Szepeshazi, Karoly; Schally, Andrew V; Keller, Gunhild; Block, Norman L; Benten, Daniel; Halmos, Gabor; Szalontay, Luca; Vidaurre, Irving; Jaszberenyi, Miklos; Rick, Ferenc G
2012-07-01
Many bladder cancers progress to invasion with poor prognosis; new therapeutic methods are needed. We developed a cytotoxic LH-RH analog, AN-152 (AEZS-108) containing doxorubicin (DOX), for targeted therapy of cancers expressing LHRH receptors. We investigated the expression of LH-RH receptors in clinical bladder cancers and in HT-1376, J82, RT-4 and HT-1197 human bladder cancer lines. The effect of analog, AN-152, on growth of these tumor lines xenografted into nude mice was analyzed. Using molecular and functional assays, we also evaluated the differences between the effects of AN-152, and DOX alone. We demonstrated the expression of LH-RH receptors on 18 clinical bladder cancers by immunohistochemistry and on four human urinary bladder cancer lines HT-1376, J82, RT-4 and HT-1197 by Western blotting and binding assays. AN-152 powerfully inhibited growth of these bladder cancers in nude mice. AN-152 exerted greater effects than DOX and was less toxic. DOX activated strong multidrug resistance mechanisms in RT-4 and HT-1197 cancers, while AN-152 had no or less such effect. PCR assays and in vitro studies revealed differences in the action of AN-152 and DOX on the expression of genes involved in apoptosis. These results suggest that targeted cytotoxic LH-RH analog, AN-152 (AEZS- 108), should be examined for treatment of patients with LH-RH receptor positive invasive bladder cancers.
NASA Astrophysics Data System (ADS)
Nseyo, Unyime; Kim, Albert; Stavropoulos, Nikos E.; Skalkos, Dimitris; Nseyo, Unwana U.; Chung, Theodore D.
2005-04-01
Refractory carcinoma in situ and resistant multifocal transitional cell carcinoma (TCC) of the human urinary bladder respond modestly to PHOTOFRIN (PII) PDT. Hypericum perforatum L., (St. John"s wort /Epirus" Vasalmo, Greece), a medicinal plant used for many human ailments, is under investigation as a new photosensitizer. We have reported on the antiproliferative activity of the lipophilic extract of the Hypericum perforatum L. (HP) against cultured T-24, and NBT-11 bladder cancer cells. We investigated response of the polar methanolic fraction (PMF) of the HP extract versus PHOTOFRIN in photodynamic therapy (PDT) of human bladder cancer cells, RT-4 and T-24.The PMF was extracted from the dry herb with methanol, followed by liquid extraction with petroleum ether. RT-4/T-24, were plated (105 cells/well) and placed in the incubator (370 C, 5%CO) for 24 hours prior to addition of drugs. PII 2ug/ml, or PMF 60ug /ml was added and incubation continued. After 24 hours, the cells were treated with laser light (630nm) with 0,1,2,4 and 8 Joules. The cells were then washed and reincubated for another 24 hours. After this incubation cell survival was assessed by the MTT assay. PMF-PDT induced percent cell kill of 0%, 0%, 0%, 29% and 75%, in RT-4 cells (primary noninvasive urinary bladder TCC) versus 5%, 9%, 13%, 69% and 86%, in T-24 cells(metastatic TTC) at 0,1,2,4 and 8 Joules respectively. PII-PDT induced cell kill of 0 %, 0% ,0%,0% and 9 %, in RT-4 cells versus 0%,10%,0%,21% and 77%, in T-24 cells at 0,1,2,4 and 8 Joules respectively.RT-24 cells were relatively more resistant than T-24 cells to PMF and PII-PDT. Understanding mechanisms of such differential responses might prove useful
Identification of differentially expressed proteins during human urinary bladder cancer progression.
Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J
2005-01-01
Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.
Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.
2016-01-01
Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488
LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.
Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan
2018-06-01
This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.
Sgnaolin, V; Pereira, T C B; Bogo, M R; Zanin, R; Battastini, A M O; Morrone, F B; Campos, M M
2013-08-01
Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg(9)-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg(9)-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg(9)-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.
Lu, Jinjin; Zheng, Xiufen; Li, Fan; Yu, Yang; Chen, Zhong; Liu, Zheng; Wang, Zhihua; Xu, Hua; Yang, Weimin
2017-01-01
Intercellular transfer of organelles via tunneling nanotubes (TNTs) is a novel means of cell-to-cell communication. Here we demonstrate the existence of TNTs between co-cultured RT4 and T24 bladder cancer cells using light microscopy, fluorescence imaging, and scanning electron microscopy (SEM). Spontaneous unidirectional transfer of mitochondria from T24 to RT4 cells was detected using fluorescence imaging and flow cytometry. The distribution of mitochondria migrated from T24 cells was in good agreement with the original mitochondria in RT4 cells, which may imply mitochondrial fusion. We detected cytoskeleton reconstruction in RT4-Mito-T24 cells by observing F-actin redistribution. Akt, mTOR, and their downstream mediators were activated and increased. The resultant increase in the invasiveness of bladder cancer cells was detected in vitro and in vivo. These data indicate that TNTs promote intercellular mitochondrial transfer between heterogeneous cells, followed by an increase in the invasiveness of bladder cancer cells. PMID:28107184
Gilloteaux, Jacques; Jamison, James M; Neal, Deborah R; Loukas, Marios; Doberzstyn, Theresa; Summers, Jack L
2010-05-01
A human bladder carcinoma cell line RT4 was sham-treated with buffer or treated with ascorbate (VC) alone, menadione alone (VK(3)), or a combination of ascorbate:menadione (VC+VK(3)) for 1, 2, and 4 h. Cytotoxic damage was found to be treatment-dependent in this sequence: VC+VK(3)>VC>VK(3)>sham. The combined treatment induced the greatest oxidative stress, with early tumor cell injury affecting the cytoskeletal architecture and contributing to the self-excisions of pieces of cytoplasm freed from organelles. Additional damage, including a reduction in cell size, organelle alterations, nuclear damage, and nucleic acid degradation as well as compromised lysosome integrity, is caused by reactivation of DNases and the redox cycling of VC or VC+VK(3). In addition, cell death caused by VC+VK(3) treatment as well as by prolonged VC treatment is consistent with cell demise by autoschizis, not apoptosis. This report confirms and complements previous observations about this new mode of tumor cell death. It supports the contention that a combination of VC+VK(3), also named Apatone, could be co-administered as a nontoxic adjuvant with radiation and/or chemotherapies to kill bladder tumor cells and other cancer cells without any supplementary risk or side effects for patients.
Svalø, Julie; Sheykhzade, Majid; Nordling, Jørgen; Matras, Christina; Bouchelouche, Pierre
2015-01-01
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1–7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome. PMID:25692982
Svalø, Julie; Sheykhzade, Majid; Nordling, Jørgen; Matras, Christina; Bouchelouche, Pierre
2015-01-01
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1-7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.
Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K
2014-12-01
Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤ 1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Cancer Medicine published by John Wiley & Sons Ltd.
Yamada, Takahiro; Ueda, Takashi; Shibata, Yasuhiro; Ikegami, Yosuke; Saito, Masaki; Ishida, Yusuke; Ugawa, Shinya; Kohri, Kenjiro; Shimada, Shoichi
2010-08-01
To investigate the functional expression of the transient receptor potential vanilloid 2 (TRPV2) channel protein in human urothelial carcinoma (UC) cells and to determine whether calcium influx into UC cells through TRPV2 is involved in apoptotic cell death. The expression of TRPV2 mRNA in bladder cancer cell lines (T24, a poorly differentiated UC cell line and RT4, a well-differentiated UC cell line) was analyzed using reverse transcriptase-polymerase chain reaction. The calcium permeability of TRPV2 channels in T24 cells was investigated using a calcium imaging assay that used cannabidiol (CBD), a relatively selective TRPV2 agonist, and ruthenium red (RuR), a nonselective TRPV channel antagonist. The death of T24 or RT4 cells in the presence of CBD was evaluated using a cellular viability assay. Apoptosis of T24 cells caused by CBD was confirmed using an annexin-V assay and small interfering RNA (siRNA) silencing of TRPV2. TRPV2 mRNA was abundantly expressed in T24 cells. The expression level in UC cells was correlated with high-grade disease. The administration of CBD increased intracellular calcium concentrations in T24 cells. In addition, the viability of T24 cells progressively decreased with increasing concentrations of CBD, whereas RT4 cells were mostly unaffected. Cell death occurred via apoptosis caused by continuous influx of calcium through TRPV2. TRPV2 channels in UC cells are calcium-permeable and the regulation of calcium influx through these channels leads directly to the death of UC cells. TRPV2 channels in UC cells may be a potential new therapeutic target, especially in higher-grade UC cells. Copyright 2010 Elsevier Inc. All rights reserved.
Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.
Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V
2012-06-01
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.
Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E
2016-05-01
Heat shock protein 90 (Hsp90) is a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in multiple oncogenic signaling pathways. Hsp90 holds a prominent role in tumorigenesis, as numerous members of its broad clientele are involved in the generation of the hallmark traits of cancer. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) specifically targets Hsp90 and interferes with its function as a molecular chaperone, impairing its intrinsic ATPase activity and undermining proper folding of multiple protein clients. In this study, we have examined the effects of 17-DMAG on the regulation of Hsp90-dependent tumorigenic signaling pathways directly implicated in cell cycle progression, survival, and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semiquantitative PCR (sqPCR), immunofluorescence, and scratch-wound assays in RT4 (p53(wt)), RT112 (p53(wt)), T24 (p53(mt)), and TCCSUP (p53(mt)) human urinary bladder cancer cell lines. We have demonstrated that, upon exposure to 17-DMAG, bladder cancer cells display prominent cell cycle arrest and commitment to apoptotic and autophagic cell death, in a dose-dependent manner. Furthermore, 17-DMAG administration induced pronounced downregulation of multiple Hsp90 protein clients and other downstream oncogenic effectors, therefore causing inhibition of cell proliferation and decline of cell motility due to the molecular "freezing" of critical cytoskeletal components. In toto, we have clearly demonstrated the dose-dependent and cell type-specific effects of 17-DMAG on the hallmark traits of cancer, appointing Hsp90 as a key molecular component in bladder cancer targeted therapy.
Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng
2017-05-01
Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.
Islam, Syed S.; Mokhtari, Reza Bayat; Kumar, Sushil; Maalouf, Joe; Arab, Sara; Yeger, Herman; Farhat, Walid A.
2013-01-01
Although Shh, TGF-β and BMP-4 regulate radial patterning of the bladder mesenchyme and smooth muscle differentiation, it is not known what transcription factors, local environmental cues or signaling cascades mediate bladder smooth muscle differentiation. We investigated the expression patterns of signaling mediated by Smad2 and Smad3 in the mouse embryonic bladder from E12.5 to E16.5 by using qRT-PCR, in situ hybridization and antibodies specifically recognizing individual Smad proteins. The role of Smad2 and Smad3 during smooth muscle formation was examined by disrupting the Smad2/3 signaling pathway using TβR1 inhibitor SB-431542 in organ culture system. qRT-PCR results showed that R-Smads, Co-Smad and I-Smads were all expressed during bladder development. RNA ISH for BMP-4 and immunostaining of TGF-β1 showed that BMP-4 and TGF-β1 were expressed in the transitional epithelium, lamina propia and muscularis mucosa. Smad1, Smad5 and Smad8 were first expressed in the bladder epithelium and continued to be expressed in the transitional epithelium, muscularis mesenchyme and lamina propia as the bladder developed. Smad2, Smad3 and Smad4 were first detected in the bladder epithelium and subsequently were expressed in the muscularis mesenchyme and lamina propia. Smad6 and Smad7 showed overlapping expression with R-Smads, which are critical for bladder development. In bladder explants (E12.5 to E16.5) culture, Smad2 and Smad3 were found localized within the nuclei, suggesting critical transcriptional regulatory effects during bladder development. E12.5 to E16.5 bladders were cultured with and without TβR1 inhibitor SB-431542 and assessed by qRT-PCR and immunofluorescence. After three days in culture in SB-431542, α-SMA, Smad2 and Smad3 expressions were significantly decreased compared with controls, however, with no significant changes in the expression of smooth muscle myosin heavy chain (SM-Myh. Based on the Smad expression patterns, we suggest that individual or combinations of Smads may be necessary during mouse bladder organogenesis and may be critical mediators for bladder smooth muscle differentiation. PMID:23620745
Clinical radiobiology of stage T2-T3 bladder cancer.
Majewski, Wojciech; Maciejewski, Boguslaw; Majewski, Stanislaw; Suwinski, Rafal; Miszczyk, Leszek; Tarnawski, Rafal
2004-09-01
To evaluate the relationship between total radiation dose and overall treatment time (OTT) with the treatment outcome, with adjustment for selected clinical factors, in patients with Stage T2-T3 bladder cancer treated with curative radiotherapy (RT). The analysis was based on 480 patients with Stage T2-T3 bladder cancer who were treated at the Center of Oncology in Gliwice between 1975 and 1995. The mean total radiation dose was 65.5 Gy, and the mean OTT was 51 days. In 261 patients (54%), planned and unplanned gaps occurred during RT. Four fractionation schedules were used: (1) conventional fractionation (once daily, 1.8-2.5 Gy/fraction); (2) protracted fractionation (pelvic RT, once daily, 1.6-1.7 Gy/fraction, boost RT, once daily, 2.0 Gy/fraction); (3) accelerated hyperfractionated boost (pelvic RT, once daily, 2.0 Gy/fraction; boost RT, twice daily, 1.3-1.4 Gy/fraction); and (4) accelerated hyperfractionation (pelvic and boost RT, twice daily, 1.2-1.5 Gy/fraction). In all fractionation schedules, the total radiation dose was similar (average 65.5 Gy), but the OTT was different (mean 53 days for conventional fractionation, 62 days for protracted fractionation, 45 days for accelerated hyperfractionated boost, and 41 days for accelerated hyperfractionation). A Cox proportional hazard model and maximum likelihood logistic model were used to evaluate the relationship between the treatment-related parameters (total radiation dose, dose per fraction, and OTT) and clinical factors (clinical T stage, hemoglobin level and bladder capacity before RT) and treatment outcome. With a median follow-up of 76 months, the actuarial 5-year local control rate was 47%, and the overall survival rate was 40%. The logistic analysis, which included the total dose, OTT, and T stage, revealed that all of these factors were significantly related to tumor control probability (p = 0.021 for total radiation dose, p = 0.038 for OTT, and p = 0.00068 for T stage). A multivariate Cox model, which included the treatment-related parameters and other clinical factors, revealed that the hemoglobin level and bladder capacity before RT and T-stage were statistically significant factors determining local control and overall survival. The total radiation dose was of borderline statistical significance for overall survival (p = 0.087), and OTT did not reach statistical significance. The results of our study showed that the treatment outcome after RT for bladder cancer depends mainly on clinical factors: hemoglobin level and bladder capacity before RT, and clinical T stage. An increase in the total radiation dose seemed to be associated with a better treatment outcome. The effect of the OTT was difficult to define, because it was influenced by other prognostic factors.
Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad
2015-11-01
Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women. Copyright © 2013 John Wiley & Sons, Ltd.
Caprodossi, Sara; Lucciarini, Roberta; Amantini, Consuelo; Nabissi, Massimo; Canesin, Giacomo; Ballarini, Patrizia; Di Spilimbergo, Adriana; Cardarelli, Marco Andrea; Servi, Lucilla; Mammana, Gabriele; Santoni, Giorgio
2008-09-01
To evaluate the expression of transient receptor potential vanilloid type 2 (TRPV2) in normal human bladder and urothelial carcinoma (UC) tissues. Bladder specimens were obtained by transurethral resection or radical cystectomy. TRPV2 mRNA expression in normal human urothelial cells (NHUCs), UC cell lines, and formalin-fixed paraffin-embedded normal (n=6) and cancer bladder tissues (n=58) was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (RT-PCR). TRPV2 protein expression was assessed by cytofluorimetric and confocal microscopy analyses in NHUCs and UC cells and by Western blotting and immunohistochemistry in normal and UC tissues. Enhanced TRPV2 mRNA and protein expression was found in high-grade and -stage UC specimens and UC cell lines. Both the full-length TRPV2 (hTRPV2) and a short splice-variant (s-TRPV2) were detected in NHUC and normal bladder specimens, whereas a progressive decline of s-TRPV2 in pTa, pT1, and pT2 stages was observed, up to a complete loss in pT3 and pT4 UC specimens. Normal human urothelial cells and bladder tissue specimens express TRPV2 at both the mRNA and protein levels. A progressive loss of s-TRPV2 accompanied by a marked increase of hTRPV2 expression was found in high-grade and -stage UC tissues.
MicroRNA-320c inhibits tumorous behaviors of bladder cancer by targeting Cyclin-dependent kinase 6
2014-01-01
Background Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to human disease including cancer. Previous miRNA microarray analysis illustrated that miR-320c is down-regulated in various cancers. However, the roles of miR-320c in human bladder cancer have not been well elucidated. Therefore, this study was performed to investigate the biological functions and molecular mechanisms of miR-320c in human bladder cancer cell lines, discussing whether it could be a therapeutic biomarker of bladder cancer in the future. Methods Two human bladder cancer cell lines and samples from thirteen patients with bladder cancer were analyzed for the expression of miR-320c by quantitative RT-PCR. Over-expression of miR-320c was established by transfecting mimics into T24 and UM-UC-3. Cell proliferation and cell cycle were assessed by cell viability assay, flow cytometry and colony formation assay. Cell motility ability was evaluated by transwell assay. The target gene of miR-320c was determined by luciferase assay, quantitative RT-PCR and western blot. The regulation of cell cycle and mobility by miR-320c was analyzed by western blot. Results We observed that miR-320c was down-regulated in human bladder cancer tissues and bladder cancer cell lines T24 and UM-UC-3. Over-expression of miR-320c could induce G1 phase arrest in UM-UC-3 and T24 cells, and subsequently inhibited cell growth. We also indentified miR-320c could impair UM-UC-3 and T24 cell motility. In addition, we identified CDK6, a cell cycle regulator, as a novel target of miR-320c. Moreover, we demonstrated miR-320c could induce bladder cancer cell cycle arrest and mobility via regulating CDK6. We also observed that inhibition of miR-320c or restoration of CDK6 in miR-320c-over-expressed bladder cancer cells partly reversed the suppressive effects of miR-320c. Conclusions miR-320c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. Our study revealed that miR-320c could be a therapeutic biomarker of bladder cancer in the future. PMID:25178497
Liu, Lu; Mansfield, Kylie J; Kristiana, Ika; Vaux, Kenneth J; Millard, Richard J; Burcher, Elizabeth
2007-01-01
Treatments targeting vanilloid receptor TRPV1 are effective in some bladder disorders. Our aim was to determine the expression profiles of TRPV1 in regions of human bladder and test the hypothesis that there would be an upregulation of TRPV1 in mucosa of patients with bladder hypersensitivity but not idiopathic detrusor overactivity (IDO). Women with sensory urgency (SU), interstitial cystitis (IC), and IDO were investigated by videourodynamics and cystoscopy. Control biopsies were used for comparison. Biopsies were dissected into mucosa and muscle, and evaluated for TRPV1 mRNA expression using quantitative competitive RT-PCR (QC-RT-PCR). TRPV1 mRNA from SU trigonal mucosa was significantly higher than control trigonal mucosa or SU bladder body mucosa. In contrast, in IDO patients, there was no difference between trigonal mucosa and body mucosa. In IC biopsies, RNA quality was substandard and unable to be used for analysis. The most striking finding was that TRPV1 mRNA expressed in SU trigonal mucosa was significantly inversely correlated with the bladder volume at first sensation of filling during cystometry. No such relationship was seen for IDO trigonal mucosa. No difference was seen in bladder body mucosa from any disease groups compared with age-matched control. The symptoms of SU were associated with the increased expression of TRPV1 mRNA in the trigonal mucosa. No upregulation or regional differences of TRPV1 mRNA were seen in IDO patients. TRPV1 may play a role in SU and premature first bladder sensation on filling.
mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer.
Hau, Andrew M; Leivo, Mariah Z; Gilder, Andrew S; Hu, Jing-Jing; Gonias, Steven L; Hansel, Donna E
2017-01-01
Mammalian target of rapamycin complex 2 (mTORC2) has been identified as a major regulator of bladder cancer cell migration and invasion. Upstream pathways that mediate mTORC2 activation remain poorly defined. Urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored membrane protein and known activator of cell-signaling. We identified increased uPAR expression in 94% of invasive human bladder cancers and in 54-71% of non-invasive bladder cancers, depending on grade. Normal urothelium was uPAR-immunonegative. Analysis of publicly available datasets identified uPAR gene amplification or mRNA upregulation in a subset of bladder cancer patients with reduced overall survival. Using biochemical approaches, we showed that uPAR activates mTORC2 in bladder cancer cells. Highly invasive bladder cancer cell lines, including T24, J82 and UM-UC-3 cells, showed increased uPAR mRNA expression and protein levels compared with the less aggressive cell lines, UROtsa and RT4. uPAR gene-silencing significantly reduced phosphorylation of Serine-473 in Akt, an mTORC2 target. uPAR gene-silencing also reduced bladder cancer cell migration and Matrigel invasion. S473 phosphorylation was observed by immunohistochemistry in human bladder cancers only when the tumors expressed high levels of uPAR. S473 phosphorylation was not controlled by uPAR in bladder cancer cell lines that are PTEN-negative; however, this result probably did not reflect altered mTORC2 regulation. Instead, PTEN deficiency de-repressed alternative kinases that phosphorylate S473. Our results suggest that uPAR and mTORC2 are components of a single cell-signaling pathway. Targeting uPAR or mTORC2 may be beneficial in patients with bladder cancer. Copyright © 2016. Published by Elsevier Inc.
Laaksovirta, S; Rajala, P; Nurmi, M; Tammela, T L; Laato, M
1999-01-01
Retinoids have been shown to have activity in both preclinical and clinical bladder cancer studies but their exact role in its treatment and prevention remains obscure. In this study cytostatic activity of a novel 9-cis-retinoic acid (9-cis-RA) was compared with two other retinoids: tretinoin and isotretinoin, in three different bladder cancer cell lines: RT4 (well differentiated), 5637 (moderately differentiated) and T24 (poorly differentiated). The three retinoids were incubated at concentrations of 0.3, 3 and 30 microg/ml with bladder cancer cells in microtitre plates for 3 and 6 days. The cytostatic effect was estimated by using luminometric measuring of ATP activity of viable cells in suspension. Compared with the older retinoids, tretinoin and isotretinoin, the highest concentration of 9-cis-RA had a cytostatic efficacy in all three bladder cancer cell lines tested. A clear dose response relationship was observed in isotretinoin-treated cultures after 6 days and in all 9-cis-RA-treated cultures. Tretinoin was either ineffective or had a stimulating effect on poorly differentiated tumour cells. To conclude, isotretinoin and 9-cis-RA had a cytostatic effect on human bladder cancer cells in vitro. However, the possibility of stimulating cancer growth at small doses, at least with tretinoin, and toxicity at high doses must be considered when planning clinical trials.
Fickweiler, S; Steinbach, P; Wörle, K; Hofstädter, F
1996-01-01
The effects of high-energy shock waves (HESW) generated by an experimental Siemens lithotripter in combination with 137Cs gamma-rays were examined in vitro. Proliferation after treatment of immobilised pellets of either single cells or multicellular spheroids of the bladder cancer cell line RT4 was determined using colony-forming assays and cell cycle analysis. Surviving and cell cycle fractions were calculated for each shock wave and radiation application mode separately, and for sequential combination in different successions for the purpose of characterizing the interaction of both treatment modalities. Combination of HESW and ionising radiation turned out to act additively or slightly supra-additively on both biologic models.
Showalter, Timothy N; Nawaz, A Omer; Xiao, Ying; Galvin, James M; Valicenti, Richard K
2008-02-01
There are no accepted guidelines for target volume definition for online image-guided radiation therapy (IGRT) after radical prostatectomy (RP). This study used cone beam CT (CBCT) imaging to generate information for use in post-RP IGRT. The pelvic anatomy of 10 prostate cancer patients undergoing post-RP radiation therapy (RT) to 68.4 Gy was studied using CBCT images obtained immediately before treatment. Contoured bladder and rectal volumes on CBCT images were compared with planning CT (CT(ref)) volumes from seminal vesicle stump (SVS) to bladder-urethral junction. This region was chosen to approximate the prostatic fossa (PF) during a course of post-RP RT. Anterior and posterior planning target volume margins were calculated using ICRU report 71 guidelines, accounting for systematic and random error based on bladder and rectal motion, respectively. A total of 176 CBCT study sets obtained 2 to 5 times weekly were analyzed. The rectal and bladder borders were reliably identified in 166 of 176 (94%) of CBCT images. Relative to CT(ref), mean posterior bladder wall position was anterior by 0.1 to 1.5 mm, and mean anterior rectum wall position was posterior by 1.6 to 2.7 mm. Calculated anterior margin as derived from bladder motion ranged from 5.9 to 7.1 mm. Calculated posterior margin as derived from rectal motion ranged from 8.6 to 10.2 mm. Normal tissue anatomy was definable by CBCT imaging throughout the course of post-RP RT, and the interfraction anteroposterior motion of the bladder and rectum was studied. This information should be considered in devising post-RP RT techniques using image guidance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Huanli; Jin, Fu; Yang, Dingyi
Purpose: A constant bladder volume (BV) is essential to direct the radiotherapy (RT) of pelvic tumors with precision. The purpose of this study was to investigate changes in BV and their impact on cervical cancer RT and to assess the clinical significance of a portable bladder scanner (BS) in achieving a constant BV. Methods: A standard bladder phantom (133 ml) and measurements of actual urine volume were both used as benchmarks to evaluate the accuracy of the BS. Comparisons of BS with computed tomography (CT), cone-beam CT (CBCT), and an ultrasound diagnostic device (iU22) were made. Twenty-two consecutive patients withmore » cervical cancer treated with external beam radical RT were divided into an experimental group (13 patients) and a control group (9 patients). In the experimental group, the BV was measured multiple times by BS pre-RT until it was consistent with that found by planning CT. Then a CBCT was performed. The BV was measured again immediately post-RT, after which the patient’s urine was collected and recorded. In the control group, CBCT only was performed pre-RT. Interfractional changes in BV and their impact on cervical cancer RT were investigated in both groups. The time of bladder filling was also recorded and analyzed. Results: In measuring the volume of the standard bladder phantom, the BS deviated by 1.4% in accuracy. The difference between the measurements of the BS and the iU22 had no statistical significance (linear correlation coefficient 0.96, P < 0.05). The BV measured by the BS was strongly correlated with the actual urine volume (R = 0.95, P < 0.05), planning CT (R = 0.95, P < 0.05), or CBCT (R = 0.91, P < 0.05). Compared with the BV at the time of CT, its value changed by −36.1% [1 SD (standard deviation) 42.3%; range, −79.1%–29.4%] in the control group, and 5.2% (1 SD 21.5%; range, −13.3%–22.1%) in the experimental group during treatment. The change in BV affected the target position in the superior–inferior (SI) direction but had little or no effect in the anterior–posterior and right–left directions. Based on the collected data, the target displacement in the SI direction was reduced from 2.0 to 0.4 mm, while the CTV-to-PTV (CTV: clinical target volume; PTV: planning target volume) margin in the SI direction was reduced from 11.1 to 6.4 mm. The BV increased by 3.7 ± 1.0 ml/min (range, 1.7–4.7 ml/min), which depended on the amount of water ingested by the patient (R = 0.96, P < 0.05). No correlation was found between the rate of urinary inflow and the patient’s body mass. The authors were able to reduce the workload of measuring by using individual patient information including the patient’s age, the water-drinking amount, time at which water-drinking began, and patient’s diet. Conclusions: Changes in the BV have an influence on the RT of cervical cancer. A consistent and reproducible BV is acquired by using a portable BS, whereby the target displacement and CTV-to-PTV margin can be both reduced in the SI direction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conde, Vanessa R.; Oliveira, Pedro F.; Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP
Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similarmore » in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huddart, Robert A., E-mail: robert.huddart@icr.ac.uk; Hall, Emma; Hussain, Syed A.
2013-10-01
Purpose: To test whether reducing radiation dose to uninvolved bladder while maintaining dose to the tumor would reduce side effects without impairing local control in the treatment of muscle-invasive bladder cancer. Methods and Materials: In this phase III multicenter trial, 219 patients were randomized to standard whole-bladder radiation therapy (sRT) or reduced high-dose volume radiation therapy (RHDVRT) that aimed to deliver full radiation dose to the tumor and 80% of maximum dose to the uninvolved bladder. Participants were also randomly assigned to receive radiation therapy alone or radiation therapy plus chemotherapy in a partial 2 × 2 factorial design. Themore » primary endpoints for the radiation therapy volume comparison were late toxicity and time to locoregional recurrence (with a noninferiority margin of 10% at 2 years). Results: Overall incidence of late toxicity was less than predicted, with a cumulative 2-year Radiation Therapy Oncology Group grade 3/4 toxicity rate of 13% (95% confidence interval 8%, 20%) and no statistically significant differences between groups. The difference in 2-year locoregional recurrence free rate (RHDVRT − sRT) was 6.4% (95% confidence interval −7.3%, 16.8%) under an intention to treat analysis and 2.6% (−12.8%, 14.6%) in the “per-protocol” population. Conclusions: In this study RHDVRT did not result in a statistically significant reduction in late side effects compared with sRT, and noninferiority of locoregional control could not be concluded formally. However, overall low rates of clinically significant toxicity combined with low rates of invasive bladder cancer relapse confirm that (chemo)radiation therapy is a valid option for the treatment of muscle-invasive bladder cancer.« less
Arlt, Volker M.; Indra, Radek; Joel, Madeleine; Stiborová, Marie; Eardley, Ian; Ahmad, Niaz; Otto, Wolfgang; Burger, Maximilian; Rubenwolf, Peter; Phillips, David H.; Southgate, Jennifer
2018-01-01
Extra‐hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self‐defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro‐carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier‐forming differentiated states in vitro. However, ethoxyresorufin O‐deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP‐DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain‐of‐function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle‐invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over‐expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1‐activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over‐expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP‐function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies. PMID:29323757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitin, Timur, E-mail: mitin@ohsu.edu; George, Asha; Zietman, Anthony L.
Purpose: To investigate the differences in outcomes among patients with muscle-invasive bladder cancer on NRG Oncology Radiation Therapy Oncology Group protocols 9906 and 0233 who achieved complete response and near-complete response after induction chemoradiation and then completed bladder-preserving therapy with chemoradiation therapy (chemo-RT) to full dose (60-64 Gy). Patients and Methods: A pooled analysis was performed on 119 eligible patients with muscle-invasive bladder cancer enrolled on NRG Oncology Radiation Therapy Oncology Group trials 9906 and 0233, who were classified as having a complete (T0) or near-complete (Ta or Tis) response after induction chemo-RT and completed consolidation with a total RT dose ofmore » at least 60 Gy. Bladder recurrence, salvage cystectomy rates, and disease-specific survival were estimated by the cumulative incidence method and bladder-intact and overall survivals by the Kaplan-Meier method. Results: Among the 119 eligible patients, 101 (85%) achieved T0, and 18 (15%) achieved Ta or Tis after induction chemo-RT and proceeded to consolidation. After a median follow-up of 5.9 years, 36 of 101 T0 patients (36%) versus 5 of 18 Ta or Tis patients (28%) experienced bladder recurrence (P=.52). Thirteen patients among complete responders eventually required late salvage cystectomy for tumor recurrence, compared with 1 patient among near-complete responders (P=.63). Disease-specific, bladder-intact, and overall survivals were not significantly different between T0 and Ta/Tis cases. Conclusions: The bladder recurrence and salvage cystectomy rates of the complete and the near-complete responders were similar. Therefore it is reasonable to recommend that patients with Ta or Tis after induction chemo-RT continue with bladder-sparing therapy with consolidation chemo-RT to full dose (60-64 Gy).« less
Lea, Michael A; Altayyar, Mansour; desBordes, Charles
2015-11-01
In seven out of eight human bladder cell lines that were examined herein, growth was more dependent on the presence in the incubation medium of glucose rather than glutamine. The exception was the slowly growing RT4 cells that were more glutamine-dependent. Growth of all the cell lines was reduced by an inhibitor of 6-phosphofructo-2-kinase/2,6-bisphosphatase 3, namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). Growth was also reduced by three compounds that reduce the conversion of glucose to lactate: namely 2-deoxyglucose, butyrate and dichloroacetate. Additive effects were seen when these molecules were combined with 3PO. Treatment of bladder cancer cells with phenformin resulted in growth inhibition that was frequently accompanied by increased glucose uptake and acidification of the medium that was blocked by co-incubation with 3PO. The actions of 3PO suggest that inhibitors of PFKB3 merit further investigation in the treatment of bladder cancer and they may be useful agents in combination with other drugs that inhibit cancer cell proliferation. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Intensity modulated radiotherapy for elderly bladder cancer patients
2011-01-01
Background To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer. Methods From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field "box" pelvic radiation therapy (2DRT) plans were generated for comparison. Results The median patient age was 80 years old (range, 65-90 years old). The median survival was 21 months (5 to 26 months). The actuarial 2-year overall survival (OS) for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS), the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046). The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004). Conclusion IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate. PMID:21679408
Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad
2013-10-01
To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.
Salehi, Shima; Mansoori, Behzad; Mohammadi, Ali; Davoudian, Sadaf; Musavi Shenas, Seyed Mohammad Hossein; Shajari, Neda; Majidi, Jafar; Baradaran, Behzad
2017-12-01
Snail-1 actively participates in tumor progression, invasion, and migration. Targeting snail-1 expression can suppress the EMT process in cancer. The aim of this study was to investigate the effect of snail1 silencing on urinary bladder cancer. Quantitative RT-PCR was used to detect snail-1 and other related metastatic genes expression following siRNA knockdown in urinary bladder cancer EJ-138 cells. The protein level of snail1 was assessed by Western blot. MTT and TUNEL assays were assessed to understand if snail-1 had survival effects on EJ-138 cells. Scratch wound healing assay measured cell motility effects after snail1 suppression. The significant silencing of snail-1 reached 60pmol siRNA in a 48-h post-transfection. The result of scratch assay showed that snail-1 silencing significantly decreased Vimentin, MMPs, and CXCR4 expression; however, expression of E-cadherin was induced. The cell death assay indicated that snail-1 played the crucial role in bladder cancer survival rate. These results propose that snail-1 plays a major role in the progression and migration of urinary bladder cancer, and can be a potential therapeutic target for target therapy of invasive urinary bladder cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ruan, Jun; Wei, Bingbing; Xu, Zhuoqun; Yang, Shudong; Zhou, You; Yu, Minhong; Liang, Jiabei; Jin, Ke; Huang, Xing; Lu, Peng; Cheng, Huan
2013-03-01
Sox2 is thought to be an important regulator of self-renewal in embryonic stem cell. According to the cancer stem cell (CSC) theory, the overexpression of Sox2 is potentially involved in carcinogenesis and could affect tumor recurrence and metastasis. Previous study proved Sox2 might be prognostic marker for multiple human malignancies. The purpose of this study was to investigate the clinicopathological significance of Sox2 expression in human non-muscle-invasive bladder cancer. We examined Sox2 expression in 32 paired non-muscle-invasive bladder cancer tissues and adjacent non-cancerous tissues by quantitative real-time RT-PCR (qrtRT-PCR). In addition, we analyzed Sox2 and Ki-67 expression in 126 non-muscle-invasive bladder cancer samples and bladder cancer cell line T24 by immunohistochemistry and immunofluorescence assays. The recurrence-free survival was determined by Kaplan-Meier method and log-rank test. Cox regression was adopted for univariate and multivariate analyses of prognostic factors. The expression of Sox2 was significantly increased in non-muscle-invasive bladder cancer tissues. Sox2 expression was significantly correlated with that of Ki-67 (P < 0.001). The expression of Sox2 was significantly associated with tumor size (P = 0.006), tumor number (P = 0.037), and tumor grade (P < 0.001). Patients with high Sox2 expression had significantly poorer recurrence-free survival (P = 0.0002) when compared with patients with the low expression of Sox2. On multivariate analysis, Sox2 expression and tumor grade were found to be independent prognostic factors for recurrence-free survival (P < 0.05). Our data suggested for the first time that the high expression of Sox2 may contribute to the development of non-muscle-invasive bladder cancer and serve as a novel prognostic marker in patients with T1 bladder cancer.
Jinesh G, Goodwin; Chunduru, Srinivas; Kamat, Ashish M
2012-07-01
BCG, the current gold standard immunotherapy for bladder cancer, exerts its activity via recruitment of neutrophils to the tumor microenvironment. Many patients do not respond to BCG therapy, indicating the need to understand the mechanism of action of BCG-stimulated neutrophils and to identify ways to overcome resistance to BCG therapy. Using isolated human neutrophils stimulated with BCG, we found that TNF-α is the key mediator secreted by BCG-stimulated neutrophils. RT4v6 human bladder cancer cells, which express TNFR1, CD95/Fas, CD95 ligand/FasL, DR4, and DR5, were resistant to BCG-stimulated neutrophil conditioned medium but effectively killed by the combination of conditioned medium and Smac mimetic. rhTNF-α and rhFasL, but not rhTRAIL, in combination with Smac mimetic, generated signature molecular events similar to those produced by BCG-stimulated neutrophils in combination with Smac mimetic. However, experiments using neutralizing antibodies to these death ligands showed that TNF-α secreted from BCG-stimulated neutrophils was the key mediator of anticancer action. These findings explain the mechanism of action of BCG and identified Smac mimetics as potential combination therapeutic agents for bladder cancer.
Ceylan, Gülay Güleç; Önalan, Ebru Etem; Kuloğlu, Tuncay; Aydoğ, Gülten; Keleş, İbrahim; Tonyali, Şenol; Ceylan, Cavit
2016-12-01
Urinary bladder cancer is one of the most common malignancies of the urinary tract. Ion channels and calcium homeostasis are involved in almost all basic cellular mechanisms. The transient receptor potential cation channel subfamily M (TRPM) takes its name from the melastatin protein, which is classified as potential tumor suppressor. To the best of our knowledge, there have been no previous studies in the literature investigating the role of these ion channels in bladder cancer. The present study aimed to determine whether bladder cancer is associated with mRNA expression levels of TRPM ion channel genes, and whether there is the potential to conduct further studies to establish novel treatment modalities. The present study included a total of 47 subjects, of whom 40 were bladder cancer patients and 7 were controls. Following the histopathological evaluation for bladder carcinoma, the mRNA and protein expression of TRPM were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in tumor and normal tissues, in order to determine whether there is a difference in the expression of these channels in tumor and normal tissues. Immunoreactivity for TRPM2, TRPM4, TRPM7 and TRPM8 was observed in epithelial bladder cells in the two groups. RT-qPCR revealed a significant increase in TRPM7 expression in bladder cancer tissue compared to the controls (healthy bladder tissue), whereas no differences in TRPM2 or TRPM4 expression levels were observed. There were significant reductions in the expression levels of TRPM5 and TRPM8 in bladder cancer tissues. In the present study, the effects of TRP ion channels on the formation of bladder cancer was investigated. This study is instructive for TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8 and their therapeutic role in bladder cancer. The results support the fact that these gens can be novel targets and can also be tested for during the treatment of bladder cancer.
Abbaoui, Besma; Riedl, Kenneth M; Ralston, Robin A; Thomas-Ahner, Jennifer M; Schwartz, Steven J; Clinton, Steven K; Mortazavi, Amir
2013-01-01
Epidemiologic evidence suggests diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Our objectives are to investigate these observations and determine the role of isothiocyanates in primary or secondary bladder cancer prevention. We initially investigate the mechanisms whereby broccoli and broccoli sprout extracts and pure isothiocyanates inhibit normal, non-invasive (RT4) and invasive (J82, UMUC3) human urothelial cell viability. Sulforaphane (IC50= 5.66±1.2μM) and erucin (IC50= 8.79±1.3μM) are found to be the most potent inhibitors and normal cells are least sensitive. This observation is associated with downregulation of survivin, EGFR and HER2/neu, G2/M cell cycle accumulation and apoptosis. In a murine UMUC3 xenograft model, we fed semipurified diets containing 4% broccoli sprouts, or 2% broccoli sprout isothiocyanate extract; or gavaged pure sulforaphane or erucin (each at 295 μmol/kg, similar to dietary exposure); and report tumor weight reduction of 42% (p=0.02), 42% (p=0.04), 33% (p=0.04) and 58% (p<0.0001), respectively. Sulforaphane and erucin metabolites are present in mouse plasma (micromolar range) and tumor tissue, with N-acetyl cysteine conjugates as the most abundant. Interconversion of sulforaphane and erucin metabolites was observed. This work supports development of fully characterized, novel food products for phase I/II human studies targeting bladder cancer prevention. PMID:23038615
Adam, Rosalyn M; Eaton, Samuel H; Estrada, Carlos; Nimgaonkar, Ashish; Shih, Shu-Ching; Smith, Lois E H; Kohane, Isaac S; Bägli, Darius; Freeman, Michael R
2004-12-15
Application of mechanical stimuli has been shown to alter gene expression in bladder smooth muscle cells (SMC). To date, only a limited number of "stretch-responsive" genes in this cell type have been reported. We employed oligonucleotide arrays to identify stretch-sensitive genes in primary culture human bladder SMC subjected to repetitive mechanical stimulation for 4 h. Differential gene expression between stretched and nonstretched cells was assessed using Significance Analysis of Microarrays (SAM). Expression of 20 out of 11,731 expressed genes ( approximately 0.17%) was altered >2-fold following stretch, with 19 genes induced and one gene (FGF-9) repressed. Using real-time RT-PCR, we tested independently the responsiveness of 15 genes to stretch and to platelet-derived growth factor-BB (PDGF-BB), another hypertrophic stimulus for bladder SMC. In response to both stimuli, expression of 13 genes increased, 1 gene (FGF-9) decreased, and 1 gene was unchanged. Six transcripts (HB-EGF, BMP-2, COX-2, LIF, PAR-2, and FGF-9) were evaluated using an ex vivo rat model of bladder distension. HB-EGF, BMP-2, COX-2, LIF, and PAR-2 increased with bladder stretch ex vivo, whereas FGF-9 decreased, consistent with expression changes observed in vitro. In silico analysis of microarray data using the FIRED algorithm identified c-jun, AP-1, ATF-2, and neurofibromin-1 (NF-1) as potential transcriptional mediators of stretch signals. Furthermore, the promoters of 9 of 13 stretch-responsive genes contained AP-1 binding sites. These observations identify stretch as a highly selective regulator of gene expression in bladder SMC. Moreover, they suggest that mechanical and growth factor signals converge on common transcriptional regulators that include members of the AP-1 family.
Okonogi, Noriyuki; Fukahori, Mai; Wakatsuki, Masaru; Ohkubo, Yu; Kato, Shingo; Miyasaka, Yuhei; Tsuji, Hiroshi; Nakano, Takashi; Kamada, Tadashi
2018-06-25
Carbon-ion radiotherapy (C-ion RT) provides better dose distribution in cancer treatment compared to photons. Additionally, carbon-ion beams provide a higher biological effectiveness, and thus a higher tumor control probability. However, information regarding the dose constraints for organs at risk in C-ion RT is limited. This study aimed to determine the predictive factors for late morbidities in the rectum and bladder after carbon-ion C-ion RT for uterus carcinomas. Between June 1995 and January 2010, 134 patients with uterus carcinomas were treated with C-ion RT with curative intent; prescription doses of 52.8-74.4 Gy (relative biological effectiveness) were delivered in 20-24 fractions. Of these patients, 132 who were followed up for > 6 months were analyzed. We separated the data in two subgroups, a 24 fractions group and a 20 fractions group. Late morbidities, proctitis, and cystitis were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer criteria. The correlations of clinical and dosimetric parameters, V10-V60, D 5cc , D 2cc , and Dmax, with the incidence of ≥grade 1 morbidities were retrospectively analyzed. In the 24 fractions group, the 3-year actuarial occurrence rates of ≥grade 1 rectal and bladder morbidities were 64 and 9%, respectively. In addition, in the 20 fractions group, the 3-year actuarial occurrence rates of ≥grade 1 rectal and bladder morbidities were 32 and 19%, respectively. Regarding the dose-volume histogram data on the rectum, the D 5cc and D 2cc were significantly higher in patients with ≥grade 1 proctitis than in those without morbidity. In addition, the D 5cc for the bladder was significantly higher in patients with ≥grade 1 cystitis than in those without morbidity. Results of univariate analyses showed that D 2cc of the rectum was correlated with the development of ≥grade 1 late proctitis. Moreover, D 5cc of the bladder was correlated with the development of ≥grade 1 late cystitis. The present study identified the dose-volume relationships in C-ion RT regarding the occurrence of late morbidities in the rectum and bladder. Assessment of the factors discussed herein would be beneficial in preventing late morbidities after C-ion RT for pelvic malignancies. Retrospectively registered ( NIRS: 16-040 ).
Amaranthus caudatus extract inhibits the invasion of E. coli into uroepithelial cells.
Mohanty, Soumitra; Zambrana, Silvia; Dieulouard, Soizic; Kamolvit, Witchuda; Nilsén, Vera; Gonzales, Eduardo; Östenson, Claes-Göran; Brauner, Annelie
2018-06-28
Amaranthus caudatus is traditionally used to treat infections. Based on its traditional usage, we investigated the effect of A. caudatus on the bladder epithelial cells in the protection of E. coli infection. The direct antimicrobial effects of A. caudatus on uropathogenic bacteria were investigated using minimum inhibitory concentration (MIC) assay. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli strain #12 were used to investigate the effect of A. caudatus. Bacterial adhesion and invasion into bladder cells treated with A. caudatus was analyzed. Expression of uroplakin-1a (UPK1A), β1 integrin (ITGB1), caveolin-1 (CAV1) and the antimicrobial peptides human β defensin-2 (DEFB4A) and LL-37 (CAMP) was evaluated using RT-PCR. No direct antibacterial effect on E. coli or any of the tested uropathogenic strains was observed by A. caudatus. However, we demonstrated reduced mRNA expression of uroplakin-1a and caveolin-1, but not β1 integrin after treatment of uroepithelial cells, mirrored by the decreased adhesion and invasion of E. coli. A. caudatus treatment did not induce increased gene expression of the antimicrobial peptides, LL-37 and human β-defensin-2. Our results showed that A. caudatus has a protective role on bladder epithelial cells against uropathogenic E. coli infection by decreasing the bacterial adhesion and invasion, thereby preventing infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Okegawa, T; Pong, R C; Li, Y; Bergelson, J M; Sagalowsky, A I; Hsieh, J T
2001-09-01
The coxsackie and adenovirus receptor (CAR) is identified as a high-affinity receptor for adenovirus type 5. We observed that invasive bladder cancer specimens had significantly reduced CAR mRNA levels compared with superficial bladder cancer specimens, which suggests that CAR may play a role in the progression of bladder cancer. Elevated CAR expression in the T24 cell line (CAR-negative cells) increased its sensitivity to adenovirus infection and significantly inhibited its in vitro growth, accompanied by p21 and hypophosphorylated retinoblastoma accumulation. Conversely, decreased CAR levels in both RT4 and 253J cell lines (CAR-positive cells) promoted their in vitro growth. To unveil the mechanism of action of CAR, we showed that the extracellular domain of CAR facilitated intercellular adhesion. Furthermore, interrupting intercellular adhesion of CAR by a specific antibody alleviates the growth-inhibitory effect of CAR. We also demonstrated that both the transmembrane and intracellular domains of CAR were critical for its growth-inhibitory activity. These data indicate that the cell-cell contact initiated by membrane-bound CAR can elicit a negative signal cascade to modulate cell cycle regulators inside the nucleus of bladder cancer cells. Therefore, the presence of CAR cannot only facilitate viral uptake of adenovirus but also inhibit cell growth. These results can be integrated to formulate a new strategy for bladder cancer therapy.
Takeuchi, Hisashi; Taoka, Rikiya; Mmeje, Chinedu O; Jinesh, Goodwin G; Safe, Stephen; Kamat, Ashish M
2016-08-01
The objective is to determine whether methyl 2-cyano-3,11-dioxo-18b-olean-1,12-dien-30-oate (CDODA-Me) has therapeutic potential in bladder cancer. We investigated the effects of CDODA-Me on the growth and survival of bladder cancer cells, and expression of specificity protein (Sp) transcription factors that regulate genes associated with cancer cell proliferation and survival. J82, RT4P, and 253JB-V bladder cancer cell lines were treated with vehicle alone or with CDODA-Me with or without the antioxidant l-glutathione. Cell viability and DNA fragmentation were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide-fluorescence-activated cell sorting (FACS) analysis, respectively. Intracellular reactive oxygen species (ROS) were measured by 2',7'-dichlorofluorescin diacetate-FACS analysis. We assessed CDODA's effects on the levels of Sp and Sp-regulated proteins and induction of apoptosis in bladder cancer cells by Western blotting. We also assessed the anticancer effects of CDODA-Me in nude mice bearing RT4v6 bladder cancer. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and FACS analysis revealed that CDODA-Me inhibited the proliferation and survival of the 3 bladder cancer cell lines in a dose-dependent manner. FACS analysis also indicated that CDODA-Me-induced intracellular ROS, and Western blot analysis indicated that CDODA-Me decreased levels of Sp and Sp-regulated proteins and induced apoptosis in a dose-dependent and time-dependent manner. l-Glutathione attenuated CDODA-Me's down-regulation of Sp and Sp-regulated proteins. Compared with the control treatment, CDODA-Me substantially inhibited tumor growth in vivo. CDODA-Me has antineoplastic activity in bladder cancer cells by inducing ROS, which down-regulate Sp and Sp-regulated proteins. Thus, CDODA-Me has therapeutic potential in bladder cancer, and additional studies of the agent's efficacy and mode of action are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Garg, Manoj; Kanojia, Deepika; Seth, Amlesh; Kumar, Rajive; Gupta, Anju; Surolia, Avadhesha; Suri, Anil
2010-01-01
Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma.
Schepmann, Dirk; Lehmkuhl, Kirstin; Brune, Stefanie; Wünsch, Bernhard
2011-07-15
A selective competitive binding assay for the determination of the affinity of compounds to the human σ(2) receptor using 96-well multiplates and a solid state scintillator was developed. In the assay system, [(3)H]ditolylguanidine (DTG) was used as radioligand and membrane homogenates from human RT-4 cells physiologically expressing σ(2) receptors served as receptor material. In order to block the interaction of the unselective radioligand [(3)H]DTG with σ(1) receptors, all experiments were performed in the presence of the σ(1) selective ligand (+)-pentazocine. The density of σ(2) receptors of the cells was analyzed by a saturation experiment with [(3)H]DTG. The radioligand [(3)H]DTG was bound to a single, saturable site on human σ(2) receptors, resulting in a B(max) value of 2108±162fmol/mg protein and K(d)-value of 8.3±2.0nM. The expression of competing σ(1) receptors was evaluated by performing a saturation experiment using the σ(1) selective radioligand [(3)H](+)-pentazocine, which resulted in a B(max) value of 279±40fmol/mg protein and K(d) value of 13.4±1.6nM. For validation of the σ(2) binding assay, the K(i)-values of four σ(2) ligands (ditolylguanidine, haloperidol, rimczole and BMY-14802) were determined with RT-4 cell membrane preparations. The K(i) values obtained from these experiments are in good accordance with the K(i)-values obtained with rat liver membrane preparations as receptor material and with K(i) values given in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.
Amaral, Robson L F; Miranda, Mariza; Marcato, Priscyla D; Swiech, Kamilla
2017-01-01
Introduction: Cell-based assays using three-dimensional (3D) cell cultures may reflect the antitumor activity of compounds more accurately, since these models reproduce the tumor microenvironment better. Methods: Here, we report a comparative analysis of cell behavior in the two most widely employed methods for 3D spheroid culture, forced floating (Ultra-low Attachment, ULA, plates), and hanging drop (HD) methods, using the RT4 human bladder cancer cell line as a model. The morphology parameters and growth/metabolism of the spheroids generated were first characterized, using four different cell-seeding concentrations (0.5, 1.25, 2.5, and 3.75 × 10 4 cells/mL), and then, subjected to drug resistance evaluation. Results: Both methods generated spheroids with a smooth surface and round shape in a spheroidization time of about 48 h, regardless of the cell-seeding concentration used. Reduced cell growth and metabolism was observed in 3D cultures compared to two-dimensional (2D) cultures. The optimal range of spheroid diameter (300-500 μm) was obtained using cultures initiated with 0.5 and 1.25 × 10 4 cells/mL for the ULA method and 2.5 and 3.75 × 10 4 cells/mL for the HD method. RT4 cells cultured under 3D conditions also exhibited a higher resistance to doxorubicin (IC 50 of 1.00 and 0.83 μg/mL for the ULA and HD methods, respectively) compared to 2D cultures (IC 50 ranging from 0.39 to 0.43). Conclusions: Comparing the results, we concluded that the forced floating method using ULA plates was considered more suitable and straightforward to generate RT4 spheroids for drug screening/cytotoxicity assays. The results presented here also contribute to the improvement in the standardization of the 3D cultures required for widespread application.
Fang, Yong; Cao, Zipeng; Hou, Qi; Ma, Chen; Yao, Chunsuo; Li, Jingxia; Wu, Xue-Ru; Huang, Chuanshu
2013-01-01
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum, and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying ISO anti-cancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that ISO showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G0/G1 arrest as well as downregulation of Cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that ISO down-regulated Cyclin D1 gene transcription via inhibition of SP1 transactivation. Moreover, ectopic expression of GFP-Cyclin D1 rendered UMUC3 cells resistant to induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth by ISO treatment. Together, our studies demonstrate that ISO is an active compound that mediates for Gnetum Cleistostachyum’s induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth through down-regulating SP1/Cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anti-cancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate ISO. PMID:23723126
Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Moura, Sidnei; Padilha, Francine F.; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling
2014-01-01
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment. PMID:25530785
Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Martins Rodrigues, Fernanda; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Roesch-Ely, Mariana; Moura, Sidnei; Padilha, Francine F; Collares, Tiago; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling
2014-01-01
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Serotonergic regulation of distention-induced ATP release from the urothelium.
Matsumoto-Miyai, Kazumasa; Yamada, Erika; Shinzawa, Eriko; Koyama, Yoshihisa; Shimada, Shoichi; Yoshizumi, Masaru; Kawatani, Masahito
2016-04-01
Serotonin [5-hydroxytryptamine (5-HT)] is involved in both motor and sensory functions in hollow organs, especially in the gastrointestinal tract. However, the involvement of 5-HT in visceral sensation of the urinary bladder remains unknown. Because distention-induced ATP release from the urothelium plays an essential role in visceral sensation of the urinary bladder, we investigated the regulation of urothelial ATP release by the 5-HT signaling system. RT-PCR and immunohistochemical analyses of the urothelium revealed specific expression of 5-HT 1D and 5-HT 4 receptors. The addition of 5-HT did not affect urothelial ATP release without bladder distention, but it significantly reduced distention-induced ATP release by physiological pressure during urine storage (5 cmH 2 O). The inhibitory effect of 5-HT on distention-elicited ATP release was blocked by preincubation with the 5-HT 1B/1D antagonist GR-127935 but not by the 5-HT 4 antagonist SB-204070. mRNA encoding tryptophan hydroxylase 1 was detected in the urinary bladder by nested RT-PCR amplification, and l-tryptophan or the selective serotonin reuptake inhibitor citalopram also inhibited ATP release, indicating that 5-HT is endogenously synthesized and released in the urinary bladder. The addition of GR-127935 significantly enhanced the distention-elicited ATP release 40 min after distention, whereas SB-204070 reduced the amount of ATP release 20 min after distention. These data suggest that 5-HT 4 facilitates the distention-induced ATP release at an earlier stage, whereas 5-HT 1D inhibits ATP release at a later stage. The net inhibitory effect of 5-HT indicates that the action of 5-HT on the urothelium is mediated predominantly by 5-HT 1D . Copyright © 2016 the American Physiological Society.
A review of plan library approaches in adaptive radiotherapy of bladder cancer.
Collins, Shane D; Leech, Michelle M
2018-05-01
Large variations in the shape and size of the bladder volume are commonly observed in bladder cancer radiotherapy (RT). The clinical target volume (CTV) is therefore frequently inadequately treated and large isotropic margins are inappropriate in terms of dose to organs at risk (OAR); thereby making adaptive radiotherapy (ART) attractive for this tumour site. There are various methods of ART delivery, however, for bladder cancer, plan libraries are frequently used. A review of published studies on plan libraries for bladder cancer using four databases (Pubmed, Science Direct, Embase and Cochrane Library) was conducted. The endpoints selected were accuracy and feasibility of initiation of a plan library strategy into a RT department. Twenty-four articles were included in this review. The majority of studies reported improvement in accuracy with 10 studies showing an improvement in planning target volume (PTV) and CTV coverage with plan libraries, some by up to 24%. Seventeen studies showed a dose reduction to OARs, particularly the small bowel V45Gy, V40Gy, V30Gy and V10Gy, and the rectal V30Gy. However, the occurrence of no suitable plan was reported in six studies, with three studies showing no significant difference between adaptive and non-adaptive strategies in terms of target coverage. In addition, inter-observer variability in plan selection appears to remain problematic. The additional resources, education and technology required for the initiation of plan library selection for bladder cancer may hinder its routine clinical implementation, with eight studies illustrating increased treatment time required. While there is a growing body of evidence in support of plan libraries for bladder RT, many studies differed in their delivery approach. The advent of the clinical use of the MRI-linear accelerator will provide RT departments with the opportunity to consider daily online adaption for bladder cancer as an alternate to plan library approaches.
Doss, Mohan; Zhang, James J; Bélanger, Marie-José; Stubbs, James B; Hostetler, Eric D; Alpaugh, Katherine; Kolb, Hartmuth C; Yu, Jian Q
2010-12-01
F-HX4 is a novel positron emission tomography (PET) tracer for imaging hypoxia. The purpose of this study was to determine the biodistribution and estimate the radiation dose of F-HX4 using whole-body PET/computed tomography (CT) scans in monkeys and humans. Successive whole-body PET/CT scans were done after the injection of F-HX4 in four healthy humans (422±142 MBq) and in three rhesus monkeys (189±3 MBq). Biodistribution was determined from PET images and organ doses were estimated using OLINDA/EXM software. The bladder, liver, and kidneys showed the highest percentage of the injected radioactivity for humans and monkeys. For humans, approximately 45% of the activity is eliminated by bladder voiding in 3.6 h, and for monkeys 60% is in the bladder content after 3 h. The critical organ is the urinary bladder wall with the highest absorbed radiation dose of 415±18 (monkeys) and 299±38 μGy/MBq (humans), in the 4.8-h bladder voiding interval model. The average value of effective dose for the adult male was estimated at 42±4.2 μSv/MBq from monkey data and 27±2 μSv/MBq from human data. Bladder, kidneys, and liver have the highest uptake of injected F-HX4 activity for both monkeys and humans. The urinary bladder wall receives the highest dose of F-HX4 and is the critical organ. Thus, patients should be encouraged to maintain adequate hydration and void frequently. The effective dose of F-HX4 is comparable with that of other F-based imaging agents.
1993-08-01
use since World War II. The facility’s medical service region encompasses the entire state of Tennessee and the twelve southwestern counties of... 8545 RT MODIFIED RADICAL MASTECTOMY 10 34:40 3:28 4576 SIGMOIDECTOMY 6 25:00 4:10 4610 COLOSTOMY CLOSURE 6 26:25 4:24 5732 CYSTOLITHOLAPAXY, BLADDER BX...2:59 3859 LIGATION/STRIPPING OF VARICOSE VEINS 21 45:50 2:10 5310 BILATERAL INGUINAL HERNIA REPAIR 13 29:30 2:16 8545 RT MODIFIED RADICAL MASTECTOMY
Drug-induced keratin 9 interaction with Hsp70 in bladder cancer cells.
Andolino, C; Hess, C; Prince, T; Williams, H; Chernin, M
2018-05-25
A pull-down experiment (co-immunoprecipitation) was performed on a T24 human bladder cancer cell lysate treated with the Hsp inhibitor VER155008 using an Hsp70 antibody attached to Dynabeads. Keratin 9, a cytoskeleton intermediate filament protein, was identified by LC MS/MS analysis. This novel finding was confirmed by Western blotting, RT-PCR, and immunocytochemistry. Other members of the keratin family of proteins have been shown to be involved in cancer progression, most recently identified to be associated with cell invasion and metastasis. The specific role of keratin 9 expression in these cells is yet to be determined.
Amaral, Robson L. F.; Miranda, Mariza; Marcato, Priscyla D.; Swiech, Kamilla
2017-01-01
Introduction: Cell-based assays using three-dimensional (3D) cell cultures may reflect the antitumor activity of compounds more accurately, since these models reproduce the tumor microenvironment better. Methods: Here, we report a comparative analysis of cell behavior in the two most widely employed methods for 3D spheroid culture, forced floating (Ultra-low Attachment, ULA, plates), and hanging drop (HD) methods, using the RT4 human bladder cancer cell line as a model. The morphology parameters and growth/metabolism of the spheroids generated were first characterized, using four different cell-seeding concentrations (0.5, 1.25, 2.5, and 3.75 × 104 cells/mL), and then, subjected to drug resistance evaluation. Results: Both methods generated spheroids with a smooth surface and round shape in a spheroidization time of about 48 h, regardless of the cell-seeding concentration used. Reduced cell growth and metabolism was observed in 3D cultures compared to two-dimensional (2D) cultures. The optimal range of spheroid diameter (300–500 μm) was obtained using cultures initiated with 0.5 and 1.25 × 104 cells/mL for the ULA method and 2.5 and 3.75 × 104 cells/mL for the HD method. RT4 cells cultured under 3D conditions also exhibited a higher resistance to doxorubicin (IC50 of 1.00 and 0.83 μg/mL for the ULA and HD methods, respectively) compared to 2D cultures (IC50 ranging from 0.39 to 0.43). Conclusions: Comparing the results, we concluded that the forced floating method using ULA plates was considered more suitable and straightforward to generate RT4 spheroids for drug screening/cytotoxicity assays. The results presented here also contribute to the improvement in the standardization of the 3D cultures required for widespread application. PMID:28878686
Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar; Wagner, David G; Horn, Adam J; Lele, Subodh M; Theodorescu, Dan; Batra, Surinder K
2014-01-01
Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma.
Chuang, Cheng-Hsin; Wu, Ting-Feng; Chen, Cheng-Ho; Chang, Kai-Chieh; Ju, Jing-Wei; Huang, Yao-Wei; Van Nhan, Vo
2015-07-21
A multiplexed immunosensor has been developed for the detection of specific biomarkers Galectin-1 (Gal-1) and Lactate Dehydrogenase B (LDH-B) present in different grades of bladder cancer cell lysates. In order to immobilize nanoprobes with different antibodies on a single chip we employed three-step programmable dielectrophoretic manipulations for focusing, guiding and trapping to enhance the fluorescent response and reduce the interference between the two antibody arrays. The chip consisted of a patterned indium tin oxide (ITO) electrode for sensing and a middle fish bone shaped gold electrode for focusing and guiding. Using ITO electrodes for the sensing area can effectively eliminate the background noise of fluorescence response as compared to metal electrodes. It was also observed that the three step manipulation increased fluorescence response after immunosensing by about 4.6 times as compared to utilizing DEP for just trapping the nanoprobes. Two different-grade bladder cancer cell lysates (grade I: RT4 and grade III: T24) were individually analyzed for detecting the protein expression levels of Gal-1 and LDH-B. The fluorescence intensity observed for Gal-1 is higher than that of LDH-B in the T24 cell lysate; however the response observed in RT4 is higher for LDH-B as compared to Gal-1. Thus we can effectively identify the different grades of bladder cancer cells. In addition, the platform for DEP manipulation developed in this study can enable real time detection of multiple analytes on a single chip and provide more practical benefits for clinical diagnosis.
Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A.; Tang, Moon-shong
2014-01-01
Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS. PMID:24939871
Spencer, John David; Jackson, Ashley R; Li, Birong; Ching, Christina B; Vonau, Martin; Easterling, Robert S; Schwaderer, Andrew L; McHugh, Kirk M; Becknell, Brian
2015-01-01
Recent evidence indicates that antimicrobial peptides (AMPs) serve key roles in defending the urinary tract against invading uropathogens. To date, the individual contribution of AMPs to urinary tract host defense is not well defined. In this study, we identified Regenerating islet-derived 3 gamma (RegIIIγ) as the most transcriptionally up-regulated AMP in murine bladder transcriptomes following uropathogenic Escherichia coli (UPEC) infection. We confirmed induction of RegIIIγ mRNA during cystitis and pyelonephritis by quantitative RT-PCR. Immunoblotting demonstrates increased bladder and urinary RegIIIγ protein levels following UPEC infection. Immunostaining localizes RegIIIγ protein to urothelial cells of infected bladders and kidneys. Human patients with UTI have increased urine concentrations of the orthologous Hepatocarcinoma-Intestine-Pancreas / Pancreatitis Associated Protein (HIP/PAP) compared to healthy controls. Recombinant RegIIIγ protein does not demonstrate bactericidal activity toward UPEC in vitro, but does kill Staphylococcus saprophyticus in a dose-dependent manner. Kidney and bladder tissue from RegIIIγ knockout mice and wild-type mice contain comparable bacterial burden following UPEC and Gram-positive UTI. Our results demonstrate that RegIIIγ and HIP/PAP expression is induced during human and murine UTI. However, their specific function in the urinary tract remains uncertain.
Spencer, John David; Jackson, Ashley R.; Li, Birong; Ching, Christina B.; Vonau, Martin; Easterling, Robert S.; Schwaderer, Andrew L.; McHugh, Kirk M.; Becknell, Brian
2015-01-01
Recent evidence indicates that antimicrobial peptides (AMPs) serve key roles in defending the urinary tract against invading uropathogens. To date, the individual contribution of AMPs to urinary tract host defense is not well defined. In this study, we identified Regenerating islet-derived 3 gamma (RegIIIγ) as the most transcriptionally up-regulated AMP in murine bladder transcriptomes following uropathogenic Escherichia coli (UPEC) infection. We confirmed induction of RegIIIγ mRNA during cystitis and pyelonephritis by quantitative RT-PCR. Immunoblotting demonstrates increased bladder and urinary RegIIIγ protein levels following UPEC infection. Immunostaining localizes RegIIIγ protein to urothelial cells of infected bladders and kidneys. Human patients with UTI have increased urine concentrations of the orthologous Hepatocarcinoma-Intestine-Pancreas / Pancreatitis Associated Protein (HIP/PAP) compared to healthy controls. Recombinant RegIIIγ protein does not demonstrate bactericidal activity toward UPEC in vitro, but does kill Staphylococcus saprophyticus in a dose-dependent manner. Kidney and bladder tissue from RegIIIγ knockout mice and wild-type mice contain comparable bacterial burden following UPEC and Gram-positive UTI. Our results demonstrate that RegIIIγ and HIP/PAP expression is induced during human and murine UTI. However, their specific function in the urinary tract remains uncertain. PMID:26658437
van de Schoot, Agustinus J A J; de Boer, Peter; Visser, Jorrit; Stalpers, Lukas J A; Rasch, Coen R N; Bel, Arjan
2017-05-01
Radiation therapy (RT) using a daily plan selection adaptive strategy can be applied to account for interfraction organ motion while limiting organ at risk dose. The aim of this study was to quantify the dosimetric consequences of daily plan selection compared with non-adaptive RT in cervical cancer. Ten consecutive patients who received pelvic irradiation, planning CTs (full and empty bladder), weekly post-fraction CTs and pre-fraction CBCTs were included. Non-adaptive plans were generated based on the PTV defined using the full bladder planning CT. For the adaptive strategy, multiple PTVs were created based on both planning CTs by ITVs of the primary CTVs (i.e., GTV, cervix, corpus-uterus and upper part of the vagina) and corresponding library plans were generated. Daily CBCTs were rigidly aligned to the full bladder planning CT for plan selection. For daily plan recalculation, selected CTs based on initial similarity were deformably registered to CBCTs. Differences in daily target coverage (D 98% > 95%) and in V 0.5Gy , V 1.5Gy , V 2Gy , D 50% and D 2% for rectum, bladder and bowel were assessed. Non-adaptive RT showed inadequate primary CTV coverage in 17% of the daily fractions. Plan selection compensated for anatomical changes and improved primary CTV coverage significantly (p < 0.01) to 98%. Compared with non-adaptive RT, plan selection decreased the fraction dose to rectum and bowel indicated by significant (p < 0.01) improvements for daily V 0.5Gy , V 1.5Gy , V 2Gy , D 50% and D 2% . However, daily plan selection significantly increased the bladder V 1.5Gy , V 2Gy , D 50% and D 2% . In cervical cancer RT, a non-adaptive strategy led to inadequate target coverage for individual patients. Daily plan selection corrected for day-to-day anatomical variations and resulted in adequate target coverage in all fractions. The dose to bowel and rectum was decreased significantly when applying adaptive RT.
Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.
Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael
2014-06-01
Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Chala, Bayissa; Choi, Min-Ho; Moon, Kyung Chul; Kim, Hyung Suk; Kwak, Cheol; Hong, Sung-Tae
2017-01-01
Schistosoma haematobium is a biocarcinogen of human urinary bladder (UB). The present study investigated developing UB cancer mouse model by injecting S. haematobium eggs into the bladder wall and introduction of chemical carcinogens. Histopathological findings showed mild hyperplasia to epithelial vacuolar change, and high grade dysplasia. Squamous metaplasia was observed in the S. haematobium eggs+NDMA group at week 12 but not in other groups. Immunohistochemistry revealed significantly high expression of Ki-67 in urothelial epithelial cells of the S. haematobium eggs+BBN group at week 20. The qRT-PCR showed high expression of p53 gene in S. haematobium eggs group at week 4 and S. haematobium eggs+BBN group at week 20. E-cadherin and vimentin showed contrasting expression in S. haematobium eggs+BBN group. Such inverse expression of E-cadherin and vimentin may indicate epithelial mesenchymal transition in the UB tissue. In conclusion, S. haematobium eggs and nitrosamines may transform UB cells into squamous metaplasia and dysplasia in correlation with increased expression of Ki-67. Marked decrease in E-cadherin and increase in p53 and vimentin expressions may support the transformation. The present study introduces a promising modified animal model for UB cancer study using S. haematobium eggs. PMID:28285503
Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar; Wagner, David G.; Horn, Adam J.; Lele, Subodh M.; Theodorescu, Dan; Batra, Surinder K.
2014-01-01
Purpose Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. Material and Methods Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. Results MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). Conclusion The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma. PMID:24671186
Arms, Lauren; Girard, Beatrice M.; Malley, Susan E.
2013-01-01
Chemokines are proinflammatory mediators of the immune response, and there is growing evidence for chemokine/receptor signaling involvement in pronociception. Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a chronic pain syndrome characterized by pain, pressure, or discomfort perceived to be bladder-related with at least one urinary symptom. We have explored the expression and functional roles of CCL2 (monocyte chemoattractant protein-1) and its high-affinity receptor, CCR2, in micturition reflex function and somatic sensitivity in rats with urinary bladder inflammation induced by cyclophosphamide (CYP) treatment of varying duration (4 h, 48 h, chronic). Real-time quantitative RT-PCR, ELISAs, and immunohistochemistry demonstrated significant (P ≤ 0.01) increases in CCL2 and CCR2 expression in the urothelium and in Fast Blue-labeled bladder afferent neurons in lumbosacral dorsal root ganglia with CYP-induced cystitis. Intravesical infusion of RS504393 (5 μM), a specific CCR2 antagonist, reduced voiding frequency and increased bladder capacity and void volume in rats with CYP-induced cystitis (4 h), as determined with open outlet, conscious cystometry. In addition, CCR2 blockade, at the level of the urinary bladder, reduced referred somatic sensitivity of the hindpaw and pelvic region in rats with CYP treatment, as determined with von Frey filament testing. We provide evidence of functional roles for CCL2/CCR2 signaling at the level of the urinary bladder in reducing voiding frequency and somatic sensitivity following CYP-induced cystitis (4 h). These studies suggest that chemokines/receptors may be novel targets with therapeutic potential in the context of urinary bladder inflammation. PMID:23594826
Majumdar, Shyama; Gong, Edward M; Di Vizio, Dolores; Dreyfuss, Jonathan; DeGraff, David J; Hager, Martin H; Park, Peter J; Bellmunt, Joaquim; Matusik, Robert J; Rosenberg, Jonathan E; Adam, Rosalyn M
2013-01-01
Urothelial carcinoma (UC) causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying urothelial cancer development and tumor progression are still largely unknown. Using informatics analysis, we identified Sh3gl2 (endophilin A1) as a bladder urothelium-enriched transcript. The gene encoding Sh3gl2 is located on chromosome 9p, a region frequently altered in UC. Sh3gl2 is known to regulate endocytosis of receptor tyrosine kinases implicated in oncogenesis, such as the epidermal growth factor receptor (EGFR) and c-Met. However, its role in UC pathogenesis is unknown. Informatics analysis of expression profiles as well as immunohistochemical staining of tissue microarrays revealed Sh3gl2 expression to be decreased in UC specimens compared to nontumor tissues. Loss of Sh3gl2 was associated with increasing tumor grade and with muscle invasion, which is a reliable predictor of metastatic disease and cancer-derived mortality. Sh3gl2 expression was undetectable in 19 of 20 human UC cell lines but preserved in the low-grade cell line RT4. Stable silencing of Sh3gl2 in RT4 cells by RNA interference 1) enhanced proliferation and colony formation in vitro, 2) inhibited EGF-induced EGFR internalization and increased EGFR activation, 3) stimulated phosphorylation of Src family kinases and STAT3, and 4) promoted growth of RT4 xenografts in subrenal capsule tissue recombination experiments. Conversely, forced re-expression of Sh3gl2 in T24 cells and silenced RT4 clones attenuated oncogenic behaviors, including growth and migration. Together, these findings identify loss of Sh3gl2 as a frequent event in UC development that promotes disease progression. PMID:23814487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert
2009-12-01
Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less
Takasu, Toshiyuki; Ukai, Masashi; Sato, Shuichi; Matsui, Tetsuo; Nagase, Itsuro; Maruyama, Tatsuya; Sasamata, Masao; Miyata, Keiji; Uchida, Hisashi; Yamaguchi, Osamu
2007-05-01
We evaluated the pharmacological characteristics of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]-ethyl} acetanilide (YM178). YM178 increased cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing human beta3-adrenoceptor (AR). The half-maximal effective concentration (EC50) value was 22.4 nM. EC50 values of YM178 for human beta1- and beta2-ARs were 10,000 nM or more, respectively. The ratio of intrinsic activities of YM178 versus maximal response induced by isoproterenol (nonselective beta-AR agonist) was 0.8 for human beta3-ARs, 0.1 for human beta1-ARs, and 0.1 for human beta2-ARs. The relaxant effects of YM178 were evaluated in rats and humans bladder strips precontracted with carbachol (CCh) and compared with those of isoproterenol and 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one hydrochloride (CGP-12177A) (beta3-AR agonist). EC50 values of YM178 and isoproterenol in rat bladder strips precontracted with 10(-6) M CCh were 5.1 and 1.4 microM, respectively, whereas those in human bladder strips precontracted with 10(-7) M CCh were 0.78 and 0.28 microM, respectively. In in vivo study, YM178 at a dose of 3 mg/kg i.v. decreased the frequency of rhythmic bladder contraction induced by intravesical filling with saline without suppressing its amplitude in anesthetized rats. These findings suggest the suitability of YM178 as a therapeutic drug for the treatment of symptoms of overactive bladder such as urinary frequency, urgency, and urge incontinence.
Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L
2009-06-01
Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.
McDermott, Catherine; Chess-Williams, Russ; Grant, Gary D; Perkins, Anthony V; McFarland, Amelia J; Davey, Andrew K; Anoopkumar-Dukie, Shailendra
2012-03-01
We determined the effects of Pseudomonas aeruginosa virulence factor pyocyanin on human urothelial cell viability and function in vitro. RT4 urothelial cells were treated with pyocyanin (1 to 100 μM) for 24 hours. After exposure the treatment effects were measured according to certain end points, including changes in urothelial cell viability, reactive oxygen species formation, caspase-3 activity, basal and stimulated adenosine triphosphate release, SA-β-gal activity and detection of acidic vesicular organelles. The 24-hour pyocyanin treatment resulted in a concentration dependent decrease in cell viability at concentrations of 25 μM or greater, and increases in reactive oxygen species formation and caspase-3 activity at 25 μM or greater. Basal adenosine triphosphate release was significantly decreased at all tested pyocyanin concentrations while stimulated adenosine triphosphate release was significantly inhibited at pyocyanin concentrations of 12.5 μM or greater with no significant stimulated release at 100 μM. Pyocyanin treated RT4 cells showed morphological characteristics associated with cellular senescence, including SA-β-gal expression. This effect was not evident at 100 μM pyocyanin and may have been due to apoptotic cell death, as indicated by increased caspase-3 activity. An increase in acridine orange stained vesicular-like organelles was observed in RT4 urothelial cells after pyocyanin treatment. Exposure to pyocyanin alters urothelial cell viability, reactive oxygen species production and caspase-3 activity. Treatment also results in cellular senescence, which may affect the ability of urothelium to repair during infection. The virulence factor depressed stimulated adenosine triphosphate release, which to our knowledge is a novel finding with implications for awareness of bladder filling in patients with P. aeruginosa urinary tract infection. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Xue, Yijun; Wu, Gengqing; Wang, Xiaoning; Zou, Xiaofeng; Zhang, Guoxi; Xiao, Rihai; Yuan, Yuanhu; Long, Dazhi; Yang, Jun; Wu, Yuting; Xu, Hui; Liu, Folin; Liu, Min
2013-03-01
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified human oncoprotein that stabilizes the c-MYC protein. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in urothelial cell carcinoma (UCC) of the bladder. CIP2A expression was examined in 20 fresh bladder UCC tissues and paired adjacent normal bladder tissues by RT-PCR and Western blot. Immunohistochemistry for CIP2A was performed on additional 117 bladder UCC tissues. The clinical significance of CIP2A expression was analyzed. CIP2A downregulation was performed in bladder UCC cell line T24 with high abundance of CIP2A, and the effects of CIP2A silencing on cell proliferation, migration, invasion in vitro, and tumor growth in vivo were evaluated. We found that CIP2A expression was upregulated in bladder UCC tissues relative to adjacent normal bladder tissues. Clinicopathological analysis showed that CIP2A expression was significantly associated with tumor stage (P = 0.004), histological grade (P = 0.007), and lymph node status (P = 0.001). The Kaplan-Meier survival curves revealed that CIP2A expression was associated with poor prognosis in bladder UCC patients (log-rank value = 14.704, P < 0.001). CIP2A expression was an independent prognostic marker of overall patient survival in a multivariate analysis (P = 0.015). Knockdown of the CIP2A expression reduced cell proliferation, anchorage-independent growth, migration, invasion, and tumor growth in xenograft model mice. Our findings suggest that CIP2A is an independent predictor of poor prognosis of bladder UCC patients, and inhibition of its expression might be of therapeutic significance.
Guo, Michael; Chang, Phat; Hauke, Eric; Girard, Beatrice M.; Tooke, Katharine; Ojala, Jacqueline; Malley, Susan M.; Hsiang, Harrison; Vizzard, Margaret A.
2018-01-01
Changes in urinary bladder function and somatic sensation may be mediated, in part, by inflammatory changes in the urinary bladder including the expression of chemokines. Male and female C57BL/6 mice were treated with cyclophosphamide (CYP; 75 mg/kg, 200 mg/kg, i.p.) to induce bladder inflammation (4 h, 48 h, chronic). We characterized the expression of CXC chemokines (CXCL9, CXCL10 and CXCL11) in the urinary bladder and determined the effects of blockade of their common receptor, CXCR3, at the level urinary bladder on bladder function and somatic (hindpaw and pelvic) sensation. qRT-PCR and Enzyme-Linked Immunoassays (ELISAs) were used to determine mRNA and protein expression of CXCL9, CXCL10 and CXCL11 in urothelium and detrusor. In urothelium of female mice treated with CYP, CXCL9 and CXCL10 mRNA significantly (p ≤ 0.01) increased with CYP treatment whereas CXC mRNA expression in the detrusor exhibited both increases and decreases in expression with CYP treatment. CXC mRNA expression urothelium and detrusor of male mice was more variable with both significant (p ≤ 0.01) increases and decreases in expression depending on the specific CXC chemokine and CYP treatment. CXCL9 and CXCL10 protein expression was significantly (p ≤ 0.01) increased in the urinary bladder with 4 h CYP treatment in female mice whereas CXC protein expression in the urinary bladder of male mice did not exhibit an overall change in expression. CXCR3 blockade with intravesical instillation of AMG487 (5 mg/kg) significantly (p ≤ 0.01) increased bladder capacity, reduced voiding frequency and reduced non-voiding contractions in female mice treated with CYP (4 h, 48 h). CXCR3 blockade also reduced (p ≤ 0.01) hindpaw and pelvic sensitivity in female mice treated with CYP (4 h, 48 h). CXC chemokines may be novel targets for treating urinary bladder dysfunction and somatic sensitization resulting from urinary bladder inflammation. PMID:29681802
Expression and Antimicrobial Function of Beta-Defensin 1 in the Lower Urinary Tract
Becknell, Brian; Spencer, John David; Carpenter, Ashley R.; Chen, Xi; Singh, Aspinder; Ploeger, Suzanne; Kline, Jennifer; Ellsworth, Patrick; Li, Birong; Proksch, Ehrhardt; Schwaderer, Andrew L.; Hains, David S.; Justice, Sheryl S.; McHugh, Kirk M.
2013-01-01
Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1 -/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1 -/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract. PMID:24204930
Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer.
Prack Mc Cormick, Barbara; Langle, Yanina; Belgorosky, Denise; Vanzulli, Silvia; Balarino, Natalia; Sandes, Eduardo; Eiján, Ana M
2018-01-24
Conservative treatment for invasive bladder cancer (BC) involves a complete transurethral tumor resection combined with chemotherapy (CT) and radiotherapy (RT). The major obstacles of chemo-radiotherapy are the addition of the toxicities of RT and CT, and the recurrence due to RT and CT resistances. The flavonoid Silybin (Sb) inhibits pathways involved in cell survival and resistance mechanisms, therefore the purpose of this paper was to study in vitro and in vivo, the ability of Sb to improve the response to RT, in two murine BC cell lines, with different levels of invasiveness, placing emphasis on radio-sensitivity, and pathways involved in radio-resistance and survival. In vitro, Sb radio-sensitized murine invasive cells through the inhibition of RT-induced NF-κB and PI3K pathways, and the increase of oxidative stress, while non-invasive cells did not show to be sensitized. In vivo, Sb improved RT-response and overall survival in invasive murine tumors. As Sb is already being tested in clinical trials for other urological cancers and it improves RT-response in invasive BC, these results could have translational relevance, supporting further research. © 2018 Wiley Periodicals, Inc.
Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R
2009-01-01
Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.
Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang
2017-06-01
Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.
Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu
2016-07-01
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American Association for Cancer Research.
Ham, Won Sik; Lee, Joo Hyoung; Yu, Ho Song; Choi, Young Deuk
2008-10-01
An analysis of differentially expressed genes (DEGs) between bladder transitional cell carcinoma (TCC) and the surrounding urothelium to help identify what lies behind the mechanism of multifocal tumor development has not yet been performed. We sought to find a new DEG related to the development of bladder TCC. Thirty-nine bladder TCC tissues paired with normal-appearing urothelium tissues obtained from the same patient were used as subjects. Initially, we compared the messenger RNA (mRNA) profiles between normal-appearing urothelium and TCC tissue of 1 patient by using annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR) and selective amplification of family members (SAFM) PCR to identify potential DEGs. To validate the results of the ACP data, reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on those of all 39 patients. Among the several DEGs discovered in the ACP data, 1 DEG was chosen as the candidate for the RT-PCR, that is present or markedly upregulated in normal-appearing urothelial tissue compared with TCC tissue. Gene sequence searching revealed that this DEG is chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Downregulation of COUP-TFI mRNA expression in TCC tissue compared to normal-appearing urothelium tissue of the same patient, irrespective of tumor stage and grade, was confirmed by RT-PCR in 39 patients. Our results suggest that the loss of COUP-TFI may play a role in the transition from normal epithelium to TCC. Further characterization of the COUP-TFI gene is expected to give us informations about bladder TCC tumorigenesis.
Naranmandura, Hua; Ogra, Yasumitsu; Iwata, Katsuya; Lee, Jane; Suzuki, Kazuo T; Weinfeld, Michael; Le, X Chris
2009-07-15
Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTA(V) with that of inorganic arsenite (iAs(III)) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAs(III) was known to be toxic to most cells, here we show that iAs(III) (LC(50)=112 microM) was much less cytotoxic than DMMTA(V) (LC(50)=16.7 microM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTA(V) generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAs(III) at their respective LC(50) dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTA(V) but not iAs(III), suggesting that production of ROS was the main cause of cell death from exposure to DMMTA(V), but not iAs(III). Because the cellular uptake of iAs(III) is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.
Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L
2015-01-01
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Christian; Roemer, Felix von; Capalbo, Gianni
Purpose: The objectives of this study were to investigate the expression of survivin in tumor samples from patients with high-risk T1 bladder cancer and to correlate its expression with clinicopathologic features as well as clinical outcomes after initial transurethral resection (TURBT) followed by radiotherapy (RT) or radiochemotherapy (RCT). Methods and Materials: Survivin protein expression was evaluated by immunohistochemistry on tumor specimen (n = 48) from the initial TURBT, and was correlated with clinical and histopathologic characteristics as well as with 5-year rates of local failure, tumor progression, and death from urothelial cancer after primary bladder sparring treatment with RT/RCT. Results:more » Survivin was not expressed in normal bladder urothelium but was overexpressed in 67% of T1 tumors. No association between survivin expression and clinicopathologic factors (age, gender, grading, multifocality, associated carcinoma in situ) could be shown. With a median follow-up of 27 months (range, 3-140 months), elevated survivin expression was significantly associated with an increased probability of local failure after TURBT and RCT/RT (p = 0.003). There was also a clear trend toward a higher risk of tumor progression (p = 0.07) and lower disease-specific survival (p = 0.10). Conclusions: High survivin expression is a marker of tumor aggressiveness and may help to identify a subgroup of patients with T1 bladder cancer at a high risk for recurrence when treated with primary organ-sparing approaches such as TURBT and RCT.« less
Yamanishi, Tomonori; Kaga, Kanya; Fuse, Miki; Shibata, Chiharu; Kamai, Takao; Uchiyama, Tomoyuki
2015-06-01
The aim of this study was to compare the effect of antimuscarinic antagonists on carbachol-induced contraction of normal human bladder and detrusor overactivity associated with benign prostatic hyperplasia (DO/BPH). Samples of human bladder muscle were obtained from patients undergoing total cystectomy for bladder cancer (normal bladder), and those undergoing retropubic prostatectomy for BPH. All of the patients with DO/BPH had detrusor overactivity according to urodynamic studies. Detrusor muscle strips were mounted in 10-ml organ baths containing Krebs solution, and concentration-response curves for carbachol were obtained in the presence of antimuscarinic antagonists (4-DAMP, methoctramine, pirenzepine, tolterodine, solifenacin, trospium, propiverine, oxybutynin, and imidafenacin) or vehicle. All antagonists competitively antagonized concentration-response curves to carbachol with high affinities in normal bladder. The rank order of mean pA2 values was as follows: trospium (10.1) > 4-DAMP (9.87), imidafenacin (9.3) > solifenacin (8.8) > tolterodine (8.6) > oxybutynin (8.3) > propiverine (7.7) > pirenzepine (7.4) > methoctramine (6.6). The effects of these antimuscarinic antagonists did not change when tested with DO/BPH bladder, suggesting that each antimuscarinic antagonist has a similar effect in this condition. Schild plots showed a slope corresponding to unity, except for propiverine with DO/BPH detrusor. In conclusion, M3-receptors mainly mediate contractions in human bladder strips with normal state and DO/BPH. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Urinary adverse effects of pelvic radiotherapy
Liberman, Daniel; Mehus, Brian
2014-01-01
Objective Radiation is an integral part of the treatment of many pelvic tumors. The cellular death induced by radiotherapy (RT) benefits cancer control but can also result in adverse effects (AEs) on the organ being treated or those adjacent to it. RT for cancers of the pelvis (bladder, prostate, rectum, uterus or cervix) can result in AEs in the urinary tract. While the acute urinary AEs of pelvic RT are well described, late AEs are less well characterized. The burden of treatment for late AEs may be large given the prevalence of tumors in the pelvis and the high utilization of RT to treat them. Review For prostate cancer, grade 1 and 2 urinary AEs following external beam radiation therapy (EBRT) are reported to occur in 20-43% and 7-19%, respectively, with a follow up of 10 years. Three-year cumulative risk for grade ≥2 urinary AEs is 28-30%. Following brachytherapy (BT), rates of urinary AEs at 5 years are reported to be 36%, 24%, 6.2% and 0.1% for Radiation Therapy Oncology Group (RTOG) grade 1, 2, 3, and 4, respectively. For bladder cancer, with a median follow-up of 5 years, 7-12% of patients who receive RT experience urinary AEs of grade 3 or more. For cervical cancer, there remains a 0.25% per year risk of severe AEs for at least 25 years following RT, and ureteral stricture is a well-described AE. For endometrial cancer, severe urinary AEs are rare, but at 13 years of follow up, patients report a significantly worse quality of life with respect to urinary function. In rectal cancer, preoperative RT has a lower risk of AEs than postoperative RT, and few urinary AEs are reported in the literature. Conclusions Urinary AEs can manifest long after RT, and there is a paucity of studies describing rates of these long-term AEs. It is important that the possible complications of RT are recognized by providers and properly communicated to patients so that they are able to make informed decisions about their cancer treatment. PMID:26813159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi
Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less
Chu, Maolin; Zhang, Chunying
2018-01-24
Angiogenesis plays an important role in bladder cancer (BCa). The immunosuppressive drug leflunomide has attracted worldwide attention. However, the effects of leflunomide on angiogenesis in cancer remain unclear. Here, we report the increased expression of soluble ephrin-A1 (sEphrin-A1) in supernatants of BCa cell lines (RT4, T24, and TCCSUP) co-cultured with human umbilical vein endothelial cells (HUVECs) compared with that in immortalized uroepithelial cells (SV-HUC-1) co-cultured with HUVECs. sEphrin-A1 is released from BCa cells as a monomeric protein that is a functional form of the ligand. The co-culture supernatants containing sEphrin-A1 caused the internalization and down-regulation of EphA2 on endothelial cells and dramatic functional activation of HUVECs. This sEphrin-A1/EphA2 system is mainly functional in regulating angiogenesis in BCa tissue. We showed that leflunomide (LEF) inhibited angiogenesis in a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carcinogenesis model and a tumor xenograft model, as well as in BCa cell and HUVEC co-culture systems, via significant inhibition of the sEphrin-A1/EphA2 system. Ephrin-A1 overexpression could partially reverse LEF-induced suppression of angiogenesis and subsequent tumor growth inhibition. Thus, LEF has a significant anti-angiogenesis effect on BCa cells and BCa tissue via its inhibition of the functional angiogenic sEphrin-A1/EphA2 system and may have potential for treating BCa beyond immunosuppressive therapy.
Characterization of tight junction proteins in cultured human urothelial cells.
Rickard, Alice; Dorokhov, Nikolay; Ryerse, Jan; Klumpp, David J; McHowat, Jane
2008-01-01
Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintenance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immunofluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14, and 16 whereas claudins 2, 8, and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2, and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system.
Eustace, Amanda; Irlam, Joely J.; Taylor, Janet; Denley, Helen; Agrawal, Shailesh; Choudhury, Ananya; Ryder, David; Ord, Jonathan J.; Harris, Adrian L.; Rojas, Ana M.; Hoskin, Peter J.; West, Catharine M.L.
2013-01-01
Background and purpose Addition of carbogen and nicotinamide (hypoxia-modifying agents) to radiotherapy improves the survival of patients with high risk bladder cancer. The study investigated whether histopathological tumour features and putative hypoxia markers predicted benefit from hypoxia modification. Materials and methods Samples were available from 231 patients with high grade and invasive bladder carcinoma from the BCON phase III trial of radiotherapy (RT) alone or with carbogen and nicotinamide (RT + CON). Histopathological tumour features examined were: necrosis, growth pattern, growing margin, and tumour/stroma ratio. Hypoxia markers carbonic anhydrase-IX and glucose transporter-1 were examined using tissue microarrays. Results Necrosis was the only independent prognostic indicator (P = 0.04). Necrosis also predicted benefit from hypoxia modification. Five-year overall survival was 48% (RT) versus 39% (RT + CON) (P = 0.32) in patients without necrosis and 34% (RT) versus 56% (RT + CON) (P = 0.004) in patients with necrosis. There was a significant treatment by necrosis strata interaction (P = 0.001 adjusted). Necrosis was an independent predictor of benefit from RT + CON versus RT (hazard ratio [HR]: 0.43, 95% CI 0.25–0.73, P = 0.002). This trend was not observed when there was no necrosis (HR: 1.64, 95% CI 0.95–2.85, P = 0.08). Conclusions Necrosis predicts benefit from hypoxia modification in patients with high risk bladder cancer and should be used to select patients; it is simple to identify and easy to incorporate into routine histopathological examination. PMID:23773411
Wen, Wu; Li, Jingying; Wang, Longwang; Xing, Yifei; Li, Xuechao; Ruan, Hailong; Xi, Xiaoqing; Xiong, Jianhua; Kuang, Renrui
2017-08-18
The neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) plays a pivotal oncogenic role in various types of human cancers. However, the function of NEDD4 in bladder cancer has not been fully investigated. In the present study, we aim to explore whether NEDD4 governs cell proliferation, apoptosis, migration, and invasion in bladder cancer cells. Our results showed that downregulation of NEDD4 suppressed cell proliferation in bladder cancer cells. Moreover, we found that inhibition of NEDD4 significantly induced cell apoptosis. Furthermore, downregulation of NEDD4 retarded cell migration and invasion. Notably, overexpression of NEDD4 enhanced cell growth and inhibited apoptosis. Consistently, upregulation of NEDD4 promoted cell migration and invasion in bladder cancer cells. Mechanically, our Western blotting results revealed that downregulation of NEDD4 activated PTEN and inhibited Notch-1 expression, whereas upregulation of NEDD4 reduced PTEN level and increased Notch-1 level in bladder cancer cells. Our findings indicated that NEDD4 exerts its oncogenic function partly due to regulation of PTEN and Notch-1 in bladder cancer cells. These results further revealed that targeting NEDD4 could be a useful approach for the treatment of bladder cancer.
MX-INDUCED URINARY BLADDER EPITHELIAL HYPERPLASIA IN EKER RATS
MX-INDUCED URINARY BLADDER EPITHELIAL HYPERPLASIA IN EKER RATS
Epidemiological studies have shown a positive association between chronic exposure to chlorinated drinking water and human cancer, particularly of the urinary bladder. MX (3- chloro-4-(dichloromethyl)-5-hydrox...
Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer.
Shahab, Uzma; Moinuddin; Ahmad, Saheem; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2013-01-01
The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP) and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients. Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC) analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4ABP) in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA. This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.
Zhang, Xin; Zhang, Yanli; Liu, Xinfeng; Fang, Aiju; Wang, Jinfeng; Yang, Yongmei; Wang, Lili; Du, Lutao; Wang, Chuanxin
2016-01-19
High recurrence rates of non-muscle invasive bladder cancer (NMIBC) in patients require lifelong testing and monitoring. The aim of this study is to develop a simplified RT-qPCR method (RT-qPCR-D) which directly quantifies cell-free miR-155 in urine without RNA extraction, and assess it as a potential tool in NMIBC detection. A pilot study including 60 urine samples was used to investigate the feasibility of RT-qPCR-D in detecting cell-free miR-155. Then, miR-155 levels were quantified in a large independent cohort of urine from 162 NIMBC patients, 76 cystitis patients, and 86 healthy donors using the RT-qPCR-D method. Changes of cell-free miR-155 before and after operation were also analyzed in 32 NIMBC patients. In pilot study, we found a significant linear association between RT-qPCR and RT-qPCR-D in urinary miR-155 detection. Both methods showed cell-free miR-155 were significantly increased in NMIBC patients, and could reflect their expression in tissues. Then, the increased expression of cell-free miR-155 was successfully validated in 162 NIMBC patients when compared with cystitis patients and healthy donors. Moreover, it distinguished NMIBC patients from others with 80.2% sensitivity and 84.6% specificity, which was superior to urine cytology. Cell-free miR-155 correlated with NMIBC stage and grade, and was an independent factor for predicting recurrence and progression to muscle invasion. In addition, cell-free miR-155 was significantly decreased after NMIBC patients underwent transurethral bladder resection. In conclusion, detection of cell-free miR-155 in urine using RT-qPCR-D is a simple and noninvasive approach which may be used for NMIBC diagnosis and prognosis prediction.
The inverse relationship between bladder and liver in 4-aminobiphenyl-induced DNA damage
Stablewski, Aimee B.; Vouros, Paul; Zhang, Yuesheng
2015-01-01
Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator. PMID:25596734
NASA Astrophysics Data System (ADS)
Saleh, Ziad; Thor, Maria; Apte, Aditya P.; Sharp, Gregory; Tang, Xiaoli; Veeraraghavan, Harini; Muren, Ludvig; Deasy, Joseph
2016-08-01
Deformable image registration (DIR) is essential for adaptive radiotherapy (RT) for tumor sites subject to motion, changes in tumor volume, as well as changes in patient normal anatomy due to weight loss. Several methods have been published to evaluate DIR-related uncertainties but they are not widely adopted. The aim of this study was, therefore, to evaluate intra-patient DIR for two highly deformable organs—the bladder and the rectum—in prostate cancer RT using a quantitative metric based on multiple image registration, the distance discordance metric (DDM). Voxel-by-voxel DIR uncertainties of the bladder and rectum were evaluated using DDM on weekly CT scans of 38 subjects previously treated with RT for prostate cancer (six scans/subject). The DDM was obtained from group-wise B-spline registration of each patient’s collection of repeat CT scans. For each structure, registration uncertainties were derived from DDM-related metrics. In addition, five other quantitative measures, including inverse consistency error (ICE), transitivity error (TE), Dice similarity (DSC) and volume ratios between corresponding structures from pre- and post- registered images were computed and compared with the DDM. The DDM varied across subjects and structures; DDMmean of the bladder ranged from 2 to 13 mm and from 1 to 11 mm for the rectum. There was a high correlation between DDMmean of the bladder and the rectum (Pearson’s correlation coefficient, R p = 0.62). The correlation between DDMmean and the volume ratios post-DIR was stronger (R p = 0.51 0.68) than the correlation with the TE (bladder: R p = 0.46 rectum: R p = 0.47), or the ICE (bladder: R p = 0.34 rectum: R p = 0.37). There was a negative correlation between DSC and DDMmean of both the bladder (R p = -0.23) and the rectum (R p = -0.63). The DDM uncertainty metric indicated considerable DIR variability across subjects and structures. Our results show a stronger correlation with volume ratios and with the DSC using DDM compared to using ICE and TE. The DDM has the potential to quantitatively identify regions of large DIR uncertainties and consequently identify anatomical/scan outliers. The DDM can, thus, be applied to improve the adaptive RT process for tumor sites subject to motion.
Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin
2010-01-01
Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991
DNA binding and adduct formation of aflatoxin B1 (AFB1) was studied in cultured bladder and tracheobronchial explants from human, monkey, dog, hamster and rat. Explants were exposed to (3H)AFB1 (1 micrometer final concentration) in PFHR-4 medium (pH 7.4) without serum for 24 h, a...
Protease-Activated Receptor 4 Induces Bladder Pain through High Mobility Group Box-1
Kouzoukas, Dimitrios E.; Ma, Fei; Meyer-Siegler, Katherine L.; Westlund, Karin N.; Hunt, David E.; Vera, Pedro L.
2016-01-01
Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to PAR4-activating peptide (PAR4-AP; 100 μM; 2 hours) or scrambled control peptide. Female C57BL/6 mice, pretreated with a HMGB1 inhibitor (glycyrrhizin: 50 mg/kg; ip) or vehicle, received intravesical PAR4-AP or a control peptide (100 μM; 1 hour) to determine 1) HMGB1 levels at 1 hour in the intravesical fluid (released HMGB1) and urothelium, and 2) abdominal hypersensitivity to von Frey filament stimulation 24 hours later. We also tested mice pretreated with a MIF blocker (ISO-1: 20 mg/kg; ip) to determine whether MIF mediated PAR4-induced urothelial HMGB1 release. PAR4-AP triggered HMGB1 release from human (in vitro) and mice (in vivo) urothelial cells. Intravesical PAR4 activation elicited abdominal hypersensitivity in mice that was prevented by blocking HMGB1. MIF inhibition prevented PAR4-mediated HMGB1 release from mouse urothelium. Urothelial MIF and HGMB1 represent novel targets for therapeutic intervention in bladder pain conditions. PMID:27010488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Damien C., E-mail: damien.weber@unige.ch; Zilli, Thomas; Vallee, Jean Paul
2012-11-01
Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipsemore » treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed increase to the bladder dose. Conclusions: Regardless of the radiation technique, a substantial decrease of rectal dose was observed after spacer injection for curative RT to the prostate.« less
Ribeiro, Ana S F; Fernandes, Vítor S; Martínez-Sáenz, Ana; Martínez, Pilar; Barahona, María Victoria; Orensanz, Luis M; Blaha, Igor; Serrano-Margüello, Daniel; Bustamante, Salvador; Carballido, Joaquín; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo
2014-04-01
Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA pathway involving BKCa and IKCa channel activation and [Ca2+]i desensitization-dependent mechanisms, this relaxation also being due to neuronal NO and H2S release. © 2014 International Society for Sexual Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saibishkumar, Elantholi P.; Patel, Firuza D.; Ghoshal, Sushmita
2005-11-01
Purpose: To evaluate the results of salvage radiotherapy (RT) after inadequate surgery in patients with invasive carcinoma of the cervix. Methods and Materials: Between 1996 and 2001, 105 invasive cervical carcinoma patients were treated at our center with external beam RT with or without intracavitary RT after having undergone total/subtotal hysterectomy at outside institutions. Results: The median follow-up was 34 months. The gap between surgery and RT was 23-198 days (median, 80). Clinically visible residual disease was present in 81 patients (77.1%). Total hysterectomy had been done in 82 patients (78%) and subtotal hysterectomy in 23 patients (22%). The 5-yearmore » overall survival, disease-free survival, and pelvic control rates of all patients were 55.2%, 53.3%, and 72.4%, respectively. On univariate analysis, older age, total hysterectomy, hemoglobin level >10 g% before RT, nonsquamous histologic type, use of intracavitary RT, a shorter gap between surgery and RT, and the absence of, or a small volume of, residual disease favorably affected the outcome. The 5-year actuarial rate of late toxicity (Radiation Therapy Oncology Group Criteria) was 19% in the rectum, 4.8% in the bladder, 24.8% in the skin, and 14.3% in the small intestine. Conclusions: Inadequate and inappropriate surgery in invasive cervical cancer with resulting gross residual disease is common in India. Factors such as the use of intracavitary RT, the correction of anemia, and a shorter gap between surgery and RT will enable postoperative RT to achieve acceptable results with minimal morbidity.« less
Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias
2015-01-01
To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548
Cetraz, Maria; Sen, Vasily; Schoch, Sarah; Streule, Karolin; Golubev, Valery; Hartwig, Andrea; Köberle, Beate
2017-02-01
The therapeutic efficacy of the anticancer drug cisplatin is limited by the development of resistance. We therefore investigated newly synthesized platinum-nitroxyl complexes (PNCs) for their potential to circumvent cisplatin resistance. The complexes used were PNCs with bivalent cis-Pt II (R · NH 2 )(NH 3 )Cl 2 and cis-Pt II (DAPO)Ox and four-valent platinum cis,trans,cis-Pt IV (R · NH 2 )(NH 3 )(OR) 2 Cl 2 and cis,trans,cis-Pt IV (DAPO)(OR) 2 Ox, where R · are TEMPO or proxyl nitroxyl radicals, DAPO is trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl, and OR and Ox are carboxylato and oxalato ligands, respectively. The complexes were characterized by spectroscopic methods, HPLC, log P ow data and elemental analysis. We studied intracellular platinum accumulation, DNA platination and cytotoxicity upon treatment with the PNCs in a model system of the bladder cancer cell line RT112 and its cisplatin-resistant subline RT112-CP. Platinum accumulation and DNA platination were similar in RT112 and RT112-CP cells for both bivalent and four-valent PNCs, in contrast to cisplatin for which a reduction in intracellular accumulation and DNA platination was observed in the resistant subline. The PNCs were found to platinate DNA in relation to the length of their axial RO-ligands. Furthermore, the PNCs were increasingly toxic in relation to the elongation of their axial RO-ligands, with similar toxicities in RT112 and its cisplatin-resistant subline. Using a cell-free assay, we observed induction of oxidative DNA damage by cisplatin but not PNCs suggesting that cisplatin exerts its toxic action by platination and oxidative DNA damage, while cells treated with PNCs are protected against oxidatively induced lesions. Altogether, our study suggests that PNCs may provide a more effective treatment for tumors which have developed resistance toward cisplatin.
Gabig, Theodore G; Waltzer, Wayne C; Whyard, Terry; Romanov, Victor
2016-09-16
The current intravesical treatment of bladder cancer (BC) is limited to a few chemotherapeutics that show imperfect effectiveness and are associated with some serious complications. Thus, there is an urgent need for alternative therapies, especially for patients with high-risk non-muscle invasive (NMIBC). Clostridium perfringens enterotoxin (CPE), cytolytic protein binds to its receptors: claudin 3 and 4 that are expressed in epithelial cells. This binding is followed by rapid cell death. Claudin 4 is present in several epithelial tissue including bladder urothelium and its expression is elevated in some forms of BC. In addition to directly targeting BC cells, binding of CPE to claudins increases urothelium permeability that creates conditions for better accession of the tumor. Therefore, we evaluated CPE as a candidate for intravesical treatment of BC using a cellular model. We examined cytotoxicity of CPE against BC cells lines and 3D cultures of cells derived from surgical samples. To better elucidate cellular mechanisms, activated by CPE and to consider the use of CPE non-toxic fragment (C-CPE) for combination treatment with other drugs we synthesized C-CPE, compared its cytotoxic activity with CPE and examined claudin 4 expression and intracellular localization after C-CPE treatment. CPE induced cell death after 1 h in low aggressive RT4 cells, in moderately aggressive 5637 cells and in the primary 3D cultures of BC cells derived from NMIBC. Conversely, non-transformed urothelial cells and cells derived from highly aggressive tumor (T24) survived this treatment. The reason for this resistance to CPE might be the lower expression of CLDNs or their inaccessibility for CPE in these cells. C-CPE treatment for 48 h did not affect cell viability in tested cells, but declined expression of CLDN4 in RT4 cells. C-CPE increased sensitivity of RT4 cells to Mitommycin C and Dasatinib. To better understand mechanisms of this effect we examined expression and phosphorylation status of EphA2 and Src after C-CPE treatment and found changes in expression and phosphorylated status of these regulatory molecules. These observations show that after additional preclinical studies CPE and C-CPE in combinations with other drugs can be considered as a potential modalities for intravesical treatment of BC because of its ability to effectively destroy BC cells expressing claudin 4 and low toxicity against normal urothelium. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kende, G.; Wajsman, Z.; Thomas, P.R.M.
1979-01-01
A 13-year-old white male had Ewing sarcoma of the right pubic and ischial bones. Initial therapy consisted of 5400 rads in seven weeks to the right side of the pelvis and 14 intravenous injections of cyclophosphamide (Cytoxan, CTX) at 500 mg/m/sup 2/; BCNU and Adriamycin maintenance therapy continued for a total of two years. He has now been disease-free for five years. Three months following the completion of the right pelvic radiotherapy (RT), while on intravenous CTX, severe hematuria appeared, which subsided, but at present he has continuous microscopic hematuria, as well as periodic episodes of gross hematuria. Serial cystocopiesmore » initially revealed thickening and hemorrhagic and edematous changes on the right (irradiated) side of the bladder, and recent multiple telangiectatic patches have been demonstrated as a late healing phase. This case demonstrates the additive toxicity to the bladder of CTX and RT, illustrating that the hemorrhagic cystitis can be extremely protracted lasting five years.« less
Patterson, Karl; Arya, Lovleen; Bottomley, Sarah; Morgan, Susan; Cox, Angela; Catto, James; Bryant, Helen E.
2016-01-01
RECQ helicases are a family of enzymes with both over lapping and unique functions. Functional autosomal recessive loss of three members of the family BLM, WRN and RECQL4, results in hereditary human syndromes characterized by cancer predisposition and premature aging, but despite the finding that RECQL5 deficient mice are cancer prone, no such link has been made to human RECQL5. Here we demonstrate that human urothelial carcinoma of the bladder (UCC) has increased expression of RECQL5 compared to normal bladder tissue and that increasing RECQL5 expression can drive proliferation of normal bladder cells and is associated with poor prognosis. Further, by expressing a helicase dead RECQL5 and by depleting bladder cancer cells of RECQL5 we show that inhibition of RECQL5 activity has potential as a new target for treatment of UCC. PMID:27764811
Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells.
Péchery, Adeline; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle
2016-11-01
GW501516 is a selective and high-affinity synthetic agonist of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). This molecule promoted the inhibition of proliferation and apoptosis in few cancer cell lines, but its anticancer action has never been investigated in bladder tumor cells. Thus, this study was undertaken to determine whether GW501516 had antiproliferative and/or apoptotic effects on RT4 and T24 urothelial cancer cells and to explore the molecular mechanisms involved. Our results indicated that, in RT4 cells (derived from a low-grade papillary tumor), GW501516 did not induce cell death. On the other hand, in T24 cells (derived from an undifferentiated high-grade carcinoma), this PPARβ/δ agonist induced cytotoxic effects including cell morphological changes, a decrease of cell viability, a G2/M cell cycle arrest, and the cell death as evidenced by the increase of the sub-G1 cell population. Furthermore, GW501516 triggered T24 cell apoptosis in a caspase-dependent manner including both extrinsic and intrinsic apoptotic pathways through Bid cleavage. In addition, the drug led to an increase of the Bax/Bcl-2 ratio, a mitochondrial dysfunction associated with the dissipation of ΔΨm, and the release of cytochrome c from the mitochondria to the cytosol. GW501516 induced also ROS generation which was not responsible for T24 cell death since NAC did not rescue cells upon PPARβ/δ agonist exposure. For the first time, our data highlight the capacity of GW501516 to induce apoptosis in invasive bladder cancer cells. This molecule could be relevant as a therapeutic drug for high-grade urothelial cancers.
Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian
2013-01-01
In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349
Yono, Makoto; Tanaka, Takanori; Tsuji, Shigeki; Irie, Shin; Sakata, Yukikuni; Otani, Masayuki; Yoshida, Masaki; Latifpour, Jamshid
2011-11-16
α(1)-Adrenoceptors regulate blood pressure, regional vascular resistance and tissue blood flow. As aging and hypertension may impact pelvic arterial blood flow resulting in bladder and penile dysfunction, we investigated effects of age and hypertension on α(1)-adrenoceptors in the major source arteries of the rat bladder and penis. Using radioligand receptor binding, real-time reverse transcription-polymerase chain reaction (RT-PCR) and fluorescent microsphere infusion techniques, we compared 3 and 22-month-old male Fischer rats, and male normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Twenty-two-month-old rats and SHRs had significantly higher total α(1)-adrenoceptor density in the internal iliac artery and lower blood flow to the bladder and penis than 3-month-old and WKY rats, respectively. RT-PCR data showed an age and hypertension related increase in the expression of α(1B)-adrenoceptor mRNA in the internal iliac, vesical and internal pudendal arteries and a switch from α(1A) predominance in 3-month-old and WKY rats to α(1B)>α(1A) in 22-month-old rats and SHRs. Our data indicate the presence of age and hypertension related alterations in vascular α(1)-adrenoceptor subtype distribution and in blood flow to the rat bladder and penis. These findings suggest that pharmacological blockade of the vascular α(1B)-adrenoceptor, which could increase pelvic blood flow, may contribute to the improvement of bladder and penile dysfunctions in animal models for aging and hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.
Begnini, Karine Rech; Rizzi, Caroline; Campos, Vinicius Farias; Borsuk, Sibele; Schultze, Eduarda; Yurgel, Virginia Campello; Nedel, Fernanda; Dellagostin, Odir Antônio; Collares, Tiago; Seixas, Fabiana Kömmling
2013-02-01
BCG therapy remains at the forefront of immunotherapy for treating patients with superficial bladder cancer. The high incidence of local side effects and the presence of non-responder diseases have led to efforts to improve the therapy. Hence, we proposed that an auxotrophic recombinant BCG strain overexpressing Ag85B (BCG ∆leuD/Ag85B), could enhance the cytotoxicity to the human bladder carcinoma cell line 5637. The rBCG was generated using an expression plasmid encoding the mycobacterial antigen Ag85B to transform a BCG ∆leuD strain. The inhibitory effect of BCG ∆leuD/Ag85B on 5637 cells was determined by the MTT method, morphology observation and a LIVE/DEAD assay. Gene expression profiles for apoptotic, cell cycle-related and oxidative stress-related genes were investigated by qRT-PCR. Bax, bcl-2 and p53 induction by BCG ∆leuD/Ag85B treatment was evaluated by Western blotting. BCG ∆leuD/Ag85B revealed a superior cytotoxicity effect compared to the control strains used in this study. The results showed that the expression level of pro-apoptotic and cell cycle-related genes increased after BCG ∆leuD/Ag85B treatment, whereas the mRNA levels of anti-apoptotic genes decreased. Interestingly, BCG ∆leuD/Ag85B also increased the mRNA level of antioxidant enzymes in the bladder cancer cell line. Bax and p53 proteins levels increased following treatment. In conclusion, these results suggest that treatment with BCG ∆leuD/Ag85B enhances cytotoxicity for superficial bladder cancer cells in vitro. Therefore, rBCG therapy may have potential benefits in the treatment of bladder cancer.
Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji; Yoshimura, Naoki
2014-11-15
Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. Copyright © 2014 the American Physiological Society.
Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji
2014-01-01
Little is known about electrophysiological differences of A-type transient K+ (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K+ (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. PMID:25143545
2015-10-01
AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff
Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw; Department of Biomedical Informatics, Asia University, Taichung City, Taiwan; Chou, Kuei-Ting
2015-10-01
The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment.more » For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.« less
Tessmann, Josiane Weber; Buss, Julieti; Begnini, Karine Rech; Berneira, Lucas Moraes; Paula, Favero Reisdorfer; de Pereira, Claudio Martin Pereira; Collares, Tiago; Seixas, Fabiana Kömmling
2017-10-01
Bladder cancer is a genitourinary malignant disease common worldwide. Current chemotherapy is often limited mainly due to toxicity and drug resistance. Thus, there is a continued need to discover new therapies. Recently evidences shows that pyrazoline derivatives are promising antitumor agents in many types of cancers, but there are no studies with bladder cancer. In order to find potent and novel chemotherapy drugs for bladder cancer, a series of pyrazoline derivatives 2a-2d were tested for their antitumor activity in two human bladder cancer cell lines 5647 and T24. The MTT assay showed that the compounds 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-1H-pyrazole (2a) and 1-thiocarbamoyl-5-(4-chlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (2c) decrease the cell viability of 5637 cells. Molecular modeling indicated that these compounds had a good oral bioavailability and low toxicities. Clonogenic assay and flow cytometric analysis were used to assess colony formation, apoptosis induction and cell cycle distribution. Overall, our results suggest that pyrazoline 2a and 2c, with the substituents hydrogen and chlorine respectively, may decrease cell viability and colony formation of bladder cancer 5637 cell line by inhibition of cell cycle progression, and for pyrazoline 2a, by induction of apoptosis. As indicated by the physicochemical properties of these compounds, the steric factor influences the activity. Therefore, these pyrazoline derivatives can be considered promising anticancer agents for the treatment of bladder cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozak, Kevin R.; Hamidi, Maryam; Manning, Matthew
2012-06-01
Purpose: This study examines the management and outcomes of muscle-invasive bladder cancer in the United States. Methods and Materials: Patients with muscle-invasive bladder cancer diagnosed between 1988 and 2006 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Patients were classified according to three mutually exclusive treatment categories based on the primary initial treatment: no local management, radiotherapy, or surgery. Overall survival was assessed with Kaplan-Meier analysis and Cox models based on multiple factors including treatment utilization patterns. Results: The study population consisted of 26,851 patients. Age, sex, race, tumor grade, histology, and geographic location were associated withmore » differences in treatment (all p < 0.01). Patients receiving definitive radiotherapy tended to be older and have less differentiated tumors than patients undergoing surgery (RT, median age 78 years old and 90.6% grade 3/4 tumors; surgery, median age 71 years old and 77.1% grade 3/4 tumors). No large shifts in treatment were seen over time, with most patients managed with surgical resection (86.3% for overall study population). Significant survival differences were observed according to initial treatment: median survival, 14 months with no definitive local treatment; 17 months with radiotherapy; and 43 months for surgery. On multivariate analysis, differences in local utilization rates of definitive radiotherapy did not demonstrate a significant effect on overall survival (hazard ratio, 1.002; 95% confidence interval, 0.999-1.005). Conclusions: Multiple factors influence the initial treatment strategy for muscle-invasive bladder cancer, but definitive radiotherapy continues to be used infrequently. Although patients who undergo surgery fare better, a multivariable model that accounted for patient and tumor characteristics found no survival detriment to the utilization of definitive radiotherapy. These results support continued research into bladder preservation strategies and suggest that definitive radiotherapy represents a viable initial treatment strategy for those who wish to attempt to preserve their native bladder.« less
Agis-Torres, Ángel; Recio, Paz; López-Oliva, María Elvira; Martínez, María Pilar; Barahona, María Victoria; Benedito, Sara; Bustamante, Salvador; Jiménez-Cidre, Miguel Ángel; García-Sacristán, Albino; Prieto, Dolores; Fernandes, Vítor S; Hernández, Medardo
2018-03-16
Nitric oxide (NO) and hydrogen sulfide (H 2 S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H 2 S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H 2 S generation was diminished by H 2 S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H 2 S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H 2 S-mediated inhibitory neurotransmission.
Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang
2016-08-01
The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L; Pratt, Rachel N; Trump, Donald L; Johnson, Candace S
2017-09-01
Metastasis is the major cause of bladder cancer death. 1,25D 3 , the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D 3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D 3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D 3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D 3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D 3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D 3 on migration and invasion in 253J-BV cells. Further, 1,25D 3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D 3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D 3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L.; Pratt, Rachel N.; Trump, Donald L.; Johnson, Candace S.
2017-01-01
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using “wound” healing, chemotactic migration and Matrigel-based invasion assays. 1,25D3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D3 on migration and invasion in 253J-BV cells. Further, 1,25D3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level. PMID:28947955
Mavroidis, Panayiotis; Pearlstein, Kevin A; Dooley, John; Sun, Jasmine; Saripalli, Srinivas; Das, Shiva K; Wang, Andrew Z; Chen, Ronald C
2018-02-02
To estimate the radiobiological parameters of three popular normal tissue complication probability (NTCP) models, which describe the dose-response relations of bladder regarding different acute urinary symptoms during post-prostatectomy radiotherapy (RT). To evaluate the goodness-of-fit and the correlation of those models with those symptoms. Ninety-three consecutive patients treated from 2010 to 2015 with post-prostatectomy image-guided intensity modulated radiotherapy (IMRT) were included in this study. Patient-reported urinary symptoms were collected pre-RT and weekly during treatment using the validated Prostate Cancer Symptom Indices (PCSI). The assessed symptoms were flow, dysuria, urgency, incontinence, frequency and nocturia using a Likert scale of 1 to 4 or 5. For this analysis, an increase by ≥2 levels in a symptom at any time during treatment compared to baseline was considered clinically significant. The dose volume histograms of the bladder were calculated. The Lyman-Kutcher-Burman (LKB), Relative Seriality (RS) and Logit NTCP models were used to fit the clinical data. The fitting of the different models was assessed through the area under the receiver operating characteristic curve (AUC), Akaike information criterion (AIC) and Odds Ratio methods. For the symptoms of urinary urgency, leakage, frequency and nocturia, the derived LKB model parameters were: 1) D 50 = 64.2Gy, m = 0.50, n = 1.0; 2) D 50 = 95.0Gy, m = 0.45, n = 0.50; 3) D 50 = 83.1Gy, m = 0.56, n = 1.00; and 4) D 50 = 85.4Gy, m = 0.60, n = 1.00, respectively. The AUC values for those symptoms were 0.66, 0.58, 0.64 and 0.64, respectively. The differences in AIC between the different models were less than 2 and ranged within 0.1 and 1.3. Different dose metrics were correlated with the symptoms of urgency, incontinence, frequency and nocturia. The symptoms of urinary flow and dysuria were poorly associated with dose. The values of the parameters of three NTCP models were determined for bladder regarding four acute urinary symptoms. All the models could fit the clinical data equally well. The NTCP predictions of urgency showed the best correlation with the patient reported outcomes.
Updated results of bladder-sparing trimodality approach for invasive bladder cancer.
Zapatero, Almudena; Martin de Vidales, Carmen; Arellano, Ramón; Bocardo, Gloria; Pérez, Mar; Ríos, Patricia
2010-01-01
To update long-term results with selective organ preservation in invasive bladder cancer using aggressive transurethral resection of bladder tumor (TURBT) and radiochemotherapy (RCT) and to identify treatment factors that may predict overall survival (OS). Between 1990 and 2007, a total of 74 patients with T2-T4 bladder cancer were enrolled in 2 sequential bladder-sparing protocols including aggressive TURB and RCT. From 1990 to 1999, 41 patients were included in protocol no. 1 (P1) that consisted of three cycles of neoadjuvant methotrexate, cisplatin, and vinblastine (MCV) chemotherapy prior to re-evaluation and followed by radiotherapy (RT) 60 Gy in complete responders. Between 2000 and 2007, 33 patients were entered in protocol no. 2 (P2) that consisted of concurrent RCT 64, 8 Gy with weekly cisplatin. In case of invasive residual tumor or recurrence, salvage cystectomy was recommended. Primary endpoints were OS, overall survival with bladder preservation (OSB), and late toxicity. The mean follow-up for the whole series was 54 months (range 9-156), 69 months for patients in P1 and 36 months for patients in P2. The actuarial 5-year OS and OSB for all series were 72% and 60%, respectively. Distant metastases were diagnosed in 11 (15%) patients. Grade 3 late genitourinary (GU) and intestinal (GI) complications were 5% and 1.3%, respectively. There were no significant differences in the incidence of superficial recurrences (P = 0.080), muscle-invasive relapses (P = 0.722), distant metastasis (P = 0.744), grade >/=2 late complications (P = 0.217 for GU and P = 0.400 for GI), and death among the 2 protocols (P value for OS = 0.643; P value for OSB = 0.532). These data confirm that trimodality therapy with bladder preservation represents a real alternative to radical cystectomy in selected patients, resulting in an acceptable rate of the long-term survivors retaining functional bladders. Copyright 2010 Elsevier Inc. All rights reserved.
Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng
2011-01-01
Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034
Rioja Zuazu, J; Bandrés Elizalde, E; Rosell Costa, D; Rincón Mayans, A; Zudaire Bergera, J; Gil Sanz, M J; Rioja Sanz, L A; García Foncillas, J; Berián Polo, J M
2007-01-01
Steroid and Xenobiotic Receptor (SXR) has demonstrated its activation by numerous drugs, including cytochrome P450 potent inducers like rifampicina or cotrimazol. The role of SXR is well known, and lies regulating in a positive manner cytochrome P450 3A4 (CYP3A4) transcription and the multidrug resistance gene (MDR1), it's considered a key in the xenobiotic detoxification mechanism, being involved in all phases of the detoxification process. Enzymes involved in Policyclic Aromatic hidrocarbures (PAH) metabolism and degradation are polymorphic in humans, including glutation S-transferases (GSTs), N-acetiltransferases (NATs), sulfotransferases (SULTs)1A1 and cytochrome p450 (CYP)1B1. The objectives we've planned are: 1. Analyze the expression of the transcription factor SXR and MDR1 in bladder by means of RT-PCR real time, both in normal bladder and in tumoral bladder. 2. Analyze the relation between clinical and pathological factors with the expression of SXR and MDR1. 3. Analyze the expression of the polymorphims CYP1B1, GSTM1 GSTT1 and SULT1A1 and their correlation with different clinic-pathological and molecular factors. In a prospective way the size of the sample was estimated. In 67 patients from two institutions (Hospital Universitario Miguel Servet (49 HUMS) and Clinica Universitaria de Navarra (18 CUN)), diagnosed of invasive bladder cancer and treated by means of radical cystectomy, were determined the expression of both SXR and MDR1 by means of real time PCR, as well as the polymorphisms CYP1B1, GSTM1 GSTT1 y SULT1A1 by means of RFLP (Restriction fragment length polymorphism). Correlations with other prognostic factors by contingency tables were performed. Average follow up was 23.7 months with a median of 28.26 months. Of the 67 patients studied, 31 patients (46.3) presented disease progression, in form of local recurrence or in distant metastasis or both. With a average time to progression of 12.4 months and a median of 10 months, with a range of 1.1 month to 31.9 month. 36 patients (53.7%) did not have any evidence of disease progression during follow up. The Steroid and Xenobiotic Receptor as well as the Multidrug Resistance Gene (MDR1) are expressed in both normal bladder (0.94DeltaCt y 0.94DeltaCt) and tumoral bladder in the cystectomy specimen (1.09 DeltaCt y 0.45 DeltaCt). We've analyzed their expression in a quantitative manner and in a qualitative manner. The expression of SXR correlates with the presence of ca. in situ (p=0.024), vasculo-lymphatic invasion (p=0.05) mean while MDR1 correlates with presence of vasculo-lymphatic invasion (p=0.05) Both factors are correlate between each others (p=0.011). Polymorphisms: CYP1B1, GSTM1, GSTT1 and SULT1A1, are expressed in these patients but their expression doesn't correlates with any prognostic factor Both SXR and MDR1 are expressed in normal bladder as well as in tumoral bladder. And their expression correlates with different prognostic factors with influence in the survival described in the literature.
Betthauser, Tobey J; Hillmer, Ansel T; Lao, Patrick J; Ehlerding, Emily; Mukherjee, Jogeshwar; Stone, Charles K; Christian, Bradley T
2017-12-01
The α4β2* nicotinic acetylcholine receptor (nAChR) system is implicated in many neuropsychiatric pathologies. [ 18 F]Nifene is a positron emission tomography (PET) ligand that has shown promise for in vivo imaging of the α4β2* nAChR system in preclinical models and humans. This work establishes the radiation burden associated with [ 18 F]nifene PET scans in humans. Four human subjects (2M, 2F) underwent whole-body PET/CT scans to determine the human biodistribution of [ 18 F]nifene. Source organs were identified and time-activity-curves (TACs) were extracted from the PET time-series. Dose estimates were calculated for each subject using OLINDA/EXM v1.1. [ 18 F]Nifene was well tolerated by all subjects with no adverse events reported. The mean whole-body effective dose was 28.4±3.8 mSv/MBq without bladder voiding, and 22.6±1.9 mSv/MBq with hourly micturition. The urinary bladder radiation dose limited the maximum injected dose for a single scan to 278 MBq without urinary bladder voiding, and 519 MBq with hourly voiding. [ 18 F]Nifene is a safe PET radioligand for imaging the α4β2* nAChR system in humans. This works presents human internal dosimetry for [ 18 F]nifene in humans for the first time. These results facilitate safe development of future [ 18 F]nifene studies to image the α4β2* nAChR system in humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Ohno, Tatsuya; Nakano, Takashi; Kato, Shingo; Koo, Cho Chul; Chansilpa, Yaowalak; Pattaranutaporn, Pittayapoom; Calaguas, Miriam Joy C; de Los Reyes, Rey H; Zhou, Beibei; Zhou, Juying; Susworo, Raden; Supriana, Nana; Dung, To Anh; Ismail, Fuad; Sato, Sinichiro; Suto, Hisao; Kutsutani-Nakamura, Yuzuru; Tsujii, Hirohiko
2008-04-01
To evaluate the toxicity and efficacy of accelerated hyperfractionated radiotherapy (RT) for locally advanced cervical cancer. A multi-institutional prospective single-arm study was conducted among eight Asian countries. Between 1999 and 2002, 120 patients (64 with Stage IIB and 56 with Stage IIIB) with squamous cell carcinoma of the cervix were treated with accelerated hyperfractionated RT. External beam RT consisted of 30 Gy to the whole pelvis, 1.5 Gy/fraction twice daily, followed by 20 Gy of pelvic RT with central shielding at a dose of 2-Gy fractions daily. A small bowel displacement device was used with the patient in the prone position. In addition to central shielding RT, intracavitary brachytherapy was started. Acute and late morbidities were graded according to the Radiation Therapy Oncology Group and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. The median overall treatment time was 35 days. The median follow-up time for surviving patients was 4.7 years. The 5-year pelvic control and overall survival rate for all patients was 84% and 70%, respectively. The 5-year pelvic control and overall survival rate was 78% and 69% for tumors > or = 6 cm in diameter, respectively. No treatment-related death occurred. Grade 3-4 late toxicities of the small intestine, large intestine, and bladder were observed in 1, 1, and 2 patients, respectively. The 5-year actuarial rate of Grade 3-4 late toxicity at any site was 5%. The results of our study have shown that accelerated hyperfractionated RT achieved sufficient pelvic control and survival without increasing severe toxicity. This treatment could be feasible in those Asian countries where chemoradiotherapy is not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Tatsuya; Nakano, Takashi; Kato, Shingo
2008-04-01
Purpose: To evaluate the toxicity and efficacy of accelerated hyperfractionated radiotherapy (RT) for locally advanced cervical cancer. Methods and Materials: A multi-institutional prospective single-arm study was conducted among eight Asian countries. Between 1999 and 2002, 120 patients (64 with Stage IIB and 56 with Stage IIIB) with squamous cell carcinoma of the cervix were treated with accelerated hyperfractionated RT. External beam RT consisted of 30 Gy to the whole pelvis, 1.5 Gy/fraction twice daily, followed by 20 Gy of pelvic RT with central shielding at a dose of 2-Gy fractions daily. A small bowel displacement device was used with themore » patient in the prone position. In addition to central shielding RT, intracavitary brachytherapy was started. Acute and late morbidities were graded according to the Radiation Therapy Oncology Group and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: The median overall treatment time was 35 days. The median follow-up time for surviving patients was 4.7 years. The 5-year pelvic control and overall survival rate for all patients was 84% and 70%, respectively. The 5-year pelvic control and overall survival rate was 78% and 69% for tumors {>=}6 cm in diameter, respectively. No treatment-related death occurred. Grade 3-4 late toxicities of the small intestine, large intestine, and bladder were observed in 1, 1, and 2 patients, respectively. The 5-year actuarial rate of Grade 3-4 late toxicity at any site was 5%. Conclusion: The results of our study have shown that accelerated hyperfractionated RT achieved sufficient pelvic control and survival without increasing severe toxicity. This treatment could be feasible in those Asian countries where chemoradiotherapy is not available.« less
Reshetnikova, Galina; Sidorenko, Viktoriya S; Whyard, Terry; Lukin, Mark; Waltzer, Wayne; Takamura-Enye, Takeji; Romanov, Victor
2016-11-15
3-Nitrobenzanthrone (3-NBA), a potential human carcinogen, is present in diesel exhaust. The main metabolite of 3-NBA, 3-aminobenzanthrone, was detected in urine of miners occupationally exposed to diesel emissions. Environmental and occupational factors play an important role in development of bladder cancer (BC), one of the most frequent malignancies. It is expected that exposure of urothelium to 3-NBA and its metabolites may induce BC initiation and/or progression. To test this hypothesis, we studied geno- and cytotoxicity of 3-NBA using an in vitro BC model. 3-NBA induced higher levels of DNA adducts, reactive oxygen species and DNA breaks in aggressive T24 cells than in more differentiated RT4 cells. To understand the nature of this difference we examined the role of several enzymes that were identified as 3-NBA bio activators. However, the difference in DNA adduct formation cannot be directly linked to the different activity of any of the examined enzymes. Conversely, the difference of tested cell lines in p53 status can partly explain the distinct levels of 3-NBA-DNA adducts and DNA damage induced by 3-NBA. Therefore, we assume that more aggressive T24 cells are more predisposed for DNA adduct formation, DNA damage and, possibly, mutations and as a result further tumorigenesis. Copyright © 2016. Published by Elsevier Inc.
Effect of low frequency ultrasound on combined rt-PA and eptifibatide thrombolysis in human clots.
Meunier, Jason M; Holland, Christy K; Pancioli, Arthur M; Lindsell, Christopher J; Shaw, George J
2009-01-01
Fibrinolytics such as recombinant tissue plasminogen activator (rt-PA) are used to treat thrombotic disease such as acute myocardial infarction (AMI) and ischemic stroke. Interest in increasing efficacy and reducing side effects has led to the study of adjuncts such as GP IIb-IIIa inhibitors and ultrasound (US) enhanced thrombolysis. Currently, GP IIb-IIIa inhibitor and fibrinolytic treatment are often used in AMI, and are under investigation for stroke treatment. However, little is known of the efficacy of combined GP IIb-IIIa inhibitor, fibrinolytic and ultrasound treatment. We measure the lytic efficacy of rt-PA, eptifibatide (Epf) and 120 kHz ultrasound treatment in an in-vitro human clot model. Blood was drawn from 15 subjects after IRB approval. Clots were made in 20 microL pipettes, and placed in a water tank for microscopic visualization during lytic treatment. Clots were exposed to control, rt-PA (rt-PA), eptifibatide (Epf), or rt-PA+eptifibatide (rt-PA + Epf), with (+US) or without (-US) ultrasound for 30 minutes at 37 degrees C in human plasma. Clot lysis was measured over time, using a microscopic imaging technique. The fractional clot loss (FCL) and initial lytic rate (LR) were used to quantify lytic efficacy. LR values for (- US) treated clots were 0.8+/-0.1(control), 1.8+/-0.3 (Epf), 1.5+/-0.2 (rt-PA), and 1.3+/-0.4 (rt-PA + Epf) (% clot width/minute) respectively. In comparison, the (+ US) group exhibited LR values of 1.6+/-0.2 (control), 4.3+/-0.4 (Epf), 6.3+/-0.4 (rt-PA), and 4.6+/-0.6 (rt-PA + Epf). For (- US) treated clots, FCL was 6.0+/-0.8 (control), 9.2+/-2.5 (Epf), 15.6+/-1.7 (rt-PA), and 28.0+/-2.2% (rt-PA + Epf) respectively. FCL for (+ US) clots was 13.5+/-2.4 (control), 20.7+/-6.4 (Epf), 44.4+/-3.6 (rt-PA) and 30.3+/-3.6% (rt-PA + Epf) respectively. Although the addition of eptifibatide enhances the in-vitro lytic efficacy of rt-PA in the absence of ultrasound, the efficacy of ultrasound and rt-PA is greater than that of combined ultrasound, rt-PA and eptifibatide exposure.
Effect of Low Frequency Ultrasound on Combined rt-PA and Eptifibatide Thrombolysis in Human Clots
Meunier, Jason M.; Holland, Christy K.; Pancioli, Arthur M.; Lindsell, Christopher J.; Shaw, George J.
2009-01-01
Introduction Fibrinolytics such as recombinant tissue plasminogen activator (rt-PA) are used to treat thrombotic disease such as acute myocardial infarction (AMI) and ischemic stroke. Interest in increasing efficacy and reducing side effects has led to the study of adjuncts such as GP IIb-IIIa inhibitors and ultrasound (US) enhanced thrombolysis. Currently, GP IIb-IIIa inhibitor and fibrinolytic treatment are often used in AMI, and are under investigation for stroke treatment. However, little is known of the efficacy of combined GP IIb-IIIa inhibitor, fibrinolytic and ultrasound treatment. We measure the lytic efficacy of rt-PA, eptifibatide (Epf) and 120 kHz ultrasound treatment in an in-vitro human clot model. Materials and Methods Blood was drawn from 15 subjects after IRB approval. Clots were made in 20 μL pipettes, and placed in a water tank for microscopic visualization during lytic treatment. Clots were exposed to control, rt-PA (rt-PA), eptifibatide (Epf), or rt-PA+eptifibatide (rt-PA+Epf), with or without ultrasound for 30 minutes at 37°C in human plasma. Clot lysis was measured over time, using a microscopic imaging technique. The fractional clot loss (FCL) and initial lytic rate (LR) were used to quantify lytic efficacy. Results and Conclusions LR values for (−US) treated clots were 0.8±0.1(control), 1.8±0.3 (Epf), 1.5±0.2 (rt-PA), and 1.3±0.4 (rt-PA+Epf) (% clot width/minute) respectively. In comparison, the (+US) group exhibited LR values of 1.6±0.2 (control), 4.3±0.4 (Epf), 6.3±0.4 (rt-PA), and 4.6±0.6 (rt-PA+Epf). For (−US) treated clots, FCL was 6.0±0.8 (control), 9.2±2.5 (Epf), 15.6±1.7 (rt-PA), and 28.0±2.2% (rt-PA+Epf) respectively. FCL for (+US) clots was 13.5±2.4 (control), 20.7±6.4 (Epf), 44.4±3.6 (rt-PA) and 30.3±3.6% (rt-PA+Epf) respectively. Although the addition of eptifibatide enhances the in-vitro lytic efficacy of rt-PA in the absence of ultrasound, the efficacy of ultrasound and rt-PA is greater than that of combined ultrasound, rt-PA and eptifibatide exposure. PMID:18619651
Wang, Sisi; Zhang, Hongyong; Scharadin, Tiffany M.; ...
2016-01-22
Here, we report the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formationmore » and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sisi; Zhang, Hongyong; Scharadin, Tiffany M.
Here, we report the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formationmore » and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.« less
Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.
Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi
2013-01-30
Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign prostatic hyperplasia may be due, in part, to the blockade of the 5-HT(2A) and 5-HT(2B) receptors in the bladder. Copyright © 2012 Elsevier B.V. All rights reserved.
Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium.
Yu, Weiqun; Hill, Warren G; Apodaca, Gerard; Zeidel, Mark L
2011-01-01
The urothelium is proposed to be a sensory tissue that responds to mechanical stress by undergoing dynamic membrane trafficking and neurotransmitter release; however, the molecular basis of this function is poorly understood. Transient receptor potential (TRP) channels are ideal candidates to fulfill such a role as they can sense changes in temperature, osmolarity, and mechanical stimuli, and several are reported to be expressed in the bladder epithelium. However, their complete expression profile is unknown and their cellular localization is largely undefined. We analyzed expression of all 33 TRP family members in mouse bladder and urothelium by RT-PCR and found 22 specifically expressed in the urothelium. Of the latter, 10 were chosen for closer investigation based on their known mechanosensory or membrane trafficking functions in other cell types. Western blots confirmed urothelial expression of TRPC1, TRPC4, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPML1, and polycystins 1 and 2 (PKD1 and PKD2) proteins. We further defined the cellular and subcellular localization of all 10 TRP channels. TRPV2 and TRPM4 were prominently localized to the umbrella cell apical membrane, while TRPC4 and TRPV4 were identified on their abluminal surfaces. TRPC1, TRPM7, and TRPML1 were localized to the cytoplasm, while PKD1 and PKD2 were expressed on the apical and basolateral membranes of umbrella cells as well as in the cytoplasm. The cellular location of TRPV1 in the bladder has been debated, but colocalization with neuronal marker calcitonin gene-related peptide indicated clearly that it is present on afferent neurons that extend into the urothelium, but may not be expressed by the urothelium itself. These findings are consistent with the hypothesis that the urothelium acts as a sentinel and by expressing multiple TRP channels it is likely it can detect and presumably respond to a diversity of external stimuli and suggest that it plays an important role in urothelial signal transduction.
Bladder contractility is modulated by Kv7 channels in pig detrusor.
Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja; Sheykhzade, Majid; Nordling, Jørgen; Bouchelouche, Pierre
2013-09-05
Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view to determining the effects of the following potassium channel activators: ML213 (Kv7.2/Kv7.4 channels) and retigabine (Kv7.2-7.5 channels). Retigabine produced a concentration-dependent relaxation of carbachol- and electric field-induced contractions. The potency was similar in magnitude to that of ML213-induced relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P<0.05), which in turn confirmed Kv7 channel selectivity. Subtype-selective effects were further investigated by incubating the detrusor with 10µM chromanol 293B (Kv7.1 channel blocker). Regardless of the experimental protocol, this did not cause a further increase in the evoked contraction. In contrast, the addition of XE991 potentiated the KCl-induced contractions, but not those induced by carbachol or electric field, indicating the presence of a phosphatidyl-inositol-4,5-biphosphate-dependent mechanism amongst the Kv7 channels in detrusor. qRT-PCR studies of the mRNA transcript level of Kv7.3-7.5 channels displayed a higher level of Kv7.4 transcript in detrusor compared to that present in brain cortex and heart tissues. Thus, we have shown that Kv7.4 channels are expressed and functionally active in pig detrusor, and that the use of selective Kv7.4 channel modulators in the treatment of detrusor overactivity seems promising. © 2013 Elsevier B.V. All rights reserved.
Le Goux, Constance; Damotte, Diane; Vacher, Sophie; Sibony, Mathilde; Delongchamps, Nicolas Barry; Schnitzler, Anne; Terris, Benoit; Zerbib, Marc; Bieche, Ivan; Pignot, Géraldine
2017-05-01
Immunotherapy for bladder cancer seems to have promising results. Here, we evaluated the association between messenger RNA (mRNA) and protein levels and possible prognostic value of the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immune checkpoint pathways during bladder carcinogenesis. Tumor samples were obtained from 155 patients (84 with muscle-invasive bladder cancer [MIBC], and 71 non-muscle-invasive bladder cancer [NMIBC]) and normal bladder tissue from 15 patients. We evaluated the mRNA expression of 3 genes in the PD-1 pathway (PD-1, PD-L1, and PD-L2) and 4 in the CTLA4 pathway (CTLA4, CD28, CD80, and CD86) in normal and tumoral human bladder samples by quantitative real-time reverse transcription polymerase chain reaction, with immunohistochemistry used to evaluate the protein expression of PD-1 and PD-L1 in tumor and immune cells. Results of molecular analyses were compared with survival analyses. As compared with normal bladder tissue, MIBC tissue showed PD-1, PD-L1, CTLA4, and CD80 overexpression (59.5%, 60.7%, 84.5%, and 92.9%, respectively), whereas overexpression was lower in NMIBC tissue (22.5%, 4.2%, 35.2%, and 46.5%, respectively). The results of reverse transcription polymerase chain reaction analysis were confirmed by immunohistochemistry, with a high correlation between mRNA and protein expression. On multivariate analyses, overexpression of the studied genes was not associated with prognosis in relapse or progression of NMIBC or in recurrence-free and overall survival of MIBC. The CTLA4 pathway appears to be deregulated along with the PD-1/PD-L1 pathway in bladder carcinogenesis, with good correlation between mRNA and protein expression endorsing the useful role of immune checkpoints, especially for a large subgroup of MIBC. Copyright © 2017 Elsevier Inc. All rights reserved.
Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A
1993-11-01
The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.
[The role of telomerase activity in non-invasive diagnostics of bladder cancer].
Glybochko, P V; Alyaev, J G; Potoldykova, N V; Polyakovsky, K A; Vinarov, A Z; Glukhov, A I; Gordeev, S A
2016-08-01
To evaluate the potentials of determining the telomerase activity (TA) in the cellular material of the urine for noninvasive diagnosis of bladder cancer (BC). Evaluation of TA was performed in the urine of 48 patients with bladder cancer (study group) before and after transurethral resection of the bladder wall (n=38), an open resection of the bladder (n=4), and cystectomy (n=6). TA was also evaluated in 48 tumor tissue samples obtained from these patients during removal of the bladder tumor. Each sample of the tumor tissue was separated into two parts, one of which was subjected to histological examination, and the latter was used to determine the telomerase activity. In all cases, the diagnosis of bladder cancer was confirmed morphologically. Determination of TA in the samples was performed by the modified TRAP-method (telomerase repeat amplification protocol), RT-PCR, PCR, and electrophoresis. As a control, cell material of the urine and tissue in 12 patients with chronic cystitis was investigated. TA before surgery was found in 45 (93.75%) of 48 samples of cellular material of the urine from patients with suspected bladder cancer. BC was histologically verified in all patients in this group. In the postoperative period, TA was not observed in the 48 samples of cellular material of the urine from patients with BC. In the control group of patients with histologically verified cystitis, weak TA was determined only in one sample of cellular material of the urine. The analysis indicates statistically significant predominance of patients with bladder cancer in case of TA in the urine (P=0.001). TA was detected in all samples of tumor tissue. We also analyzed the dependence of TA levels in urine and tissue on the degree of BC differentiation. In patients with highly differentiated BC, mean AT in the cellular materials of the urine was 0,61% (n=15), in patients with moderately differentiated BC - 0.95% (n=23), in patients with low-grade bladder cancer - 1.33% (n=10); in other words, increase in the TA levels with decreasing the degree of differentiation was observed. This finding can be used in the prognosis of the course of disease based on determining the TA level in these patients. Preliminary data indicate the possibility of use of determining the TA in cellular material of the urine for the diagnosis and monitoring of bladder cancer recurrence.
Rigby, Carolyn C.; Franks, L. M.
1970-01-01
Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601
EFFECTS OF 4,4'-METHYLENEBIS-(2-CHLOROANILINE) AND BENZOTRICHLORIDE IN HUMAN AND/OR ANIMAL TISSUES
4,4'-Methylene-bis(2-chloraniline)(MOCA) is an aromatic amine with structural similarity to known human bladder carcinogens, and induces urothelial tumors in dogs. Therefore, the authors compare the binding to DNA and DNA-adduct formation of 4,4'-Methylene-bis(2-chloraniline) (MO...
Kamran, Sophia C; Harshman, Lauren C; Bhagwat, Mandar S; Muralidhar, Vinayak; Nguyen, Paul L; Martin, Neil E; La Follette, Stephanie; Faso, Sarah; Viswanathan, Akila N; Efstathiou, Jason A; Beard, Clair J
2017-01-01
The use of large-field external beam reirradiation (re-RT) after pelvic radiation therapy (RT) for genitourinary (GU) cancers has not been reported. We report the results of such treatment in patients with either symptomatic GU second malignant neoplasms or locally recurrent pelvic tumors after initial RT for whom surgery or further systemic therapy was not an option. The records of 28 consecutive patients with advanced, bulky GU malignancies treated with high-dose, large-field re-RT with palliative intent between 2008 and 2014 were retrospectively reviewed. Descriptive outcome analyses focused on toxicities and symptom control, and responses were evaluated by 2 independent observers. Twenty-seven male patients (96%) were included. Median initial external beam RT dose was 64 Gy (range, 30-75.6 Gy). The median time between initial RT and re-RT was 9.5 years (range, 0.2-32 years). At the time of re-RT, there were 16 local recurrences and 12 second malignant neoplasms together comprising 16 bladder, 10 prostate, 1 ureteral, and 1 penile cancer. Indications for re-RT were pain and bleeding/hemorrhage. The median equivalent sphere diameter planning target volume for re-RT was 8.6 cm (range, 4.7-16.3 cm). Given the severity of the symptoms and the bulk of the disease at the time of re-RT, a higher dose of RT was administered. The median re-RT dose was 50 Gy (range, 27.5-66 Gy). For patients who received <60 Gy, hypofractionation of 250 cGy was used. The median cumulative dose was 113.9 Gy (range, 81.5-132.8 Gy). Re-RT was well tolerated with no Radiation Therapy Oncology Group grade 3-4 toxicities. Twenty-four patients (92%) had complete resolution of symptoms, and relief was durable in 67% of patients. The median overall survival was 5.8 months (range, 0.3-38.9 months). Of those patients who are still alive, 100% remain free of initial symptoms. This small series suggests that aggressive re-RT of inoperable and symptomatic GU malignancies that is undertaken with meticulous treatment planning is well tolerated and provides excellent, durable relief without undue short-term toxicity. Validation in a larger prospective cohort is required.
Bladder cancer, a review of the environmental risk factors.
Letašiová, Silvia; Medve'ová, Alžbeta; Šovčíková, Andrea; Dušinská, Mária; Volkovová, Katarína; Mosoiu, Claudia; Bartonová, Alena
2012-06-28
Many epidemiological studies and reviews have been performed to identify the causes of bladder cancer. The aim of this review is to investigate the links between various environmental risk factors and cancer of the bladder. A systematic literature search was performed using PubMed, Science Direct, Scopus, Scholar Google and Russian Google databases to identify reviews and epidemiological studies on bladder cancer risk factors associated with the environment published between 1998 and 2010. Only literature discussing human studies was considered. Smoking, mainly cigarette smoking, is a well known risk factor for various diseases, including bladder cancer. Another factor strongly associated with bladder cancer is exposure to arsenic in drinking water at concentrations higher than 300 µg/l. The most notable risk factor for development of bladder cancer is occupational exposure to aromatic amines (2-naphthylamine, 4-aminobiphenyl and benzidine) and 4,4'-methylenebis(2-chloroaniline), which can be found in the products of the chemical, dye and rubber industries as well as in hair dyes, paints, fungicides, cigarette smoke, plastics, metals and motor vehicle exhaust. There are also data suggesting an effect from of other types of smoking besides cigarettes (cigar, pipe, Egyptian waterpipe, smokeless tobacco and environmental tobacco smoking), and other sources of arsenic exposure such as air, food, occupational hazards, and tobacco. Other studies show that hairdressers and barbers with occupational exposure to hair dyes experience enhanced risk of bladder cancer. For example, a study related to personal use of hair dyes demonstrates an elevated bladder cancer risk for people who used permanent hair dyes at least once a month, for one year or longer. Smoking, in particular from cigarettes, exposure to arsenic in drinking water, and occupational exposure to aromatic amines and 4,4'-methylenebis(2-chloroaniline) are well known risk factors for various diseases including bladder cancer. Although the number of chemicals related to occupational exposure is still growing, it is worth noting that it may take several years or decades between exposure and the subsequent cancer.
Miyake, Makito; Hori, Shunta; Morizawa, Yosuke; Tatsumi, Yoshihiro; Toritsuka, Michihiro; Ohnishi, Sayuri; Shimada, Keiji; Furuya, Hideki; Khadka, Vedbar S.; Deng, Youping; Ohnishi, Kenta; Iida, Kota; Gotoh, Daisuke; Nakai, Yasushi; Inoue, Takeshi; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Tanaka, Nobumichi; Konishi, Noboru; Fujimoto, Kiyohide
2017-01-01
Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder. PMID:28415608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongxue; Department of Urology, Hospital of Xinjiang Production and Construction Corps, Urumqi 830002; Li, Xuechao
Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cellmore » apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.« less
Spontaneous Urinary Bladder Leiomyoma in a Rhesus Macaque (Macaca mulatta).
Scott, Kathleen E; Frydman, Galit; Fox, James G; Bakthavatchalu, Vasudevan
2018-06-01
Here we report the case of a urinary bladder leiomyoma in a rhesus macaque. The animal was clinically normal and had a lipoma localized to the stifle. Endovesicular leiomyomas are the most common form of urinary bladder leiomyoma in humans. In contrast, this macaque's tumor exhibited extravesicular localization in the bladder. Urinary bladder leiomyomas account for less than 0.5% of all bladder tumors in humans, with only 250 cases reported in total.
Peterson, Abbey; Erickson, Cuixia Shi; Nelson, Mark T.; Vizzard, Margaret A.
2014-01-01
Social stress may play a role in urinary bladder dysfunction in humans, but the underlying mechanisms are unknown. In the present study, we explored changes in bladder function caused by social stress using mouse models of stress and increasing stress. In the stress paradigm, individual submissive FVB mice were exposed to C57BL/6 aggressor mice directly/indirectly for 1 h/day for 2 or 4 wk. Increased stress was induced by continuous, direct/indirect exposure of FVB mice to aggressor mice for 2 wk. Stressed FVB mice exhibited nonvoiding bladder contractions and a decrease in both micturition interval (increased voiding frequency) and bladder capacity compared with control animals. ELISAs demonstrated a significant increase in histamine protein expression with no change in nerve growth factor protein expression in the urinary bladder compared with controls. Unlike stressed mice, mice exposed to an increased stress paradigm exhibited increased bladder capacities and intermicturition intervals (decreased voiding frequency). Both histamine and nerve growth factor protein expression were significantly increased with increased stress compared with control bladders. The change in bladder function from increased voiding frequency to decreased voiding frequency with increased stress intensity suggests that changes in social stress-induced urinary bladder dysfunction are context and duration dependent. In addition, changes in the bladder inflammatory milieu with social stress may be important contributors to changes in urinary bladder function. PMID:25100077
Neklasova, N Iu; Sharinov, G M; Vinokurov, V L; Skrynditsa, G M
2006-01-01
to study the efficacy of dimethyl sulfoxide ((DMSO) at different concentrations in preventing radiation-induced rectal and urinary bladder damages in patients with cervix uteri cancer (CUC). combined radiation therapy (RT) was performed in 807 patients with CUC. In the control group (n = 221), RT was made, without applying radio-modified agents. An hour prior to a session of intracavitary irradiation, 10% DMSO solution was instilled into the rectum and urinary bladder in 113 patients and applications of metronidazole (MN) dissolved in 100% DSMO were made in 473 patients. Teleradiotherapy was performed, by using megavolt irradiation sources in the conventional fractionation mode; the total focal dose (TFD) was increased up to 40-46 Gy. Intracavitary irradiation was carried out on "AGAT-V" and "AGAT-VU" devices once weekly; the single focal dose in point A was 7 Gy; TFD was 49-56 Gy. 10% DMSO instillations reduced the incidence of late radiation-induced damages to the rectum and urinary bladder. In the control group, the incidence of these conditions was 19.0 and 9.5%, respectively; with the use of 10% DMSO, that was 8.8 and 7.1%. Applications of MN dissolved in 100% DMSO reduced the incidence of late radiation-induced damages to 1.7%. Local application of DMSO is a method for preventing late radiation-induced damages to the rectum and urinary bladder in patients with CUC. When the concentration of DMSO is increased, its preventive effect increases.
Predictive factors of uterine movement during definitive radiotherapy for cervical cancer.
Maemoto, Hitoshi; Toita, Takafumi; Ariga, Takuro; Heianna, Joichi; Yamashiro, Tsuneo; Murayama, Sadayuki
2017-05-01
To determine the predictive factors affecting uterine movement during radiotherapy (RT), we quantified interfraction uterine movement using computed tomography (CT) and cone-beam CT (CBCT). A total of 38 patients who underwent definitive RT for cervical cancer were retrospectively analyzed. We compared pre-RT planning CT (n = 38) and intratreatment CBCT (n = 315), measuring cervical and corporal movement in each direction. Correlations between uterine movement and volume changes of the bladder and rectum on all CBCT scans were analyzed using Spearman rank correlation analysis. Relationships between the mean uterine movement and patient factors were analyzed using the Mann-Whitney test. The mean corpus movement was: superior margin (cranio-caudal direction), 7.6 ± 5.9 mm; anterior margin (anteroposterior direction), 8.3 ± 6.3 mm; left margin (lateral direction), 3.3 ± 2.9 mm; and right margin (lateral direction), 3.0 ± 2.3 mm. Generally, the mean values for cervical movement were smaller than those for the corpus. There was a significant, weak correlation between changes in bladder volume and the movement of the superior margin of the corpus (ρ = 0.364, P < 0.001). There was a significant difference in movement of the superior margin of the corpus between the subgroups with and without a history of previous pelvic surgery (P = 0.007). In conclusion, change in bladder volume and a history of previous surgery were significantly related to intrafractional corpus movement; however, our observations suggest that the accurate prediction of uterine movement remains challenging. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Serratia marcescens internalization and replication in human bladder epithelial cells
Hertle, Ralf; Schwarz, Heinz
2004-01-01
Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566
Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer
2013-08-01
In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.
Talaat, Sherine; Somji, Seema; Toni, Conrad; Garrett, Scott H.; Zhou, Xu Dong; Sens, Mary Ann; Sens, Donald A.
2011-01-01
Objective The goal of this study was to confirm a microarray study that suggested that Kindlin-2 might play a role in the development and progression of bladder cancer. There has been no previous examination of Kindlin-2 expression in human bladder cancer. Methods A combination of real time PCR, western analysis and immunohistochemistry was used to characterize Kindlin-2 expression in arsenite (As+3) and cadmium (Cd+2) transformed human cell lines, their tumor transplants in immune-compromised mice, and in archival specimens of human bladder and bladder cancer. Results The results show that the Kindlin-2 expression patterns in the cell lines were not duplicated in the tumor tissues. However, it was shown that Kindlin-2 was expressed in the stromal element of all the transplanted tumors and archival specimens of human bladder cancer. It was also shown that a small number of high grade invasive urothelial cancers have focal expression of Kindlin-2 in the tumor cells. Conclusion Kindlin-2 is expressed in the stromal component of most, if not all, human bladder cancers. Kindlin-2 is not expressed in normal urothelium. Kindlin-2 is expressed in a small subset of high grade invasive bladder cancers and may have potential as a prognostic marker for tumor progression. PMID:21624607
Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro.
Rubenwolf, Peter C; Georgopoulos, Nikolaos T; Clements, Lisa A; Feather, Sally; Holland, Philip; Thomas, David F M; Southgate, Jennifer
2009-12-01
Urothelium is generally considered to be impermeable to water and constituents of urine. The possibility that human urothelium expresses aquaporin (AQP) water channels as the basis for water and solute transport has not previously been investigated. To investigate the expression of AQP water channels by human urothelium in situ, in proliferating urothelial cell cultures and in differentiated tissue constructs. AQP expression by human urothelium in situ and cultured urothelial cells was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunolabelling. Expression screening was carried out on samples of freshly isolated urothelia from multiple surgical (bladder and ureteric) specimens and on proliferating and differentiated normal human urothelial (NHU) cells in culture. Urothelial tissue constructs were established and investigated for expression of urothelial differentiation markers and AQPs. Qualitative study. Transcripts for AQP3, AQP4, AQP7, AQP9, and AQP11 were expressed consistently by freshly isolated urothelia as well as by cultured NHU cells. AQP0, AQP1, AQP2, AQP5, AQP6, AQP8, AQP10, and AQP12 were not expressed. Immunochemistry confirmed expression of AQP3, AQP4, AQP7, and AQP9 at the protein level. AQP3 was shown to be intensely expressed at cell borders in the basal and intermediate layers in both urothelium in situ and differentiated tissue constructs in vitro. This is the first study to demonstrate that AQPs are expressed by human urothelium, suggesting a potential role in transurothelial water and solute transport. Our findings challenge the traditional concept of the urinary tract as an impermeable transit and storage unit and provide a versatile platform for further investigations into the biological and clinical relevance of AQPs in human urothelium.
Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer.
Lee, Jun Taik; Lee, Sang Don; Lee, Jeong Zoo; Chung, Moon Kee; Ha, Hong Koo
2013-01-01
The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10(-2) and 1.99×10(-2) in benign bladder tissue and 1.39×10(-2) and 2.32×10(-2) in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets.
Abdul-Maksoud, Rehab S; Shalaby, Sally M; Elsayed, Walid S H; Elkady, Saad
2016-10-15
Tumor grade and stage are currently the most important prognostic variables in bladder cancer but establishing additional criteria is still needed for effective treatment. The aim of the study was to assess the expression of fibroblast growth factor receptor 1 (FGFR1) and cytokeratin 20 (CK20) in cancer bladder (CB) and to evaluate their association with the clinicopathological features of the disease. The study included 80 patients diagnosed as bladder cancer of different stages and grades and 80 patients with nonmalignant urothelial diseases of matched age and sex to the malignant group. The expressions of FGFR1 and CK20 in tissue samples were determined by RT-PCR and immunohistochemistry. The expression levels of FGFR1 and CK20 were increased in the malignant group when compared to the control group (P<0.001 for each). Analysis of their expression showed that levels of FGFR1 and CK20 were significantly higher in invasive tumor stages (pT2-pT4) than in non-invasive stages (pTis, pTa, pT1) (P<0.001). Interestingly, the sensitivity and specificity of combined detection with CK20 and FGFR1 for the differentiation between invasive and non-invasive stages of bladder cancer reached 97.5% and 92.5%, respectively. Our results determined overexpression of both FGFR1 and CK20 in CB specimens. The alterations in the expression of FGFR1 and CK20 were associated with disease stage and grade. Lastly, combined detection of FGFR1 and CK20 had a high predictive prognostic value in differentiating invasive from non-invasive carcinoma. Copyright © 2016 Elsevier B.V. All rights reserved.
Onile, Olugbenga Samson; Calder, Bridget; Soares, Nelson C; Anumudu, Chiaka I; Blackburn, Jonathan M
2017-11-01
Schistosomiasis is a chronic neglected tropical disease that is characterized by continued inflammatory challenges to the exposed population and it has been established as a possible risk factor in the aetiology of bladder cancer. Improved diagnosis of schistosomiasis and its associated pathology is possible through mass spectrometry to identify biomarkers among the infected population, which will influence early detection of the disease and its subtle morbidity. A high-throughput proteomic approach was used to analyse human urine samples for 49 volunteers from Eggua, a schistosomiasis endemic community in South-West, Nigeria. The individuals were previously screened for Schistosoma haematobium and structural bladder pathologies via microscopy and ultrasonography respectively. Samples were categorised into schistosomiasis, schistosomiasis with bladder pathology, bladder pathology, and a normal healthy control group. These samples were analysed to identify potential protein biomarkers. A total of 1306 proteins and 9701 unique peptides were observed in this study (FDR = 0.01). Fifty-four human proteins were found to be potential biomarkers for schistosomiasis and bladder pathologies due to schistosomiasis by label-free quantitative comparison between groups. Thirty-six (36) parasite-derived potential biomarkers were also identified, which include some existing putative schistosomiasis biomarkers that have been previously reported. Some of these proteins include Elongation factor 1 alpha, phosphopyruvate hydratase, histone H4 and heat shock proteins (HSP 60, HSP 70). These findings provide an in-depth analysis of potential schistosoma and human host protein biomarkers for diagnosis of chronic schistosomiasis caused by Schistosoma haematobium and its pathogenesis.
Bladder cancer, a review of the environmental risk factors
2012-01-01
Background Many epidemiological studies and reviews have been performed to identify the causes of bladder cancer. The aim of this review is to investigate the links between various environmental risk factors and cancer of the bladder. Methods A systematic literature search was performed using PubMed, Science Direct, Scopus, Scholar Google and Russian Google databases to identify reviews and epidemiological studies on bladder cancer risk factors associated with the environment published between 1998 and 2010. Only literature discussing human studies was considered. Results Smoking, mainly cigarette smoking, is a well known risk factor for various diseases, including bladder cancer. Another factor strongly associated with bladder cancer is exposure to arsenic in drinking water at concentrations higher than 300 µg/l. The most notable risk factor for development of bladder cancer is occupational exposure to aromatic amines (2-naphthylamine, 4-aminobiphenyl and benzidine) and 4,4'-methylenebis(2-chloroaniline), which can be found in the products of the chemical, dye and rubber industries as well as in hair dyes, paints, fungicides, cigarette smoke, plastics, metals and motor vehicle exhaust. There are also data suggesting an effect from of other types of smoking besides cigarettes (cigar, pipe, Egyptian waterpipe, smokeless tobacco and environmental tobacco smoking), and other sources of arsenic exposure such as air, food, occupational hazards, and tobacco. Other studies show that hairdressers and barbers with occupational exposure to hair dyes experience enhanced risk of bladder cancer. For example, a study related to personal use of hair dyes demonstrates an elevated bladder cancer risk for people who used permanent hair dyes at least once a month, for one year or longer. Conclusion Smoking, in particular from cigarettes, exposure to arsenic in drinking water, and occupational exposure to aromatic amines and 4,4'-methylenebis(2-chloroaniline) are well known risk factors for various diseases including bladder cancer. Although the number of chemicals related to occupational exposure is still growing, it is worth noting that it may take several years or decades between exposure and the subsequent cancer. PMID:22759493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleijnen, J J E; Couwenberg, A M; Asselen, B van
Purpose: The recent development of an MRI-linac allows adaptation of treatments to the anatomy of the moment. This anatomy, in turn, could be altered into a more favorable situation for radiotherapy purposes. The purpose of this study is to investigate the potential dosimetric benefits of manipulating rectal anatomy in MRI-guided interventional external-beam radiotherapy for rectal cancer. Methods: For this retrospective analysis, four patients (1M/3F) diagnosed with rectal cancer were included. These underwent MR-imaging using sonography transmission gel as endorectal contrast at time of diagnosis and standard, non-contrast, MR-imaging prior to radiotherapy planning. In the contrast scan, the rectum is inflatedmore » by the inserted contrast gel, thereby potentially increasing the distance between tumor and the organs-at-risk (OAR). Both anatomies were delineated and 7- beam IMRT-plans were calculated for both situations (RT-standard and RT-inflated), using in-house developed treatment planning software. Each plan was aimed to deliver 15Gy to the planning target volume (PTV; tumor+3mm margin) with a D99>95% and Dmax<120% of the planned dose. The D2cc dose to the OAR were then compared for both situations. Results: At equal (or better) target coverage, we found a mean reduction in D2cc of 4.1Gy/237% [range 2.6Gy–6.3Gy/70%–621%] for the bladder and of 2.0Gy/145% [range −0.7Gy–7.9Gy/−73%–442%] for the small-bowel, for the RT-inflated compared to the RT-standard plans. For the three female patients, a reduction in D2cc of 5.2Gy/191% [range 3.2Gy–9.2Gy/44%–475%] for the gynecological organs was found. We found all D2cc doses to be better for the RT-inflated plans, except for one patient for whom the bladder D2cc dose was slightly increased. Conclusion: Reduction of OAR dose by manipulation of anatomy is feasible. Inflation of the rectum results in more distance between OAR and PTV. This leads to a substantial reduction in dose to OAR at equal or better target coverage.« less
Tan, Chee K.; Carey, Alison J.; Cui, Xiangqin; Webb, Richard I.; Ipe, Deepak; Crowley, Michael; Cripps, Allan W.; Benjamin, William H.; Ulett, Kimberly B.; Schembri, Mark A.
2012-01-01
The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens. PMID:22733575
Does increased urination frequency protect against bladder cancer?
Silverman, Debra T; Alguacil, Juan; Rothman, Nathaniel; Real, Francisco X; Garcia-Closas, Montserrat; Cantor, Kenneth P; Malats, Nuria; Tardon, Adonina; Serra, Consol; Garcia-Closas, Reina; Carrato, Alfredo; Lloreta, Josep; Samanic, Claudine; Dosemeci, Mustafa; Kogevinas, Manolis
2008-10-01
Experimental studies suggest that increased urination frequency may reduce bladder cancer risk if carcinogens are present in the urine. Only 2 small studies of the effect of increased urination frequency on bladder cancer risk in humans have been conducted with conflicting results. Our purpose was to evaluate the effect of urination frequency on risk of bladder cancer in a large, multicenter case-control study. We analyzed data based on interviews conducted with 884 patients with newly diagnosed, bladder cancer and 996 controls from 1998 to 2001 in Spain. We observed a consistent, inverse trend in risk with increasing nighttime voiding frequency in both men (p = 0.0003) and women (p = 0.07); voiding at least 2 times per night was associated with a significant, 40-50% risk reduction. The protective effect of nocturia was apparent among study participants with low, moderate and high water consumption. The risk associated with cigarette smoking was reduced by nocturia. Compared with nonsmokers who did not urinate at night, current smokers who did not urinate at night had an OR of 7.0 (95% CI = 4.7-10.2), whereas those who voided at least twice per night had an OR of 3.3 (95% CI = 1.9-5.8) (p value for trend = 0.0005). Our findings suggest a strong protective effect of nocturia on bladder cancer risk, providing evidence in humans that bladder cancer risk is related to the contact time of the urothelium with carcinogens in urine. Increased urination frequency, coupled with possible dilution of the urine from increased water intake, may diminish the effect of urinary carcinogens on bladder cancer risk.
Gevaert, Thomas; Neuhaus, Jochen; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Der Aa, Frank Van; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Pintelon, Isabel; De Ridder, Dirk
2017-12-01
With most research on interstitial cells (IC) in the bladder being conducted on animal models, it remains unclear whether all structural and functional data on IC from animal models can be translated to the human context. This prompted us to compare the structural and immunohistochemical properties of IC in bladders from mouse, rat and human. Tissue samples were obtained from the bladder dome and subsequently processed for immunohistochemistry and electron microscopy. The ultrastructural properties of IC were compared by means of electron microscopy and IC were additionally characterized with single/double immunohistochemistry/immunofluorescence. Our results reveal a similar organization of the IC network in the upper lamina propria (ULP), the deep lamina propria (DLP) and the detrusor muscle in human, rat and mouse bladders. Furthermore, despite several similarities in IC phenotypes, we also found several obvious inter-species differences in IC, especially in the ULP. Most remarkably in this respect, ULP IC in human bladder predominantly displayed a myoid phenotype with abundant presence of contractile micro-filaments, while those in rat and mouse bladders showed a fibroblast phenotype. In conclusion, the organization of ULP IC, DLP IC and detrusor IC is comparable in human, rat and mouse bladders, although several obvious inter-species differences in IC phenotypes were found. The present data show that translating research data on IC in laboratory animals to the human setting should be carried out with caution.
McNair, H A; Hafeez, S; Taylor, H; Lalondrelle, S; McDonald, F; Hansen, V N; Huddart, R
2015-04-01
The implementation of plan of the day selection for patients receiving radiotherapy (RT) for bladder cancer requires efficient and confident decision-making. This article describes the development of a training programme and maintenance of competency. Cone beam CT (CBCT) images acquired on patients receiving RT for bladder cancer were assessed to establish baseline competency and training needs. A training programme was implemented, and observers were asked to select planning target volumes (PTVs) on two groups of 20 patients' images. After clinical implementation, the PTVs chosen were reviewed offline, and an audit performed after 3 years. A mean of 73% (range, 53-93%) concordance rate was achieved prior to training. Subsequent to training, the mean score decreased to 66% (Round 1), then increased to 76% (Round 2). Six radiographers and two clinicians successfully completed the training programme. An independent observer reviewed the images offline after clinical implementation, and a 91% (126/139) concordance rate was achieved. During the audit, 125 CBCT images from 13 patients were reviewed by a single observer and concordance was 92%. Radiographer-led selection of plan of the day was implemented successfully with the use of a training programme and continual assessment. Quality has been maintained over a period of 3 years. The training programme was successful in achieving and maintaining competency for a plan of the day technique.
KITENIN is associated with tumor progression in human gastric cancer.
Ryu, Ho-Seong; Park, Young-Lan; Park, Su-Jin; Lee, Ji-Hee; Cho, Sung-Bum; Lee, Wan-Sik; Chung, Ik-Joo; Kim, Kyung-Keun; Lee, Kyung-Hwa; Kweon, Sun-Seog; Joo, Young-Eun
2010-09-01
KAI1 COOH-terminal interacting tetraspanin (KITENIN) promotes tumor cell migration, invasion and metastasis in colon, bladder, head and neck cancer. The aims of current study were to evaluate whether KITENIN affects tumor cell behavior in human gastric cancer cell line and to document the expression of KITENIN in a well-defined series of gastric tumors, including complete long-term follow-up, with special reference to patient prognosis. To evaluate the impact of KITENIN knockdown on behavior of a human gastric cancer cell line, AGS, migration, invasion and proliferation assays using small-interfering RNA were performed. The expression of activator protein-1 (AP-1) target genes and AP-1 transcriptional activity were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay. The expression of KITENIN and AP-1 target genes by RT-PCR and Western blotting or immunohistochemistry was also investigated in human gastric cancer tissues. The knockdown of KITENIN suppressed tumor cell migration, invasion and proliferation in AGS cells. The mRNA expression of matrix metalloproteinase-1 (MMP-1), MMP-3, cyclooxygenase-2 (COX-2), and CD44 was reduced by knockdown of KITENIN in AGS. AP-1 transcriptional activity was significantly decreased by knockdown of KITENIN in AGS cells. KITENIN expression was significantly increased in human cancer tissues at RNA and protein levels. Expression of MMP-1, MMP-3, COX-2 and CD44 were significantly increased in human gastric cancer tissues. Immunostaining of KITENIN was predominantly identified in the cytoplasm of cancer cells. Expression of KITENIN was significantly associated with tumor size, Lauren classification, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that KITENIN plays an important role in human gastric cancer progression by AP-1 activation.
Moll, R.; Achtstätter, T.; Becht, E.; Balcarova-Ständer, J.; Ittensohn, M.; Franke, W. W.
1988-01-01
The pattern of cytokeratins expressed in normal urothelium has been compared with that of various forms of transitional cell carcinomas (TCCs; 21 cases) and cultured bladder carcinoma cell lines, using immunolocalization and gel electrophoretic techniques. In normal urothelium, all simple-epithelium-type cytokeratins (polypeptides 7, 8, 18, 19) were detected in all cell layers, whereas antibodies to cytokeratins typical for stratified epithelia reacted with certain basal cells only or, in the case of cytokeratin 13, with cells of the basal and intermediate layers. This pattern was essentially maintained in low-grade (G1, G1/2) TCCs but was remarkably modified in G2 TCCs. In G3 TCCs simple-epithelial cytokeratins were predominant whereas the amounts of component 13 were greatly reduced. Squamous metaplasia was accompanied generally by increased or new expression of some stratified-epithelial cytokeratins. The cytokeratin patterns of cell culture lines RT-112 and RT-4 resembled those of G1 and G2 TCCs, whereas cell line T-24 was comparable to G3 carcinomas. The cell line EJ showed a markedly different pattern. The results indicate that, in the cell layers of the urothelium, the synthesis of stratification-related cytokeratins such as component 13 is inversely oriented compared with that in other stratified epithelia where these proteins are suprabasally expressed, that TCCs retain certain intrinsic cytoskeletal features of urothelium, and that different TCCs can be distinguished by their cytokeratin patterns. The potential value of these observations in histopathologic and cytologic diagnoses is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:2456018
Legrand, Nicolas; van der Velden, Gisela J.; Fang, Raphaël Ho Tsong; Douaisi, Marc; Weijer, Kees; Das, Atze T.; Blom, Bianca; Uittenbogaart, Christel H.; Berkhout, Ben
2012-01-01
A novel genetic approach for the control of virus replication was used for the design of a conditionally replicating human immunodeficiency virus (HIV) variant, HIV-rtTA. HIV-rtTA gene expression and virus replication are strictly dependent on the presence of a non-toxic effector molecule, doxycycline (dox), and thus can be turned on and off at will in a graded and reversible manner. The in vivo replication capacity, pathogenicity and genetic stability of this HIV-rtTA variant were evaluated in a humanized mouse model of haematopoiesis that harbours lymphoid and myeloid components of the human immune system (HIS). Infection of dox-fed BALB Rag/γc HIS (BRG-HIS) mice with HIV-rtTA led to the establishment of a productive infection without CD4+ T-cell depletion. The virus did not show any sign of escape from dox control for up to 10 weeks after the onset of infection. No reversion towards a functional Tat–transactivating responsive (TAR) RNA element axis was observed, confirming the genetic stability of the HIV-rtTA variant in vivo. These results demonstrate the proof of concept that HIV-rtTA replicates efficiently in vivo. HIV-rtTA is a promising tool for fundamental research to study virus–host interactions in vivo in a controlled fashion. PMID:22647372
Do neural tube defects lead to structural alterations in the human bladder?
Pazos, Helena M F; Lobo, Márcio Luiz de P; Costa, Waldemar S; Sampaio, Francisco J B; Cardoso, Luis Eduardo M; Favorito, Luciano Alves
2011-05-01
Anencephaly is the most severe neural tube defect in human fetuses. The objective of this paper is to analyze the structure of the bladder in anencephalic human fetuses. We studied 40 bladders of normal human fetuses (20 male and 20 female, aged 14 to 23 WPC) and 12 bladders of anencephalic fetuses (5 male and 7 female, aged 18 to 22 WPC). The bladders were removed and processed by routine histological techniques. Stereological analysis of collagen, elastic system fibers and smooth muscle was performed in sections. Data were expressed as volumetric density (Vv-%). The images were captured with Olympus BX51 microscopy and Olympus DP70 camera. The stereological analysis was done using the software Image Pro and Image J. For biochemical analysis, samples were fixed in acetone, and collagen concentrations were expressed as micrograms of hydroxyproline per mg of dry tissue. Means were statistically compared using the unpaired t-test (p<0.05). We observed a significant increase (p<0.0001) in the Vv of collagen in the bladders of anencephalic fetuses (69.71%) when compared to normal fetuses (52.74%), and a significant decrease (p<0.0001) in the Vv of smooth muscle cells in the bladders of anencephalic fetuses (23.96%) when compared to normal fetuses (38.35%). The biochemical analyses showed a higher concentration of total collagen in the bladders of anencephalic fetuses (37354 µg/mg) when compared to normal fetuses (48117 µg/mg, p<0.02). The structural alterations of the bladder found in this study may suggest the existence of functional alterations in the bladder of anencephalic human fetuses.
Yang, Zhao; Li, Chong; Fan, Zusen; Liu, Hongjie; Zhang, Xiaolong; Cai, Zhiming; Xu, Liqin; Luo, Jian; Huang, Yi; He, Luyun; Liu, Chunxiao; Wu, Song
2017-01-01
Cancer stem cells are considered responsible for many important aspects of tumors such as their self-renewal, tumor-initiating, drug-resistance and metastasis. However, the genetic basis and origination of human bladder cancer stem cells (BCSCs) remains unknown. Here, we conducted single-cell sequencing on 59 cells including BCSCs, bladder cancer non-stem cells (BCNSCs), bladder epithelial stem cells (BESCs) and bladder epithelial non-stem cells (BENSCs) from three bladder cancer (BC) specimens. Specifically, BCSCs demonstrate clonal homogeneity and suggest their origin from BESCs or BCNSCs through phylogenetic analysis. Moreover, 21 key altered genes were identified in BCSCs including six genes not previously described in BC (ETS1, GPRC5A, MKL1, PAWR, PITX2 and RGS9BP). Co-mutations of ARID1A, GPRC5A and MLL2 introduced by CRISPR/Cas9 significantly enhance the capabilities of self-renewal and tumor-initiating of BCNSCs. To our knowledge, our study first provides an overview of the genetic basis of human BCSCs with single-cell sequencing and demonstrates the biclonal origin of human BCSCs via evolution analysis. Human bladder cancer stem cells show the high level of consistency and may derived from bladder epithelial stem cells or bladder cancer non-stem cells. Mutations of ARID1A, GPRC5A and MLL2 grant bladder cancer non-stem cells the capability of self-renewal. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.
Pokrywczynska, Marta; Adamowicz, Jan; Sharma, Arun K; Drewa, Tomasz
2014-03-01
Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.
Bryan, R T; Regan, H L; Pirrie, S J; Devall, A J; Cheng, K K; Zeegers, M P; James, N D; Knowles, M A; Ward, D G
2015-03-17
Better biomarkers must be found to develop clinically useful urine tests for bladder cancer. Proteomics can be used to identify the proteins released by cancer cell lines and generate candidate markers for developing such tests. We used shotgun proteomics to identify proteins released into culture media by eight bladder cancer cell lines. These data were compared with protein expression data from the Human Protein Atlas. Epidermal growth factor receptor (EGFR) was identified as a candidate biomarker and measured by ELISA in urine from 60 noncancer control subjects and from 436 patients with bladder cancer and long-term clinical follow-up. Bladder cancer cell lines shed soluble EGFR ectodomain. Soluble EGFR is also detectable in urine and is highly elevated in some patients with high-grade bladder cancer. Urinary EGFR is an independent indicator of poor bladder cancer-specific survival with a hazard ratio of 2.89 (95% CI 1.81-4.62, P<0.001). In multivariable models including both urinary EGFR and EpCAM, both biomarkers are predictive of bladder cancer-specific survival and have prognostic value over and above that provided by standard clinical observations. Measuring urinary EGFR and EpCAM may represent a simple and useful approach for fast-tracking the investigation and treatment of patients with the most aggressive bladder cancers.
Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D
2013-01-01
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426
Vera, Pedro L.; Wang, Xihai; Meyer-Siegler, Katherine L.
2009-01-01
OBJECTIVE Macrophage migration inhibitory factor (MIF) is increased in the intraluminal fluid after experimental inflammation and mediates pro-inflammatory effects on the bladder. We examined the contribution of nerve activity and of specific neurotransmitter systems on the mechanism of MIF release from the bladder during inflammation. MATERIALS & METHODS Male Sprague-Dawley rats were anesthetized, bladders were emptied and filled with saline. Rats received saline (s.c.; control; 0.1 ml/100 g bodyweight) or substance P (40 μg/kg in saline; s.c.; 0.1 ml/100 g bodyweight) and also received hexamethonium (50 mg/kg;i.p.; in saline; 0.1 ml/100 g body weight); intravesical lidocaine (2%; 0.3 ml), atropine (3 mg/kg in saline; i.v.; 0.1 ml/100 g body weight), propranolol (3 mg/kg in saline; i.v.; 0.1 ml/100 g body weight) or phentolamine (10 mg/kg in saline; i.v.; 0.1 ml/100 g body weight). After of 1 hour, the intravesical fluid was removed and the bladder was excised. MIF levels in the intraluminal fluid were measured by ELISA and Western-blotting. MIF expression in bladder homogenates was examined using RT-PCR. RESULTS Either intravesical lidocaine or ganglionic blockage with hexamethonium prevented Substance P-induced MIF release. In addition, pretreatment with atropine and phentolamine, but not propranolol, also prevented MIF release. MIF upregulation in the bladder, while increased with Substance P treatment, was only prevented by intravesical lidocaine. CONCLUSION Substance P-induced MIF release in the bladder is mediated through nerve activation. Post-ganglionic parasympathetic (via muscarinic receptors) and sympathetic (via alpha-adrenergic receptors) fibers mediate MIF release while activation of bladder afferent nerve terminals upregulate MIF. PMID:18499160
Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang
2011-12-01
This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.
Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon
2014-10-05
Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer
LEE, JUN TAIK; LEE, SANG DON; LEE, JEONG ZOO; CHUNG, MOON KEE; HA, HONG KOO
2013-01-01
The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10−2 and 1.99×10−2 in benign bladder tissue and 1.39×10−2 and 2.32×10−2 in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets. PMID:23255926
Nagamatsu, Kanna; Hannan, Thomas J.; Guest, Randi L.; Kostakioti, Maria; Hadjifrangiskou, Maria; Binkley, Jana; Dodson, Karen; Raivio, Tracy L.; Hultgren, Scott J.
2015-01-01
Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4–dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4– and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization. PMID:25675528
Nagamatsu, Kanna; Hannan, Thomas J; Guest, Randi L; Kostakioti, Maria; Hadjifrangiskou, Maria; Binkley, Jana; Dodson, Karen; Raivio, Tracy L; Hultgren, Scott J
2015-02-24
Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4-dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4- and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization.
Effects of TOOKAD-PDT on canine prostates pre-treated with ionizing radiation
NASA Astrophysics Data System (ADS)
Chen, Qun; Huang, Zheng; Luck, David L.; Beckers, Jill; Trncic, Nadira; LaRue, Susan M.; Brun, Pierre-Herve; Wilson, Brian C.; Hetzel, Fred W.
2003-06-01
PDT in prostate cancer will likely be implemented clinically with patients who have failed prior ionizing radiation therapy (RT). The current study is to develop an in vivo model to evaluate the effects of PDT on prostatic tissue after RT. To produce a physiological and anatomical environment in prostate similar to that in patients who have failed RT, canine prostates (n=4) were subjected to a definitive course of ionizing radiation therapy (2.7 Gy x 20 fractions) 5 to 6 months prior to PDT. A laparotomy was performed to expose the prostate for PDT. Second generation photosensitizer Tookad (Palladium-Bacteriopheophorbide, Steba Biotech, The Netherlands) acts primarily on tissue vasculature and is very effective in destroying normal prostatic tissue, as shown by our prior studies. Due to the extremely fast clearance of the photosensitizer, interstitial light irradiation (760 nm, 50-200 J/cm, 150 mW/cm from a 1 cm diffuser fiber) was delivered 4 minutes after the onset of Tookad infusion (i.v. 2.5 mg/ml, 2 mg/kg, total infusion time 10 min). The prostates were harvested for histopathology one week after PDT. At one week, the lesions were characterized by acute hemorrhagic necrosis with patchy sub-capsular hyperemia and edema. The maximum lesion diameter for 50, 100 and 200 J/cm PDT was approximately 15, 20 and 28 mm, respectively. The lesion size is well correlated with light fluence and comparable to that in prostates treated with identical PDT doses but without prior-RT. Under light-microscopy, the PDT induced necrosis is clearly distinguishable from the radiation induced fibrosis. No urethral lesions were observed. Dyer"s Verhoeff stain showed the loss of stromal connective tissue and the acinar collagen in the PDT treated area. There was no noticeable damage on the bladder or underlying colon section. In conclusion, Tookad-PDT can effectively destroy prostate tissue with prior-RT induced fibrosis, thus, may provide an alternative modality for those prostate-cancer patients who have failed RT.
Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa
2018-02-15
Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.
Social stress in mice induces voiding dysfunction and bladder wall remodeling
Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas
2009-01-01
Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139
Doss, Mohan; Kolb, Hartmuth C; Walsh, Joseph C; Mocharla, Vani; Fan, Hong; Chaudhary, Ashok; Zhu, Zhihong; Alpaugh, R Katherine; Lango, Miriam N; Yu, Jian Q
2013-12-01
(18)F-CP-18, or (18S,21S,24S,27S,30S)-27-(2-carboxyethyl)-21-(carboxymethyl)-30-((2S,3R,4R,5R,6S)-6-((2-(4-(3-F18-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamido)-24-isopropyl-18-methyl-17,20,23,26,29-pentaoxo-4,7,10,13-tetraoxa-16,19,22,25,28-pentaazadotriacontane-1,32-dioic acid, is being evaluated as a tissue apoptosis marker for PET imaging. The purpose of this study was to determine the biodistribution and estimate the normal-organ radiation-absorbed doses and effective dose from (18)F-CP-18. Successive whole-body PET/CT scans were obtained at approximately 7, 45, 90, 130, and 170 min after intravenous injection of (18)F-CP-18 in 7 healthy human volunteers. Blood samples and urine were collected between the PET/CT scans, and the biostability of (18)F-CP-18 was assessed using high-performance liquid chromatography. The PET scans were analyzed to determine the radiotracer uptake in different organs. OLINDA/EXM software was used to calculate human radiation doses based on the biodistribution of the tracer. (18)F-CP-18 was 54% intact in human blood at 135 min after injection. The tracer cleared rapidly from the blood pool with a half-life of approximately 30 min. Relatively high (18)F-CP-18 uptake was observed in the kidneys and bladder, with diffuse uptake in the liver and heart. The mean standardized uptake values (SUVs) in the bladder, kidneys, heart, and liver at around 50 min after injection were approximately 65, 6, 1.5, and 1.5, respectively. The calculated effective dose was 38 ± 4 μSv/MBq, with the urinary bladder wall having the highest absorbed dose at 536 ± 61 μGy/MBq using a 4.8-h bladder-voiding interval for the male phantom. For a 1-h voiding interval, these doses were reduced to 15 ± 2 μSv/MBq and 142 ± 15 μGy/MBq, respectively. For a typical injected activity of 555 MBq, the effective dose would be 21.1 ± 2.2 mSv for the 4.8-h interval, reduced to 8.3 ± 1.1 mSv for the 1-h interval. (18)F-CP-18 cleared rapidly through the renal system. The urinary bladder wall received the highest radiation dose and was deemed the critical organ. Both the effective dose and the bladder dose can be reduced by frequent voiding. From the radiation dosimetry perspective, the apoptosis imaging agent (18)F-CP-18 is suitable for human use.
KCC isoforms in a human lens epithelial cell line (B3) and lens tissue extracts.
Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C; Warwar, Ronald; Brown, Thomas L; Lauf, Peter K
2006-11-01
We recently reported potassium-chloride cotransporter activity in human lens epithelial B3 (HLE-B3) cells. The purpose of the present study was to demonstrate in these cells as well as in human lens tissue the potassium-chloride cotransport (KCC) isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence microscopy. Of the four KCC genes known to encode the respective proteins and their spliced variants, RT-PCR with both rat and human primers revealed the predicted cDNA fragments of KCC1, KCC3a, KCC3b, and KCC4 but not KCC2 in both HLE-B3 cells and in human lens tissue extracts from cataractous patients. Polyclonal rabbit (rb) anti-rat (rt) and anti-human (hm) antibodies against rtKCC1 and hmKCC3, respectively, and a commercially available rb-anti-mouse (ms) KCC4 antibody were used. Rb anti-rtKCC1-ECL3 [against epitopes within the large extracellular loop 3 (ECL3)] revealed a 150kDa band in HLE-B3 cells consistent with the known molecular weight of KCC1. Rb anti-hmKCC3-ECL3 yielded three bands of 150, 122 and 105kDa, evidence for the presence of KCC3a, KCC3b and possibly KCC3c isoforms. The 122 and 112kDa bands were also demonstrated by rb anti-hmKCC3-CTD [the C-terminal domain (CTD)]. Rb anti-msKCC4 antibody only showed a 100kDa band in HLE-B3 cells. In the human lens tissues, a 115kDa protein was detected with rb anti-rtKCC1-ECL3 and a 100kDa band with rb anti-msKCC4, however, no bands with rb anti-hmKCC3-ECL3 or rb anti-hmKCC3-CTD. Fluorescence microscopy revealed immunocytochemical cytoplasmic and membrane labeling of HLE-B3 cells with anti-KCC1, -KCC3 (laser confocal microscopy) and -KCC4 antibodies and a Cy3-tagged secondary antibody. Hence HLE-B3 cells expressed proteins of the KCC1, KCC3a, b, and KCC4 isoforms, whereas surgically removed cataractous lens tissue expressed only those of KCC1 and KCC4.
Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing
2013-01-01
The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.
An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields.
Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul
2014-09-01
Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p<0.01). DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Transitional Cell Carcinoma of the Urinary Bladder in a Beluga Whale (Delphinapterus leucas)
Martineau, D.; Lagacé, A.; Massé, R.; Morin, M.; Béland, P.
1985-01-01
A transitional cell carcinoma of the urinary bladder was found in a beluga whale stranded in the St. Lawrence middle estuary. Various organs of this animal were submitted to high resolution gas chromatography coupled with mass spectrometry analysis. High frequency of urinary bladder cancer in the human population of the same area and the presence of carcinogenic compounds in the marine environment of this animal are discussed. Concurrent isolation of Edwardsiella tarda from various organs of this whale is also reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8. PMID:17422578
Crowdsourcing Disease Biomarker Discovery Research: The IP4IC Study.
Chancellor, Michael B; Bartolone, Sarah N; Veerecke, Andrew; Lamb, Laura E
2018-05-01
Biomarker discovery is limited by readily assessable, cost efficient human samples available in large numbers that represent the entire heterogeneity of the disease. We developed a novel, active participation crowdsourcing method to determine BP-RS (Bladder Permeability Defect Risk Score). It is based on noninvasive urinary cytokines to discriminate patients with interstitial cystitis/bladder pain syndrome who had Hunner lesions from controls and patients with interstitial cystitis/bladder pain syndrome but without Hunner lesions. We performed a national crowdsourcing study in cooperation with the Interstitial Cystitis Association. Patients answered demographic, symptom severity and urinary frequency questionnaires on a HIPAA (Health Insurance Portability and Accountability Act) compliant website. Urine samples were collected at home, stabilized with a preservative and sent to Beaumont Hospital for analysis. The expression of 3 urinary cytokines was used in a machine learning algorithm to develop BP-RS. The IP4IC study collected a total of 448 urine samples, representing 153 patients (147 females and 6 males) with interstitial cystitis/bladder pain syndrome, of whom 54 (50 females and 4 males) had Hunner lesions. A total of 159 female and 136 male controls also participated, who were age matched. A defined BP-RS was calculated to predict interstitial cystitis/bladder pain syndrome with Hunner lesions or a bladder permeability defect etiology with 89% validity. In this novel participation crowdsourcing study we obtained a large number of urine samples from 46 states, which were collected at home, shipped and stored at room temperature. Using a machine learning algorithm we developed BP-RS to quantify the risk of interstitial cystitis/bladder pain syndrome with Hunner lesions, which is indicative of a bladder permeability defect etiology. To our knowledge BP-RS is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome and one of the first biomarker assays to be developed using crowdsourcing. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Gupta, Sounak; Hau, Andrew M.; Al-Ahmadie, Hikmat A.; Harwalkar, Jyoti; Shoskes, Aaron C.; Elson, Paul; Beach, Jordan R.; Hussey, George S.; Schiemann, William P.; Egelhoff, Thomas T.; Howe, Philip H.; Hansel, Donna E.
2017-01-01
Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β–induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. PMID:26988652
Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison
2018-05-01
Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.
Hexavalent chromium induces chromosome instability in human urothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less
Afeli, Serge A Y; Malysz, John; Petkov, Georgi V
2013-01-01
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction.
GENE EXPRESSION DOSE-RESPONSE IN THE MOUSE BLADDER FOLLOWING EXPOSURE TO ARSENATE IN DRINKING WATER
The association between drinking water exposures to inorganic arsenic and life-threatening tumors in the human is strongest for bladder cancer. Moreover, a working model for the pathogenesis of human bladder cancer has been developed. To investigate the mode of action for inorgan...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Jing-Jing; Dai, Yuan-Chang; Lin, Yung-Lun
2014-09-15
Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries graduallymore » increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1 downregulation in the urothelia may be a biomarker of bladder carcinogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichol, Alan M.; Warde, Padraig R.; Lockwood, Gina A.
Purpose: To determine the reduction of prostate motion during a typical radiotherapy (RT) fraction from a bowel regimen comprising an antiflatulent diet and daily milk of magnesia. Methods and Materials: Forty-two patients with T1c-T2c prostate cancer voided the bladder and rectum before three cinematic magnetic resonance imaging scans obtained every 9 s for 9 min in a vacuum immobilization device. The MRIs were at baseline without bowel regimen (MRI-BL), before CT planning with bowel regimen (MRI-CT), and before a randomly assigned RT fraction (1-42) with bowel regimen (MRI-RT). A single observer tracked displacement of the posterior midpoint (PM) of themore » prostate. The primary endpoints were comparisons of the proportion of time that the PM was displaced >3 mm (PTPM3) from its initial position, and the secondary endpoints were comparisons of the reduction of initial rectal area, with and without the bowel regimen. Results: The mean rectal area was: 13.5 cm{sup 2} at MRI-BL, 12.7 cm{sup 2} at MRI-CT, and 12.3 cm{sup 2} at MRI-RT (MRI-BL vs. MRI-CT, p = 0.11; MRI-BL vs. MRI-CT, p = 0.07). Moving rectal gas alone (56%) and moving gas and stool (18%) caused 74% of intrafraction prostate motion. The PTPM3 was 11.3% at MRI-BL, 4.8% at MRI-CT, and 12.0% at MRI-RT (MRI-BL vs. MRI-CT, p = 0.12; MRI-BL vs. MRI-RT, p = 0.89). Conclusion: For subjects voiding their rectum before imaging, an antiflatulent diet and milk of magnesia laxative did not significantly reduce initial rectal area or intrafraction prostate motion.« less
Han, Zhenwei; Wang, Kunjie; Chen, Lin; Wei, Tangqiang; Luo, Deyi; Li, Shengfu
2012-04-01
To explore the effect of hydrostatic pressure on intracellular free calcium concentration ([Ca2+]i) and the gene expression of transient receptor potential vanilloid (TRPV) in cultured human bladder smooth muscle cells (hb-SMCs), and to preliminarily probe into the possible molecular mechanism of hb-SMCs proliferation stimulated by hydrostatic pressure. The passage 6-7 hb-SMCs were loaded with Ca2+ indicator Fluo-3/AM. When the hb-SMCs were under 0 cm H2O (1cm H2O = 0.098 kPa) (group A) or 200 cm H2O hydrostatic pressure for 30 minutes (group B) and then removing the 200 cm H2O hydrostatic pressure (group C), the [Ca2+]i was measured respectively by inverted laser scanning confocal microscope. When the hb-SMCs were given the 200 cm H2O hydrostatic pressure for 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, the mRNA expressions of TRPV1, TRPV2, and TRPV4 were detected by RT-PCR technique. The [Ca2+]i of group A, group B, and group C were (100.808 +/- 1.724), (122.008 +/- 1.575), and (99.918 +/- 0.887) U, respectively; group B was significantly higher than groups A and C (P < 0.001). The [Ca2+]i of group C decreased to the base line level of group A after removing the pressure (t = 0.919, P = 0.394). The TRPV1, TRPV2, and TRPV4 genes expressed in hb-SMCs under 200 cm H2O hydrostatic pressure at 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, but the expressions had no obvious changes with time. There was no significant difference in the expressions of TRPV1, TRPV2, and TRPV4 among 3 groups (P > 0.05). The [Ca2+]i of hb-SMCs increases significantly under high hydrostatic pressure. As possible genes in stretch-activated cation channel, the TRPV1, TRPV2, and TRPV4 express in hb-SMCs under 200 cm H2O hydrostatic pressure. It is possible that the mechanical pressure regulates the [Ca2+]i of hb-SMCs by opening the stretch-activated cation channel rather than up-regulating its expression.
Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans
2013-01-01
Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045
Rapidly quantifying the relative distention of a human bladder
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor); Heyman, Joseph S. (Inventor); Mineo, Beth A. (Inventor); Cavalier, Albert R. (Inventor); Blalock, Travis N. (Inventor)
1991-01-01
A device and method was developed to rapidly quantify the relative distention of the bladder of a human subject. An ultrasonic transducer is positioned on the human subject near the bladder. A microprocessor controlled pulser excites the transducer by sending an acoustic wave into the human subject. This wave interacts with the bladder walls and is reflected back to the ultrasonic transducer where it is received, amplified, and processed by the receiver. The resulting signal is digitized by an analog to digital converter, controlled by the microprocessor again, and is stored in data memory. The software in the microprocessor determines the relative distention of the bladder as a function of the propagated ultrasonic energy. Based on programmed scientific measurements and the human subject's past history as contained in program memory, the microprocessor sends out a signal to turn on any or all of the available alarms. The alarm system includes and audible alarm, the visible alarm, the tactile alarm, and the remote wireless alarm.
Prognostic factors in prostate cancer patients treated by radical external beam radiotherapy.
Garibaldi, Elisabetta; Gabriele, Domenico; Maggio, Angelo; Delmastro, Elena; Garibaldi, Monica; Russo, Filippo; Bresciani, Sara; Stasi, Michele; Gabriele, Pietro
2017-09-01
The aim of this paper was to analyze, retrospectively, in prostate cancer patients treated in our Centre with external beam radiotherapy, the prognostic factors and their impact on the outcome in terms of cancer-specific survival (CSS), biochemical disease-free survival (BDFS) and clinical disease-free survival (CDFS). From October 1999 and March 2012, 1080 patients were treated with radiotherapy at our Institution: 87% of them were classified as ≤cT2, 83% had a Gleason Score (GS) ≤7, their mean of iPSA was 18 ng/mL, and the rate of clinical positive nodes was 1%. The mean follow-up was 81 months. The statistically significant prognostic factors for all groups of patients at both, univariate and multivariate analysis, were the GS and the iPSA. In intermediate- and high- or very-high-risk patients at multivariate analysis other prognostic factors for CSS were positive nodes on computed tomography (CT) scan and rectal preparation during the treatment; for BDFS, the prognostic factors were patient risk classification, positive lymph nodes on CT scan and rectal/bladder preparation; for CDFS, the prognostic factors were the number of positive core on biopsy (P=0.003), positive lymph nodes on CT scan, and radiotherapy (RT) dose. In high/very-high risk patient group at multivariate analysis other prognostic factors for CSS were clinical/radiological stage and RT dose, for BDFS they were adjuvant hormone therapy, clinical/radiological stage, and RT dose >77.7 Gy, and for CDFS they were clinical/radiological stage and RT dose >77.7 Gy. The results of this study confirm the prognostic factors described in the recent literature, with the addition of rectal/bladder preparation, generally known for its effect on toxicity but not yet on outcome.
Prostate stem cell antigen is overexpressed in human transitional cell carcinoma.
Amara, N; Palapattu, G S; Schrage, M; Gu, Z; Thomas, G V; Dorey, F; Said, J; Reiter, R E
2001-06-15
Prostate stem cell antigen (PSCA), a homologue of the Ly-6/Thy-1 family of cell surface antigens, is expressed by a majority of human prostate cancers and is a promising target for prostate cancer immunotherapy. In addition to its expression in normal and malignant prostate, we recently reported that PSCA is expressed at low levels in the transitional epithelium of normal bladder. In the present study, we compared the expression of PSCA in normal and malignant urothelial tissues to assess its potential as an immunotherapeutic target in transitional cell carcinoma (TCC). Immunohistochemical analysis of PSCA protein expression was performed on tissue sections from 32 normal bladder specimens, as well as 11 cases of low-grade transitional cell dysplasia, 21 cases of carcinoma in situ (CIS), 38 superficial transitional cell tumors (STCC, stages T(a)-T(1)), 65 muscle-invasive TCCs (ITCCs, stages T(2)-T(4)), and 7 bladder cancer metastases. The level of PSCA protein expression was scored semiquantitatively by assessing both the intensity and frequency (i.e., percentage of positive tumor cells) of staining. We also examined PSCA mRNA expression in a representative sample of normal and malignant human transitional cell tissues. In normal bladder, PSCA immunostaining was weak and confined almost exclusively to the superficial umbrella cell layer. Staining in CIS and STCC was more intense and uniform than that seen in normal bladder epithelium (P < 0.001), with staining detected in 21 (100%) of 21 cases of CIS and 37 (97%) of 38 superficial tumors. PSCA protein was also detected in 42 (65%) of 65 of muscle-invasive and 4 (57%) of 7 metastatic cancers, with the highest levels of PSCA expression (i.e., moderate-strong staining in >50% of tumor cells) seen in 32% of invasive and 43% of metastatic samples. Higher levels of PSCA expression correlated with increasing tumor grade for both STCCs and ITCCs (P < 0.001). Northern blot analysis confirmed the immunohistochemical data, showing a dramatic increase in PSCA mRNA expression in two of five muscle-invasive transitional cell tumors when compared with normal samples. Confocal microscopy demonstrated that PSCA expression in TCC is confined to the cell surface. These data demonstrate that PSCA is overexpressed in a majority of human TCCs, particularly CIS and superficial tumors, and may be a useful target for bladder cancer diagnosis and therapy.
Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun
2012-01-01
Background The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Materials and Method Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific Uroplakin II (UP II) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. Results General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5×108 pfu or higher dose (5×109 pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5×109 pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Conclusions Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5×107 pfu and 5×108 pfu intratumorally injection in mice, without any discernable effects on general health and behavior. PMID:22384806
Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun
2012-04-01
The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific UroplakinII(UPII) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5x10(8) pfu or higher dose (5x10(9) pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5x10(9) pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5x10(7) pfu and 5x10(8) pfu intratumorally injection in mice, without any discernable effects on general health and behavior.
Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E
2016-05-01
Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.
Occupational Bladder Cancer in a 4,4′-Methylenebis(2-chloroaniline) (MBOCA)-Exposed Worker
Liu, Chiu-Shong; Liou, Saou-Hsing; Loh, Ching-Hui; Yu, Yi-Chun; Uang, Shi-Nian; Shih, Tung-Sheng; Chen, Hong-I
2005-01-01
A 52-year-old male chemical worker was admitted to the hospital with a history of paroxysmal microscopic hematuria for about 2 years and nocturia with gross hematuria about five times per night for 2 months. He was a nonsmoker and denied a history of any other bladder carcinogen exposure except for occasional pesticide application during agricultural work. Intravenous urogram imaging showed a mass occupying half of the bladder capacity. Cystoscopy revealed a mass over the left dome of the bladder. Cystoscopic biopsy revealed a grade 3 invasive transitional cell carcinoma with marked necrosis. From 1987 until hospital admission in 2001, the patient had worked in a company that produced the 4,4′-methylenebis(2-chloroaniline) (MBOCA) curing agent. He did not wear any personal protective equipment during work. Ambient air MBOCA levels in the purification process area (0.23–0.41 mg/m3) exceeded the U.S. Occupational Safety and Health Administration’s permissible exposure level. Urinary MBOCA levels (267.9–15701.1 μg/g creatinine) far exceeded the California Occupational Safety and Health Administration’s reference value of 100 μg/L. This patient worked in the purification process with occupational exposure to MBOCA for 14 years. According to the environmental and biologic monitoring data and latency period, and excluding other potential bladder carcinogen exposure, this worker was diagnosed as having occupational bladder cancer due to high exposure to MBOCA through inhalation or dermal absorption in the purification area. This case finding supports that MBOCA is a potential human carcinogen. Safe use of skin-protective equipment and respirators is required to prevent workers from MBOCA exposure. PMID:15929884
Mishima, Y; Steitz, J A
1995-01-01
We have mapped specific RNA-protein contacts between human immunodeficiency virus (HIV) type I reverse transcriptase (RT) and its natural primer, human tRNA(3Lys), using a site-specific crosslinking strategy. Four different tRNA(3Lys) constructs with a single 32P-labeled 4-thiouridine (4-thioU) residue at positions -1, 16, 36 or 41 were synthesized. After incubation with RT followed by irradiation, crosslinks were localized to either the p66 or p51 subunit of RT by digestion with nuclease and SDS gel fractionation. 4-thioU at position -1 or 16 transferred label to the p66 subunit almost exclusively (> 90%), whereas position 36 labeled both p66 and p51 (3:1). Position 41 yielded no detectable crosslinks. The region of p66 contacted by position -1 of tRNA(3Lys) was localized to the 203 C-terminal amino acids of RT by CNBr cleavage, whereas a 127 amino acid-CNBr peptide (residues 230-357) from both p66 and p51 was labeled by position 36. Functionality of the 4-thioU-modified tRNA(3Lys)(-1) crosslinked to RT in the presence of an RNA but not a DNA template was demonstrated by the ability of the tRNA to be extended. These results localize the 5' half of the tRNA on the interface between the two RT subunits, closer to the RNase H domain than to the polymerase active site, in accord with previous suggestions. They argue further that a specific binding site for the 5' end of the primer tRNA(3Lys) may exist within the C-terminal portion of the p66 subunit, which could be important for the initiation of reverse transcription. Images PMID:7540137
It is concluded that bladder explants of the human, dog, monkey, hamster, and rat metabolize AAF mainly to ring-hydroxylated products, but also form small amounts of the proximate carcinogenic metabolite N-hydroxy-AAF. Neither the overall binding of AAF to bladder DNA, nor the fo...
Acute and Chronic Deficits in the Urinary Bladder after Spinal Contusion Injury in the Adult Rat
Herrera, Juan J.; Haywood-Watson, Ricky J.L.
2010-01-01
Abstract Traumatic spinal cord injury (SCI) permanently alters bladder function in humans. Hematuria and cystitis occur in both human SCI as well as in rodent models of SCI. Others have reported early SCI-dependent disruption to bladder uroepithelial integrity that results in increased permeability to urine and urine-borne substances. This can result in cystitis, or inflammation of the bladder, an ongoing pathological condition present throughout the chronic phase of SCI in humans. The goals of our study were twofold: (1) to begin to examine the inflammatory and molecular changes that occur within the bladder uroepithelium using a clinically-relevant spinal contusion model of injury, and (2) to assess whether these alterations continue into the chronic phase of SCI. Rats received either moderate SCI or sham surgery. Urine was collected from SCI and sham subjects over 7 days or at 7 months to assess levels of excreted proteins. Inflammation in the bladder wall was assessed via biochemical and immunohistochemical methods. Bladder tight junction proteins, mediators of uroepithelial integrity, were also measured in both the acute and chronic phases of SCI. Urine protein and hemoglobin levels rapidly increase following SCI. An SCI-dependent elevation in numbers of neutrophils within the bladder wall peaked at 48 h. Bladder tight junction proteins demonstrate a rapid but transient decrease as early as 2 h post-SCI. Surprisingly, elevated levels of urine proteins and significant deficits in bladder tight junction proteins could be detected in chronic SCI, suggesting that early pathological changes to the bladder may continue throughout the chronic phase of injury. PMID:19891526
Wang, H F; Shortland, P; Park, M J; Grant, G
1998-11-01
In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with myelinated fibres). Double labelling with other neuronal markers showed that 71%, 43% and 36% of the cholera toxin B subunit-immunoreactive cells were calcitonin gene-related peptide-, isolectin B4-binding- and substance P-positive, respectively. A few cholera toxin B subunit cells showed galanin-immunoreactivity, but none were somatostatin-, vasoactive intestinal polypeptide-, or neuropeptide Y-immunoreactive or contained fluoride-resistant acid phosphatase. The results show that cholera toxin B subunit-horseradish peroxidase is a more effective retrograde and transganglionic tracer for pelvic primary afferents from the urinary bladder than wheat germ agglutinin-horseradish peroxidase and isolectin B4-horseradish peroxidase, but in contrast to somatic nerves, it is transported mainly by unmyelinated fibres in the visceral afferents.
Yang, Dongli; Zhang, Xiaoming; Hughes, Bret A.
2008-01-01
Previously, we demonstrated that the inwardly rectifying K+ (Kir) channel subunit Kir7.1 is highly expressed in bovine and human retinal pigment epithelium (RPE). The purpose of this study was to determine whether any of the 14 other members of the Kir gene family are expressed in native human RPE. Conventional reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that in addition to Kir7.1, 7 other Kir channel subunits (Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2 and Kir6.1) are expressed in the RPE, whereas in neural retina, all 14 of the Kir channel subunits examined are expressed. The identities of RT-PCR products in the RPE were confirmed by DNA sequencing. Real-time RT-PCR analysis showed, however, that transcripts of these channels are significantly less abundant than Kir7.1 in the RPE. Western blot analysis of the Kir channel subunits detected in the RPE by RT-PCR revealed the expression of Kir2.1, Kir3.1, Kir3.4, Kir4.2, Kir6.1, and possibly Kir2.2, but not Kir1.1, in both human RPE and neural retina. Our results indicate that human RPE expresses at least 5 other Kir channel subtypes in addition to Kir7.1, suggesting that multiple members of the Kir channel family may function in this epithelium. PMID:18653180
Yang, Delin; Huo, Qian; Luan, Ting; Wang, Jiansong; Tang, Zhaoran; Wang, Haifeng
2016-08-01
In order to investigate how valsartan-the angiotensin II 1 receptor (AT1R) antagonist-affects the expressions of AT1R antigen, matrix metalloproteinases (MMPs) -2 and -9 in carcinoma of urinary bladder (CUB) cell lines with different invasive abilities. Three cell lines, EJ-M3, EJ, and BIU-87, with different invasive abilities were cultured and treated with valsartan. Cell proliferation states were determined by the methyl thiazolyl tetrazolium (MTT) method. The expressions at protein level and gene level were determined by Western blot and real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR), respectively. The invasive abilities and migratory abilities of the three cell lines were determined by Transwell in vitro cell invasion assay and wound healing assay, respectively. MTT results show that valsartan can inhibit the proliferation of CUB cells, and the inhibition effect is enhanced with the increase of concentration. AngII promotes the MMP2 and MMP9 expressions (both protein and gene levels) in CUB cells through AT1R, but their expressions can be effectively inhibited by valsartan, the AngII inhibitor. AngII inhibitor may become a novel drug that can inhibit CUB metastasis and prolong the survival of CUB patients.
Seniya, Chandrabhan; Yadav, Ajay; Uchadia, Kuldeep; Kumar, Sanjay; Sagar, Nitin; Shrivastava, Priyanka; Shrivastava, Shilpi; Wadhwa, Gulshan
2012-01-01
The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.
Genetic instability in urinary bladder cancer: An evolving hallmark.
Wadhwa, N; Mathew, B B; Jatawa, S K; Tiwari, A
2013-01-01
Bladder cancer is a major health-care concern. A successful treatment of bladder cancer depends on its early diagnosis at the initial stage. Genetic instability is an essential early step toward the development of bladder cancer. This instability is found more often at the chromosomal level than at the nucleotide level. Microsatellite and chromosomal instability markers can be used as a prognostic marker for screening bladder cancer. Bladder cancer can be distinguished in two different categories according to genetic instability: Cancers with chromosomal level instability and cancers with nucleotide level instability. Deoxyribonucleic acid (DNA) mismatch repair (MMR) system and its correlation with other biologic pathway, both are essential to understand the basic mechanisms of cancer development. Microsatellite instability occurs due to defects in DNA MMR genes, including human mutL homolog 1 and human mutL homolog 2. Chromosomal alterations including deletions on chromosome 3, 8, 9, 11, 13, 17 have been detected in bladder cancer. In the current review, the most recent literature of genetic instability in urinary bladder cancer has been summarized.
Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu
2010-09-01
We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.
Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone
2015-01-02
A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.
The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells
NASA Astrophysics Data System (ADS)
Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.
2007-02-01
Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60μg/ml) + light at 630nm induced DNA fragmentation in a light dose-dependent manner; in contrast, PMF or light alone did not induce DNA fragmentation. In separate experiments, PMF alone treatment produced a dose-dependent DNA synthesis with a 90% inhibition at a concentration of 25μg/ml (IC90 = 25μg/ml). Expression of p53 and p27 cell cycle regulatory proteins was not altered by PMF alone, however, a dose-dependent increase in p21 expression was observed that correlates with PMF concentrations. Cyclin A and cyclin B protein levels showed a clear decrease inverse to the concentration of PMF. In the absence of light treatment, flow cytometry analysis showed that PMF alone results in G 0/G I cell cycle arrest, with a 2-fold increase in G 0/G I cells concomitant with 50% decrease in cells in both S and G II/M phases. However, flow cytometry on PMF alone-treated cells did not show sub G 0/G I peak, further evidence of the lack of apoptosis as a mechanism of effect of PMF in the dark. Conclusions: With respect to light treatment, apoptosis appears to play a vital role in PDT-induced cytotoxicity. The flow cytometry and DNA laddering results revealed that T24 cells demonstrated apoptotic responses in PMF-mediated PDT. Experiments conducted with PMF alone showed a dose-dependent inhibition of DNA synthesis associated with G 0/G I cell cycle arrest and the extract is able to coordinate changes in key cell cycle regulatory proteins in human bladder cancer cells. Both experimental conditions suggest PMF as a potent and effect anti-proliferative agent in cancer chemoprevention and therapy of human urothelial carcinoma cells.
Backer, Lorraine C; Coss, Angela M; Wolkin, Amy F; Flanders, W Dana; Reif, John S
2008-06-01
To assess the risk of bladder cancer in dogs from exposure to drinking water disinfection by-products and determine whether dogs could serve as sentinels for human bladder cancer associated with such exposures. Case-control study. 100 dogs with cancer of the urinary bladder and 100 control dogs. Case and control dogs were frequency-matched by age (within 2 years) and sex. Owners of dogs enrolled provided verbal informed consent and were interviewed by telephone. The telephone questionnaire included a complete residence history for each dog. Each dog's total exposure history to trihalomethanes was reconstructed from its residence history and corresponding drinking water utility company data. No association was detected between increasing years of exposure to chlorinated drinking water and risk of bladder cancer. Dogs with bladder cancer were exposed to higher total trihalomethanes concentrations than control dogs; however, the difference was not significant. Although humans and their dogs live in the same household, the activity patterns of dogs may lead to lower exposures to household tap water. Thus, although exposure to disinfection by-products in tap water may be a risk factor for human bladder cancer, this may not be true for canine bladder cancer at the concentrations at which dogs are exposed.
Vitamin D Induction of the Human Antimicrobial Peptide Cathelicidin in the Urinary Bladder
Hertting, Olof; Holm, Åsa; Lüthje, Petra; Brauner, Hanna; Dyrdak, Robert; Jonasson, Aino Fianu; Wiklund, Peter; Chromek, Milan; Brauner, Annelie
2010-01-01
The urinary tract is frequently being exposed to potential pathogens and rapid defence mechanisms are therefore needed. Cathelicidin, a human antimicrobial peptide is expressed and secreted by bladder epithelial cells and protects the urinary tract from infection. Here we show that vitamin D can induce cathelicidin in the urinary bladder. We analyzed bladder tissue from postmenopausal women for expression of cathelicidin, before and after a three-month period of supplementation with 25-hydroxyvitamin D3 (25D3). Cell culture experiments were performed to elucidate the mechanisms for cathelicidin induction. We observed that, vitamin D per se did not up-regulate cathelicidin in serum or in bladder tissue of the women in this study. However, when the bladder biopsies were infected with uropathogenic E. coli (UPEC), a significant increase in cathelicidin expression was observed after 25D3 supplementation. This observation was confirmed in human bladder cell lines, even though here, cathelicidin induction occurred irrespectively of infection. Vitamin D treated bladder cells exerted an increased antibacterial effect against UPEC and colocalization to cathelicidin indicated the relevance of this peptide. In the light of the rapidly growing problem of resistance to common urinary tract antibiotics, we suggest that vitamin D may be a potential complement in the prevention of UTI. PMID:21179490
Bentley, Johanne; Diggle, Christine P.; Harnden, Patricia; Knowles, Margaret A.; Kiltie, Anne E.
2004-01-01
In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3′ overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PKcs. These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer. PMID:15466592
Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong
2007-01-01
To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.
The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.
Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K
2015-01-01
Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an alternate means to achieve functional bladder regeneration.
Use of donor bladder tissues for in vitro research.
Garthwaite, Mary; Hinley, Jennifer; Cross, William; Warwick, Ruth M; Ambrose, Anita; Hardaker, Henry; Eardley, Ian; Southgate, Jennifer
2014-01-01
To evaluate deceased non-heart beating (DNHB) donors and deceased heart beating (DHB) brain-stem dead donors, as sources of viable urological tissue for use in biomedical research. To identify sources of viable human bladder tissue as an essential resource for cell biological research aimed at understanding human diseases of the bladder and for developing new tissue engineering and regenerative medicine strategies for bladder reconstruction. Typically, normal human urinary tract tissue is obtained from adult or paediatric surgical patients with benign urological conditions, but few surgical procedures yield useful quantities of healthy bladder tissue for research. Research ethics committee approval was obtained for collection of donor bladder tissue. Consent for DHB donors was undertaken by the Donor Transplant Coordinators. Tissue Donor Coordinators were responsible for consent for DNHB donors and the retrieval of bladders was coordinated through the National Blood Service Tissue Banking Service. All retrievals were performed by practicing urologists and care was taken to maintain sterility and to minimise bacterial contamination. Two bladders were retrieved from DNHB donors and four were retrieved from DHB donors. By histology, DNHB donor bladder tissue exhibited marked urothelial tissue damage and necrosis, with major loss or absence of urothelium. No cell cultures could be established from these specimens, as the urothelial cells were not viable in primary culture. Bladder urothelium from DHB donors was intact, but showed some damage, including loss of superficial cells and variable separation from the basement membrane. All four DHB bladder specimens yielded viable urothelial cells that attached in primary culture, but cell growth was slow to establish and cultures showed a limited capacity to form a functional barrier epithelium and a propensity to senesce early. We have shown that normal human bladder urothelial cell cultures can be established and serially propagated from DHB donor bladders. However, our study suggests that rapid post-mortem changes to the bladder affect the quality and viability of the urothelium, rendering tissue from DNHB donors an inadequate source for urothelial cell culture. Our experience is that whereas patients are willing to donate surgical tissue for research, there is a barrier to obtaining consent from next of kin for retrieved tissues to be used for research purposes. © 2013 The Authors. BJU International © 2013 BJU International.
Steiner, Clara; Gevaert, Thomas; Ganzer, Roman; De Ridder, Dirk; Neuhaus, Jochen
2018-05-01
Interstitial cells (ICs) are thought to play a functional role in urinary bladder. Animal models are commonly used to elucidate bladder physiology and pathophysiology. However, inter-species comparative studies on ICs are rare. We therefore analyzed ICs and their distribution in the upper lamina propria (ULP), the deeper lamina propria (DLP) and the detrusor muscular layer (DET) of human, guinea pig (GP) and pig. Paraffin slices were examined by immunohistochemistry and 3D confocal immunofluorescence of the mesenchymal intermediate filament vimentin (VIM), alpha-smooth muscle actin (αSMA), platelet-derived growth factor receptor alpha (PDGFRα) and transient receptor potential cation channel A1 (TRPA1). Image stacks were processed for analysis using Huygens software; quantitative analysis was performed with Fiji macros. ICs were identified by immunoreactivity for VIM (excluding blood vessels). In all species ≥ 75% of ULP ICs were VIM + /PDGFRα + and ≥ 90% were VIM + /TRPA1 + . In human and pig ≥ 74% of ULP ICs were VIM + /αSMA + , while in GP the percentage differed significantly with only 37% VIM + /αSMA + ICs. Additionally, over 90% of αSMA + ICs were also TRPA1 + and PDGFRα + in human, GP and pig. In all three species, TRPA1 + and PDGFRα + ICs point to an active role for these cells in bladder physiology, regarding afferent signaling processes and signal modification. We hypothesize that decline in αSMA-positivity in GP reflects adaptation of bladder histology to smaller bladder size. In our experiments, pig bladder proved to be highly comparable to human urinary bladder and seems to provide safer interpretation of experimental findings than GP.
NASA Astrophysics Data System (ADS)
Fradet, Yves; Islam, Nazrul; Boucher, Lucie; Parent-Vaugeois, Carmen; Tardif, Marc
1987-10-01
Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up.
Lin, D; Lay, J O; Bryant, M S; Malaveille, C; Friesen, M; Bartsch, H; Lang, N P; Kadlubar, F F
1994-01-01
Analysis of carcinogen-DNA adducts has been regarded as a useful means of assessing human exposure to chemical carcinogens. We have established a method for quantitation of 4-aminobiphenyl (4-ABP)-DNA adducts by alkaline hydrolysis and gas chromatography with negative ion chemical ionization mass spectrometry (GC-NICI-MS). Aliquots of DNA (typically 100 micrograms/ml) were spiked with an internal standard, d9-4-ABP, and were hydrolyzed in 0.05 N NaOH at 130 degrees C overnight. The liberated 4-ABP was extracted with hexane and derivatized using pentafluoropropionic anhydride in trimethylamine for 30 min at room temperature prior to GC-NICI-MS. With in vitro [3H]N-hydroxy-4-ABP modified DNA standards, we observed 59 +/- 7% (n = 9) recovery of the 4-ABP and a linear correlation between hydrolyzed 4-ABP and the adduct levels ranging from about 1 in 10(8) to 1 in 10(4) nucleotides (r = 0.999, n = 9). The method was further validated by comparison of the results with that obtained by the 32P-postlabeling method. There was excellent agreement (r = 0.994, p < 0.001) between the two methods for quantitation of the adduct in eight samples of Salmonella typhimurium DNA treated with 4-ABP and rat liver S9, although the 32P-postlabeling method gave slightly higher values. The DNA adducts in 11 human lung and 8 urinary bladder mucosa specimens were then determined by our GC-NICI-MS method. The adduct levels were found to be < 0.32 to 49.5 adducts per 10(8) nucleotides in the lungs and < 0.32 to 3.94 adducts per 10(8) nucleotides in the bladder samples.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4. A Figure 4. B PMID:7889831
Palea, Stefano; Rekik, Moèz; Rouget, Céline; Camparo, Philippe; Botto, Henri; Rischmann, Pascal; Lluel, Philippe; Westfall, Timothy D
2012-09-05
Fenoterol has been reported to be a potent and selective β(2)-adrenoceptor agonist and is currently used clinically to treat asthma. Electrical field stimulation (EFS) of isolated urinary bladder mimics the voiding contraction by stimulating parasympathetic nerves, resulting in neurogenic contractions. To determine if stimulation of β(2)-adrenoceptors can inhibit this response, fenoterol was tested against EFS-induced contractions in human isolated urinary bladder and compared with mouse and rat. Bladder strips were mounted in organ baths and reproducible contractions induced by EFS. Fenoterol was added cumulatively in the presence of the β(2)-adrenoceptor antagonist ICI118551 or the β(3)-adrenoceptor antagonist L-748337. Fenoterol inhibited neurogenic contractions in all three species in a concentration-dependent manner with pEC(50) values of 6.66 ± 0.11, 6.86 ± 0.06 and 5.71 ± 0.1 in human, mouse and rat respectively. In human bladder strips ICI118551 (100 nM) did not affect responses to fenoterol, while L-748337 (0.3-3 μM) produced rightward shifts of the concentration-response curves with a pA(2) value of 8.10. In mouse bladder strips ICI118551 (30 nM) blocked the inhibitory effect of fenoterol (pA(2)=8.80), while L-748337 (10 μM) inhibited the response with a pA(2) of 5.79. In rat bladder ICI118551 (30 nM) was without effect, while L-748,337 (10 μM) inhibited the response to fenoterol with a pA(2) of 5.40. From these results it is clear that fenoterol potently activates β(3)-adrenoceptors in human isolated urinary bladder to inhibit EFS-induced contractions. Fenoterol also activates β(3)-adrenoceptors in rat, but β(2)-adrenoceptors in mouse bladder to inhibit EFS-induced contractions. Copyright © 2012 Elsevier B.V. All rights reserved.
Hexavalent Chromium Induces Chromosome Instability in Human Urothelial Cells
Wise, Sandra S.; Holmes, Amie L.; Liou, Louis; Adam, Rosalyn M.; Wise, John Pierce
2016-01-01
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of Cr(VI) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Hexavalent chromium (Cr(VI)) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer specifically and may be a mechanism for metal-induced bladder cancer in general. PMID:26908176
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-10-13
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-01-01
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect. PMID:26458509
Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi
2017-01-01
Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.
NOTCH pathway inactivation promotes bladder cancer progression
Maraver, Antonio; Fernandez-Marcos, Pablo J.; Cash, Timothy P.; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L.; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M.; Real, Francisco X.; Serrano, Manuel
2015-01-01
NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features. PMID:25574842
Li, Xinxing; Wang, Haolu; Wang, Juan; Chen, Yuying; Yin, Xiaobin; Shi, Guiying; Li, Hui; Hu, Zhiqian; Liang, Xiaowen
2016-08-02
Chemoresistance is one of the most leading causes for tumor progression and recurrence of bladder cancer. Reactive oxygen species (ROS) plays a key role in the chemosensitivity of cancer cells. In the present study, emodin (1,3,8-trihydroxy-6-methylanthraquinone) was applied as a ROS generator in combination with cisplatin in T24 and J82 human bladder cancer cells. Cell viability and apoptosis rate of different treatment groups were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM). The expression of transporters was measured at both the transcription and translation levels using PCR and western blotting. In vitro findings were confirmed by in vivo experiments using tumor-bearing mice. The expression of multidrug resistance-associated protein 1 (MRP1) in tumour tissue was measured using immunohistochemistry and side effects of the emodin/cisplatin co-treatment were investigated by histological examination. Emodin increased the cellular ROS level and effectively enhanced the cisplatin-induced cytotoxicity of T24 and J82 human bladder cancer cells through decreasing glutathione-cisplatin (GSH-cisplatin) conjugates. It blocked the chemoresistance of T24 and J82 cells to cisplatin through suppressing the expression of MRP1. This effect was specific in T24 and J82 cells but not in HCV-29 normal bladder epithelial cells. Consistent with in vitro experiments, emodin/cisplatin co-treatment increased the cell apoptosis and repressed the MRP1 expression in xenograft tumors, and without obvious systemic toxicity. This study revealed that emodin could increase the cisplatin-induced cytotoxicity against T24 and J82 cells via elevating the cellular ROS level and downregulating MRP1 expression. We suggest that emodin could serve as an effective adjuvant agent for the cisplatin-based chemotherapy of bladder cancer.
Proteomics Analysis of Bladder Cancer Exosomes*
Welton, Joanne L.; Khanna, Sanjay; Giles, Peter J.; Brennan, Paul; Brewis, Ian A.; Staffurth, John; Mason, Malcolm D.; Clayton, Aled
2010-01-01
Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the exosome proteomics data set presented is of unrivaled quality. The data will aid in the development of urine exosome-based clinical tools for monitoring disease and will inform follow-up studies into varied aspects of exosome manufacture and function. PMID:20224111
Svalø, Julie; Nordling, Jørgen; Bouchelouche, Kirsten; Andersson, Karl-Erik; Korstanje, Cees; Bouchelouche, Pierre
2013-01-15
β(3)-Adrenoceptors are major players in detrusor relaxation and have been suggested as a new putative target for the treatment of overactive bladder syndrome. We determined the effects of mirabegron (YM178), a novel β(3)-adrenoceptor agonist, on carbachol-induced tone in isolated human detrusor preparations from patients with bladder outflow obstruction (BOO) with and without detrusor overactivity (DO), and from patients with normal bladder function. We compared the effects to those of isoprenaline, a non-selective β-adrenoceptor agonist. Detrusor specimens were obtained from patients with benign prostatic hyperplasia undergoing cystoscopy and from patients undergoing radical prostatectomy/cystectomy (in total 33 donors). Detrusor contractility was evaluated by organ bath studies and strips were incubated with carbachol (1μM) to induce and enhance tension. Both mirabegron and isoprenaline reduced carbachol-induced tone in tissues from all groups. Isoprenaline decreased tension with higher potency than mirabegron in normal, BOO and BOO+DO detrusor strips with pIC(50) values of 7.49 ± 0.16 vs. 6.23 ± 0.26 (P=0.0002), 6.89 ± 0.34 vs. 6.04 ± 0.31 (P=0.01), and 6.57 ± 0.20 vs. 5.41 ± 0.08 (P<0.0001, n=4), respectively. The maximal relaxant effect of isoprenaline and mirabegron in the normal, BOO and BOO+DO detrusor was 37.7 ± 14.4% and 36.1 ± 23.3%, 14.4 ± 12.2% vs. 33.4 ± 21.0% and 18.3 ± 10.0% vs. 28.3 ± 12.2% (n=4, P>0.05), respectively. Mirabegron and isoprenaline reduced carbachol-induced tone in both normal bladders and obstructed bladder with and without DO. Isoprenaline had higher potency than mirabegron, but the efficacy of mirabegron effect was the same as that of isoprenaline. Copyright © 2012 Elsevier B.V. All rights reserved.
Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites
Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You
2013-01-01
AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465
Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, Stefanie E; Chess-Williams, Russ; McDermott,
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2 h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROSmore » formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE{sub 2} release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents. - Highlights: • Intravesical gemcitabine has recently been introduced to treat bladder cancer. • Gemcitabine is selectively toxic for malignant urothelial cells. • Urothelial ATP, PGE{sub 2} and inflammatory cytokines were altered by gemcitabine. • Selectivity of gemcitabine may account for less frequent urological side effects.« less
Lin, W-Y; Chang, P-J; Lin, Y-P; Wu, S-B; Chen, C-S; Levin, R M; Wei, Y-H
2012-02-01
There is a growing body of evidence to support the direct link between obstructive bladder dysfunction and erectile dysfunction (ED). However, there have been few pathophysiological studies to determine the relationship between lower urinary tract syndrome (LUTS) and ED. As the transforming growth factor-β1 (TGF-β1) that induces the synthesis of collagen in the penile tissues is critical for the development of ED, the first aim of this study was to investigate the expression of TGF-β1 in the penis from male rabbits with chronic partial bladder outlet obstruction (PBOO). Besides, it has been suggested that oxidative stress plays a significant role in the pathophysiological mechanism of ED. Thus, the second aim of this study was to further investigate whether the urinary or serum oxidative stress markers are involved in chronic PBOO-induced penile dysfunction. A total of 16 male New Zealand White rabbits were separated equally into four groups: a control group and PBOO groups obstructed for 2, 4 and 8 weeks respectively. Using the RT-PCR and Western blot analysis, a progressive increase of TGF-β1 in penis was found at 2, 4 and 8 weeks after obstruction. Moreover, the biomarkers for oxidative stress or oxidative damage were significantly detected in the penis of rabbits after PBOO, which include the enhancement of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine and plasma, plasma malondialdehyde (MDA) and total antioxidant capacity (TAC), as well as reduction of glutathione (GSH). On the basis of our results, the increase of TGF-β1 and elevated systemic oxidative stress may play key roles to contribute to penile dysfunction after chronic PBOO. © 2011 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.
Structure of novel rat major histocompatibility complex class II genes RT1.Ha and Hb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arimura, Yutaka; Tang, Wei Ran; Koda, Toshiaki
1995-03-01
We have cloned the novel rat MHC class II genes, RT1.Ha and Hb, which are homologous to human HLA-DPA and DPB. RT1.Hb is a pseudogene, whereas RT1.Ha is apparently intact and may have transcriptional potential. In addition, with an RT1.Ha probe, we detecteda single Southern hybridization band in the genome of the mouse. This finding may aford an opportunity to analyze the HLA-DPA homologue in the mouse genome. 18 refs., 4 figs., 1 tab.
Characterization and zoonotic potential of uropathogenic Escherichia coli isolated from dogs.
Nam, Eui-Hwa; Ko, Sungjin; Chae, Joon-Seok; Hwang, Cheol-Yong
2013-03-01
The aim of this study was to investigate the characteristics of canine uropathogenic Escherichia coli (UPEC) and the interaction between canine UPEC and human bladder epithelial cells. Ten E. coli isolates collected from dogs with cystitis were analyzed for antimicrobial resistance patterns, the presence of virulence factors, and biofilm formation. The ability of these isolates to induce cytotoxicity, invade human bladder epithelial cells, and stimulate an immune response was also determined. We observed a high rate of antimicrobial resistance among canine UPEC isolates. All virulence genes tested (including adhesins, iron acquisition, and protectin), except toxin genes, were detected among the canine UPEC isolates. We found that all isolates showed varying degrees of biofilm formation (mean, 0.26; range, 0.07 to 0.82), using a microtiter plate assay to evaluate biofilm formation by the isolates. Cytotoxicity to human bladder epithelial cells by the canine UPEC isolates increased in a time-dependent manner, with a 56.9% and 36.1% reduction in cell viability compared with the control at 6 and 9 h of incubation, respectively. We found that most canine UPEC isolates were able to invade human bladder epithelial cells. The interaction between these isolates and human bladder epithelial cells strongly induced the production of proinflammatory cytokines such as IL-6 and IL-8. We demonstrated that canine UPEC isolates can interact with human bladder epithelial cells, although the detailed mechanisms remain unknown. The results suggest that canine UPEC isolates, rather than dogspecific pathogens, have zoonotic potential.
Suprapubic Bladder Catheterization of Male Spinal-Cord–Injured Sprague–Dawley Rats
Robinson, Mary A; Herron, Alan J; Goodwin, Bradford S; Grill, Raymond J
2012-01-01
The rat spinal-cord–injury (SCI) model is widely used to study the pathologic mechanisms that contribute to sensory and motor dysfunction in humans. This model is thought to mimic many of the negative outcomes experienced by humans after spinal contusion injury. We theorized that manual bladder expression contributed to the kidney and bladder lesions reported in previous studies using the rat SCI model. In the present study, rats were surgically implanted with bladder catheters after spinal contusion injury to provide continuous drainage of urine. After 72 h, the rats were euthanized and their kidneys and bladders examined histologically. BUN, serum creatinine, and urine protein were compared at 0 and 72 h after surgery. Kidney and bladder lesions were similar in SCI rats with and without implanted bladder catheters. BUN at 72 h was higher than baseline values in both groups, whereas serum creatinine was higher at 72 h compared with baseline values only in the catheterized rats. These findings indicate that suprapubic bladder catheterization does not reduce hydronephrosis in SCI rats and that the standard of care for bladder evacuation should continue to be manual expression of urine. PMID:22330872
CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiajia; Zhu, Xi; Zhang, Jie, E-mail: zhangjiebjmu@163.com
2014-03-28
Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCRmore » and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.« less
Merrill, Liana
2014-01-01
Individuals with functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) often report symptom (e.g., urinary frequency) worsening due to stress. One member of the transient receptor potential ion channel vanilloid family, TRPV4, has recently been implicated in urinary bladder dysfunction disorders including OAB and IC/BPS. These studies address the role of TRPV4 in stress-induced bladder dysfunction using an animal model of stress in male rats. To induce stress, rats were exposed to 7 days of repeated variate stress (RVS). Quantitative PCR data demonstrated significant (P ≤ 0.01) increases in TRPV4 transcript levels in urothelium but not detrusor smooth muscle. Western blot analyses of split urinary bladders (i.e., urothelium and detrusor) showed significant (P ≤ 0.01) increases in TRPV4 protein expression levels in urothelial tissues but not detrusor smooth muscle. We previously showed that RVS produces bladder dysfunction characterized by decreased bladder capacity and increased voiding frequency. The functional role of TRPV4 in RVS-induced bladder dysfunction was evaluated using continuous, open outlet intravesical infusion of saline in conjunction with administration of a TRPV4 agonist, GSK1016790A (3 μM), a TRPV4 antagonist, HC067047 (1 μM), or vehicle (0.1% DMSO in saline) in control and RVS-treated rats. Bladder capacity, void volume, and intercontraction interval significantly decreased following intravesical instillation of GSK1016790A in control rats and significantly (P ≤ 0.01) increased following administration of HC067047 in RVS-treated rats. These results demonstrate increased TRPV4 expression in the urothelium following RVS and that TRPV4 blockade ameliorates RVS-induced bladder dysfunction consistent with the role of TRPV4 as a promising target for bladder function disorders. PMID:24965792
Sequence analysis and molecular characterization of Wnt4 gene in metacestodes of Taenia solium.
Hou, Junling; Luo, Xuenong; Wang, Shuai; Yin, Cai; Zhang, Shaohua; Zhu, Xueliang; Dou, Yongxi; Cai, Xuepeng
2014-04-01
Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.
Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth.
Cha, Tai-Lung; Chuang, Mei-Jen; Tang, Shou-Hung; Wu, Sheng-Tang; Sun, Kuang-Hui; Chen, Tzu-Ting; Sun, Guang-Huan; Chang, Sun-Yran; Yu, Cheng-Ping; Ho, Jar-Yi; Liu, Shu-Yu; Huang, Shih-Ming; Yu, Dah-Shyong
2015-03-01
The deregulation of epigenetics was involved in early and subsequent carcinogenic events. Reversing cancer epigenetics to restore a normal epigenetic condition could be a rational approach for cancer treatment and specialized prevention. In the present study, we found that the expression levels of two epigenetic markers, histone H3K27 trimethylation (H3K27me3), was low but histone H3S10 phosphorylation (pH3Ser10) was high in human bladder cancer tissues, which showed opposite expression patterns in their normal counterparts. Thus, we investigated whether a natural product, emodin, has the ability to reverse these two epigenetic modifications and inhibit bladder cancer cell growth. Emodin significantly inhibited the cell growth of four bladder cancer cell lines in a dose- and time-dependent manner. Emodin treatment did not induce specific cell cycle arrest, but it altered epigenetic modifications. Emodin treatment resulted in the suppression of pH3Ser10 and increased H3K27me3, contributing to gene silencing in bladder cancer cells. Microarray analysis demonstrated that oncogenic genes including fatty acid binding protein 4 (FABP4) and fibroblast growth factor binding protein 1 (HBP17), RGS4, tissue inhibitor of metalloproteinase 3 (TIMP3), WNT5b, URB, and collagen, type VIII, alpha 1 (COL8A1) responsible for proliferation, survival, inflammation, and carcinogenesis were significantly repressed by emodin. The ChIP assays also showed that emodin increased H3K27me3 but decreased pH3Ser10 modifications on the promoters of repressed genes, which indicate that emodin reverses the cancer epigenetics towards normal epigenetic situations. In conclusion, our work demonstrates the significant anti-neoplastic activity of emodin on bladder cancer cells and elucidates the novel mechanisms of emodin-mediated epigenetic modulation of target genes. Our study warrants further investigation of emodin as an effective therapeutic or preventive agent for bladder cancer. © 2013 Wiley Periodicals, Inc.
Sex differences in the MB49 syngeneic, murine model of bladder cancer
White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M.
2016-01-01
OBJECTIVE The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). METHODS Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro. RESULTS MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro. CONCLUSIONS The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice. PMID:26998503
Sex differences in the MB49 syngeneic, murine model of bladder cancer.
White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M
The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro . MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro . The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, Brian C.; Guzzo, Thomas J.; He Jiwei
2013-01-01
Purpose: Local-regional failures (LF) following radical cystectomy (RC) plus pelvic lymph node dissection (PLND) with or without chemotherapy for invasive urothelial bladder carcinoma are more common than previously reported. Adjuvant radiation therapy (RT) could reduce LF but currently has no defined role because of previously reported morbidity. Modern techniques with improved normal tissue sparing have rekindled interest in RT. We assessed the risk of LF and determined those factors that predict recurrence to facilitate patient selection for future adjuvant RT trials. Methods and Materials: From 1990-2008, 442 patients with urothelial bladder carcinoma at University of Pennsylvania were prospectively followed aftermore » RC plus PLND with or without chemotherapy with routine pelvic computed tomography (CT) or magnetic resonance imaging (MRI). One hundred thirty (29%) patients received chemotherapy. LF was any pelvic failure detected before or within 3 months of distant failure. Competing risk analyses identified factors predicting increased LF risk. Results: On univariate analysis, pathologic stage {>=}pT3, <10 nodes removed, positive margins, positive nodes, hydronephrosis, lymphovascular invasion, and mixed histology significantly predicted LF; node density was marginally predictive, but use of chemotherapy, number of positive nodes, type of surgical diversion, age, gender, race, smoking history, and body mass index were not. On multivariate analysis, only stage {>=}pT3 and <10 nodes removed were significant independent LF predictors with hazard ratios of 3.17 and 2.37, respectively (P<.01). Analysis identified 3 patient subgroups with significantly different LF risks: low-risk ({<=}pT2), intermediate-risk ({>=}pT3 and {>=}10 nodes removed), and high-risk ({>=}pT3 and <10 nodes) with 5-year LF rates of 8%, 23%, and 42%, respectively (P<.01). Conclusions: This series using routine CT and MRI surveillance to detect LF confirms that such failures are relatively common in cases of locally advanced disease and provides a rubric based on pathological stage and number of nodes removed that stratifies patients into 3 groups with significantly different LF risks to simplify patient selection for future adjuvant radiation therapy trials.« less
Understanding bladder management on a palliative care unit: a grounded theory study.
Gutmanis, Iris; Hay, Melissa; Shadd, Joshua; Byrne, Janette; McCallum, Sarah; Bishop, Kristen; Whitfield, Patricia; Faulds, Cathy
2017-03-16
Research regarding factors associated with nursing-initiated changes to bladder management at end-of-life is sparse. To explore the process of Palliative Care Unit (PCU) nurses' approach to bladder management changes. Nursing staff from one PCU in London, Canada were interviewed regarding bladder management care practices. A constructivist grounded theory was generated. Four interconnected themes emerged: humanity (compassionate support of patients); journey (making the most of a finite timeline); health condition (illness, functional decline); and context (orders, policies, supplies). These overlapping themes must be considered in light of ongoing changes which prompt recycling through the framework. While bladder management necessitates shared decision-making and individualised care, nurses' phronetic experience may serve to detect the presence of change and the need to consider other alternatives. End-of-life bladder management requires nurses to continually reconsider the significance of humanity, journey, health condition and context in light of ongoing changes.
Roudnicky, Filip; Dieterich, Lothar C; Poyet, Cedric; Buser, Lorenz; Wild, Peter; Tang, Dave; Camenzind, Peter; Ho, Chien Hsien; Otto, Vivianne I; Detmar, Michael
2017-06-01
Bladder cancer is a frequently recurring disease with a very poor prognosis once progressed to invasive stages, and tumour-associated blood vessels play a crucial role in this process. In order to identify novel biomarkers associated with progression, we isolated blood vascular endothelial cells (BECs) from human invasive bladder cancers and matched normal bladder tissue, and found that tumour-associated BECs greatly up-regulated the expression of insulin receptor (INSR). High expression of INSR on BECs of invasive bladder cancers was significantly associated with shorter progression-free and overall survival. Furthermore, increased expression of the INSR ligand IGF-2 in invasive bladder cancers was associated with reduced overall survival. INSR may therefore represent a novel biomarker to predict cancer progression. Mechanistically, we observed pronounced hypoxia in human bladder cancer tissue, and found a positive correlation between the expression of the hypoxia marker gene GLUT1 and vascular INSR expression, indicating that hypoxia drives INSR expression in tumour-associated blood vessels. In line with this, exposure of cultured BECs and human bladder cancer cell lines to hypoxia led to increased expression of INSR and IGF-2, respectively, and IGF-2 increased BEC migration through the activation of INSR in vitro. Taken together, we identified vascular INSR expression as a potential biomarker for progression in bladder cancer. Furthermore, our data suggest that IGF-2/INSR mediated paracrine crosstalk between bladder cancer cells and endothelial cells is functionally involved in tumour angiogenesis and may thus represent a new therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena
2016-01-01
Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982
Liu, Chun-Ping; Zhang, Xian; Tan, Qing-Long; Xu, Wen-Xing; Zhou, Chang-Yuan; Luo, Min; Li, Xiong; Zeng, Xing
2017-01-01
Bladder cancer is one of the most malignant tumors closely associated with macrophages. Polyporus polysaccharide (PPS) has shown excellent efficacy in treating bladder cancer with minimal side effects. However, the molecular mechanisms underlying the effects of PPS in inhibiting bladder cancer remain unclear. In this study, we used macrophages cultured alone or with T24 human bladder cancer cell culture supernatant as study models. We found that PPS enhanced the activities of IFN-γ-stimulated RAW 264.7 macrophages, as shown by the release of inducible nitric oxide synthase (INOS), secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6, phagocytosis activity, as well as expression of M1 phenotype indicators, such as CD40, CD284 and CD86. PPS acted upstream in activation cascade of nuclear factor (NF)-κB signaling pathways by interfering with IκB phosphorylation. In addition, PPS regulated NF-κB (P65) signaling by interfering with Toll-like receptor (TLR)-4, INOS and cyclooxygenase (COX)-2. Our results indicate that PPS activates macrophages through TLR4/NF-κB signaling pathways. PMID:29155869
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkawa, Michael, E-mail: mpinkawa@ukaachen.de; Piroth, Marc D.; Holy, Richard
Purpose: Comparison of health-related quality of life after whole pelvic (WPRT) and prostate-only (PORT) external beam radiotherapy for prostate cancer. Methods and Materials: A group of 120 patients (60 in each group) was surveyed prospectively before radiation therapy (RT) (time A), at the last day of RT (time B), at a median time of 2 months (time C) and >1 year after RT (time D) using a validated questionnaire (Expanded Prostate Cancer Index Composite). All patients were treated with 1.8- to 2.0-Gy fractions up to 70.2 to 72.0 Gy with or without WPRT up to 45 to 46 Gy. Pairsmore » were matched according to the following criteria: age {+-} 5years, planning target volume {+-} 10 cc (considering planning target volume without pelvic nodes for WPRT patients), urinary/bowel/sexual function score before RT {+-} 10, and use of antiandrogens. Results: With the exception of prognostic risk factors, both groups were well balanced with respect to baseline characteristics. No significant differences were found with regard to urinary and sexual score changes. Mean bladder function scores reached baseline levels in both patient subgroups after RT. However, bowel function scores decreased significantly more for patients after WPRT than in those receiving PORT at all times (p < 0.01, respectively). Significant differences were found for most items in the bowel domain in the acute phase. At time D, patients after WPRT reported rectal urgency (>once a day in 15% vs. 3%; p = 0.03), bloody stools ({>=}half the time in 7% vs. 0%; p = 0.04) and frequent bowel movements (>two on a typical day in 32% vs. 7%; p < 0.01) more often than did patients after PORT. Conclusion: In comparison to PORT, WPRT (larger bladder and rectum volumes in medium dose levels, but similar volumes in high dose levels) was associated with decreased bowel quality of life in the acute and chronic phases after treatment but remained without adverse long-term urinary effects.« less
The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder.
Gevaert, Thomas; Ridder, Dirk De; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Aa, Frank Van Der; Pintelon, Isabel; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Neuhaus, Jochen
2017-06-01
The mast/stem cell growth factor receptor KIT has long been assumed to be a specific marker for interstitial cells of Cajal (ICC) in the bladder, with possible druggable perspectives. However, several authors have challenged the presence of KIT + ICC in recent years. The aim of this study was therefore to attempt to clarify the conflicting reports on KIT expression in the bladder of human beings, rat, mouse and guinea pig and to elucidate the possible role of antibody-related issues and interspecies differences in this matter. Fresh samples were obtained from human, rat, mouse and guinea pig cystectomies and processed for single/double immunohistochemistry/immunofluorescence. Specific antibodies against KIT, mast cell tryptase (MCT), anoctamin-1 (ANO1) and vimentin were used to characterize the cell types expressing KIT. Gut (jejunum) tissue was used as an external antibody control. Our results revealed KIT expression on mast cells but not on ICC in human, rat, mouse and guinea pig bladder. Parallel immunohistochemistry showed KIT expression on ICC in human, rat, mouse and guinea pig gut, which confirmed the selectivity of the KIT antibody clones. In conclusion, we have shown that KIT + cells in human, rat, mouse and guinea pig bladder are mast cells and not ICC. The present report is important as it opposes the idea that KIT + ICC are present in bladder. In this perspective, functional concepts of KIT + ICC being involved in sensory and/or motor aspects of bladder physiology should be revised. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.
2013-01-01
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achanzar, William E.; Moyer, Carolyn F.; Marthaler, Laura T.
We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR){alpha}/{gamma} agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPAR{alpha}, PPAR{delta}, PPAR{gamma}, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPAR{gamma} agonist pioglitazone daily for themore » final 3 days to directly assess the effects of diet acidification on responsiveness to PPAR{gamma} agonism. Urothelial cell PPAR{alpha} and {gamma} expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPAR{alpha}, {delta}, or {gamma} mRNA or protein expression, PPAR{alpha}- or {gamma}-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPAR{gamma}-regulated gene expression. These results support the contention that urine acidification does not prevent PPAR{gamma} agonist-induced bladder tumors by altering PPAR{alpha}, {gamma}, or EGFR expression or PPAR signaling in rat bladder urothelium.« less
Li, Hongru; Xu, Yadong; Li, Hui
2017-01-01
Objective To assess the prognostic and clinicopathological characteristics of CD147 in human bladder cancer. Methods Studies on CD147 expression in bladder cancer were retrieved from PubMed, EMBASE, the Cochrane Library, Web of Science, China National Knowledge Infrastructure, and the WanFang databases. Outcomes were pooled with meta-analyzing softwares RevMan 5.3 and STATA 14.0. Results Twenty-four studies with 25 datasets demonstrated that CD147 expression was higher in bladder cancer than in non-cancer tissues (OR=43.64, P<0.00001). Moreover, this increase was associated with more advanced clinical stages (OR=73.89, P<0.0001), deeper invasion (OR=3.22, P<0.00001), lower histological differentiation (OR=4.54, P=0.0005), poorer overall survival (univariate analysis, HR=2.63, P<0.00001; multivariate analysis, HR=1.86, P=0.00036), disease specific survival (univariate analysis, HR=1.65, P=0.002), disease recurrence-free survival (univariate analysis, HR=2.78, P=0.001; multivariate analysis, HR=5.51, P=0.017), rate of recurrence (OR=1.91, P=0.0006), invasive depth (pT2∼T4 vs. pTa∼T1; OR=3.22, P<0.00001), and histological differentiation (low versus moderate-to-high; OR=4.54, P=0.0005). No difference was found among disease specific survival in multivariate analysis (P=0.067), lymph node metastasis (P=0.12), and sex (P=0.15). Conclusion CD147 could be a biomarker for early diagnosis, treatment, and prognosis of bladder cancer. PMID:28977970
Merrill, Liana; Malley, Susan
2013-01-01
Stress exacerbates symptoms of functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) in humans, but mechanisms contributing to symptom worsening are unknown. These studies address stress-induced changes in the structure and function of the micturition reflex using an animal model of stress in male rats. Rats were exposed to 7 days of repeated variate stress (RVS). Target organ (urinary bladder, thymus, adrenal gland) tissues were collected and weighed following RVS. Evans blue (EB) concentration and histamine, myeloperoxidase (MPO), nerve growth factor (NGF), brain-derived neurotropic factor (BDNF), and CXCL12 protein content (ELISA) were measured in the urinary bladder, and somatic sensitivity of the hindpaw and pelvic regions was determined following RVS. Bladder function was evaluated using continuous, open outlet intravesical infusion of saline in conscious rats. Increases in body weight gain were significantly (P ≤ 0.01) attenuated by day 5 of RVS, and adrenal weight was significantly (P ≤ 0.05) increased. Histamine, MPO, NGF, and CXCL12 protein expression was significantly (P ≤ 0.01) increased in the urinary bladder after RVS. Somatic sensitivity of the hindpaw and pelvic regions was significantly (P ≤ 0.01) increased at all monofilament forces tested (0.1–4 g) after RVS. Intercontraction interval, infused volume, and void volume were significantly (P ≤ 0.01) decreased after RVS. These studies demonstrate increased voiding frequency, histamine, MPO, NGF, and CXCL12 bladder content and somatic sensitivity after RVS suggesting an inflammatory component to stress-induced changes in bladder function and somatic sensitivity. PMID:23657640
Nishikawa, Nobuyuki; Yago, Rie; Yamazaki, Yuichiro; Negoro, Hiromitsu; Suzuki, Mari; Imamura, Masaaki; Toda, Yoshinobu; Tanabe, Kazunari; Ogawa, Osamu; Kanematsu, Akihiro
2015-01-21
To investigate the expression of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor 1 (PTH1R) in clinical specimens of normal and diseased bladders. PTHrP is a unique stretch-induced endogenous detrusor relaxant that functions via PTH1R. We hypothesized that suppression of this axis could be involved in the pathogenesis of bladder disease. PTH1R expression in clinical samples was examined by immunohistochemistry. Normal kidney tissue from a patient with renal cancer and bladder specimens from patients undergoing ureteral reimplantation for vesicoureteral reflux or partial cystectomy for urachal cyst were examined as normal control organs. These were compared with 13 diseased bladder specimens from patients undergoing bladder augmentation. The augmentation patients ranged from 8 to 31 years old (median 15 years), including 9 males and 4 females. Seven patients had spinal disorders, 3 had posterior urethral valves and 3 non-neurogenic neurogenic bladders (Hinman syndrome). Renal tubules, detrusor muscle and blood vessels in normal control bladders stained positive for PTH1R. According to preoperative urodynamic studies of augmentation patients, the median percent bladder capacity compared with the age-standard was 43.6% (range 1.5-86.6%), median intravesical pressure at maximal capacity was 30 cmH2O (range 10-107 cmH2O), and median compliance was 3.93 ml/cmH2O (range 0.05-30.3 ml/cmH2O). Detrusor overactivity was observed in five cases (38.5%). All augmented bladders showed negative stainings in PTH1R expression in the detrusor tissue, but positive staining of blood vessels in majority of the cases. Downregulation of PTH1R may be involved in the pathogenesis of human end-stage bladder disease requiring augmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shao Hui, E-mail: shaohui.huang@rmp.uhn.on.ca; Waldron, John; Department of Otolaryngology—Head & Neck Surgery, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario
Purpose: To report the outcome of ipsilateral radiation therapy (RT) in human papillomavirus (HPV)-positive (HPV+) patients and HPV-negative (HPV−) patients with T1-T2N0-N2b tonsillar cancer treated 25 years after our initial historical cohort. Methods and Materials: Patients with T1-T2N0-N2b tonsillar cancer who received ipsilateral RT or bilateral RT between 1999 and 2014 were reviewed. Overall survival (OS), local control (LC), regional control (RC), and grade 3 to 4 late toxicity (LT) were compared between ipsilateral RT and bilateral RT within HPV+ and HPV− patients, separately. Results: HPV status was ascertained in 379/427 (88%) consecutive patients (ipsilateral RT: 62 HPV+, 34 HPV−; bilateralmore » RT: 240 HPV+ 240, 41 HPV−). The proportion of ipsilateral RT by N category for HPV+ and HPV− patients were as follows: N0: 24/37 (65%) versus 28/48 (74%); N1: 21/49 (43%) versus 4/9 (44%); N2a: 10/39 (26%) versus 1/4 (25%); and N2b: 7/177 (4%) versus 1/24 (4%), respectively. Of the patients receiving ipsilateral RT, 94/96 (98%) were treated with RT alone. The median follow-up time was 5.03 years. The respective 5-year rates of OS, LC, RC, and LT were similar between ipsilateral RT and bilateral RT for the HPV+ patients (OS: 89% vs 87%, P=.55; LC: 97% vs 98%, P=.65; RC: 98% vs 97%, P=.27; LT: 17% vs 12%, P=.83) and HPV− patients (OS: 63% vs 48%, P=.27; LC: 90% vs 80%, P=.19; RC: 94% vs 83%, P=.14; LT: 15% vs 22%, P=.36). Of the 96 patients receiving ipsilateral RT, contralateral neck failure (CNF) occurred in 1/52 HPV+ patients and 1/34 HPV− patients. The 5-year CNF rates were 2% (95% CI: 1-9) (HPV+: 2% [0-14]; HPV−: 3% [0-21], P=.66). Five local failures (2 HPV+; 3 HPV−) and no distant failures were seen. The 5-year rates of LC, RC, and LT were 97% versus 90% (P=.24), 98% versus 94% (P=.25), and 18% versus 15% (P=.75) for the HPV+ and HPV− cohorts, respectively. Osteoradionecrosis occurred in 9 patients: 6/47 (13%) treated with conventional RT and 3/49 (6%) with intensity modulated RT (P=.32). Conclusion: Ipsilateral radiation to selected patients with T1-T2N0-N2b tonsillar cancer results in equally excellent outcomes regardless of tumor HPV status.« less
Current status of tissue engineering applied to bladder reconstruction in humans.
Gasanz, C; Raventós, C; Morote, J
2018-01-11
Bladder reconstruction is performed to replace or expand the bladder. The intestine is used in standard clinical practice for tissue in this procedure. The complications of bladder reconstruction range from those of intestinal resection to those resulting from the continuous contact of urine with tissue not prepared for this contact. In this article, we describe and classify the various biomaterials and cell cultures used in bladder tissue engineering and reviews the studies performed with humans. We conducted a review of literature published in the PubMed database between 1950 and 2017, following the principles of the PRISM declaration. Numerous in vitro and animal model studies have been conducted, but only 18 experiments have been performed with humans, with a total of 169 patients. The current evidence suggests that an acellular matrix, a synthetic polymer with urothelial and autologous smooth muscle cells attached in vitro or stem cells would be the most practical approach for experimental bladder reconstruction. Bladder replacement or expansion without using intestinal tissue is still a challenge, despite progress in the manufacture of biomaterials and the development of cell therapy. Well-designed studies with large numbers of patients and long follow-up times are needed to establish an effective clinical translation and standardisation of the check-up functional tests. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer.
Buss, Julieti Huch; Begnini, Karine Rech; Bender, Camila Bonemann; Pohlmann, Adriana R; Guterres, Silvia S; Collares, Tiago; Seixas, Fabiana Kömmling
2017-01-01
Mycobacterium bovis bacillus Calmette-Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.
Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer
Buss, Julieti Huch; Begnini, Karine Rech; Bender, Camila Bonemann; Pohlmann, Adriana R.; Guterres, Silvia S.; Collares, Tiago; Seixas, Fabiana Kömmling
2018-01-01
Mycobacterium bovis bacillus Calmette–Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer. PMID:29379438
Mucin gene expression in human male urogenital tract epithelia
Russo, Cindy Leigh; Spurr-Michaud, Sandra; Tisdale, Ann; Pudney, Jeffrey; Anderson, Deborah; Gipson, Ilene K.
2010-01-01
BACKGROUND Mucins are large, hydrophilic glycoproteins that protect wet-surfaced epithelia from pathogen invasion as well as provide lubrication. At least 17 mucin genes have been cloned to date. This study sought to determine the mucin gene expression profile of the human male urogenital tract epithelia, to determine if mucins are present in seminal fluid, and to assess the effect of androgens on mucin expression. METHODS AND RESULTS Testis, epididymis, vas deferens, seminal vesicle, prostate, bladder, urethra and foreskin were assessed for mucin expression by RT-PCR and immunohistochemistry. Epithelia of the vas deferens, prostate and urethra expressed the greatest number of mucins, each expressing 5–8 mucins. Messenger RNA of MUC1 and MUC20, both membrane-associated mucins, were detected in most tissues analyzed. Conversely, MUC6 was predominantly detected in seminal vesicle. MUC1, MUC5B and MUC6 were detected in seminal fluid samples by immunoblot analysis. Androgens had no effect on mucin expression by cultured human prostatic epithelial cells. CONCLUSIONS Each region of urogenital tract epithelium expressed a unique mucin gene repertoire. Secretory mucins are present in seminal fluid, and androgens do not appear to regulate mucin gene expression. PMID:16997931
Kispal, Zoltan Farkas; Kardos, Daniel; Jilling, Tamas; Kereskai, Laszlo; Isaacs, Marla; Balogh, Daniel L; Pinter, Andrew B; Till, Holger; Vajda, Peter
2015-12-01
Bladder augmentation is widely used to treat otherwise unmanageable urinary incontinence. However, it is associated with a large number of complications, of which tumor formation is the most severe. Mucin proteins and MUC genes are linked, among others, to malignancies of the urinary bladder and the gastrointestinal system. To investigate histological alterations as well as changes in expression of MUC1 and MUC2 genes and proteins following different types of urinary bladder augmentation or substitution performed in children and adolescents. Between 1988 and 2013, 91 patients underwent urinary bladder augmentation or substitution at the study institute. Patients were included on whom cystoplasty had been performed 4 years previously or earlier, and could have been followed-up prospectively. Thus, 54 patients were involved in the study. In eight patients gastrocystoplasty was performed, in 17 patients ileocystoplasty, and in 22 patients colocystoplasty. Seven patients underwent bladder substitution using a colonic-segment. Biopsies were taken via cystoscopy from the native bladder, from the gastrointestinal segment used for augmentation, and from the anastomotic line between these two. One part of the samples was fixed in formaldehyde for routine histological processing. The other part of the biopsies was embedded into OCT medium, then cryosectioned and fluorescently double-immunostained for MUC1 and MUC2 proteins. Samples from the microscopically dysplastic lesions and from the 15-year-old or older biopsies were processed by laser capture microdissection, and then real-time PCR was done. Data were statistically analyzed by ANOVA and ordinary least squares regression tests. One adenocarcinoma was found in a female patient, 11 years after colocystoplasty. There were no significant changes in the level of MUC1 and MUC2 proteins and gene expression in the urothelium and in the gastrointestinal segment used for augmentation following ileocystoplasty and gastrocystoplasty. Significant increase in MUC1 and decrease in MUC2 protein levels were detected following colocystoplasty in the large bowel segment used for augmentation, both with qualitative and quantitative methods (p < 0.05) (Figure). The uroepithelium showed no significant change. RT-PCR revealed progressive increase in MUC1 gene expression and decrease in MUC2 gene expression after colocystoplasty in the course of time. It also showed highly increased MUC1 gene expression and decreased MUC2 gene expression in the samples of patients. Alterations in gene expression of MUC1 and MUC2 might serve as promising markers for early detection of histological changes after colocystoplasty. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Tissue reactions under piezoelectric shockwave application for the fragmentation of biliary calculi.
Ell, C; Kerzel, W; Heyder, N; Rödl, W; Langer, H; Mischke, U; Giedl, J; Domschke, W
1989-01-01
The tissue reactions that occurred during piezoelectric shockwaves for the fragmentation of biliary calculi were investigated in 10 surgically removed stone containing human gall bladders and in acute (six dogs) and chronic (six dogs) animal experiments. Before and after shockwave (500, 1500 or 3000) in the anaesthetised dogs, computed tomography (CT), magnetic imaging (MRI) and laboratory tests were done; treatment was carried out under continuous ultrasonographic control. Shockwave applications to the human gall bladders resulted in disintegration of the stones with no macroscopically or microscopically detectable tissue changes. In acute animal experiments, small haematomas were observed in all six animals at surfaces, but also inside the liver and gall bladder (max diameter 25 mm). Perforation or intra-abdominal or pleural bleeding did not occur. In chronic experiments, no macroscopic, and only slight microscopic residual lesions (haemosiderin deposits) were seen three weeks after shockwave. In almost all instances, the lesions were detected by CT, MRI, and ultrasonography, while laboratory tests were negative. Images Fig 1 Figs. 2-4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2731762
Lu, Yan; Liu, Pengyuan; Van den Bergh, Francoise; Zellmer, Victoria; James, Michael; Wen, Weidong; Grubbs, Clinton J; Lubet, Ronald A; You, Ming
2012-02-01
The epidermal growth factor receptor inhibitor Iressa has shown strong preventive efficacy in the N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN) model of bladder cancer in the rat. To explore its antitumor mechanism, we implemented a systems biology approach to characterize gene expression and signaling pathways in rat urinary bladder cancers treated with Iressa. Eleven bladder tumors from control rats, seven tumors from rats treated with Iressa, and seven normal bladder epithelia were profiled by the Affymetrix Rat Exon 1.0 ST Arrays. We identified 713 downregulated and 641 upregulated genes in comparing bladder tumors versus normal bladder epithelia. In addition, 178 genes were downregulated and 96 genes were upregulated when comparing control tumors versus Iressa-treated tumors. Two coexpression modules that were significantly correlated with tumor status and treatment status were identified [r = 0.70, P = 2.80 × 10(-15) (bladder tumor vs. normal bladder epithelium) and r = 0.63, P = 2.00 × 10(-42) (Iressa-treated tumor vs. control tumor), respectively]. Both tumor module and treatment module were enriched for genes involved in cell-cycle processes. Twenty-four and twenty-one highly connected hub genes likely to be key drivers in cell cycle were identified in the tumor module and treatment module, respectively. Analysis of microRNA genes on the array chips showed that tumor module and treatment module were significantly associated with expression levels of let-7c (r = 0.54, P = 3.70 × 10(-8) and r = 0.73, P = 1.50 × 10(-65), respectively). These results suggest that let-7c downregulation and its regulated cell-cycle pathway may play an integral role in governing bladder tumor suppression or collaborative oncogenesis and that Iressa exhibits its preventive efficacy on bladder tumorigenesis by upregulating let-7 and inhibiting the cell cycle. Cell culture study confirmed that the increased expression of let-7c decreases Iressa-treated bladder tumor cell growth. The identified hub genes may also serve as pharmacodynamic or efficacy biomarkers in clinical trials of chemoprevention in human bladder cancer. ©2011 AACR.
Arsenic (As) is classified as a known human carcinogen with primary targets of urinary bladder (UB), skin and lung. The most prevalent source of As exposure in humans is drinking water contaminated with inorganic As (iAs), and millions of people worldwide are exposed to drinking ...
Hu, Jianpeng; Xuan, Xujun; Han, Conghui; Hao, Lin; Zhang, Peiying; Chen, Meng; He, Houguang; Fan, Tao; Dong, Binzheng
2012-03-01
To construct an adenovirus carrying SEA gene and regulated by telomerase reverse transcriptase (hTERT) and hypoxia-inducible factor (HIF) promoters and investigate its anti-tumor function in vitro, as well as its role in lymphocyte production. hTERT and HIF genes were cloned into adenovirus E1A and E1B shuttle plasmids. The control vector for SEA gene expression is under the regulation of CMV and SV40 promoters. Double regulation was obtained through homologous recombination. The positive clones of replicable adenovirus H2-SEA-Ad were selected by plaque assay. The adenovirus was purified, titrated, and DNA was verified by PCR. The obtained virus was used to infect EJ bladder tumor cells and the SEA Mrna, and protein expression was measured by RT-PCR, western blot, and immunofluorescence microscopy, respectively. Co-culture of lymphocytes and tumor cells was observed dynamically under microscope. The construction of shuttle plasmid p315-CSS-SEA was confirmed by PCR and DNA sequencing. Insertion of superantigen SEA gene in adenovirus (H2-SEA-Ad.SEA) was obtained by homologous recombination. In lymphocytes and tumor cell co-culture, the number of viable tumor cells in test groups was significantly lower than that in control group after 12, 24, and 48 h of treatment. Production of interleukin-2, interleukin-4, and tumor necrosis factor were higher in test groups than in control group. Expression of SEA gene in bladder tumor cells by adenoviral vector caused reduced tumor cell proliferation, as well as stimulation of inflammatory cytokine productions in co-cultures with lymphocytes.
Liang, Yuguang; Zhu, Junlan; Huang, Haishan; Xiang, Daimin; Li, Yang; Zhang, Dongyun; Li, Jingxia; Wang, Yulei; Jin, Honglei; Jiang, Guosong; Liu, Zeyuan; Huang, Chuanshu
2016-08-02
Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, thereby led to a significant transcriptional induction of SESN2. Importantly, we found that SESN2 expression was dramatically downregulated or even lost in human bladder cancer tissues as compared to their paired adjacent normal tissues. Collectively, our results demonstrate that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers and suggests that ISO might act as a promising preventive and/or therapeutic drug against human bladder cancer.
Bladder stone in a human female: The case of an abnormally located intrauterine contraceptive device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
A single 4.7 x 3.3 x 1.5 cm solid nodule was removed from the bladder of a 24 years old white female who had lost an intrauterine contraceptive device (IUD) installed approximately four years ago. The nodule showed no external evidence of an IUD or its string. An examination of the nodular surface by scanning electron microscopy (SEM) showed mostly amorphous material with some adherent filamentous structures. Its energy dispersive x-ray microanalysis revealed the presence of calcium and phosphorus suggesting that the nodule was actually a urolith. Fracturing the nodule exposed an embedded entity consistent with being a copper IUD.more » Apparently, the lost IUD had migrated from the uterus into the bladder where it became mineralized. Thus the solid nodule was actually a foreign body stone.« less
Zhang, Ruowen; Che, Xun; Zhang, Jingjie; Li, Yang; Li, Jingxia; Deng, Xu; Zhu, Junlan; Jin, Honglei; Zhao, Qinshi; Huang, Chuanshu
2016-10-11
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Li, Yang; Li, Jingxia; Deng, Xu; Zhu, Junlan; Jin, Honglei; Zhao, Qinshi; Huang, Chuanshu
2016-01-01
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer. PMID:27556506
Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A
1995-09-01
Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity.
Research progress on bladder cancer molecular genetics.
Kang, Zhengjun; Li, Yuhui; Yu, Yang; Guo, Zhan
2014-11-01
Bladder cancer is a common malignant urinary tumor with a high rate of recurrence and quick progression, which threats human health. With the research on bladder cancer molecular genetics, the knowledge of gene modification and the development of molecular detection methods, more tumor markers have been discovered, which may have potential for early diagnosis, clinical examination and prognosis. This article reviews the research progress on bladder cancer molecular genetics.
Vandeveer, Amanda J; Fallon, Jonathan K; Tighe, Robert; Sabzevari, Helen; Schlom, Jeffrey; Greiner, John W
2016-05-01
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non-muscle invasive, nonmetastatic human urothelial carcinoma. Although the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49(luc)), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49(luc) murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non-muscle invasive, nonmetastatic urothelial carcinomas. MB49(luc) bladder tumors are highly positive for the expression of PD-L1, and avelumab administration induced significant (P < 0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune-suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non-muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. Cancer Immunol Res; 4(5); 452-62. ©2016 AACR. ©2016 American Association for Cancer Research.
Kim, Mi-Sung; Kim, Jong-Eun; Lim, Do Young; Huang, Zunnan; Chen, Hanyong; Langfald, Alyssa; Lubet, Ronald A.; Grubbs, Clinton J.; Dong, Zigang; Bode, Ann M.
2014-01-01
Naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid) is a potent nonsteroidal anti-inflammatory drug that inhibits both COX-1 and COX-2 and is widely used as an over-the-counter medication. Naproxen exhibits analgesic, anti-pyretic, and anti-inflammatory activities. Naproxen, as well as other NSAIDS, has been reported to be effective in the prevention of urinary bladder cancer in rodents. However, potential targets other than the COX isozymes have not been reported. We examined potential additional targets in urinary bladder cancer cells and in rat bladder cancers. Computer kinase profiling results suggested that phosphatidylinositol 3-kinase (PI3-K) is a potential target for naproxen. In vitro kinase assay data revealed that naproxen interacts with PI3-K and inhibits its kinase activity. Pull-down binding assay data confirmed that PI3-K directly binds with naproxen in vitro and ex vivo. Western blot data showed that naproxen decreased phosphorylation of Akt, and subsequently decreased Akt signaling in UM-UC-5 and UMUC-14 urinary bladder cancer cells. Furthermore, naproxen suppressed anchorage-independent cell growth and decreased cell viability by targeting PI3-K in both cell lines. Naproxen caused an accumulation of cells at the G1 phase mediated through CDK4, cyclin D1 and p21. Moreover, naproxen induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7, and poly (ADP-ribose) polymerase (PARP) in both cell types. Naproxen-induced cell death was mainly due to apoptosis in which a prominent down-regulation of Bcl-2 and up-regulation of Bax were involved. Naproxen also caused apoptosis and inhibited Akt phosphorylation in rat urinary bladder cancers induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN). PMID:24327721
Mossberg, Ann-Kristin; Wullt, Björn; Gustafsson, Lotta; Månsson, Wiking; Ljunggren, Eva; Svanborg, Catharina
2007-09-15
We studied if bladder cancers respond to HAMLET (human alpha-lactalbumin made lethal to tumor cells) to establish if intravesical HAMLET application might be used to selectively remove cancer cells in vivo. Patients with nonmuscle invasive transitional cell carcinomas were included. Nine patients received 5 daily intravesical instillations of HAMLET (25 mg/ml) during the week before scheduled surgery. HAMLET stimulated a rapid increase in the shedding of tumor cells into the urine, daily, during the 5 days of instillation. The effect was specific for HAMLET, as intravesical instillation of NaCl, PBS or native alpha-lactalbumin did not increase cell shedding. Most of the shed cells were dead and an apoptotic response was detected in 6 of 9 patients, using the TUNEL assay. At surgery, morphological changes in the exophytic tumors were documented by endoscopic photography and a reduction in tumor size or change in tumor character was detected in 8 of 9 patients. TUNEL staining was positive in biopsies from the remaining tumor in 4 patients but adjacent healthy tissue showed no evidence of apoptosis and no toxic response. The results suggest that HAMLET exerts a direct and selective effect on bladder cancer tissue in vivo and that local HAMLET administration might be of value in the future treatment of bladder cancers. (c) 2007 Wiley-Liss, Inc.
Capsaicin-mediated apoptosis of human bladder cancer cells activates dendritic cells via CD91.
Gilardini Montani, Maria Saveria; D'Eliseo, Donatella; Cirone, Mara; Di Renzo, Livia; Faggioni, Alberto; Santoni, Angela; Velotti, Francesca
2015-04-01
Immunostimulation by anticancer cytotoxic drugs is needed for long-term therapeutic success. Activation of dendritic cells (DCs) is crucial to obtain effective and long-lasting anticancer T-cell mediated immunity. The aim of this study was to explore the effect of capsaicin-mediated cell death of bladder cancer cells on the activation of human monocyte-derived CD1a+ immature DCs. Immature DCs (generated from human peripheral blood-derived CD14+ monocytes cultured with granulocyte-macrophage colony stimulating factor and interleukin-4) were cocultured with capsaicin (CPS)-induced apoptotic bladder cancer cells. DC activation was investigated using immunofluorescence and flow cytometric analysis for key surface molecules. In some experiments, CD91 was silenced in immature DCs. We found that capsaicin-mediated cancer cell apoptosis upregulates CD86 and CD83 expression on DCs, indicating the induction of DC activation. Moreover, silencing of CD91 (a common receptor for damage-associated molecular patterns, such as calreticulin and heat-shock protein-90/70) in immature DCs led to the inhibition of DC activation. Our data show that CPS-mediated cancer cell apoptosis activates DCs via CD91, suggesting CPS as an attractive candidate for cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Burkhard, Fiona C; Monastyrskaya, Katia; Studer, Urs E; Draeger, Annette
2005-01-01
The decline in contractile properties is a characteristic feature of the dysfunctional bladder as a result of infravesical outlet obstruction. During clinical progression of the disease, smooth muscle cells undergo structural modifications. Since adaptations to constant changes in length require a high degree of structural organization within the sarcolemma, we have investigated the expression of several proteins, which are involved in smooth muscle membrane organization, in specimens derived from normal and dysfunctional organs. Specimen from patients with urodynamically normal/equivocal (n = 4), obstructed (n = 2), and acontractile (n = 2) bladders were analyzed relative to their structural features and sarcolemmal protein profile. Smooth muscle cells within the normal urinary bladder display a distinct sarcolemmal domain structure, characterized by firm actin-attachment sites, alternating with flexible "hinge" regions. In obstructed bladders, foci of cells displaying degenerative sarcolemmal changes alternate with areas of hypertrophic cells in which the membrane appears unaffected. In acontractile organs, the overall membrane structure remains intact, however annexin 6, a protein belonging to a family of Ca2+-dependent, "membrane-organizers," is downregulated. Degenerative changes in smooth muscle cells, which are chronically working against high resistance, are preferentially located within the actin-attachment sites. In acontractile bladders, the downregulation of annexin 6 might have a bearing on the fine-tuning of the plasma membrane during contraction/relaxation cycles. Copyright 2005 Wiley-Liss, Inc.
Arsenic is a human carcinogen that induces urinary bladder cancer. Several mechanisms have been proposed for arsenic-induced cancer. Although inorganic arsenic (iAs) does not induce tumors in adult rodents, dimethylarsinic acid (DMA), a major metabolite of iAs, is a rat bladder c...
Jääskeläinen, Anne J; Kallio-Kokko, Hannimari; Ozkul, Aykut; Bodur, Hurrem; Korukruoglu, Gulay; Mousavi, Mehrdad; Pranav, Patel; Vaheri, Antti; Mirazimi, Ali; Vapalahti, Olli
2014-12-01
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease caused by a nairovirus belonging to family Bunyaviridae. The CCHF virus (CCHFV) can be transmitted to humans by Hyalomma ticks as well as by direct contact with infected body fluids or tissues from viremic livestock or humans. Our aim was to set up a fast RT-qPCR for detection of the different CCHFV genotypes in clinical samples, including an inactivation step to make the sample handling possible in lower biosafety levels (BSL) than BSL-4. This method was evaluated against commercial reference assays and international External Quality Assessment (EQA) samples. The analytical limit of detection for the developed CCHFV-S RT-qPCR was 11 CCHFV genomes per reaction. After exclusion of four dubious samples, we studied 38 CCHFV-positive samples (using reference tests) of which 38 were found positive by CCHFV-S RT-qPCR, suggesting a sensitivity of 100%. CCHFV-S RT q-PCR detected all eight different CCHFV strains representing five different CCHFV genotypes. In conclusion, the CCHFV-S RT-qPCR described in this study was evaluated using various sources of CCHFV samples and shown to be an accurate tool to detect human CCHFV infection caused by different genotypes of the virus.
Dozmorov, Mikhail G; Yang, Qing; Wu, Weijuan; Wren, Jonathan; Suhail, Mahmoud M; Woolley, Cole L; Young, D Gary; Fung, Kar-Ming; Lin, Hsueh-Kung
2014-01-01
Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. The effects of frankincense (1,400-600 dilutions) (v/v) and sandalwood (16,000-7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest.
2014-01-01
Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400–600 dilutions) (v/v) and sandalwood (16,000–7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest. PMID:25006348
d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2016-01-01
The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878
d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2016-08-11
The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.
Chen, Chien-Lun; Lin, Tsung-Shih; Tsai, Cheng-Han; Wu, Chih-Ching; Chung, Ting; Chien, Kun-Yi; Wu, Maureen; Chang, Yu-Sun; Yu, Jau-Song; Chen, Yi-Ting
2013-06-24
In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. Six apolipoproteins (APOA1, APOA2, APOB, APOC2, APOC3, and APOE) were able to differentiate bladder cancer from hernia. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity (AUC=0.80 and p<0.001) in discriminating bladder cancer from hernia than either marker alone. Using MetaCore software to interpret global changes of the urine proteome caused by bladder cancer, we found that the most notable alterations were in immune-response/alternative complement and blood-coagulation pathways. This study confirmed the clinical significance of the urine proteome in the development of non-invasive biomarkers for the detection of bladder cancer. In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity in discriminating bladder cancer from hernia than either marker alone. A marker panel composed by two novel biomarker candidates, SAA4 and proEGF, was first discovered and verified successfully using Western blotting. To the best of our knowledge, the associations of urinary SAA4 and proEGF with bladder tumor and kidney cancer have not been mentioned before. In the present study, we discovered and verified SAA4 and proEGF as potential bladder cancer biomarker for the first time. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Nakai, Yasushi; Tanaka, Nobumichi; Fujimoto, Kiyohide
2017-01-01
Intravesical bacillus Calmette-Guerin (BCG) treatment is the most common therapy to prevent progression and recurrence of non-muscle invasive bladder cancer (NMIBC). Although the immunoreaction elicited by BCG treatment is well documented, those induced by intravesical treatment with chemotherapeutic agents are much less known. We investigated the immunological profiles caused by mitomycin C, gemcitabine, adriamycin and docetaxel in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced orthotopic bladder cancer mouse model. Ninety mice bearing orthotopic bladder cancer induced by BBN were randomly divided into six groups and treated with chemotherapeutic agents once a week for four weeks. After last treatment, bladder and serum samples were analyzed for cell surface and immunological markers (CD4, CD8, CD56, CD204, Foxp3, and PD-L1) using immunohistochemistry staining. Serum and urine cytokine levels were evaluated by ELISA. All chemotherapeutic agents presented anti-tumor properties similar to those of BCG. These included changes in immune cells that resulted in fewer M2 macrophages and regulatory T cells around tumors. This result was compatible with those in human samples. Intravesical chemotherapy also induced systemic changes in cytokines, especially urinary interleukin (IL)-17A and granulocyte colony stimulating factor (G-CSF), as well as in the distribution of blood neutrophils, lymphocytes, and monocytes. Our findings suggest that intravesical treatment with mitomycin C and adriamycin suppresses protumoral immunity while enhancing anti-tumor immunity, possibly through the action of specific cytokines. A better understanding of the immunoreaction induced by chemotherapeutic agents can lead to improved outcomes and fewer side effects in intravesical chemotherapy against NMIBC. PMID:28406993
Rosenkrantz, Andrew B; Balar, Arjun V; Huang, William C; Jackson, Kimberly; Friedman, Kent P
2015-08-01
The aim of this study was to compare coregistration of the bladder wall, bladder masses, and pelvic lymph nodes between sequential and simultaneous PET and MRI acquisitions obtained during hybrid (18)F-FDG PET/MRI performed using a diuresis protocol in bladder cancer patients. Six bladder cancer patients underwent (18)F-FDG hybrid PET/MRI, including IV Lasix administration and oral hydration, before imaging to achieve bladder clearance. Axial T2-weighted imaging (T2WI) was obtained approximately 40 minutes before PET ("sequential") and concurrently with PET ("simultaneous"). Three-dimensional spatial coordinates of the bladder wall, bladder masses, and pelvic lymph nodes were recorded for PET and T2WI. Distances between these locations on PET and T2WI sequences were computed and used to compare in-plane (x-y plane) and through-plane (z-axis) misregistration relative to PET between T2WI acquisitions. The bladder increased in volume between T2WI acquisitions (sequential, 176 [139] mL; simultaneous, 255 [146] mL). Four patients exhibited a bladder mass, all with increased activity (SUV, 9.5-38.4). Seven pelvic lymph nodes in 4 patients showed increased activity (SUV, 2.2-9.9). The bladder wall exhibited substantially less misregistration relative to PET for simultaneous, compared with sequential, acquisitions in in-plane (2.8 [3.1] mm vs 7.4 [9.1] mm) and through-plane (1.7 [2.2] mm vs 5.7 [9.6] mm) dimensions. Bladder masses exhibited slightly decreased misregistration for simultaneous, compared with sequential, acquisitions in in-plane (2.2 [1.4] mm vs 2.6 [1.9] mm) and through-plane (0.0 [0.0] mm vs 0.3 [0.8] mm) dimensions. FDG-avid lymph nodes exhibited slightly decreased in-plane misregistration (1.1 [0.8] mm vs 2.5 [0.6] mm), although identical through-plane misregistration (4.0 [1.9] mm vs 4.0 [2.8] mm). Using hybrid PET/MRI, simultaneous imaging substantially improved bladder wall coregistration and slightly improved coregistration of bladder masses and pelvic lymph nodes.
Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng
2017-10-01
Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.
Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals
Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo
ABSTRACT
Epidemiological studies have linked chronic ingestion of drinking water contai...
PROTEOMIC PROFILING OF CULTURED HUMAN BLADDER CELLS AFTER TRIVALENT ARSENIC EXPOSURES
Chronic exposure to arsenic has been associated with human cancers of the bladder, kidney, lung, liver, and skin. Inorganic arsenic is biotransformed in a stepwise manner via both a reduction and then an oxidative methylation step in which arsenic cycles between +5 and +3 oxidati...
PROTEOMIC PROFILING OF CULTURED HUMAN BLADDER CELLS AFTER TRIVALENT ARSENICAL EXPOSURES (SOT 2008)
Chronic exposure to arsenic has been associated with human cancers of the bladder, kidney, lung, liver, and skin. Inorganic arsenic is biotransformed in a stepwise manner via both a reduction and then an oxidative methylation step in which arsenic cycles between +5 and +3 oxidati...
PROTEOMIC PROFILING OF CULTURED HUMAN BLADDER CELLS AFTER TRIVALENT ARSENICAL EXPOSURES
Chronic exposure to arsenic has been associated with human cancers of the bladder, kidney, lung, liver, and skin. Inorganic arsenic is biotransformed in a stepwise manner via both a reduction and then an oxidative methylation step in which arsenic cycles between +5 and +3 oxidati...
Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4.
Ma, Fei; Kouzoukas, Dimitrios E; Meyer-Siegler, Katherine L; Westlund, Karin N; Hunt, David E; Vera, Pedro L
2017-05-25
Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 μg/150 μl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 μg/150 μl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 μg/150 μl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 μg/150 μl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. The disulfide form of HMGB1 mediates bladder pain directly (not secondary to inflammation or injury) through activation of TLR4 receptors in the bladder. Thus, TLR4 receptors are a specific local target for bladder pain.
NASA Astrophysics Data System (ADS)
Nseyo, Unyime; Kim, Albert; Stavropoulos, Nicholas E.; Skalkos, Dimitris; Nseyo, U. U.; Chung, Theodore D.
2005-04-01
The anti-inflammatory, anti-microbial, antiviral, and antidepressant activities of the Greek herb, Hypericum Perforatum L, HP L, have been attributed to the total extract or single constituents. We investigated the use of the extract,specifically of the polar methanolic fraction (PMF) of Epirus"HPL in photodynamic therapy (PDT) alone and in combination with recombinant Interferon-a2b (IFN) and gemcitabine (GCB) in the treatment of human bladder cancer cells. The PMF was extracted from the dry herb with methanol, followed by liquid-liquid extraction with petroleum ether. T-24 bladder cancer cells were plated (105 cells/well) and placed in the incubator (370 C, 5%CO) for 24 hours prior to addition of drugs. PMF 60ug/ml was added and incubation continued. After 24 hours, the cells were subjected to laser light (630nm) treatment with 0, 1, 4 and 8 Joules. After reincubation for 24 hours, IFN, (50,000 IU) or GCB, (2ug/ml) was added to the PDT-treated cells. After this incubation cell survival was assessed by the MTT assay. PMF-PDT alone-induced percent cell kill of 0%, 8%, 44% and 80% versus 31%, 64 and 86 % for PMF-PDT and IFN, versus 63%, 80% and 88% for MPF-PDT plus GCB at 1, 2, 4 and 8 Joules respectively. IFN and GCB induced 20% and 53% cell kill respectively. Our data suggest that MPF may be an effective agent for in vitro photodynamic therapy. PMF-PDT combined with Intron A, or gemcitabine achieved improved kill of cultured bladder cancer cells. Confirmation of these results in preclinical studies may lead to clinical trials.
Li, Yan; Lu, Ming; Alvarez-Lugo, Lery; Chen, Gang; Chai, Toby C
2017-04-01
We studied in vitro and in vivo response of primary mouse bladder urothelial cells (mBUC) and bladder urothelium to lipopolysaccharides (LPS), focusing on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Female C57BL/6 mBUC were exposed for 12 hr to differing concentrations of LPS (100 ng/ml to 10 µg/ml). mBUC were also exposed to a single dose of LPS (1 µg/ml) for 3, 6, 12 hr. Neutralizing GM-CSF antibody (0.1 μg/ml) was used block GM-CSF activity in vitro. In vivo experiments were performed, whereby, LPS (1 mg/ml) was instilled intravesically and left to dwell for 30 min followed by harvest of bladder urothelium 3 to 18 hr later. ELISA measured GM-CSF. qPCR quantitated mRNA for GM-CSF, vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α). RT-PCR was used to detect mRNA for GM-CSF, GM-CSFRα, and β in bladder tissues. Immunohistofluorescence and Western blots for GM-CSFRα were performed on bladder tissues. LPS induced a dose-dependent release of GM-CSF by mBUC. Mouse bladder urothelium did not express GM-CSF mRNA at baseline, but expressed GM-CSF mRNA 3 hr after in vivo LPS exposure, with GM-CSF mRNA expression disappearing 18 hr later. GM-CSFRα expression was confirmed in bladder urothelium. GM-CSF neutralizing antibody significantly diminished LPS-induced increases of VEGF and COX-2 mRNA expression. Urothelium and mBUC secreted GM-CSF as an early response to LPS. GM-CSF mediated downstream expression of VEGF and COX-2. Urothelial GM-CSF may function as a signaling mediator for both inflammation and pain transduction. Neurourol. Urodynam. 36:1020-1025, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, V; Chinea, F; Abramowitz, M
Purpose: In the era of dose escalation and numerous protocols evaluating radiation delivery to the prostate, it is imperative to achieve accurate and standardized daily set up. At the Sylvester Comprehensive Cancer Center, patients are instructed to drink 8 ounces of water 30 minutes prior to RT and follow a low residue diet to ensure that the anorectum is not distended and the bladder is adequately filled. If daily CBCT imaging shows any variation, the patient is removed from the table and drinks water or evacuates their rectum prior to a repeat CBCT. Here we attempt to quantify the efficacymore » of this procedure. Methods: CBCTs were collected for 5 patients receiving 40 fractions of definitive treatment for prostate cancer. CBCTs were imported into MIM (v6.5.7, Cleveland OH) and the bladder, anorectum, and prostate were contoured. Using the daily registration reviewed by the attending physician, the planning dose was rigidly transferred to the daily CBCT. On days that multiple CBCTs were performed due to inadequate anorectum or bladder preparation, the repeated and final CBCTs were evaluated for variations in V40Gy and V65Gy to both the anorectum and bladder. Results: A high level of variability in doses to the anorectum and bladder was found in the scans that were not utilized for treatment. The aggregate lower quartile for the unused versus used CBCTs was 27.2% vs. 16.83% for V40Gy and 8.53% vs. 5.66% for V65Gy bladder. The upper quartiles showed to be 48.88% vs. 41.92% and 21.05% vs. 20.55%. The combined lower quartile for the unused vs. used CBCTs was 8.24% vs. 5.49% for V40Gy and 0.57% vs. 0.0% for V65Gy anorectum. The upper quartiles were 34.35% vs. 33.25% and 18.37% vs. 16.11%. Conclusion: This study shows that daily imaging is insufficient and that proper bladder and anorectum preparation are essential to deliver proper treatment.« less
Zhang, Yuesheng
2013-01-01
Allyl isothiocyanate (AITC) occurs in cruciferous vegetables that are commonly consumed by humans and has been shown to inhibit urinary bladder cancer growth and progression in previous preclinical studies. However, AITC does not significantly modulate cyclooxygenase-2 (Cox-2), whose oncogenic activity has been well documented in bladder cancer and other cancers. Celecoxib is a selective Cox-2 inhibitor and has been widely used for treatment of several diseases. Celecoxib has also been evaluated in bladder cancer patients, but its efficacy against bladder cancer as a single agent remains unclear. In a syngeneic rat model of orthotopic bladder cancer, treatment of the animals with the combination of AITC and celecoxib at low dose levels (AITC at 1mg/kg and celecoxib at 10mg/kg) led to increased or perhaps synergistic inhibition of bladder cancer growth and muscle invasion, compared with each agent used alone. The combination regime was also more effective than each single agent in inhibiting microvessel formation and stimulating microvessel maturation in the tumor tissues. The anticancer efficacy of the combination regime was associated with depletion of prostaglandin E2, a key downstream signaling molecule of Cox-2, caspase activation and downregulation of vascular endothelial growth factor in the tumor tissues. These data show that AITC and celecoxib complement each other for inhibition of bladder cancer and provide a novel combination approach for potential use for prevention or treatment of human bladder cancer. PMID:23946495
The association between drinking water exposures to inorganic arsenic and life-threatening tumors in the human is strongest for bladder cancer. To investigate the mode of action for inorganic arsenic carcinogenicity in the bladder, a study was conducted to characterize the dose-r...
Alfano, Massimo; Nebuloni, Manuela; Allevi, Raffaele; Zerbi, Pietro; Longhi, Erika; Lucianò, Roberta; Locatelli, Irene; Pecoraro, Angela; Indrieri, Marco; Speziali, Chantal; Doglioni, Claudio; Milani, Paolo; Montorsi, Francesco; Salonia, Andrea
2016-10-25
In the fields of biomaterials and tissue engineering simulating the native microenvironment is of utmost importance. As a major component of the microenvironment, the extracellular matrix (ECM) contributes to tissue homeostasis, whereas modifications of native features are associated with pathological conditions. Furthermore, three-dimensional (3D) geometry is an important feature of synthetic scaffolds favoring cell stemness, maintenance and differentiation. We analyzed the 3D structure, geometrical measurements and anisotropy of the ECM isolated from (i) human bladder mucosa (basal lamina and lamina propria) and muscularis propria; and, (ii) bladder carcinoma (BC). Next, binding and invasion of bladder metastatic cell line was observed on synthetic scaffold recapitulating anisotropy of tumoral ECM, but not on scaffold with disorganized texture typical of non-neoplastic lamina propria. This study provided information regarding the ultrastructure and geometry of healthy human bladder and BC ECMs. Likewise, using synthetic scaffolds we identified linearization of the texture as a mandatory feature for BC cell invasion. Integrating microstructure and geometry with biochemical and mechanical factors could support the development of an innovative synthetic bladder substitute or a tumoral scaffold predictive of chemotherapy outcomes.
Yoon, Jae-In; Kim, Sang-In; Tommasi, Stella; Besaratinia, Ahmad
2012-02-01
Aromatic amines are a widespread class of environmental contaminants present in various occupational settings and tobacco smoke. Exposure to aromatic amines is a major risk factor for bladder cancer development. The etiologic involvement of aromatic amines in the genesis of bladder cancer is attributable to their ability to form DNA adducts, which upon eluding repair and causing mispairing during replication, may initiate mutagenesis. We have investigated the induction of DNA adducts in relation to mutagenesis in bladder and various nontarget organs of transgenic Big Blue mice treated weekly (i.p.) with a representative aromatic amine compound, 4-aminobiphenyl (4-ABP), for six weeks, followed by a six-week recovery period. We show an organ-specificity of 4-ABP in inducing repair-resistant DNA adducts in bladder, kidney, and liver of carcinogen-treated animals, which accords with the bioactivation pathway of this chemical in the respective organs. In confirmation, we show a predominant and sustained mutagenic effect of 4-ABP in bladder, and much weaker but significant mutagenicity of 4-ABP in the kidney and liver of carcinogen-treated mice, as reflected by the elevation of background cII mutant frequency in the respective organs. The spectrum of mutations produced in bladder of 4-ABP-treated mice matches the known mutagenic properties of 4-ABP-DNA adducts, as verified by the preponderance of induced mutations occurring at G:C base pairs (82.9%), with the vast majority being G:C→T:A transversions (47.1%). Our data support a possible etiologic role of 4-ABP in bladder carcinogenesis and provide a mechanistic view on how DNA adduct-driven mutagenesis, specifically targeted to bladder urothelium, may account for organ-specific tumorigenicity of this chemical. ©2011 AACR.
Attaluri, Anilchandra; Kandala, Sri Kamal; Wabler, Michele; Zhou, Haoming; Cornejo, Christine; Armour, Michael; Hedayati, Mohammad; Zhang, Yonggang; DeWeese, Theodore L.; Herman, Cila; Ivkov, Robert
2015-01-01
Purpose We aimed to characterise magnetic nanoparticle hyperthermia (mNPH) with radiation therapy (RT) for prostate cancer. Methods Human prostate cancer subcutaneous tumours, PC3 and LAPC-4, were grown in nude male mice. When tumours measured 150 mm3 magnetic iron oxide nanoparticles (MIONPs) were injected into tumours to a target dose of 5.5 mg Fe/cm3 tumour, and treated 24 h later by exposure to alternating magnetic field (AMF). Mice were randomly assigned to one of four cohorts to characterise (1) intratumour MIONP distribution, (2) effects of variable thermal dose mNPH (fixed AMF peak amplitude 24 kA/m at 160±5 kHz) with/without RT (5 Gy), (3) effects of RT (RT5: 5 Gy; RT8: 8 Gy), and (4) fixed thermal dose mNPH (43 °C for 20min) with/without RT (5 Gy). MIONP concentration and distribution were assessed following sacrifice and tissue harvest using inductively coupled plasma mass spectrometry (ICP-MS) and Prussian blue staining, respectively. Tumour growth was monitored and compared among treated groups. Results LAPC-4 tumours retained higher MIONP concentration and more uniform distribution than did PC3 tumours. AMF power modulation provided similar thermal dose for mNPH and combination therapy groups (CEM43: LAPC-4: 33.6 ± 3.4 versus 25.9 ± 0.8, and PC3: 27.19 ± 0.7 versus 27.50 ± 0.6), thereby overcoming limitations of MIONP distribution and yielding statistically significant tumour growth delay. Conclusion PC3 and LAPC-4 tumours represent two biological models that demonstrate different patterns of nanoparticle retention and distribution, offering a model to make comparisons of these effects for mNPH. Modulating power for mNPH offers potential to overcome limitations of MIONP distribution to enhance mNPH. PMID:25811736
Attaluri, Anilchandra; Kandala, Sri Kamal; Wabler, Michele; Zhou, Haoming; Cornejo, Christine; Armour, Michael; Hedayati, Mohammad; Zhang, Yonggang; DeWeese, Theodore L; Herman, Cila; Ivkov, Robert
2015-06-01
We aimed to characterise magnetic nanoparticle hyperthermia (mNPH) with radiation therapy (RT) for prostate cancer. Human prostate cancer subcutaneous tumours, PC3 and LAPC-4, were grown in nude male mice. When tumours measured 150 mm3 magnetic iron oxide nanoparticles (MIONPs) were injected into tumours to a target dose of 5.5 mg Fe/cm3 tumour, and treated 24 h later by exposure to alternating magnetic field (AMF). Mice were randomly assigned to one of four cohorts to characterise (1) intratumour MIONP distribution, (2) effects of variable thermal dose mNPH (fixed AMF peak amplitude 24 kA/m at 160 ± 5 kHz) with/without RT (5 Gy), (3) effects of RT (RT5: 5 Gy; RT8: 8 Gy), and (4) fixed thermal dose mNPH (43 °C for 20 min) with/without RT (5 Gy). MIONP concentration and distribution were assessed following sacrifice and tissue harvest using inductively coupled plasma mass spectrometry (ICP-MS) and Prussian blue staining, respectively. Tumour growth was monitored and compared among treated groups. LAPC-4 tumours retained higher MIONP concentration and more uniform distribution than did PC3 tumours. AMF power modulation provided similar thermal dose for mNPH and combination therapy groups (CEM43: LAPC-4: 33.6 ± 3.4 versus 25.9 ± 0.8, and PC3: 27.19 ± 0.7 versus 27.50 ± 0.6), thereby overcoming limitations of MIONP distribution and yielding statistically significant tumour growth delay. PC3 and LAPC-4 tumours represent two biological models that demonstrate different patterns of nanoparticle retention and distribution, offering a model to make comparisons of these effects for mNPH. Modulating power for mNPH offers potential to overcome limitations of MIONP distribution to enhance mNPH.
Wang, Longxin; Fu, Dian; Qiu, Yongbin; Xing, Xiaoxiao; Xu, Feng; Han, Conghui; Xu, Xiaofeng; Wei, Zhifeng; Zhang, Zhengyu; Ge, Jingping; Cheng, Wen; Xie, Hai-Long
2014-07-10
To understand lncRNAs expression profiling and their potential functions in bladder cancer, we investigated the lncRNA and coding RNA expression on human bladder cancer and normal bladder tissues. Bioinformatic analysis revealed thousands of significantly differentially expressed lncRNAs and coding mRNA in bladder cancer relative to normal bladder tissue. Co-expression analysis revealed that 50% of lncRNAs and coding RNAs expressed in the same direction. A subset of lncRNAs might be involved in mTOR signaling, p53 signaling, cancer pathways. Our study provides a large scale of co-expression between lncRNA and coding RNAs in bladder cancer cells and lays biological basis for further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Levitt, Jonathan M; Yamashita, Hideyuki; Jian, Weiguo; Lerner, Seth P; Sonpavde, Guru
2010-05-01
Dasatinib is an orally administered multitargeted kinase inhibitor that targets Src family tyrosine kinases, Abl, c-Kit, and PDGFR. A preclinical study was conducted to evaluate dasatinib alone or combined with cisplatin for human transitional cell carcinoma (TCC). Expression of Src in a human TCC tissue microarray was evaluated by immunohistochemistry. The activity of dasatinib and/or cisplatin was evaluated in six human TCC cell lines. Western blot was done to assess Src and phosphorylated-Src (p-Src) expression. The activity of dasatinib alone and in combination with cisplatin was determined in murine subcutaneous xenografts. Sixty-two percent to 75% of human TCC expressed Src. Dasatinib displayed significant antiproliferative activity at nanomolar concentrations against two human TCC cell lines (RT4 and Hu456) that exhibited high Src and p-Src expression and were cisplatin-resistant. RT4 cells were the most sensitive and displayed the highest level of Src pathway activation (p-Src/Src ratio). Dasatinib downregulated p-Src in either sensitive or resistant cells. TCC cells that were sensitive to cisplatin (5637 and TCC-SUP) were highly resistant to dasatinib and exhibited low Src expression. Dasatinib showed antitumor activity in RT4 murine xenografts, and the combination of dasatinib and cisplatin was significantly more active than placebo. Combination dasatinib plus cisplatin significantly inhibited proliferation and promoted apoptosis in vivo. In conclusion, dasatinib displayed significant preclinical antitumor activity against Src-overexpressing human TCC with active Src signaling and was highly active in combination with cisplatin in vivo. Further clinical development might be warranted in selected human subjects.
Glucocorticoid receptor beta increases migration of human bladder cancer cells.
McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D
2016-05-10
Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p < 0.05) increased expression of GRβ compared to UMUC-3, which also correlated with higher migration rates. Knockdown of GRβ in the T24 cells resulted in a decreased migration rate. Mutational analysis of the 3' untranslated region (UTR) of human GRβ revealed that miR144 might positively regulate expression. Indeed, overexpression of miR144 increased GRβ by 3.8 fold. In addition, miR144 and GRβ were upregulated during migration. We used a peptide nucleic acid conjugated to a cell penetrating-peptide (Sweet-P) to block the binding site for miR144 in the 3'UTR of GRβ. Sweet-P effectively prevented miR144 actions and decreased GRβ expression, as well as the migration of the T24 human bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.
Chronic exposure to drinking water contaminated with inorganic arsenic (iAs) is associated with an increased risk ofurinary bladder (DB) cancers in humans. Rodent models administered particular arsenicals have indicated urothelial necrosis followed by regenerative proliferation i...
Arsenic is widespread in the environment and a human carcinogen. A major metabolite of inorganic arsenic (iAs) in most species, including humans, is dimethylarsinic acid (DMA), which is also used as a pesticide. Unlike iAs, DMA induces urinary bladder tumors in rats. DMA is belie...
Stec, Andrew A; Baradaran, Nima; Schaeffer, Anthony; Gearhart, John P; Matthews, Ranjiv I
2012-10-01
Successful primary bladder closure of classic bladder exstrophy sets the stage for development of adequate bladder capacity and eventual voided continence. The postoperative pathway following primary bladder closure at the authors' institution is quantitatively and qualitatively detailed. Sixty-five consecutive newborns (47 male) undergoing primary closure of classic bladder exstrophy were identified and data were extracted relating to immediate postoperative care. Overall success rate was utilized to validate the pathway. Mean age at time of primary closure was 4.6 days and mean hospital stay was 35.8 days. Osteotomy was performed in 19 patients (mean age 8.8 days), and was not required in 39 infants (mean age 2.9 days). All patients were immobilized for 4 weeks. Tunneled epidural analgesia was employed in 61/65 patients. All patients had ureteral catheters and a suprapubic tube, along with a comprehensive antibiotic regimen. Postoperative total parenteral nutrition was commonly administered, and enteral feedings started around day 4.6. Our success rate of primary closure was 95.4%. A detailed and regimented plan for bladder drainage, immobilization, pain control, nutrition, antimicrobial prophylaxis, and adequate healing time is a cornerstone for the postoperative management of the primary closure of bladder exstrophy. Copyright © 2011 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Smolarz, Kamilla; Krause, Bernd Joachim; Graner, Frank-Philipp; Wagner, Franziska Martina; Hultsch, Christina; Bacher-Stier, Claudia; Sparks, Richard B; Ramsay, Susan; Fels, Lüder M; Dinkelborg, Ludger M; Schwaiger, Markus
2013-06-01
The glutamic acid derivative (S)-4-(3-(18)F-Fluoropropyl)-l-glutamic acid ((18)F-FSPG, alias BAY 94-9392), a new PET tracer for the detection of malignant diseases, displayed promising results in non-small cell lung cancer patients. The aim of this study was to provide dosimetry estimates for (18)F-FSPG based on human whole-body PET/CT measurements. (18)F-FSPG was prepared by a fully automated 2-step procedure and purified by a solid-phase extraction method. PET/CT scans were obtained for 5 healthy volunteers (mean age, 59 y; age range, 51-64 y; 2 men, 3 women). Human subjects were imaged for up to 240 min using a PET/CT scanner after intravenous injection of 299 ± 22.5 MBq of (18)F-FSPG. Image quantification, time-activity data modeling, estimation of normalized number of disintegrations, and production of dosimetry estimates were performed using the RADAR (RAdiation Dose Assessment Resource) method for internal dosimetry and in general concordance with the methodology and principles as presented in the MIRD 16 document. Because of the renal excretion of the tracer, the absorbed dose was highest in the urinary bladder wall and kidneys, followed by the pancreas and uterus. The individual organ doses (mSv/MBq) were 0.40 ± 0.058 for the urinary bladder wall, 0.11 ± 0.011 for the kidneys, 0.077 ± 0.020 for the pancreas, and 0.030 ± 0.0034 for the uterus. The calculated effective dose was 0.032 ± 0.0034 mSv/MBq. Absorbed dose to the bladder and the effective dose can be reduced significantly by frequent bladder-voiding intervals. For a 0.75-h voiding interval, the bladder dose was reduced to 0.10 ± 0.012 mSv/MBq, and the effective dose was reduced to 0.015 ± 0.0010 mSv/MBq. On the basis of the distribution and biokinetic data, the determined radiation dose for (18)F-FSPG was calculated to be 9.5 ± 1.0 mSv at a patient dose of 300 MBq, which is of similar magnitude to that of (18)F-FDG (5.7 mSv). The effective dose can be reduced to 4.5 ± 0.30 mSv (at 300 MBq), with a bladder-voiding interval of 0.75 h.
Chemotherapeutic potential of quercetin on human bladder cancer cells.
Oršolić, Nada; Karač, Ivo; Sirovina, Damir; Kukolj, Marina; Kunštić, Martina; Gajski, Goran; Garaj-Vrhovac, Vera; Štajcar, Damir
2016-07-28
In an effort to improve local bladder cancer control, we investigated the cytotoxic and genotoxic effects of quercetin on human bladder cancer T24 cells. The cytotoxic effect of quercetin against T24 cells was examined by MTT test, clonogenic assay as well as DNA damaging effect by comet assay. In addition, the cytotoxic effect of quercetin on the primary culture of papillary urothelial carcinoma (PUC), histopathological stage T1 of low- or high-grade tumours, was investigated. Our analysis demonstrated a high correlation between reduced number of colony and cell viability and an increase in DNA damage of T24 cells incubated with quercetin at doses of 1 and 50 µM during short term incubation (2 h). At all exposure times (24, 48 and 72 h), the efficacy of quercetin, administered at a 10× higher dose compared to T24 cells, was statistically significant (P < 0.05) for the primary culture of PUC. In conclusion, our study suggests that quercetin could inhibit cell proliferation and colony formation of human bladder cancer cells by inducing DNA damage and that quercetin may be an effective chemopreventive and chemotherapeutic agent for papillary urothelial bladder cancer after transurethral resection.
Wojtczyk-Miaskowska, Anita; Presler, Malgorzata; Michajlowski, Jerzy; Matuszewski, Marcin; Schlichtholz, Beata
2017-01-01
This study investigated the gene expression and DNA methylation of selected DNA repair genes (MBD4, TDG, MLH1, MLH3) and DNMT1 in human bladder cancer in the context of pathophysiological and prognostic significance. To determine the relationship between the gene expression pattern, global methylation and promoter methylation status, we performed real-time PCR to quantify the mRNA of selected genes in 50 samples of bladder cancer and adjacent non-cancerous tissue. The methylation status was analyzed by methylation-specific polymerase chain reaction (MSP) or digestion of genomic DNA with a methylation-sensitive restriction enzyme and PCR with gene-specific primers (MSRE-PCR). The global DNA methylation level was measured using the antibody-based 5-mC detection method. The relative levels of mRNA for MBD4, MLH3, and MLH1 were decreased in 28% (14/50), 34% (17/50) and 36% (18/50) of tumor samples, respectively. The MBD4 mRNA expression was decreased in 46% of non-muscle invasive tumors (Ta/T1) compared with 11% found in muscle invasive tumors (T2-T4) (P<0.003). Analysis of mRNA expression for TDG did not show any significant differences between Ta/T1 and T2-T4 tumors. The frequency of increased DNMT1 mRNA expression was higher in T2-T4 (52%) comparing to Ta/T1 (16%). The overall methylation rates in tumor tissue were 18% for MBD4, 25% for MLH1 and there was no evidence of MLH3 promoter methylation. High grade tumors had significantly lower levels of global DNA methylation (P=0.04). There was a significant association between shorter survival and increased expression of DNMT1 mRNA (P=0.002), decreased expression of MLH1 mRNA (P=0.032) and the presence of MLH1 promoter methylation (P=0.006). This study highlights the importance of DNA repair pathways and provides the first evidence of the role of MBD4 and MLH3 in bladder cancer. In addition, our findings suggest that DNMT1 mRNA and MLH1 mRNA expression, as well as the status of MLH1 promoter methylation, are attractive prognostic markers in this pathology. © 2017 The Author(s). Published by S. Karger AG, Basel.
Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei
2005-10-01
1 Real-time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real-time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...pseudomallei and B. mallei , respectively are the causative agents of meliodosis and glanders , primarily in animals (both pathogens), and in humans
Jiménez Pacheco, A; Martínez Torres, J I; Pareja Vilchez, M; Arrabal Martín, M; Valle Díaz de la Guardia, F; López León, V; Zuluaga Gómez, A
2007-05-01
The bladder cancer is an important disease by its morbi-mortality and its multifactorialidad. At the moment, between the possible aetiology agents that they have been indicated is the infection by the virus of papilloma human (VPH). The objective study is to analyse, by meta-analysis, the relationship between bladder cancer and infection by human papillomavirus. We made a search in the electronic data base MEDLINE of the articles published until September of the 2004 that relate the infection of the VPH to the bladder tumors. Of 414 listed articles, we selected 38 articles. The articles were classified in two groups, according to they use or non methods based on the detection of the DNA. In articles based on the detection of the DNA, it was that the global proportion from the cases that had contact with the virus, through the detection of the genome was of the 19.4% (95% CI 0.160 to 0.228). Of the total of studies based on the detection of the DNA 8 were selected, to show to a group defined control, in which, the OR was investigated. If we combined the ORs, we obtain an OR estimation of 3.2 (95% CI 1.19 to 8.60) and p = 0.02. Most of these studies showed the relation rose at the beginning of the study. Although the majority lacked a group defined control, is possible to analyze the value of the Odds global ratio due to the homogenous behaviour of the studies with defined cases and controls affluent. This demonstrated to association between VPH and the bladder cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingsong Lei; Xiaoyuan Deng; Huajiang Wei
2014-12-31
We report our preliminary results on quantification of glucose and dimethyl sulfoxide (DMSO) diffusion in normal and cancerous human bladder tissues in vitro by using a spectral domain optical coherence tomography (SD-OCT). The permeability coefficients (PCs) of a 30% aqueous solution of glucose are found to be (7.92 ± 0.81) × 10{sup -6} cm s{sup -1} and (1.19 ± 0.13) × 10{sup -5} cm s{sup -1} in normal and cancerous bladder tissues, respectively. The PCs of 50% DMSO are calculated to be (8.99 ± 0.93) × 10{sup -6} cm s{sup -1} and (1.43 ± 0.17) × 10{sup -5} cm s{supmore » -1} in normal and cancerous bladder tissues, respectively. The obtained results show a statistically significant difference in permeability of normal and cancerous tissue and indicate that the PC of 50% DMSO is about 1.13-and 1.21-fold higher than that of 30% glucose in normal bladder and cancerous bladder tissues, respectively. Thus, the quantitative measurements with the help of PCs from OCT images can be a potentially powerful method for bladder cancer detection. (optical coherence tomography)« less
G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.
Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao
2015-01-01
Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Arsenic is a recognized human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the urinary bladder (with cigarette smoking) and skin (with UV light exposure). Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include induction of DNA ...
Chen, Li-Mei; Verity, Nicole J; Chai, Karl X
2009-10-22
The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy.
Monastyrskaya, Katia; Babiychuk, Eduard B; Draeger, Annette; Burkhard, Fiona C
2013-07-01
We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Rapidly quantifying the relative distention of a human bladder
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor); Heyman, Joseph S. (Inventor); Mineo, Beth A. (Inventor); Cavalier, Albert R. (Inventor); Blalock, Travis N. (Inventor)
1989-01-01
A device and method of rapidly quantifying the relative distention of the bladder in a human subject are disclosed. The ultrasonic transducer which is positioned on the subject in proximity to the bladder is excited by a pulser under the command of a microprocessor to launch an acoustic wave into the patient. This wave interacts with the bladder walls and is reflected back to the ultrasonic transducer, when it is received, amplified and processed by the receiver. The resulting signal is digitized by an analog-to-digital converter under the command of the microprocessor and is stored in the data memory. The software in the microprocessor determines the relative distention of the bladder as a function of the propagated ultrasonic energy; and based on programmed scientific measurements and individual, anatomical, and behavioral characterists of the specific subject as contained in the program memory, sends out a signal to turn on any or all of the audible alarm, the visible alarm, the tactile alarm, and the remote wireless alarm.
Roles of ERβ and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen.
Huang, Weiren; Chen, Yuanbin; Liu, Yuchen; Zhang, Qiaoxia; Yu, Zhou; Mou, Lisha; Wu, Hanwei; Zhao, Li; Long, Ting; Qin, Danian; Gui, Yaoting
2015-01-01
Bladder cancer belongs to one of the most common cancers and is a leading cause of deaths in our society. Urothelial carcinoma of the bladder (UCB) is the main type of this cancer, and the estrogen receptors in UCB remain to be studied. Our experiment aimed to investigate the possible biological effect of 17β-estradiol on human bladder-derived T24 carcinoma cells and to indicate its related mechanisms. T24 cells were treated with various doses of 17β-estradiol, and cell proliferation was detected using MTT assays. 17β-estradiol promoted T24 cell proliferation independent of ERβ/GPR30-regulated EGFR-MAPK pathway, while it inhibited cell growth via GPR30. Furthermore, the expression levels of downstream genes (c-FOS, BCL-2, and CYCLIN D1) were increased by 17β-estradiol and this effect was independently associated with activity of the EGFR-MAPK pathway. The two estrogen receptors might be potential therapeutic targets for the treatment of bladder cancer.
Campbell, Amelia; Owen, Rebecca; Brown, Elizabeth; Pryor, David; Bernard, Anne; Lehman, Margot
2015-08-01
Cone beam computerised tomography (CBCT) enables soft tissue visualisation to optimise matching in the post-prostatectomy setting, but is associated with inter-observer variability. This study assessed the accuracy and consistency of automated soft tissue localisation using XVI's dual registration tool (DRT). Sixty CBCT images from ten post-prostatectomy patients were matched using: (i) the DRT and (ii) manual soft tissue registration by six radiation therapists (RTs). Shifts in the three Cartesian planes were recorded. The accuracy of the match was determined by comparing shifts to matches performed by two genitourinary radiation oncologists (ROs). A Bland-Altman method was used to assess the 95% levels of agreement (LoA). A clinical threshold of 3 mm was used to define equivalence between methods of matching. The 95% LoA between DRT-ROs in the superior/inferior, left/right and anterior/posterior directions were -2.21 to +3.18 mm, -0.77 to +0.84 mm, and -1.52 to +4.12 mm, respectively. The 95% LoA between RTs-ROs in the superior/inferior, left/right and anterior/posterior directions were -1.89 to +1.86 mm, -0.71 to +0.62 mm and -2.8 to +3.43 mm, respectively. Five DRT CBCT matches (8.33%) were outside the 3-mm threshold, all in the setting of bladder underfilling or rectal gas. The mean time for manual matching was 82 versus 65 s for DRT. XVI's DRT is comparable with RTs manually matching soft tissue on CBCT. The DRT can minimise RT inter-observer variability; however, involuntary bladder and rectal filling can influence the tools accuracy, highlighting the need for RT evaluation of the DRT match. © 2015 The Royal Australian and New Zealand College of Radiologists.
Zhu, Liguo
2017-01-01
Rotation-traction (RT) manipulation is a commonly used physical therapy procedure in TCM (traditional Chinese medicine) for cervical spondylosis. This procedure temporarily separates the C3 and C4 cervical vertebrae from each other when a physician applies a jerky action while the neck is voluntarily turned by the patient to a specific position as instructed by the physician, where the cervical vertebrae are twisted and locked. However, a high rate of cervical injury occurs due to inexperienced physician interns who lack sufficient training. Therefore, we developed a cervical spine mechanism that imitates the dynamic behaviours of the human neck during RT manipulation. First, in vivo and in vitro experiments were performed to acquire the biomechanical feature curves of the human neck during RT manipulation. Second, a mass-spring-damper system with an electromagnetic clutch was designed to emulate the entire dynamic response of the human neck. In this system, a spring is designed as rectilinear and nonlinear to capture the viscoelasticity of soft tissues, and an electromagnetic clutch is used to simulate the sudden disengagement of the cervical vertebrae. Test results show that the mechanism can exhibit the desired behaviour when RT manipulation is applied in the same manner as on humans. PMID:29259395
Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays
Dreier, Jens; Störmer, Melanie; Kleesiek, Knut
2005-01-01
Diagnostic systems based on reverse transcription (RT)-PCR are widely used for the detection of viral genomes in different human specimens. The application of internal controls (IC) to monitor each step of nucleic acid amplification is necessary to prevent false-negative results due to inhibition or human error. In this study, we designed various real-time RT-PCRs utilizing the coliphage MS2 replicase gene, which differ in detection format, amplicon size, and efficiency of amplification. These noncompetitive IC assays, using TaqMan, hybridization probe, or duplex scorpion probe techniques, were tested on the LightCycler and Rotorgene systems. In our approach, clinical specimens were spiked with the control virus to monitor the efficiency of extraction, reverse transcription, and amplification steps. The MS2 RT-PCR assays were applied for internal control when using a second target hepatitis C virus RNA in duplex PCR in blood donor screening. The 95% detection limit was calculated by probit analysis to 44.9 copies per PCR (range, 38.4 to 73.4). As demonstrated routinely, application of MS2 IC assays exhibits low variability and can be applied in various RT-PCR assays. MS2 phage lysates were obtained under standard laboratory conditions. The quantification of phage and template RNA was performed by plating assays to determine PFU or via real-time RT-PCR. High stability of the MS2 phage preparations stored at −20°C, 4°C, and room temperature was demonstrated. PMID:16145106
Andrade, Rosana C P; Neto, José A; Andrade, Luciana; Oliveira, Tatiane S; Santos, Dislene N; Oliveira, Cassius J V; Prado, Márcio J; Carvalho, Edgar M
2016-03-01
To evaluate the efficacy of physiotherapy for urinary manifestations in patients with human T-lymphotropic virus 1-associated lower urinary tract dysfunction. Open clinical trial was conducted with 21 patients attending the physiotherapy clinic of the Hospital Universitário, Bahia, Brazil. Combinations of behavioral therapy, perineal exercises, and intravaginal or intra-anal electrical stimulation were used. The mean age was 54 ± 12 years and 67% were female. After treatment, there was an improvement in symptoms of urinary urgency, frequency, incontinence, nocturia, and in the sensation of incomplete emptying (P < .001). There was also a reduction in the overactive bladder symptom score from 10 ± 4 to 6 ± 3 (P < .001) and an increase in the perineal muscle strength (P <.001). The urodynamic parameters improved, with reduction in the frequency of patients with detrusor hyperactivity from 57.9% to 42.1%, detrusor-sphincter dyssynergia from 31.6% to 5.3%, detrusor hypocontractility from 15.8% to 0%, and detrusor areflexia from 10.5% to 0%, with positive repercussions in the quality of life in all patients. Physiotherapy was effective in cases of human T-lymphotropic virus 1-associated neurogenic bladder, reducing symptoms, increasing perineal muscle strength, and improving urodynamic parameters and quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.
Jothikumar, Narayanan; Cromeans, Theresa L; Robertson, Betty H; Meng, X J; Hill, Vincent R
2006-01-01
Hepatitis E virus (HEV) is transmitted by the fecal-oral route and causes sporadic and epidemic forms of acute hepatitis. Large waterborne HEV epidemics have been documented exclusively in developing countries. At least four major genotypes of HEV have been reported worldwide: genotype 1 (found primarily in Asian countries), genotype 2 (isolated from a single outbreak in Mexico), genotype 3 (identified in swine and humans in the United States and many other countries), and genotype 4 (identified in humans, swine and other animals in Asia). To better detect and quantitate different HEV strains that may be present in clinical and environmental samples, we developed a rapid and sensitive real-time RT-PCR assay for the detection of HEV RNA. Primers and probes for the real-time RT-PCR were selected based on the multiple sequence alignments of 27 sequences of the ORF3 region. Thirteen HEV isolates representing genotypes 1-4 were used to standardize the real-time RT-PCR assay. The TaqMan assay detected as few as four genome equivalent (GE) copies of HEV plasmid DNA and detected as low as 0.12 50% pig infectious dose (PID50) of swine HEV. Different concentrations of swine HEV (120-1.2PID50) spiked into a surface water concentrate were detected in the real-time RT-PCR assay. This is the first reporting of a broadly reactive TaqMan RT-PCR assay for the detection of HEV in clinical and environmental samples.
Activation of RAS family genes in urothelial carcinoma.
Boulalas, I; Zaravinos, A; Karyotis, I; Delakas, D; Spandidos, D A
2009-05-01
Bladder cancer is the fifth most common malignancy in men in Western society. We determined RAS codon 12 and 13 point mutations and evaluated mRNA expression levels in transitional cell carcinoma cases. Samples from 30 human bladder cancers and 30 normal tissues were analyzed by polymerase chain reaction/restriction fragment length polymorphism and direct sequencing to determine the occurrence of mutations in codons 12 and 13 of RAS family genes. Moreover, we used real-time reverse transcriptase-polymerase chain reaction to evaluate the expression profile of RAS genes in bladder cancer specimens compared to that in adjacent normal tissues. Overall H-RAS mutations in codon 12 were observed in 9 tumor samples (30%). Two of the 9 patients (22%) had invasive bladder cancer and 7 (77%) had noninvasive bladder cancer. One H-RAS mutation (11%) was homozygous and the remaining 89% were heterozygous. All samples were WT for K and N-RAS oncogenes. Moreover, 23 of 30 samples (77%) showed over expression in at least 1 RAS family gene compared to adjacent normal tissue. K and N-RAS had the highest levels of over expression in bladder cancer specimens (50%), whereas 27% of transitional cell carcinomas demonstrated H-RAS over expression relative to paired normal tissues. Our results underline the importance of H-RAS activation in human bladder cancer by codon 12 mutations. Moreover, they provide evidence that increased expression of all 3 RAS genes is a common event in bladder cancer that is associated with disease development.
Bladder surface glycosaminoglycans is a human epithelial permeability barrier.
Lilly, J D; Parsons, C L
1990-12-01
Transitional epithelium of the bladder has been known to be impermeable. The data reported herein suggest the principal barrier to permeability may be glycosaminoglycans (GAG) of the surface of the bladder. We examined the ability of surface GAG to prevent a small molecule, urea, from moving across the epithelium in humans. It appears that GAG provide a physical barrier which prevents small molecules from reaching the underlying tight junctions and cell membranes and, hence, are a major permeability barrier. Normal volunteers (27) had 100 milliliters of a 200 grams per liter urea solution placed into their bladders for 45 minutes. Net flow of urea from the bladder lumen was 5.1 per cent. Volunteers who were capable of completing the study (19) had protamine sulfate (5 milligrams per milliliter) instilled in the bladder for 15 minutes, then removed and a second urea study done. Urea loss was significantly higher at 22 per cent (p less than 0.02). A solution of heparin (2,000 units per milliliter) was instilled for 15 minutes followed by a third urea study and urea loss was reversed to 9 per cent. All volunteers experienced significant urinary urgency and discomfort after protamine treatment which were reduced by heparin.
Low Temperature Plasma Kills SCaBER Cancer Cells
NASA Astrophysics Data System (ADS)
Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir
2013-09-01
Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.
[Using of cell biocomposite material in tissue engineering of the urinary bladder].
Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M
2017-06-01
In a systematic review, to present an overview of the current situation in the field of tissue engineering of urinary bladder related to the use of cell lines pre-cultured on matrices. The selection of eligible publications was conducted according to the method described in the article Glybochko P.V. et al. "Tissue engineering of urinary bladder using acellular matrix." At the final stage, studies investigating the application of matrices with human and animal cell lines were analyzed. Contemporary approaches to using cell-based tissue engineering of the bladder were analyzed, including the formation of 3D structures from several types of cells, cell layers and genetic modification of injected cells. The most commonly used cell lines are urothelial cells, mesenchymal stem cells and fibroblasts. The safety and efficacy of any types of composite cell structures used in the cell-based bladder tissue engineering has not been proven sufficiently to warrant clinical studies of their usefulness. The results of cystoplasty of rat bladder are almost impossible to extrapolate to humans; besides, it is difficult to predict possible side effects. For the transition to clinical trials, additional studies on relevant animal models are needed.
Wang, Hung-Jen; Lee, Wei-Chia; Tyagi, Pradeep; Huang, Chao-Cheng; Chuang, Yao-Chi
2017-08-01
Low energy shock wave (LESW) is known to facilitate tissue regeneration with analgesic and anti-inflammatory effects. We examined the effects of LESW on the expression of inflammatory molecules, pain behavior, and bladder function in a rat cystitis model. Control and experimental animals were injected with saline or cyclophosphamide (CYP; 75 mg/kg intraperitoneally) on day 1 and 4. After lower midline incision, the bladders were exposed to LESW (300 pulses, 0.12 mJ/mm 2 ) or sham operation on day 2. In study 1 (N = 12, 4 for each group), the nociceptive effects of CYP were evaluated for 30 min by behavioral assessment on day 4 one hour after CYP injection. In study 2 (N = 21, 7 for each group), continuous cystometry (CMG) was performed on day 8. The bladder was harvested after behavioral assessment or CMG for histology and Western blotting. CYP-induced upregulation of COX2 and IL6 expression, caused pain behavior (eye closing and hypolocomotion), and bladder inflammation was noted on days 4 and 8 along with bladder hyperactivity. LESW treatment reduced pain behavior and downregulated the NGF expression (33.3%, P < 0.05) on day 4 and IL6 (40.9%, P < 0.05). LESW treatment suppressed bladder overactivity (intercontraction interval 77.8% increase, P < 0.05) by decreasing inflammation and COX2 (38.6%, P < 0.05) expression and NGF expression (25.2%, P = 0.0812). CYP-induced bladder pain, inflammation, and overactivity involves activation of IL6, NGF, and COX2 expression. These changes are suppressed by LESW, indicating it as a potential candidate for relieving bladder inflammatory conditions and overactivity. © 2016 Wiley Periodicals, Inc.
Roperto, Sante; Russo, Valeria; Borzacchiello, Giuseppe; Urraro, Chiara; Lucà, Roberta; Esposito, Iolanda; Riccardi, Marita Georgia; Raso, Cinzia; Gaspari, Marco; Ceccarelli, Dora Maria; Galasso, Rocco; Roperto, Franco
2014-01-01
Active infection by bovine papillomavirus type 2 (BPV-2) was documented for fifteen urinary bladder tumors in cattle. Two were diagnosed as papillary urothelial neoplasm of low malignant potential (PUNLMP), nine as papillary and four as invasive urothelial cancers. In all cancer samples, PCR analysis revealed a BPV-2-specific 503 bp DNA fragment. E5 protein, the major oncoprotein of the virus, was shown both by immunoprecipitation and immunohistochemical analysis. E5 was found to bind to the activated (phosphorylated) form of the platelet derived growth factor β receptor. PDGFβR immunoprecipitation from bladder tumor samples and from normal bladder tissue used as control revealed a protein band which was present in the pull-down from bladder cancer samples only. The protein was identified with mass spectrometry as "V₁-ATPase subunit D", a component of the central stalk of the V₁-ATPase vacuolar pump. The subunit D was confirmed in this complex by coimmunoprecipitation investigations and it was found to colocalize with the receptor. The subunit D was also shown to be overexpressed by Western blot, RT-PCR and immunofluorescence analyses. Immunoprecipitation and immunofluorescence also revealed that E5 oncoprotein was bound to the subunit D. For the first time, a tri-component complex composed of E5/PDGFβR/subunit D has been documented in vivo. Previous in vitro studies have shown that the BPV-2 E5 oncoprotein binds to the proteolipid c ring of the V₀-ATPase sector. We suggest that the E5/PDGFβR/subunit D complex may perturb proteostasis, organelle and cytosol homeostasis, which can result in altered protein degradation and in autophagic responses.
Kozomara, Marko; Mehnert, Ulrich; Seifert, Burkhardt; Kessler, Thomas M
2018-01-01
We investigated whether detrusor contraction during rapid bladder filling is provoked by cold or warm water. Patients with neurogenic lower urinary tract dysfunction were included in this randomized, controlled, double-blind trial. At the end of a standard urodynamic investigation patients underwent 2 bladder fillings using a 4C ice water test or a 36C warm water test saline solution at a filling speed of 100 ml per minute. The order was randomly selected, and patients and investigators were blinded to the order. The primary outcome measure was detrusor overactivity, maximum detrusor pressure and maximum bladder filling volume during the ice and warm water tests. Nine women and 31 men were the subject of data analysis. Neurogenic lower urinary tract dysfunction was caused by spinal cord injury in 33 patients and by another neurological disorder in 7. Irrespective of test order detrusor overactivity occurred significantly more often during the ice water test than during the warm water test (30 of 40 patients or 75% vs 25 of 40 or 63%, p = 0.02). When comparing the ice water test to the warm water test, maximum detrusor pressure was significantly higher and maximum bladder filling volume was significantly lower during the ice water test (each p <0.001). The order of performing the tests (ice water first vs warm water first) had no effect on the parameters. Our findings imply that the more frequent detrusor overactivity, higher maximum detrusor pressure and lower bladder filling volume during the ice water test compared to the warm water test were caused by cold water. This underlies the theory of a C-fiber mediated bladder cooling reflex in humans. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Stothers, Lynn; Molavi, Behnam; Mutabazi, Sharif; Mukisa, Ronald; Macnab, Andrew
2015-02-01
Background: Prior research indicates the epidermal pigment layer of human skin (Melanin) has a significant absorption coefficient in the near infra-red (NIR) region; hence attenuation of light in vivo is a potential confounder for NIR spectroscopy (NIRS). A NIRS method developed for transcutaneous evaluation of bladder function is being investigated as a means of improving the burden of bladder disease in sub-Saharan Africa. This required development of a simple wireless NIRS device suitable for use as a screening tool in patients with pigmented skin where the NIR light emitted would penetrate through the epidermal pigment layer and return in sufficient quantity to provide effective monitoring. Methods: Two healthy subjects, one with pigmented skin and one with fair skin, were monitored as they voided spontaneously using the prototype transcutaneous NIRS device positioned over the bladder. The device was a self-contained wireless unit with light emitting diodes (wavelengths 760 and 850 nanometres) and interoptode distance of 4cm. The raw optical data were transmitted to a laptop where graphs of chromophore change were generated with proprietary software and compared between the subjects and with prior data from asymptomatic subjects. Results: Serial monitoring was successful in both subjects. Voiding volumes varied between 350 and 380 cc. In each subject the patterns of chromophore change, trend and magnitude of change were similar and matched the physiologic increase in total and oxygenated hemoglobin recognized to occur in normal bladder contraction during voiding. Conclusions: Skin pigmentation does not compromise the ability of transcutaneous NIRS to interrogate physiologic change in the bladder during bladder contraction in healthy subjects.
ScriptingRT: A Software Library for Collecting Response Latencies in Online Studies of Cognition
Schubert, Thomas W.; Murteira, Carla; Collins, Elizabeth C.; Lopes, Diniz
2013-01-01
ScriptingRT is a new open source tool to collect response latencies in online studies of human cognition. ScriptingRT studies run as Flash applets in enabled browsers. ScriptingRT provides the building blocks of response latency studies, which are then combined with generic Apache Flex programming. Six studies evaluate the performance of ScriptingRT empirically. Studies 1–3 use specialized hardware to measure variance of response time measurement and stimulus presentation timing. Studies 4–6 implement a Stroop paradigm and run it both online and in the laboratory, comparing ScriptingRT to other response latency software. Altogether, the studies show that Flash programs developed in ScriptingRT show a small lag and an increased variance in response latencies. However, this did not significantly influence measured effects: The Stroop effect was reliably replicated in all studies, and the found effects did not depend on the software used. We conclude that ScriptingRT can be used to test response latency effects online. PMID:23805326
Sarier, Mehmet; Tekin, Sabri; Duman, İbrahim; Yuksel, Yucel; Demir, Meltem; Alptekinkaya, Furkan; Guler, Mehmet; Yavuz, Asuman Havva; Kosar, Alim
2018-01-01
The aim of this study was to retrospectively evaluate the early and long-term results of renal transplantation (RT) patients undergoing transurethral resection of the prostate (TURP) due to benign prostate hyperplasia (BPH). Eighty-nine patients with RT performed in our hospital underwent TURP between November 2008 and March 2016. Results were evaluated along with early and long-term complications. Patients were followed up for a minimum of 12 months. The mean age of the patients was 61.4 ± 7.4 years. The median duration of dialysis was 28 (0-180) months. The median duration between transplantation and TURP was 13 (0-84) months. Before TURP, the mean serum creatinine (sCr) was 1.99 ± 0.83 mg/dL and the mean prostate volume was 33.3 ± 14.6 cm 3 . The mean Q max , Q ave and PVR values were 9.5 ± 3.7, 5.2 ± 2.2 ml/s and 85(5-480) mL, respectively. None of the patients developed perioperative and postoperative major complications. Twelve patients (13.4%) developed urinary tract infections in the postoperative period. The sCr, IPSS and PVR values significantly decreased, while Q max and Q ave significantly increased at the 1-month follow-up. At the 6-month follow-up, 63 (70.8%) patients had retrograde ejaculation. Patients were followed up for a median of 42 (12-96) months. Three patients (3.3%) were re-operated for bladder neck contracture and eight (8.9%) patients were re-operated for urethral stricture. TURP can be safely and successfully applied for the treatment of BPH after RT. LUTS and renal functions significantly improve after the operation. Patients should be followed up for UTIs in the short term and for urethral stricture in the long term.
Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie
2016-01-01
Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health. PMID:26824897
Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer
2011-01-01
Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors. PMID:21507255
Jagadish, Nirmala; Parashar, Deepak; Gupta, Namita; Agarwal, Sumit; Suri, Vaishali; Kumar, Rajive; Suri, Vitusha; Sadasukhi, Trilok Chand; Gupta, Anju; Ansari, Abdul S; Lohiya, Nirmal Kumar; Suri, Anil
2016-07-29
Colorectal cancer (CRC) is the third leading cause of cancer related deaths worldwide both in men and women. Our recent studies have indicated an association of heat shock protein 70-2 (HSP70-2) with bladder urothelial carcinoma. In the present study, we investigated the association of HSP70-2 with various malignant properties of colorectal cancer cells and clinic-pathological features of CRC in clinical specimens. HSP70-2 mRNA and protein was investigated expression by RT-PCR, immunohistochemistry, immunofluorescence, flow cytometry and Western blotting in CRC clinical specimens and COLO205 and HCT116 cell lines. Plasmid-based gene silencing approach was employed to study the association of HSP70-2 with various malignant properties of COLO205 and HCT116 cells in in vitro and with tumor progression in in vivo COLO205 human xenograft mice model. HSP70-2 expression was detected in 78 % of CRC patients irrespective of various stages and grades by RT-PCR and IHC. Our analysis further revealed that HSP70-2 expression was detected in both COLO205 and HCT116 cell lines. Ablation of HSP70-2 expression resulted in reduced cellular growth, colony forming ability, migratory and invasive ability of CRC cells. In addition, ablation of HSP70-2 expression showed significant reduction in tumor growth in COLO205 human xenograft in in vivo mouse model. Collectively, our results indicate that HSP70-2 is associated with CRC clinical specimens. In addition, down regulation of HSP70-2 expression reduces cellular proliferation and tumor growth indicating that HSP70-2 may be a potential therapeutic target for CRC treatment.
Cultured bladder and tracheobronchial explants from human, monkey, dog, hamster, and rat were used to study the metabolism, covalent binding to DNA, and DNA:adduct formation of (3H0benzo(a)pyrene (BP). Both organs from all species formed large amounts (40 to 70% of total 3H in th...
Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman
2005-01-01
Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968
Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots.
Huang, Shenwen; Shekhar, Himanshu; Holland, Christy K
2017-01-01
Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately.
Occupation and Bladder Cancer in a Population-Based Case-control Study in Northern New England
Colt, Joanne S.; Karagas, Margaret R.; Schwenn, Molly; Baris, Dalsu; Johnson, Alison; Stewart, Patricia; Verrill, Castine; Moore, Lee E.; Lubin, Jay; Ward, Mary H.; Samanic, Claudine; Rothman, Nathaniel; Cantor, Kenneth P.; Beane Freeman, Laura E.; Schned, Alan; Cherala, Sai; Silverman, Debra T.
2010-01-01
Objectives We used data from a large, population-based case-control study in New England to examine relationships between occupation, industry, and bladder cancer risk. Methods Lifetime occupational histories were obtained by personal interview from 1,158 patients newly diagnosed with urothelial carcinoma of the bladder between 2001 and 2004 among residents of Maine, New Hampshire, and Vermont, and from 1,402 population controls selected from Department of Motor Vehicle records (ages 30 to 64 years) or Medicare beneficiary records (65 to 79 years). Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for demographic factors, smoking, and employment in high-risk occupations other than the one being analyzed. Results Male precision metalworkers and metalworking/plasticworking machine operators had significantly elevated risks and significant trends in risk with duration of employment (precision metalworkers: OR=2.2; CI: 1.4, 3.4, Ptrend =0.0065; metalworking/plasticworking machine operators: OR=1.6; CI: 1.01, 2.6, Ptrend=0.047). Other occupations/industries for which risk increased significantly with duration of employment included: for men, textile machine operators, mechanics/repairers, automobile mechanics, plumbers, computer systems analysts, information clerks, and landscape and horticultural services industry workers; and for women, service occupations, health services, cleaning and building services, management-related occupations, electronic components and accessories manufacturing, and transportation equipment manufacturing. Men reporting use of metalworking fluids (MWF) had a significantly elevated bladder cancer risk (OR=1.7; 95% CI: 1.1, 2.5), Conclusions Our findings for metalworkers and for MWF exposure support the hypothesis that some component(s) of MWF may be carcinogenic to the bladder in humans. Our results also corroborate many other previously-reported associations between bladder cancer risk and various occupations. More detailed analyses using information collected in job-specific questionnaires administered in this study may help to identify components of MWF that may be carcinogenic, and other bladder carcinogens to which people are exposed in a variety of occupations. PMID:20864470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wazir, Romel; Luo, De-Yi; Dai, Yi
2013-08-30
Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%,more » 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, JY; Hong, DL
Purpose: To investigate the impact of bladder filling status of the organs at risk (OARs) on dose distribution during intensity modulated radiotherapy (IMRT) for cervical cancer patients. Methods: Twelve cervical cancer patients treated with IMRT were selected for this study. The prescription dose was 45Gy/25 fractions with the 6 MV photon beam. All patients performed two CT scans, one with an empty bladder, the other one with bladder filled. For the registration of two CT scans, the fusion was automatically carried out upon the bony anatomy. The OARs (bladder, rectum, pelvic bone and small intestine) were delineated to planning CTmore » to evaluate the dose distributions. These dose distributions were compared between empty bladder and bladder filling. Results: The bladder volume with empty bladder and bladder filling was 403.2±124.13cc and 101.4±87.5cc, respectively. There were no statistical differences between empty bladder and bladder filling in the mean value of pelvic bone V10Gy, V20Gy, V40Gy; rectum V40Gy and V45Gy. The bladder V40Gy and V45Gy were lower in the bladder filling group than in the empty bladder group (63.7%±5.8% vs 87.5%±7.8%, 45.1%±9.5% vs 62.4%±11.8%, respectively). The V45Gy for small intestine in the bladder filling group was significantly less than the empty bladder group (146.7cc±95.3cc vs 245.7cc±101.8cc). Conclusion: Our study finds that the bladder filling status did not have a significant impact on dose distribution in the rectum and pelvic bone. However, the changes of bladder filling have a large impact on bladder and small intestine doses. A full bladder is strongly recommended during treatment for cervical cancer patients.« less
Harakeh, S; Jariwalla, R J; Pauling, L
1990-01-01
We have studied the action of ascorbate (vitamin C) on human immunodeficiency virus type 1 (HIV-1), the etiological agent clinically associated with AIDS. We report the suppression of virus production and cell fusion in HIV-infected T-lymphocytic cell lines grown in the presence of nontoxic concentrations of ascorbate. In chronically infected cells expressing HIV at peak levels, ascorbate reduced the levels of extracellular reverse transcriptase (RT) activity (by greater than 99%) and of p24 antigen (by 90%) in the culture supernatant. Under similar conditions, no detectable inhibitory effects on cell viability, host metabolic activity, and protein synthesis were observed. In freshly infected CD4+ cells, ascorbate inhibited the formation of giant-cell syncytia (by approximately 93%). Exposure of cell-free virus to ascorbate at 37 degrees C for 1 day had no effect on its RT activity or syncytium-forming ability. Prolonged exposure of virus (37 degrees C for 4 days) in the presence of ascorbate (100-150 micrograms/ml) resulted in the drop by a factor of 3-14 in RT activity as compared to a reduction by a factor of 25-172 in extracellular RT released from chronically infected cells. These results indicate that ascorbate mediates an anti-HIV effect by diminishing viral protein production in infected cells and RT stability in extracellular virions. Images PMID:1698293
Bladder rupture caused by postpartum urinary retention.
Dueñas-García, Omar Felipe; Rico, Hugo; Gorbea-Sanchez, Viridiana; Herrerias-Canedo, Tomas
2008-08-01
Postpartum bladder rupture is an uncommon surgical emergency and a diagnostic challenge. A primigravida delivered a healthy newborn without complications at 39.4 weeks of gestation. The patient was admitted 80 hours postpartum with abdominal pain, oliguria, hematuria, and pain that worsened during the previous 4 hours. An inserted Foley catheter drained only a small amount of urine, and serum creatinine was elevated (3.5 mg/dL). A laparotomy was performed and revealed a 10-cm hole in the urinary bladder. The bladder was repaired and the patient was discharged 15 days after surgery. The follow-up cystoscopy revealed adequate healing of the bladder. Urinary retention can lead to serious complications, including bladder rupture. Postpartum bladder rupture due to urinary retention should be ruled out if there is a history of abdominal pain, oliguria, and elevated of serum creatinine.
Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts.
Wu, Jitao; Yu, Cuicui; Cai, Li; Lu, Youyi; Jiang, Lei; Liu, Chu; Li, Yongwei; Feng, Fan; Gao, Zhenli; Zhu, Zhe; Yu, Shengqiang; Yuan, Hejia; Cui, Yuanshan
2017-08-01
Kindlin-2 is a focal adhesion protein highly expressed in bladder cancer stromal fibroblasts. We investigated the prognostic significance of Kindlin-2 in bladder cancer stromal fibroblasts and evaluated the effects of Kindlin-2 on the malignant behaviors of tumor cells. Immunohistochemical staining of 203 paraffin-embedded bladder cancer tissues showed that Kindlin-2 expression correlated with advanced stage, high grade, and relapse of bladder cancer. Kaplan-Meier survival analysis demonstrated that patients exhibiting high Kindlin-2 expression had shorter survival times than those with low Kindlin-2 expression ( p < 0.01). Multivariate analysis revealed that high Kindlin-2 expression leads to poor prognosis in bladder cancer. Using cancer-associated fibroblasts (CAFs) isolated from human bladder cancer tissue, we observed that Kindlin-2 knockdown decreased CAFs activation, resulting in decreased expression of α-smooth muscle actin (α-SMA) and the extracellular matrix protein fibronectin. Kindlin-2 suppression also reduced CAF-induced bladder cancer cell migration and invasion. Moreover, we found that Kindlin-2 activates CAFs and promotes the invasiveness of bladder cancer cells by stimulating TGF-β-induced epithelial-mesenchymal transition. These results support targeting Kindlin-2 and the corresponding activated CAFs in bladder cancer therapy.
Hernández-Zavala, Araceli; Valenzuela, Olga L; Matousek, Tomás; Drobná, Zuzana; Dĕdina, Jirí; García-Vargas, Gonzalo G; Thomas, David J; Del Razo, Luz M; Stýblo, Miroslav
2008-12-01
The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans. Exfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12-17 pg As for analysis of As species in BECs. All urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine. These results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs.
A Prospective Investigation of Coffee Drinking and Bladder Cancer Incidence in the United States.
Loftfield, Erikka; Freedman, Neal D; Inoue-Choi, Maki; Graubard, Barry I; Sinha, Rashmi
2017-09-01
In 1991, coffee was classified as a group 2B carcinogen, possibly carcinogenic to humans, based on limited epidemiologic evidence of a positive association with bladder cancer. In 2016, the International Agency for Research on Cancer downgraded this classification due to lack of evidence from prospective studies particularly for never smokers. Baseline coffee drinking was assessed with a food frequency questionnaire in the NIH-AARP prospective cohort study. Among 469,047 US adults, who were cancer free at baseline, 6,012 bladder cancer cases (5,088 men and 924 women) were identified during >6.3 million person-years of follow-up. Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI), with non-coffee drinkers as the reference group. Coffee drinking was positively associated with bladder cancer in models adjusted for age and sex (HR for ≥4 cups/d relative to coffee nondrinkers = 1.91, 95% CI = 1.70, 2.14; P trend < 0.0001). However, the association was substantially attenuated after adjustment for cigarette smoking and other potential confounders (HR for ≥4 cups/d relative to coffee nondrinkers = 1.18, 95% CI = 1.05, 1.33; P trend = 0.0007). Associations were further attenuated after additional adjustment for lifetime smoking patterns among the majority of the cohort with this available data (P trend = 0.16). There was no evidence of an association among never smokers (P trend = 0.84). Positive associations between coffee drinking and bladder cancer among ever smokers but not never smokers suggest that residual confounding from imperfect measurement of smoking or unmeasured risk factors may be an explanation for our positive findings.
Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie
2015-05-18
Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Kubota, Akira, E-mail: akubota@whoi.edu
2012-12-01
The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependencemore » of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox-2. ► Failure of swim bladder inflation is mediated via an Ahr2-dependent mechanism. ► PCB126-exposed zebrafish larvae showed upregulation of the oncogene myca.« less
Pathogenesis of Bladder Calculi in the Presence of Urinary Stasis
Childs, M. Adam; Mynderse, Lance A.; Rangel, Laureano J.; Wilson, Torrence M.; Lingeman, James E.; Krambeck, Amy E.
2013-01-01
Purpose Although minimal evidence exists, bladder calculi in men with benign prostatic hyperplasia are thought to be secondary to bladder outlet obstruction induced urinary stasis. We performed a prospective, multi-institutional clinical trial to determine whether metabolic differences were present in men with and without bladder calculi undergoing surgical intervention for benign prostatic hyperplasia induced bladder outlet obstruction. Materials and Methods Men who elected surgery for bladder outlet obstruction secondary to benign prostatic hyperplasia with and without bladder calculi were assessed prospectively and compared. Men without bladder calculi retained more than 150 ml urine post-void residual urine. Medical history, serum electrolytes and 24-hour urinary metabolic studies were compared. Results Of the men 27 had bladder calculi and 30 did not. Bladder calculi were associated with previous renal stone disease in 36.7% of patients (11 of 30) vs 4% (2 of 27) and gout was associated in 13.3% (4 of 30) vs 0% (0 of 27) (p <0.01 and 0.05, respectively). There was no observed difference in the history of other medical conditions or in serum electrolytes. Bladder calculi were associated with lower 24-hour urinary pH (median 5.9 vs 6.4, p = 0.02), lower 24-hour urinary magnesium (median 106 vs 167 mmol, p = 0.01) and increased 24-hour urinary uric acid supersaturation (median 2.2 vs 0.6, p <0.01). Conclusions In this comparative prospective analysis patients with bladder outlet obstruction and benign prostatic hyperplasia with bladder calculi were more likely to have a renal stone disease history, low urinary pH, low urinary magnesium and increased urinary uric acid supersaturation. These findings suggest that, like the pathogenesis of nephrolithiasis, the pathogenesis of bladder calculi is likely complex with multiple contributing lithogenic factors, including metabolic abnormalities and not just urinary stasis. PMID:23159588
Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.
Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N
2007-02-01
We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.
A case-control study on the association between bladder cancer and prior bladder calculus.
Chung, Shiu-Dong; Tsai, Ming-Chieh; Lin, Ching-Chun; Lin, Herng-Ching
2013-03-15
Bladder calculus is associated with chronic irritation and inflammation. As there is substantial documentation that inflammation can play a direct role in carcinogenesis, to date the relationship between stone formation and bladder cancer (BC) remains unclear. This study aimed to examine the association between BC and prior bladder calculus using a population-based dataset. This case-control study included 2,086 cases who had received their first-time diagnosis of BC between 2001 and 2009 and 10,430 randomly selected controls without BC. Conditional logistic regressions were employed to explore the association between BC and having been previously diagnosed with bladder calculus. Of the sampled subjects, bladder calculus was found in 71 (3.4%) cases and 105 (1.1%) controls. Conditional logistic regression analysis revealed that the odds ratio (OR) of having been diagnosed with bladder calculus before the index date for cases was 3.42 (95% CI = 2.48-4.72) when compared with controls after adjusting for monthly income, geographic region, hypertension, diabetes, coronary heart disease, and renal disease, tobacco use disorder, obesity, alcohol abuse, and schistosomiasis, bladder outlet obstruction, and urinary tract infection. We further analyzed according to sex and found that among males, the OR of having been previously diagnosed with bladder calculus for cases was 3.45 (95% CI = 2.39-4.99) that of controls. Among females, the OR was 3.05 (95% CI = 1.53-6.08) that of controls. These results add to the evidence surrounding the conflicting reports regarding the association between BC and prior bladder calculus and highlight a potential target population for bladder cancer screening.
Zhang, Bo; Shen, Cheng; Han, Wen-ke; Yu, Wei
2014-09-15
Urothelial carcinoma (UC) is a common complication after renal replacement therapy (RRT) among Chinese end-stage renal disease (ESRD) patients. It is unclear whether there are any differences in the clinicopathologic characteristics of UC between renal transplantation (RT) and dialysis patients; such differences could impact RRT modality selection. We retrospectively reviewed clinicopathologic data for 27 RT patients and 40 dialysis patients who were diagnosed with UC in our center to explore differences in the clinicopathologic characteristics of UC and prognoses between the two groups. The median follow-up period was 92 months (2-137) for the RT group and 71 months (18-155) for the dialysis group. The demographic and baseline data showed no significant differences between the two groups. Upper urinary tract UC (UUC) occurred more frequently in the RT group (22 UUCs in 39 UCs), whereas bladder UC (BUC) predominated in the dialysis group (33 BUCs in 49 UCs) (P=0.025). The pathologic grading in the RT group was significantly higher than that in the dialysis group (P=0.046 for WHO1973 grading, P=0.026 for WHO2004 grading), whereas the difference in tumor stage was not significant (P=0.089). The RT group manifested a higher recurrence rate than the dialysis group (P=0.024). However, the overall and cancer-specific survival rates between the two groups were not significantly different (P=0.239 and P=0.818, respectively). Certain traits of UC, including tumor site, pathologic grading, and recurrence-free survival, were notably different between RT and dialysis patients, but the overall and cancer-specific survival rates were similar.
Near infrared imaging to identify sentinel lymph nodes in invasive urinary bladder cancer
NASA Astrophysics Data System (ADS)
Knapp, Deborah W.; Adams, Larry G.; Niles, Jacqueline D.; Lucroy, Michael D.; Ramos-Vara, Jose; Bonney, Patty L.; deGortari, Amalia E.; Frangioni, John V.
2006-02-01
Approximately 12,000 people are diagnosed with invasive transitional cell carcinoma of the urinary bladder (InvTCC) each year in the United States. Surgical removal of the bladder (cystectomy) and regional lymph node dissection are considered frontline therapy. Cystectomy causes extensive acute morbidity, and 50% of patients with InvTCC have occult metastases at the time of diagnosis. Better staging procedures for InvTCC are greatly needed. This study was performed to evaluate an intra-operative near infrared fluorescence imaging (NIRF) system (Frangioni laboratory) for identifying sentinel lymph nodes draining InvTCC. NIRF imaging was used to map lymph node drainage from specific quadrants of the urinary bladder in normal dogs and pigs, and to map lymph node drainage from naturally-occurring InvTCC in pet dogs where the disease closely mimics the human condition. Briefly, during surgery NIR fluorophores (human serum albumen-fluorophore complex, or quantum dots) were injected directly into the bladder wall, and fluorescence observed in lymphatics and regional nodes. Conditions studied to optimize the procedure including: type of fluorophore, depth of injection, volume of fluorophore injected, and degree of bladder distention at the time of injection. Optimal imaging occurred with very superficial injection of the fluorophore in the serosal surface of the moderately distended bladder. Considerable variability was noted from dog to dog in the pattern of lymph node drainage. NIR fluorescence was noted in lymph nodes with metastases in dogs with InvTCC. In conclusion, intra-operative NIRF imaging is a promising approach to improve sentinel lymph node mapping in invasive urinary bladder cancer.
3-D ultrasound guidance of surgical robotics: a feasibility study.
Pua, Eric C; Fronheiser, Matthew P; Noble, Joanna R; Light, Edward D; Wolf, Patrick D; von Allmen, Daniel; Smith, Stephen W
2006-11-01
Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.
Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer
Veeranki, Omkara L.; Bhattacharya, Arup; Tang, Li; Marshall, James R.; Zhang, Yuesheng
2015-01-01
Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50–80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues. PMID:26273545
Saito, Ryoichi; Smith, Christof C; Utsumi, Takanobu; Bixby, Lisa M; Kardos, Jordan; Wobker, Sara E; Stewart, Kyle G; Chai, Shengjie; Manocha, Ujjawal; Byrd, Kevin Matthew; Damrauer, Jeffrey S; Williams, Scott E; Vincent, Benjamin G; Kim, William Y
2018-05-21
High-grade urothelial cancer contains intrinsic molecular subtypes that exhibit differences in underlying tumor biology and can be divided into luminal-like and basal-like subtypes. We describe here the first subtype-specific murine models of bladder cancer and show that Upk3a-CreERT2; Trp53L/L; PtenL/L; Rosa26LSL-Luc (UPPL: luminal-like) and BBN (basal-like) tumors are more faithful to human bladder cancer than the widely-used MB49 cells. Following engraftment into immunocompetent C57BL/6 mice, BBN tumors were more responsive to PD-1 inhibition than UPPL tumors. Responding tumors within the BBN model showed differences in immune microenvironment composition, including increased ratios of CD8+:CD4+ and memory:regulatory T cells. Finally, we predicted and confirmed immunogenicity of tumor neoantigens in each model. These UPPL and BBN models will be a valuable resource for future studies examining bladder cancer biology and immunotherapy. Copyright ©2018, American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ning; Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie
Highlights: {yields} Oct3/4-positive cells increase in Schistosoma haematobium (SH)-associated bladder cancer. {yields} iNOS-dependent DNA lesion, 8-nitroguanine, was formed in Oct3/4-positive cells. {yields} 8-Nitroguanine formed in stem-like cells plays a role in SH-induced carcinogenesis. {yields} Mutant stem cells may participate in inflammation-related carcinogenesis. -- Abstract: To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-{kappa}B (NF-{kappa}B) and induciblemore » nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-{kappa}B in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-{kappa}B activation, leading to tumor development.« less
Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong
2016-06-01
Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells.
Takahashi, Ryosuke; Yoshizawa, Tsuyoshi; Yunoki, Takakazu; Tyagi, Pradeep; Naito, Seiji; de Groat, William C; Yoshimura, Naoki
2013-12-01
To clarify the functional and molecular mechanisms inducing hyperexcitability of C-fiber bladder afferent pathways after spinal cord injury we examined changes in the electrophysiological properties of bladder afferent neurons, focusing especially on voltage-gated K channels. Freshly dissociated L6-S1 dorsal root ganglion neurons were prepared from female spinal intact and spinal transected (T9-T10 transection) Sprague Dawley® rats. Whole cell patch clamp recordings were performed on individual bladder afferent neurons. Kv1.2 and Kv1.4 α-subunit expression levels were also evaluated by immunohistochemical and real-time polymerase chain reaction methods. Capsaicin sensitive bladder afferent neurons from spinal transected rats showed increased cell excitability, as evidenced by lower spike activation thresholds and a tonic firing pattern. The peak density of transient A-type K+ currents in capsaicin sensitive bladder afferent neurons from spinal transected rats was significantly less than that from spinal intact rats. Also, the KA current inactivation curve was displaced to more hyperpolarized levels after spinal transection. The protein and mRNA expression of Kv1.4 α-subunits, which can form transient A-type K+ channels, was decreased in bladder afferent neurons after spinal transection. Results indicate that the excitability of capsaicin sensitive C-fiber bladder afferent neurons is increased in association with reductions in transient A-type K+ current density and Kv1.4 α-subunit expression in injured rats. Thus, the Kv1.4 α-subunit could be a molecular target for treating overactive bladder due to neurogenic detrusor overactivity. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Wang, Jiaqi; Fang, Ruizhe; Wang, Lu; Chen, Guang; Wang, Hongzhi; Wang, Zhichao; Zhao, Danfeng; Pavlov, Valentin N; Kabirov, Ildar; Wang, Ziqi; Guo, Pengyu; Peng, Li; Xu, Wanhai
2018-06-27
Emerging novel optical imaging techniques with cancer-specific molecular imaging agents offer a powerful and promising platform for cancer detection and resection. White-light cystoscopy and random bladder biopsies remain the most appropriate but nonetheless suboptimal diagnostic technique for bladder cancer, which is associated with high morbidity and recurrence. However, white-light cystoscopy has intrinsic shortcomings. Although current optical imaging technologies hold great potential for improved diagnostic accuracy, there are few imaging agents for specific molecular targeting. Carbonic anhydrase IX (CAIX) plays a pivotal role in tumorigenesis and tumor progression with potential value as an imaging target. Here, we investigated the feasibility of CAIX as a target and validated the diagnostic performance and significance of CAIX as an imaging agent. We first analyzed the data from The Cancer Genome Atlas (TCGA). Pairs of samples comprising bladder cancer and adjacent normal tissue were collected. All tissue samples were used for real-time PCR and immunohistochemistry to compare CAIX expression in normal and cancer tissue. Using blue-light cystoscopy, we observed the optical distribution of fluorescently labeled CAIX antibody in freshly excised human bladders and obtained random bladder biopsies to assess sensitivity and specificity. The TCGA data revealed that CAIX expression was significantly higher in bladder cancer specimens than in normal tissue. The outcome was similar in quantitative real-time PCR analysis. In immunohistochemical analysis, bladder cancer specimens classified in four pathological subtypes presented a variety of positive staining intensities, whereas no benign specimens showed CAIX staining. Using blue-light cystoscopy, we distinguished bladder cancers that were mainly papillary, some variants of urothelial carcinoma, and less carcinoma in situ, from benign tissue, despite the presence of suspicious-appearing mucosa. The sensitivity and specificity for CAIX-targeted imaging were 88.00% and 93.75%, respectively. CAIX-targeted molecular imaging could be a feasible and adaptive alternative approach for the accurate diagnosis and complete resection of bladder cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.
Du, Xiangnan; Lin, Benjamin C; Wang, Qian-Rena; Li, Hao; Ingalla, Ellen; Tien, Janet; Rooney, Isabelle; Ashkenazi, Avi; Penuel, Elicia; Qing, Jing
2014-12-15
The aim of this study was to identify noninvasive pharmacodynamic biomarkers of FGFR3-targeted therapies in bladder cancer to facilitate the clinical development of experimental agent targeting FGFR3. Potential soluble pharmacodynamic biomarkers of FGFR3 were identified using a combination of transcriptional profiling and biochemical analyses in preclinical models. Two matrix metalloproteinases (MMP), MMP-1 and MMP-10, were selected for further studies in human bladder cancer xenograft models treated with a specific anti-FGFR3 monoclonal antibody, R3Mab. Serum and urinary levels of MMP-1 and MMP-10 were determined in healthy donors and patients with bladder cancer. The modulation of MMP-1 and MMP-10 by R3Mab in patients with bladder cancer was further evaluated in a phase I dose-escalation study. MMP-1 and MMP-10 mRNA and protein were downmodulated by FGFR3 shRNA and R3Mab in bladder cancer cell lines. FGFR3 signaling promoted the expression and secretion of MMP-1 and pro-MMP-10 in a MEK-dependent fashion. In bladder cancer xenograft models, R3Mab substantially blocked tumor progression and reduced the protein levels of human MMP-1 and pro-MMP-10 in tumor tissues as well as in mouse serum. Furthermore, both MMP-1 and pro-MMP-10 were elevated in the urine of patients with advanced bladder cancer. In a phase I dose-escalation trial, R3Mab administration resulted in an acute reduction of urinary MMP-1 and pro-MMP-10 levels in patients with bladder cancer. These findings reveal a critical role of FGFR3 in regulating MMP-1 and pro-MMP-10 expression and secretion, and identify urinary MMP-1 and pro-MMP-10 as potential pharmacodynamic biomarkers for R3Mab in patients with bladder cancer. ©2014 American Association for Cancer Research.
Inorganic arsenic (AsD is a known human bladder carcinogen. The objective of this study was to examine the concentration dependence of the genomic response to ASi in the urinary bladders of mice. C57BL/6J mice were exposed for 1 or 12 weeks to arsenate in drinking water at concen...
Abstract Chronic exposure to inorganic arsenic (iAs) is carcinogenic to the human urinary bladder. It produces urothelial cytotoxicity and proliferation in rats and mice. DMAv, a major methylated urinary metabolite of iAs, is a rat bladder carcinogen, but without effects on the...
New genetic variants of LATS1 detected in urinary bladder and colon cancer.
Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania
2014-01-01
LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.
Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway.
Wang, Dengdian; Kong, Xiaochuan; Li, Yuan; Qian, Weiwei; Ma, Jiaxing; Wang, Daming; Yu, Dexin; Zhong, Caiyun
2017-11-04
Cancer stem cells (CSCs) is responsible for the recurrence of human cancers. Thus, targeting CSCs is considered to be a valid way for human cancer treatment. Curcumin is a major component of phytochemicals that exerts potent anticancer activities. However, the effect of curcumin on bladder cancer stem cells (BCSCs) remains to be elucidated. In this study, we investigated the mechanism of curcumin suppressing bladder cancer stem cells. In this study, UM-UC-3 and EJ cells were cultured in serum-free medium (SFM) to form cell spheres that was characterized as BCSCs. Then cell spheres were separately treated with different concentrations of curcumin and purmorphamine. Cell cycle analysis were used to determine the percentage of cells in different phases. Western blot and quantitative real-time PCR analysis were used to detect the expression of relative molecules. Immunofluorescence staining analysis were also utilized to measure the protein level of CD44. We found that CSC markers, including CD44, CD133, ALDH1-A1, OCT-4 and Nanog, were obviously highly expressed in cell spheres. Moreover, we observed that curcumin reduced the cell spheres formation, decreased the expression of CSC markers, suppressed cell proliferation and induced cell apoptosis. We also found that curcumin inhibited the activation of Shh pathway, while the inhibitory effects of curcumin on BCSCs could be weakened by upregulation of Sonic Hedgehog (Shh) pathway. Altogether, these data suggested that curcumin inhibited the activities of BCSCs through suppressing Shh pathway, which might be an effective chemopreventive agent for bladder cancer intervention. Copyright © 2017. Published by Elsevier Inc.
Development and evaluation of the RT-PCR kit for the rabies virus diagnosis.
Dedkov, Vladimir G; Deviatkin, A A; Poleschuk, E M; Safonova, M V; Markelov, M L; Shipulin, G A
To improve the diagnosis, surveillance, and control for the rabies virus, a kit for hybridization-triggered fluorescence detection of rabies virus DNA by the RT-PCR technique was developed and evaluated. The analytical sensitivity of the kit was 4*10 GE per ml. High specificity of the kit was shown using representative sampling of viral, bacterial, and human nucleic acids.
Yuk, Seung Mo; Shin, Ju Hyun; Song, Ki Hak; Na, Yong Gil; Lim, Jae Sung; Sul, Chong Koo
2015-05-08
We designed this experiment to elucidate the relationship between the expression of brain derived-neurotrophic factor (BDNF), the expression of granulocyte-colony stimulating factor (G-CSF), and the development of overactive bladder (OAB). In our previous study, the urothelium was observed to be more than a simple mechanosensory receptor and was found to be a potential therapeutic target for OAB. Moreover, neuregulin-1 and BDNF were found to be potential new biomarkers of OAB. Here, we investigated the relationship between changes in the voiding pattern and the expression of BDNF and G-CSF in the urothelium and evaluated the effects of 5-hydroxymethyl tolterodine (5-HMT) on rats with bladder outlet obstruction (BOO). A total of 100 Sprague-Dawley rats were divided into the following groups: 20 control rats; 40 BOO rats; and 40 BOO rats administered 5-HMT (0.1 mg/kg). After BOO was induced for 4 weeks, the rats were assessed by cystometrography. The changes in BDNF and G-CSF expression were examined in both separated urothelial tissues and in cultured urothelial cells by reverse transcription polymerase chain reaction (RT-PCR). BOO rats showed increased non-voiding activity [NVA; (number/10 voidings)] and bladder weight and decreased micturition volume (MV), micturition interval (MI), and micturition time (MT) relative to the controls. Moreover, the 5-HMT administration rats showed decreased NVA and bladder weight and increased MV and MI in comparison to the BOO rats. BDNF and G-CSF expression was increased in BOO rats and decreased following 5-HMT administration. In this model, voiding dysfunction developed as a result of BOO. As a therapeutic agent for OAB, the administration of 5-HMT improved the voiding dysfunction. BDNF and G-CSF might modulate voiding patterns through micturition pathways and might be involved only in the urothelium. Moreover, the expression of both genes in the urothelium might be related to voiding dysfunction in OAB patients. Thus, the urothelium has an important role in the manifestation of voiding symptoms.
Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots
Shekhar, Himanshu; Holland, Christy K.
2017-01-01
Introduction Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. Materials and methods An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. Results and conclusions The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately. PMID:28545055
Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis
Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru
2007-01-01
Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%–90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity — a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055
A Rapid and Specific Assay for the Detection of MERS-CoV
Huang, Pei; Wang, Hualei; Cao, Zengguo; Jin, Hongli; Chi, Hang; Zhao, Jincun; Yu, Beibei; Yan, Feihu; Hu, Xingxing; Wu, Fangfang; Jiao, Cuicui; Hou, Pengfei; Xu, Shengnan; Zhao, Yongkun; Feng, Na; Wang, Jianzhong; Sun, Weiyang; Wang, Tiecheng; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu
2018-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that can cause human respiratory disease. The development of a detection method for this virus that can lead to rapid and accurate diagnosis would be significant. In this study, we established a nucleic acid visualization technique that combines the reverse transcription loop-mediated isothermal amplification technique and a vertical flow visualization strip (RT-LAMP-VF) to detect the N gene of MERS-CoV. The RT-LAMP-VF assay was performed in a constant temperature water bath for 30 min, and the result was visible by the naked eye within 5 min. The RT-LAMP-VF assay was capable of detecting 2 × 101 copies/μl of synthesized RNA transcript and 1 × 101 copies/μl of MERS-CoV RNA. The method exhibits no cross-reactivities with multiple CoVs including SARS-related (SARSr)-CoV, HKU4, HKU1, OC43 and 229E, and thus exhibits high specificity. Compared to the real-time RT-PCR (rRT-PCR) method recommended by the World Health Organization (WHO), the RT-LAMP-VF assay is easy to handle, does not require expensive equipment and can rapidly complete detection within 35 min. PMID:29896174
Larson, Jennifer; Yasmin, Tahmina; Sens, Donald A.; Zhou, Xu Dong; Sens, Mary Ann; Garrett, Scott H.; Dunlevy, Jane R.; Cao, Ling; Somji, Seema
2010-01-01
SPARC belongs to a class of extracellular matrix-associated proteins that have counteradhesive properties. The ability of SPARC to modulate cell-cell and cell-matrix interactions provides a strong rationale for studies designed to determine its expression in cancer. The objective of this study was to determine if SPARC expression was altered in cadmium (Cd+2) and arsenite (As+3) induced bladder cancer and if these alterations were present in archival specimens of human bladder cancer. The expression of SPARC was determined in human parental UROtsa cells, their Cd+2 and As+3 transformed counterparts and derived tumors, and in archival specimens of human bladder cancer using a combination of real time reverse transcriptase polymerase chain reaction, western blotting, immunofluoresence localization and immunohistochemical staining. It was demonstrated that SPARC expression was down-regulated in Cd+2 and As+3 transformed UROtsa cells. In addition, the malignant epithelial component of tumors derived from these cell lines were also down-regulated for SPARC expression, but the stromal cells recruited to these tumors was highly reactive for SPARC. This finding was shown to translate to specimens of human bladder cancer where tumor cells were SPARC negative, but stromal cells were positive. Acute exposure of UROtsa cells to both cadmium and arsenite reduced the expression of SPARC through a mechanism that did not involve changes in DNA methylation or histone acetylation. These studies suggest that environmental exposure to As+3 or Cd+2 can alter cell-cell and cell-matrix interactions in normal urothelial cells through a reduction in the expression of SPARC. The SPARC associated loss of cell-cell and cell-matrix contacts may participate in the multi-step process of bladder carcinogenesis. PMID:20837119
Telomerase activity in solid transitional cell carcinoma, bladder washings, and voided urine.
Lance, R S; Aldous, W K; Blaser, J; Thrasher, J B
1998-03-04
Telomerase activity has been detected in a wide variety of human malignancies. It appears to be one of the fundamental ingredients necessary for cellular immortality. We sought to determine the incidence of telomerase activity in solid transitional cell carcinoma (TCC) specimens, benign urothelium, bladder washings, and voided urine from patients with TCC identified cystoscopically compared with controls. Telomerase activity was measured in 26 solid bladder cancers and 13 benign urothelial specimens using the telomere repeat amplification protocol (TRAP), a polymerase chain reaction (PCR) based assay. Telomerase activity was further measured in the centrifuged cellular material obtained from the bladder washings of 26 patients with TCC and 40 with benign urologic disease found to have a normal cystoscopy. All patients with hematuria were additionally evaluated with an upper tract radiographic examination and found to be free of malignancy. Voided urine was likewise evaluated in 11 patients with TCC, 12 with benign urologic diseases, and 56 asymptomatic control subjects. Telomerase activity was detected in 25 of 26 (96%) solid specimens, 21 of 26 (81%) bladder washings, and 6 of 11 (54%) voided urine specimens from patients with histologically confirmed TCC. In the control group, 2 of 13 (15%) benign urothelial specimens and 2 of 56 (4%) voided urine specimens from the asymptomatic volunteer group demonstrated telomerase activity. Of those with benign urologic disease, 16 of 40 (40%) bladder barbotage specimens and 6 of 12 (50%) voided urine specimens demonstrated telomerase activity. Sensitivity and specificity of telomerase as a marker for TCC were 81% and 60%, respectively, in the bladder washings group and 54% and 50%, respectively, in voided urine. These data indicate that activation of telomerase is frequent in solid TCC and appears to be a sensitive marker in bladder washings of patients with TCC. We noted an unexpectedly high false positive detection rate in patients with benign urologic diseases, especially those with symptomatic benign prostatic hyperplasia. An additional study of a larger number of both bladder cancer patients and those at risk is necessary to determine if telomerase activity could play a role as a diagnostic and/or surveillance marker of TCC. Published by Elsevier Science Inc.
Pili, Roberto; Qin, Rui; Flynn, P.J.; Picus, Joel; Millward, Michael; Ho, Wing Ming; Pitot, Henry; Tan, Winston; Miles, Kiersten M.; Erlichman, Charles; Vaishampayan, Ulka
2013-01-01
Vascular endothelial growth factor (VEGF) is expressed in human bladder tumors. A phase II study was conducted to assess the VEGF inhibitor pazopanib in patients with metastatic, urothelial carcinoma. Nineteen patients with one prior systemic therapy were enrolled. No objective responses were observed and median progression-free survival was 1.9 months. The role of anti-VEGF therapies in urothelial carcinoma remains to be determined. Background Vascular endothelial growth factor (VEGF) is produced by bladder cancer cell lines in vitro and expressed in human bladder tumor tissues. Pazopanib is a vascular endothelial receptor tyrosine kinase inhibitor with anti-angiogenesis and anti-tumor activity in several preclinical models. A 2-stage phase II study was conducted to assess the activity and toxicity profile of pazopanib in patients with metastatic, urothelial carcinoma. Methods Patients with one prior systemic therapy for metastatic urothelial carcinoma were eligible. Patients received pazopanib at a dose of 800 mg orally for a 4-week cycle. Results Nineteen patients were enrolled. No grade 4 or 5 events were experienced. Nine patients experienced 11 grade 3 adverse events. Most common toxicities were anemia, thrombocytopenia, leucopenia, and fatigue. For stage I, none of the first 16 evaluable patients were deemed a success (complete response or partial response) by the Response Evaluation Criteria In Solid Tumors criteria during the first four 4-week cycles of treatment. Median progression-free survival was 1.9 months. This met the futility stopping rule of interim analysis, and therefore the trial was recommended to be permanently closed. Conclusions Pazopanib did not show significant activity in patients with urothelial carcinoma. The role of anti-VEGF therapies in urothelial carcinoma may need further evaluation in rational combination strategies. PMID:23891158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, Brian C.; He, Jiwei; Hwang, Wei-Ting
Purpose: To inform prospective trials of adjuvant radiation therapy (adj-RT) for bladder cancer after radical cystectomy, a locoregional failure (LF) risk stratification was proposed. This stratification was developed and validated using surgical databases that may not reflect the outcomes expected in prospective trials. Our purpose was to assess sources of bias that may affect the stratification model's validity or alter the LF risk estimates for each subgroup: time bias due to evolving surgical techniques; trial accrual bias due to inclusion of patients who would be ineligible for adj-RT trials because of early disease progression, death, or loss to follow-up shortlymore » after cystectomy; bias due to different statistical methods to estimate LF; and subgrouping bias due to different definitions of the LF subgroups. Methods and Materials: The LF risk stratification was developed using a single-institution cohort (n=442, 1990-2008) and the multi-institutional SWOG 8710 cohort (n=264, 1987-1998) treated with radical cystectomy with or without chemotherapy. We evaluated the sensitivity of the stratification to sources of bias using Fine-Gray regression and Kaplan-Meier analyses. Results: Year of radical cystectomy was not associated with LF risk on univariate or multivariate analysis after controlling for risk group. By use of more stringent inclusion criteria, 26 SWOG patients (10%) and 60 patients from the single-institution cohort (14%) were excluded. Analysis of the remaining patients confirmed 3 subgroups with significantly different LF risks with 3-year rates of 7%, 17%, and 36%, respectively (P<.01), nearly identical to the rates without correcting for trial accrual bias. Kaplan-Meier techniques estimated higher subgroup LF rates than competing risk analysis. The subgroup definitions used in the NRG-GU001 adj-RT trial were validated. Conclusions: These sources of bias did not invalidate the LF risk stratification or substantially change the model's LF estimates.« less
Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.
2014-01-01
Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013
Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa
2014-02-01
Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.
Clinical significance and biological roles of CARMA3 in human bladder carcinoma.
Man, Xiaojun; He, Jiani; Kong, Chuize; Zhu, Yuyan; Zhang, Zhe
2014-05-01
Caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) was reported as an oncoprotein overexpressed in several cancers. The expression pattern of CARMA3 and its clinical significance in human bladder cancer have not been well characterized. In the present study, CARMA3 expression was analyzed in 90 archived bladder cancer specimens using immunohistochemistry, and the correlation between CARMA3 expression and clinicopathological parameters was evaluated. We found that CARMA3 was overexpressed in 35 of 90 (38.8%) bladder cancer specimens. Significant association was observed between CARMA3 overexpression with tumor status (p = 0.081) and tumor grade (p = 0.027). To further explore the biological functions of CARMA3 in bladder cancer, we depleted CARMA3 in T24 and 5637 cell lines using small interfering RNA (siRNA). Using cell counting kit-8 (CCK8) assay and colony formation assay, we were able to show that CARMA3 depletion inhibited cell proliferation and colony number. Further study demonstrated that CARMA3 depletion decreased an expression of nuclear factor kappa B (NF-κB) targets cyclin D1 and Bcl-2 expression, as well as IκB phosphorylation. Luciferase reporter assay showed that CARMA3 depletion could downregulate NF-κB reporter activity. In conclusion, CARMA3 is overexpressed in bladder cancer and regulates malignant cell growth and NF-κB signaling, which makes CARMA3 a candidate therapeutic target for bladder cancer.
Identification of "tumor-associated" nucleolar antigens in human urothelial cancer.
Yu, D; Pietro, T; Jurco, S; Scardino, P T
1987-09-01
Nucleoli isolated from HeLa S3 cells were used to produce rabbit antisera capable of binding nucleoli of transitional cell carcinomas (TCCa) of the bladder. Cross-reactivity of the rabbit antiserum with normal nucleoli was reduced by absorption with fetal calf serum, normal human serum, and human placental nucleoli. This antinucleolar antiserum exhibited strong reactivity in immunoperoxidase assays performed on specimens of human bladder cancer. In frozen tissue sections of 24 patients with TCCa and eight individuals without tumor, nucleolar staining was observed in all malignant specimens, but was not observed in seven of the normal specimens. Cytologic examination of bladder washing specimens from 47 normal individuals showed absence of nucleolar staining in 43 (91%) of 47 normal specimens while 12 (86%) of 14 specimens from patients with TCCa were positive. These results suggest that there are antigens associated with the nucleoli of HeLa cells and transitional cell carcinomas which are generally absent (or in low concentration) in normal human urothelial cells, and that antisera to these antigens may be useful in the cytologic diagnosis of human transitional cell carcinoma.
Chen, Jun-Feng; Yu, Bi-Xia; Yu, Rui; Ma, Liang; Lv, Xiu-Yi; Cheng, Yue; Ma, Qi
2017-02-01
Epirubicin (EPI) is one of the most used intravesical chemotherapy agents after transurethral resection to non-muscle invasive bladder tumors (NMIBC) to prevent cancer recurrence and progression. However, even after resection of bladder tumors and intravesical chemotherapy, half of them will recur and progress. RON is a membrane tyrosine kinase receptor usually overexpressed in bladder cancer cells and associated with poor pathological features. This study aims to investigate the effects of anti-RON monoclonal antibody Zt/g4 on the chemosensitivity of bladder cells to EPI. After Zt/g4 treatment, cell cytotoxicity was significantly increased and cell invasion was markedly suppressed in EPI-treated bladder cancer cells. Further investigation indicated that combing Zt/g4 with EPI promoted cell G1/S-phase arrest and apoptosis, which are the potential mechanisms that RON signaling inhibition enhances chemosensitivity of EPI. Thus, combing antibody-based RON targeted therapy enhances the therapeutic effects of intravesical chemotherapy, which provides new strategy for further improvement of NMIBC patient outcomes.
Cropley, Vanessa L; Fujita, Masahiro; Musachio, John L; Hong, Jinsoo; Ghose, Subroto; Sangare, Janet; Nathan, Pradeep J; Pike, Victor W; Innis, Robert B
2006-01-01
The present study estimated radiation-absorbed doses of the dopamine D(1) receptor radioligand [(11)C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Whole-body PET was performed on 7 subjects after injection of 710 +/- 85 MBq of (11)C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 microSv/MBq (21.1 mrem/mCi). (11)C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject.
Mayhew, David L.; Kim, Jeong-su; Cross, James M.; Ferrando, Arny A.
2009-01-01
While skeletal muscle protein accretion during resistance training (RT)-mediated myofiber hypertrophy is thought to result from upregulated translation initiation signaling, this concept is based on responses to a single bout of unaccustomed resistance exercise (RE) with no measure of hypertrophy across RT. Further, aging appears to affect acute responses to RE, but whether age differences in responsiveness persist during RT leading to impaired RT adaptation is unclear. We therefore tested whether muscle protein fractional synthesis rate (FSR) and Akt/mammalian target of rapamycin (mTOR) signaling in response to unaccustomed RE differed in old vs. young adults, and whether age differences in acute responsiveness were associated with differences in muscle hypertrophy after 16 wk of RT. Fifteen old and 21 young adult subjects completed the 16-wk study. The phosphorylation states of Akt, S6K1, ribosomal protein S6 (RPS6), eukaryotic initiation factor 4E (eIF4E) binding protein (4EBP1), eIF4E, and eIF4G were all elevated (23–199%) 24 h after a bout of unaccustomed RE. A concomitant 62% increase in FSR was found in a subset (6 old, 8 young). Age × time interaction was found only for RPS6 phosphorylation (+335% in old subjects only), while there was an interaction trend (P = 0.084) for FSR (+96% in young subjects only). After 16 wk of RT, gains in muscle mass, type II myofiber size, and voluntary strength were similar in young and old subjects. In conclusion, at the level of translational signaling, we found no evidence of impaired responsiveness among older adults, and for the first time, we show that changes in translational signaling after unaccustomed RE were associated with substantial muscle protein accretion (hypertrophy) during continued RT. PMID:19589955
Secondary signet-ring cell adenocarcinoma of urinary bladder from a gastric primary.
Sharma, Pramod K; Vijay, Mukesh K; Das, Ranjit K; Chatterjee, Uttara
2011-05-01
Primary bladder tumor is a frequent urological malignancy, whereas the incidence of secondary bladder tumor from a distant organ is quite rare. Secondary bladder neoplasms represent 1% of all malignant bladder tumors, of which distant metastases from stomach account for about 4% of cases. We present the case of a 30-year-old male who underwent partial gastrectomy for Signet-ring cell carcinoma of the stomach and presented 2 years later with hematuria. On computerized tomography scan, a bladder tumor was found which was resected cystoscopically. The histopathological examination revealed secondary Signet-ring cell adenocarcinoma of the urinary bladder.
In situ mechanical characterization of the cell nucleus by atomic force microscopy.
Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu
2014-04-22
The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.
Shetty, Saurabha; Majumder, Dipanjan; Adurkar, Pranjal; Swamidas, Jamema; Engineer, Reena; Chopra, Supriya; Shrivastava, Shyamkishore
2017-01-01
Purpose The aim of this study is to compare 3D dose volume histogram (DVH) parameters of bladder and other organs at risk with different bladder filling protocol during high-dose-rate intracavitary brachytherapy (HDR-ICBT) in cervical cancer, and to find optimized bladder volume. Material and methods This dosimetric study was completed with 21 patients who underwent HDR-ICBT with computed tomography/magnetic resonance compatible applicator as a routine treatment. Computed tomography planning was done for each patient with bladder emptied (series 1), after 50 ml (series 2), and 100 ml (series 3) bladder filling with a saline infusion through the bladder catheter. Contouring was done on the Eclipse Planning System. 7 Gy to point A was prescribed with the standard loading patterns. Various 3D DVH parameters including 0.1 cc, 1 cc, 2 cc doses and mean doses to the OAR’s were noted. Paired t-test was performed. Results The mean (± SD) bladder volume was 64.5 (± 25) cc, 116.2 (± 28) cc, and 172.9 (± 29) cc, for series 1, 2, and 3, respectively. The 0.1 cm3,1 cm3, 2 cm3 mean bladder doses for series 1, series 2, and series 3 were 9.28 ± 2.27 Gy, 7.38 ± 1.72 Gy, 6.58 ± 1.58 Gy; 9.39 ± 2.28 Gy, 7.85 ± 1.85 Gy, 7.05 ± 1.59 Gy, and 10.09 ± 2.46 Gy, 8.33 ± 1.75 Gy, 7.6 ± 1.55 Gy, respectively. However, there was a trend towards higher bladder doses in series 3. Similarly, for small bowel dose 0.1 cm3, 1 cm3, and 2 cm3 in series 1, 2, and 3 were 5.44 ± 2.2 Gy, 4.41 ± 1.84 Gy, 4 ± 1.69 Gy; 4.57 ± 2.89 Gy, 3.78 ± 2.21 Gy, 3.35 ± 2.02 Gy, and 4.09 ± 2.38 Gy, 3.26 ± 1.8 Gy, 3.05 ± 1.58 Gy. Significant increase in small bowel dose in empty bladder (series 1) compared to full bladder (series 3) (p = 0.03) was noted. However, the rectal and sigmoid doses were not significantly affected with either series. Conclusions Bladder filling protocol with 50 ml and 100 ml was well tolerated and achieved a reasonably reproducible bladder volume during cervical brachytherapy. In our analysis so far, there is no significant impact of bladder filling on DVH parameters, although larger bladders tend to have higher doses. Small bowel doses are lesser with higher bladder volumes. Further evaluation and validation are necessary. PMID:28533798
Primary urinary bladder haemangiosarcoma in a captive saddleback tamarin (Saguinus fuscicollis).
Gonzales-Viera, Omar; Quevedo, Tatiana; Chavera, Alfonso; Perales-Camacho, Rosa; Grandi, Fabrizio; Catão-Dias, José L
2014-08-01
A captive adult male saddleback tamarin, Saguinus fuscicollis, was lethargic, unresponsive to its surrounding and died before medical care. Necroscopic, histopathological and immunohistochemical examinations were performed. Neoplastic spindle cells of the urinary bladder were positive for antifactor VIII antibody. A primary urinary bladder haemangiosarcoma was diagnosed, and it has not been previously reported in non-human primates. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Continuous registration of the filling volume of the human urinary bladder].
Preussner, P R
1991-11-01
A sensing system for continuous recording of bladder volume is described. The system is intended for use in particular in patients with paraplegia or bladder plastique. Owing to the very simple measuring procedure employed the implantable components can be designed for very low power consumption. Also, there is no need for an additional data transfer from inside the body to the exterior, because measurement and telemetry are physically the same procedures.
TU, Frank F.; EPSTEIN, Aliza E.; POZOLO, Kristen E.; SEXTON, Debra L.; MELNYK, Alexandra I.; HELLMAN, Kevin M.
2012-01-01
Objective Catheterization to measure bladder sensitivity is aversive and hinders human participation in visceral sensory research. Therefore, we sought to characterize the reliability of sonographically-estimated female bladder sensory thresholds. To demonstrate this technique’s usefulness, we examined the effects of self-reported dysmenorrhea on bladder pain thresholds. Methods Bladder sensory threshold volumes were determined during provoked natural diuresis in 49 healthy women (mean age 24 ± 8) using three-dimensional ultrasound. Cystometric thresholds (Vfs – first sensation, Vfu – first urge, Vmt – maximum tolerance) were quantified and related to bladder urgency and pain. We estimated reliability (one-week retest and interrater). Self-reported menstrual pain was examined in relationship to bladder pain, urgency and volume thresholds. Results Average bladder sensory thresholds (mLs) were Vfs (160±100), Vfu (310±130), and Vmt (500±180). Interrater reliability ranged from 0.97–0.99. One-week retest reliability was Vmt = 0.76 (95% CI 0.64–0.88), Vfs = 0.62 (95% CI 0.44–0.80), and Vfu = 0.63, (95% CI 0.47–0.80). Bladder filling rate correlated with all thresholds (r = 0.53–0.64, p < 0.0001). Women with moderate to severe dysmenorrhea pain had increased bladder pain and urgency at Vfs and increased pain at Vfu (p’s < 0.05). In contrast, dysmenorrhea pain was unrelated to bladder capacity. Discussion Sonographic estimates of bladder sensory thresholds were reproducible and reliable. In these healthy volunteers, dysmenorrhea was associated with increased bladder pain and urgency during filling but unrelated to capacity. Plausibly, dysmenorrhea sufferers may exhibit enhanced visceral mechanosensitivity, increasing their risk to develop chronic bladder pain syndromes. PMID:23370073
HAMLET treatment delays bladder cancer development.
Mossberg, Ann-Kristin; Hou, Yuchuan; Svensson, Majlis; Holmqvist, Bo; Svanborg, Catharina
2010-04-01
HAMLET is a protein-lipid complex that kills different types of cancer cells. Recently we observed a rapid reduction in human bladder cancer size after intravesical HAMLET treatment. In this study we evaluated the therapeutic effect of HAMLET in the mouse MB49 bladder carcinoma model. Bladder tumors were established by intravesical injection of MB49 cells into poly L-lysine treated bladders of C57BL/6 mice. Treatment groups received repeat intravesical HAMLET instillations and controls received alpha-lactalbumin or phosphate buffer. Effects of HAMLET on tumor size and putative apoptotic effects were analyzed in bladder tissue sections. Whole body imaging was used to study HAMLET distribution in tumor bearing mice compared to healthy bladder tissue. HAMLET caused a dose dependent decrease in MB49 cell viability in vitro. Five intravesical HAMLET instillations significantly decreased tumor size and delayed development in vivo compared to controls. TUNEL staining revealed selective apoptotic effects in tumor areas but not in adjacent healthy bladder tissue. On in vivo imaging Alexa-HAMLET was retained for more than 24 hours in the bladder of tumor bearing mice but not in tumor-free bladders or in tumor bearing mice that received Alexa-alpha-lactalbumin. Results show that HAMLET is active as a tumoricidal agent and suggest that topical HAMLET administration may delay bladder cancer development. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Swaminathan, Santhanam; Torino, Jennifer L; Burger, Melissa S
2002-01-29
The effect of the tumor suppressor gene TP53 on repair of genomic DNA damage was examined in human urinary bladder transitional cell carcinoma (TCC) cell lines. Utilizing TCC10 containing wild-type p53 (wt-p53) as the parental line, an isogenic set of cell lines was derived by retroviral infection that expressed a transdominant mutant p53 (Arg --> His at codon 273, TDM273-TCC10), or the human papilloma virus 16-E6 oncoprotein (E6-TCC10). 32P-postlabeling analyses were performed on DNA from TCC cultures obtained after treatment with N-hydroxy-4-aminobiphenyl (N-OH-ABP), N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) and N-acetoxy-4-acetylaminobiphenyl (N-OAc-AABP). The major adduct was identified as N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) with all three chemicals. The amount of adducts in urothelial DNA ranged between 0.1 and 20 per 10(6) nucleotides, N-OAc-AABP yielding the highest levels, followed by N-OH-ABP and N-OH-AABP. To determine, if the functional status of p53 affects the rate of repair of dG-C8-ABP in genomic DNA, TCC10 and the TDM273-TCC10 and E6-TCC10 isotypes were exposed to N-OH-AABP for 12h and the DNA damage was allowed to repair up to 24h. The adduct levels were quantified and compared between the TCC10 isotypes. The amounts of dG-C8-ABP that remained in genomic DNA from E6-TCC10 and TDM273-TCC10 were approximately two-fold higher, as compared to the parental TCC10. At the dose used for DNA repair studies, N-OH-AABP or N-OAc-AABP did not induce apoptosis in TCC10. However, N-OAc-AABP at high doses (>5 microM) induced apoptosis, as evidenced by DNA fragmentation analyses. Furthermore, N-OAc-AABP-mediated apoptosis was independent of the functional status of wt-p53, since both E6-TCC10 and the parental TCC10 exhibited DNA fragmentation following treatment. These results suggest that p53 might modulate the repair of DNA adducts generated from the human bladder carcinogen ABP in its target human uroepithelial cells. This implies that in p53 null cells the unrepaired DNA damage could cause accumulation of mutation, which might contribute to increased genomic instability and neoplastic progression.
Kauffman, Eric C; Robinson, Brian D; Downes, Martin J; Powell, Leagh G; Lee, Ming Ming; Scherr, Douglas S; Gudas, Lorraine J; Mongan, Nigel P
2011-12-01
Bladder cancer is approximately three times more common in men as compared to women. We and others have previously investigated the contribution of androgens and the androgen receptor (AR) to bladder cancer. JMJD2A and LSD1 are recently discovered AR coregulator proteins that mediate AR-dependent transcription via recently described histone lysine-demethylation (KDM) mechanisms. We used immunohistochemistry to examine JMJD2A, LSD1, and AR expression in 72 radical cystectomy specimens, resulting in evaluation of 129 tissue samples (59 urothelial carcinoma, 70 benign). We tested levels of these proteins for statistical association with clinicopathologic variables and patient survival. Expression of these markers was also assessed in human bladder cancer cell lines. The effects of pharmacological inhibition of LSD1 on the proliferation of these bladder cancer cells was determined. JMJD2A and AR levels were significantly lower in malignant versus benign urothelium, while increased LSD1 levels were observed in malignant urothelium relative to benign. A significant reduction in all three proteins occurred with cancer stage progression, including muscle invasion (JMJD2A/LSD1/AR), extravesical extension (JMJD2A/LSD1), and lymph node metastasis (JMJD2A/AR). Lower JMJD2A intensity correlated with additional poor prognostic features, including lymphovascular invasion, concomitant carcinoma in situ and tobacco usage, and predicted significantly worse overall survival. Pharmacological inhibition of LSD1 suppressed bladder cancer cell proliferation and androgen-induced transcription. Our results support a novel role for the AR-KDM complex in bladder cancer initiation and progression, identify JMJD2A as a promising prognostic biomarker, and demonstrate targeting of the KDM activity as an effective potential approach for bladder cancer growth inhibition. Copyright © 2011 Wiley Periodicals, Inc.
p63 expression defines a lethal subset of muscle-invasive bladder cancers.
Choi, Woonyoung; Shah, Jay B; Tran, Mai; Svatek, Robert; Marquis, Lauren; Lee, I-Ling; Yu, Dasom; Adam, Liana; Wen, Sijin; Shen, Yu; Dinney, Colin; McConkey, David J; Siefker-Radtke, Arlene
2012-01-01
p63 is a member of the p53 family that has been implicated in maintenance of epithelial stem cell compartments. Previous studies demonstrated that p63 is downregulated in muscle-invasive bladder cancers, but the relationship between p63 expression and survival is not clear. We used real-time PCR to characterize p63 expression and several genes implicated in epithelial-to-mesenchymal transition (EMT) in human bladder cancer cell lines (n = 15) and primary tumors (n = 101). We correlated tumor marker expression with stage, disease-specific (DSS), and overall survival (OS). Expression of E-cadherin and p63 correlated directly with one another and inversely with expression of the mesenchymal markers Zeb-1, Zeb-2, and vimentin. Non-muscle-invasive (Ta and T1) bladder cancers uniformly expressed high levels of E-cadherin and p63 and low levels of the mesenchymal markers. Interestingly, a subset of muscle-invasive (T2-T4) tumors maintained high levels of E-cadherin and p63 expression. As expected, there was a strongly significant correlation between EMT marker expression and muscle invasion (p<0.0001). However, OS was shorter in patients with muscle-invasive tumors that retained p63 (p = 0.007). Our data confirm that molecular markers of EMT are elevated in muscle-invasive bladder cancers, but interestingly, retention of the "epithelial" marker p63 in muscle-invasive tumors is associated with a worse outcome.
Bladder pain in an LL-37 interstitial cystitis and painful bladder syndrome model.
Jia, Wanjian; Schults, Austin J; Jensen, Mark Martin; Ye, Xiangyang; Alt, Jeremiah A; Prestwich, Glenn D; Oottamasathien, Siam
2017-01-01
Our goal was to evaluate the pain response in an LL-37 induced murine model for interstitial cystitis/painful bladder syndrome (IC/PBS). In particular, we sought to characterize the dose dependence, time-course, and relationship of LL-37 induced bladder inflammation and pain. The IC/PBS model was induced in C57Bl/6 mice by instilling 50 μL of LL-37, an immunomodulatory human cathelicidin (anti-microbial peptide), in the bladder for 1 hr. Pain responses were measured using von Frey filaments (0.04 gm to 4.0 gm) before and after LL-37 instillation. Inflammation was evaluated using tissue myeloperoxidase (MPO) assay, gross inspection, and microscopic histologic examination. The dose response experiment demonstrated a graded pain response, with higher concentrations of LL-37 challenge yielding higher pain responses across all stimuli tested. Statistical significance was seen when comparing 1.0 gm von Frey filament results at 320 μM (68 ± 8% response) vs. 0 μM (38 ± 6% response). Interestingly, pain responses did not attenuate across time but increased significantly after 5 (p=0.0012) and 7 days (p=0.0096). Comparison with MPO data suggested that pain responses could be independent of inflammation. We demonstrated within our LL-37 induced IC/PBS model pain occurs in a dose-dependent fashion, pain responses persist beyond the initial point of insult, and our dose response and time course experiments demonstrated that pain was independent of inflammation.
Bladder stones after bladder augmentation are not what they seem.
Szymanski, Konrad M; Misseri, Rosalia; Whittam, Benjamin; Lingeman, James E; Amstutz, Sable; Ring, Joshua D; Kaefer, Martin; Rink, Richard C; Cain, Mark P
2016-04-01
Bladder and renal calculi after bladder augmentation are thought to be primarily infectious, yet few studies have reported stone composition. The primary aim was to assess bladder stone composition after augmentation, and renal stone composition in those with subsequent nephrolithiasis. The exploratory secondary aim was to screen for possible risk factors for developing infectious stones. Patients treated for bladder stones after bladder augmentation at the present institution between 1981 and 2012 were retrospectively reviewed. Data were collected on demographics, surgeries and stone composition. Patients without stone analysis were excluded. Stones containing struvite, carbonate apatite or ammonium acid ureate were classified as infectious. The following variables were analyzed for a possible association with infectious bladder stone composition: gender, history of cloacal exstrophy, ambulatory status, nephrolithiasis, recurrent urea-splitting urinary tract infections, first vs recurrent stones, timing of presentation with a calculus, history of bladder neck procedures, catheterizable channel and vesicoureteral reflux. Fisher's exact test was used for analysis. Of the 107 patients with bladder stones after bladder augmentation, 85 met inclusion criteria. Median age at augmentation was 8.0 years (follow-up 10.8 years). Forty-four patients (51.8%) recurred (14 multiple recurrences, 143 bladder stones). Renal calculi developed in 19 (22.4%) patients with a bladder stone, and 10 (52.6%) recurred (30 renal stones). Overall, 30.8% of bladder stones were non-infectious (Table). Among patients recurring after an infectious bladder stone, 30.4% recurred with a non-infectious one. Among patients recurring after a non-infectious stone, 84.6% recurred with a non-infectious one (P = 0.005). Compared with bladder stones, renal stones were more likely to be non-infectious (60.0%, P = 0.003). Of patients with recurrent renal calculi after an infectious stone, 40.0% recurred with a non-infectious one. No clinical variables were significantly associated with infectious stone composition on univariate (≥0.28) or bivariate analysis (≥0.36). This study had several limitations: it was not possible to accurately assess adherence with bladder irrigations, and routine metabolic evaluations were not performed. The findings may not apply to patients in all clinical settings. While stone analysis was available for 3/4 of the stones, similar rates of incomplete stone analyses have been reported in other series. In patients with bladder augmentation, 1/3 of bladder stones and >1/2 of renal stones were non-infectious. Furthermore, an infectious stone does not imply an infectious recurrent stone and no known clinical variables appear to be associated with stone composition, suggesting that there is a possible metabolic component in stone formation after bladder augmentation. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
2018-06-08
Infiltrating Bladder Urothelial Carcinoma; Recurrent Bladder Carcinoma; Stage I Prostate Cancer; Stage I Renal Cell Cancer; Stage II Bladder Urothelial Carcinoma; Stage II Renal Cell Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer
[Clinical study of bladder injury].
Abe, Kazuhiro; Oishi, Yukihiko; Onodera, Syoichi; Ikemoto, Isao; Kiyota, Hiroshi; Asano, Koji; Ueda, Masataka; Wada, Tetsuro; Tashiro, Kazuya
2002-03-01
Since bladder injury has no specific clinical symptoms, accurate diagnosis at first consultation is relatively difficult. To elucidate the clinical characters type of injury, clinical symptoms, laboratory findings, methods of therapy and diagnosis, we reviewed 15 patients with bladder injury over a 9-year-period 1990-1998 (10 were traumatic injuries and 5 spontaneous injuries). We found no specific clinical symptom of bladder injury. Bladder injury may occur anywhere in the bladder wall, but most commonly occurred at the dome of the bladder (60.0%). Gross hematuria was not seen in 40.0% of the cases. The accuracy of diagnosis at first consultation was relatively low (46.7%) and the tendency to make a misdiagnosis as acute abdomen on digestive organs was found. Of the traumatic injuries 60% were afflicted in the drunken state, so alcohol intoxication was considered as an important enviromental factor of bladder injury. Surgical repair of injury sites was employed in 11 cases (73.3%: 7 were intraperitoneal injuries, 4 were extraperitoneal injuries), 4 cases were managed with indwelling urethral catheter. With appropriate treatment, the prognosis is excellent.
Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon
2017-02-04
Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel therapeutic strategy to treat advanced bladder cancer.
Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N
2007-05-01
Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment. This inhibition may prove beneficial for treating superficial bladder cancer with adenovirus mediated interferon-alpha and hopefully contribute to a decreased recurrence rate of this neoplasm.
1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models
Ma, Yingyu; Yu, Wei-Dong; Trump, Donald L.; Johnson, Candace S.
2010-01-01
Background 1,25 dihydroxyvitamin D3 (1,25D3) potentiates the cytotoxic effects of several common chemotherapeutic agents. The combination of gemcitabine and cisplatin (GC) is a current standard chemotherapy regimen for bladder cancer. We investigated whether 1,25D3 could enhance the antitumor activity of GC in bladder cancer model systems. Methods Human bladder cancer T24 and UMUC3 cells were pretreated with 1,25D3 followed by GC. Apoptosis were assessed by annexin V staining. Caspase activation was examined by immunoblot analysis and substrate-based caspase activity assay. The cytotoxic effects were examined using MTT and in vitro clonogenic assay. p73 protein levels were assessed by immunoblot analysis. Knockdown of p73 was achieved by siRNA. The in vivo antitumor activity was assessed by in vivo excision clonogenic assay and tumor regrowth delay in the T24 xenograft model. Results 1,25D3 pretreatment enhanced GC-induced apoptosis and the activities of caspases- 8, 9 and 3 in T24 and UMUC3 cells. 1,25D3 synergistically reduced GC-suppressed surviving fraction in T24 cells. 1,25D3, gemcitabine, or cisplatin induced p73 accumulation, which was enhanced by GC or 1,25D3 and GC. p73 expression was lower in human primary bladder tumor tissue compared with adjacent normal tissue. Knockdown of p73 increased clonogenic capacity of T24 cells treated with 1,25D3, GC or 1,25D3 and GC. 1,25D3 and GC combination enhanced tumor regression compared with 1,25D3 or GC alone. Conclusions 1,25D3 potentiates GC-mediated growth inhibition in human bladder cancer models in vitro and in vivo, which involves p73 induction and apoptosis. PMID:20564622
GENE EXPRESSION CHANGES IN MOUSE BLADDER TISSUE IN RESPONSE TO INORGANIC ARSENIC
Chronic human exposures to high arsenic concentrations are associated with lung, skin, and bladder cancer. Considerable controversy exists concerning arsenic mode of action and low dose extrapolation. This investigation was designed to identify dose-response changes in gene expre...
BROMINATED TRIHALOMETHANE (BrTHM) TOXICITY IN HUMAN BLADDER CELL LINES
Epidemiology studies have consistently found that greater exposure to drinking water disinfection byproducts (DBPs) is associated with an increased risk for bladder cancer. In 2010, Cantor et al. (Environ. Health Perspect. 118: 1545) reported that this increased risk was depende...
Vandeveer, Amanda J.; Fallon, Jonathan K.; Tighe, Robert; Sabzevari, Helen; Schlom, Jeffrey; Greiner, John W.
2016-01-01
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non–muscle invasive, nonmetastatic human urothelial carcinoma. While the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49luc), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49luc murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non–muscle invasive, nonmetastatic urothelial carcinomas. MB49luc bladder tumors are highly positive for the expression of PD-L1 and avelumab administration induced significant (P<0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non–muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. PMID:26921031
Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang
2012-08-01
Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer. Copyright © 2012 Wiley Periodicals, Inc.
Kim, C J; Yuasa, T; Kushima, R; Tomoyoshi, T; Seto, A
1998-05-01
Peripheral blood lymphocytes (PBL) from patients with bladder cancer also contain cells possessing cytotoxic activity against autologous tumor cells. These cells are phenotypically heterogenous and include natural killer (NK) and cytotoxic T cells. This study investigated the role of cytotoxic lymphocytes directed against autologous bladder cancer cells. PBL were obtained at intervals before and after surgery and analyzed for cytotoxic activity against autologous bladder cancer cells in 4-hour 51Cr release assay. PBL stimulated with autologous tumor cells were also transformed with human T-lymphotropic virus type-1, establishing a cell line (KB31) which was analyzed for phenotype and cytotoxic activity against the autologous tumor cells. PBL preoperative cytotoxic activity was low, but increased after surgery. Cytotoxic activity was found not only against autologous bladder cancer cells, but also against heterologous bladder cancer (KK-47) and myeloid leukemia (K562) cells, with the highest activity against the heterologous cell lines. The cytotoxic activity of KB31 was 40% against autologous tumor cells 6 weeks after initiation of the cell line, but decreased to 5% by 6 months. This activity was lower than that against the other cell lines, and was similar to that of PBL in short-term culture. Fluorescence-activated cell sorter (FACS) analysis demonstrated that in KB31 cells at 6 weeks, CD8+ cells were dominant, but CD56+ cells predominated at 6 months. These results suggest that the presence of cytotoxic activity in the peripheral blood of the patient was due to both cytotoxic T cells and NK cells. The cytotoxic activity was lowest prior to surgery and increased postoperatively.
Masaoka, Takashi; Chung, Suhman; Caboni, Pierluigi; Rausch, Jason W.; Wilson, Jennifer A.; Taskent-Sezgin, Humeyra; Beutler, John A.; Tocco, Graziella; Le Grice, Stuart F. J.
2013-01-01
The thienopyrimidinone 5,6-dimethyl-2-(4-nitrophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (DNTP) occupies the interface between the p66 ribonuclease H (RNase H) domain and p51 thumb of human immunodeficiency virus reverse transcriptase (HIV RT), thereby inducing a conformational change incompatible with catalysis. Here, we combined biochemical characterization of 39 DNTP derivatives with antiviral testing of selected compounds. In addition to wild-type HIV-1 RT, derivatives were evaluated with rationally-designed, p66/p51 heterodimers exhibiting high-level DNTP sensitivity or resistance. This strategy identified 3′,4′-dihydroxyphenyl (catechol)-substituted thienopyrimidinones with sub-micromolar in vitro activity against both wild type HIV-1 RT and drug-resistant variants. Thermal shift analysis indicates that, in contrast to active site RNase H inhibitors, these thienopyrimidinones destabilize the enzyme, in some instances reducing the Tm by 5°C. Importantly, catechol-containing thienopyrimidinones also inhibit HIV-1 replication in cells. Our data strengthens the case for allosteric inhibition of HIV RNase H activity, providing a platform for designing improved antagonists for use in combination antiviral therapy. PMID:23631411
Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui
2017-08-01
We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.
Controversial roles played by toll like receptor 4 in urinary bladder cancer; A systematic review.
Afsharimoghaddam, Amin; Soleimani, Mohammad; Lashay, Alireza; Dehghani, Mahdi; Sepehri, Zahra
2016-08-01
Urinary bladder cancer (UBC) is a prevalent human cancer. The main mechanisms which lead to eradication or progression the disease has yet to be clarified. Toll like receptor (TLR) 4 is a membrane receptor which is expressed either on immune cells or tumor cells. This review article was aimed to clear the main mechanisms played by TLR4 and its related intracellular pathways on outcome of UBC. PubMed, Scopus and Google scholar databases have been used for searching related research articles which have evaluated the roles played by TLR4 and its related intracellular pathways on outcome of UBC. Collected information from the related articles revealed that TLR4 either participates in induction of immune responses against UBC or development of the malignancy. There are limited investigations regarding the genetic variations of TLR4 in UBC. According to the results it seems that TLR4/ligands interaction outcome is dependent on several factors including TLR4 ligand doses, interaction of TLR4 with its ligands on immune cells or tumor cells, and other TLRs/ligand interaction simultaneously. Copyright © 2016 Elsevier Inc. All rights reserved.
Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G
2000-10-31
We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.
Ye, C; Chen, S; Pei, X; Li, L; Feng, K
1999-08-01
To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.
Secondary signet-ring cell adenocarcinoma of urinary bladder from a gastric primary
Sharma, Pramod K.; Vijay, Mukesh K.; Das, Ranjit K.; Chatterjee, Uttara
2011-01-01
Primary bladder tumor is a frequent urological malignancy, whereas the incidence of secondary bladder tumor from a distant organ is quite rare. Secondary bladder neoplasms represent 1% of all malignant bladder tumors, of which distant metastases from stomach account for about 4% of cases. We present the case of a 30-year-old male who underwent partial gastrectomy for Signet-ring cell carcinoma of the stomach and presented 2 years later with hematuria. On computerized tomography scan, a bladder tumor was found which was resected cystoscopically. The histopathological examination revealed secondary Signet-ring cell adenocarcinoma of the urinary bladder. PMID:21747602
Hanna-Mitchell, Ann T; Wolf-Johnston, Amanda S; Barrick, Stacey R; Kanai, Anthony J; Chancellor, Michael B; de Groat, William C; Birder, Lori A
2015-01-01
Botulinum neurotoxin serotype A (BoNT/A) has emerged as an effective treatment of urinary bladder overactivity. Intravesical lipotoxin (BoNT/A delivery using liposomes), which may target the urothelium, is effective in blocking acetic acid induced hyperactivity in animals. The objective of this study was to assess the possible site of toxin action within the urothelium. We examined expression of the toxin receptor (SV2) and its cleavage targets (SNAP-25 and SNAP-23) within urothelium as well as effects of the toxin on mechanically evoked release of ATP from cultured rat urothelial cells. ATP release was measured using the luciferin-luciferase assay; we examined expression of SNAP-23 and -25 in urothelial cells and mucosa of rat and human bladders. BoNT/A (1.5 U; 1-3 hr) blocked hypotonic evoked release of urothelial ATP, without affecting morphology. The expression of protein targets for BoNT/A binding (SV2) was detected in human and rat bladder mucosa and catalytic action (SNAP-23, -25) in urothelial cells and mucosa (differed in intensity) from rat and human bladder. Incubation of cultured (rat) urothelial cells with BoNT/A decreased expression levels of both SNAP-23 (44%) and SNAP-25 (80%). Our findings reveal that the bladder urothelium expresses the intracellular targets and the binding protein for cellular uptake of BoNT/A; and that the toxin is able to suppress the levels of these targets as well as hypotonic-evoked ATP release. These data raise the possibility that intravesical treatment with BoNT/A suppresses bladder reflex and sensory mechanisms by affecting a number of urothelial functions including release of transmitters. © 2013 Wiley Periodicals, Inc.
Glaves, D; Murray, M K; Raghavan, D
1996-08-01
A hybrid drug [N-2-chloroethylnitrosoureidodaunorubicin (AD312)] that combines structural and functional features of both anthracyclines and nitrosoureas was evaluated in a preclinical survival model of human bladder cancer. To measure the therapeutic activity of AD312, UCRU-BL13 transitional cell carcinoma cells were grown as xenografts in nude mice, and tumor growth rates were compared after i.v. administration of the drug at three dose levels. AD312 treatment at 45 and 60 mg/kg achieved 7-10-fold inhibition of tumor growth and increased host survival by 156 and 249%, respectively. Doses of 60 mg/kg showed optimal therapeutic efficacy, with sustained tumor growth inhibition, an over 2-fold increase in life span, and 40% of mice tumor free ("cured") at 120 days. Tumors were unresponsive to maximum tolerated doses of doxorubicin, a standard anthracycline used as a single agent and in combination therapies for bladder cancer. 1,3-Bis-[2-chloroethyl]-1-nitrosourea was used as a control for the apparently enhanced response of human tumors in murine hosts to nitrosoureas. 1, 3-Bis-[2-chloroethyl]-1-nitrosourea administered in three injections of 20 mg/kg did not cure mice but temporarily inhibited tumor growth by 70% and prolonged survival by 55%; its activity in this model suggests that it may be included in the repertoire of alkylating agents currently used for treatment of bladder cancers. AD312 showed increased antitumor activity with less toxicity than doxorubicin, and its bifunctional properties provide the opportunity for simultaneous treatment of individual cancer cells with two cytotoxic modalities as well as treatment of heterogeneous populations typical of bladder cancers. This novel cytotoxic drug cured doxorubicin-refractory disease and should be investigated for the clinical management of bladder cancer.
Regulation of membrane-associated mucins in the human corneal epithelial cells by dexamethasone.
Seo, Kyoung Yul; Chung, So-Hyang; Lee, Joon H; Park, Mi Young; Kim, Eung Kweon
2007-07-01
To study the influence of dexamethasone on membrane-associated mucins produced by human corneal epithelial cells. Human corneal epithelial cells were cultured in medium supplemented with various concentrations of dexamethasone (ranging from 10 to 10 M). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis using monoclonal antibodies specific for human MUC1 (HMFG-1), MUC4 (1G8), and MUC16 (OC125) were performed to evaluate the effect of dexamethasone on membrane-associated mucin expression. The effect of glucocorticoid receptor antagonist (RU38486) on dexamethasone-induced mucin expression was estimated. RT-PCR revealed that MUC1 and MUC16 gene expression were upregulated 48 hours after addition of dexamethasone and that MUC4 gene expression was downregulated in the same condition. Western blot analysis showed that MUC1 and MUC16 proteins were increased after addition of dexamethasone. However, MUC4 was not detected by anti-MUC4 monoclonal antibody (1G8) for ASGP-2 under our conditions. Treatment with RU38486 inhibited the changes of MUC1, MUC4, and MUC16 by dexamethasone; thus, the effect of dexamethasone on mucin expression is mediated by glucocorticoid receptors. This study shows that MUC1, MUC4, and MUC16 are regulated differently by dexamethasone in human corneal epithelial cells. External application of dexamethasone might affect the precorneal mucin.
2016-10-01
new version of the stimulator will be manufactured and tested again. This design-build-test cycle will be repeated multiple times during the second...AWARD NUMBER: W81XWH-15-C-0066 TITLE: Development of an Implantable Pudendal Nerve Stimulator To Restore Bladder Function in Humans After SCI...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
Paner, Gladell P; McKenney, Jesse K; Epstein, Jonathan I; Amin, Mahul B
2008-07-01
Rhabdomyosarcoma (RMS) represents the most common malignant soft tissue tumor in children and adolescents with the urinary bladder representing a frequent site. Most of these urinary bladder tumors are embryonal RMS, predominantly the botryoid subtype. RMSs of the urinary bladder in adults are distinctively rare and the subject of only case reports. We report the clinicopathologic features of 5 bladder neoplasms with rhabdomyosarcomatous differentiation in adults and emphasize the differential diagnosis in the adult setting. The patients, 4 men and 1 woman, ranged in age from 23 to 85 years (mean 65.4 y). Gross hematuria was the most common initial symptom, although 2 patients had metastatic disease at presentation. Four cases were pure primary RMSs of the bladder and 1 case was a sarcomatoid urothelial carcinoma with RMS representing the extensive heterologous component. All 5 cases demonstrated a diffuse growth pattern (ie, non-nested), of which 4 cases had nuclear anaplasia (Wilms criteria without the atypical mitotic figure requirement); only 1 case (the sarcomatoid carcinoma) showed obvious rhabdomyoblastic differentiation (ie, strap cells). Three cases were of the alveolar subtype (1 admixed with embryonal histology) and 2 were RMS, not further classified. Microscopically, all tumors had a primitive undifferentiated morphology with cells containing scant cytoplasm, varying round to fusiform nuclei with even chromatin distribution, and frequent mitoses. The degree of morphologic overlap with small cell carcinoma of the bladder, a relatively more common round cell tumor in adults, was striking. The epithelial component of the sarcomatoid carcinoma was high-grade invasive urothelial carcinoma with glandular differentiation. No other case had previous history of bladder cancer or concurrent carcinoma in situ or invasive urothelial carcinoma. All tumors showed immunohistochemical expression for desmin, myogenin, and/or MyoD1. Synaptophysin was performed in 4 cases, and 3 showed weak cytoplasmic immunoreactivity. Two patients received chemotherapy, 2 underwent cystectomy, and 1 had transurethral resection alone. Outcome data were available in 4 cases, and all 4 died of disease (1, 4, 8, and 8 mo). In conclusion, (1) RMS of the urinary bladder in adults more commonly presents as a primitive round blue cell neoplasm that has significant morphologic and immunohistochemical overlap with small cell carcinoma of the bladder. (2) Although RMS in children generally have a botryoid embryonal histology with favorable outcome, bladder RMS in adults frequently demonstrates alveolar or unclassified histology, commonly with anaplasia, and have a uniformly aggressive clinical course.
Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun
2014-01-01
The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans. PMID:24872936
Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun
2014-01-01
The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans.
A Pneumatic Tactile Sensor for Co-Operative Robots
He, Rui; Yu, Jianjun; Zuo, Guoyu
2017-01-01
Tactile sensors of comprehensive functions are urgently needed for the advanced robot to co-exist and co-operate with human beings. Pneumatic tactile sensors based on air bladder possess some noticeable advantages for human-robot interaction application. In this paper, we construct a pneumatic tactile sensor and apply it on the fingertip of robot hand to realize the sensing of force, vibration and slippage via the change of the pressure of the air bladder, and we utilize the sensor to perceive the object’s features such as softness and roughness. The pneumatic tactile sensor has good linearity, repeatability and low hysteresis and both its size and sensing range can be customized by using different material as well as different thicknesses of the air bladder. It is also simple and cheap to fabricate. Therefore, the pneumatic tactile sensor is suitable for the application of co-operative robots and can be widely utilized to improve the performance of service robots. We can apply it to the fingertip of the robot to endow the robotic hand with the ability to co-operate with humans and handle the fragile objects because of the inherent compliance of the air bladder. PMID:29125565
Mammary candidiasis: molecular-based detection of Candida species in human milk samples.
Mutschlechner, W; Karall, D; Hartmann, C; Streiter, B; Baumgartner-Sigl, S; Orth-Höller, D; Lass-Flörl, C
2016-08-01
In this prospective and monocentric study, we investigated the performance of a commercialized real-time polymerase chain reaction (RT-PCR) test system for the specific detection of DNA from Candida albicans, C. dubliniensis, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, and C. tropicalis in human milk samples of patients suspicious of mammary candidiasis. For this purpose, 43 breast-feeding women with characteristic symptoms of mammary candidiasis and 40 asymptomatic controls were enrolled. By culture, Candida spp. were detected in 8.8 % (4/46) and 9.3 % (4/43) of patient and control samples, respectively. Candida albicans (2/46), C. parapsilosis (1/46), and C. guilliermondii (1/46) were present in patient samples, and C. lusitaniae (3/43) and C. guilliermondii (1/43) were present in the controls. After RT-PCR was applied, Candida spp. were found to be present in 67.4 % (31/46) and 79.1 % (34/43) of patient and control samples investigated, respectively. PCR detection of C. albicans and C. parapsilosis revealed only a low sensitivity and specificity of 67.4 % and 41.9 %, respectively. Our data do not support the use of Candida RT-PCR for sensitive and specific diagnosis of mammary candidiasis.
Priya, R; Sumitha, Rajendrarao; Doss, C George Priya; Rajasekaran, C; Babu, S; Seenivasan, R; Siva, R
2015-10-01
Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation.
NASA Astrophysics Data System (ADS)
Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.
2016-02-01
Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.
Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma
Shin, Kunyoo; Lim, Agnes; Odegaard, Justin I.; Honeycutt, Jared D.; Kawano, Sally; Hsieh, Michael H.; Beachy, Philip A.
2014-01-01
Understanding how malignancies arise within normal tissues requires identification of the cancer cell of origin and knowledge of the cellular and tissue dynamics of tumor progression. Here we examine bladder cancer in a chemical carcinogenesis model that mimics muscle-invasive human bladder cancer. With no prior bias regarding genetic pathways or cell types, we prospectively mark or ablate cells to show that muscle-invasive bladder carcinomas arise exclusively from Sonic hedgehog (Shh)-expressing stem cells in basal urothelium. These carcinomas arise clonally from a single cell whose progeny aggressively colonize a major portion of the urothelium to generate a lesion with histological features identical to human carcinoma-in-situ. Shh-expressing basal cells within this precursor lesion become tumor-initiating cells, although Shh expression is lost in subsequent carcinomas. We thus find that invasive carcinoma is initiated from basal urothelial stem cells but that tumor cell phenotype can diverge significantly from that of the cancer cell-of-origin. PMID:24747439
Merrill, Liana; Girard, Beatrice M.; May, Victor; Vizzard, Margaret A.
2013-01-01
These studies examined transcriptional and translational plasticity of three transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) with established neuronal and non-neuronal expression and functional roles in the lower urinary tract. Mechanosensor and nociceptor roles in either physiological or pathological lower urinary tract states have been suggested for TRPA1, TRPV1 and TRPV4. We have previously demonstrated neurochemical, organizational and functional plasticity in micturition reflex pathways following induction of urinary bladder inflammation using the antineoplastic agent, cyclophosphamide (CYP). More recently, we have characterized similar plasticity in micturition reflex pathways in a transgenic mouse model with chronic urothelial overexpression (OE) of nerve growth factor (NGF) and in a transgenic mouse model with deletion of vasoactive intestinal polypeptide (VIP). In addition, the micturition reflex undergoes postnatal maturation that may also reflect plasticity in urinary bladder TRP channel expression. Thus, we examined plasticity in urinary bladder TRP channel expression in diverse contexts using a combination of quantitative, real-time PCR and western blotting approaches. We demonstrate transcriptional and translational plasticity of urinary bladder TRPA1, TRPV1 and TRVP4 expression. Although the functional significance of urinary bladder TRP channel plasticity awaits further investigation, these studies demonstrate context-(inflammation, postnatal development, NGF-OE, VIP deletion) and tissue-dependent (urothelium + suburothelium, detrusor) plasticity. PMID:22865090
Family history of cancer and the risk of bladder cancer: A case-control study from Italy.
Turati, Federica; Bosetti, Cristina; Polesel, Jerry; Serraino, Diego; Montella, Maurizio; Libra, Massimo; Facchini, Gaetano; Ferraroni, Monica; Tavani, Alessandra; La Vecchia, Carlo; Negri, Eva
2017-06-01
A family history of bladder cancer has been associated with the risk of bladder cancer, but quantification of the excess risk in different populations is still a relevant issue. Further, the role of a family history of other cancers on the risk of bladder cancer remains unclear. We analyzed data from an Italian case-control study, including 690 bladder cancer cases and 665 hospital controls. Odds ratios (ORs) were estimated through unconditional logistic regression models, adjusted for sex, age, study center, year of interview and further for education, smoking and sibling's number. The OR for family history of bladder cancer was 2.13 (95% confidence intervals (95%CIs) 1.02-4.49) from the model with partial adjustment, and 1.99 (95%CI 0.91-4.32) after additional adjustment for smoking and siblings' number, based on 23 cases (3.3%) and 11 controls (1.7%) with a family history of bladder cancer. The fully adjusted OR was 3.77 when the relative was diagnosed at age below 65years. Smokers with a family history of bladder cancer had a four-fold increased risk compared to non-smokers without a family history. Bladder cancer risk was significantly increased among subjects with a family history of hemolymphopoietic cancers (OR=2.97, 95%CI 1.35-6.55). Family history of cancer at other sites showed no significant association with bladder cancer risk. This study confirms an approximately two-fold increased risk of bladder cancer for family history of bladder cancer, and indicates a possible familial clustering of bladder cancer with cancers of the hemolymphopoietic system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.
Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H
2009-09-01
Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.
NASA Astrophysics Data System (ADS)
Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan
2017-05-01
Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.
Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation
Vivar, Nivardo P.; Kennis, James G.; Pratt-Thomas, Jeffery D.; Lowe, Danielle W.; Shaner, Brooke E.; Nietert, Paul J.; Spruill, Laura S.; Purves, J. Todd
2013-01-01
Bladder inflammation (cystitis) underlies numerous bladder pathologies and is elicited by a plethora of agents such as urinary tract infections, bladder outlet obstruction, chemotherapies, and catheters. Pattern recognition receptors [Toll-like receptors (TLRs) and Nod-like receptors (NLRs)] that recognize pathogen- and/or damage-associated molecular patterns (PAMPs and/or DAMPs, respectively) are key components of the innate immune system that coordinates the production (TLRs) and maturation (NLRs) of proinflammatory IL-1β. Despite multiple studies of TLRs in the bladder, none have investigated NLRs beyond one small survey. We now demonstrate that NLRP3 and NLRC4, and their binding partners apoptosis-associated speck-like protein containing a COOH-terminal caspase recruitment domain (ASC) and NLR family apoptosis inhibitory protein (NAIP), are expressed in the bladder and localized predominantly to the urothelia. Activated NLRs form inflammasomes that activate caspase-1. Placement of a NLRP3- or NLRC4-activating PAMP or NLRP3-activating DAMPs into the lumen of the bladder stimulated caspase-1 activity. To investigate inflammasomes in vivo, we induced cystitis with cyclophosphamide (CP, 150 mg/kg ip) in the presence or absence of the inflammasome inhibitor glyburide. Glyburide completely blocked CP-induced activation of caspase-1 and the production of IL-1β at 4 h. At 24 h, glyburide reduced two markers of inflammation by 30–50% and reversed much of the inflammatory morphology. Furthermore, glyburide reversed changes in bladder physiology (cystometry) induced by CP. In conclusion, NLRs/inflammasomes are present in the bladder urothelia and respond to DAMPs and PAMPs, whereas NLRP3 inhibition blocks bladder dysfunction in the CP model. The coordinated response of NLRs and TLRs in the urothelia represents a first-line innate defense that may provide an important target for pharmacological intervention. PMID:24285499
Ke, Hung-Lung; Lin, Hung-Yu; Jang, Mei-Yu; Wu, Wen-Jeng
2006-05-01
Neurogenic bladder is a familiar sequel to spinal cord injury, and bladder calculi is a common complication of neurogenic bladder. We report a case of a 25-year-old man with spinal cord injury resulting in neurogenic bladder. Permanent cystostomy was performed, and, for 4 years, the patient received periodic replacement of a cystostomy catheter. Bladder calculi were found on follow-up radiography. Cystoscopic lithotripsy was done, and it was noted that a hair was the nidus of a calculus. The hair could have been introduced into the bladder accidentally during the cystostomy catheter replacement. We suggest routine pubic hair care, even shaving, for patients suffering from neurogenic bladder with cystostomy. In addition, patients and caregivers should take care not to introduce pubic hair into the bladder while changing cystostomy catheters.
Suzuki, Shugo; Arnold, Lora L; Pennington, Karen L; Kakiuchi-Kiyota, Satoko; Chen, Baowei; Lu, Xiufen; Le, X Chris; Cohen, Samuel M
2012-09-28
Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. 2,3-Dimercaptopropane-1-sulfonic acid (DMPS), a chelating agent, is capable of reducing pentavalent arsenicals to the trivalent state and binding to the trivalent species, and it has been used in the treatment of heavy metal poisoning in humans. Therefore, we investigated the ability of DMPS to inhibit the cytotoxicity and regenerative urothelial cell proliferation induced by arsenate administration in vivo. Female rats were treated for 4 weeks with 100 ppm As(V). DMPS (2800 ppm) co-administered in the diet significantly reduced the As(V)-induced cytotoxicity of superficial cells detected by scanning electron microscopy (SEM), and the incidence of simple hyperplasia observed by light microscopy and the bromodeoxyuridine (BrdU) labeling index. It also reduced the total concentration of arsenicals in the urine and the methylation of arsenic. There were no differences in oxidative stress as assessed by immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8OHdG) of the bladder urothelium. No differences were detected in urine sediments between groups. These data suggest that DMPS has the ability to inhibit both arsenate-induced acute toxicity and regenerative proliferation of the rat bladder epithelium, most likely by decreasing exposure of the urothelium to trivalent arsenicals excreted in the urine. These data provide additional evidence that the effects of arsenate exposure in vivo do not appear to be related to oxidative effects on dG in DNA. Copyright © 2012. Published by Elsevier Ireland Ltd.
Lubet, Ronald A.; Scheiman, James M.; Bode, Ann; White, Jonathan; Minasian, Lori; Juliana, M. Margaret; Boring, Daniel L.; Steele, Vernon E.; Grubbs, Clinton J.
2015-01-01
The COX inhibitors (NSAIDs/Coxibs) are a major focus for the chemoprevention of cancer. The COX-2 specific inhibitors have progressed to clinical trials, and have shown preventive efficacy in colon and skin cancers. However, they have significant adverse cardiovascular (CV) effects. Certain NSAIDs (e.g., naproxen (NPX)] have a good cardiac profile, but can cause gastric toxicity. The present studies examined protocols to reduce this toxicity of NPX. Female Fischer-344 rats were treated weekly with the urinary bladder specific carcinogen hydroxybutyl(butyl)nitrosamine (OH-BBN) for 8 weeks. Rats were dosed daily with NPX (40 mg/Kg BW/day, gavage) or with the proton pump inhibitor omeprazole (4.0 mg/Kg BW/day) either singly or in combination beginning 2 weeks after the final OH-BBN. OH-BBN treated rats, 96% developed urinary bladder cancers. While omeprazole alone was ineffective (97% cancers), NPX alone or combined with omeprazole prevented cancers; yielding 27 and 35% cancers, respectively. In a separate study, OH-BBN treated rats were administered NPX: (A) daily, (B) 1 week daily NPX/1wk vehicle, (C) 3 weeks daily NPX/3 week vehicle, or (D) daily vehicle beginning 2 weeks after last OH-BBN treatment. In the intermittent dosing study, protocol A, B, C and D resulted in palpable cancers in 27%, 22%, 19% and 96% of rats (P<0.01). Short-term NPX treatment increased apoptosis, but did not alter proliferation in the urinary bladder cancers. Two different protocols which should decrease the gastric toxicity of NSAIDs in humans did not alter chemopreventive efficacy. This should encourage the use of NSAIDs (e.g. NPX) in clinical prevention trials. PMID:25762530
Lubet, Ronald A; Scheiman, James M; Bode, Ann; White, Jonathan; Minasian, Lori; Juliana, M Margaret; Boring, Daniel L; Steele, Vernon E; Grubbs, Clinton J
2015-04-01
The COX inhibitors (NSAID/Coxibs) are a major focus for the chemoprevention of cancer. The COX-2-specific inhibitors have progressed to clinical trials and have shown preventive efficacy in colon and skin cancers. However, they have significant adverse cardiovascular effects. Certain NSAIDs (e.g., naproxen) have a good cardiac profile, but can cause gastric toxicity. The present study examined protocols to reduce this toxicity of naproxen. Female Fischer-344 rats were treated weekly with the urinary bladder-specific carcinogen hydroxybutyl(butyl)nitrosamine (OH-BBN) for 8 weeks. Rats were dosed daily with NPX (40 mg/kg body weight/day, gavage) or with the proton pump inhibitor omeprazole (4.0 mg/kg body weight/day) either singly or in combination beginning 2 weeks after the final OH-BBN. OH-BBN-treated rats, 96% developed urinary bladder cancers. While omeprazole alone was ineffective (97% cancers), naproxen alone or combined with omeprazole-prevented cancers, yielding 27 and 35% cancers, respectively. In a separate study, OH-BBN -: treated rats were administered naproxen: (A) daily, (B) 1 week daily naproxen/1week vehicle, (C) 3 weeks daily naproxen/3 week vehicle, or (D) daily vehicle beginning 2 weeks after last OH-BBN treatment. In the intermittent dosing study, protocol A, B, C, and D resulted in palpable cancers in 27%, 22%, 19%, and 96% of rats (P < 0.01). Short-term naproxen treatment increased apoptosis, but did not alter proliferation in the urinary bladder cancers. Two different protocols that should decrease the gastric toxicity of NSAIDs in humans did not alter chemopreventive efficacy. This should encourage the use of NSAIDs (e.g., naproxen) in clinical prevention trials. ©2015 American Association for Cancer Research.
DiCaprio, Erin; Phantkankum, Nuttapong; Culbertson, Doug; Ma, Yuanmei; Hughes, John H; Kingsley, David; Uribe, Roberto M; Li, Jianrong
2016-09-02
Human norovirus (NoV) is a major cause of fresh produce-associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintaining fresh produce quality. In this study electron beam (E-beam) and gamma radiation were evaluated for efficacy against a human NoV GII.4 strain and Tulane virus (TV). Virus survival following ionizing radiation treatments was determined using direct quantitative reverse transcriptase PCR (RT-qPCR), the porcine gastric mucin magnetic bead (PGM-MB) binding assay followed by RT-qPCR, and plaque assay. In simple media, a high dose of E-beam treatment was required to completely abolish the receptor binding ability of human NoV (35.3kGy) and TV (19.5-24.1kGy), as assessed using the PGM-MB binding assay. Both human NoV and TV were more susceptible to gamma irradiation than E-beam, requiring 22.4kGy to achieve complete inactivation. In whole strawberries, no human NoV or TV RNA was detected following 28.7kGy of E-beam treatment using the PGM-MB binding assay. Overall, human NoV and TV are highly resistant to ionizing radiation and therefore the technology may not be suitable to eliminate viruses in fresh produce at the currently approved levels. In addition, the PGM-MB binding assay is an improved method to detect viral infectivity compared to direct RT-qPCR. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schooneveldt, G.; Kok, H.P.; Bakker, A.
Purpose: Hyperthermia combined with Mitomycin C is used for the treatment of non-muscle invasive bladder cancer (NMIBC), using a phased array system of microwave antennas for bladder heating. Often some air is present in the bladder, which effectively blocks the microwave radiation, potentially preventing proper treatment of that part of the bladder. Air can be a relevant fraction of the bladder content and large air pockets are expected to have a noticeable influence on achieved temperatures. Methods: We analysed 14 NMIBC patients treated at our institute with our AMC-4 hyperthermia device with four 70MHz antennas around the pelvis. A CTmore » scan was made after treatment and a physician delineated the bladder on the CT scan. On the same scan, the amount of air present in the bladder was delineated. Using our in-house developed hyperthermia treatment planning system, we simulated the treatment using the clinically applied device settings. We did this once with the air pocket delineated on the CT scan, and once with the same volume filled with bladder tissue. Results: The patients had on average 4.2ml (range 0.8–10.1ml) air in the bladder. The bladder volume was delineated by the physician, that is including air pocket and bladder wall, was on average 253ml (range 93–452ml). The average volume in which changes exceeded 0.25°C was 22ml (range 0–108 ml), with the bladder being up to 2°C cooler when an air pocket was present. Except for extreme cases, there was no evident relation between the quantity of air and the difference in temperature. Conclusion: The effect of an air pocket in the bladder during bladder hyperthermia treatment varies strongly between patients. Generally, this leads to lower temperatures in the bladder, potentially affecting treatment quality, and suggesting that care need be taken to minimise the size of air pockets during hyperthermia treatments. The KWF Dutch Cancer Society financially supported this work, grant UVA 2012-5539.« less
Ito, Yoshihiko; Kashiwabara, Michishi; Yoshida, Akira; Hikiyama, Eriko; Onoue, Satomi; Yamada, Shizuo
2016-01-01
Solifenacin is an antimuscarinic agent used to treat symptoms of overactive bladder. Pharmacologically significant amounts of solifenacin were excreted in the urine of humans taking a clinical dose of this drug. The aim of this study is to measure muscarinic receptor binding in the bladder urothelium and detrusor muscles of rats following the intravesical instillation of solifenacin. Muscarinic receptors were measured by radioreceptor assay using [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS), a selective radioligand of muscarinic receptors. Solifenacin showed concentration-dependent inhibition of specific [(3)H]NMS binding in the bladder urothelium and detrusor muscle of rats, with no significant difference in Ki values or Hill coefficients between these tissues. Following the intravesical instillation of solifenacin, there was significant muscarinic receptor binding (increase in Kd for specific [(3)H]NMS binding) in the bladder urothelium and detrusor muscle of rats. Similar bladder muscarinic receptor binding was observed by the intravesical instillation of oxybutynin, but not with trospium. In conclusion, the present study has demonstrated that solifenacin binds muscarinic receptors not only in the detrusor muscle but also in the bladder urothelium with high affinity. These bladder muscarinic receptors may be significantly affected by solifenacin excreted in the urine.
Development of a Prosthesis for Urinary Control
NASA Technical Reports Server (NTRS)
Tenney, J. B.; Rabinowitz, R.; Tomkiewicz, Z.; Harrison, H. N.; Rogers, D. W.
1986-01-01
Report describes development and marketing of prosthetic sphincter for urinary control. With prosthetic device, patients void bladder every 3 to 4 hours. Periodic voiding keeps bladder muscles exercised and healthy and avoids bladder infections and kidney damage.
Schiffmann, Jonas; Sun, Maxine; Gandaglia, Giorgio; Tian, Zeh; Popa, Ioana; Larcher, Alessandro; Briganti, Alberto; McCORMACK, Michael; Shariat, Shahrokh F; Montorsi, Francesco; Graefen, Markus; Saad, Fred; Karakiewicz, Pierre I
2017-04-01
The role of adjuvant chemotherapy (AC) within urothelial carcinoma of the urinary bladder (UCUB) patients after radical cystectomy (RC) is under debate. We assessed contemporary AC utilization rates. We also examined the rates of AC according to patient disease and sociodemographic characteristics. We relied on the SEER-Medicare database for non-organ-confined, muscle-invasive T2 N+ -T4a UCUB patients who underwent RC between 1991 and 2009 without neoadjuvant chemotherapy delivery. Multivariable logistic regression analyses tested predictors of AC use; T-stage, N-stage, year of diagnosis, age, gender, race, radiotherapy (RT) administration, marital urban and socioeconomic status, tumor grade and Charlson Comorbidity Index (CCI). Overall, 2681 patients were identified. Of those, 667 (24.9%) received AC. The rate of AC were 21.4%, 23.5%, 24.6% and 29.9% over time (1991-1999 vs. 2000-2002 vs. 2003-2005 vs. 2006-2009) (P=0.002). In multivariable analyses stages pT2N+ (odds ratio (OR): 4.7; P<0.001) and pT3/4aN+ (OR: 4.0; P<0.001), year of diagnosis (OR: 1.9; P<0.001), RT (OR: 1.7; P<0.001), married status (OR: 1.4; P=0.001) and advanced age (OR: 0.3; P<0.001) were independent predictors of AC. Neither race nor CCI demonstrated significance. In conclusion, we report lower than anticipated overall (24.9%) use of AC. Nonetheless, the rate increased from 13.6% (1991) to 24.1% (2009). Presence of lymph node invasion at RC regardless of T2 or T3/4a stage was the most important variable that increased AC use. Older and unmarried individuals were less likely to receive AC. AC rates were higher in T2N+ UCUB patients than in T3-T4a individuals.
The Role of eIF4E Activity in Breast Cancer
2010-08-01
ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less product...have previously shown that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem
NASA Astrophysics Data System (ADS)
Bisson, Jean F.; Notter, Dominique; Labrude, P.; Vigneron, C.; Guillemin, Francois H.
1996-04-01
Photochemotherapy using I.V. administered porphyrin photosensitizers has been used to treat superficial bladder cancers. In order to avoid cutaneous photosensitivity, lasting 6 - 8 weeks, we instilled the photosensitizer intravesically. After first studying the diffusion and localization of HpD in aqueous phase (5 mg/ml) in vitro through the bladder wall of pig by spectrofluorimetry ((lambda) ex equals 392 nm and (lambda) em equals 612.8 nm) and fluorescence microscopy, we determined the biodistribution of HpD in vivo in the rat bladder wall, 2 and 4 hours after bladder instillation of 0.4 ml of HpD: (1) the controls show only a weak autofluorescence restricted to the urothelium after 2 hours (24 micrometers plus or minus 5 micrometers, n equals 3) as well as after 4 hours (29.5 micrometers plus or minus 5 micrometers, n equals 3); (2) on the test preparation a higher fluorescence was observed: after 2 hours, HpD was localized in the urothelium and a very small part of the chorion (55 micrometers plus or minus 9 micrometers, n equals 9) whereas after 4 hours, it penetrated almost completely in the bladder wall (960 micrometers plus or minus 118 micrometers, n equals 9). In conclusion, a bladder instillation of 2 hours seems to be the optimal time of application in the rat since superficial bladder cancers, like carcinoma in situ, particularly occur in the urothelium (stage 0, pTa) or in the chorion (stage 1, pT1).
Komyakov, B K; Sergeev, A V; Fadeev, V A; Ismailov, K I; Ulyanov, A Yu; Shmelev, A Yu; Onoshko, M V
2017-09-01
To determine the incidence of spreading bladder transitional cell carcinoma and primary adenocarcinoma to the prostate in patients with bladder cancer undergoing radical cystectomy. From 1995 to 2016, 283 men underwent radical cystectomy with removal of the bladder, perivesical tissue, prostate, seminal vesicles and pelvic lymph nodes. Prostate sparing cystectomy was performed in 45 (13.7%) patients. The whole prostate and the apex of the prostate were preserved in 21 (6.4%) and 24 (7.3%) patients, respectively. The spread of transitional cell cancer of the bladder to the prostate occurred in 50 (15.2%) patients. Twelve (3.6%) patients were found to have primary prostate adenocarcinoma. Clinically significant prostate cancer was diagnosed in 4 (33.3%) patients. We believe that the high oncological risk of prostate sparing cystectomy, despite some functional advantages, dictates the need for complete removal of the prostate in the surgical treatment of bladder cancer.
Poupel, Farhad; Aghaei, Mahmoud; Movahedian, Ahmad; Jafari, Seyyed Mehdi; Shahrestanaki, Mohammad Keyvanloo
2017-01-01
Background: Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has antiproliferative effect. However, such effects of DHA have not yet been revealed for bladder cancer cells. Methods: We used as bladder cancer cell lines to examine the effect of DHA on the cell viability, cell apoptosis, and monitoring of mitochondrial membrane potential (ΔΨm) changes. Furthermore, the effect of DHA on the reactive oxygen species (ROS) production and cytochrome c release were also detected. We employed MTT assay to investigate the cell proliferation effect of DHA on the EJ-138 and HTB-9 human bladder cancer cells. Annexin/PI staining, caspase-3 activity assay, Bcl-2/Bax protein expression, mitochondrial membrane potential assay, cytochrome c release, and ROS analysis were used for apoptosis detection. Results: DHA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of DHA was suppressed by N-acetylcysteine. The growth inhibition effect of DHA was related to the induction of cell apoptosis, which were manifested by annexin V-FITC staining, activation of caspase-3. DHA also increased ROS generation, cytochrome c release, and loss of mitochondrial transmembrane potential (ΔΨm) in cells. In addition, the downregulation of regulatory protein Bcl-2 and upregulation of Bax protein by DHA were also observed. Conclusions: These findings demonstrated that DHA induces apoptosis through mitochondrial signaling pathway. These suggest that DHA may be a potential agent for induction of apoptosis in human bladder cancer cells. PMID:29114376
Kassem, H Sh; Varley, J M; Hamam, S M; Margison, G P
2001-01-01
Mutation of human homologues of DNA mismatch repair (MMR) genes in tumours has been shown to be associated with the phenomenon of microsatellite instability (MSI). Several studies have reported the occurrence of MSI in bladder cancer, but evidence of involvement of MMR genes in the pathogenesis of this cancer is still unclear. We therefore utilized quantitative immunohistochemical (IHC) image analysis and PCR-based allelotype analysis to determine hMLH1 and hMSH2 genes alteration in a cohort of Egyptian bladder cancer samples. IHC analysis of 24 TCC and 12 SCC revealed marked- intra and intertumour heterogeneity in the levels of expression of the two MMR proteins. One TCC lost MLH1 expression and one lost MSH2, (1/24, 4%), and one SCC lost MSH2 (1/12, 8%). A large proportion of analysed tumours revealed a percentage positivity of less than 50% for MLH1 and MSH2 expression (44% and 69%, respectively). Complete loss of heterozygosity in three dinucleotide repeats lying within, or in close proximity to, hMLH1 and hMSH2 was rare (2/57, (4%) for MLH1; and 1/55, (2%) for MSH2), however allelic imbalance was detected in 11/57 (hMLH1) and 10/55 (hMSH2) at any of the informative microsatellite loci. These alterations in structure and expression of DNA MMR genes suggest their possible involvement in the tumorigenesis and/or progression of bladder cancer. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11161395
Selinski, Silvia; Blaszkewicz, Meinolf; Ickstadt, Katja; Gerullis, Holger; Otto, Thomas; Roth, Emanuel; Volkert, Frank; Ovsiannikov, Daniel; Moormann, Oliver; Banfi, Gergely; Nyirady, Peter; Vermeulen, Sita H; Garcia-Closas, Montserrat; Figueroa, Jonine D; Johnson, Alison; Karagas, Margaret R; Kogevinas, Manolis; Malats, Nuria; Schwenn, Molly; Silverman, Debra T; Koutros, Stella; Rothman, Nathaniel; Kiemeney, Lambertus A; Hengstler, Jan G; Golka, Klaus
2017-01-01
Abstract Little is known whether genetic variants identified in genome-wide association studies interact to increase bladder cancer risk. Recently, we identified two- and three-variant combinations associated with a particular increase of bladder cancer risk in a urinary bladder cancer case–control series (Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), 1501 cases, 1565 controls). In an independent case–control series (Nijmegen Bladder Cancer Study, NBCS, 1468 cases, 1720 controls) we confirmed these two- and three-variant combinations. Pooled analysis of the two studies as discovery group (IfADo-NBCS) resulted in sufficient statistical power to test up to four-variant combinations by a logistic regression approach. The New England and Spanish Bladder Cancer Studies (2080 cases and 2167 controls) were used as a replication series. Twelve previously identified risk variants were considered. The strongest four-variant combination was obtained in never smokers. The combination of rs1014971[AA] near apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) and chromobox homolog 6 (CBX6), solute carrier family 1s4 (urea transporter), member 1 (Kidd blood group) (SLC14A1) exon single nucleotide polymorphism (SNP) rs1058396[AG, GG], UDP glucuronosyltransferase 1 family, polypeptide A complex locus (UGT1A) intron SNP rs11892031[AA] and rs8102137[CC, CT] near cyclin E1 (CCNE1) resulted in an unadjusted odds ratio (OR) of 2.59 (95% CI = 1.93–3.47; P = 1.87 × 10−10), while the individual variant ORs ranged only between 1.11 and 1.30. The combination replicated in the New England and Spanish Bladder Cancer Studies (ORunadjusted = 1.60, 95% CI = 1.10–2.33; P = 0.013). The four-variant combination is relatively frequent, with 25% in never smoking cases and 11% in never smoking controls (total study group: 19% cases, 14% controls). In conclusion, we show that four high-risk variants can statistically interact to confer increased bladder cancer risk particularly in never smokers. PMID:29028944
Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression.
Beckham, Carla J; Olsen, Jayme; Yin, Peng-Nien; Wu, Chia-Hao; Ting, Huei-Ju; Hagen, Fred K; Scosyrev, Emelian; Messing, Edward M; Lee, Yi-Fen
2014-08-01
High grade bladder cancer is an extremely aggressive malignancy associated with high rates of morbidity and mortality. Understanding how exosomes may affect bladder cancer progression could reveal novel therapeutic targets. Exosomes derived from human bladder cancer cell lines and the urine of patients with high grade bladder cancer were assessed for the ability to promote cancer progression in standard assays. Exosomes purified from the high grade bladder cancer cell line TCC-SUP and the nonmalignant urothelial cell line SV-HUC were submitted for mass spectrometry analysis. EDIL-3 was identified and selected for further analysis. Western blot was done to determine EDIL-3 levels in urinary exosomes from patients with high grade bladder cancer. shRNA gene knockdown and recombinant EDIL-3 were applied to study EDIL-3 function. Exosomes isolated from high grade bladder cancer cells and the urine of patients with high grade bladder cancer promoted angiogenesis and migration of bladder cancer cells and endothelial cells. We silenced EDIL-3 expression and found that shEDIL-3 exosomes did not facilitate angiogenesis, and urothelial and endothelial cell migration. Moreover, exosomes purified from the urine of patients with high grade bladder cancer contained significantly higher EDIL-3 levels than exosomes from the urine of healthy controls. EDIL-3 activated epidermal growth factor receptor signaling while blockade of epidermal growth factor receptor signaling abrogated this EDIL-3 induced bladder cell migration. Exosomes derived from the urine of patients with bladder cancer contains bioactive molecules such as EDIL-3. Identifying these components and their associated oncogenic pathways could lead to novel therapeutic targets and treatment strategies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Dong, Xiao; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Ihara, Tatsuya; Kira, Satoru; Sawada, Norifumi; Mitsui, Takahiko; Takeda, Masayuki
2018-03-22
To investigate the localization of phosphodiesterase 5 (PDE5) and the molecular mechanism underlying the effect of the PDE5 inhibitor tadalafil in signal transduction in the bladder urothelium. PDE5 expression in rat bladder tissues and cultured primary rat bladder urothelial cells was evaluated using immunochemistry and western blot assays. Ca 2+ influx in cells exposed to isotonic solution, hypotonic solution, a selective transient receptor potential vanilloid 2 (TRPV2) channel agonist (cannabidiol), a selective TRPV4 channel agonist (GSK1016790A), a TRP cation channel melastatin 7 (TRPM7) channel agonist (PIP2), or a purinergic receptor agonist (ATP) in the presence or absence of 10 µM tadalafil was evaluated using calcium imaging techniques. We also evaluated stretch-induced changes in ATP concentration in the mouse bladder in the presence or absence of 100 µM tadalafil. Immunochemistry and western blot analyses demonstrated that PDE5 is abundantly expressed in the bladder urothelium and in primary rat urothelial cells. Ca 2+ influx induced by hypotonic stimulation, GSK1016790A, or cannabidiol was significantly inhibited by tadalafil, whereas ATP-induced Ca 2+ influx was unaffected by tadalafil. PIP2 did not induce Ca2+ influx. ATP release in tadalafil-pretreated bladders significantly decreased compared to control bladders. Tadalafil attenuates Ca 2+ influx via TRPV4 and TRPV2, and inhibits ATP release in the bladder urothelium. These findings indicate that tadalafil functions as an inhibitor of urothelial signal transduction. © 2018 Wiley Periodicals, Inc.
Phase correlated adequate afferent action potentials as a drive of human spinal oscillators.
Schalow, G
1993-12-01
1. By recording, with 2 pairs of wire electrodes, single-fibre action potentials (APs) from lower sacral nerve roots of a brain-dead human and a patient with spinal cord lesion, impulse patterns of afferent APs and impulse trains of oscillatory firing motoneurons could be identified and correlated. 2. Two highly activated secondary muscle spindle afferents increased and decreased their activity at about 0.3 Hz. The duration of the doublet interspike interval of a secondary spindle afferent fibre showed no correlation to the oscillation period of the motoneuron. 3. A continuously oscillatory firing motoneuron innervating the external and sphincter showed more transient breaks with the reduction of the number of phase correlated APs from 2 spindle afferents, indicating a looser oscillation. A transient brake of a 157 msec period alpha 2-oscillation could be correlated to the shift of a interspike interval distribution peak from 150 to 180 msec of the adequate afferent input, which suggests a transient loss of the necessary phase relation. 4. Oscillatory firing alpha 2-motoneurons innervating the external bladder and anal sphincters fired independently according to their phase correlated APs from the urinary bladder stretch receptor and muscle spindle afferents respectively; the bladder motoneuron slightly inhibited the anal motoneuron. 5. Receptors of the afferents and innervation sites of oscillatory firing motoneurons could be located within the urinary tract and the anal canal.
Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.
1998-01-01
Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518
Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping
2017-03-01
Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.
Aizawa, Naoki; Ichihara, Koji; Fukuhara, Hiroshi; Fujimura, Tetsuya; Andersson, Karl-Erik; Homma, Yukio; Igawa, Yasuhiko
2017-08-09
We investigated the characteristics of bladder mechanosensitive single-unit afferent activities (SAAs) in rats with a bladder outlet obstruction (BOO) and their relationship with bladder microcontractions. Male Wistar rats were divided into Sham and BOO groups. Four or 10 days after the surgery, rats were anesthetized with urethane. The SAAs of Aδ- or C-fibers from the L6 dorsal roots were recorded during bladder filling. The BOO group showed a higher number of microcontractions and lower SAAs of Aδ-fibers compared with those of the Sham group. These findings were significant at day 10 post-operatively. In contrast, SAAs of C-fibers were not significantly different between the groups at either day 4 or 10. In the BOO group at day 10, the SAAs of both Aδ- and C-fibers at the "ascending" phase of microcontractions were significantly higher than those at the other phases (descending or stationary), and a similar tendency was also observed at day 4. Taken together, during bladder filling, the bladder mechanosensitive SAAs of Aδ-fibers were attenuated, but SAAs of both Aδ- and C-fibers were intermittently enhanced by propagation of microcontractions.
Sabatino, Laura; Lubrano, Valter; Balzan, Silvana; Kusmic, Claudia; Del Turco, Serena; Iervasi, Giorgio
2015-01-01
Endothelial system acts as a large endocrine organ in the human body; however, little is still known about the regulative role of THs on endothelial cells. Aim of the present study was to investigate the expression of the TH deiodinases (D1, D2, and D3) and TH receptors (TRα1, TRα2, and TRβ1) in an endothelial microvascular cultured cell model (HMEC-1), after stimulation with triiodothyronine (T3, 10-100 nM), thyroxine (T4, 10-100 nM), and reverse T3 (rT3, 1-10 nM). DIO1 was significantly inhibited by T4 at 10 and 100 nM (p < 0.001). rT3 significantly inhibited DIO1 at 1 nM concentration (p < 0.01) and stimulated DIO1 at 10 nM dosage (p < 0.001). T4 and rT3 significantly inhibited DIO2 at all concentrations. DIO3 was induced at 100 nM T3 (p < 0.05) and 100 nM rT3 (p < 0.01), and TRα1 and TRα2 mRNAs were significantly increased after 100 nM T3 treatment (p < 0.05) and decreased after 1 and 10 nM rT3 (p < 0.05). TRβ1 was significantly increased by all THs at different concentrations: 10 nM T3 and 100 nM T3 (p < 0.05), 1 nM rT3 (p < 0.001), and 100 nM T4 (p < 0.01). D1 and D2 protein levels were evaluated, but no significant difference was observed for any hormonal treatment. For the first time, we found that the TH deiodinases and receptors are expressed in endothelial HMEC-1 cells. These findings might be of significant clinical relevance, given the important regulatory role of the endothelium as first barrier to the bloodstream.
Keat, Nicholas; Kenny, Julia; Chen, Keguan; Onega, Mayca; Garman, Nadia; Slack, Robert J; Parker, Christine A; Lumbers, R Thomas; Hallett, Will; Saleem, Azeem; Passchier, Jan; Lukey, Pauline T
2018-06-01
The α v β 6 integrin is involved in the pathogenesis of cancer and fibrosis. A radiolabeled 20-amino-acid α v β 6 -binding peptide, derived from the foot and mouth virus (NAVPNLRGDLQVLAQKVART [A20FMDV2]), has been developed to image α v β 6 levels preclinically. This study was designed to translate these findings into a clinical PET imaging protocol to measure the expression of α v β 6 in humans. Methods: Preclinical toxicology was undertaken, and a direct immunoassay was developed for 4-fluorobenzamide (FB)-A20FMDV2. Four healthy human subjects (2 male and 2 female) received a single microdose of 18 F-FB-A20FMDV2 followed by a multibed PET scan of the whole body over more than 3 h. Results: There were no findings in the preclinical toxicology assessments, and no anti-A20FMDV2 antibodies were detected before or after dosing with the PET ligand. The mean and SD of the administered mass of 18 F-FB-A20FMDV2 was 8.7 ± 4.4 μg (range, 2.7-13.0 μg). The mean administered activity was 124 ± 20 MBq (range, 98-145 MBq). There were no adverse or clinically detectable pharmacologic effects in any of the subjects. No significant changes in vital signs, laboratory study results, or electrocardiography results were observed. Uptake of radioactivity was observed in the thyroid, salivary glands, liver, stomach wall, spleen, kidneys, ureters, and bladder. Time-activity curves indicated that the highest activity was in the bladder content, followed by the kidneys, small intestine, stomach, liver, spleen, thyroid, and gallbladder. The largest component of the residence times was the voided urine, followed by muscle, bladder, and liver. Using the mean residence time over all subjects as input to OLINDA/EXM, the effective dose was determined to be 0.0217 mSv/MBq; using residence times from single subjects gave an SD of 0.0020 mSv/MBq from the mean. The critical organ was the urinary bladder, with an absorbed dose of 0.18 mGy/MBq. Conclusion: 18 F-FB-A20FMDV2 successfully passed toxicology criteria, showed no adverse effects in this first-in-humans study, and has an effective dose that enables multiple scans in a single subject. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Yang, Jin-Yi; Wei, Wei; Lan, Yu-Long; Liu, Jun-Qiang; Wang, Hai-Bo; Li, Shao
2015-12-23
To evaluate the clinical efficacy of bladder hydrodistention and intravesical sodium hyaluronate in the treatment of interstitial cystitis (IC). Twenty-one patients with IC received intravesical sodium hyaluronate therapy under nerve block or intravenous anesthesia. Bladders were perfused with 100 cmH2O perfusion pressure and expanded for 10 min and were later injected with 40 mg/50 mL sodium hyaluronate through the catheter. After 1 h, the perfusion fluid was released. Perfusion was applied once per week, 4 to 6 times as a course of treatment. Under anesthesia, the average bladder capacity was 191.62 ± 88.67 mL, and after bladder expansion, the bladder capacity reached 425.33 ± 79.83 mL (P = .000). There were 2 suspected bladder ruptures after bladder expansion at 6.5 min and 7.2 min. After 10 min of bladder expansion, there were 19 cases of significantly gross hematuria. After treatment, the catheters of 17 patients were removed at 24 h; for the 2 cases of hematuria, catheters were removed at 72 h and for the 2 cases of suspected bladder rupture, catheters were removed after 4 days. After catheter removal, the pain threshold significantly decreased, and the maximum urinary output increased slightly. Compared with values before treatment, the day before the second injection of sodium hyaluronate, the frequency of urination decreased significantly (32.8 vs. 18.5 times/24 h), the maximum urinary output increased significantly (86.7 vs. 151.9 mL), the pain decreased significantly (8.7 vs. 3.0), and the O'Leary-Sant IC score and quality of life score were significantly decreased (30.0 vs. 17.0 and 5.9 vs. 2.4, respectively) (P = .000). Bladder hydrodistention under anesthesia for patients with severe intractable IC produces immediate effectiveness; sodium hyaluronic infusion can alleviate frequent urination and pain, and the efficacy was positively correlated with the duration of treatment.
Lai, H. Henry; Munoz, Alvaro; Smith, Christopher P.; Boone, Timothy B.; Somogyi, George T.
2011-01-01
The purpose of this study was to examine the pharmacologic plasticity of cholinergic, non-adrenergic non-cholinergic (NANC), and purinergic contractions in neurogenic bladder strips from spinal cord injured (SCI) rats. Bladder strips were harvested from female rats three to four weeks after T9–T10 spinal cord transection. The strips were electrically stimulated using two experimental protocols to compare the contribution of muscarinic and NANC/purinergic contractions in the presence and the absence of carbachol or muscarine. The endpoints of the study were: (1) percent NANC contraction that was unmasked by the muscarinic antagonist 4-DAMP, and (2) P2X purinergic contraction that was evoked by α,β–methylene ATP. NANC contraction accounted for 78.5% of the neurally evoked contraction in SCI bladders. When SCI bladder strips were treated with carbachol (10 µM) prior to 4-DAMP (500 nM), the percent NANC contraction decreased dramatically to only 13.1% of the neurally evoked contraction (p=0.041). This was accompanied by a substantial decrease in α,β–methylene ATP evoked P2X contraction, and desensitization of purinergic receptors (the ratio of subsequent over initial P2X contraction decreased from 97.2% to 42.1%, p=0.0017). Sequential activation of the cholinergic receptors with carbachol (or with muscarine in neurally intact bladders) and unmasking of the NANC response with 4-DAMP switched the neurally evoked bladder contraction from predominantly NANC to predominantly cholinergic. We conclude that activation of muscarinic receptors (with carbachol or muscarine) blocks NANC and purinergic contractions in neurally intact or in SCI rat bladders. The carbachol-induced inhibition of the NANC contraction is expressed more in SCI bladders compared to neurally intact bladders. Along with receptor plasticity, this change in bladder function may involve P2X-independent mechanisms. PMID:21689735
Mally, Abhijith D.; Zhang, Fan; Matsuta, Yosuke; Shen, Bing; Wang, Jicheng; Roppolo, James R.; de Groat, William C.; Tai, Changfeng
2013-01-01
Purpose We determined whether transcutaneous electrical foot stimulation combined with a low dose of tramadol (Sigma-Aldrich®) could completely suppress bladder overactivity. Materials and Methods Repeat cystometrograms were performed in 18 α-chloralose anesthetized cats by infusing the bladder with saline or 0.25% acetic acid. Transcutaneous electrical stimulation (5 Hz) of the cat hind foot at 2 to 4 times the threshold intensity needed to induce observable toe movement was applied to suppress acetic acid induced bladder overactivity. Tramadol (1 to 3 mg/kg intravenously) was administered to enhance foot inhibition. Results Acetic acid irritated the bladder, induced bladder overactivity and significantly decreased bladder capacity to a mean ± SE of 26% ± 5% of saline control capacity (p <0.01). Without tramadol, foot stimulation at 2 and 4 threshold intensity applied during acetic acid cystometrograms significantly increased bladder capacity to a mean of 47% ± 5% and 62% ± 6% of saline control capacity, respectively (p <0.05). Without foot stimulation, tramadol (1 mg/kg) only slightly changed bladder capacity to a mean of 39% ± 2% of saline control capacity (p >0.05), while 3 mg/kg significantly increased capacity to 85% ± 14% that of control (p <0.05). However, 1 mg/kg tramadol combined with foot stimulation increased bladder capacity to a mean of 71% ± 18% (2 threshold intensity) and 84% ± 14% (4 threshold intensity), respectively, which did not significantly differ from saline control capacity. In addition, long lasting (greater than 1.5 to 2 hours) post-stimulation inhibition was induced by foot stimulation combined with 3 mg/kg tramadol treatment. Conclusions This study suggests a new treatment strategy for overactive bladder by combining foot stimulation with a low dose of tramadol, which is noninvasive and has potentially high efficacy and fewer adverse effects. PMID:23088991
Ha, Ji-Hyoung; Choi, Changsun; Ha, Sang-Do
2014-12-01
Outbreaks of viral diseases are frequently associated with the consumption of minimally processed shellfish. Among the viruses in these outbreaks, hepatitis A virus (HAV) and human norovirus (NoV) have been increasingly reported as the most common food-borne pathogens. These viruses must be concentrated in tested samples in order to be detected. In this study, a method for the detection of NoV and HAV in shellfish using an immuno-magnetic separation (IMS) procedure combined with reverse transcriptase (RT)-PCR was developed. The IMS/RT-PCR method was applied to investigate the recovery rates of HAV, NoV GI.1, and GII.4 from oyster and mussel. Based on IMS/RT-PCR results, recovery rates for HAV from oyster and mussel test samples were 2.4 and 1.1%, respectively. The NoV GI.1 recovery rates from oyster and mussel samples were 4.9-9.2% (mean 6.9%) and 4.3-8.6% (mean 6.2%), respectively, and the NoV GII.4 recovery rates were 8.8 and 8.5%, respectively. These results verified that HAV, NoV GI.1, and GII.4 can be detected in all the test samples using the IMS/RT-PCR method, although the three inoculated viruses were recovered with low efficiency. In conclusion, the IMS/RT-PCR method can be used to efficiently and rapidly detect viruses such as HAV and NoV in shellfish such as oyster and mussel.
Ganas, V; Kalaitzis, C; Sountoulides, P; Giannakopoulos, S; Touloupidis, S
2012-12-01
The aim of the study was to evaluate the predictive values of two novel urinary markers for bladder cancer: survivin and soluble-Fas (s-Fas). The study included 84 individuals divided in two groups. The first group contained 47 patients, who underwent transurethral bladder tumor resection and the second, control, group 20 patients with non-malignant conditions, who underwent cystoscopy and 17 health volunteers. Fresh, second morning voided urine was collected for measurement of s-Fas, survivin, BTA and for cytology. Sensitivity, specificity, positive and negative predictive values and accuracy were calculated. Bladder tumor patients had significantly higher survivin urine levels in comparison to the controls. Survivin correlated also with the tumor stage. Combination of survivin with BTA had a sensitivity of 86.4% but still lower than that of cystoscopy (97.8%). Only the specificity of the combination between survivin and BTA was higher than that of cystoscopy (86.4% and 75.6%, respectively). Survivin was a better marker for tumor detection than s-Fas and was better enough to discriminate cancer stage. Combination of survivin and BTA had a specificity of 86.4% to exclude bladder malignancy and the combination of s-Fas with survivin and BTA had a sensitivity of 93.6% to detect bladder cancer.
Inactivation conditions for human Norovirus measured by an in situ capture-qRT-PCR Method
USDA-ARS?s Scientific Manuscript database
Human noroviruses (HuNoVs) are the major cause of epidemic non-bacterial gastroenteritis. Due to the inability to cultivate HuNoVs, it has been a challenge to determine their infectivity. Quantitative real-time RT-PCR (qRT-PCR) is widely used in detecting HuNoVs. However, qRT-PCR only detects the...
Heron, Jon; Grzeda, Mariusz T; von Gontard, Alexander; Wright, Anne; Joinson, Carol
2017-01-01
Objectives To identify different patterns (trajectories) of childhood urinary incontinence and examine which patterns are associated with bladder and bowel symptoms in adolescence. Design Prospective cohort study. Setting General community. Participants The starting sample included 8751 children (4507 men and 4244 women) with parent-reported data on frequency of bedwetting and daytime wetting for at least three of five time points (4½, 5½, 6½, 7½ and 9½ years—hereafter referred to as 4–9 years). Study children provided data on a range of bladder and bowel symptoms at age 14 (data available for 5899 participants). Outcome measures Self-reported bladder and bowel symptoms at 14 years including daytime wetting, bedwetting, nocturia, urgency, frequent urination, low voided volume, voiding postponement, passing hard stools and low stool frequency. Results We extracted 5 trajectories of urinary incontinence from 4 to 9 years using longitudinal latent class analysis: (1) normative development of daytime and night-time bladder control (63.0% of the sample), (2) delayed attainment of bladder control (8.6%), (3) bedwetting alone (no daytime wetting) (15.6%), (4) daytime wetting alone (no bedwetting) (5.8%) and (5) persistent wetting (bedwetting with daytime wetting to age 9) (7.0%). The persistent wetting class generally showed the strongest associations with the adolescent bladder and bowel symptoms: OR for bedwetting at 14 years=23.5, 95% CI (15.1 to 36.5), daytime wetting (6.98 (4.50 to 10.8)), nocturia (2.39 (1.79 to 3.20)), urgency (2.10 (1.44 to 3.07)) and passing hard stools (2.64 (1.63 to 4.27)) (reference category=normative development). The association with adolescent bedwetting was weaker for children with bedwetting alone (3.69 (2.21 to 6.17)). Conclusions Trajectories of childhood urinary incontinence are differentially associated with adolescent bladder and bowel symptoms. Children exhibiting persistent bedwetting with daytime wetting had the poorest outcomes in adolescence. PMID:28292756
Oehler, Christoph; Lang, Stephanie; Dimmerling, Peter; Bolesch, Christian; Kloeck, Stephan; Tini, Alessandra; Glanzmann, Christoph; Najafi, Yousef; Studer, Gabriela; Zwahlen, Daniel R
2014-11-11
To evaluate PTV margins for hypofractionated IGRT of prostate comparing kV/kV imaging or CBCT. Between 2009 and 2012, 20 patients with low- (LR), intermediate- (IR) and high-risk (HR) prostate cancer were treated with VMAT in supine position with fiducial markers (FM), endorectal balloon (ERB) and full bladder. CBCT's and kV/kV imaging were performed before and additional CBCT's after treatment assessing intra-fraction motion. CTVP for 5 patients with LR and CTVPSV for 5 patients with IR/HR prostate cancer were contoured independently by 3 radiation oncologists using MRI. The van Hark formula (PTV margin =2.5Σ +0.7σ) was applied to calculate PTV margins of prostate/seminal vesicles (P/PSV) using CBCT or FM. 172 and 52 CBCTs before and after RT and 507 kV/kV images before RT were analysed. Differences between FM in CBCT or in planar kV image pairs were below 1 mm. Accounting for both random and systematic uncertainties anisotropic PTV margins were 5-8 mm for P (LR) and 6-11 mm for PSV (IR/HR). Random uncertainties like intra-fraction and inter-fraction (setup) uncertainties were of similar magnitude (0.9-1.4 mm). Largest uncertainty was introduced by CTV delineation (LR: 1-2 mm, IR/HR: 1.6-3.5 mm). Patient positioning using bone matching or ERB-matching resulted in larger PTV margins. For IGRT CBCT or kV/kV-image pairs with FM are interchangeable in respect of accuracy. Especially for hypofractionated RT, PTV margins can be kept in the range of 5 mm or below if stringent daily IGRT, ideally including prostate tracking, is applied. MR-based CTV delineation optimization is recommended.
Wu, B; Pan, C; Song, G
2001-10-25
To preliminarily verify the tentative idea of replacement of bladder transitional epithelium with small intestine mucous membrane to prevent recurrence of carcinoma of bladder. A certain segment of small intestine was transplanted to the urinary bladder of the same body in 17 rats. Then N-butyl-N-(4-hydroxy-butyl) nitrosamine (BBN) was used to induce carcinoma of bladder. BBN was used to 11 control rats that did not undergo operation. Bladder carcinoma failed to be found in the transplanted small intestine mucous membrane in all experimental rats except one. After stimulation of BBN, carcinoma of urinary bladder occurred in all rats' bladder transitional epithelium. 1) The carcinogenic substances in the urine of rats suffering from BBN-induced bladder carcinoma are carcinogenic only to bladder transitional epithelium and have no effect on small intestine epithelium. 2) Bladder transitional epithelium may be more sensitive to the urine carcinogenic substances and easier to be cancerized than small intestine epithelium. 3) The tentative idea of substitution of small intestine mucous membrane for bladder transitional epithelium to prevent the recurrence of bladder carcinoma is worth further studying.
van Kessel, Kim E M; van de Werken, Harmen J G; Lurkin, Irene; Ziel-van der Made, Angelique C J; Zwarthoff, Ellen C; Boormans, Joost L
2017-01-01
Neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) provides a small but significant survival benefit. Nevertheless, controversies on applying NAC remain because the limited benefit must be weight against chemotherapy-related toxicity and the delay of definitive local treatment. Therefore, there is a clear clinical need for tools to guide treatment decisions on NAC in MIBC. Here, we aimed to validate a previously reported 20-gene expression signature that predicted lymph node-positive disease at radical cystectomy in clinically node-negative MIBC patients, which would be a justification for upfront chemotherapy. We studied diagnostic transurethral resection of bladder tumors (dTURBT) of 150 MIBC patients (urothelial carcinoma) who were subsequently treated by radical cystectomy and pelvic lymph node dissection. RNA was isolated and the expression level of the 20 genes was determined on a qRT-PCR platform. Normalized Ct values were used to calculate a risk score to predict the presence of node-positive disease. The Cancer Genome Atlas (TCGA) RNA expression data was analyzed to subsequently validate the results. In a univariate regression analysis, none of the 20 genes significantly correlated with node-positive disease. The area under the curve of the risk score calculated by the 20-gene expression signature was 0.54 (95% Confidence Interval: 0.44-0.65) versus 0.67 for the model published by Smith et al. Node-negative patients had a significantly lower tumor grade at TURBT (p = 0.03), a lower pT stage (p<0.01) and less frequent lymphovascular invasion (13% versus 38%, p<0.01) at radical cystectomy than node-positive patients. In addition, in the TCGA data, none of the 20 genes was differentially expressed in node-negative versus node-positive patients. We conclude that a 20-gene expression signature developed for nodal staging of MIBC at radical cystectomy could not be validated on a qRT-PCR platform in a large cohort of dTURBT specimens.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Sugenoya, Junichi
2016-05-01
To examine the effects of micro mist sauna bathing, produced by water crushing method, we exposed ten male subjects to five cases of micro mist sauna, namely (1) room temperature (RT) 38 °C with 100 % (actually 91 %) relative humidity (RH), (2) RT 41.5 °C with 80 % (actually 81 %) RH, (3) RT 41.5 °C with 100 % (actually 96 %) RH, (4) RT 45.0 °C with 64 % (actually 61 %) RH, and (5) RT 45.0 °C with 100 % (actually 86 %) RH, and measured tympanic temperature, mean skin temperature, heart rate (HR), and cheek moisture content, as well as ratings of thermal and sweating sensation tympanic temperatures at RT 45 °C were significantly higher at 86 % RH than those at 61 % RH; however, those at RT 45 °C with 61 % RH were higher than those with 86 % RH during recovery. There were no significant differences at RT 41.5 °C between with 81 % RH and with 96 % RH. Mean skin temperature was the highest at RT 45 °C 86 % RH case, followed by at RT 41.5 °C 96 % RH, RT 45 °C 61 % RH, RT 41.5 °C 81 % RH, and finally at RT 38 °C 91 % RH. HR change showed the same order as for mean skin temperature. A significant difference in cheek moisture content was observed between RT 41.5 °C with 81 % RH and RT 45 °C with 86 % RH 10 min after the micro mist bathing. There were no significant differences between ratings of thermal sensation at RT 41.5 °C with 81 % RH and at RT 45 °C with 61 % RH and RT 45 °C with 61 % RH and RT 45 °C with 86 % RH. Between RT 45 °C with 86 % RH and RT 41.5 °C with 81 % RH, there was a tendency for interaction (0.05 < p < 0.1). Other cases showed significant higher ratings of thermal sensation at higher room temperature or higher relative humidity. The ratings of sweating sensation 10 min after the mist sauna bathing were significantly higher at higher RT and RH except between RT 41.5 °C 96 % RH and RT 45 °C 86 % RH which exhibited no significant difference. We concluded that the micro mist sauna produced by water crushing method induced more moderate and effective thermal effect during micro mist sauna bathing than the conventional mist sauna bathing. In addition, micro mist sauna is as effective for heating the human subjects as bathtub bathing as well as more moderate thermal and sweating sensations.
Addison, Daniel; Seidelmann, Sara B; Janjua, Sumbal A; Emami, Hamed; Staziaki, Pedro V; Hallett, Travis R; Szilveszter, Bálint; Lu, Michael T; Cambria, Richard P; Hoffmann, Udo; Chan, Annie W; Wirth, Lori J; Neilan, Tomas G
2017-08-30
Radiation therapy (RT) is a standard treatment for head and neck cancer; however, it is associated with inflammation, accelerated atherosclerosis, and cerebrovascular events (CVEs; stroke or transient ischemic attack). Human papillomavirus (HPV) is found in nearly half of head and neck cancers and is associated with inflammation and atherosclerosis. Whether HPV confers an increased risk of CVEs after RT is unknown. Using an institutional database, we identified all consecutive patients treated with RT from 2002 to 2012 for head and neck cancer who were tested for HPV. The outcome of interest was the composite of ischemic stroke and transient ischemic attack, and the association between HPV and CVEs was assessed using Cox proportional hazard models, competing risk analysis, and inverse probability weighting. Overall, 326 participants who underwent RT for head and neck cancer were tested for HPV (age 59±12 years, 75% were male, 9% had diabetes mellitus, 45% had hypertension, and 61% were smokers), of which 191 (59%) were tumor HPV positive. Traditional risk factors for CVEs were similar between HPV-positive and -negative patients. Over a median follow-up of 3.4 years, there were 18 ischemic strokes and 5 transient ischemic attacks (event rate of 1.8% per year). The annual event rate was higher in the HPV-positive patients compared with the HPV-negative patients (2.6% versus 0.9%, P =0.002). In a multivariable model, HPV-positive status was associated with a >4 times increased risk of CVEs (hazard ratio: 4.4; 95% confidence interval, 1.5-13.2; P =0.008). In this study, HPV-positive status is associated with an increased risk of stroke or transient ischemic attack following RT for head and neck cancer. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Green, Clayton B; Cheng, Georgina; Chandra, Jyotsna; Mukherjee, Pranab; Ghannoum, Mahmoud A; Hoyer, Lois L
2004-02-01
An RT-PCR assay was developed to analyse expression patterns of genes in the Candida albicans ALS (agglutinin-like sequence) family. Inoculation of a reconstituted human buccal epithelium (RHE) model of mucocutaneous candidiasis with strain SC5314 showed destruction of the epithelial layer by C. albicans and also formation of an upper fungal layer that had characteristics similar to a biofilm. RT-PCR analysis of total RNA samples extracted from C. albicans-inoculated buccal RHE showed that ALS1, ALS2, ALS3, ALS4, ALS5 and ALS9 were consistently detected over time as destruction of the RHE progressed. Detection of transcripts from ALS7, and particularly from ALS6, was more sporadic, but not associated with a strictly temporal pattern. The expression pattern of ALS genes in C. albicans cultures used to inoculate the RHE was similar to that observed in the RHE model, suggesting that contact of C. albicans with buccal RHE does little to alter ALS gene expression. RT-PCR analysis of RNA samples extracted from model denture and catheter biofilms showed similar gene expression patterns to the buccal RHE specimens. Results from the RT-PCR analysis of biofilm RNA specimens were consistent between various C. albicans strains during biofilm development and were comparable to gene expression patterns in planktonic cells. The RT-PCR assay described here will be useful for analysis of human clinical specimens and samples from other disease models. The method will provide further insight into the role of ALS genes and their encoded proteins in the diverse interactions between C. albicans and its host.
Dancer, D; Rangdale, R E; Lowther, J A; Lees, D N
2010-11-01
Norovirus (NoV) is the principal agent of bivalve molluscan shellfish-associated gastroenteric illness worldwide. Currently, noncultivable human NoVs can be detected in bivalve molluscan shellfish by using molecular methods such as real-time reverse transcription PCR assays (qRT-PCR). In addition to infectious viruses, this methodology may also detect noninfectious NoV, including fragments of the NoV genome. This study addresses, in part, the implications of qRT-PCR results for the detection of NoV in shellfish in the absence of an infectivity assay. To evaluate environmental persistence, the stability of a short fragment of the NoV genome, spanning the qRT-PCR target in the open reading frame 1/2 junction, was assessed in seawater under artificial environmental conditions simulating winter in the United Kingdom (1 mW/cm² UV irradiation, 8°C) during a 4-week period. Detectable RNA levels decreased exponentially (T₉₀ of approximately 141 h); however, sequences were still detectable for up to 2 weeks. The ability of Pacific oysters (Crassostrea gigas) to bioaccumulate NoV particles (from human feces) and RNA fragments was also compared using qRT-PCR. Oysters exposed to NoV particles subsequently were positive for NoV by qRT-PCR at levels several orders of magnitude in excess of the theoretical limit of detection, whereas oysters exposed to similar quantities of NoV RNA were either negative or positive at significantly lower levels. Therefore, although noninfectious fragments of NoV RNA may persist in the environment under winter conditions, this type of material will not be efficiently bioaccumulated by Pacific oysters and should not significantly contribute to positive qRT-PCR results.
Advances in the etiology of urothelial cancer.
Morrison, A S
1984-11-01
Cigarette smoking has been shown to be the most important known preventable cause of bladder cancer. Occupations have continued to come under suspicion, although many of the newer findings are tentative. Neither coffee drinking nor use of artificial sweeteners appears to have been responsible for much, if any, human bladder cancer.
Proteomic Profiling of Bladders from Mice Exposed with Sodium Arsenite
Arsenic, an environmental contaminant, has been linked with cancer of the bladder in humans. To study the mode of action of arsenic, female CH3 mice were exposed to 85 ppm sodium arsenite in their drinking water for 30 days. Following the exposure a comparative proteomic analysis...
Hagiwara, Akihiro; Imai, Norio; Doi, Yuko; Suguro, Mayuko; Kawabe, Mayumi; Furukawa, Fumio; Nagano, Kasuke; Fukushima, Shoji
2013-01-01
The effects of ethyl tertiary-butyl ether (ETBE) on two-stage urinary bladder carcinogenesis in male F344 rats initiated with N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) were investigated at various dose levels with regard to possible promoting activity. Groups of 30 rats were given drinking water containing 500 ppm BBN, as an initiator, for 4 weeks and starting one week thereafter received ETBE by gavage (daily, 7 days/week) at dose levels of 0 (control), 100, 300, 500 or 1000 mg/kg/day until experimental week 36. No statistically significant differences in incidences of preneoplastic lesions, papillomas, and carcinomas of the urinary bladder were evident in rats treated with 100–1000 mg/kg/day ETBE as compared with control values. Furthermore, the average numbers of preneoplastic or neoplastic lesions per unit length of basement membrane in rats given 100–1000 mg/kg/day ETBE were also comparable to control values. However, papillomatosis of the urinary bladder was found in 4 out of 30 rats (13%) in the group given 1000 mg/kg/day ETBE, and soft stones in the urinary bladder were found in 3 out of these 4 rats. The results thus demonstrated that ETBE did not exert promotional activity on urinary bladder carcinogenesis. However, papillomatosis of the urinary bladder developed in small numbers of the rats given ETBE at 1000 mg/kg/day but not in rats given 500 mg/kg/day or lower doses. PMID:24526807
d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2015-01-01
Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.
d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2015-01-01
Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121
Bexten, Maria; Oswald, Stefan; Grube, Markus; Jia, Jia; Graf, Tanja; Zimmermann, Uwe; Rodewald, Kathrin; Zolk, Oliver; Schwantes, Ulrich; Siegmund, Werner; Keiser, Markus
2015-01-05
The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1 and P-glycoprotein may be the reason for incomplete oral absorption, wide distribution into liver and kidneys, and substantial intestinal and renal secretions. Absence of brain distribution may result from affinity to P-gp and a low affinity to OATP1A2. The human urothelium expresses many drug transporters and drug metabolizing enzymes that may interact with TC and other drugs eliminated into the urine.
A Potent Combination Microbicide that Targets SHIV-RT, HSV-2 and HPV
Kizima, Larisa; Rodríguez, Aixa; Kenney, Jessica; Derby, Nina; Mizenina, Olga; Menon, Radhika; Seidor, Samantha; Zhang, Shimin; Levendosky, Keith; Jean-Pierre, Ninochka; Pugach, Pavel; Villegas, Guillermo; Ford, Brian E.; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Paglini, Gabriela; Teleshova, Natalia; Zydowsky, Thomas M.; Robbiani, Melissa; Fernández-Romero, José A.
2014-01-01
Prevalent infection with human herpes simplex 2 (HSV-2) or human papillomavirus (HPV) is associated with increased human immunodeficiency virus (HIV) acquisition. Microbicides that target HIV as well as these sexually transmitted infections (STIs) may more effectively limit HIV incidence. Previously, we showed that a microbicide gel (MZC) containing MIV-150, zinc acetate (ZA) and carrageenan (CG) protected macaques against simian-human immunodeficiency virus (SHIV-RT) infection and that a ZC gel protected mice against HSV-2 infection. Here we evaluated a modified MZC gel (containing different buffers, co-solvents, and preservatives suitable for clinical testing) against both vaginal and rectal challenge of animals with SHIV-RT, HSV-2 or HPV. MZC was stable and safe in vitro (cell viability and monolayer integrity) and in vivo (histology). MZC protected macaques against vaginal (p<0.0001) SHIV-RT infection when applied up to 8 hours (h) prior to challenge. When used close to the time of challenge, MZC prevented rectal SHIV-RT infection of macaques similar to the CG control. MZC significantly reduced vaginal (p<0.0001) and anorectal (p = 0.0187) infection of mice when 106 pfu HSV-2 were applied immediately after vaginal challenge and also when 5×103 pfu were applied between 8 h before and 4 h after vaginal challenge (p<0.0248). Protection of mice against 8×106 HPV16 pseudovirus particles (HPV16 PsV) was significant for MZC applied up to 24 h before and 2 h after vaginal challenge (p<0.0001) and also if applied 2 h before or after anorectal challenge (p<0.0006). MZC provides a durable window of protection against vaginal infection with these three viruses and, against HSV-2 and HPV making it an excellent candidate microbicide for clinical use. PMID:24740100
Tighe, S.; Holbrook, J.; Nadella, V.; Carmical, R.; Sol-Church, K.; Yueng, A.T.; Chittur, S.
2011-01-01
The Nucleic Acid Research Group (NARG) has previously conducted studies evaluating the impact of RNA integrity and priming strategies on cDNA synthesis and real-time RT-qPCR. The results of last year's field study as it relates to degraded RNA will be presented. In continuation of the RNA integrity theme, this year's study was designed to evaluate the impact of RNA integrity on the analysis of miRNA expression using real-time RT-qPCR. Target section was based on data obtained by the Microarray Research Group (MARG) and other published data from next gen sequencing. These 9 miRNAs represent three groups of miRNA that are expressed at low, medium or high levels in the First Choice human brain reference RNA sample. Two popular RT priming strategies tested in this study include the Megaplex miRNA TaqMan assay (ABI) and the RT2 miRNA qPCR assay (Qiagen/SA Biosciences). The basis for the ABI assay design is a target-specific stem-loop structure and reverse-transcription primer, while the Qiagen design combines poly(A) tailing and a universal reverse transcription in one cDNA synthesis reaction. For this study, the human brain reference RNA was subject to controlled degradation using RNase A to RIN (RNA Integrity Number) values of 7 (good), 4 (moderately degraded), and 2 (severely degraded).These templates were then used to assess both RT methods. In addition to this real-time RT-qPCR data, the same RNA templates were further analyzed using universal poly(A) tailing and hybridization to Affymetrix miRNA GeneChips. This talk will provide insights into RT priming strategies for miRNA and contrast the qPCR results obtained using different technologies.
Characterization of the Olfactory Receptor OR10H1 in Human Urinary Bladder Cancer.
Weber, Lea; Schulz, Wolfgang A; Philippou, Stathis; Eckardt, Josephine; Ubrig, Burkhard; Hoffmann, Michéle J; Tannapfel, Andrea; Kalbe, Benjamin; Gisselmann, Günter; Hatt, Hanns
2018-01-01
Olfactory receptors (ORs) are a large group of G-protein coupled receptors predominantly found in the olfactory epithelium. Many ORs are, however, ectopically expressed in other tissues and involved in several diseases including cancer. In this study, we describe that one OR, OR10H1, is predominantly expressed in the human urinary bladder with a notably higher expression at mRNA and protein level in bladder cancer tissues. Interestingly, also significantly higher amounts of OR10H1 transcripts were detectable in the urine of bladder cancer patients than in the urine of control persons. We identified the sandalwood-related compound Sandranol as a specific agonist of OR10H1. This deorphanization allowed the functional characterization of OR10H1 in BFTC905 bladder cancer cells. The effect of receptor activation was morphologically apparent in cell rounding, accompanied by changes in the cytoskeleton detected by β-actin, T-cadherin and β-Catenin staining. In addition, Sandranol treatment significantly diminished cell viability, cell proliferation and migration and induced a limited degree of apoptosis. Cell cycle analysis revealed an increased G1 fraction. In a concentration-dependent manner, Sandranol application elevated cAMP levels, which was reduced by inhibition of adenylyl cyclase, and elicited intracellular Ca 2+ concentration increase. Furthermore, activation of OR10H1 enhanced secretion of ATP and serotonin. Our results suggest OR10H1 as a potential biomarker and therapeutic target for bladder cancer.
Ung, K A; White, R; Mathlum, M; Mak-Hau, V; Lynch, R
2014-01-01
In post-prostatectomy radiotherapy to the prostatic bed, consistent bladder volume is essential to maintain the position of treatment target volume. We assessed the differences between bladder volume readings from a portable bladder scanner (BS-V) and those obtained from planning CT (CT-V) or cone-beam CT (CBCT-V). Interfraction bladder volume variation was also determined. BS-V was recorded before and after planning CT or CBCT. The percentage differences between the readings using the two imaging modalities, standard deviations and 95% confidence intervals were determined. Data were analysed for the whole patient cohort and separately for the older BladderScan™ BVI3000 and newer BVI9400 model. Interfraction bladder volume variation was determined from the percentage difference between the CT-V and CBCT-V. Treatment duration, incorporating the time needed for BS and CBCT, was recorded. Fourteen patients were enrolled, producing 133 data sets for analysis. BS-V was taken using the BVI9400 in four patients (43 data sets). The mean BS-V was 253.2 mL, and the mean CT-V or CBCT-V was 199 cm(3). The mean percentage difference between the two modalities was 19.7% (SD 42.2; 95%CI 12.4 to 26.9). The BVI9400 model produced more consistent readings, with a mean percentage difference of -6.2% (SD 27.8; 95% CI -14.7 to -2.4%). The mean percentage difference between CT-V and CBCT-V was 31.3% (range -48% to 199.4%). Treatment duration from time of first BS reading to CBCT was, on average, 12 min (range 6-27). The BS produces bladder volume readings of an average 19.7% difference from CT-V or CBCT-V and can potentially be used to screen for large interfraction bladder volume variations in radiotherapy to prostatic bed. The observed interfraction bladder volume variation suggests the need to improve bladder volume consistency. Incorporating the BS into practice is feasible. © 2014 The Royal Australian and New Zealand College of Radiologists.
Orlandi, Alessia; Pagani, Francesca; Avitabile, Daniele; Bonanno, Giuseppina; Scambia, Giovanni; Vigna, Elisa; Grassi, Francesca; Eusebi, Fabrizio; Fucile, Sergio; Pesce, Maurizio; Capogrossi, Maurizio C
2008-04-01
Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB), cocultured with neonatal mouse cardiomyocytes, acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days, mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions, acquired electrophysiological properties similar to those of cardiomyocytes, and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However, RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion, under our experimental conditions, hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However, the expression of human-specific cardiac genes was undetectable by RT-PCR.
The Role of elF4E Activity in Breast Cancer
2011-08-01
protein; ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...Reactions were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less...that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem-loop structure6. This
The use of computed tomography for assessment of the swim bladder in koi carp (Cyprinus carpio).
Pees, Michael; Pees, Kathrin; Kiefer, Ingmar
2010-01-01
Seven normal koi (Cyprinus carpio) and seven koi with negative buoyancy were examined using computed tomography (CT) to assess the swim bladder. The volume of the swim bladder was calculated in all animals. In the healthy koi there was a statistical correlation (r = 0.996) between body mass and swim bladder volume with volume (ml) being related to body mass according to the formula 4.9 +/- 0.054 x BM (g). In all koi with buoyancy problems, the gas volume of the swim bladder was reduced. Additionally, fluid was found within the swim bladder in three of the abnormal koi. CT proved to be a quick noninvasive technique for the examination of the swim bladder in koi.
Storr, Helen L; Plowman, P Nicholas; Carroll, Paul V; François, Inge; Krassas, Gerasimos E; Afshar, Farhad; Besser, G Michael; Grossman, Ashley B; Savage, Martin O
2003-01-01
Transsphenoidal surgery (TSS) is considered first-line treatment for Cushing's disease (CD). Options for treatment of postoperative persisting hypercortisolemia are pituitary radiotherapy (RT), repeat TSS, or bilateral adrenalectomy. From 1983 to 2001, we treated 18 pediatric patients (age, 6.4-17.8 yr) with CD. All underwent TSS, and 11 were cured (postoperative serum cortisol, <50 nM). Seven (39%) had 0900-h serum cortisol of 269-900 nM during the immediate postoperative period (2-20 d), indicating lack of cure. These patients (6 males and 1 female; mean age, 12.8 yr; range, 6.4-17.8 yr; 4 prepubertal; 3 pubertal) received external beam RT to the pituitary gland, using a 6-MV linear accelerator, with a dose of 45 Gy in 25 fractions over 35 d. Until the RT became effective, hypercortisolemia was controlled with ketoconazole (dose, 200-600 mg/d) (n = 4) and metyrapone (750 mg-3 g/d) +/- aminoglutethimide (1 g/d) or o'p'DDD (mitotane, 3 mg/d) (n = 3). All patients were cured after pituitary RT. The mean interval from RT to cure (mean serum cortisol on 5-point day curve, <150 nM) was 0.94 yr (0.25-2.86 yr). Recovery of pituitary-adrenal function (mean cortisol, 150-300 nM) occurred at mean 1.16 yr (0.40-2.86 yr) post RT. At 2 yr post RT, puberty occurred early in one male patient (age, 9.8 yr) but was normal in the others. GH secretion was assessed at 0.6-2.5 yr post RT in all patients: six had GH deficiency (peak on glucagon/insulin provocation, <1.0-17.9 mU/liter) and received human GH replacement. Follow-up of pituitary function 7.6 and 9.5 yr post RT in two patients showed normal gonadotropin secretion and recovery of GH peak to 29.7 and 19.2 mU/liter. The seven patients were followed for mean 6.9 yr (1.4-12.0 yr), with no evidence of recurrence of CD. In conclusion, pituitary RT is an effective and relatively rapid-onset treatment for pediatric CD after failure of TSS. GH deficiency occurred in 86% patients. Long-term follow-up suggests some recovery of GH secretion and preservation of other anterior pituitary function.
Altered Redox Status Accompanies Progression to Metastatic Human Bladder Cancer
Hempel, Nadine; Ye, Hanqing; Abessia, Bryan; Mian, Badar; Melendez, J. Andres
2009-01-01
The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. Search of publicly available micro-array data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O2-.) to hydrogen peroxide (H2O2), is consistently increased in high grade and advanced stage bladder tumors. Here we aim to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both non-metastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H2O2 production in the 253J B-V line. Expression of pro-metastatic and –angiogenic factors, matrix metalloproteinase 9 (MMP-9) and vascular endothelial derived growth factor (VEGF), respectively, were similarly upregulated in the metastatic line. Expression of both MMP-9 and VEGF were shown to be H2O2-dependent, as removal of H2O2 by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive pro-tumorigenic and pro-metastatic genes such as VEGF and MMP-9. PMID:18930813
Lower urinary tract development and disease
Rasouly, Hila Milo; Lu, Weining
2013-01-01
Congenital Anomalies of the Lower Urinary Tract (CALUT) are a family of birth defects of the ureter, the bladder and the urethra. CALUT includes ureteral anomalies such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUV). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, bladder, and urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, bladder and urethra and associated gene mutations are also presented. As we are entering the post-genomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families. PMID:23408557
Lyon, Matthew; Johnson, Daniel; Gordon, Richard
2015-01-01
Penetrating injuries of the proximal large arteries are a common cause of death on the battlefield due to rapid exsanguination. Applying an effective tourniquet to stop bleeding at the axillary and proximal femoral arteries (junctional sites) is difficult. Prior studies have shown that the Abdominal Aortic and Junctional Tourniquet (AAJT) effectively reduced blood flow in the common femoral artery with application of the device around the lower abdomen. Our objective was to determine the effectiveness of the AAJT to stop blood flow in the proximal femoral artery (PFA), and the axillary artery (AA). This was a prospective observational trial using human volunteers. The AAJT consists of a wedge-shaped bladder and integrated strap. The bladder has an integrated manometer, which is used to measure the pressure in the bladder. For the AA, the AAJT was placed over the axillary junction at the anterior axillary line with the strap placed across the contralateral shoulder. For the PFA, the AAJT bladder was placed over the right groin with the strap positioned across both femoral trochanters. Spectral Doppler measurements were taken of the PFA and AA at baseline and as the bladder was inflated. Collected data included pressure of the AAJT.
Rouissi, N; Nantel, F; Drapeau, G; Rhaleb, N E; Dion, S; Regoli, D
1990-01-01
Neurokinins, bradykinin and angiotensins were tested in isolated urinary bladder of the guinea pig, the hamster and the rat, in the absence and in presence of a variety of peptidase inhibitors in order to establish if peptide degradation interferes with the bladder contractions elicited by the three types of peptides. Indeed, the effects of neurokinins, bradykinin and angiotensin I in the guinea pig bladder were significantly enhanced by captopril (4.6 x 10(-6) mol/l), chymostatin (1 mg/l), phosphoramidon (4.6 x 10(-6) mol/l) and thiorphan (1.0 x 10(-6) mol/l), while only captopril was found to potentiate the effects of the same peptides in the rat bladder. The four peptidase inhibitors, as well as bacitracin were found to modify the responses of the hamster urinary bladder to one or another or to all three groups of peptides and to DiMeC7. The present results suggest that the urinary bladders of various species have different types of active proteolytic enzymes: only the angiotensin-converting enzyme appears to be present in the rat bladder, while the same enzyme and possibly two additional endopeptidases interfere with the myotropic effects of neurokinins, kinins and angiotensins in the guinea pig and the hamster bladder.
MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shiqi; Xu, Xianglai; Xu, Xin
2013-11-29
Highlights: •We examined the level of miR-490-5p in bladder cancer tissues and three cancer cell lines. •We are the first to show the function of miR-490-5p in bladder cancer. •We demonstrate c-Fos may be a target of miR-490-5p. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell linesmore » with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.« less
Alexander, Riley E; Hu, Yingchuan; Kum, Jennifer B; Montironi, Rodolfo; Lopez-Beltran, Antonio; Maclennan, Gregory T; Idrees, Muhammad T; Emerson, Robert E; Ulbright, Thomas M; Grignon, David G; Eble, John N; Cheng, Liang
2012-11-01
Squamous cell carcinoma of the urinary bladder is unusual and of unknown etiology. There is a well-established association between human papillomavirus (HPV) infection and the development of cervical and head/neck squamous cell carcinomas. However, the role of HPV in the pathogenesis of squamous cell carcinoma of the urinary bladder is uncertain. The purposes of this study were to investigate the possible role of HPV in the development of squamous cell carcinoma of the urinary bladder and to determine if p16 expression could serve as a surrogate marker for HPV in this malignancy. In all, 42 cases of squamous cell carcinoma of the urinary bladder and 27 cases of urothelial carcinoma with squamous differentiation were investigated. HPV infection was analyzed by both in situ hybridization at the DNA level and immunohistochemistry at the protein level. p16 protein expression was analyzed by immunohistochemistry. HPV DNA and protein were not detected in 42 cases of squamous cell carcinoma (0%, 0/42) or 27 cases of urothelial carcinoma with squamous differentiation (0%, 0/15). p16 expression was detected in 13 cases (31%, 13/42) of squamous cell carcinoma and 9 cases (33%, 9/27) of urothelial carcinoma with squamous differentiation. There was no correlation between p16 expression and the presence of HPV infection in squamous cell carcinoma of the bladder or urothelial carcinoma with squamous differentiation. Our data suggest that HPV does not play a role in the development of squamous cell carcinoma of the urinary bladder or urothelial carcinoma with squamous differentiation. p16 expression should not be used as a surrogate marker for evidence of HVP infection in either squamous cell carcinoma of the urinary bladder or urothelial carcinoma with squamous differentiation as neither HVP DNA nor protein is detectable in these neoplasms.
Lonsdale, K
1968-03-15
X-ray diffraction studies have shown that there are several different kinds of human urinary calculi, with different age, sex, period, and geographical distributions. Juvenile bladder stones are typically urate and oxalate in small boys in certain stone belts. They have disappeared in some areas, particularly in Britain, but are still common in Thailand. India. and Turkey. Their cause is unknown. Adult bladder stones, formerly common in elderly men, were largely of uric acid and were due to a faulty diet. Juvenile kidney stones are rare, except in Turkey where they are similar to juvenile bladder stones. Adult kidney stones are by far the most universally common, especially in technically developed communities. They are found in both sexes (equally at postmortem), and in the United States and in Czechoslovakia the average number of hospital entries for stones, relative to the whole population, is about 1 per 1000 per annum (increasing) although the incidence in different districts varies by 4 to 1 or more. Such stones are mainly calcium oxalates and calcium and MgNH(4) phosphates. The incidence among the administrative class is at least 20 times that among agricultural workers, relative to their numbers. Stones are reported also to be an occupational hazard for air pilots. It is probably that much more exercise and the drinking of more water to prevent kidney dehydration (spirits and coffee are not effective for this purpose) would lower the high rate of incidence. Moderate acidification would prevent phosphate supersaturation of the urine, but is not effective for oxalates. It seems certain that, once a suitable seed is formed, epitaxy is largely responsible for deposition from urines that would otherwise remain supersaturated until voided. This would explain the curioLls radial and layered texture of many stones. Laboratory experiments might suggest ways of preventing orientated overgrowth.
O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.
2015-01-01
Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222
O'Brien, Valerie P; Hannan, Thomas J; Schaeffer, Anthony J; Hultgren, Scott J
2015-02-01
Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact.
"Hair in the Bladder": An Unusual Finding.
Cindolo, Luca; Bada, Maida; Bellocci, Roberto; De Francesco, Piergustavo; Castellan, Pietro; Berardinelli, Francesco; Neri, Fabio; Schips, Luigi
2017-01-01
Trichobezoar is a rare condition whereby a hairball is found in the human stomach or gastrointestinal tract, most frequently in young women, mainly in association with a psychiatric disorder. Trichobezoar cases have also been reported in the bladder and represent a rare complication of foreign bodies, called "hair nidus or hair ball," in patients with chronic catheter. Approximately 10% to 15% of patients on long-term urethral catheter or clean intermittent self-catheterization develop urinary tract stones. In a small minority of cases, bladder stones can develop around a foreign body that was introduced into the bladder. In the literature, there are few cases of foreign bladder bodies that formed stones over a hair nidus. Recognizing this condition can optimize the patient's quality of life. Herein, we present a case of a 71-year-old Caucasian male with a long-term catheter in hypocontractile urinary bladder secondary to injury of pelvic plexus after rectal surgery. He had a bladder stone caused by hair encrusted together. Hair is introduced into the bladder either by adherence to the catheter directly or by overlying the urethral meatus and being pushed internally. Regular hygiene and shaving of pubic area represent effective preventive measures to reduce this kind of complications in patients with chronic indwelling catheter or under a self-catheterization regimen.
Longitudinal associations between mental health conditions and overactive bladder in women veterans.
Bradley, Catherine S; Nygaard, Ingrid E; Hillis, Stephen L; Torner, James C; Sadler, Anne G
2017-10-01
One in 5 recently deployed US women veterans report overactive bladder symptoms. Mental health conditions such as depression and anxiety commonly co-occur in women with overactive bladder, but temporal relationships between these outcomes have not been well studied, and the mechanism behind this association is unknown. The Women Veterans Urinary Health Study, a nationwide longitudinal study in recently deployed women veterans, was designed to better understand relationships between overactive bladder and mental health conditions. We sought to estimate the 1-year incidence and remission of overactive bladder and to identify the impact of depression, anxiety, posttraumatic stress disorder, and prior sexual assault on 1-year overactive bladder incidence and remission rates. Participants of this 1-year prospective cohort study were female veterans separated from military service who had returned from Iraq or Afghanistan deployment within the previous 2 years. Eligible women were identified through the Defense Manpower Data Center and recruited by mail and telephone. Telephone screening confirmed participants were ambulatory, community-dwelling veterans and excluded those with urinary tract fistula, congenital abnormality, or cancer; pelvic radiation; spinal cord injury; multiple sclerosis; Parkinson disease; stroke; or current/recent pregnancy. Data collection included computer-assisted telephone interviews performed at enrollment and 1 year later. The interview assessed demographic and military service characteristics; urinary symptoms and treatment; depression, anxiety, and posttraumatic stress disorder symptoms and treatment; and a lifetime history of sexual assault. Overactive bladder was identified if at least moderately bothersome urgency urinary incontinence and/or urinary frequency symptoms were reported on Urogenital Distress Inventory items. Exposures included depression, anxiety, posttraumatic stress disorder, and lifetime sexual assault, assessed at baseline using validated questionnaires (including the Patient Health Questionnaire and Posttraumatic Stress Disorder Checklist). Associations between exposures and overactive bladder incidence and remission were estimated using propensity score adjusted logistic regression models. In all, 1107 (88.0%) of 1258 eligible participants completed 1-year interviews. Median age was 29 (range 20-67) years and 53% were nulliparous. Overactive bladder was identified at baseline in 242 (22%), and 102 (9.2%), 218 (19.7%), 188 (17.0%), and 287 (25.9%) met criteria for baseline depression, anxiety, posttraumatic stress disorder, and lifetime sexual assault, respectively. At 1 year, overactive bladder incidence was 10.5% (95% confidence interval, 8.6-12.8%), and remission of overactive bladder was 36.9% (95% confidence interval, 30.8-43.4%). New overactive bladder occurred more often in women with baseline anxiety (21% vs 9%), posttraumatic stress disorder (19% vs 9%) and lifetime sexual assault (16% vs 9%) (all: P < .01). After adjustment, anxiety (odds ratio, 2.4; 95% confidence interval, 1.4-4.1) and lifetime sexual assault (odds ratio, 1.7; 95% confidence interval, 1.0-2.8) predicted 1-year incident overactive bladder. Overactive bladder remission occurred less often in those with baseline depression (19% vs 41%, P < .01) and anxiety (29% vs 42%, P = .03). After adjustment, depression decreased 1-year overactive bladder remission risk (odds ratio, 0.37; 95% confidence interval, 0.16-0.83). Overactive bladder treatment was uncommon and not associated with remission. Anxiety, depression, and prior sexual assault-common postdeployment problems for women veterans-influence the natural history of overactive bladder. Providers should screen for mental health conditions and sexual assault in women with newly diagnosed or persistent overactive bladder. Copyright © 2017 Elsevier Inc. All rights reserved.
Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia
2015-01-01
Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.
Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia
2015-01-01
Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425
Stewart, John; Hughes, Julian M
2014-04-01
Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the swim bladders of pink snapper and mulloway ruptured after decreases in ~2.5 and 2.75 times the hydrostatic pressure to which the fish were acclimated, respectively. Differences in buoyancy, gas exchange rates, limitations to vertical movements and acclimation times between the two species are discussed in terms of their differing behaviour and ecology.
Urinary bladder organ hypertrophy is partially regulated by Akt1-mediated protein synthesis pathway.
Qiao, Li-Ya; Xia, Chunmei; Shen, Shanwei; Lee, Seong Ho; Ratz, Paul H; Fraser, Matthew O; Miner, Amy; Speich, John E; Lysiak, Jeffrey J; Steers, William D
2018-05-15
The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser 473 ), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO. Copyright © 2018 Elsevier Inc. All rights reserved.
Kapp, K S; Stuecklschweiger, G F; Kapp, D S; Hackl, A G
1992-07-01
A total of 720 192Ir high-dose-rate (HDR) applications in 331 patients with gynecological tumors were analyzed to evaluate the dose to normal tissues from brachytherapy. Based on the calculations of bladder base, bladder neck, and rectal doses derived from orthogonal films the planned tumor dose or fractionation was altered in 20.4% of intracavitary placements (ICP) for cervix carcinoma and 9.2% of ICP for treatment of the vaginal vault. In 13.8% of intracervical and 8.1% of intravaginal treatments calculated doses to both the bladder and rectum were greater than or equal to 140% of the initially planned dose fraction. Doses at the bladder base were significantly higher than at the bladder neck (p less than 0.001). In 17.5% of ICP the dose to the bladder base was at least twice as high as to the bladder neck. The ratio of bladder base dose to the bladder neck was 1.5 (+/- 1.19 SD) for intracervical and 1.46 (+/- 1.14 SD) for intravaginal applications. The comparison of calculated doses from orthogonal films with in-vivo readings showed a good correlation of rectal doses with a correlation coefficient factor of 0.9556. CT-assisted dosimetry, however, revealed that the maximum doses to bladder and rectum were generally higher than those obtained from films with ratios of 1-1.7 (average: 1.44) for the bladder neck, 1-5.4 (average: 2.42) for the bladder base, and 1.1-2.7 (average: 1.37) for the rectum. When doses to the specified reference points of bladder neck and rectum from orthogonal film dosimetry were compared with the corresponding points on CT scans, similar values were obtained for both methods with a maximum deviation of +/- 10%. Despite the determination of multiple reference points our study revealed that this information was inadequate to predict doses to the entire rectum and bladder. If conventional methods are used for dosimetry it is recommended that doses to the bladder base should be routinely calculated, since single point measurements at the bladder neck seriously underestimate the dose to the bladder. Also the rectal dose should be determined at several points over the length of the implant due to the wide range of anatomic variations possible.
Bhuvaneswari, Ramaswamy; Gan, Yik Yuen; Soo, Khee Chee; Olivo, Malini
2009-01-01
Background Photodynamic therapy (PDT) is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR), on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors. PMID:19878607
Mitsuya, Yumi; Varghese, Vici; Wang, Chunlin; Liu, Tommy F.; Holmes, Susan P.; Jayakumar, Prerana; Gharizadeh, Baback; Ronaghi, Mostafa; Klein, Daniel; Fessel, W. Jeffrey; Shafer, Robert W.
2008-01-01
T215 revertant mutations such as T215C/D/E/S that evolve from the nucleoside reverse transcriptase (RT) inhibitor mutations T215Y/F have been found in about 3% of human immunodeficiency virus type 1 (HIV-1) isolates from newly diagnosed HIV-1-infected persons. We used a newly developed sequencing method—ultradeep pyrosequencing (UDPS; 454 Life Sciences)—to determine the frequency with which T215Y/F or other RT inhibitor resistance mutations could be detected as minority variants in samples from untreated persons that contain T215 revertants (“revertant” samples) compared with samples from untreated persons that lack such revertants (“control” samples). Among the 22 revertant and 29 control samples, UDPS detected a mean of 3.8 and 4.8 additional RT amino acid mutations, respectively. In 6 of 22 (27%) revertant samples and in 4 of 29 control samples (14%; P = 0.4), UDPS detected one or more RT inhibitor resistance mutations. T215Y or T215F was not detected in any of the revertant or control samples; however, 4 of 22 revertant samples had one or more T215 revertants that were detected by UDPS but not by direct PCR sequencing. The failure to detect viruses with T215Y/F in the 22 revertant samples in this study may result from the overwhelming replacement of transmitted T215Y variants by the more fit T215 revertants or from the primary transmission of a T215 revertant in a subset of persons with T215 revertants. PMID:18715933
Bladder cancer mortality of workers exposed to aromatic amines: a 58-year follow-up.
Pira, Enrico; Piolatto, Giorgio; Negri, Eva; Romano, Canzio; Boffetta, Paolo; Lipworth, Loren; McLaughlin, Joseph K; La Vecchia, Carlo
2010-07-21
We previously investigated bladder cancer risk in a cohort of dyestuff workers who were heavily exposed to aromatic amines from 1922 through 1972. We updated the follow-up by 14 years (through 2003) for 590 exposed workers to include more than 30 years of follow-up since last exposure to aromatic amines. Expected numbers of deaths from bladder cancer and other causes were computed by use of national mortality rates from 1951 to 1980 and regional mortality rates subsequently. There were 394 deaths, compared with 262.7 expected (standardized mortality ratio = 1.50, 95% confidence interval = 1.36 to 1.66). Overall, 56 deaths from bladder cancer were observed, compared with 3.4 expected (standardized mortality ratio = 16.5, 95% confidence interval = 12.4 to 21.4). The standardized mortality ratio for bladder cancer increased with younger age at first exposure and increasing duration of exposure. Although the standardized mortality ratio for bladder cancer steadily decreased with time since exposure stopped, the absolute risk remained approximately constant at 3.5 deaths per 1000 man-years up to 29 years after exposure stopped. Excess risk was apparent 30 years or more after last exposure.
Suadicani, Sylvia O; Urban-Maldonado, Marcia; Tar, Moses T; Melman, Arnold; Spray, David C
2009-06-01
To investigate whether ageing and diabetes alter the expression of the gap junction protein connexin43 (Cx43) and of particular purinoceptor (P2R) subtypes in the corpus cavernosum and urinary bladder, and determine whether changes in expression of these proteins correlate with development of erectile and bladder dysfunction in diabetic and ageing rats. Erectile and bladder function of streptozotocin (STZ)-induced diabetic, insulin-treated and age-matched control Fischer-344 rats were evaluated 2, 4 and 8 months after diabetes induction by in vivo cystometry and cavernosometry. Corporal and bladder tissue were then isolated at each of these sample times and protein expression levels of Cx43 and of various P2R subtypes were determined by Western blotting. In the corpora of control rats ageing was accompanied by a significant decrease in Cx43 and P2X(1)R, and increase in P2X(7)R expression. There was decreased Cx43 and increased P2Y(4)R expression in the ageing control rat bladder. There was a significant negative correlation between erectile capacity and P2X(1)R expression levels, and a positive correlation between bladder spontaneous activity and P2Y(4)R expression levels. There was already development of erectile dysfunction and bladder overactivity at 2 months after inducing diabetes, the earliest sample measured in the study. The development of these urogenital complications was accompanied by significant decreases in Cx43, P2Y(2)R, P2X(4)R and increase in P2X(1)R expression in the corpora, and by a doubling in Cx43 and P2Y(2)R, and significant increase in P2Y(4)R expression in the bladder. Changes in Cx43 and P2R expression were largely prevented by insulin therapy. Ageing and diabetes mellitus markedly altered the expression of the gap junction protein Cx43 and of particular P2R subtypes in the rat penile corpora and urinary bladder. These changes in Cx43 and P2R expression provide the molecular substrate for altered gap junction and purinergic signalling in these tissues, and thus probably contribute to the early development of erectile dysfunction and higher detrusor activity in ageing and in diabetic rats.
Saint-Jacques, Nathalie; Parker, Louise; Brown, Patrick; Dummer, Trevor Jb
2014-06-02
Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.
Risk factors for bladder cancer in a cohort exposed to aromatic amines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, P.A.; Ringen, K.; Hemstreet, G.P.
1986-11-01
Occupational and nonoccupational risk factors for bladder cancer were analyzed in a cohort of 1385 workers with known exposure to a potent bladder carcinogen, beta-naphthylamine. Bladder cancer was approximately seven times (95% confidence interval (CI) = 3.9, 12.4) more likely in exposed rather than nonexposed individuals, yet, otherwise, the groups were generally similar in other exogenous or hereditary risk factors. A total of 13 cases of bladder cancer were identified. After the first year of a screening program involving 380 members of the cohort, 9 of the 13 cases of bladder cancer and 36 persons with atypical bladder cytology, histology,more » or pathology were compared with 335 noncases for distributions of different variables. Occupational variables were significant in a multivariate model that controlled for age, cigarette smoking history, and source of drinking water. The estimated odds ratio for the association for bladder cancer and the duration of employment, when controlling of these other variables, is 4.3 (95% CI = 1.8, 10.3). In addition to the occupational factors, age was significant in the multivariate analysis. Other potential risk factors, such as consumption of coffee or artificial sweeteners, use of phenacetin, or decreased use of vitamin A were not found to be significantly different in cases and noncases.« less
Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer
Kitchen, Mark O.; Bryan, Richard T.; Haworth, Kim E.; Emes, Richard D.; Luscombe, Christopher; Gommersall, Lyndon; Cheng, K. K.; Zeegers, Maurice P.; James, Nicholas D.; Devall, Adam J.; Fryer, Anthony A.; Farrell, William E.
2015-01-01
Introduction Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis. Methods Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases. Results The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM). Conclusions In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC. PMID:26332997
[Regulatory analysis of hypoxia on innate immunity of human corneal epithelium].
Pang, K P; Pan, H; Wu, X Y
2016-11-15
Objective: To investigate the role of hypoxia on the regulation of innate immunity of human corneal epithelium. Methods: Telomerase-immortalized human epithelial cells (THCEs) were incubated under normoxia (21% O 2 ) or hypoxic (1% O 2 ) conditions respectively. After 6, 12, 24, 48 h culture, the mRNA and protein levels of toll like receptor 4 (TLR4) were measured by real-time polymerase chain reaction (RT-PCR) and Western blot analysis. After 24 h culture, THCEs of each group were challenged respectively with TLR4 ligand lipopolysaccharide (LPS) (1 μg/ml) for 6 h. RT-PCR was used to assess the mRNA level of myeloid differentiation factor 88 (MyD88), interleukin(IL)6, IL-8 and tumor necrosis factor α (TNF-α). Western blot was used to examine the protein level of inhibitor of nuclear factor kappa-B α (IκBα) and phosphorylated IκBα (p-IκBα). Enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines IL-6, IL-8 and TNF-α. Results: The results of RT-PCR and Western blot analysis showed that the expression of TLR4 downregulated 90% and 55% respectively after hypoxic exposure for 48 h. Hypoxia also inhibited LPS-induced secretion of IL-6, IL-8, TNF-α, expression of MyD88 and activation of NF-κB. The mRNA level of MyD88 was diminished 63%, and the protein expression of p-IκBα was also lowered. Meanwhile, the secretions of IL-6, IL-8 and TNF-α under hypoxia were reduced (31%, 55% and 50% respectively). Conclusion: Hypoxia attenuated immune and inflammatory response of the cornea epithelium by suppressing TLR4 signaling, and could enhance cell susceptibility to microorganism infection.
Sex steroid receptors in male human bladder: expression and biological function.
Chavalmane, Aravinda K; Comeglio, Paolo; Morelli, Annamaria; Filippi, Sandra; Fibbi, Benedetta; Vignozzi, Linda; Sarchielli, Erica; Marchetta, Matilde; Failli, Paola; Sandner, Peter; Saad, Farid; Gacci, Mauro; Vannelli, Gabriella B; Maggi, Mario
2010-08-01
In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. To investigate the effects of changing sex steroids on bladder smooth muscle. ER α, ER β, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. The effects of classical (ER α, ER β) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 β-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 β-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway. © 2010 International Society for Sexual Medicine.
Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu
2017-08-25
To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor microenvironment to facilitate tumor growth and development though secreting the oncogenic lncRNA-UCA1-enriched exosomes and exosomal lncRNA-UCA1 in human serum has the possibility as a diagnostic biomarker for bladder cancer.