, Mark J.D.; Koirala, Suraj; Worthman, Carol M.

    2017-01-01

    The anthropological study of human biology, health, and child development provides a model with potential to address the gap in population-wide mental health interventions. Four key concepts from human biology can inform public mental health interventions: life history theory and tradeoffs, redundancy and plurality of pathways, cascades and multiplier effects in biological systems, and proximate feedback systems. A public mental health intervention for former child soldiers in Nepal is used to illustrate the role of these concepts in intervention design and evaluation. Future directions and recommendations for applying human biology theory in pursuit of public mental health interventions are discussed. PMID:25380194

  18. Designing mental health interventions informed by child development and human biology theory: a social ecology intervention for child soldiers in Nepal.

    PubMed

    Kohrt, Brandon A; Jordans, Mark J D; Koirala, Suraj; Worthman, Carol M

    2015-01-01

    The anthropological study of human biology, health, and child development provides a model with potential to address the gap in population-wide mental health interventions. Four key concepts from human biology can inform public mental health interventions: life history theory and tradeoffs, redundancy and plurality of pathways, cascades and multiplier effects in biological systems, and proximate feedback systems. A public mental health intervention for former child soldiers in Nepal is used to illustrate the role of these concepts in intervention design and evaluation. Future directions and recommendations for applying human biology theory in pursuit of public mental health interventions are discussed. © 2014 Wiley Periodicals, Inc.

  19. Introduction to the Special Section on Epigenetics.

    PubMed

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  20. Mars scientific investigations as a precursor for human exploration.

    PubMed

    Ahlf, P; Cantwell, E; Ostrach, L; Pline, A

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  1. Mars scientific investigations as a precursor for human exploration

    NASA Technical Reports Server (NTRS)

    Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  2. Implications of the Human Genome Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitcher, P.

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and socialmore » problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.« less

  3. Biological Systems, Energy Sources, and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Tribe, Michael; Pritchard, Alan J.

    This five-chapter document (part of a series on biology and human welfare) focuses on biological systems as energy sources and on the teaching of this subject area. Chapter 1 discusses various topics related to energy and ecology, including biomass, photosynthesis and world energy balances, energy flow through ecosystems, and others. Chapter 2…

  4. Global change in the geosphere-biosphere: Initial priorities for an IGBP

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Some of the factors are outlined that leads one to endorse the concept of focused, international geosphere-biosphere program, whose goal is to understand the interactive physical, chemical, and biological processes that regulate the Earth's unique environment for life, the changes that are occurring in this system, and the manner in which they are influenced by human actions. There is a pressing need to assess the consequence of human activities in the context of natural global change and to provide the body of knowledge necessary to chart a wise course to the future. A number of specific objectives were developed which leads to the conclusion that the need for new programs of observation of the Earth as a planet, a better understanding of the interactive processes that governs its changes, the development of a new generation of coupled modes, and the design of suitable tests to guide the development of these models and the understanding of the processes involved. Some general recommendations are summarized.

  5. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group.

    PubMed

    Shak, S

    1999-08-01

    The recombinant humanized anti-HER2 monoclonal antibody trastuzumab (Herceptin; Genentech, San Francisco, CA) was evaluated in human clinical trials for treatment of women with metastatic breast cancer who have tumors that overexpress HER2. The trastuzumab clinical program consisted of a series of phase I, phase II, and phase III clinical trials. Clinical experience with this novel biologic has been obtained in more than 1,000 women with HER2-overexpressing metastatic breast cancer. Two pivotal trials were performed to evaluate trastuzumab efficacy and safety: (1) trastuzumab in combination with chemotherapy as first-line therapy and (2) trastuzumab as a single agent in second- and third-line chemotherapy. Preliminary results of the pivotal clinical trials that have been presented at national meetings are summarized below. The data suggest that trastuzumab will be an important new treatment option for women with HER2-overexpressing metastatic breast cancer.

  6. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    PubMed

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  7. Microbial Contamination in the Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.

  8. OBIS-USA: Enhancing Ocean Science Outcomes through Data Interoperability and Usability

    NASA Astrophysics Data System (ADS)

    Goldstein, P.; Fornwall, M.

    2014-12-01

    Commercial and industrial information systems have long built and relied upon standard data formats and transactions. Business processes, analytics, applications, and social networks emerge on top of these standards to create value. Examples of value delivered include operational productivity, analytics that enable growth and profit, and enhanced human communication and creativity for innovation. In science informatics, some research and operational activities operate with only scattered adoption of standards and few of the emergent benefits of interoperability. In-situ biological data management in the marine domain is an exemplar. From the origination of biological occurrence records in surveys, observer programs, monitoring and experimentation, through distribution techniques, to applications, decisions, and management response, marine biological data can be difficult, limited, and costly to integrate because of non-standard and undocumented conditions in the data. While this presentation identifies deficits in marine biological data practices, the presentation also identifies this as a field of opportunity. Standards for biological data and metadata do exist, with growing global adoption and extensibility features. Scientific, economic, and social-value motivations provide incentives to maximize marine science investments. Diverse science communities of national and international scale begin to see benefits of collaborative technologies. OBIS-USA (http://USGS.gov/obis-usa) is a program of the United States Geological Survey. This presentation shows how OBIS-USA directly addresses the opportunity to enhance ocean science outcomes through data infrastructure, including: (1) achieving rapid, economical, and high-quality data capture and data flow, (2) offering technology for data storage and methods for data discovery and quality/suitability evaluation, (3) making data understandable and consistent for application purposes, (4) distributing and integrating data in various formats, (5) addressing a range of subject matter within data contents, and (6) preserving data for access long-term.

  9. Bioterrorism and the Role of the Clinical Microbiology Laboratory

    PubMed Central

    2015-01-01

    SUMMARY Regular review of the management of bioterrorism is essential for maintaining readiness for these sporadically occurring events. This review provides an overview of the history of biological disasters and bioterrorism. I also discuss the recent recategorization of tier 1 agents by the U.S. Department of Health and Human Services, the Laboratory Response Network (LRN), and specific training and readiness processes and programs, such as the College of American Pathologists (CAP) Laboratory Preparedness Exercise (LPX). LPX examined the management of cultivable bacterial vaccine and attenuated strains of tier 1 agents or close mimics. In the LPX program, participating laboratories showed improvement in the level of diagnosis required and referral of isolates to an appropriate reference laboratory. Agents which proved difficult to manage in sentinel laboratories included the more fastidious Gram-negative organisms, especially Francisella tularensis and Burkholderia spp. The recent Ebola hemorrhagic fever epidemic provided a check on LRN safety processes. Specific guidelines and recommendations for laboratory safety and risk assessment in the clinical microbiology are explored so that sentinel laboratories can better prepare for the next biological disaster. PMID:26656673

  10. Biological life-support systems for Mars mission.

    PubMed

    Gitelson, J I

    1992-01-01

    Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.

  11. Secretary | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides procurement and logistical assistance in support of the research activities of the Center for Cancer Research.KEY ROLES/RESPONSIBILITIES The Secretary III will: Provide heavy-volume procurement support to a large customer base of laboratory staff, both Leidos Biomed and CCR (gov’t), using blanket orders, purchase requisitions, credit card, and online warehouse system Data entry into appropriate financial system component (CostPoint, Cor360), status checks on orders, maintenance of orders log, reconciliation of credit card transactions, maintenance of electronic filing systems Providing logistical support for the facilitation of travel packages (both pre-travel and post travel) for Leidos Biomed employees, as well as the coordination of seminar speakers and subsequent reimbursements Composing and answering emails/correspondence Communicating with all levels of personnel, both verbally and in writing, to gather and clearly convey information

  12. Assessment of programs in space biology and medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past 30 or more years, the National Research Council Space Studies Board and its various committees have published hundreds of recommendations concerning life sciences research. Several particularly noteworthy themes appear consistently: (1) Balance - the need for a well-balanced research program in terms of ground versus flight, basic versus clinical, and internal versus extramural; (2) Excellence - because of the extremely limited number of flight opportunities (as well as their associated relative costs), the need for absolute excellence in the research that is conducted, in terms of topic, protocol, and investigator, and (3) Facilities - the single most important facility for life sciences research in space, an on-board, variable force centrifuge. In this first assessment report, the Committee on Space Biology and Medicine emphasizes that these long-standing themes remain as essential today as when first articulated. On the brink of the twenty-first century, the nation is contemplating the goal of human space exploration; consequently, the themes bear repeating. Each is a critical component of what will be necessary to successfully achieve such a goal.

  13. Design and validation of general biology learning program based on scientific inquiry skills

    NASA Astrophysics Data System (ADS)

    Cahyani, R.; Mardiana, D.; Noviantoro, N.

    2018-03-01

    Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.

  14. 78 FR 28856 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Request; Bar Code Label Requirement for Human Drug and Biological Products AGENCY: Food and Drug... and clearance. Bar Code Label Requirement for Human Drug and Biological Products--(OMB Control Number... that required human drug product and biological product labels to have bar codes. The rule required bar...

  15. Applying systems biology methods to the study of human physiology in extreme environments

    PubMed Central

    2013-01-01

    Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719

  16. Information resources at the National Center for Biotechnology Information.

    PubMed Central

    Woodsmall, R M; Benson, D A

    1993-01-01

    The National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, was established in 1988 to perform basic research in the field of computational molecular biology as well as build and distribute molecular biology databases. The basic research has led to new algorithms and analysis tools for interpreting genomic data and has been instrumental in the discovery of human disease genes for neurofibromatosis and Kallmann syndrome. The principal database responsibility is the National Institutes of Health (NIH) genetic sequence database, GenBank. NCBI, in collaboration with international partners, builds, distributes, and provides online and CD-ROM access to over 112,000 DNA sequences. Another major program is the integration of multiple sequences databases and related bibliographic information and the development of network-based retrieval systems for Internet access. PMID:8374583

  17. A review of Human Biomonitoring studies of trace elements in Pakistan.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib

    2016-11-01

    Human biomonitoring (HBM) measures the concentration levels of substances or their metabolites in human body fluids and tissues. HBM of dose and biochemical effect monitoring is an effective way of measuring human exposure to chemical substances. Many countries have conducted HBM studies to develop a data base for many chemicals including trace metals of health concern for their risk assessment and risk management. However, in Pakistan, HBM program on large scale for general population does not exist at present or in the past has been reported. Various individual HBM studies have been reported on the assessment of trace elements (usually heavy metals) from Pakistan; most of them are epidemiological cross sectional surveys. In this current review we tried to develop a data base of HBM studies of trace elements namely arsenic, cadmium, copper, chromium, iron, lead, manganese, nickel, and zinc in biological fluids (blood, urine) and tissues (hair, nails) in general population of Pakistan. Studies from all available sources have been explored, discussed and presented in the form of tables and figures. The results of these studies were critically compared with large scale HBM programs of other countries, (US & European communities etc). It was observed from the present study that the most of the toxic metals in biological fluids/tissues in general population of Pakistan, have higher background values comparatively. For example the mean values of toxic metals like As, Cd, Cr, Ni, and Pb in blood of general population were found as 2.08 μg/L, 4.24 μg/L, 60.5 μg/L, 1.95 μg/L, 198 μg/L respectively. Similarly, the urine mean values of 67.6 μg/L, 3.2 μg/L, 16.4 μg/L, 6.2 μg/L and 86.5 μg/L were observed for As, Cd, Cr, Ni, and Pb respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 78 FR 47319 - Fee Schedule for Reference Biological Standards and Biological Preparations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Fee Schedule for Reference Biological Standards and Biological Preparations AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS). ACTION: General notice. SUMMARY: The Centers...

  19. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Laboratory of Tumor Immunology and Biology (LTIB) functions as a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of developing novel immunotherapies for cancer. The LTIB strategic plan focuses on the development of novel immunotherapeutics for human cancer, not only as monotherapies, but more importantly, in combination with other immune-mediating modalities, and other conventional or experimental therapies, as part of an immuno-oncology programmatic effort. Within this effort are several research groups, a clinical trials group, and multiple collaborations with intramural and extramural scientific and clinical investigators and with investigators in the private sector. The program takes advantage of the uniqueness of the NCI intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. Focus is placed on the design and development of novel "off-the-shelf" recombinant immunotherapeutics that can be used in clinical studies at numerous institutions. A major strength of the program is the rapid translation of preclinical studies to hypothesis-generating clinical trials. We are looking for postdoctoral fellows interested in learning immunology and immunotherapy, as well as those postdoctoral fellows with a background and/or interest in experimental pathology.  The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience.

  20. The importance of employing computational resources for the automation of drug discovery.

    PubMed

    Rosales-Hernández, Martha Cecilia; Correa-Basurto, José

    2015-03-01

    The application of computational tools to drug discovery helps researchers to design and evaluate new drugs swiftly with a reduce economic resources. To discover new potential drugs, computational chemistry incorporates automatization for obtaining biological data such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), as well as drug mechanisms of action. This editorial looks at examples of these computational tools, including docking, molecular dynamics simulation, virtual screening, quantum chemistry, quantitative structural activity relationship, principal component analysis and drug screening workflow systems. The authors then provide their perspectives on the importance of these techniques for drug discovery. Computational tools help researchers to design and discover new drugs for the treatment of several human diseases without side effects, thus allowing for the evaluation of millions of compounds with a reduced cost in both time and economic resources. The problem is that operating each program is difficult; one is required to use several programs and understand each of the properties being tested. In the future, it is possible that a single computer and software program will be capable of evaluating the complete properties (mechanisms of action and ADMET properties) of ligands. It is also possible that after submitting one target, this computer-software will be capable of suggesting potential compounds along with ways to synthesize them, and presenting biological models for testing.

  1. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life.

    PubMed

    Kaput, Jim; van Ommen, Ben; Kremer, Bas; Priami, Corrado; Monteiro, Jacqueline Pontes; Morine, Melissa; Pepping, Fre; Diaz, Zoey; Fenech, Michael; He, Yiwu; Albers, Ruud; Drevon, Christian A; Evelo, Chris T; Hancock, Robert E W; Ijsselmuiden, Carel; Lumey, L H; Minihane, Anne-Marie; Muller, Michael; Murgia, Chiara; Radonjic, Marijana; Sobral, Bruno; West, Keith P

    2014-01-01

    Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum's one gene-one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems' responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.

  2. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  3. Life Sciences Division Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  4. Implementation and Assessment of a Molecular Biology and Bioinformatics Undergraduate Degree Program

    ERIC Educational Resources Information Center

    Pham, Daphne Q. -D.; Higgs, David C.; Statham, Anne; Schleiter, Mary Kay

    2008-01-01

    The Department of Biological Sciences at the University of Wisconsin-Parkside has developed and implemented an innovative, multidisciplinary undergraduate curriculum in Molecular Biology and Bioinformatics (MBB). The objective of the MBB program is to give students a hands-on facility with molecular biology theories and laboratory techniques, an…

  5. Symposium: The Role of Biological Sciences in the Optometric Curriculum.

    ERIC Educational Resources Information Center

    And Others; Rapp, Jerry

    1980-01-01

    Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)

  6. Global Biology Research Program: Program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Biological processes which play a dominant role in these cycles which transform and transfer much of this material throughout the biosphere are examined. A greater understanding of planetary biological processes as revealed by the interaction of the biota and the environment. The rationale, scope, research strategy, and research priorities of the global biology is presented.

  7. Revisit of Machine Learning Supported Biological and Biomedical Studies.

    PubMed

    Yu, Xiang-Tian; Wang, Lu; Zeng, Tao

    2018-01-01

    Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

  8. Promoting Convergence: The Integrated Graduate Program in Physical and Engineering Biology at Yale University, a New Model for Graduate Education

    ERIC Educational Resources Information Center

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.; Regan, Lynne

    2016-01-01

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to…

  9. Towards programming languages for genetic engineering of living cells

    PubMed Central

    Pedersen, Michael; Phillips, Andrew

    2009-01-01

    Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions. An ultimate dream is to design these systems at a high level of abstraction using engineering-based tools and programming languages, press a button, and have the design translated to DNA sequences that can be synthesized and put to work in living cells. We introduce such a programming language, which allows logical interactions between potentially undetermined proteins and genes to be expressed in a modular manner. Programs can be translated by a compiler into sequences of standard biological parts, a process that relies on logic programming and prototype databases that contain known biological parts and protein interactions. Programs can also be translated to reactions, allowing simulations to be carried out. While current limitations on available data prevent full use of the language in practical applications, the language can be used to develop formal models of synthetic systems, which are otherwise often presented by informal notations. The language can also serve as a concrete proposal on which future language designs can be discussed, and can help to guide the emerging standard of biological parts which so far has focused on biological, rather than logical, properties of parts. PMID:19369220

  10. Towards programming languages for genetic engineering of living cells.

    PubMed

    Pedersen, Michael; Phillips, Andrew

    2009-08-06

    Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions. An ultimate dream is to design these systems at a high level of abstraction using engineering-based tools and programming languages, press a button, and have the design translated to DNA sequences that can be synthesized and put to work in living cells. We introduce such a programming language, which allows logical interactions between potentially undetermined proteins and genes to be expressed in a modular manner. Programs can be translated by a compiler into sequences of standard biological parts, a process that relies on logic programming and prototype databases that contain known biological parts and protein interactions. Programs can also be translated to reactions, allowing simulations to be carried out. While current limitations on available data prevent full use of the language in practical applications, the language can be used to develop formal models of synthetic systems, which are otherwise often presented by informal notations. The language can also serve as a concrete proposal on which future language designs can be discussed, and can help to guide the emerging standard of biological parts which so far has focused on biological, rather than logical, properties of parts.

  11. 78 FR 57293 - Distribution of Reference Biological Standards and Biological Preparations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 7 [Docket No. CDC-2013-0013] RIN 0920-AA52 Distribution of Reference Biological Standards and Biological Preparations AGENCY: Centers for Disease Control and Prevention (HHS/CDC), Department of Health and Human Services (HHS). ACTION: Confirmation of...

  12. Systems biology of human epilepsy applied to patients with brain tumors.

    PubMed

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  13. The future role of next-generation DNA sequencing and metagenetics in aquatic biology monitoring programs

    EPA Science Inventory

    The development of current biological monitoring and bioassessment programs was a drastic improvement over previous programs created for monitoring a limited number of specific chemical pollutants. Although these assessment programs are better designed to address the transient an...

  14. UC Merced Center for Computational Biology Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Michael; Watanabe, Masakatsu

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformationmore » of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs made possible by the CCB from its inception until August, 2010, at the end of the final extension. Although DOE support for the center ended in August 2010, the CCB will continue to exist and support its original objectives. The research and academic programs fostered by the CCB have led to additional extramural funding from other agencies, and we anticipate that CCB will continue to provide support for quantitative and computational biology program at UC Merced for many years to come. Since its inception in fall 2004, CCB research projects have continuously had a multi-institutional collaboration with Lawrence Livermore National Laboratory (LLNL), and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, as well as individual collaborators at other sites. CCB affiliated faculty cover a broad range of computational and mathematical research including molecular modeling, cell biology, applied math, evolutional biology, bioinformatics, etc. The CCB sponsored the first distinguished speaker series at UC Merced, which had an important role is spreading the word about the computational biology emphasis at this new campus. One of CCB's original goals is to help train a new generation of biologists who bridge the gap between the computational and life sciences. To archive this goal, by summer 2006, a new program - summer undergraduate internship program, have been established under CCB to train the highly mathematical and computationally intensive Biological Science researchers. By the end of summer 2010, 44 undergraduate students had gone through this program. Out of those participants, 11 students have been admitted to graduate schools and 10 more students are interested in pursuing graduate studies in the sciences. The center is also continuing to facilitate the development and dissemination of undergraduate and graduate course materials based on the latest research in computational biology.« less

  15. Human Augmentics: augmenting human evolution.

    PubMed

    Kenyon, Robert V; Leigh, Jason

    2011-01-01

    Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans. One can think of Human Augmentics as the driving force in the non-biological evolution of humans. HA devices will provide technology to compensate for human biological limitations either natural or acquired. The strengths of HA lie in its applicability to all humans. Its interoperability enables the formation of ecosystems whereby augmented humans can draw from other realms such as "the Cloud" and other augmented humans for strength. The exponential growth in new technologies portends such a system but must be designed for interaction through the use of open-standards and open-APIs for system development. We discuss the conditions needed for HA to flourish with an emphasis on devices that provide non-biological rehabilitation.

  16. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  17. Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program.

    PubMed

    Morciano, Patrizia; Iorio, Roberto; Iovino, Daniela; Cipressa, Francesca; Esposito, Giuseppe; Porrazzo, Antonella; Satta, Luigi; Alesse, Edoardo; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-01-01

    Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans. © 2017 Wiley Periodicals, Inc.

  18. Integration of culture and biology in human development.

    PubMed

    Mistry, Jayanthi

    2013-01-01

    The challenge of integrating biology and culture is addressed in this chapter by emphasizing human development as involving mutually constitutive, embodied, and epigenetic processes. Heuristically rich constructs extrapolated from cultural psychology and developmental science, such as embodiment, action, and activity, are presented as promising approaches to the integration of cultural and biology in human development. These theoretical notions are applied to frame the nascent field of cultural neuroscience as representing this integration of culture and biology. Current empirical research in cultural neuroscience is then synthesized to illustrate emerging trends in this body of literature that examine the integration of biology and culture.

  19. The NASA Space Biology Program

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1982-01-01

    A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.

  20. An Experimental Study of a BSCS-Style Laboratory Approach for University General Biology.

    ERIC Educational Resources Information Center

    Leonard, William H.

    1983-01-01

    A Biological Sciences Curriculum Study (BSCS) inquiry approach for university general biology laboratory was tested against a well-established commercial program judged to be highly directive. The BSCS was found to be more effective in learning biology laboratory concepts than the commercial program as measured by a laboratory concepts test.…

  1. Explorations: A Research-Based Program Introducing Undergraduates to Diverse Biology Research Topics Taught by Grad Students and Postdocs

    ERIC Educational Resources Information Center

    Brownell, Sara E.; Khalfan, Waheeda; Bergmann, Dominique; Simoni, Robert

    2013-01-01

    Undergraduate biology majors are often overwhelmed by and underinformed about the diversity and complexity of biological research that is conducted on research-intensive campuses. We present a program that introduces undergraduates to the diversity and scope of biological research and also provides unique teaching opportunities for graduate…

  2. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education

    PubMed Central

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.

    2016-01-01

    Abstract In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co‐teaching by faculty with complementary specializations, student peer learning, and novel hands‐on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.‐granting home programs in the physical, engineering, and biological sciences. Moreover, the wide‐ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution‐level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical “how to” manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537–549, 2016. PMID:27292366

  3. An information maximization model of eye movements

    NASA Technical Reports Server (NTRS)

    Renninger, Laura Walker; Coughlan, James; Verghese, Preeti; Malik, Jitendra

    2005-01-01

    We propose a sequential information maximization model as a general strategy for programming eye movements. The model reconstructs high-resolution visual information from a sequence of fixations, taking into account the fall-off in resolution from the fovea to the periphery. From this framework we get a simple rule for predicting fixation sequences: after each fixation, fixate next at the location that minimizes uncertainty (maximizes information) about the stimulus. By comparing our model performance to human eye movement data and to predictions from a saliency and random model, we demonstrate that our model is best at predicting fixation locations. Modeling additional biological constraints will improve the prediction of fixation sequences. Our results suggest that information maximization is a useful principle for programming eye movements.

  4. Posttranscriptional (Re)programming of Cell Fate: Examples in Stem Cells, Progenitor, and Differentiated Cells.

    PubMed

    Kanellopoulou, Chrysi; Muljo, Stefan A

    2018-01-01

    How a single genome can give rise to many different transcriptomes and thus all the different cell lineages in the human body is a fundamental question in biology. While signaling pathways, transcription factors, and chromatin architecture, to name a few determinants, have been established to play critical roles, recently, there is a growing appreciation of the roles of non-coding RNAs and RNA-binding proteins in controlling cell fates posttranscriptionally. Thus, it is vital that these emerging players are also integrated into models of gene regulatory networks that underlie programs of cellular differentiation. Sometimes, we can leverage knowledge about such posttranscriptional circuits to reprogram patterns of gene expression in meaningful ways. Here, we review three examples from our work.

  5. 78 FR 50094 - Notice of Inventory Completion: Maxey Museum, Walla Walla, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... of the Maxey Museum, Walla Walla, WA. The human remains were removed from the Whitman College Biology... the Biology Department at Whitman College, in Walla Walla County, WA, the Biology Department asked the Maxey Museum at Whitman College to determine whether any of the human remains in the Biology Department...

  6. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    ERIC Educational Resources Information Center

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  7. NABS Program: (Native Americans in Biological Science).

    ERIC Educational Resources Information Center

    Gettys, Nancy, Comp.

    1994-01-01

    Describes the four-week summer program of the Native Americans in Biological Sciences Program that engages Native American eighth- and ninth-grade students in studying the problems related to the waste water treatment plant in Cushing, Oklahoma. (MDH)

  8. Research Associate | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.

  9. The USGS role in mapping the nation's submerged lands

    USGS Publications Warehouse

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  10. The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).

    PubMed

    Nelson, William G; Bergen, Barbara J

    2012-12-01

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.

  11. Preparing Future Biology Faculty: An Advanced Professional Development Program for Graduate Students

    ERIC Educational Resources Information Center

    Lockwood, Stephanie A.; Miller, Amanda J.; Cromie, Meghan M.

    2014-01-01

    Formal professional development programs for biology graduate students interested in becoming faculty members have come far; however, programs that provide advanced teaching experience for seasoned graduate teaching assistants are scarce. We outline an advanced program that focuses on further training of graduate teaching assistants in pedagogy…

  12. Biological systems for human life support: Review of the research in the USSR

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1979-01-01

    Various models of biological human life support systems are surveyed. Biological structures, dimensions, and functional parameters of man-chlorella-microorganism models are described. Significant observations and the results obtained from these models are reported.

  13. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.

  14. NASA Space Biology Research Associate Program for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1999-01-01

    The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective manner. The program began on June 1, 1980 with funding to support several Research Associates each year. 113 awards, plus 1 from an independently supported minority component were made for the Research Associates program. The program was changed from a one year award with a possibility for renewal to a two year award. In 1999, the decision was made by NASA to discontinue the program due to development of new priorities for funding. This grant was discontinued because of the move of the Program Director to a new institution; a new grant was provided to that new institution to allow completion of the training of the remaining 2 research associates in 1999. After 1999, the program will be discontinued.

  15. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses

    PubMed Central

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T.; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner. PMID:28993767

  16. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses.

    PubMed

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro . In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.

  17. Psychobiology and Neuroscience at the Florida State University: a history.

    PubMed

    Rashotte, Michael E; Smith, James C

    2005-10-15

    In the 1950s, young faculty in Psychology and Physiology/Biology at the newly established Florida State University recognized common interests in the study of sensory systems. They spontaneously formed one of this country's earliest interdisciplinary research cohorts in the emerging field of "psychobiology". In the 1960s, this group established a formal graduate program in Psychobiology, acquired resources for building a new laboratory and for supporting pre- and post-doctoral students, and began the expansion of faculty and research focuses that continues to this day. In 1991, FSU's Psychobiology Program was re-branded as a Program in Neuroscience that awards a doctoral degree. It now encompasses faculty and students from four academic departments in the Colleges of Arts and Sciences, Human Sciences, and Medicine. This paper traces some main developments in our 50-year history of these research and training efforts.

  18. Goals and objectives for molecular pathology education in residency programs. The Association for Molecular Pathology Training and Education Committee.

    PubMed

    1999-11-01

    Increasing knowledge of the molecular basis of disease and advances in technology for analyzing nucleic acids and gene products are changing pathology practice. The explosion of information regarding inherited susceptibility to disease is an important aspect of this transformation. Pathology residency programs are incorporating molecular pathology education into their curricula to prepare newly trained pathologists for the future, yet little guidance has been available regarding the important components of molecular pathology training. We present general goals for pathology training programs for molecular pathology education. These include recommendations to pathology residents for the acquisition of both basic knowledge in human genetics and molecular biology and specific skills relevant to microbiology, molecular oncology, genetics, histocompatibility, and identity determination. The importance of residents gaining facility in integrating data gained via nucleic acid based-technology with other laboratory and clinical information available in the care of patients is emphasized.

  19. Goals and Objectives for Molecular Pathology Education in Residency Programs

    PubMed Central

    1999-01-01

    Increasing knowledge of the molecular basis of disease and advances in technology for analyzing nucleic acids and gene products are changing pathology practice. The explosion of information regarding inherited susceptibility to disease is an important aspect of this transformation. Pathology residency programs are incorporating molecular pathology education into their curricula to prepare newly trained pathologists for the future, yet little guidance has been available regarding the important components of molecular pathology training. We present general goals for pathology training programs for molecular pathology education. These include recommendations to pathology residents for the acquisition of both basic knowledge in human genetics and molecular biology and specific skills relevant to microbiology, molecular oncology, genetics, histocompatibility, and identity determination. The importance of residents gaining facility in integrating data gained via nucleic acid based-technology with other laboratory and clinical information available in the care of patients is emphasized. PMID:11272908

  20. Oral biology in middle age: a history of the University at Buffalo Oral Biology PhD Program.

    PubMed

    Scannapieco, F A

    2014-05-01

    In 1960, the first Department of Oral Biology in the United States dedicated to the conduct of research, graduate biomedical research education, and the provision of basic oral science education for the DDS curriculum was established at the University at Buffalo. In 1963, the Department organized the first PhD Program in Oral Biology in the United States. This PhD program has produced a large cadre of oral health researchers, many of whom have gone on to make major contributions to dental research and education. This article provides a brief history of the program, the context within which the program was organized and developed, and a description of some of the many faculty, students, and fellows associated with the program. Additionally, to celebrate the 50th anniversary of this program, a symposium, entitled "The Oral Microbiome, Immunity and Chronic Disease", was held on June 12-14, 2013, in Buffalo, New York. The proceedings are published online in Advances in Dental Research (2014, Vol. 26).

  1. The use of animals as a surveillance tool for monitoring environmental health hazards, human health hazards and bioterrorism.

    PubMed

    Neo, Jacqueline Pei Shan; Tan, Boon Huan

    2017-05-01

    This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Bridging the health security divide: department of defense support for the global health security agenda.

    PubMed

    Moudy, Robin M; Ingerson-Mahar, Michael; Kanter, Jordan; Grant, Ashley M; Fisher, Dara R; Jones, Franca R

    2014-01-01

    In 2011, President Obama addressed the United Nations General Assembly and urged the global community to come together to prevent, detect, and fight every kind of biological danger, whether a pandemic, terrorist threat, or treatable disease. Over the past decade, the United States and key international partners have addressed these dangers through a variety of programs and strategies aimed at developing and enhancing countries' capacity to rapidly detect, assess, report, and respond to acute biological threats. Despite our collective efforts, however, an increasingly interconnected world presents heightened opportunities for human, animal, and zoonotic diseases to emerge and spread globally. Further, the technical capabilities required to develop biological agents into a weapon are relatively low. The launch of the Global Health Security Agenda (GHSA) provides an opportunity for the international community to enhance the linkages between the health and security sectors, accelerating global efforts to prevent avoidable epidemics and bioterrorism, detect threats early, and respond rapidly and effectively to biological threats. The US Department of Defense (DoD) plays a key role in achieving GHSA objectives through its force health protection, threat reduction, and biodefense efforts at home and abroad. This article focuses on GHSA activities conducted in the DoD Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense.

  3. Lunar Plant Biology - A Review of the Apollo Era

    NASA Astrophysics Data System (ADS)

    Ferl, Robert J.; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  4. Lunar plant biology--a review of the Apollo era.

    PubMed

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  5. Exemplary Programs in Secondary School Biology.

    ERIC Educational Resources Information Center

    McComas, William F.; Penick, John E.

    1989-01-01

    Summarizes 10 exemplary programs which address topics on individualized biology, a modified team approach, limnology, physical anthropology, the relevance of biology to society, ecology, and health. Provides names and addresses of contact persons for further information. Units cover a broad range of abilities and activities. (RT)

  6. Environmental Biology Programs at the University of Illinois, Urbana-Champaign.

    ERIC Educational Resources Information Center

    Getz, Lowell L.

    1987-01-01

    Describes the programs of the Department of Ecology, Ethology, and Evolution at the University of Illinois (Urbana-Champaign). Focuses on the graduate degrees offered in environmental biology. Lists research interests and courses in plant biology, entomology, forestry, civil engineering, and landscape architecture. (TW)

  7. Stem Cells: A Renaissance in Human Biology Research.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect.

    PubMed

    Zanichelli, Fulvia; Capasso, Stefania; Cipollaro, Marilena; Pagnotta, Eleonora; Cartenì, Maria; Casale, Fiorina; Iori, Renato; Galderisi, Umberto

    2012-04-01

    Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(-)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.

  9. Ames Life Science Data Archive: Translational Rodent Research at Ames

    NASA Technical Reports Server (NTRS)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These experiment descriptions and data can be accessed online via the public LSDA website (http://lsda.jsc.nasa.gov) and information can be requested via the Data Request form at http://lsda.jsc.nasa.gov/common/dataRequest/dataRequest.aspx or by contacting the ALSDA Office at: Alison.J.French@nasa.gov

  10. Reviews: Software.

    ERIC Educational Resources Information Center

    Mackenzie, Norma N.; And Others

    1988-01-01

    Reviews four computer software packages including: "The Physical Science Series: Sound" which demonstrates making waves, speed of sound, doppler effect, and human hearing; "Andromeda" depicting celestial motions in any direction; "Biology Quiz: Humans" covering chemistry, cells, viruses, and human biology; and…

  11. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    PubMed Central

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  12. A comparative encyclopedia of DNA elements in the mouse genome.

    PubMed

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.

  13. Metabolic changes in humans following total body irradiation. Report for February 1960-October 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    These studies are designed to obtain new information about the metabolic effects of total body and partial body irradiation so as to have a better understanding of the acute and subacute effects of irradiation in the human. The initial studies are pointed toward the elucidation of biological indicators of radiation effects in humans. The major parameters being investigated at present are urinary amino aciduria and alterations in immunological patterns. Certain other parameters such as creatine and creatinine excretion and hematological effects are also being followed. The long-term program envisions carrying out the various observations at dose levels of 100 radmore » and gradually increasing the dose to 150, 200, 250 and 300 rad. Eventually doses up to 600 rad are anticipated. Also comparison of effects of radiomimetic drugs with total body radiation will be studied.« less

  14. The 159th national meeting of the American Association for the advancement of science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume is the program/abstracts for the 1993 national meeting of the American Association for the Advancement of Science. The meeting was held in Boston from 11-16 February 1993. Symposia dealt with works on the following topics; perspectives on human genetics; confronting AIDS; biology, cells bugs; medical research society; social psychology neuroscience; future chemistry, from carbon to silicon; measuring the matter energy of the universe; earth's ever-changing atmosphere; causing coping with environmental change; agricultural biotechnology, plant protection production; science corporate enterprise; examining reforming the economic system; science, ethics the law; communicating science to the public; information technology the changing facemore » of science; mathematics, concepts computations; international cooperation human survival; science for everyone; science religion, examining both; anthropology, dynamics of human history; international science issues; improving formal science education; and science education reform in America. Separate abstracts have been prepared for articles from this volume.« less

  15. Systems Proteomics View of the Endogenous Human Claudin Protein Family

    PubMed Central

    Liu, Fei; Koval, Michael; Ranganathan, Shoba; Fanayan, Susan; Hancock, William S.; Lundberg, Emma K.; Beavis, Ronald C.; Lane, Lydie; Duek, Paula; McQuade, Leon; Kelleher, Neil L.; Baker, Mark S.

    2016-01-01

    Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein–protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation. PMID:26680015

  16. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  17. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  18. A BSCS-Style Laboratory Approach for University General Biology.

    ERIC Educational Resources Information Center

    Leonard, William H.

    1982-01-01

    Compared effectiveness of a Biological Sciences Curriculum Study (BSCS)-style laboratory program in a university general biology course against a popular traditionally oriented program. Although learning gains for both groups were significant, students using the BSCS-style investigations scored significantly higher on a posttest of laboratory…

  19. Human development I: twenty fundamental problems of biology, medicine, and neuro-psychology related to biological information.

    PubMed

    Hermansen, Tyge Dahl; Ventegodt, Søren; Rald, Erik; Clausen, Birgitte; Nielsen, Maj Lyck; Merrick, Joav

    2006-07-06

    In a new series of papers, we address a number of unsolved problems in biology today. First of all, the unsolved enigma concerning how the differentiation from a single zygote to an adult individual happens has been object for severe research for decades. By uncovering a new holistic biological paradigm that introduces an energetic-informational interpretation of reality as a new way to experience biology, these papers will try to solve the problems connected with the events of biological ontogenesis involving a fractal hierarchy, from a single cell to the function of the human brain. The problems discussed are interpreted within the frames of a universe of roomy fractal structures containing energetic patterns that are able to deliver biological information. We think biological organization is guided by energetic changes on the level of quantum mechanics, interacting with the intention that again guides the energetic conformation of the fractal structures to gain disorders or healthiness. Furthermore, we introduce two new concepts: "metamorphous top down" evolution and "adult human metamorphosis". The first is a new evolutionary theory involving metamorphosis as a main concept of evolution. The last is tightly linked to the evolutionary principle and explains how human self-recovery is governed. Other subjects of special interest that we shall look deeper into are the immunological self-nonself discrimination, the structure and function of the human brain, the etiology and salutogenesis of mental and somatic diseases, and the structure of the consciousness of a human being. We shall criticize Szentagothai's model for the modulated structure of the human cerebral cortex and Jerne's theory of the immunological regulatory anti-idiotypic network.

  20. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  1. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    PubMed Central

    Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.

    2014-01-01

    Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063

  2. BioBlocks: Programming Protocols in Biology Made Easier.

    PubMed

    Gupta, Vishal; Irimia, Jesús; Pau, Iván; Rodríguez-Patón, Alfonso

    2017-07-21

    The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-demand biology enterprises are making automating entire experiments a reality. Automation offers the benefit of high-throughput experimentation, rapid prototyping, and improved reproducibility of results. However, learning to automate and codify experiments is a difficult task as it requires programming expertise. Here, we present a web-based visual development environment called BioBlocks for describing experimental protocols in biology. It is based on Google's Blockly and Scratch, and requires little or no experience in computer programming to automate the execution of experiments. The experiments can be specified, saved, modified, and shared between multiple users in an easy manner. BioBlocks is open-source and can be customized to execute protocols on local robotic platforms or remotely, that is, in the cloud. It aims to serve as a de facto open standard for programming protocols in Biology.

  3. 2016 Summer Series - Michael Flynn - Synthetic Biological Membrane

    NASA Image and Video Library

    2016-08-02

    Full understanding leads to creation capability, which results in customization capacity. Synthetic biology uses our knowledge of biology to engineer novel biological devices or organisms that can perform tasks not found in nature. For Human space exploration, synthetic biology approaches will reduce risk, mass carried and increase Human reach. Michael Flynn will discuss the International Space Station (ISS) water recycling and his current work on developing a water filtration system capable of self-repair.

  4. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.

    PubMed

    McCauley, Heather A; Wells, James M

    2017-03-15

    Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology. © 2017. Published by The Company of Biologists Ltd.

  5. Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines.

    PubMed

    Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan

    2017-01-01

    Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.

  6. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  7. The Simulation and Analysis of an Evolutionary Model of Deoxyribonucleic Acid (DNA).

    DTIC Science & Technology

    1983-09-01

    current interest in evolutionary biology . This section identifies the organization of the remainder of the paper. The second chapter reports the...the field of evolutionary biology . 77 APPENDIX 78 APPENDIX A PROGRAM SOURCE LISTING -79 PROGRAM SOURCE LISTING 00005 PROGRAM (COMPUTERANDOM MUTATIONS...34Some Theoretical Aspects of the Problem of Life Origin," Journal 2f Theoreical Biology : 13-23, 1975. 27. Chirpich, Thomas P. "Rates of Protein

  8. An introduction to microbiome analysis for human biology applications.

    PubMed

    Amato, Katherine R

    2017-01-01

    Research examining the gut microbiota is currently exploding, and results are providing new perspectives on human biology. Factors such as host diet and physiology influence the composition and function of the gut microbiota, which in turn affects human nutrition, health, and behavior via interactions with metabolism, the immune system, and the brain. These findings represent an exciting new twist on familiar topics, and as a result, gut microbiome research is likely to provide insight into unresolved biological mechanisms driving human health. However, much remains to be learned about the broader ecological and evolutionary contexts within which gut microbes and humans are affecting each other. Here, I outline the procedures for generating data describing the gut microbiota with the goal of facilitating the wider integration of microbiome analyses into studies of human biology. I describe the steps involved in sample collection, DNA extraction, PCR amplification, high-throughput sequencing, and bioinformatics. While this review serves only as an introduction to these topics, it provides sufficient resources for researchers interested in launching new microbiome initiatives. As knowledge of these methods spreads, microbiome analysis should become a standard tool in the arsenal of human biology research. © 2016 Wiley Periodicals, Inc.

  9. Kangaroo – A pattern-matching program for biological sequences

    PubMed Central

    2002-01-01

    Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats. PMID:12150718

  10. The impact of the new biology on radiation risks in space

    NASA Technical Reports Server (NTRS)

    Dicello, John F.

    2003-01-01

    Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.

  11. The Next Great Science

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.

    2007-12-01

    Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".

  12. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  13. Authorized Course of Instruction for the Quinmester Program. Science: Cell Biology, Introduction to Life Science.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This instructional package contains two biological units developed for the Dade County Florida Quinmester Program. "Introduction to Life Sciences" develops student understandings of cell structure and function, and compares different levels of cellular organization. "Cell Biology" investigates the origin of modern cellular…

  14. Breaking down Barriers: A Bridge Program Helps First-Year Biology Students Connect with Faculty

    ERIC Educational Resources Information Center

    Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.

    2018-01-01

    Summer bridge programs often aim to build social connections for first-year students to ease their transition into college, yet few studies have reported on bridge programs successfully leading to these outcomes. We backward designed a summer bridge program for incoming biology majors to increase the comfort and connections among students and…

  15. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  16. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis

    PubMed Central

    Yang, Fan; Wang, Jiebiao; Pierce, Brandon L.; Chen, Lin S.

    2017-01-01

    The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes (cis-eQTLs). More research is needed to identify effects of genetic variation on distant genes (trans-eQTLs) and understand their biological mechanisms. One common trans-eQTLs mechanism is “mediation” by a local (cis) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are “cis-mediators” of trans-eQTLs, including those “cis-hubs” involved in regulation of many trans-genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans-eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis-mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis-hubs and trans-eQTL regulation across tissue types. PMID:29021290

  17. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis.

    PubMed

    Yang, Fan; Wang, Jiebiao; Pierce, Brandon L; Chen, Lin S

    2017-11-01

    The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes ( cis -eQTLs). More research is needed to identify effects of genetic variation on distant genes ( trans -eQTLs) and understand their biological mechanisms. One common trans -eQTLs mechanism is "mediation" by a local ( cis ) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are " cis -mediators" of trans -eQTLs, including those " cis -hubs" involved in regulation of many trans -genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans -eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis -mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis -hubs and trans -eQTL regulation across tissue types. © 2017 Yang et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Toward synthesizing executable models in biology.

    PubMed

    Fisher, Jasmin; Piterman, Nir; Bodik, Rastislav

    2014-01-01

    Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell's behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions), even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modeling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.

  19. Who's Who in Biology.

    ERIC Educational Resources Information Center

    Norman, Colin

    1983-01-01

    Provides top-rated programs (by university) in biochemistry, botany, cellular/molecular biology, microbiology, physiology, and zoology. Overall scores included with each program were obtained from 1,848 biologists who were asked to rate programs in terms of faculty quality and their effectiveness in educating graduate students. (Author/JN)

  20. Computerized bioterrorism education and training for nurses on bioterrorism attack agents.

    PubMed

    Nyamathi, Adeline M; Casillas, Adrian; King, Major L; Gresham, Louise; Pierce, Elaine; Farb, Daniel; Wiechmann, Carrie; Weichmann, Carrie

    2010-08-01

    Biological agents have the ability to cause large-scale mass casualties. For this reason, their likely use in future terrorist attacks is a concern for national security. Recent studies show that nurses are ill prepared to deal with agents used in biological warfare. Achieving a goal for bioterrorism preparedness is directly linked to comprehensive education and training that enables first-line responders such as nurses to diagnose infectious agents rapidly. The study evaluated participants' responses to biological agents using a computerized bioterrorism education and training program versus a standard bioterrorism education and training program. Both programs improved participants' ability to complete and solve case studies involving the identification of specific biological agents. Participants in the computerized bioterrorism education and training program were more likely to solve the cases critically without reliance on expert consultants. However, participants in the standard bioterrorism education and training program reduced the use of unnecessary diagnostic tests.

  1. Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life

    NASA Technical Reports Server (NTRS)

    Souza, K. A. (Compiler); Young, R. S. (Compiler)

    1976-01-01

    The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

  2. Visual preference in a human-reared agile gibbon (Hylobates agilis).

    PubMed

    Tanaka, Masayuki; Uchikoshi, Makiko

    2010-01-01

    Visual preference was evaluated in a male agile gibbon. The subject was raised by humans immediately after birth, but lived with his biological family from one year of age. Visual preference was assessed using a free-choice task in which five or six photographs of different primate species, including humans, were presented on a touch-sensitive screen. The subject touched one of them. Food rewards were delivered irrespective of the subject's responses. We prepared two types of stimulus sets. With set 1, the subject touched photographs of humans more frequently than those of other species, recalling previous findings in human-reared chimpanzees. With set 2, photographs of nine species of gibbons were presented. Chimpanzees touched photographs of white-handed gibbons more than those of other gibbon species. The gibbon subject initially touched photographs of agile gibbons more than white-handed gibbons, but after one and two years his choice patterns resembled the chimpanzees'. The results suggest that, as in chimpanzees, visual preferences of agile gibbons are not genetically programmed but develop through social experience during infancy.

  3. Anticipatory Mechanisms in Evolutionary Living Systems

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence, it is possible to formulate a new principle of evolution, i.e. the principle of Double Anticipatory Loop (DAL) of evolution: Biological evolution is driven by interaction between a mindless environment that is passively selecting the fittest inhabitants and purposeful anticipatory living systems, which are actively selecting and creating their own environment. Evolution on the genome level is trigged by environmental stress but guided by an inherent program.

  4. A summary of porous tube plant nutrient delivery system investigations from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Sager, J. C.; Wheeler, R. M.; Knott, W. M.

    1992-01-01

    The Controlled Ecological Life Support System (CELSS) Program is a research effort to evaluate biological processes at a one person scale to provide air, water, and food for humans in closed environments for space habitation. This program focuses currently on the use of conventional crop plants and the use of hydroponic systems to grow them. Because conventional hydroponic systems are dependent on gravity to conduct solution flow, they cannot be used in the microgravity of space. Thus, there is a need for a system that will deliver water and nutrients to plant roots under microgravity conditions. The Plant Space Biology Program is interested in investigating the effect that the space environment has on the growth and development of plants. Thus, there is also a need to have a standard nutrient delivery method for growing plants in space for research into plant responses to microgravity. The Porous Tube Plant Nutrient Delivery System (PTPNDS) utilizes a hydrophilic, microporous material to control water and nutrient delivery to plant roots. It has been designed and analyzed to support plant growth independent of gravity and plans are progressing to test it in microgravity. It has been used successfully to grow food crops to maturity in an earth-bound laboratory. This document includes a bibliography and summary reports from the growth trials performed utilizing the PTPNDS.

  5. Whole-Tooth Regeneration: It Takes a Village of Scientists, Clinicians, and Patients

    PubMed Central

    Snead, Malcolm L.

    2008-01-01

    A team of senior scientists was formed in 2006 to create a blueprint for the regeneration of whole human teeth along with all of the supporting structure of the dentition. The team included experts from diverse fields, each with a reputation for stellar accomplishment. Participants attacked the scientific issues of tooth regeneration but, more importantly, each agreed to work collaboratively with experts from other disciplines to form a learning organization. A commitment to learn from one another produced a unique interdisciplinary and multidisciplinary team. Inspired by the Kennedy space program to send a man to the moon, with its myriad of problems and solutions that no one discipline could solve, this tooth regeneration team devised an ambitious plan that sought to use stem cell biology, engineering, and computational biology to replicate the developmental program for odontogenesis. In this manner, team members envisioned a solution that consisted of known or knowable fundamentals. They proposed a laboratory-grown tooth rudiment that would be capable of executing the complete program for odontogenesis when transplanted to a suitable host, recreating all of the dental tissues, periodontal ligament, cementum, and alveolar bone associated with the canonical tooth. This plan was designed to bring regenerative medicine fully into the dental surgery suite, although a lack of funding has so far prevented the plan from being carried out. PMID:18676799

  6. The US EPA ToxCast Program: Moving from Data Generation ...

    EPA Pesticide Factsheets

    The U.S. EPA ToxCast program is entering its tenth year. Significant learning and progress have occurred towards collection, analysis, and interpretation of the data. The library of ~1,800 chemicals has been subject to ongoing characterization (e.g., identity, purity, stability) and is unique in its scope, structural diversity, and use scenarios making it ideally suited to investigate the underlying molecular mechanisms of toxicity. The ~700 high-throughput in vitro assay endpoints cover 327 genes and 293 pathways as well as other integrated cellular processes and responses. The integrated analysis of high-throughput screening data has shown that most environmental and industrial chemicals are very non-selective in the biological targets they perturb, while a small subset of chemicals are relatively selective for specific biological targets. The selectivity of a chemical informs interpretation of the screening results while also guiding future mode-of-action or adverse outcome pathway approaches. Coupling the high-throughput in vitro assays with medium-throughput pharmacokinetic assays and reverse dosimetry allows conversion of the potency estimates to an administered dose. Comparison of the administered dose to human exposure provides a risk-based context. The lessons learned from this effort will be presented and discussed towards application to chemical safety decision making and the future of the computational toxicology program at the U.S. EPA. SOT pr

  7. The fetal programming of telomere biology hypothesis: an update

    PubMed Central

    Entringer, Sonja; Buss, Claudia; Wadhwa, Pathik D.

    2018-01-01

    Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing–related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal–placental–fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’. PMID:29335381

  8. The fetal programming of telomere biology hypothesis: an update.

    PubMed

    Entringer, Sonja; de Punder, Karin; Buss, Claudia; Wadhwa, Pathik D

    2018-03-05

    Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'. © 2018 The Author(s).

  9. BIOLOGICAL BASIS OF SIMILARITIES AND DIFFERENCES BETWEEN HUMAN AND ECOSYSTEM HEALTH

    EPA Science Inventory

    In this chapter, we seek to promote the identification, quantification, and application of biological indicators of human health - ecological integrity interconnections and to determine the similarities and differences in ecological and human health responses to stress. Our objec...

  10. Interests of 5th through 10th Grade Students toward Human Biology

    ERIC Educational Resources Information Center

    Erten, Sinan

    2008-01-01

    This study investigated the middle and high school students' interests towards the subjects of human biology, specifically, "Human Health and Nutrition" and "Human Body and Organs." The study also investigated sources of their interests and factors that impact their interests, namely people that they interact and courses that…

  11. Human Biology, High School Science Course Guide.

    ERIC Educational Resources Information Center

    Donovan, Edward P.; Prickitt, Ralph

    A course in human biology was developed to increase course options for students of all abilities and interest levels who successfully completed 1 year of high school science. Major topic areas of the course include: general plan of the human body; causes, cures, and prevention of diseases; human body chemistry; structure and function of cells,…

  12. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reactivity of the human blood or blood component in the medical device presents no significant health risk... AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Testing Requirements... contains human blood or a blood component as a component of the final device, and the human blood or blood...

  13. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reactivity of the human blood or blood component in the medical device presents no significant health risk... AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Testing Requirements... contains human blood or a blood component as a component of the final device, and the human blood or blood...

  14. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reactivity of the human blood or blood component in the medical device presents no significant health risk... AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Testing Requirements... contains human blood or a blood component as a component of the final device, and the human blood or blood...

  15. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    ERIC Educational Resources Information Center

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  16. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.

  17. Sociability modifies dogs' sensitivity to biological motion of different social relevance.

    PubMed

    Ishikawa, Yuko; Mills, Daniel; Willmott, Alexander; Mullineaux, David; Guo, Kun

    2018-03-01

    Preferential attention to living creatures is believed to be an intrinsic capacity of the visual system of several species, with perception of biological motion often studied and, in humans, it correlates with social cognitive performance. Although domestic dogs are exceptionally attentive to human social cues, it is unknown whether their sociability is associated with sensitivity to conspecific and heterospecific biological motion cues of different social relevance. We recorded video clips of point-light displays depicting a human or dog walking in either frontal or lateral view. In a preferential looking paradigm, dogs spontaneously viewed 16 paired point-light displays showing combinations of normal/inverted (control condition), human/dog and frontal/lateral views. Overall, dogs looked significantly longer at frontal human point-light display versus the inverted control, probably due to its clearer social/biological relevance. Dogs' sociability, assessed through owner-completed questionnaires, further revealed that low-sociability dogs preferred the lateral point-light display view, whereas high-sociability dogs preferred the frontal view. Clearly, dogs can recognize biological motion, but their preference is influenced by their sociability and the stimulus salience, implying biological motion perception may reflect aspects of dogs' social cognition.

  18. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  19. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE PAGES

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; ...

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  20. Anthrax: a continuing concern in the era of bioterrorism

    PubMed Central

    2005-01-01

    Anthrax, a potentially fatal infection, is a virulent and highly contagious disease. It is caused by a gram-positive, toxigenic, spore-forming bacillus: Bacillus anthracis. For centuries, anthrax has caused disease in animals and, although uncommonly, in humans throughout the world. Descriptions of this naturally occurring disease begin in antiquity. Anthrax is primarily a disease of herbivores, which are infected by ingestion of spores from the soil. With the advent of modern microbiology, Pasteur developed the first successful anthrax vaccine in 1881. The incidence of the disease has continually decreased since the late 19th century, and animal vaccination programs drastically reduced the animal mortality from the disease. However, anthrax spores continue to be documented in soil samples from throughout the world. Research on anthrax as a biological weapon began more than 80 years ago, and today at least 17 nations are believed to have offensive biological weapons programs that include anthrax. Recent events in the USA have shown how society is affected by both hoax and real threats of anthrax bioweapons. This fourth article in the series on weapons of biowarfare/bioterrorism summarizes the historical background of anthrax as well as clinical and laboratory information useful for bioterrorism preparedness. PMID:16200179

Top