Science.gov

Sample records for human bone hydroxyapatite

  1. Histological Study on a Novel Bone Graft Substitute: Human Derived Tooth-Hydroxyapatite Compared With Coralline Hydroxyapatite

    DTIC Science & Technology

    2007-11-02

    HISTOLOGICAL STUDY ON A NOVEL BONE GRAFT SUBSTITUTE: HUMAN DERIVED TOOTH -HYDROXYAPATITE COMPARED WITH CORALLINE HYDROXYAPATITE F. N. Oktar1, H...3] (second site morbidity), limited availability, anatomical and structural problems and tendency towards resorption [4]. Allogeneic tissue bears...METHODOLOGY In this study, HA prepared from human tooth (THA) and coralline HA (Pro Osteon 200, Interpore Cross, USA) (CHA) was used. THA

  2. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow.

    PubMed

    den Boer, Frank C; Wippermann, Burkhard W; Blokhuis, Taco J; Patka, Peter; Bakker, Fred C; Haarman, Henk J Th M

    2003-05-01

    Hydroxyapatite is a synthetic bone graft, which is used for the treatment of bone defects and nonunions. However, it is a rather inert material with no or little intrinsic osteoinductive activity. Recombinant human osteogenic protein-1 (rhOP-1) is a very potent biological agent, that enhances osteogenesis during bone repair. Bone marrow contains mesenchymal stem cells, which are capable of new bone formation. Biosynthetic bone grafts were created by the addition of rhOP-1 or bone marrow to granular porous hydroxyapatite. The performance of these grafts was tested in a sheep model and compared to the results of autograft, which is clinically the standard treatment of bone defects and nonunions. A 3 cm segmental bone defect was made in the tibia and fixed with an interlocking intramedullary nail. There were five treatment groups: no implant (n=6), autograft (n=8), hydroxyapatite alone (n=8), hydroxyapatite loaded with rhOP-1 (n=8), and hydroxyapatite loaded with autologous bone marrow (n=8). At 12 weeks, healing of the defect was evaluated with radiographs, a torsional test to failure, and histological examination of longitudinal sections through the defect. Torsional strength and stiffness of the healing tibiae were about two to three times higher for autograft and hydroxyapatite plus rhOP-1 or bone marrow compared to hydroxyapatite alone and empty defects. The mean values of both combination groups were comparable to those of autograft. There were more unions in defects with hydroxyapatite plus rhOP-1 than in defects with hydroxyapatite alone. Although the differences were not significant, histological examination revealed that there was more often bony bridging of the defect in both combination groups and the autograft group than in the group with hydroxyapatite alone. Healing of bone defects, treated with porous hydroxyapatite, can be enhanced by the addition of rhOP-1 or autologous bone marrow. The results of these composite biosynthetic grafts are equivalent to

  3. Bone-Like Hydroxyapatite Formation in Human Blood

    ERIC Educational Resources Information Center

    Titov, Anatoly T.; Larionov, Peter M.; Ivanova, Alexandra S.; Zaikovskii, Vladimir I.; Chernyavskiy, Mikhail A.

    2016-01-01

    The purpose of this study was to prove the mechanism of mineralization, when hydroxyapatite (HAP) is formed in blood plasma. These observations were substantiated by in vitro simulation of HAP crystallization in the plasma of healthy adults in a controllable quasi-physiological environment (T = 37°C, pH = 7.4) and at concentrations of dissolved Ca…

  4. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response.

    PubMed

    Causa, F; Netti, P A; Ambrosio, L; Ciapetti, G; Baldini, N; Pagani, S; Martini, D; Giunti, A

    2006-01-01

    Polycaprolactone (PCL), a semicrystalline linear resorbable aliphatic polyester, is a good candidate as a scaffold for bone tissue engineering, due to its biocompatibility and biodegradability. However, the poor mechanical properties of PCL impair its use as scaffold for hard tissue regeneration, unless mechanical reinforcement is provided. To enhance mechanical properties and promote osteoconductivity, hydroxyapatite (HA) particles were added to the PCL matrix: three PCL-based composites with different volume ratio of HA (13%, 20%, and 32%) were studied. Mechanical properties and structure were analysed, along with biocompatibility and osteoconductivity. The addition of HA particles (in particular in the range of 20% and 32%) led to a significant improvement in mechanical performance (e.g., elastic modulus) of scaffold. Saos-2 cells and osteoblasts from human trabecular bone (hOB) retrieved during total hip replacement surgery were seeded onto 3D PCL samples for 1-4 weeks. Following the assessment of cell viability, proliferation, morphology, and ALP release, HA-loaded PCL was found to improve osteoconduction compared to the PCL alone. The results indicated that PCL represents a potential candidate as an efficient substrate for bone substitution through an accurate balance between structural/ mechanical properties of polymer and biological activities.

  5. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone.

    PubMed

    Huber, Franz-Xaver; Belyaev, Orlin; Hillmeier, Joachim; Kock, Hans-Juergen; Huber, Colette; Meeder, Peter-Juergen; Berger, Irina

    2006-06-08

    A commercially available nanocrystalline hydroxyapatite paste Ostim has been reported in few recent studies to surpass other synthetic bone substitutes with respect to the observed clinical results. However, the integration of this implantable material has been histologically evaluated only in animal experimental models up to now. This study aimed to evaluate the tissue incorporation of Ostim in human cancellous bone after reconstructive bone surgery for trauma. Biopsy specimens from 6 adult patients with a total of 7 tibial, calcaneal or distal radial fractures were obtained at the time of osteosynthesis removal. The median interval from initial operation to tissue sampling was 13 (range 3-15) months. Samples were stained with Masson-Goldner, von Kossa, and toluidine blue. Osteoid volume, trabecular width and bone volume, and cortical porosity were analyzed. Samples were immunolabeled with antibodies against CD68, CD56 and human prolyl 4-hydroxylase to detect macrophages, osteoblasts, and fibroblasts, respectively. TRAP stainings were used to identify osteoclasts. Histomorphometric data indicated good regeneration with normal bone turnover: mean osteoid volume was 1.93% of the trabecular bone mass, trabecular bone volume--28.4%, trabecular width--225.12 microm, and porosity index--2.6%. Cortical and spongious bone tissue were well structured. Neither inflammatory reaction, nor osteofibrosis or osteonecrosis were observed. The implanted material was widely absorbed. The studied nanocrystalline hydroxyapatite paste showed good tissue incorporation. It is highly biocompatible and appears to be a suitable bone substitute for juxtaarticular comminuted fractures in combination with a stable screw-plate osteosynthesis.

  6. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone

    PubMed Central

    Huber, Franz-Xaver; Belyaev, Orlin; Hillmeier, Joachim; Kock, Hans-Juergen; Huber, Colette; Meeder, Peter-Juergen; Berger, Irina

    2006-01-01

    Background: A commercially available nanocrystalline hydroxyapatite paste Ostim® has been reported in few recent studies to surpass other synthetic bone substitutes with respect to the observed clinical results. However, the integration of this implantable material has been histologically evaluated only in animal experimental models up to now. This study aimed to evaluate the tissue incorporation of Ostim® in human cancellous bone after reconstructive bone surgery for trauma. Methods: Biopsy specimens from 6 adult patients with a total of 7 tibial, calcaneal or distal radial fractures were obtained at the time of osteosynthesis removal. The median interval from initial operation to tissue sampling was 13 (range 3–15) months. Samples were stained with Masson-Goldner, von Kossa, and toluidine blue. Osteoid volume, trabecular width and bone volume, and cortical porosity were analyzed. Samples were immunolabeled with antibodies against CD68, CD56 and human prolyl 4-hydroxylase to detect macrophages, osteoblasts, and fibroblasts, respectively. TRAP stainings were used to identify osteoclasts. Results: Histomorphometric data indicated good regeneration with normal bone turnover: mean osteoid volume was 1.93% of the trabecular bone mass, trabecular bone volume – 28.4%, trabecular width – 225.12 μm, and porosity index – 2.6%. Cortical and spongious bone tissue were well structured. Neither inflammatory reaction, nor osteofibrosis or osteonecrosis were observed. The implanted material was widely absorbed. Conclusion: The studied nanocrystalline hydroxyapatite paste showed good tissue incorporation. It is highly biocompatible and appears to be a suitable bone substitute for juxtaarticular comminuted fractures in combination with a stable screw-plate osteosynthesis. PMID:16762071

  8. Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep.

    PubMed

    Sachse, A; Wagner, A; Keller, M; Wagner, O; Wetzel, W-D; Layher, F; Venbrocks, R-A; Hortschansky, P; Pietraszczyk, M; Wiederanders, B; Hempel, H J; Bossert, J; Horn, J; Schmuck, K; Mollenhauer, J

    2005-11-01

    Osteointegration of metal implants into aged organisms can be severely compromised due to reduced healing capacity of bone, lack of precursor cells for new bone formation, or osteoporosis. Here, we report on successful implant healing in a novel model of aged sheep in the presence of nonglycosylated bone morphogenetic protein 2 (BMP-2). Ewes of 8 to 12 years with significant radiologic and histologic signs of osteoporosis and adipocytic bone marrow received a cylindrical hydroxyapatite-titanium implant of 12 x 10 mm. BMP-2 has been produced as a bacterial recombinant fusion protein with maltose-binding protein and in vitro generation of mature BMP-2 by renaturation and proteolytic cleavage. A BMP-2 inhibition ELISA was developed to measure the in vitro release kinetics of bioactive human BMP-2 from immersed solid implant materials by using Escherichia coli expressed and biotinylated recombinant human BMP-2 receptor IA extracellular domain (ALK-3 ECD). The implants were placed laterally below both tibial plateaus, with the left leg implant carrying 380 microg BMP-2. Both implant types became integrated within the following 20 weeks. The control implant only integrated at the cortical bone, and little new bone formation was found within the pre-existing trabecular bone or the marrow cavity. Marrow fat tissue was partially replaced by unspecific connective tissue. In contrast, BMP-2-coated implants initiated significant new bone formation, initially in trabecular arrangements to be replaced by cortical-like bone after 20 weeks. The new bone was oriented towards the cylinder. Highly viable bone marrow appeared and filled the lacunar structures of the new bone. In mechanical tests, the BMP-2-coated implants displayed in average 50% higher stability. This animal model provided first evidence that application of nonglycosylated BMP-2 coated on solid implants may foster bone healing and regeneration even in aged-compromised individuals.

  9. Substituted hydroxyapatites for bone repair.

    PubMed

    Shepherd, Jennifer H; Shepherd, David V; Best, Serena M

    2012-10-01

    Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.

  10. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  11. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells.

    PubMed

    Sellgren, Katelyn L; Ma, Teng

    2012-01-01

    Tissue-engineered bone grafts require an osteogenic cell source and a scaffold capable of supporting tissue regeneration. Hydroxyapatite (H), chitosan (C), and gelatin (G), when combined, produce a biomimetic scaffold with a chemical similarity to the main structural components of natural bone tissue. In this study a phase-separation technique was used to produce a porous 3D HCG scaffold, containing a network of cross-linked chitosan and gelatin fibrils coated in hydroxyapatite, with pore size readily controlled by freezing temperature. The HCG scaffolds were then seeded with human mesenchymal stem cells (hMSCs), using a depth filtration system after preconditioning with serum-containing medium for 7 days under either static or perfusion conditions. The effects of static and perfusion media preconditioning on protein adsorption, surface morphology, hMSC attachment, proliferation and osteogenic differentiation were examined. Perfusion preconditioning, as opposed to static preconditioning, enhances adsorption of ECM proteins, which in turn promotes hMSC proliferation and osteogenic differentiation. The results demonstrate the importance of convective flow in modulating the 3D HCG microenvironment and highlight its profound influence on 3D construct development. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.

    PubMed

    Bernhardt, A; Despang, F; Lode, A; Demmler, A; Hanke, T; Gelinsky, M

    2009-01-01

    Porous mineralized scaffolds are required for various applications in bone engineering. In particular, tube-like pores with controlled orientation inside the scaffold may support homogeneous cell seeding as well as sufficient nutrient supply and may facilitate blood vessel ingrowth. Scaffolds with parallely orientated tube-like pores were generated by diffusion-controlled ionotropic gelation of alginate. Incorporation of hydroxyapatite (HA) during the gelation process yielded stable scaffolds with an average pore diameter of approximately 90 microm. To evaluate the potential use of alginate-gelatine-HA scaffolds for bone tissue engineering, in vitro tests with human bone marrow stromal cells (hBMSCs) were carried out. We analysed biocompatibility and cell penetration into the capillary pores by microscopic methods. hBMSCs were also cultivated on alginate-gelatine-HA scaffolds for 3 weeks in the presence and absence of osteogenic supplements. We studied proliferation and osteogenic differentiation in terms of total lactate dehydrogenase (LDH) activity, DNA content and alkaline phosphatase (ALP) activity and found a 10-14-fold increase of cell number after 2 weeks of cultivation, as well as an increase of specific ALP activity for osteogenic-induced hBMSCs. Furthermore, the expression of bone-related genes [ALP, bone sialoprotein II (BSPII)] was analysed. We found an increase of ALP as well as BSPII expression for osteogenic-induced hBMSCs on alginate-gelatin-HA scaffolds. 2008 John Wiley & Sons, Ltd

  13. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.

    PubMed

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios

  14. Polymer-Ceramic Spiral Structured Scaffolds for Bone Tissue Engineering: Effect of Hydroxyapatite Composition on Human Fetal Osteoblasts

    PubMed Central

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G.; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios

  15. Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse.

    PubMed

    Calabrese, Giovanna; Giuffrida, Raffaella; Forte, Stefano; Fabbi, Claudia; Figallo, Elisa; Salvatorelli, Lucia; Memeo, Lorenzo; Parenti, Rosalba; Gulisano, Massimo; Gulino, Rosario

    2017-08-02

    Traumatic injury or surgical excision of diseased bone tissue usually require the reconstruction of large bone defects unable to heal spontaneously, especially in older individuals. This is a big challenge requiring the development of biomaterials mimicking the bone structure and capable of inducing the right commitment of cells seeded within the scaffold. In particular, given their properties and large availability, the human adipose-derived stem cells are considered as the better candidate for autologous cell transplantation. In order to evaluate the regenerative potential of these cells along with an osteoinductive biomaterial, we have used collagen/hydroxyapatite scaffolds to test ectopic bone formation after subcutaneous implantation in mice. The process was analysed both in vivo, by Fluorescent Molecular Tomography (FMT), and ex vivo, to evaluate the formation of bone and vascular structures. The results have shown that the biomaterial could itself be able of promoting differentiation of host cells and bone formation, probably by means of its intrinsic chemical and structural properties, namely the microenvironment. However, when charged with human mesenchymal stem cells, the ectopic bone formation within the scaffold was increased. We believe that these results represent an important advancement in the field of bone physiology, as well as in regenerative medicine.

  16. Histopathological morphometric evaluation of 2 different hydroxyapatite-bone derivatives in sinus augmentation procedures: a comparative study in humans.

    PubMed

    Artzi, Z; Nemcovsky, C E; Tal, H; Dayan, D

    2001-07-01

    Xenografts to augment the maxillary sinus have been used extensively. The aim of the present study was to evaluate, qualitatively and quantitatively, two different HA derivatives of natural and synthetic sources on newly formed bone in the augmented sinus. A bilateral sinus augmentation procedure with simultaneous (16 out of 20 sites) or subsequent implant placement was performed in 10 patients. The antrum was randomly filled with a deproteinized, bovine hydroxyapatite mineral (B-HA) on one side and a non-ceramic resorbable hydroxyapatite (NC-HA) on the other. Cylindrical specimens were harvested from the augmented core at 12 months. Decalcified specimens were sectioned at a cross-horizontal plane and stained with hematoxylin and eosin for histopathologic and histomorphometric examinations. Tissue area fractions of bone, marrow, and the grafted particles were calculated for each specimen from the lateral to the deep region, and changes in values were compared within each material and between them. New bone formation was evident. B-HA and NC-HA particles were observed in all specimens surrounded by newly formed bone in direct connection or by soft tissue marrow. Morphometrically in the B-HA sites, from the lateral to deeper area, bone area fraction increased from 29.8% to 54.2% (average 42.1%) and marrow area fraction decreased from 37.9% to 26.7% (average 33.3%). The mineral area fraction decreased from 32.3% to 19.1% (average 24.7%). All increasing/decreasing patterns were statistically significant (P < 0.001). In the NC-HA sites, from the lateral to deeper area, bone area fraction increased from 25% to 36.5% (average 32.3%) and marrow area fraction decreased from 51.6% to 41.9% (average 43.2%) (P <0.001). The mineral area fraction decreased from 29% to 21.7% (average 24.6%) (P = 0.038). Comparison between the two HA derivative groups showed a significant difference between the bone area fraction averages (P = 0.0053) and between the increasing patterns along the

  17. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering.

    PubMed

    Guda, Teja; Oh, Sunho; Appleford, Mark R; Ong, Joo L

    2012-01-01

    The frequency of alveolar ridge resorption and crestal bone loss emphasizes the clinical need for bone graft substitutes to improve local bone quality prior to dental implant placement. Microcomputed tomography has been extensively employed to estimate bone quality more objectively (ie, quantitatively) by relating it to architectural parameters. In the present study, the mechanical properties of open cellular fully interconnected bilayer hydroxyapatite scaffolds, which mimicked the cortical shell/trabecular core architecture of human bone, were investigated for suitability as bone graft substitutes for maxillofacial reconstruction. Hydroxyapatite scaffolds with different architectures were fabricated using polymeric template pore sizes of 450 or 340 μm for the inner trabecular cores and 200 or 250 μm for the outer cortical shells in three different core-to-shell volume ratios. The architectural and mechanical properties and fluid permeability of the scaffolds were compared to reported values for maxillofacial bone. Whereas the elastic moduli of the scaffolds were comparable, their compressive strength was observed to be in the lower range of human mandibular trabecular bone. The microcomputed tomography architectural indices for the scaffolds were comparable to those of human trabecular bone at different locations in the human body, including the maxilla and mandible. Scaffold compressive strength, elastic modulus, and fluid conductance were 0.3 to 2.3 MPa, 40.9 to 668.1 MPa, and 8.8 to 49.9 x 10-10 m3s-1Pa-1, respectively. Open-pore bilayer scaffolds can be fabricated to exhibit sufficient mechanical integrity for maxillofacial bone graft applications to match specific bone site architecture while providing sufficient permeability to sustain bone regeneration.

  18. Comparative evaluation of the efficacy of synthetic nanocrystalline hydroxyapatite bone graft (Ostim®) and synthetic microcrystalline hydroxyapatite bone graft (Osteogen®) in the treatment of human periodontal intrabony defects: A clinical and denta scan study

    PubMed Central

    Kamboj, Monika; Arora, Ruchika; Gupta, Harinder

    2016-01-01

    Background: To evaluate the relative efficacy of synthetic nanocrystalline hydroxyapatite (HA) (Ostim®) and microcrystalline HA (Osteogen®) bone grafts in the treatment of human periodontal intrabony defects clinically and radiographically through denta scan. Materials and Methods: Ten chronic periodontitis patients with bilateral intrabony periodontal defects of ≥2 mm radiographic defect depth below 55 years of age were selected randomly and treated with synthetic nanocrystalline HA (Ostim®) or synthetic microcrystalline HA (Osteogen®) bone graft. Clinical parameters including probing depth (PD) and clinical attachment level (CAL) were measured preoperatively and postoperatively at 3 and 6 months for each of the defects using an occlusal acrylic stent. Radiographic parameters were measured with the help of denta scan preoperatively and postoperatively at 6 months. Results: At 6 months following therapy, the Osteogen® group showed a reduction in mean PD from 11.10 ± 1.663 to 8.50 ± 0.850 mm and a change in mean CAL from 6.30 ± 1.160 to 3.40 ± 0.516 mm, whereas in the Ostim® group, the mean PD decreased from 11.20 ± 0.919 to 8.30 ± 0.823 mm and mean CAL decreased from 6.10 ± 0.738 to 3.30 ± 0.483 mm. At 6 months following therapy, denta scan showed a reduction in mean intrabony defect depth in the Osteogen® group from 2.54 ± 0.786 to 1.01 ± 0.448 mm, whereas in the Ostim® group, it was 2.71 ± 0.650 mm to 1.12 ± 0.563 mm. Conclusion: It was concluded that both the HA bone grafts produced statistically significant reduction in pocket depth, in the depth of osseous lesion, and a statistically significant gain in attachment level, irrespective of their physico-chemical properties. PMID:28298825

  19. Thermal Diffusivity in Bone and Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Calderón, A.; Peña Rodríguez, G.; Muñoz Hernández, R. A.; Díaz Gongora, J. A. I.; Mejia Barradas, C. M.

    2004-09-01

    We report thermal diffusivity measurements in bull bone and commercial hydroxyapatite (HA), both in powder form, in order to determinate the thermal compatibility between these materials. Besides this, we report a comparison between these measured values and those of metallic samples frequently used in implants, as high purity titanium and stainless steel. Our results show a good thermal compatibility (74%) between HA and bone, both in powder form. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications.

  20. Hydroxyapatite formation from cuttlefish bones: kinetics.

    PubMed

    Ivankovic, H; Tkalcec, E; Orlic, S; Ferrer, G Gallego; Schauperl, Z

    2010-10-01

    Highly porous hydroxyapatite (Ca(10)(PO(4))(6)·(OH)(2), HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson-Mehl-Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the a-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO(3) (2-) groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.

  1. Incorporation of nanostructured hydroxyapatite and poly(N-isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity.

    PubMed

    Nicoletti, Alessandro; Torricelli, Paola; Bigi, Adriana; Fornasari, Piermaria; Fini, Milena; Moroni, Lorenzo

    2015-12-06

    Demineralized bone matrix (DBM) is currently used in many clinical applications for bone augmentation and repair. DBM is normally characterized by the presence of bone morphogenetic proteins. In this study, the authors have optimized methods to obtain DBM under good manufacturing practice, resulting in enhanced bioactivity. The processed DBM can be used alone, together with nanostructured hydroxyapatite (nanoHA), or dispersed in a physiological carrier or hydrogel. In this study, osteoblasts (MG-63) and human bone marrow derived mesenchymal stem cells (hMSCs) were cultured on DBM pastes made in phosphate buffered saline solution or poly(N-isopropylacrylamide) (PNIPAAM) hydrogels with or without nanoHA. The authors observed that the presence of PNIPAAM reduced osteoblast adhesion, while the addition of nanoHA increased osteoblast adhesion, proliferation, interleukin-6 (IL-6) production, and reduced lactate dehydrogenase (LDH) production. Increasing concentrations of PNIPAAM in combination with nanoHA further increased osteoblast proliferation, and decreased IL-6 and LDH production. Incorporation of PNIPAAM in DBM enhanced hMSCs proliferation and collagen type-I production. Furthermore, a combination of PNIPAAM and nanoHA further increased alkaline phosphatase and osteocalcin production in hMSCs, independently from the concentration of PNIPAAM. This study shows that combinations of DBM with nanoHA and PNIPAAM seem to offer a promising route to enhance cell activity and induce osteogenic differentiation.

  2. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    PubMed Central

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  3. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    PubMed

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  4. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.

  5. Nanoscale hydroxyapatite particles for bone tissue engineering.

    PubMed

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  7. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    PubMed

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  8. Development of hybrid type artificial bone marrow using sintered hydroxyapatite.

    PubMed

    Nishihara, K; Tange, T; Hirota, K; Kawase, K

    1994-01-01

    In vivo inducement of hybrid-type artificial bone marrow with hemopoietic inductive microenvironment (HIM) in sintered hydroxyapatite (HA) chamber was carried out. This research is important to disclose the mechanisms of hemopoiesis and is useful for clinical application. In the evolution of vertebrates, cartilage of the inner skeleton changed into bone, having biomechanical properties to form bone marrow cavities. The hemopoietic nests immigrated into the cavities from the spleen. We should be able to induce hemopoietic nests in a hydroxyapatite chamber in place of bone, if we can find optimal structural conditions. Therefore, we tried to artificially induce a hematopoietic field in muscles using sintered porous tubular hydroxyapatite and new type hydroxyapatite plate made by high-pressure gas technique. As a result, not only in the pore sites of tubular hydroxyapatite artificial bone, but at the surface of the new type hydroxyapatite plate implanted in the dorsal muscles, marked differentiation of bone marrow cell clusters of the hematopoietic field could be observed.

  9. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    PubMed Central

    Ghorbanzadeh, Abdollah; Aminsobhani, Mohsen; Khoshzaban, Ahad; Abbaszadeh, Armin; Ghorbanzadeh, Atiyeh; Shamshiri, Ahmad Reza

    2015-01-01

    Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2) and nano-hydroxyapatite (n-HA) adjacent to MG-63 cell line. Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Alkaline phosphatase (ALP) activity and osteogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test. Results: The n-HA/calcium sulfate (CS) mixture significantly promoted cell growth in comparison to pure CS. Moreover, addition of rhBMP2 to CS (P=0.02) and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03). Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation. PMID:26877731

  10. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    SciTech Connect

    Patel, Sangeeta; Wei, Shanghai; Han, Jie; Gao, Wei

    2015-11-15

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  11. Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application

    NASA Astrophysics Data System (ADS)

    Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.

    2016-07-01

    In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.

  12. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.

    PubMed

    Vozzi, G; Corallo, C; Carta, S; Fortina, M; Gattazzo, F; Galletti, M; Giordano, N

    2014-05-01

    The application of porous hydroxyapatite (HAp)-collagen as a bone tissue engineering scaffold represents a new trend of mimicking the specific bone extracellular matrix (ECM). The use of HAp in reconstructive surgery has shown that it is slowly invaded by host tissue. Therefore, implant compatibility may be augmented by seeding cells before implantation. Human primary osteoblasts were seeded onto innovative collagen-gelatin-genipin (GP)-HAp scaffolds containing respectively 10%, 20%, and 30% HAp. Cellular adhesion, proliferation, alkaline phosphatase (ALP) activity, osteopontin (OPN), and osteocalcin (OC) expressions were evaluated after 3, 7, 15, and 21 days. The three types of scaffolds showed increased cellular proliferation over time in culture (maximum at 21 days) but the highest was recorded in 10% HAp scaffolds. ALP activity was the highest in 10% HAp scaffolds in all the times of evaluation. OC and OPN resulted in higher concentration in 10% HAp scaffolds compared to 20% and 30% HAp (maximum at 21 days). Finally, scanning electron microscopy analysis showed progressive scaffolds adhesion and colonization from the surface to the inside from day 3 to day 21. In vitro attachment, proliferation, and colonization of human primary osteoblasts on collagen-GP-HAp scaffolds with different percentages of HAp (10%, 20%, and 30%) all increased over time in culture, but comparing different percentages of HAp, they seem to increase with decreasing of HAp component. Therefore, the mechanical properties (such as the stiffness due to the HAp%) coupled with a good biomimetic component (collagen) are the parameters to set up in composite scaffolds design for bone tissue engineering.

  13. Extracorporeal hydroxyapatite-chamber for bone and biomaterial studies.

    PubMed

    Tarallo, Luigi; Zaffe, Davide; Adani, Roberto; Krajewski, Adriano; Ravaglioli, Antonio

    2008-01-01

    Hydroxyapatite (HA) spherules and autologous bone (AB) with a central vascular pedicle were housed inside an HA-chamber to form the skeletal segment of specific shape. Experimental chambers were then inserted in a pocket between medial thigh muscles in 13 New Zealand male rabbits for 3 months. Three graft group were scheduled: (A) HA and AB without vascular pedicle, (B) HA with vascular pedicle, (C) HA and AB with vascular pedicle. At term, histology showed tissue and cellular degeneration in group A chambers. Due to spherules coalescence, fibrous tissue is formed in group B chambers. Group C chambers contained living osteocytes in the implanted bone, several newly formed vessels in soft tissue, bone and partial hydroxyapatite erosions. New bone was formed in apposition to both autologous bone and hydroxyapatite. Our study suggests that this experimental model could be used to grow adequately sized vascularized skeletal segments.

  14. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering.

    PubMed

    Swetha, Maddela; Sahithi, Kolli; Moorthi, Ambigapathi; Srinivasan, Narasimhan; Ramasamy, Kumarasamy; Selvamurugan, Nagarajan

    2010-07-01

    Bone tissue engineering is an alternative strategy to generate bone utilizing a combination of biomaterials and cells. Biomaterials that mimic the structure and composition of bone tissues at nanoscale are important for the development of bone tissue engineering applications. Natural or biopolymer-based composites containing chitin, chitosan, or collagen have advantages such as biocompatibility, biodegradability that are essential for bone tissue engineering. The inclusion of nanoparticles of hydroxyapatite (one of the most widely used bioceramic materials) into the biopolymer matrix improves the mechanical properties and incorporates the nanotopographic features that mimic the nanostructure of bone. This review summarizes the recent work on the development of biocomposites containing natural polymers with hydroxyapatite particles suitable for use in bone defects/bone regeneration. (c) 2010 Elsevier B.V. All rights reserved.

  15. [Repair of incus long arm defects by hydroxyapatite bone cement].

    PubMed

    Olgun, Yüksel; Pınar, Ercan; İmre, Abdülkadir; Önal, Haydar Kazım; Aslan, Hale; Ateş, Düzgün

    2015-01-01

    This study aims to evaluate our ossiculoplasty results using hydroxyapatite bone cement. Data of 29 patients (16 males, 13 females; mean age 28 years; range 17 to 57 years) who were performed ossiculoplasty using hydroxyapatite bone cement in İzmir Katip Çelebi University Atatürk Training and Research Hospital Department of Otorhinolaryngology between January 2010 and December 2013 were retrospectively evaluated. Of the 29 operated patients, bone cement was administered in 23 patients during tympanoplasty, in two patients during open technique tympanomastoidectomy, and in four patients during exploratory tympanotomy. Hydroxyapatite bone cement was only used to repair defects between incus and stapes no longer than one third of incus long arm length. Mean follow-up time was 6.5 months (range 2-32 months). Success of ossiculoplasty was evaluated by Belfast 15/30 dB rule of thumb. Preoperative air-bone gap was 45.1 dB (range 35-55) and postoperative air-bone gap was 17.7 dB (range 6-40). Air-bone gap was below 10 dB in six patients, between 10-20 dB in 14 patients, between 20-30 dB in seven patients, and between 30-40 dB in two patients. Ossiculoplasty using hydroxyapatite bone cement is a safe and effective method for the repair of particularly small incus long arm defects.

  16. Bone repair analysis in a novel biodegradable hydroxyapatite/collagen composite implanted in bone.

    PubMed

    Nishikawa, Tetsunari; Masuno, Kazuya; Tominaga, Kazuya; Koyama, Yoshihisa; Yamada, Takeki; Takakuda, Kazuo; Kikuchi, Masanori; Tanaka, Junzo; Tanaka, Akio

    2005-09-01

    The purpose of this study was to evaluate a biodegradable hydroxyapatite/collagen composite and to examine the use of the calcium ion contained for bone formation and growth. Surgical holes were prepared in the femora and tibiae of beagle dogs, and were filled with the hydroxyapatite/collagen composite labeled with alizarin red. After 4 weeks, calcein was administered to the experimental dogs. After 1 additional week, the femora and tibiae were removed surgically and fixed in formalin. Light microscopy and confocal laser scanning microscopy were used to examine the surgical holes with their implanted materials and the surrounding bone. There were only a few inflammatory cells adjacent to the hydroxyapatite/collagen composite. The newly formed bone in the cortical bone was stained with calcein, which binds to serum calcium, and new bone near the hydroxyapatite/collagen composite in the holes was stained positive for alizarin red, which binds to the calcium in the hydroxyapatite/collagen composite. In addition, osteoblasts near the hydroxyapatite/collagen composite as well as newly formed bone adjacent to the osteoblasts showed alizarin red staining, but the new bone at a distance from the hydroxyapatite/collagen implant reacted only to calcein staining. These results, using the tissue labeling method with calcein and alizarin red, suggested that the calcium bound to the alizarin red released from the hydroxyapatite/collagen composite materials might have been translocated to sites of new bone formation. The present experiment showed that the novel hydroxyapatite/collagen composite is a useful implant material for bone augmentation and that the calcium in the newly formed bone might have been released from the implant.

  17. Fabrication of hydroxyapatite from fish bones waste using reflux method

    NASA Astrophysics Data System (ADS)

    Cahyanto, A.; Kosasih, E.; Aripin, D.; Hasratiningsih, Z.

    2017-02-01

    The aim of this present study was to investigate the fabrication of hydroxyapatites, which were synthesized from fish bone wastes using reflux method. The fish bone wastes collected from the restaurant were brushed and boiled at 100°C for 10 minutes to remove debris and fat. After drying, the fish bones were crushed, and ball milled into a fine powder. The fish bone wastes were then processed by refluxing using KOH and H3PO4 solutions. The samples were calcined at 900°C and characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The XRD pattern of samples after treatment revealed that the peak of hydroxyapatite was observed and the bands of OH- and PO4 3- were observed by FT-IR. The scanning electron microscope evaluation of sample showed the entangled crystal and porous structure of hydroxyapatite. In conclusion, the hydroxyapatite was successfully synthesized from fish bone wastes using reflux method.

  18. Preparation of highly porous hydroxyapatite from cuttlefish bone.

    PubMed

    Ivankovic, H; Gallego Ferrer, G; Tkalcec, E; Orlic, S; Ivankovic, M

    2009-05-01

    Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200 degrees C. Aragonite (CaCO(3)) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. The substitution of CO(3) (2-) groups predominantly into the PO(4) (3-) sites of the Ca(10)(PO(4))(6)(OH)(2) structure was suggested by FT-IR spectroscopy and Rietveld structure refinement. The intensity of the nu(3)PO(4) (3-) bands increase, while the intensity of the nu(2)CO(3) (2-) bands decrease with the duration of HT treatment resulting in the formation of carbonate incorporating hydroxyapatite. The SEM micrographs have shown that the interconnected hollow structure with pillars connecting parallel lamellae in cuttlefish bone is maintained after conversion. Specific surface area (S (BET)) and total pore volume increased and mean pore size decreased by HT treatment.

  19. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Eggshell Derived Hydroxyapatite as Bone Graft Substitute in the Healing of Maxillary Cystic Bone Defects: A Preliminary Report

    PubMed Central

    Kattimani, Vivekanand S; Chakravarthi, P Srinivas; Kanumuru, Narasimha Reddy; Subbarao, Vummidisetti V; Sidharthan, A; Kumar, T S Sampath; Prasad, L Krishna

    2014-01-01

    Background: Since ancient times, use of graft materials to promote healing of defects of bone is wellknown. Traditionally, missing bone is replaced with material from either patient or donor. Multiple sources of bone grafts have been used to graft bone defects to stimulate bone healing. Hydroxyapatite is naturally occurring mineral component of bone, which is osteoconductive. This versatile biomaterial is derived from many sources. The aim of this study is to evaluate the efficacy of eggshell derived hydroxyapatite (EHA) in the bone regeneration of human maxillary cystic bone defects secondary to cystic removal/apicoectomy and compare the material properties of EHA in vitro. Materials and Methods: A total of eight maxillary bone defects were grafted after cystic enucleation and/or apicoectomy in the year 2008 and completed the study at 1 year. The patients were followed-up 2 weeks after surgery for signs and symptoms of infection or any other complications that may have been related to surgical procedure. Follow-up radiographs were obtained immediately after surgery followed by 1, 2, and 3 months to assess the efficacy of EHA in bone healing. Physicochemical characterization of the EHA was carried out in comparison with synthetic hydroxyapatite (SHA), also compared the biocompatibility of EHA using in vitro cytotoxicity test. Results: By the end of the 8th week, the defects grafted with EHA showed complete bone formation. However, bone formation in non-grafted sites was insignificant. The values of density measurements were equal or more than that of surrounding normal bone. These results indicate that the osseous regeneration of the bone defect filled with EHA is significant. EHA showed the superior material properties in comparison with SHA. Conclusion: EHA is a versatile novel bone graft substitute that yielded promising results. Because of its biocompatibility, lack of disease transfer risks, ease of use and unlimited availability, EHA remains a viable choice

  1. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    NASA Astrophysics Data System (ADS)

    Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M.

    2013-01-01

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  2. Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone

    NASA Astrophysics Data System (ADS)

    North, Alexis E.

    Recent studies on calcareous stone and plaster consolidation have demonstrated considerable potential by bio-mimicking the growth of hydroxyapatite (HAP), the main mineralogical constituent of teeth and bone matrix. These initial conservation applications, together with significant fundamental research on the precipitation of HAP for bioengineering and biomedical applications, offer great promise in the use of HAP as a consolidating agent for archaeological bone and other similar materials such as archaeological teeth, ivory, and antler. Experimental research via the controlled application of diammonium phosphate (DAP) precursors to bone flour, modern bone samples, and archaeological bones, indicated the in situ formation of HAP with a simultaneous increase in the cohesiveness of friable bone material, while preserving the bone's physiochemical properties. These preliminary results point towards a promising new method in archaeological conservation.

  3. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Deville, Sylvain; Saiz, Eduardo; Tomsia, Antoni P

    2006-11-01

    Although extensive efforts have been put into the development of porous scaffolds for bone regeneration, with encouraging results, all porous materials have a common limitation: the inherent lack of strength associated with porosity. Hence, the development of porous hydroxyapatite scaffolds has been hindered to non-load bearing applications. We report here how freeze casting can be applied to synthesize porous scaffolds exhibiting unusually high compressive strength, e.g. up to 145 MPa for 47% porosity and 65 MPa for 56% porosity. The materials are characterized by well-defined pore connectivity along with directional and completely open porosity. Various parameters affecting the porosity and compressive strength have been investigated, including initial slurry concentration, freezing rate, and sintering conditions. The implications and potential application as bone substitute are discussed. These results might open the way for hydroxyapatite-based materials designed for load-bearing applications. The biological response of these materials is yet to be tested.

  4. Development of a strontium-containing hydroxyapatite bone cement.

    PubMed

    Guo, Dagang; Xu, Kewei; Zhao, Xiaoyun; Han, Yong

    2005-07-01

    A new route was developed to synthesis a new type of strontium-containing hydroxyapatite (Sr-HAP) bone cement with precursors of tetracalcium phosphate (TTCP), strontium hydrogen phosphate (DSPA), dicalcium phosphate (DCPA), phosphate acid and water. The processing parameters and fundamental properties including pH value, setting time, compressive strength of final hardened body and the cytotoxicity for serial extracts of each cements were investigated. The result shows that the final product of the cement after setting for 24h is nonstoichiometic Sr-containing hydroxyapatite (Ca(10-m-x)Sr(x) square(m)(HPO4)y(PO4)6-y(OH)2-2m square2m, 0human bones and can be expected to use in clinic application in repairing the nonloading sites on account of the positive result of cytotoxicity test of the extracts of Sr-containing calcium phosphate cement (Sr-CPC).

  5. Evaluation of anorganic bovine-derived hydroxyapatite matrix/cell binding peptide as a bone graft material in the treatment of human periodontal infrabony defects: A clinico-radiographic study

    PubMed Central

    Fatima, Ghousia; Shivamurthy, Ravindra; Thakur, Srinath; Baseer, Mohammad Abdul

    2015-01-01

    Background: Various bone graft materials have been used in the treatment of periodontal defects. A synthetic bone substitute material composed of P-15 with anorganic bone mineral has been scantly studied. Hence, the present study was aimed to evaluate and compare the efficacy of anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) in human periodontal infrabony defects with that of open flap debridement (OFD) alone. Materials and Methods: A split-mouth, randomized controlled clinical study was designed to investigate the efficacy of ABM/P-15. In this clinical trial, 10 patients having bilateral periodontal infrabony defects were treated either with ABM/P-15 or OFD and followed for a period of 9 months. At baseline and at 9 months probing pocket depth (PPD), relative attachment level (RAL), depth of a defect, and radiographic bone level were measured; and compared between test and control sites. Results: A statistically significant reduction (P < 0.001) in PPD was observed in test sites compared to control sites. Both sites showed a gain in RAL without any significant difference. Similarly, the radiographic evaluation revealed significantly higher radiographic defect fill in test sites as compared to control sites (P < 0.001). Conclusion: ABM/P-15 bone graft material appears to be useful and beneficial in the treatment of human periodontal infrabony defects. PMID:26941516

  6. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    SciTech Connect

    Feng, Pei; Wei, Pingpin; Li, Pengjian; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-11-15

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  7. Coralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluation.

    PubMed

    Sartoris, D J; Gershuni, D H; Akeson, W H; Holmes, R E; Resnick, D

    1986-04-01

    A new bone graft substitute made by conversion of the calcium carbonate exoskeleton of reef-building sea coral into hydroxyapatite has recently become clinically available. The normal radiographic appearance of two forms of this material is described. In the immediate postoperative period, the exoskeletal architecture of these implants is readily appreciated. With graft incorporation over the ensuing months, their intrinsic structure is gradually lost in association with poor marginal definition. Evolving radiographic findings reflect the biocompatible nature of these implants, which provides the potential for ingrowth of native bone with preservation of the coralline scaffold, resulting in enhanced biomechanical properties.

  8. Guided bone regeneration using a flexible hydroxyapatite patch.

    PubMed

    Sun, Fangfang; Kang, Hyun Gu; Ryu, Su-Chak; Kim, Ji Eun; Park, Enoch Y; Hwang, Dae Youn; Lee, Jaebeom

    2013-11-01

    Guided bone regeneration (GBR) is a new method of promoting new bone formation by blocking the proliferation of regenerated connective tissue or providing additional interventions such as direct drug delivery and mechanical support. This in vivo study of bone regeneration in radius compound fractures in rabbits was conducted using a highly flexible scaffold of nanoscale hydroxyapatite (nHAp)/chitosan, termed a "bone patch". A solidification-assisted compression (SAC) method was utilized to fabricate the bone patch, and its in vivo cytotoxicity, bio-absorption, and bone regeneration capacity were evaluated. Four weeks after implantation, new bone formation with abundant active osteoblasts and incompleted degradation of chitosan in the patch were observed without any regeneration of connective tissue, compared with the corresponding implant without a patch. X-ray images showed that the radius with the bone patch had higher opacity than that of the control, which was consistent with the results obtained via histological analysis. Evidently, the nHAp-embedded bone-patch scaffold has considerable potential for application in the field of orthopedics of bone regeneration.

  9. Augmentation of engineered cartilage to bone integration using hydroxyapatite.

    PubMed

    Dua, Rupak; Centeno, Jerry; Ramaswamy, Sharan

    2014-07-01

    Articular cartilage injuries occur frequently in the knee joint. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the subchondral bone and tissue engineered cartilage components remains a major challenge. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone) compared with the constructs without HA (p < 0.05), after 28 days of culture. Interestingly, this increased interfacial shear strength due to the presence of HA was observed as early as 7 days and appeared to have sustained itself for an additional three weeks without interacting with strength increases attributable to subsequent secretion of engineered tissue matrix. Histological evidence showed that there was ∼7.5% bone in-growth into the cartilage region from the bone side. The mechanism of enhanced engineered cartilage to bone integration with HA incorporation appeared to be facilitated by the deposition of calcium phosphate in the transition zone. These findings indicate that controlled bone in-growth using HA incorporation permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.

  10. Bone protein extraction without demineralization utilizing principles from hydroxyapatite chromatography

    PubMed Central

    Cleland, Timothy P.; Vashishth, Deepak

    2014-01-01

    Historically, extraction of bone proteins has relied on the use of demineralization to better retrieve proteins from the extracellular matrix; however, demineralization can be a slow process that restricts subsequent analysis of the samples. Here, we developed a novel protein extraction method that does not use demineralization, but utilizes a methodology from hydroxyapatite chromatography where high concentrations of ammonium phosphate and ammonium bicarbonate are used to extract bone proteins. We report that this method has a higher yield than previously published small-scale extant bone extractions, with and without demineralization. Furthermore, after digestion with trypsin and subsequent HPLC-MS/MS analysis, we were able to detect several extracellular matrix and vascular proteins in addition to collagen I and osteocalcin. Our new method has the potential to isolate proteins in a short period (4 hrs) and provide information about bone proteins that may be lost during demineralization or with the use of denaturing agents. PMID:25535955

  11. Randomised controlled clinical trial of augmentation of the alveolar ridge using recombinant human bone morphogenetic protein 2 with hydroxyapatite and bovine-derived xenografts: comparison of changes in volume.

    PubMed

    Nam, J W; Khureltogtokh, S; Choi, H M; Lee, A R; Park, Y B; Kim, H J

    2017-08-29

    The aim of this randomised controlled clinical trial was to assess the early efficacy of bone morphogenetic protein-2 with hydroxyapatite granules (BMP-2/hydroxyapatite) on augmentation of the alveolar ridge, by comparing changes in volume with those associated with the use of an inorganic bovine-derived xenograft (BDX). We studied 20 patients who were divided into two groups using a table of random numbers, and BMP-2/hydroxyapatite and BDX were applied accordingly. Computed tomographic (CT) images and panoramic radiographs were obtained immediately after operation and four months later. CT images were reconstructed in three dimensions to measure volumetric changes, and linear measurements were made on panoramic images. The mean (SD) absorption rates for BMP-2/hydroxyapatite and BDX were 13.2 (8.8)% and 13.8 (20.5)%, respectively. While the mean value did not differ significantly between the two materials, the SD was higher in the BDX group than in the BMP-2/hydroxyapatite group. No clinically important complications occurred in either group. We conclude that both BMP-2/hydroxyapatite and BDX were effective in augmenting the alveolar ridge, but BMP-2/hydroxyapatite seemed to be more useful in complicated bone defects. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes.

    PubMed

    Dias, George Jayantha; Mahoney, Patricia; Hung, Noelyn Anne; Sharma, Lavanya Ajay; Kalita, Priyakshi; Smith, Robert Allen; Kelly, Robert James; Ali, Azam

    2017-10-01

    Reconstituted keratin-hydroxyapatite (K-HA) composites have shown potential as nonload-bearing bone graft substitute material. This in vivo study investigated the bone regeneration response of keratin plus 40% HA composite materials in comparison to collagen counterparts and an unfilled defect site. The implantation site was a noncritical size defect created in the long bones (tibia) of sheep, with observations made at 1, 2, 4, 6, 8, and 12 weeks postimplantation. Porous K-HA materials displayed an excellent biocompatibility similar to collagen counterparts; however, the rate of bone regeneration at K-HA implantation sites was markedly slower than that of the collagen or unfilled defect sites. While collagen materials were undetectable by 4 weeks implantation, K-HA composite remnants were present at 12 weeks. However, there is evidence that K-HA implants participated in the natural remodelling process of bone, with bone regeneration occurring via a creeping substitution mechanism. Observations imply that the rate of bone ingrowth into the K-HA defect site was matched with the rate of K-HA resorption. These results suggest that K-HA materials may offer significant benefits as nonload-bearing bone graft substitutes where it is desirable that the degradation of the scaffolding material be well matched with the rate of bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2034-2044, 2017. © 2016 Wiley Periodicals, Inc.

  13. Hydroxyapatite Dome for Bone Neoformation in Rabbit Tibia.

    PubMed

    Maeda, Nancy Tiaki; Yoshimoto, Marcelo; Allegrini, Sergio; Bressiani, Ana Helena

    2016-01-01

    To evaluate supracortical bone neoformation with the use of hydroxyapatite (HA) hollow domes specially manufactured for osteogenesis promotion. Nine New Zealand rabbits were selected and 18 domes were placed, divided into three groups according to the filler: control (blood clot), vitamin complex, and particulate β-tricalcium phosphate (β-TCP). The healing period was 8 weeks, hence fluorescent markers were applied. After healing, the samples were embedded in resin to prepare slides for light and fluorescence microscopic evaluation of the amount of neoformed bone tissue. Energy dispersive spectroscopy was also used for chemical analysis of the material inside the domes. The quality of neoformed bone tissue with active bone remodeling areas was observed. As a filler, β-TCP showed higher bone formation (14.1%), better quality of neoformed bone tissue with organized structures, and an area of mineralized tissue in the dome. Bone neoformation inside the dome filled with blood clot confirmed the osteoconductive property of HA, as indicated by the migration of osteogenic cells from the blood clot, without the action of another biomaterial (mean area of bone formation for blood clot filler = 7.5%). Bone neoformation was not favored in samples filled with vitamin complex because of the difficulty of blood penetration through the material. HA domes performed well as a scaffold for bone neoformation over the cortical bone of rabbits, and this is based on maintenance of good stability and good integration with bone tissue. β-TCP presented higher values of neoformed bone area compared with the blood clot. HA domes have osteoconductive properties, especially when filled with blood clot, because of the migration of osteogenic cells without action of any other biomaterial. In domes filled with vitamin complex, no bone formation was noted because of the absence of resorption.

  14. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering.

    PubMed

    Suárez-González, Darilis; Barnhart, Kara; Saito, Eiji; Vanderby, Ray; Hollister, Scott J; Murphy, William L

    2010-10-01

    Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for 4 weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules.

  15. Hydroxyapatite/PMMA composites as bone cements.

    PubMed

    Chu, K T; Oshida, Y; Hancock, E B; Kowolik, M J; Barco, T; Zunt, S L

    2004-01-01

    Currently PMMA is the polymer most commonly used as a bone cement for the fixation of total hip prostheses. Ideally, a bone cement material should be easy to handle, biologically compatible, nonsupporting of oral microbial growth, available in the particulate and molded forms, easy to obtain, nonallergenic, adaptable to a broad range of dental and medical applications, in possession of high compressive strength, and effective in guided tissue regenerative procedures. One of the problems associated with the conventional types of bone cement used is their unsatisfactory mechanical and exothermic reaction properties. The purpose of this in vitro study was to investigate and compare the mechanical properties (three-point bending strength, energy-to-break, and modulus of elasticity) and physical properties (setting time, water sorption, and exothermic heat) of HA/PMMA (HA group) and bovine-bone originated HA/PMMA (BB group) composites. Composites samples were fabricated by admixing method. It was found that the addition of HA and BB particles increased the water sorption. Generally 10 v/o 20 v/o HA and 0 v/o to 10 v/o BB ratio combinations had significant beneficial effects on the mechanical properties. The heat generated during polymerization was influenced by the different admixtures. More than 40 v/o HA and 40 v/o BB should be mixed into PMMA to reduce the peak temperature. Overall evaluation indicated that the BB group had better properties than the HA group.

  16. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.

    PubMed

    Yang, Mingying; Shuai, Yajun; Zhang, Can; Chen, Yuyin; Zhu, Liangjun; Mao, Chuanbin; OuYang, Hongwei

    2014-04-14

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering.

  17. Pure and Strontium Doped Nano Hydroxyapatite: New Approach for Bone Implant and Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Tank, Kashmira P.; Vasant, Sonal R.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.

    2011-07-01

    Hydroxyapatite, (Ca10(PO4)6(OH)2-Hap), an excellent inorganic biomaterial, find various applications. The chemical composition of Hap is similar to that of the inorganic matrix of human bone and dental enamel. It is also used in drug delivery system and coating of bone implant. In the present study, pure nano Hap and Strontium doped nano-Hap (Sr-Hap) with different concentrations were synthesized by surfactant mediated approach. The samples were characterized by EDAX, XRD and TEM. The hemolytic properties were also studied and it proved that all the samples were non-hemolytic.

  18. Femur bone repair in ovariectomized rats under the local action of alendronate, hydroxyapatite and the association of alendronate and hydroxyapatite

    PubMed Central

    Canettieri, Antonio Carlos Victor; Colombo, Carlos Eduardo Dias; Chin, Chung Man; Faig-Leite, Horácio

    2009-01-01

    An evaluation was made of the local action of alendronate sodium (A), hydroxyapatite (HA) and the association of both substances (A + HA), in different molar concentrations, on the femur bone repair of ovariectomized rats. Ninety-eight animals were divided into seven groups: control (C), starch (S), alendronate 1 mol (A1), alendronate 2 mols (A2), hydroxyapatite 1 mol (HA1), hydroxyapatite 2 mols (HA2) and the association of alendronate + hydroxyapatite (A + HA). Rats weighing about 250 g were ovariectomized and 2.5-mm diameter bone defects were made on the left femur 30 days later. Each experimental group had defects filled with appropriate material, except for group C (control). The animals were killed 7 and 21 days after surgery. Histological, histomorphometric and statistical analyses of bone neoformation in the bone defect site were performed. From the histological standpoint, the major differences occurred after 21 days. All specimens in groups C, S, HA1 and HA2 presented linear closure of the bone defect, and most animals in groups A1, A2 and A + HA showed no bone neoformation in the central area of the defect. No statistically significant difference was found among the experimental groups after 7 days; after 21 days, group HA2 presented the highest amount of neoformed bone. There was no significant difference among groups A1, A2 and A + HA in the two study periods. It was concluded that alendronate, either isolated or in association with hydroxyapatite, had an adverse effect on bone repair in this experimental model. Moreover, the hydroxyapatite used here proved to be biocompatible and osteoconductive, with group HA2 showing the best results. PMID:19765106

  19. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material.

    PubMed

    Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E

    2011-05-01

    A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size

  20. Interconnected porous hydroxyapatite ceramics for bone tissue engineering.

    PubMed

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2009-06-06

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the 'foam-gel' technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 microm, porosity 75%), which were interconnected by window-like holes (average diameter 40 microm), and also demonstrated adequate compression strength (10-12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field.

  1. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    PubMed Central

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  2. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone.

    PubMed

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-05-18

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm(3)) as compared to rhBMP-2 alone (10.9 ± 2.1 mm(3)) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone.

  3. Radially and Axially Graded Multizonal Bone Graft Substitutes Targeting Critical-Sized Bone Defects from Polycaprolactone/Hydroxyapatite/Tricalcium Phosphate

    PubMed Central

    Ergun, Asli; Yu, Xiaojun; Valdevit, Antonio; Ritter, Arthur

    2012-01-01

    Repair and regeneration of critical sized defects via the utilization of polymeric bone graft substitutes are challenges. Here, we introduce radially and axially graded multizonal bone graft substitutes fabricated from polycaprolactone (PCL), and PCL biocomposites with osteoconductive particles, that is, hydroxyapatite (HA), and β-tricalcium phosphate (TCP). The novel bone graft substitutes should provide a greater degree of freedom to the orthopedic surgeon especially for repair of critically sized bone defects. The modulus of the graft substitute could be tailored in the axial direction upon the systematic variation of the HA/TCP concentration, while in the radial direction the bone graft substitute consisted of an outer layer with high stiffness, encapsulating a softer core with greater porosity. The biocompatibility of the bone graft substitutes was investigated using in vitro culturing of human bone marrow-derived stromal cells followed by the analysis of cell proliferation and differentiation rates. The characterization of the tissue constructs included the enzymatic alkaline phosphates (ALP) activity, microcomputed tomography imaging, and polymerase chain reaction analysis involving the expressions of bone markers, that is, Runx2, ALP, collagen type I, osteopontin, and osteocalcin, overall demonstrating the differentiation of bone marrow derived stem cells (BMSCs) via osteogenic lineage and formation of mineralized bone tissue. PMID:22764839

  4. Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering

    PubMed Central

    Gu, Zhen; Jamal, Syed; Detamore, Michael S.

    2013-01-01

    Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275

  5. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.

    PubMed

    Milovac, Dajana; Gallego Ferrer, Gloria; Ivankovic, Marica; Ivankovic, Hrvoje

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. © 2013.

  6. Bone properties surrounding hydroxyapatite-coated custom osseous integrated dental implants.

    PubMed

    Baker, M I; Eberhardt, A W; Martin, D M; McGwin, G; Lemons, J E

    2010-10-01

    Calcium phosphate (hydroxyapatite or HA) coatings have been applied to Custom Osseous Integrated Implants (COIIs) to improve the quality of the bone-implant integration, yet little is known concerning the biomechanical properties of bone surrounding the HA-coated implants in humans over the long term. The purpose of this study was to characterize the mechanical and histomorphometric properties of the bone along the implant interface. Specimens were prepared from three similar mandibular implants that were functional in three female patients for about 11 years. Histomorphometric analyses showed bone-implant contact averaging 75% for all specimens. Area coverage of residual HA-coating ranged from 52 to 70%. When compared with previous studies, these results show a relatively high percentage of residual HA after a decade in vivo. Nanoindentation showed similar average values of hardness and modulus (p = 0.53 and p = 0.56, respectively) comparing bone adjacent to residual HA-coating and regions where the coating was absent. The elastic modulus was significantly lower for bone near the bone-implant interface (<200 μm) as compared with bone distant (>1000 μm) from the interface (p = 0.05), thereby reflecting different properties of the bone near these interfaces. Backscattered electron imaging showed darker gray levels which indicated decreased mineral content in bone adjacent to the implant, consistent with the nanoindentation results.

  7. Sintering and dissolution of bone ash-derived hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Seo, Dong Seok; Kim, Young Gook; Lee, Jong Kook

    2010-08-01

    Bone ash-derived hydroxyapatite (HA) ceramics were prepared by pressureless sintering and hot pressing, and their dissolution behavior was examined in buffered water. HA powder was obtained by soaking bone ash in a 0.1M NaOH solution at 80 °C, followed by calcination at 1000 °C to completely remove the organic material. The crystal structure of the HA powder with a particle size of approximately 1 μm was mainly hydroxyapatite with a minimal amount of α-tricalcium phosphate. To improve densification, the powder was hot-pressed at 1000 °C for 0.5 h under a pressure of 30 MPa in an Ar atmosphere. The sintered density of the hot-pressed HA was 95 % of the theoretical density, which is much higher than the 70% obtained for the pressureless-sintered compact. In the porous HA ceramics obtained by pressureless sintering, dissolution occurred adjacent to the pores rather than in the dense part, which increased the residual porosity. On the other hand, the hot-pressed HA showed grain boundary dissolution followed by particle loosening.

  8. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications.

    PubMed

    Kumar, Alok; Biswas, Krishanu; Basu, Bikramjit

    2015-02-01

    The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. © 2014 Wiley Periodicals, Inc.

  9. Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration.

    PubMed

    Lee, Sang-Woon; Kim, Seong-Gon; Balázsi, Csaba; Chae, Weon-Sik; Lee, Hee-Ok

    2012-03-01

    The objective of this study was to evaluate the physical properties of synthetic hydroxyapatite (sHA) and hydroxyapatite from eggshells (eHA) by Fourier-transform infrared (FT-IR) and x-ray diffraction (XRD) and to compare the regenerative ability of the bone using sHA and eHA in a rabbit calvarial defect model. FT-IR and XRD were used to compare the physical properties of sHA and eHA. sHA was purchased from Sigma, and eHA was kindly donated from the Hungarian academy of science. Sixteen New Zealand white rabbits were used for the animal study. After the formation of a bilateral parietal bony defect (diameter 8.0 mm), either sHA or eHA was grafted into the defect. The defect in the control was left unfilled. Bone regeneration was evaluated by histomorphometry at 4 and 8 weeks after the operation. The peak broadening of the XRD experiments were in agreement with scanning electron microscope observation; the sHA had a smaller granule size than the eHA. The eHA had impurities phases of CaO (International Center for Diffraction Data (ICDD) 075-0264) and Ca(OH)(2) (ICDD 072-0156). Total new bone was 17.11 ± 10.24% in the control group, 28.81 ± 12.63% in sHA group, and 25.68 ± 10.89% in eHA group at 4 weeks after the operation. The difference was not statistically significant (P > .05). Total new bone at 8 weeks after the operation was 27.50 ± 10.89% in the control group, 38.62 ± 17.42% in sHA group, and 41.99 ± 8.44% in the eHA group. When comparing the sHA group to the control group, the difference was not statistically significant (P > .05). However, the eHA group was significantly different from the control group (P = .038). When comparing the eHA group to the sHA group, the difference was not statistically significant (P > .05). Both types of HA showed higher bone formation than the unfilled control. However, eHA had significantly higher bone formation than the unfilled control at 8 weeks after operation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    PubMed Central

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  11. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    PubMed Central

    Saska, S.; Barud, H. S.; Gaspar, A. M. M.; Marchetto, R.; Ribeiro, S. J. L.; Messaddeq, Y.

    2011-01-01

    The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration. PMID:21961004

  12. Synthesis and characterization of hydroxyapatite from fish bone waste

    SciTech Connect

    Marliana, Ana Fitriani, Eka; Ramadhan, Fauzan; Suhandono, Steven; Yuliani, Keti; Windarti, Tri

    2015-12-29

    Waste fish bones is a problem stemming from activities in the field of fisheries and it has not been used optimally. Fish bones contain calcium as natural source that used to synthesize hydroxyapatite (HA). In this research, HA synthesized from waste fish bones as local wisdom in Semarang. The goal are to produce HA with cheaper production costs and to reduce the environmental problems caused by waste bones. The novelty of this study was using of local fish bone as a source of calcium and simple method of synthesis. Synthesis process of HA can be done through a maceration process with firing temperatures of 1000°C or followed by a sol-gel method with firing at 550°C. The results are analyzed using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction) and SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray). FTIR spectra showed absorption of phosphate and OH group belonging to HA as evidenced by the results of XRD. The average grain size by maceration and synthesized results are not significant different, which is about 69 nm. The ratio of Ca/P of HA by maceration result is 0.89, then increase after continued in the sol-gel process to 1.41. Morphology of HA by maceration results are regular and uniform particle growth, while the morphology of HA after the sol-gel process are irregular and agglomerated.

  13. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Huang, Baoxin; Mai, Sui; Wu, Xiayi; Zhang, Hanqing; Qiao, Wei; Luo, Xin; Chen, Zhuofan

    2015-06-01

    Biological hydroxyapatite, derived from animal bones, is the most widely used bone substitute in orthopedic and dental treatments. Fluorine is the trace element involved in bone remodeling and has been confirmed to promote osteogenesis when administered at the appropriate dose. To take advantage of this knowledge, fluorinated porcine hydroxyapatite (FPHA) incorporating increasing levels of fluoride was derived from cancellous porcine bone through straightforward chemical and thermal treatments. Physiochemical characteristics, including crystalline phases, functional groups and dissolution behavior, were investigated on this novel FPHA. Human osteoblast-like MG63 cells were cultured on the FPHA to examine cell attachment, cytoskeleton, proliferation and osteoblastic differentiation for in vitro cellular evaluation. Results suggest that fluoride ions released from the FPHA play a significant role in stimulating osteoblastic activity in vitro, and appropriate level of fluoridation (1.5 to 3.1 atomic percents of fluorine) for the FPHA could be selected with high potential for use as a bone substitute.

  14. Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo.

    PubMed

    Chen, Q Z; Wong, C T; Lu, W W; Cheung, K M C; Leong, J C Y; Luk, K D K

    2004-08-01

    The formation and strengthening mechanisms of bone bonding of crystalline hydroxyapatite (HA) has been investigated using high-resolution transmission electron microscope (HRTEM) and energy-dispersive X-ray (EDX) analysis. A series of results were obtained: (i) a layer of amorphous HA, which has almost the same chemistry as the implanted HA, was formed on the surface of crystalline HA particles prior to dissolution; (ii) at 3 months a bone-like tissue formed a bonding zone between mature bone and the HA implant, composed of nanocrystalline and amorphous apatite; and (iii) at 6 months, mature bone was in direct contact with HA particles, and collagen fibres were perpendicularly inserted into the surface layer of implanted HA crystals. Findings (i) and (ii) indicated the following dissolution-precipitation process. (i) The crystalline HA transforms into amorphous HA; (ii) the amorphous HA dissolves into the surrounding solution, resulting in over-saturation; and (iii) the nanocrystallites are precipitated from the over-saturated solution in the presence of collagen fibres. A preliminary analysis indicated several conclusions: (i) the transition from crystalline to amorphous HA might be the controlling step in the bone bonding of crystalline HA; (ii) biological interdigitation (or incorporation) of collagen fibres with HA and chemical bonding of a apatite layer were both necessary to strengthen and toughen a bone bond, not only for the bonding between bone and HA at 6 months, but also for the bonding zone at 3 months, which would otherwise be very fragile due to the inherited brittleness of polycrystalline ceramics; and (iii) perpendicular interdigitation is an effective way for collagen fibres to impart their unique combination of flexibility and strength to the interface which they are keying.

  15. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.

    PubMed

    Jin, Yashi; Kundu, Banani; Cai, Yurong; Kundu, Subhas C; Yao, Juming

    2015-10-01

    To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca(2+) incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca(2+) concentration- and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Properties evaluation of collagen-hydroxyapatite-chondroitin sulfate-bone morphogenetic protein bone substitute material].

    PubMed

    Wang, Hao; Zhang, Li-cheng; Shi, Tao; Xiong, Qi; Tang, Pei-fu

    2011-10-18

    To construct a new 3D porous bone substitute material with collagen, hydroxyapatite and chondroitin sulfate, which has the main components of nature bone and the cell growth factor BMP-2 with bone inductive ability. Collagen-hydroxyapatite-chondroitin sulfate scaffolds were prepared by chemical cross linking and freeze-drying, and bone morphogenetic protein (BMP) was incorporated into the scaffolds by adsorption. The bone substitute material was investigated by HE analysis, scanning electron microscope(SEM), electron spectroscopy for chemical analysis(ESCA), and X-ray diffraction(XRD). Rat mesenchymal stem cells (MSCs) were seeded into the scaffolds and cultured to form cell/scaffold (CS) constructs in vitro. The ectopic osteoinduction of the scaffolds were evaluated in vivo. The bone substitute material had a porous 3D structure facilitating cells growing into it. Implanted into the muscle, the scaffolds were degraded with the forming of new bone. Our Findings indicate that the bone substitute material has good biocompatibility and its attachment to CS could improve the adhesion and differentiation of cells.

  17. Effect of hydroxyapatite on bone integration in a rabbit tibial defect model.

    PubMed

    Lee, Myung-Jin; Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-06-01

    The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p < 0.05). On comparing the change of bone mineral density the bone ingrowth surface area among the 4 groups, there were no statistically significant differences among the groups found for any period (p > 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite cylinder showed better results for the

  18. Osseous integration of hydroxyapatite grafts in metaphyseal bone defects of the proximal tibia (CT-study).

    PubMed

    Khodadadyan-Klostermann, C; Liebig, T; Melcher, I; Raschke, M; Haas, N P

    2002-01-01

    The purpose of the study was the examination of the osseous integration of hydroxyapatite grafts used for the filling of metaphyseal bone defects in tibia head fractures. Four patients with lateral tibia plateau fractures AO-type B3 (12) were included in the study. Patients were treated by arthroscopically assisted reduction and percutaneous screw fixation. The metaphyseal bone defects were filled with prepared solid hydroxyapatite graft blocks (Endobon Fa. Merk Darmstadt, Germany). In all of the patients a CT study for the osseous integration of hydroxyapatite grafts used for the filling of metaphyseal bone defects in tibial head fractures was performed. Measurements of density were performed of the implant region, the periimplant region, the distant periimplant region and the fibula bone. Follow-up CT examinations of these specific regions were performed 6 and 12 months postoperative. In all cases an increase of density of the hydroxyapatite graft after 6 months and 12 months follow-up was detected. The periimplant region showed in all cases a decrease of density. A progressive decrease of the periimplant and the distant cancellous tibial bone region was also detectable after 6 and 12 months post-op. A similar decrease of density was visible in the region of the cancellous bone of the fibula. In the interface region a direct bone formation between the hydroxyapatite graft and the adjected cancellous bone was visible in all cases during follow-up. The increase of density of the hydroxyapatite grafts and the direct bone formation in the interface region between the hydroxyapatite graft and the adjacent cancellous bone are clear radiomorphological signs for an osteointegration of hydroxyapatite grafts in the metaphyseal region.

  19. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction.

    PubMed

    Barbani, Niccoletta; Guerra, Giulio D; Cristallini, Caterina; Urciuoli, Patrizia; Avvisati, Riccardo; Sala, Alessandro; Rosellini, Elisabetta

    2012-01-01

    The aim of this work was the morphological, physicochemical, mechanical and biological characterization of a new composite system, based on gelatin, gellan and hydroxyapatite, and mimicking the composition of natural bone. Porous scaffolds were prepared by freeze-drying technique, under three different conditions of freezing. The morphological analysis showed a homogeneous porosity, with well interconnected pores, for the sample which underwent a more rapid freezing. The elastic modulus of the same sample was close to that of the natural bone. The presence of interactions among the components was demonstrated through the physicochemical investigation. In addition, the infrared chemical imaging analysis pointed out the similarity among the composite scaffold and the natural bone, in terms of chemical composition, homogeneity, molecular interactions and structural conformation. Preliminary biological characterization showed a good adhesion and proliferation of human mesenchymal stem cells.

  20. Human osteoblast response to silicon-substituted hydroxyapatite.

    PubMed

    Botelho, C M; Brooks, R A; Best, S M; Lopes, M A; Santos, J D; Rushton, N; Bonfield, W

    2006-12-01

    Human osteoblasts were cultured on hydroxyapatite (HA), 0.8 wt % silicon substituted hydroxyapatite (Si-HA) and 1.5 wt % Si-HA discs. The influence of these substrates on cell behaviour in vitro was assessed by measuring total protein in the cell lysate and the production of several phenotypic markers: collagen type I (COL I), alkaline phosphatase (ALP), osteocalcin (OC), and the formation of bone mineral. After 7 days, beta-glycerophosphate and physiological levels of hydrocortisone were added to the culture medium to stimulate cell differentiation and mineral production. There was a significantly higher production of ALP on 1.5 wt % Si-HA at day 7 following which, the addition of hydrocortisone promoted the differentiation of cells on the other two substrates. Hydrocortisone addition also decreased the production of OC. During the period, when hydrocortisone was present, no significant difference in behavior was seen between cells on Si-HA and HA; however, following removal of hydrocortisone, cells responded to 0.8 wt % Si-HA with a significant increase in protein production. Using fluorescence microscopy, nodular structures labeled with tetracycline were observed on the surface of all substrates after 21 days. These structures were deposited on areas of high cell density but were not related to the presence or level of silicon in the substrate. These results indicate that human osteoblasts are affected by the presence of silicon in the HA substrate and that the timing of these effects may be dependent upon the level of silicon substitution.

  1. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats.

    PubMed

    Silva, R V; Camilli, J A; Bertran, C A; Moreira, N H

    2005-03-01

    Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The objective of this study was to evaluate the repair of bone defects by autogenous cancellous bone grafts or porous bioceramic discs of hydroxyapatite/phosphate cement mixture. Two 5-mm diameter defects were made in the skulls of rats and filled with the bioceramic material or cancellous bone. The rats were sacrificed 2, 4, 8 and 24 weeks after surgery and tissue samples were analyzed by radiography and histology. By the 24th week, the defects filled with autogenous cancellous bone grafts or bioceramic material showed similar volumes of bone tissue within the defect. However, defects treated with bioceramic material were almost completely closed as a result of the joining of ceramic fragments and the neoformed bone tissue, while those filled with autogenous grafts showed several areas filled with connective tissue. These results indicated that the osteointegration of bioceramic fragments allowed the reconstruction of parietal bone defects without the need for a bone graft.

  2. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling.

    PubMed

    Dickson, Kyle F; Friedman, Jacob; Buchholz, James G; Flandry, Frederick D

    2002-12-01

    This prospective, randomized study was performed to determine whether a new, in situ setting hydroxyapatite cement is as safe or effective as autologous cancellous bone graft for the treatment of metaphyseal bone voids secondary to trauma. This was a multicenter study including Level I trauma centers and university hospitals. Thirty-eight patients who sustained an acute closed or open type I fracture of the humerus, radius, ulna, femur, tibia, or calcaneus and had a traumatic bone void requiring grafting of the metaphyseal or cancellous bone area were enrolled. Open reduction and internal fixation of the fracture was performed with use of either autologous cancellous bone or BoneSource hydroxyapatite cement to fill traumatic metaphyseal voids. Main outcome measures included maintenance of reduction, fracture healing, pain at defect site, pain at donor site, and clinical function of the limb. Patients treated with BoneSource had an 83% success rate in maintaining reduction, whereas patients treated with autograft had a 67% success rate. A successful clinical outcome, as measured by a healed fracture with minimal to no pain, moderate to maximum function, and no or minor donor site complications, was seen in 69% of patients treated with BoneSource and 57% of patients treated with autograft. In patients with at least 1 year of follow-up, the overall success rate was 79% in the BoneSource group and 70% in the autograft group. BoneSource is safe and effective when used to fill traumatic metaphyseal bone voids. It is at least as good as autograft for treatment of these defects.

  3. Hydroxyapatite-alumina composites and bone-bonding.

    PubMed

    Li, J; Fartash, B; Hermansson, L

    1995-03-01

    Hydroxyapatite-alumina (HA/Al2O3) composites, with HA contents of 15, 25, 30 and 70, and pure HA as well as pure Al2O3, were densified at 1275 degrees C at a top pressure of 200 MPa for 2 h, using glass-encapsulated hot isostatic pressing. From the sintered ceramics, cylinders 2.8 x 6 mm2 were prepared by ultrasonic machining and implanted into the femoral cortical bones of 12 New Zealand White rabbits for 3 months. After killing the animals, the femur was dissected out and cut into three sections, each containing one cylinder. The specimens were mounted in a push-out device and force was applied along the long axis of the cylinder. The maximum force required to loosen the implant was recorded and the fracture surface of the bone implant was studied by scanning electron microscopy (SEM). The results indicate the important role of HA in new bone apposition to the implants, reflected by increasing bonding strength with increasing HA content in the composites. However, the relationship between HA content and the bonding strength was not linear. The composite with 70% HA and the pure HA ceramic had the same level of bonding strength and similar fracture interfaces in SEM, which supports the high bonding strength detected (about 15 MPa). Fractures occurred both in the bone and in the implant, indicating the stress transfer ability of the contact zone. This study presents qualitatively and quantitatively HA-dependent characteristics in bone-bonding. The mechanical strength of the composites was measured by a three-point bending test. The bending strength of the materials decreases with increasing HA content.

  4. Effect of hydroxyapatite-based biomaterials on human osteoblast phenotype.

    PubMed

    Trombelli, L; Penolazzi, L; Torreggiani, E; Farina, R; Lambertini, E; Vecchiatini, R; Piva, R

    2010-03-01

    The present study evaluated human primary osteoblasts and two different osteoblast-like cell lines behaviour when cultured in presence of different hydroxyapatite-based (HA) biomaterials (SINTlife-FIN-CERAMICA S.p.a., Faenza, Italy; Bio-Oss, Geistlich Biomaterials, Woulhusen, Switzerland; Biostite-GABA Vebas, San Giuliano Milanese, MI, Italy), focusing attention on the effect of HA/Biostite in terms of modulation of osteoblastic differentiation. Analysis were about adhesion, proliferation and mineralization activity. Runt-related transcription factor 2 (Runx2), Estrogen Receptor alpha (ERalfa) expression and alkaline phosphatase activity (ALP) were measured as osteoblastic differentiation markers. Determination of viable cells was done with MTT colorimetric assay. Scanning electron microscopy (SEM) analysis was performed on biomaterial-treated cells. All hydroxyapatite-based biomaterials didn't affect cells morphology and viability, whereas only presence of HA/Biostite improved cells adhesion, growth and differentiation. Adhesion and spreading of the primary cells on HA/Biostite were the same showed by two different osteoblast-like cell lines. These results have important implications for both tissue-engineered bone grafts and enhancement of HA implants performance, to develop new teeth's supporting structure therapies and replacement.

  5. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    PubMed

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss(®); 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Noh, In-Sup; Zhang, Sheng-Min

    2013-03-01

    Bone defect is one of the most common diseases in clinic. Existing therapeutic approaches have encountered many problems, such as lack of autogenous allogeneic bone and immunological rejection to allogeneic implant. Synthetic hydroxyapatite (HA) provided solutions for bone repair, since the HA is the main inorganic component of animals' bone. However, HA has good biocompatibility, but does not possess osteogenic capability, which is of significance for modern bone repair materials. Si is an essential trace element in bone tissue, and it has been demonstrated to be able to promote bone formation. Therefore, silicate-doped hydroxyapatite (Si-HA) may serve as a promising material for bone repair, and promote bone regeneration in the repair. The current review discusses development of Si-HA, focusing on its preparation and characterization, in vitro and in vivo evaluations of the material, positive effect of Si-HA on promoting bone formation in clinical applications, and molecular mechanism investigation of such promotive effect.

  7. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects.

    PubMed

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S; Bornstein, Michael M; Wang, Chun-Cheng; Buser, Daniel

    2015-10-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored.

  8. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    PubMed

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering.

  9. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity.

    PubMed

    Woodard, Joseph R; Hilldore, Amanda J; Lan, Sheeny K; Park, C J; Morgan, Abby W; Eurell, Jo Ann C; Clark, Sherrie G; Wheeler, Matthew B; Jamison, Russell D; Wagoner Johnson, Amy J

    2007-01-01

    The relative osteoconductivity and the change in the mechanical properties of hydroxyapatite (HA) scaffolds with multi-scale porosity were compared to scaffolds with a single pore size. Non-microporous (NMP) scaffolds contained only macroporosity (250-350 microm) and microporous (MP) scaffolds contained both macroporosity and microporosity (2-8 microm). Recombinant human bone morphogenetic protein-2 (rhBMP-2) was incorporated into all scaffolds via gelatin microspheres prior to implantation into the latissimus dorsi muscle of Yorkshire pigs. After 8 weeks, only the MP scaffolds contained bone. The result demonstrates the efficacy of the MP scaffolds as drug carriers. Implanted and as-fabricated scaffolds were compared using histology, microcomputed tomography, scanning electron microscopy, and compression testing. Implanted scaffolds exhibited a stress-strain response similar to that of cancellous bone with strengths between those of cancellous and cortical bone. The strength and stiffness of implanted NMP scaffolds decreased by 15% and 46%, respectively. Implanted MP scaffolds lost 30% of their strength and 31% of their stiffness. Bone arrested crack propagation effectively in MP scaffolds. The change in mechanical behavior is discussed and the study demonstrates the importance of scaffold microporosity on bone ingrowth and on the mechanical behavior of HA implant materials.

  10. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    PubMed

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material.

  11. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  12. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    PubMed Central

    Walker, John A.; Singleton, Brian M.; Hernandez, Jesus W.; Son, Jun-Sik; Kim, Su-Gwan; Oh, Daniel S.; Appleford, Mark R.; Ong, Joo L.; Wenke, Joseph C.

    2013-01-01

    There are few synthetic graft alternatives to treat large long-bone defects resulting from trauma or disease that do not incorporate osteogenic or osteoinductive factors. The aim of this study was to test the additional benefit of including a permeable collagen membrane guide in conjunction with a preformed porous hydroxyapatite bone graft to serve as an improved osteoconductive scaffold for bone regeneration. A 10-mm-segmental long-bone defect model in the rabbit radius was used. The hydroxyapatite scaffolds alone or with a collagen wrap were compared as experimental treatment groups to an empty untreated defect as a negative control or a defect filled with autologous bone grafts as a positive control. All groups were evaluated after 4 and 8 weeks of in vivo implantation using microcomputed tomography, mechanical testing in flexure, and histomorphometry. It was observed that the use of the wrap resulted in an increased bone volume regenerated when compared to the scaffold-only group (59% greater at 4 weeks and 27% greater after 8 weeks). Additionally, the increase in density of the regenerated bone from 4 to 8 weeks in the wrap group was threefold than that in the scaffold group. The use of the collagen wrap showed significant benefits of increased interfacial bone in-growth (149% greater) and periosteal remodeling (49%) after 4 weeks compared to the scaffold-alone with the two groups being comparable after 8 weeks, by when the collagen membrane showed close-to-complete resorption. While the autograft and wrap groups showed significantly greater flexural strength than the defect group after 8 weeks, the scaffold-alone group was not significantly different from the other three groups. It is most likely that the wrap shows improvement of function by acting like a scaffold for periosteal callus ossification, maintaining the local bone-healing environment while reducing fibrous infiltration (15% less than scaffold only at 4 weeks). This study indicates that the use of

  13. Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair

    PubMed Central

    CALASANS-MAIA, Mônica Diuana; de MELO, Bruno Raposo; ALVES, Adriana Terezinha Neves Novellino; RESENDE, Rodrigo Figueiredo de Brito; LOURO, Rafael Seabra; SARTORETTO, Suelen Cristina; GRANJEIRO, José Mauro; ALVES, Gutemberg Gomes

    2015-01-01

    ABSTRACT Objective The aim of this study was to investigate the in vitro and in vivo biological responses to nanostructured carbonated hydroxyapatite/calcium alginate (CHA) microspheres used for alveolar bone repair, compared to sintered hydroxyapatite (HA). Material and Methods The maxillary central incisors of 45 Wistar rats were extracted, and the dental sockets were filled with HA, CHA, and blood clot (control group) (n=5/period/group). After 7, 21 and 42 days, the samples of bone with the biomaterials were obtained for histological and histomorphometric analysis, and the plasma levels of RANKL and OPG were determined via immunoassay. Statistical analysis was performed by Two-Way ANOVA with post-hoc Tukey test at 95% level of significance. Results The CHA and HA microspheres were cytocompatible with both human and murine cells on an in vitro assay. Histological analysis showed the time-dependent increase of newly formed bone in control group characterized by an intense osteoblast activity. In HA and CHA groups, the presence of a slight granulation reaction around the spheres was observed after seven days, which was reduced by the 42nd day. A considerable amount of newly formed bone was observed surrounding the CHA spheres and the biomaterials particles at 42-day time point compared with HA. Histomorphometric analysis showed a significant increase of newly formed bone in CHA group compared with HA after 21 and 42 days from surgery, moreover, CHA showed almost 2-fold greater biosorption than HA at 42 days (two-way ANOVA, p<0.05) indicating greater biosorption. An increase in the RANKL/OPG ratio was observed in the CHA group on the 7th day. Conclusion CHA spheres were osteoconductive and presented earlier biosorption, inducing early increases in the levels of proteins involved in resorption. PMID:26814461

  14. Ossiculoplasty with hydroxyapatite bone cement: our reconstruction philosophy.

    PubMed

    Gérard, Jean-Marc; De Bie, Gersende; Franceschi, Daniel; Deggouj, Naima; Gersdorff, Michel

    2015-07-01

    The main objective of this study is to analyze results obtained with hydroxyapatite bone cement (HABC) ossiculoplasties. This is a retrospective study of a case series. This study was conducted in an academic hospital and tertiary referral center. A total of 127 ossiculoplasties using HABC were evaluated. Ears were divided into three groups according to procedure: group 1 involved reinforcement of the incudostapedial joint with cement and reconstruction of an incus long process defect with cement. Group 2 involved partial ossicular reconstruction between the stapes and malleus handle with HABC. Group 3 was divided into two subgroups. Group 3B entailed reconstruction of the stapes with a mobile footplate (Austin-Kartush type B = group 3B) and group 3F with a fixed footplate (Austin-Kartush type F = group 3F) using a K-Helix piston (Grace Medical, Memphis, TN, USA) or a classical titanium piston (Kurz, Fuerth, Germany) glued to the incus remnant or malleus handle with cement. Anatomical and pre- and postoperative audiological results were assessed. The mean follow-up was 26 ± 14 months. Percentages of average postoperative air-bone gap ≤ 20 dB were 95, 82.5, 50 and 83.3%, and for air-bone gap ≤ 1 0 dB, 80, 50.9, 16.6 and 50% for groups 1, 2, 3B and 3F, respectively. No complications related to the cement or extrusion occurred. Hearing outcomes also remained stable over time. In our experience, ossiculoplasty with cement provides good and stable functional results, is safe, cost effective, and easy to use. HABC with or without biocompatible ossicular prostheses allows repair of different types of ossicular defects with preservation of the anatomical and physiological ossicular chain, as well as improved stability. Reconstruction of the incus long process or incudostapedial joint defect with cement is preferred over partial ossicular reconstruction.

  15. Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects.

    PubMed

    Raucci, M G; Alvarez-Perez, M; Giugliano, D; Zeppetelli, S; Ambrosio, L

    2016-03-01

    This study concerns the synthesis of gel materials based on carbon nanotubes dispersed strontium-modified hydroxyapatite (Sr-HA) at different compositions obtained by sol-gel technology and their influence on human-bone-marrow-derived mesenchymal stem cells. Furthermore, an evaluation of the influence of nanotubes and Strontium on physico-chemical, morphological, rheological and biological properties of hydroxyapatite gel was also performed. Morphological analysis (scanning electron microscopy) shows a homogeneous distribution of modified nanotubes in the ceramic matrix improving the bioactive properties of materials. The biological investigations proved that Sr-HA/carbon nanotube gel containing 0-20 mol (%) of Sr showed no toxic effect and promote the expression of early and late markers of osteogenic differentiation in cell culture performed in basal medium without osteogenic factors. Finally, the SrHA/carbon nanotube gels could have a good potential application as filler in bone repair and regeneration and may be used in the osteoporotic disease treatment.

  16. Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects

    PubMed Central

    Raucci, M. G.; Alvarez-Perez, M.; Giugliano, D.; Zeppetelli, S.; Ambrosio, L.

    2016-01-01

    This study concerns the synthesis of gel materials based on carbon nanotubes dispersed strontium-modified hydroxyapatite (Sr-HA) at different compositions obtained by sol–gel technology and their influence on human-bone-marrow-derived mesenchymal stem cells. Furthermore, an evaluation of the influence of nanotubes and Strontium on physico-chemical, morphological, rheological and biological properties of hydroxyapatite gel was also performed. Morphological analysis (scanning electron microscopy) shows a homogeneous distribution of modified nanotubes in the ceramic matrix improving the bioactive properties of materials. The biological investigations proved that Sr-HA/carbon nanotube gel containing 0–20 mol (%) of Sr showed no toxic effect and promote the expression of early and late markers of osteogenic differentiation in cell culture performed in basal medium without osteogenic factors. Finally, the SrHA/carbon nanotube gels could have a good potential application as filler in bone repair and regeneration and may be used in the osteoporotic disease treatment. PMID:26816652

  17. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell

    NASA Astrophysics Data System (ADS)

    Yan-Zhong, Zhao; Yan-Yan, Huang; Jun, Zhu; Shai-Hong, Zhu; Zhi-You, Li; Ke-Chao, Zhou

    2011-11-01

    Hydroxyapatite is the main inorganic component of biological bone and tooth enamel, and synthetic hydroxyapatite has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of arginine-functionalized and europium-doped hydroxyapatite nanoparticles (Arg-Eu-HAP). The synthesized nanoparticles characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared, and Zeta potential analyzer. Its biological properties with DNA binding, cell toxicity, cell binding and intracellular distribution were tested by agarose gel electrophoresis assay, flow cytometry, and fluorescence microscope and laser scanning confocal microscope. The synthesized Arg-Eu-HAP could effectively bind DNA without any cytotoxicity and be internalized into the cytoplasm and perinuclear of human lung epithelial cells.

  18. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    PubMed

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  19. Comparative Evalution of G bone (Hydroxyapatite) and G-Graft (Hydroxyapatite with Collagen) as Bone Graft Material in Mandibular III Molar Extraction Socket.

    PubMed

    Panday, Vijayendra; Upadhyaya, Vivekananda; Berwal, Vikas; Jain, Kapil; Sah, Nupur; Sarathi, Partha; Swami, Pushp Chander

    2015-03-01

    Bone grafting is a dynamic phenomenon. It is a surgical procedure that replaces missing bone with material either from patient's own body, or, an artificial, synthetic or natural substitute. A successful bone graft when applied, heals, becomes incorporated, re-vascularises and eventually assumes the form desired. The main purpose of this present study was to radiologically assess and compare the regenerative potential of hydroxyapatite with Collagen (G-Graft) and hydroxyapatite (G-Bone) and to evaluate the clinical usefulness of these materials to enhance bone healing in third molar extraction sites through bone formation. The study was carried out in the Department of Oral & Maxillofacilal Surgery, patients were divided into three groups. The rationale for assigning the patients to the groups was strictly random: Group I - G-Graft (Hydroxyapatite with Collagen) was used as Bone graft material, Group II - Bone graft material used was G-Bone (Hydroxyapatite), Group III-control group (no grafts was used). Orthopentomogram(OPG) images were taken intra-operatively, just after extraction in the Group III (control), after extraction but before graft placement in Group I & II (study groups) and post-operatively at the end of first month and third month. Bone density of the post-extraction sockets was measured at four random areas through 'densitometric analysis' software in the OPG program (Kodak 8000C Digital Panoramic System, Eastman Kodak Company) and an average value was recorded at each review. The percentage increase in bone density between 1(st) month & 3(rd) month was 7.55± 12.43 in Group I (G Graft), 4.41± 5.4859 in Group II (G Bone), while that Group III (control) was found to be -0.82 ± 3.96. The bone density increase was found to be statistically highly significant (p<0.01)) between all groups. The present study concluded that G-Graft has a definite regenerative potential and is better than G-bone and can be used in bony defects to enhance the bone healing

  20. Comparative Evalution of G bone (Hydroxyapatite) and G-Graft (Hydroxyapatite with Collagen) as Bone Graft Material in Mandibular III Molar Extraction Socket

    PubMed Central

    Panday, Vijayendra; Upadhyaya, Vivekananda; Jain, Kapil; Sah, Nupur; Sarathi, Partha; Swami, Pushp Chander

    2015-01-01

    Background: Bone grafting is a dynamic phenomenon. It is a surgical procedure that replaces missing bone with material either from patient’s own body, or, an artificial, synthetic or natural substitute. A successful bone graft when applied, heals, becomes incorporated, re-vascularises and eventually assumes the form desired. Aims and Objective: The main purpose of this present study was to radiologically assess and compare the regenerative potential of hydroxyapatite with Collagen (G-Graft) and hydroxyapatite (G-Bone) and to evaluate the clinical usefulness of these materials to enhance bone healing in third molar extraction sites through bone formation. Materials and Methods: The study was carried out in the Department of Oral & Maxillofacilal Surgery, patients were divided into three groups. The rationale for assigning the patients to the groups was strictly random: Group I – G-Graft (Hydroxyapatite with Collagen) was used as Bone graft material, Group II – Bone graft material used was G-Bone (Hydroxyapatite), Group III—control group (no grafts was used). Orthopentomogram(OPG) images were taken intra-operatively, just after extraction in the Group III (control), after extraction but before graft placement in Group I & II (study groups) and post-operatively at the end of first month and third month. Bone density of the post-extraction sockets was measured at four random areas through ‘densitometric analysis’ software in the OPG program (Kodak 8000C Digital Panoramic System, Eastman Kodak Company) and an average value was recorded at each review. Results: The percentage increase in bone density between 1st month & 3rd month was 7.55± 12.43 in Group I (G Graft), 4.41± 5.4859 in Group II (G Bone), while that Group III (control) was found to be -0.82 ± 3.96. The bone density increase was found to be statistically highly significant (p<0.01)) between all groups. Conclusion: The present study concluded that G-Graft has a definite regenerative potential

  1. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    NASA Astrophysics Data System (ADS)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were

  2. Sinus augmentation with phycogene hydroxyapatite: histological and histomorphometrical results after 6 months in humans. A case series.

    PubMed

    Scarano, Antonio; Degidi, Marco; Perrotti, Vittoria; Piattelli, Adriano; Iezzi, Giovanna

    2012-03-01

    Phycogene hydroxyapatite is a biological hydroxyapatite derived from calcifying maritime algae, and is prepared by hydrothermal conversion by pyrolitical segmentation of the calcium carbonate of native algae into fluorhydroxyapatite. The aim of the present study was a histological and histomorphometrical evaluation, in humans, of specimens retrieved from sinuses augmented with phycogene hydroxyapatite, after a healing period of 6 months. Ten healthy patients with noncontributory past medical history (four women and six men, all nonsmokers, mean age 59 years, range 54-65 years) were included in this study. All patients were candidates for augmentation in the posterior maxilla in order to receive fixed restorations. The maxillary sinuses were filled with phycogene hydroxyapatite (Algipore®, Dentsply Friadent, Mannheim, Germany). Twenty-three implants (XiVE®, Dentsply Friadent, Mannheim, Germany) were placed in the augmented sinuses after a healing period of about 6 months. The bone cores were retrieved and were processed for histology. Most particles of phycogene hydroxyapatite were surrounded by a mineralized tissue, and the biomaterial particles had served as an osteoconductive scaffold. Most particles were bridged by newly formed bone characterized by the presence of large osteocytic lacunae, also around the phycogene hydroxyapatite particles, which appeared to be partially resorbed and substituted by new bone. No inflammatory cells or foreign body reaction cells were present around the biomaterial. No gaps were present at the bone-particle interface, and the bone was always in close contact with the particles. Histomorphometry showed that the percentage of newly formed bone was 35.2 ± 3.6%, marrow spaces 35.6 ± 2.3%, and residual grafted material 37.1 ± 3.8%. In conclusion, the present results support the literature findings that phycogene hydroxyapatite can be used, successfully, for sinus augmentation procedures.

  3. [Hydroxyapatite bone substitute (Ostim) in sinus floor elevation. Maxillary sinus floor augmentation: bone regeneration by means of a nanocrystalline in-phase hydroxyapatite (Ostim)].

    PubMed

    Smeets, Ralf; Grosjean, Maurice B; Jelitte, Gerd; Heiland, Max; Kasaj, Adrian; Riediger, Dieter; Yildirim, Murat; Spiekermann, Hubertus; Maciejewski, Oliver

    2008-01-01

    The range of bone regeneration materials suitable for maxillar bone augmentation has increased steadily in the past few years and there is now a wide variety of materials being used. In the present case report, we analyzed the state of bone regeneration after sinus floor augmentation using a nanocrystalline in-phase synthetic anorganic hydroxyapatite bone grafting material (Ostim). A 60-year-old female patient underwent maxillary sinus floor elevation and the cavity was filled with Ostim three years before. Actually, she presented herself with loosening of the dental implant at position 17, as a result of parafunction. At the time of the insertion of a second implant at position 17, bone samples were taken by using a trepan drilling device from the previously augmented area. These samples were analyzed histologically to determine the extent of bone remodeling around the deposits of Ostim. We found that the Ostim deposits were surrounded largely by woven bone and, in parts, by lamellar bone and had facilitated osteoconductive bone regeneration. The adjacent implant, at position 16, which beared a crown exposed to proper biting forces without parafunction, showed proper clinical and radiological characteristics of complete and firm integration into the area which was also filled with Ostim three years ago. We conclude that the use of the nanocrystalline hydroxyapatite Ostim with its stable volume properties appears to be suitable for maxillary sinus floor augmentation. Furthermore, we even found osteoconductive bone regeneration under Ostim near the site of the loosened implant.

  4. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts.

    PubMed

    Bernhardt, A; Dittrich, R; Lode, A; Despang, F; Gelinsky, M

    2013-07-01

    Conventionally sintered hydroxyapatite-based materials for bone repair show poor resorbability due to the loss of nanocrystallinity. The present study describes a method to establish nanocrystalline hydroxyapatite granules. The material was prepared by ionotropic gelation of an alginate sol containing hydroxyapatite (HA) powder. Subsequent thermal elimination of alginate at 650 °C yielded non-sintered, but unexpectedly stable hydroxyapatite granules. By adding stearic acid as an organic filler to the alginate/HA suspension, the granules exhibited macropores after thermal treatment. A third type of material was achieved by additional coating of the granules with silica particles. Microstructure and specific surface area of the different materials were characterized in comparison to the already established granular calcium phosphate material Cerasorb M(®). Cytocompatibility and potential for bone regeneration of the materials was evaluated by in vitro examinations with osteosarcoma cells and osteoclasts. Osteoblast-like SaOS-2 cells proliferated on all examined materials and showed the typical increase of alkaline phosphatase (ALP) activity during cultivation. Expression of bone-related genes coding for ALP, osteonectin, osteopontin, osteocalcin and bone sialoprotein II on the materials was proven by RT-PCR. Human monocytes were seeded onto the different granules and osteoclastogenesis was examined by activity measurement of tartrate-specific acid phosphatase (TRAP). Gene expression analysis after 23 days of cultivation revealed an increased expression of osteoclast-related genes TRAP, vitronectin receptor and cathepsin K, which was on the same level for all examined materials. These results indicate, that the nanocrystalline granular materials are of clinical interest, especially for bone regeneration.

  5. Multifrequency electron paramagnetic resonance study on deproteinized human bone

    NASA Astrophysics Data System (ADS)

    Strzelczak, Grażyna; Sadło, Jarosław; Danilczuk, Marek; Stachowicz, Wacław; Callens, Freddy; Vanhaelewyn, Gauthier; Goovaerts, Etienne; Michalik, Jacek

    2007-08-01

    Irradiated samples of deproteinized powdered human bone ( femur) have been examined by electron paramagnetic resonance (EPR) spectroscopy in X, Q and W bands. In the bone powder sample only one type of CO 2- radical ion is stabilized in the hydroxyapatite structure in contrast to powdered human tooth enamel, a material also containing hydroxyapatite, widely used for EPR dosimetry and in which a few radicals are stable at room temperature. It is suggested that the use of deproteinized bone for EPR dosimetry could improve the accuracy of dose determination.

  6. Peri-implant bone response around a human hydroxyapatite-coated implant retrieved after a 10-year loading period: a case report.

    PubMed

    Iezzi, Giovanna; Malchiodi, Luciano; Quaranta, Alessandro; Ghensi, Paolo; Piattelli, Adriano

    2013-01-01

    This case report presents a histologic and histomorphometric evaluation of the peri-implant tissues of a HA-coated implant retrieved due to peri-implantitis after a 10-year loading period. The implant was retrieved with a trephine and treated to obtain thin ground sections. At low-power magnification mostly compact, mature bone with small marrow spaces could be observed at the interface with the implant. The coating was always present in the areas where bone was detected, the bone was always in close contact with the coating, and there was no detachment between the metal and coating or between the coating and bone. Areas of bone remodeling were demonstrated by the presence of many secondary osteons and reversal lines close to the implant surface. The bone-implant contact percentage was 36.3% ± 1.2%. The percentage of the implant surface covered by the HA coating without bone, where bone may have detached during retrieval, was 32.6% ± 2.8%. This HA-coated implant, continued to demonstrate more than adequate BIC after many years of function and the potential to maintain osseointegration in the long term.

  7. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  8. Characterization of derived natural hydroxyapatite (HAp) obtained from different types of tilapia fish bones and scales

    NASA Astrophysics Data System (ADS)

    Fara, A. N. K. A.; Abdullah, H. Z.

    2015-07-01

    Hydroxyapatite, (HAp), Ca10(PO4)6(OH)2, is recognised as a biomaterial that is widely used for bone implant due to its chemical and structural similarity to the mineral components in human bone and enamel. The elements of HAp are primarily composed of calcium and phosphorus molar ratio of calcium to phosphorous is 1.67 capable to promote bone in-growth into prosthetic implant. Enormous amounts of by-product waste produced from fish factories generated an undesirable environmental impact. Thus, this study was conducted to obtain natural biological HAp from different types of tilapia fish bones and scales from fishery waste. Therefore, fish bones and scales can be as cheap source to produce biological HAp for medical applications. For this purpose, fish bones and scales of tilapia fish were boiled at 100°C to remove adhering meat and other impurities. Later, fish bones and scales were separated into several groups and subjected to different calcination temperatures of 800° C and 900° C for 3h respectively. Afterward, all calcined samples were crushed to form a fine powder. The XRD result revealed the presence of derived Hapfrom the samples powder and were identical with standard Hap. Thermo Gravimetric Analysis was carried out to show the thermal stability of the HAp powder from different types of fish bones and scales. SEM results show porous structure appeared in calcined samples compared to raw samples. The findings are the promising alternative to produce calcium and phosphorus from fishery wastes that beneficial to medical applications.

  9. Porous hydroxyapatite-gelatin composites with functions of bone substitutes and drug releasing agents: A preliminary study

    NASA Astrophysics Data System (ADS)

    Sopyan, I.; Sulaiman, N. S.; Gustiono, D.; Herdianto, N.

    2006-01-01

    Biomedical composites made of porous hydroxyapatite (HA) bonded with a biodegradable polymeric matrix gelatin have been prepared. This device is expected to be useful as an excellent bone graft with bioactive hydroxyapatite which will facilitate new bone formation and at the same time it could functions as drug delivery with a controlled release rate. In this preliminary report, we wish to present preparation and physical characterization of the biomedical composite and the non-biodegradable porous hydroxyapatite composing the matrix of the composite. Porous hydroxyapatite was prepared via polymeric sponge method using hydroxyapatite nanopowders which were prepared via sol-gel procedure. Suspensions of the sol-gel derived hydroxyapatite powder was prepared with an adjusted loading of hydroxyapatite, using a dispersant. After soaking cellulosic sponges into the suspension, the sponges were dried and then subjected to heat-treatment at 600°C, followed by sintering at 1250°C for 1h. Three types of porous hydroxyapatite samples have been prepared in various composition of hydroxyapatite suspension. Porous hydroxyapatite bodies produced from slurry with less hydroxyapatite powder content and more dispersant amount yielded higher porosity and thus causing weaker compressive strength. Compressive strengths varied between 0.67 and 1.94 MPa depending on the porosity of the sample. Porosity plays important role in gelatin loading; the amount of gelatin coated on the porous hydroxyapatite bodies depend on porosity and the gelatin concentration in water solution. The higher porosity the more gelatin can be absorbed by the porous body.

  10. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.

    PubMed

    Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U

    2014-11-01

    Polyurethane (PU) is a promising polymer to support bone-matrix producing cells due to its durability and mechanical resistance. In this study two types of medical grade poly-ether urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU-HA) composites were investigated for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were electrospun to attain scaffolds with randomly orientated non-woven fibres. Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30 DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1 respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical properties of the resulting composites were evaluated by FTIR and physical properties by SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5 osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs were seeded on the scaffolds to test their biocompatibility and ability to support mineralised matrix production over a 28 day culture period. Cell viability was assayed by MTT and calcium and collagen deposition by Sirius red and alizarin red respectively. SEM images of both electrospun PU scaffolds and PU-HA composite scaffolds showed differences in fibre morphology with changes in solvent combinations and size of HA particles. Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and thicker diameters. Mechanical testing demonstrated that the Young׳s Modulus and yield strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in PU-HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR characterisation confirmed the presence of HA in all composite scaffolds. Although

  11. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.

    PubMed

    Ambre, Avinash H; Katti, Dinesh R; Katti, Kalpana S

    2015-06-01

    Nanoclay modified with unnatural amino acid was used to design a nanoclay-hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two-stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100-595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  12. Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering.

    PubMed

    Long, Teng; Liu, Yu-Tai; Tang, Sha; Sun, Jin-Liang; Guo, Ya-Ping; Zhu, Zhen-An

    2014-11-01

    Porous carbon fiber felts (PCFFs) have great applications in orthopedic surgery because of the strong mechanical strength, low density, high stability, and porous structure, but they are biologically inert. To improve their biological properties, we developed, for the first time, the hydroxyapatite (HA)/chitosan/carbon porous scaffolds (HCCPs). HA/chitosan nanohybrid coatings have been fabricated on PCFFs according to the following stages: (i) deposition of chitosan/calcium phosphate precursors on PCFFs; and (ii) hydrothermal transformation of the calcium phosphate precursors in chitosan matrix into HA nanocrystals. The scanning electron microscopy images indicate that PCFFs are uniformly covered with elongated HA nanoplates and chitosan, and the macropores in PCFFs still remain. Interestingly, the calcium-deficient HA crystals exist as plate-like shapes with thickness of 10-18 nm, width of 30-40 nm, and length of 80-120 nm, which are similar to the biological apatite. The HA in HCCPs is similar to the mineral of natural bone in chemical composition, crystallinity, and morphology. As compared with PCFFs, HCCPs exhibit higher in vitro bioactivity and biocompatibility because of the presence of the HA/chitosan nanohybrid coatings. HCCPs not only promote the formation of bone-like apatite in simulated body fluid, but also improve the adhesion, spreading, and proliferation of human bone marrow stromal cells. Hence, HCCPs have great potentials as scaffold materials for bone tissue engineering and implantation. © 2014 Wiley Periodicals, Inc.

  13. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications.

    PubMed

    Atak, Besir Hakan; Buyuk, Berna; Huysal, Merve; Isik, Sevim; Senel, Mehmet; Metzger, Wolfgang; Cetin, Guven

    2017-05-15

    In this study, three different types of scaffolds including a uniquely modified composite scaffold - namely chitosan (CTS), nano-hydroxyapatite/chitosan composite (CTS+nHAP), and amine group (NH2) modified nano-hydroxyapatite/chitosan composite (CTS+nHAP-NH2) scaffolds - were synthesized for bone tissue engineering (BTE) purposes. As results of the study, it was found that all scaffold types were biodegradable with CTS and CTS+nHAP scaffolds losing up to 15% of their initial weight, while the CTS+nHAP-NH2 scaffold showing 10% of weight loss after six weeks of lysozyme treatment. In addition, all three types of scaffolds were shown to be biocompatible, and amongst them CTS+nHAP-NH2 scaffolds supported the most cell proliferation in WST-1 assay and expressed the least and acceptable level of cytotoxicity in lactate dehydrogenase (LDH) test for human bone mesenchymal stem cells (hBM-MSCs). Finally, during osteoinductivity assessment, CTS+nHAP-NH2 nearly tripled initial alkaline phosphatase (ALP) activity when whereas both CTS and CTS+nHAP scaffolds only doubled. These results indicate that all synthesized scaffold types under investigation have certain potential to be used in bone tissue engineering approaches with CTS+nHAP-NH2 scaffold being the most promising and applicable one. In the future, we plan to intensify our studies on osteogenic differentiation on our scaffolds on a detailed molecular level and to include in vivo studies for pre-clinical purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In situ observation of fluoride-ion-induced hydroxyapatite collagen detachment on bone fracture surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kindt, J. H.; Thurner, P. J.; Lauer, M. E.; Bosma, B. L.; Schitter, G.; Fantner, G. E.; Izumi, M.; Weaver, J. C.; Morse, D. E.; Hansma, P. K.

    2007-04-01

    The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ~70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ~10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.

  15. Effect of Cell-seeded Hydroxyapatite Scaffolds on Rabbit Radius Bone Regeneration

    DTIC Science & Technology

    2013-06-22

    Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.a.34834 Abstract: Highly porous hydroxyapatite (HA) scaffolds were developed as bone graft substitutes ...search for substitutes for autolo- gous bone grafting applications has led to the development of scaffolds composed of a variety of materials, including...also observed. (b) Three-dimensional tissue volume measurement from mCT data indicated comparable bone volume within the scaffolds in all three treatment

  16. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials

    NASA Astrophysics Data System (ADS)

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M.; Peterson, Deforest; Stone, Julia M.; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-01

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering.

  17. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    PubMed

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials.

  18. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration.

    PubMed

    Lee, Jong Seo; Baek, Sang Dae; Venkatesan, Jayachandran; Bhatnagar, Ira; Chang, Hee Kyung; Kim, Hui Taek; Kim, Se-Kwon

    2014-06-01

    Significant development has been achieved with bioceramics and biopolymer scaffolds in the construction of artificial bone. In the present study, we have developed and compared chitosan-micro hydroxyapatite (chitosan-mHA) and chitosan-nano hydroxyapatite (chitosan-nHA) scaffolds as bone graft substitutes. The biocompatibility and cell proliferation of the prepared scaffolds were checked with preosteoblast (MC3T3-E1) cells. Total Volume (TV), bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) were found to be higher in chitosan-nHA than chitosan-mHA scaffold. Hence, we suggest that chitosan-nHA scaffold could be a promising biomaterial for bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures.

    PubMed

    Biemond, J Elizabeth; Eufrásio, Tatiane S; Hannink, Gerjon; Verdonschot, Nico; Buma, Pieter

    2011-04-01

    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth.

  20. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

    PubMed Central

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2012-01-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835

  1. Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) as a bone replacement graft material in human periodontal osseous defects. 6-month results.

    PubMed

    Yukna, R A; Callan, D P; Krauser, J T; Evans, G H; Aichelmann-Reidy, M E; Moore, K; Cruz, R; Scott, J B

    1998-06-01

    A synthetic cell-binding peptide (P-15) combined with anorganic bovine-derived hydroxyapatite bone matrix (ABM) was compared to demineralized freeze-dried bone allograft (DFDBA) and open flap debridement (DEBR) in human periodontal osseous defects in a controlled, monitored, multi-center trial. Following appropriate initial preparation procedures, flap surgery with defect and root debridement was performed. Three osseous defects per patient were treated randomly with one of three procedures after surgical preparation. Appropriate periodontal maintenance schedules were followed, and at 6 to 7 months re-entry flap surgery was performed for documentation and finalization of treatment. Analysis of variation (ANOVA) and t test analyses of patient mean values from 31 patients revealed that the combination ABM/P-15 grafts demonstrated significantly better mean defect fill of 2.8 +/- 1.2 mm (72.3%) versus a mean defect fill of 2.0 +/- 1.4 mm (51.4%) for defects treated with DFDBA (P <0.05) and a mean defect fill of 1.5 +/- 1.3 mm (40.3%) (P <0.05) for defects treated with DEBR. Other hard tissue findings showed similar clinically superior results with the use of ABM/P-15. Relative defect fill results showed 87% positive (50% to 100% defect fill) responses with ABM/P-15, 58% positive responses with DFDBA, and 41% positive responses with DEBR. There were 8 to 9 times more failures (minimal response) with DFDBA and DEBR (26% to 29% frequency) than with ABM/P-15. Soft tissue findings showed no significant differences among treatments except for greater clinical attachment level gain with ABM/P-15 compared to DEBR. These results suggest that the use of the P-15 synthetic cell-binding peptide combined with ABM yields better clinical results than either DFDBA or DEBR. Further studies are needed to determine the relative roles of the ABM and/or the P-15 in these improved results.

  2. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  3. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering.

    PubMed

    Kim, Beom-Su; Yang, Sun-Sik; Lee, Jun

    2014-07-01

    Cuttlefish bone (CB) is an attractive natural biomaterial source to obtain hydroxyapatite (HAp). In this study, a porous polycaprolactone (PCL) scaffold incorporating CB-derived HAp (CB-HAp) powder was fabricated using the solvent casting and particulate leaching method. The presence of CB-HAp in PCL/CB-HAp scaffold was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and porosity analysis showed that the average pore dimension of the fabricated scaffold was approximately 200-300 μm, with ∼85% porosity, and that the compressive modulus increased after addition of CB-HAp powders. In vitro tests such as cell proliferation assay, cytotoxicity analysis, cell attachment observations, and alkaline phosphatase activity assays showed that the PCL/CB-HAp scaffold could improve the proliferation, viability, adherence, and osteoblast differentiation rate of MG-63 cells. When surgically implanted into rabbit calvarial bone defects, consistent with the in vitro results, PCL/CB-HAp scaffold implantation resulted in significantly higher new bone formation than did implantation of PCL alone. These findings suggest that addition of CB-HAp powder to the PCL scaffold can improve cellular response and that the PCL/CB-HAp composite scaffold has great potential for use in bone tissue engineering. © 2013 Wiley Periodicals, Inc.

  4. Development of multi-substituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.

    PubMed

    Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-02-15

    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering (BTE) applications. The effect of simultaneous substitution of different levels of carbonate (CO3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58wt% Si) and SiCHA-2 (0.45wt% Si) showed missing bands for CO3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice. 500°C was considered the most favourable calcination temperature as: (i) the powders produced possessed a similar amount of CO3 (2-8wt%) and Si (<1.0wt%) as present in native bone; and (ii) there was a minimal loss of CO3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behaviour to a greater extent than other powders. This article is protected by copyright. All rights reserved.

  5. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation.

    PubMed

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.

  6. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation

    PubMed Central

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100–300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration. PMID:28392688

  7. Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes.

    PubMed

    Sartori, M; Giavaresi, G; Tschon, M; Martini, L; Dolcini, L; Fiorini, M; Pressato, D; Fini, M

    2014-06-01

    Despite several efforts to find suitable alternatives to autologous bone, no bone substitute currently available provides the same characteristics and properties. Nevertheless, among the wide range of materials proposed as bone substitutes, calcium phosphate materials represent the most promising category and the present study is aimed at improving the knowledge on non-stoichiometric magnesium-doped hydroxyapatite substitutes (Mg-HA), tested in two different formulations: Mg-HA Putty and Mg-HA Granules. These bone substitutes were implanted bilaterally into iliac crest bone defects in healthy sheep and comparative histological, histomorphometric, microhardness and ultrastructural assessments were performed 9, 12, 18 and 24 months after surgery to elucidate bone tissue apposition, mineralization and material degradation in vivo. The results confirmed that the biomimetic bone substitutes provide a histocompatible and osteoconductive structural support, during the bone formation process, and give essential information about the in vivo resorption process and biological behavior of biomimetic bone substitutes.

  8. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.

    PubMed

    Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María

    2016-11-01

    The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  9. Surface energetics of bone mineral and synthetic hydroxyapatite using inverse gas chromatography.

    PubMed

    Hole, Bhushan B; Keller, D Steven; Burry, William M; Schwarz, James A

    2011-07-01

    Surface energy is one of the important factors that govern protein adhesion and cell attachment on biomaterial surfaces. Inverse gas chromatography (IGC) provides an excellent method to measure the surface energetics of rough and porous biosurfaces. In this study IGC was used to characterize and compare the surface energetics of synthetic and biological hydroxyapatites (natural bone mineral). IGC experiments were performed on three samples: synthetic hydroxyapatites with two levels of purity (99% and 90%) and natural biological hydroxyapatite obtained from bovine trabecular bone. The Lifshitz-Van der Waals component of the surface free energy (γ(S)(LW)) and specific interaction parameter (ɛ(π)) were determined by using homologous series of n-alkanes and alkenes as IGC probe molecules, respectively. The synthetic hydroxyapatite had values of γ(S)(LW) of 33.4 mJm⁻² at 99% purity and 53.3 mJm⁻² at 90% purity. Biological hydroxyapatite had a value of γ(S)(LW) of 45.7 mJm⁻². For the synthetic hydroxyapatite, the values of π-bond specific interaction parameters, ɛ(π), were 0.95 mJ (99%) and 3.01 mJ (90%). The biological hydroxyapatite sample had a value of 2.44 mJ for ɛ(π). The results suggest that, as compared to the synthetic compounds, the biological apatite has considerable surface heterogeneity, either chemical (impurities) or structural suggesting a scaffold surface that is more conducive of protein adhesion and cell attachment.

  10. Autogenous Bone Marrow Aspirate Coated Synthetic Hydroxyapatite for Reconstruction of Maxillo-Mandibular Osseous Defects: A Prospective Study.

    PubMed

    Gali, Raja Sekhar; Devireddy, Sathya Kumar; Mohan Rao, N; Kishore Kumar, R V; Kanubaddy, Sridhar Reddy; Dasari, Mallikarjuna; Sowjanya, K; Pathapati, Rama Mohan

    2017-03-01

    This prospective study was conducted to evaluate the bone regeneration capacity of synthetic hydroxyapatite mixed with autogenous bone marrow aspirate when used as a bone graft substitute in maxillo-mandibular osseous defects. This study included nine patients with histopathalogically proven benign osteolytic lesions in maxilla and mandible that were treated with enucleation or marginal resection followed by bone marrow aspirate coated synthetic biphasic hydroxyapatite (hydroxyapatite and beta tricalcium phosphate) graft placement. Incorporation of graft was assessed based on Irwin's radiologic staging. The efficacy of graft to form new bone was radiologically evaluated by observing the sequential changes of density at grafted site using gray scale level histogram which was processed in adobe photoshop 7.0 elements. Clinical assessment of recipient and donor sites was done. Based on Irwin's radiologic staging, at 6 month follow up period, obvious incorporation of graft with new bone was observed. Sequential changes in bone density measured by gray scale histogram revealed initial resorption followed by replacement of BMA coated hydroxyapatite with new bone formation. None of the patients eventually had complications like infection, wound dehiscence, graft loss at recipient sites at 6 months follow up period. Autogenous bone marrow aspirate in combination with synthetic hydroxyapatite is an effective option for accelerating bone regeneration in small to moderate sized jaw bone defects. This mixture provides all the three critical elements needed for bone regeneration (osteogenesis, osteoinduction and osteoconduction) with an added advantage of obviating donor site morbidity.

  11. Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications

    NASA Astrophysics Data System (ADS)

    Dellinger, Jennifer Gwynne

    2005-11-01

    Model hydroxyapatite (HA) bone scaffolds consisting of a latticed pattern of rods were fabricated by a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. An optimal HA paste formulation for this method was developed. Local porosity, i.e. microporosity (1--30 mum) and sintering porosity (less than 1 mum), were produced by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds. Scaffolds with and without local porosity were evaluated with and without in vitro accelerated degradation. Percent weight loss of the scaffolds and calcium and phosphorus concentrations in solution increased with degradation time. After degradation, compressive strength and modulus decreased significantly for scaffolds with local porosity, but did not change significantly for scaffolds without local porosity. The compressive strength and modulus of scaffolds without local porosity were comparable to human cortical bone and were significantly greater than the scaffolds with local porosity. Micropores in HA disks caused surface pits that increased the surface roughness as compared to non-microporous HA disks. Mouse mesenchymal stem cells extended their cell processes into these microporous pits on HA disks in vitro. ALP expression was prolonged, cell attachment strength increased, and ECM production appeared greater on microporous HA disks compared to non-microporous HA disks and tissue culture treated polystyrene controls. Scaffolds with and without microporosity were implanted in goats bones. Microporous scaffolds with rhBMP-2 increased the percent of the scaffold filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone inside scaffolds was aligned near the rods junctions whereas lamellar bone was aligned in a more random configuration away from the rod junctions. Microporous scaffolds stained darkly with toluidine blue beneath areas of contact with new bone. This

  12. Bone Union Rate Following Instrumented Posterolateral Lumbar Fusion: Comparison between Demineralized Bone Matrix versus Hydroxyapatite

    PubMed Central

    Nam, Woo Dong

    2016-01-01

    Study Design Retrospective study. Purpose To compare the union rate of posterolateral lumbar fusion (PLF) using demineralized bone matrix (DBM) versus hydroxyapatite (HA) as bone graft extender. Overview of Literature To our knowledge, there has been no clinical trial to compare the outcomes of DBM versus HA as a graft material for PLF. Methods We analyzed prospectively collected data from consecutive 79 patients who underwent instrumented PLF. Patients who received DBM were assigned to group B (n=38), and patients who received HA were assigned into group C (n=41). The primary study outcome was fusion rate assessed with radiographs. The secondary outcomes included pain intensity using a visual analogue scale, functional outcome using Oswestry disability index score, laboratory tests of inflammatory profiles and infection rate. Results One year postoperatively, bone fusion was achieved in 73% in group B and 58% in group C without significant difference between the groups (p=0.15). There were no differences between the groups with respect to secondary outcomes. Conclusions DBM would provide noninferior outcomes compared to the HA as a fusion material for PLF, and could be a notable alternative. PMID:27994793

  13. Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration.

    PubMed

    Montufar, Edgar B; Traykova, Tania; Schacht, Etienne; Ambrosio, Luigi; Santin, Matteo; Planell, Josep A; Ginebra, Maria-Pau

    2010-03-01

    In this work gelatine was used as multifunctional additive to obtain injectable self-setting hydroxyapatite/gelatine composite foams for bone regeneration. The foaming and colloidal stabilization properties of gelatine are well known in food and pharmaceutical applications. Solid foams were obtained by foaming liquid gelatine solutions at 50 degrees C, followed by mixing them with a cement powder consisting of alpha tricalcium phosphate. Gelatine addition improved the cohesion and injectability of the cement paste. After setting the foamed paste transformed into a calcium deficient hydroxyapatite. The final porosity, pore interconnectivity and pore size were modulated by modifying the gelatine content in the liquid phase.

  14. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute.

    PubMed

    Kim, Beom-Su; Kang, Hyo Jin; Yang, Sun-Sik; Lee, Jun

    2014-04-01

    Bone reconstruction in clinical settings often requires bone substitutes. Hydroxyapatite (HAp) is a widely used bone substitute due to its osteoconductive properties and bone bonding ability. The aim of this study was to evaluate HAp granules derived from cuttlefish bone (CB-HAp) as a substitute biomaterial for bone grafts. In this study, HAp granules were prepared from raw CB by using a hydrothermal reaction. The formation of HAp from CB was confirmed by scanning electron microscopy and x-ray diffraction analysis. The bioactivity of the CB-HAp granules was evaluated both in vitro and in vivo. Our results show that CB-HAp is non-toxic and that CB-HAp granules supported improved cell adhesion, proliferation and differentiation compared to stoichiometric synthetic HAp granules. Furthermore, in vivo bone defect healing experiments show that the formation of bone with CB-HAp is higher than that with pure HAp. These results show that CB-HAp granules have excellent potential for use as a bone graft material.

  15. Radiographic evaluation of regenerated bone following poly(lactic-co-glycolic) acid/hydroxyapatite and deproteinized bovine bone graft in sinus lifting.

    PubMed

    Y Baena, Ruggero Rodriguez; Lupi, Saturnino Marco; Pastorino, Roberta; Maiorana, Carlo; Lucchese, Alessandra; Rizzo, Silvana

    2013-05-01

    Although numerous biomaterials are used for maxillary sinus-lift surgery, the ideal material for such procedures has not yet been identified. Both heterologous and alloplastic bone substitutes have a solely osteoconductive effect and lack the osteoinductive properties of the bone morphogenetic proteins typical of autologous bone. Our group assessed a new alloplastic graft material, poly(lactic-co-glycolic) acid/hydroxyapatite (PLGA/HA), implanted in a human model of maxillary sinus-lift surgery. For this prospective, random, double-blind trial, we used deproteinized bovine bone (DBB) as the comparison material. Radiographic bone vertical height and density were assessed at approximately 28 weeks after grafting using cone-beam computed tomography. The vertical dimension of the regenerated bone was equivalent between the 2 groups. The density of the bone regenerated using PLGA/HA was significantly lower than that obtained with DBB. Despite clinical assessments demonstrating that PLGA/HA has sufficient characteristics for use in sinus-lift surgery, DBB provided greater bone density and an equivalent vertical dimension of grafted bone. Further studies are needed to supplement the radiologic findings with histologic and micromorphometric examinations.

  16. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.

    PubMed

    Ao, Chenghong; Niu, Yan; Zhang, Ximu; He, Xu; Zhang, Wei; Lu, Canhui

    2017-04-01

    Nanofibrous scaffolds from cotton cellulose and nano-hydroxyapatite (nano-HA) were electrospun for bone tissue engineering. The solution properties of cellulose/nano-HA spinning dopes and their associated electrospinnability were characterized. Morphological, thermal and mechanical properties of the electrospun cellulose/nano-HA nanocomposite nanofibers (ECHNN) were measured and the biocompatibility of ECHNN with human dental follicle cells (HDFCs) was evaluated. Scanning electron microscope (SEM) images indicated that the average diameter of ECHNN increased with a higher nano-HA loading and the fiber diameter distributions were well within the range of natural ECM (extra cellular matrix) fibers (50-500nm). The ECHNN exhibited extraordinary mechanical properties with a tensile strength and a Young's modulus up to 70.6MPa and 3.12GPa respectively. Moreover, it was discovered that the thermostability of the ECHNN could be enhanced with the incorporation of nano-HA. Cell culture experiments demonstrated that the ECHNN scaffolds were quite biocompatible for HDFCs attachment and proliferation, suggesting their great potentials as scaffold materials in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering.

    PubMed

    Cardoso, Guinea B C; Maniglio, Devid; Volpato, Fabio Z; Tondon, Abhishek; Migliaresi, Claudio; Kaunas, Roland R; Zavaglia, Cecilia A C

    2016-08-01

    Bone substitutes are required to repair osseous defects caused by a number of factors, such as traumas, degenerative diseases, and cancer. Autologous bone grafting is typically used to bridge bone defects, but suffers from chronic pain at the donor-site and limited availability of graft material. Tissue engineering approaches are being investigated as viable alternatives, which ideal scaffold should be biocompatible, biodegradable, and promote cellular interactions and tissue development, need to present proper mechanical and physical properties. In this study, poly(ε-caprolactone) (PCL), oleic acid (OA) and hydroxyapatite (HAp) were used to obtain films whose properties were investigated by contact angle, scanning electron microscopy, atomic force microscopy, tensile mechanical tests, and in vitro tests with U2OS human osteosarcoma cells by direct contact. Our results indicate that by using OA as surfactant/dispersant, it was possible to obtain a homogenous film with HAp. The PCL/OA/Hap sample had twice the roughness of the control (PCL) and a lower contact angle, indicating increased hydrophilicity of the film. Furthermore, mechanical testing showed that the addition of HAp decreased the load at yield point and tensile strength and increased tensile modulus, indicating a more brittle composition vs. PCL matrix. Preliminary cell culture experiments carried out with the films demonstrated that U2OS cells adhered and proliferated on all surfaces. The data demonstrate the improved dispersion of HAp using OA and the important consequences of this addition on the composite, unveiling the potentially of this composition for bone growth support. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1076-1082, 2016. © 2015 Wiley Periodicals, Inc.

  18. Enhancement of Periprosthetic Bone Quality with Topical Hydroxyapatite-Bisphosphonate Composite

    PubMed Central

    Suratwala, Sanjeev J.; Cho, Samuel K.; van Raalte, Jonathan J.; Park, Sang Hyun; Seo, Sung Wook; Chang, Seong-Sil; Gardner, Thomas R.; Lee, Francis Young-In

    2008-01-01

    Background: Implant loosening is associated with inflammatory bone loss induced by ultra-high molecular weight polyethylene wear debris. We hypothesized that a hydroxyapatite-bisphosphonate composite improves periprosthetic bone quality and osseous integration of an intramedullary implant even in the presence of ultra-high molecular weight polyethylene particles in an experimental rat femur model. Methods: A preliminary in vitro study determined the optimal concentration of zoledronate (50 μM) that would maximally decrease osteoclasts without harming osteoblasts. Hydroxyapatite-coated intramedullary nails were implanted bilaterally in the femora of sixteen rats (the control group), and hydroxyapatite-zoledronate-coated nails were implanted bilaterally in the femora of sixteen rats (the experimental group). Ultra-high molecular weight polyethylene particles were introduced into the femoral canal before implantation. Eight rats from each group were killed at six weeks, and the remaining rats were killed at six months. Periprosthetic bone mass was analyzed by dual x-ray absorptiometry and microcomputed tomography. Osseous integration was examined by biomechanical testing of pullout strength. Results: The mean bone area (and standard deviation) in the periprosthetic bone region was significantly greater (p < 0.0001) in the hydroxyapatite-zoledronate group (2.388 ± 0.960 mm2) than in the control group (0.933 ± 0.571 mm2). This difference was larger in the six-week group than in the six-month group (p = 0.03). The average peak pullout force for the treated femora (241.0 ± 95.1 N) was significantly greater (p < 0.0001) than that for the controls (55.6 ± 49.0 N). This difference was similar in the six-week and six-month groups. The energy required for nail pullout was significantly greater (p < 0.0001) for the treated femora (521.6 ± 293.8 N-mm) than for the controls (142.2 ± 152.1 N-mm). This difference in energy to pullout was similar in the six-week and six

  19. Enhancement of periprosthetic bone quality with topical hydroxyapatite-bisphosphonate composite.

    PubMed

    Suratwala, Sanjeev J; Cho, Samuel K; van Raalte, Jonathan J; Park, Sang Hyun; Seo, Sung Wook; Chang, Seong-Sil; Gardner, Thomas R; Lee, Francis Young-In

    2008-10-01

    Implant loosening is associated with inflammatory bone loss induced by ultra-high molecular weight polyethylene wear debris. We hypothesized that a hydroxyapatite-bisphosphonate composite improves periprosthetic bone quality and osseous integration of an intramedullary implant even in the presence of ultra-high molecular weight polyethylene particles in an experimental rat femur model. A preliminary in vitro study determined the optimal concentration of zoledronate (50 microM) that would maximally decrease osteoclasts without harming osteoblasts. Hydroxyapatite-coated intramedullary nails were implanted bilaterally in the femora of sixteen rats (the control group), and hydroxyapatite-zoledronate-coated nails were implanted bilaterally in the femora of sixteen rats (the experimental group). Ultra-high molecular weight polyethylene particles were introduced into the femoral canal before implantation. Eight rats from each group were killed at six weeks, and the remaining rats were killed at six months. Periprosthetic bone mass was analyzed by dual x-ray absorptiometry and microcomputed tomography. Osseous integration was examined by biomechanical testing of pullout strength. The mean bone area (and standard deviation) in the periprosthetic bone region was significantly greater (p < 0.0001) in the hydroxyapatite-zoledronate group (2.388 +/- 0.960 mm2) than in the control group (0.933 +/- 0.571 mm2). This difference was larger in the six-week group than in the six-month group (p = 0.03). The average peak pullout force for the treated femora (241.0 +/- 95.1 N) was significantly greater (p < 0.0001) than that for the controls (55.6 +/- 49.0 N). This difference was similar in the six-week and six-month groups. The energy required for nail pullout was significantly greater (p < 0.0001) for the treated femora (521.6 +/- 293.8 N-mm) than for the controls (142.2 +/- 152.1 N-mm). This difference in energy to pullout was similar in the six-week and six-month groups. Regression

  20. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.

    PubMed

    Zhang, Jiazhen; Nie, Jingyi; Zhang, Qirong; Li, Youliang; Wang, Zhengke; Hu, Qiaoling

    2014-01-01

    Three-dimensional oriented chitosan (CS)/hydroxyapatite (HA) scaffolds were prepared via in situ precipitation method in this research. Scanning electron microscopy (SEM) images indicated that the scaffolds with acicular nano-HA had the spoke-like, multilayer and porous structure. The SEM of osteoblasts which were polygonal or spindle-shaped on the composite scaffolds after seven-day cell culture showed that the cells grew, adhered, and spread well. The results of X-ray powder diffractometer and Fourier transform infrared spectrometer showed that the mineral particles deposited in the scaffold had phase structure similar to natural bone and confirmed that particles were exactly HA. In vitro biocompatibility evaluation indicated the composite scaffolds showed a higher degree of proliferation of MC3T3-E1 cell compared with the pure CS scaffolds and the CS/HA10 scaffold was the highest one. The CS/HA scaffold also had a higher ratio of adhesion and alkaline phosphate activity value of osteoblasts compared with the pure CS scaffold, and the ratio increased with the increase of HA content. The ALP activity value of composite scaffolds was at least six times of the pure CS scaffolds. The results suggested that the composite scaffolds possessed good biocompatibility. The compressive strength of CS/HA15 increased by 33.07% compared with the pure CS scaffold. This novel porous scaffold with three-dimensional oriented structure might have a potential application in bone tissue engineering.

  1. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology.

    PubMed

    Marković, Smilja; Veselinović, Ljiljana; Lukić, Miodrag J; Karanović, Ljiljana; Bračko, Ines; Ignjatović, Nenad; Uskoković, Dragan

    2011-08-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [00l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 °C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  2. Hydroxyapatite reinforced with multi-walled carbon nanotubes and bovine serum albumin for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Gholami, Fatemeh; Noor, Ahmad-Fauzi Mohd

    2016-12-01

    The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.

  3. Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite.

    PubMed

    Asahina, I; Watanabe, M; Sakurai, N; Mori, M; Enomoto, S

    1997-09-01

    The purpose of this study was to evaluate a hydroxyapatite (HA)-collagen (Col)-bone morphogenetic protein (BMP) composite as an osteoinductive bone substitute. Partially-purified BMP from bovine bone was mechanically mixed with highly purified type I collagen from calf dermis and then subsequently mixed with pure synthetic hydroxyapatite granules or block. The HA-Col-BMP composite, or the HA-Col composite as a control, was implanted in a surgically-induced mandible bone defect (6 x 7 x 10 mm) in an adult Japanese monkey. The mandible was excised three months after implantation and studied histologically. The BMP-containing implant induced much more new bone than the control implant in all experimental animals of each group, with either HA granules or HA block. Newly formed bone was attached tightly to HA and infiltrated deeply into the pores of the HA of the BMP-containing implant, while fibrous tissue existed between the host bone and HA in the control implant. Thus, we conclude that an HA-Col-BMP composite could be a superior biomaterial for a bone substitute.

  4. Hydroxyapatite ceramics as a carrier of gene-transduced bone marrow cells.

    PubMed

    Akahane, Manabu; Ohgushi, Hajime; Kuriyama, Shigeki; Akahane, Takemi; Takakura, Yoshinori

    2002-01-01

    The aim of this study was to develop an efficient exogenous gene delivery system using cultured marrow cells and porous hydroxyapatite ceramics. Bone marrow cells were obtained from the femoral shaft of a Fischer 344 rat and cultured in a medium containing 15% fetal bovine serum until confluent. After trypsinization, cells were subcultured at a cell density of 1 x 10(4) cells/cm2 in the presence of fetal bovine serum. The subcultured bone marrow cells were infected with recombinant retroviruses carrying the lacZ gene. The retrovirus infection was performed seven times from day 1 to day 7 during the culturing procedure. Cells expressing the lacZ gene were stained blue with the X-gal staining and represented approximately 80%. Composites of virus-infected bone marrow cells and hydroxyapatite ceramics were implanted at the subcutaneous site of recipient Fischer 344 rats. Four weeks after the implantation the ceramics were harvested. The histological sections of the ceramics showed abundant bone formation in the pores of the ceramics and obviously blue-stained osteoblasts and osteocytes. Other cell types that were stained blue were some fibroblastic cells and endothelial cells in the newly formed capillaries. These findings indicate that osteoblasts and osteocytes in the newly formed bone were derived from the cultured bone marrow cells, and therefore gene transfection by retroviruses did not disturb the bone formation process. Because of the durability of the newly formed bone tissue, creating composites of cultured bone marrow cells and hydroxyapatite ceramics might be an ideal method for exogenous gene transfection.

  5. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  6. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  7. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.

    PubMed

    Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi

    2013-04-01

    A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

  8. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro.

    PubMed

    Calabrese, Giovanna; Giuffrida, Raffaella; Fabbi, Claudia; Figallo, Elisa; Lo Furno, Debora; Gulino, Rosario; Colarossi, Cristina; Fullone, Francesco; Giuffrida, Rosario; Parenti, Rosalba; Memeo, Lorenzo; Forte, Stefano

    2016-01-01

    Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.

  9. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro

    PubMed Central

    Fabbi, Claudia; Figallo, Elisa; Lo Furno, Debora; Gulino, Rosario; Colarossi, Cristina; Fullone, Francesco; Giuffrida, Rosario; Parenti, Rosalba; Memeo, Lorenzo; Forte, Stefano

    2016-01-01

    Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects. PMID:26982592

  10. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen.

    PubMed

    Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B

    2014-01-01

    The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered.

  11. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty.

    PubMed

    Ni, G X; Chiu, K Y; Lu, W W; Wang, Y; Zhang, Y G; Hao, L B; Li, Z Y; Lam, W M; Lu, S B; Luk, K D K

    2006-08-01

    Clinical outcome of cemented implants to revision total hip replacement (THR) is not as satisfactory as primary THR, due to the loss of bone stock and normal trabecular pattern. This study evaluated a bioactive bone cement, strontium-containing hydroxyapatite (Sr-HA) bone cement, in a goat revision hip hemi-arthroplasty model, and compared outcomes with polymethylmethacrylate (PMMA) bone cement. Nine months after operation, significantly higher bonding strength was found in the Sr-HA group (3.36+/-1.84 MPa) than in the PMMA bone cement group (1.23+/-0.73 MPa). After detached from the femoral component, the surface of PMMA bone cement mantle was shown relatively smooth, whereas the surface of the Sr-HA bioactive bone cement mantle was uneven, by SEM observation. EDX analysis detected little calcium and no phosphorus on the surface of PMMA bone cement mantle, while high content of calcium (14.03%) and phosphorus (10.37%) was found on the surface of the Sr-HA bone cement mantle. Even higher content of calcium (17.37%) and phosphorus (10.84%) were detected in the concave area. Intimate contact between Sr-HA bioactive bone cement and bone was demonstrated by histological and SEM observation. New bone bonded to the surface of Sr-HA cement and grew along its surface. However, fibrous tissue was observed between PMMA bone cement and bone. The results showed good bioactivity of Sr-HA bioactive bone cement in this revision hip replacement model using goats. This in vivo study also suggested that Sr-HA bioactive bone cement was superior to PMMA bone cement in terms of bone-bonding strength. Use of bioactive bone cement may be a possible solution overcoming problems associated with the use of PMMA bone cement in revision hip replacement.

  12. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    PubMed

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Venkatesan, Jayachandran; Pallela, Ramjee; Bhatnagar, Ira; Kim, Se-Kwon

    2012-12-01

    Over the past few decades, artificial graft materials for bone tissue engineering are gaining much importance. In this study, tri-component scaffolds of chitosan/natural hydroxyapatite with chondroitin sulfate (chitosan-CS/HAp) and amylopectin (chitosan-AP/HAp) have been developed for the first time via freeze-drying method and were characterized physicochemically for bone grafting substitutes. Chemical interactions and dispersion of HAp, CS and AP in the chitosan matrix have been evaluated by various analytical techniques. The porosity and water uptake/retention ability of these composite scaffolds decreased whereas thermal stability increased when compared to the chitosan scaffold. The pore size of the chitosan/HAp, chitosan-CS/HAp and chitosan-AP/HAp scaffolds varied from 60 to 180 μm, 60 to 400 μm and 80 to 500 μm, respectively. Cell proliferation, alkaline phosphatase activity and type-1 collagen production was evaluated in vitro using MG-63 cell line, which was observed to be higher in the composite scaffolds. Excellent interconnected porosity, controlled biodegradation and enhanced cell proliferation of the novel chitosan-CS/HAp and chitosan-AP/HAp scaffolds suggests that these scaffolds are promising biomaterials for bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Water in hydroxyapatite nanopores: Possible implications for interstitial bone fluid flow.

    PubMed

    Lemaire, T; Pham, T T; Capiez-Lernout, E; de Leeuw, N H; Naili, S

    2015-09-18

    The role of bone water in the activity of this organ is essential in structuring apatite crystals, providing pathways for nutrients and waste involved in the metabolism of bone cells and participating in bone remodelling mechanotransduction. It is commonly accepted that bone presents three levels of porosity, namely the vasculature, the lacuno-canalicular system and the voids of the collagen-apatite matrix. Due to the observation of bound state of water at the latter level, the interstitial nanoscopic flow that may exist within these pores is classically neglected. The aim of this paper is to investigate the possibility to obtain a fluid flow at the nanoscale. That is why a molecular dynamics based analysis of a water-hydroxyapatite system is proposed to analyze the effect of water confinement on transport properties. The main result here is that free water can be observed inside hydroxyapatite pores of a few nanometers. This result would have strong implications in the multiscale treatment of the poromechanical behaviour of bone tissue. In particular, the mechanical properties of the bone matrix may be highly controlled by nanoscopic water diffusion and the classical idea that osteocytic activity is only regulated by bone fluid flow within the lacuno-canalicular system may be discussed again. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.

    PubMed

    Kutikov, Artem B; Skelly, Jordan D; Ayers, David C; Song, Jie

    2015-03-04

    Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects.

  16. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations.

    PubMed

    Cisneros-Pineda, Olga G; Herrera Kao, Wilberth; Loría-Bastarrachea, María I; Veranes-Pantoja, Yaymarilis; Cauich-Rodríguez, Juan V; Cervantes-Uc, José M

    2014-07-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone-water than that obtained for methanol-water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol-water system containing MPS at 3wt.% provides the better results during silanization process of HA.

  17. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing.

    PubMed

    Leukers, Barbara; Gülkan, Hülya; Irsen, Stephan H; Milz, Stefan; Tille, Carsten; Schieker, Matthias; Seitz, Hermann

    2005-12-01

    Nowadays, there is a significant need for synthetic bone replacement materials used in bone tissue engineering (BTE). Rapid prototyping and especially 3D printing is a suitable technique to create custom implants based on medical data sets. 3D printing allows to fabricate scaffolds based on Hydroxyapatite with complex internal structures and high resolution. To determine the in vitro behaviour of cells cultivated on the scaffolds, we designed a special test-part. MC3T3-E1 cells were seeded on the scaffolds and cultivated under static and dynamic setups. Histological evaluation was carried out to characterise the cell ingrowth. In summary, the dynamic cultivation method lead to a stronger population compared to the static cultivation method. The cells proliferated deep into the structure forming close contact to Hydroxyapatite granules.

  18. Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium interaction in aqueous medium.

    PubMed

    Baravelli, S; Bigi, A; Ripamonti, A; Roveri, N; Foresti, E

    1984-01-01

    The thermal behavior of the products obtained from magnesium interaction with powdered femoral bone and carbonate containing synthetic hydroxyapatite under conditions of pH fluctuation in aqueous medium has been investigated. The products, heat treated at different temperatures from 100 to 1300 degrees C, have been characterized by infrared spectroscopy and X-ray diffraction technique. The results show that the interaction with magnesium ion destabilizes the apatitic structure and favours its thermal conversion into beta-tricalcium phosphate (beta-TCP). The replacement of magnesium with calcium in the beta-TCP crystal lattice hinders its subsequent thermal conversion into the alpha form. The influence of magnesium on the thermal stability is much more evident for carbonate-containing synthetic hydroxyapatite than for bone apatite.

  19. Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute.

    PubMed

    Zdeblick, T A; Cooke, M E; Kunz, D N; Wilson, D; McCabe, R P

    1994-10-15

    This study analyzed the use of a coral hydroxyapatite bone substitute for use in ACDF both with and without an anterior cervical plate. The healing of multilevel anterior cervical fusions was tested using a goat model. Comparisons were drawn with histologic, radiographic, and biomechanical test data. Forty-nine mature alpine goats had three-level anterior discectomies performed. Seven treatment groups of seven goats each were used; Group I with no fusion, Group IIa having tricortical iliac crest autograft, Group IIb having autograft plus an anterior plate, Group IIIa having tricortical iliac crest fresh-frozen allograft, Group IIIb having allograft plus an anterior plate, Group IVa having rectangular-shaped implants of porous hydroxyapatite, and Group IVb having ProOsteon 500 implants with an anterior cervical plate. Histologically, at 12 weeks 48% of the ProOsteon (Interpore, Irvine, CA) implants were rated as incorporated, 10% as possessing a fibrous gap, 29% as collapsed, and 14% as extruded. Anterior cervical plating improved the results with 71% of the implants showing good incorporation, 24% with collapse, and 5% with a fibrous gap. These histologic results compare favorably with autogenous bone and are improved over allograft bone. Fluorochrome analysis showed that none of the implants had complete turnover with host bone, but that all possessed peripheral creeping substitution with cutting cones of new bone formation at 12 weeks. Biomechanically, the spines using the ProOsteon implant were less stiff in torsion than autograft, but equal in stiffness to allograft. Flexion-extension neutral zone stiffness was lower in the ProOsteon implant group than either allograft or autograft. The use of a coral-based hydroxyapatite bone graft substitute for anterior cervical fusions led to significant rates of implant collapse at 12 weeks but showed excellent biologic compatibility with good early creeping substitution of the implant by host bone. The concomitant use of

  20. In-situ hardening hydroxyapatite-based scaffold for bone repair.

    PubMed

    Zhang, Yu; Xu, Hockin H K; Takagi, Shozo; Chow, Laurence C

    2006-05-01

    Musculoskeletal conditions are becoming a major health concern because of an aging population and sports- and traffic-related injuries. While sintered hydroxyapatite implants require machining, calcium phosphate cement (CPC) bone repair material is moldable, self-hardens in situ, and has excellent osteoconductivity. In the present work, new approaches for developing strong and macroporous scaffolds of CPC were tested. Relationships were determined between scaffold porosity and strength, elastic modulus and fracture toughness. A biocompatible and biodegradable polymer (chitosan) and a water-soluble porogen (mannitol) were incorporated into CPC: Chitosan to make the material stronger, fast-setting and anti-washout; and mannitol to create macropores. Flexural strength, elastic modulus, and fracture toughness were measured as functions of mannitol mass fraction in CPC from 0% to 75%. After mannitol dissolution in a physiological solution, macropores were formed in CPC in the shapes of the original entrapped mannitol crystals, with diameters of 50 microm to 200 microm for cell infiltration and bone ingrowth. The resulting porosity in CPC ranged from 34.4% to 83.3% volume fraction. At 70.2% porosity, the hydroxyapatite scaffold possessed flexural strength (mean +/- sd; n = 6) of (2.5 +/- 0.2) MPa and elastic modulus of (0.71 +/- 0.10) GPa. These values were within the range for sintered porous hydroxyapatite and cancellous bone. Predictive equations were established by regression power-law fitting to the measured data (R(2) > 0.98) that described the relationships between scaffold porosity and strength, elastic modulus and fracture toughness. In conclusion, a new graft composition was developed that could be delivered during surgery in the form of a paste to harden in situ in the bone site to form macroporous hydroxyapatite. Compared to conventional CPC without macropores, the increased macroporosity of the new apatite scaffold may help facilitate implant fixation and

  1. In vitro elution characteristics of antibiotic laden BoneSource™, hydroxyapatite bone cement.

    PubMed

    Hernandez-Soria, Alexia; Yang, Xu; Grosso, Matthew J; Reinhart, Janine; Ricciardi, Benjamin F; Bostrom, Mathias

    2013-01-01

    A calcium phosphate - hydroxyapatite (HA) bone cement was loaded with varying concentrations of tobramycin and vancomycin and the elution properties of these antibiotics were evaluated. Nine groups of antibiotic loaded cement cylinders (N = 6 in each group) were prepared and placed in saline for 28 days. Elution rates of tobramycin and vancomycin from the HA cement were evaluated at high, medium, and low doses of incorporated antibiotic. Tobramycin elution rates did not vary according to dose (0.36, 0.18, and 0.09g). Vancomycin elution rates were also not significantly affected by dose (0.1 , 0.05 , and 0.025 g). The combination of tobramycin and vancomycin increased the elution rate of vancomycin for the medium and low dose of tobramycin. The dose of tobramycin did not affect its elution rate from the cement in the combined groups. Importantly, the concentration of antibiotic eluent stayed above the minimum inhibitory concentration for the entire 28 days for all groups except the medium and low dose of vancomycin alone. Overall, elution rates of both tobramycin and vancomycin in the calcium phosphate-HA cement were comparable to those from polymethylmethacryltate beads in vitro.

  2. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering.

    PubMed

    Pistone, Alessandro; Iannazzo, Daniela; Panseri, Silvia; Montesi, Monica; Tampieri, Anna; Galvagno, Signorino

    2014-10-24

    New magnetic hydroxyapatite-based nanomaterials as bone-specific systems for controlled drug delivery have been synthesized. The synthesized hydroxyapatite, HA, decorated with magnetite nanoparticles by a deposition method (HA/Fe3O4) and the nanocomposite system obtained using magnetic multi-walled carbon nanotubes (HA/MWCNT/Fe3O4) as a filler for HA have been characterized by chemical and morphological analyses, and their biological behavior was investigated. The systems have also been doped with clodronate in order to combine the effect of bone biomineralization induced by hydroxyapatite-based composites with the decrease of osteoclast formation induced by the drug. An analysis of the preosteoclastic RAW264.7 cell proliferation by MTT assay confirmed the high biocompatibility of the three systems. TRAP staining of RAW 264.7 conditioned with sRAKL to induce osteoclastogenesis, cultured in the presence of the systems doped and undoped with clodronate, showed the inhibitory effect of clodronate after we counted the MNC TRAP(+)cells but only in the osteoclast formation; in particular, the system HA/Fe3O4-Clo exerted a high inhibitory effect compared to the drug alone. These results demonstrate that the synthesized nanocomposites are a biocompatible magnetic drug delivery system and can represent a useful multimodal platform for applications in bone tissue engineering.

  4. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Pistone, Alessandro; Iannazzo, Daniela; Panseri, Silvia; Montesi, Monica; Tampieri, Anna; Galvagno, Signorino

    2014-10-01

    New magnetic hydroxyapatite-based nanomaterials as bone-specific systems for controlled drug delivery have been synthesized. The synthesized hydroxyapatite, HA, decorated with magnetite nanoparticles by a deposition method (HA/Fe3O4) and the nanocomposite system obtained using magnetic multi-walled carbon nanotubes (HA/MWCNT/Fe3O4) as a filler for HA have been characterized by chemical and morphological analyses, and their biological behavior was investigated. The systems have also been doped with clodronate in order to combine the effect of bone biomineralization induced by hydroxyapatite-based composites with the decrease of osteoclast formation induced by the drug. An analysis of the preosteoclastic RAW264.7 cell proliferation by MTT assay confirmed the high biocompatibility of the three systems. TRAP staining of RAW 264.7 conditioned with sRAKL to induce osteoclastogenesis, cultured in the presence of the systems doped and undoped with clodronate, showed the inhibitory effect of clodronate after we counted the MNC TRAP+cells but only in the osteoclast formation; in particular, the system HA/Fe3O4-Clo exerted a high inhibitory effect compared to the drug alone. These results demonstrate that the synthesized nanocomposites are a biocompatible magnetic drug delivery system and can represent a useful multimodal platform for applications in bone tissue engineering.

  5. Ultrasonic Characterization of the Curing Process of Polymethylmethacrylate-based Bone Cement Modified with Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Viano, Ann; Auwarter, Julie; Hoffmeister, Brent; Rho, Jae-Young

    2000-03-01

    The use of polymethylmethacrylate (PMMA)-based bone cement for implantation of metallic prostheses is becoming increasingly common. Failure of a cemented prosthesis often occurs when there is weak bonding at the bone/cement or cement/metal interface. The addition of hydroxyapatite (HA) particles, a synthetically produced version of the natural mineral in bone, may improve the adhesion by promoting bone growth into the cement itself. The curing time of PMMA bone cement determines the speed of implant insertion, which can affect the mechanical strength of the cement. Pure PMMA has a well-characterized curing time of 9-12 minutes, depending on environmental factors such as temperature and humidity. By measuring the propagation of ultrasonic pulses through a sample of bone cement, the curing process can be monitored. As the material hardens, the velocity of an ultrasonic pulse increases, and the attenuation decreases. These parameters were measured as a function of time for PMMA mixed with 0, 10 and 30investigation of the curing process as a function of hydroxyapatite concentration.

  6. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering.

    PubMed

    Frohbergh, Michael E; Katsman, Anna; Botta, Gregory P; Lazarovici, Phillip; Schauer, Caroline L; Wegst, Ulrike G K; Lelkes, Peter I

    2012-12-01

    Reconstruction of large bone defects remains problematic in orthopedic and craniofacial clinical practice. Autografts are limited in supply and are associated with donor site morbidity while other materials show poor integration with the host's own bone. This lack of integration is often due to the absence of periosteum, the outer layer of bone that contains osteoprogenitor cells and is critical for the growth and remodeling of bone tissue. In this study we developed a one-step platform to electrospin nanofibrous scaffolds from chitosan, which also contain hydroxyapatite nanoparticles and are crosslinked with genipin. We hypothesized that the resulting composite scaffolds represent a microenvironment that emulates the physical, mineralized structure and mechanical properties of non-weight bearing bone extracellular matrix while promoting osteoblast differentiation and maturation similar to the periosteum. The ultrastructure and physicochemical properties of the scaffolds were studied using scanning electron microscopy and spectroscopic techniques. The average fiber diameters of the electrospun scaffolds were 227 ± 154 nm as spun, and increased to 335 ± 119 nm after crosslinking with genipin. Analysis by X-ray diffraction, Fourier transformed infrared spectroscopy and energy dispersive spectroscopy confirmed the presence of characteristic features of hydroxyapatite in the composite chitosan fibers. The Young's modulus of the composite fibrous scaffolds was 142 ± 13 MPa, which is similar to that of the natural periosteum. Both pure chitosan scaffolds and composite hydroxyapatite-containing chitosan scaffolds supported adhesion, proliferation and osteogenic differentiation of mouse 7F2 osteoblast-like cells. Expression and enzymatic activity of alkaline phosphatase, an early osteogenic marker, were higher in cells cultured on the composite scaffolds as compared to pure chitosan scaffolds, reaching a significant, 2.4 fold, difference by day 14 (p < 0

  7. Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering

    PubMed Central

    Frohbergh, Michael E.; Katsman, Anna; Botta, Gregory P.; Lazarovici, Phillip; Schauer, Caroline L.; Wegst, Ulrike G. K.; Lelkes, Peter I.

    2012-01-01

    Reconstruction of large bone defects remains problematic in orthopedic and craniofacial clinical practice. Autografts are limited in supply and are associated with donor site morbidity while other materials show poor integration with the host’s own bone. This lack of integration is often due to the absence of periosteum, the outer layer of bone that contains osteoprogenitor cells and is critical for the growth and remodeling of bone tissue. In this study we developed a one-step platform to electrospin nanofibrous scaffolds from chitosan, which also contain hydroxyapatite nanoparticles and are crosslinked with genipin. We hypothesized that the resulting composite scaffolds represent a microenvironment that emulates the physical, mineralized structure and mechanical properties of non-weight bearing bone extracellular matrix while promoting osteoblast differentiation and maturation similar to the periosteum. The ultrastructure and physicochemical properties of the scaffolds were studied using scanning electron microscopy and spectroscopic techniques. The average fiber diameters of the electrospun scaffolds were 227±154 nm as spun, and increased to 335±119 nm after crosslinking with genipin. Analysis by X-ray diffraction, Fourier transformed infrared spectroscopy and energy dispersive spectroscopy confirmed the presence of characteristic features of hydroxyapatite in the composite chitosan fibers. The Young’s modulus of the composite fibrous scaffolds was 142±13 MPa, which is similar to that of the natural periosteum. Both pure chitosan scaffolds and composite hydroxyapatite-containing chitosan scaffolds supported adhesion, proliferation and osteogenic differentiation of mouse 7F2 osteoblast-like cells. Expression and enzymatic activity of alkaline phosphatase, an early osteogenic marker, were higher in cells cultured on the composite scaffolds as compared to pure chitosan scaffolds, reaching a significant, 2.4 fold, difference by day 14 (p<0.05). Similarly

  8. Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores.

    PubMed

    Bae, Chang-Jun; Kim, Hae-Won; Koh, Young-Hag; Kim, Hyoun-Ee

    2006-06-01

    Hydroxyapatite (HA) macrochanneled porous scaffolds, with a controlled pore structure, were fabricated via a combination of the extrusion and lamination processes. The scaffold was architectured by aligning and laminating the extruded HA and carbon filaments. The macrochannel pores were formed by removing the carbon filaments after thermal treatments (binder removal and sintering). The porosity of the scaffolds was varied between 48 and 73% with a controlled pore size of approximately 450 microm, by adjusting the fractions of HA and carbon filaments. As the porosity was increased from 48 to 73%, the compressive strength decreased from 11.5 to 3.2 MPa. However, the osteoblast-like cell responses on the scaffold, such as the proliferation rate and alkaline phosphatase (ALP) activity, were significantly enhanced as the porosity was increased.

  9. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration.

    PubMed

    Loiselle, Alayna E; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M; Lewis, Gregory S; Gao, Jun; Lakhtakia, Akhlesh; Donahue, Henry J

    2013-08-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50-60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50-60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma.

  10. Specific Biomimetic Hydroxyapatite Nanotopographies Enhance Osteoblastic Differentiation and Bone Graft Osteointegration

    PubMed Central

    Loiselle, Alayna E.; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M.; Lewis, Gregory S.; Gao, Jun; Lakhtakia, Akhlesh

    2013-01-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50–60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50–60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma. PMID:23510012

  11. In vitro biomechanical and biocompatible evaluation of natural hydroxyapatite/chitosan composite for bone repair.

    PubMed

    Lü, Xiaoying; Zheng, Buzhong; Tang, Xiaojun; Zhao, Lifeng; Lu, Jieyan; Zhang, Zhiwei; Zhang, Jizhong; Cui, Wei

    2011-01-01

    To evaluate the biomechanical properties and biocompatibility of natural hydroxyapatite/chitosan (HA/CS) composites. The natural HA/CS composites with a different proportion of HA and CS were prepared by the cross-linking method, and then the compressive strength, microstructure and pH values of extracts from these composites were measured by SEM and pH meter, respectively. Subsequently, the biocompatibility of the composites was evaluated by means of a series of biological tests, including MTT, acute systemic toxicity, heat source, and hemolysis tests in vitro. The chitosan content in the composites had significantly influenced the mechanical properties and microstructure of the composites. The pH value of the composite extract was approximately 7.0, which was very close to that of human plasma. Furthermore, the natural HA/CS composites showed no cytotoxicity, irritation, teratogenicity, carcinogenicity and special pyrogen. These results indicated that the natural HA/CS composite may be a potential bone repair material.

  12. Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Gazzano, Massimo; Della Bella, Elena; Fini, Milena; Bigi, Adriana

    2014-07-01

    The influence of the simultaneous presence of the two inhibitors of bone degradation, strontium and zoledronate, on the direct synthesis of hydroxyapatite was explored in the range of Sr concentration up to 50 atom% at two different bisphosphonate concentrations (ZOL7 and ZOL14). The results of structural analysis indicated that HA can be obtained as a single crystalline phase up to a Sr concentration in solution of 20 and 10 atom% within the ZOL7 and ZOL14 series respectively. Both Sr substitution and ZOL incorporation affect the length of the coherently scattering crystalline domains and the dimensions of HA nanocrystals. At greater Sr content, XRD full profile fitting data indicate that zoledronate provokes the segregation of Sr in two crystalline apatitic phases, at different strontium content. Co-cultures of osteoblast-like MG63 cells and human osteoclast show that ZOL displays a greater inhibitory influence than Sr on osteoclast proliferation and activity. On the other hand, the results obtained on osteoblast surnatant and on gene expression indicate that Sr exerts a greater promotion on osteoblast proliferation and differentiation. The co-presence of Sr and ZOL has a combined effect on the differentiation markers, so that HA containing about 4 wt% ZOL and 4 Sr atom%, and even more HA containing about 4 wt% ZOL and 8 Sr atom%, result the best compromise for osteoblast promotion and osteoclast inhibition.

  13. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering.

    PubMed

    Chen, Li; Hu, Jingxiao; Shen, Xinyu; Tong, Hua

    2013-08-01

    Chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites were synthesized by a novel in situ precipitation method. The electrostatic adsorption between multiwalled carbon nanotubes and chitosan was investigated and explained by Fourier transform infrared spectroscopy analysis. Morphology studies showed that uniform distribution of hydroxyapatite particles and multiwalled carbon nanotubes in the polymer matrix was observed. In chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites, the diameters of multiwalled carbon nanotubes were about 10 nm. The mechanical properties of the composites were evaluated by measuring their compressive strength and elastic modulus. The elastic modulus and compressive strength increased sharply from 509.9 to 1089.1 MPa and from 33.2 to 105.5 MPa with an increase of multiwalled carbon/chitosan weight ratios from 0 to 5 %, respectively. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.

  14. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.

    PubMed

    Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya

    2015-01-01

    Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture.

  15. Effects of alcohol and nicotine on the mechanical resistance of bone and bone neoformation around hydroxyapatite implants.

    PubMed

    Soares, Evelise V; Fávaro, Wagner J; Cagnon, Valéria H A; Bertran, Celso A; Camilli, José A

    2010-01-01

    The consumption of alcohol or nicotine is harmful to the integrity of bone tissue, hindering or even impeding the fixation and maintenance of bone implants. The aim of the present work was to evaluate the effects of ethanol and nicotine, when consumed alone and simultaneously, on both bone mechanical resistance and bone neoformation around hydroxyapatite implants. Twenty rats were divided into four groups: control (CT), alcohol (A), nicotine (N) and nicotine + alcohol (N + A). After 4 weeks of alcohol and/or nicotine consumption, dense (HAD) and porous (HAP) bodies were respectively implanted in a surgically produced bone defect in the right and left tibiae. After the surgeries, the animals continued to consume alcohol and/or nicotine. After ninety days, the animals were sacrificed and the tibiae and femurs were isolated for histological processing and mechanical assays. All the animals presented newly formed bone tissue close to the HAD and HAP ceramic bodies. The animals of the N + A group presented a smaller volume of neoformed bone. Group A animals presented smaller bone volume around the implants in relation to the animals from group N. Bone resistance to mechanical loads was smallest in animals from the N + A group, followed (in order) by the A and N groups. Thus, it can be concluded that nicotine or alcohol consumption produced negative effects on bone mechanical resistance and on the osteogenesis around the HAD and HAP implants. In addition, the simultaneous consumption of the two substances intensified their harmful effects.

  16. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration.

    PubMed

    Tae Young, Ahn; Kang, Jeong Han; Kang, Dong Jun; Venkatesan, Jayachandran; Chang, Hee Kyung; Bhatnagar, Ira; Chang, Kwan-Young; Hwang, Jae-Ho; Salameh, Ziad; Kim, Se-Kwon; Kim, Hui Taek; Kim, Dong Gyu

    2016-12-01

    The combination of bioceramics with biopolymers are playing major role in the construction of artificial bone. Hydroxyapatite (HA) has been extensively studied as a material in bone repair and replacement in last two decades. In the present study, we have prepared the hydroxyapatite-fucoidan (HA-Fucoidan) nanocomposites by in situ chemical method and biologically characterized them for bone graft substitute. Biological results inferred that mineralization effect of HA-F nanocomposites shows significant enhancement compared to HA in adipose derived stem cell (ADSC). It may be due to the addition of fucoidan in the nanocomposites. The important gene expression such as osteocalcin, osteopontin, collagen and runx-2 were checked using ADSC with HA and HA-fucoidan nanocomposites and the results show that the enhancements were found at 7th day. Furthermore, we have performed in vivo study of HA-fucoidan nanocomposites with rabbit model and a slight amount of bone formation was observed in HA-fucoidan nanocomposites. Herewith, we suggest that HA-fucoidan nanocomposites will be good biomaterials for bone repair/replacement in future.

  17. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    PubMed

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    2017-09-22

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  18. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.

    PubMed

    Pangon, Autchara; Saesoo, Somsak; Saengkrit, Nattika; Ruktanonchai, Uracha; Intasanta, Varol

    2016-06-25

    Biomimetic nanofibrous scaffolds derived from natural biopolymers for bone tissue engineering applications require good mechanical and biological performances including biomineralization. The present work proposes the utility of chitin whisker (CTWK) to enhance mechanical properties of chitosan/poly(vinyl alcohol) (CS/PVA) nanofibers and to offer osteoblast cell growth with hydroxyapatite (HA) mineralization. By using diacid as a solvent, electrospun CS/PVA nanofibrous membranes containing CTWK can be easily obtained. The dimension stability of nanofibrous CS/PVA/CTWK bionanocomposite is further controlled by exposing to glutaraldehyde vapor. The nanofibrous membranes obtained allow mineralization of HA in concentrated simulated body fluid resulting in an improvement of Young's modulus and tensile strength. The CTWK combined with HA in bionanocomposite is a key to promote osteoblast cell adhesion and proliferation. The present work, for the first time, demonstrates the use of CTWKs for bionanocomposite fibers of chitosan and its hydroxyapatite biomineralization with the function in osteoblast cell culture. These hydroxyapatite-hybridized CS/PVA/CTWK bionanocomposite fibers (CS/PVA/CTWK-HA) offer a great potential for bone tissue engineering applications.

  19. Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering.

    PubMed

    Behera, Sibaram; Naskar, Deboki; Sapru, Sunaina; Bhattacharjee, Promita; Dey, Tuli; Ghosh, Ananta K; Mandal, Mahitosh; Kundu, Subhas C

    2017-03-08

    Replacement and repair of ectopic bone defects and traumatized bone tissues are done using porous scaffolds and composites. The prerequisites for such scaffolds include high mechanical strength, osseoconductivity and cytocompatibility. The present work is designed to address such requirements by fabricating a reinforced cytocompatible scaffold. Biocompatible silk protein fibroin collected from tropical non-mulberry tasar silkworm (Antheraea mylitta) is used to fabricate fibroin-hydroxyapatite (HAp) nanocomposite particles using chemical precipitation method. In situ reinforcement of fibroin-HAp nanocomposite and external deposition of HAp particles on fibroin scaffold is carried out for comparative evaluations of bio-physical and biochemical characteristics. HAp deposited fibroin scaffolds provide greater mechanical strength and cytocompatibility, when compared with fibroin-HAp nanoparticles reinforced fibroin scaffolds. Minimal immune responses of both types of composite scaffolds are observed using osteoblast-macrophage co-culture model. Nanocomposite reinforced fibroin scaffold can be tailored further to accommodate different requirements depending on bone type or bone regeneration period.

  20. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair.

    PubMed

    Appleford, Mark R; Oh, Sunho; Oh, Namsik; Ong, Joo L

    2009-06-15

    The objective of this research was to investigate the bone formation and angio-conductive potential of hydroxyapatite (HA) scaffolds closely matched to trabecular bone in a canine segmental defect after 3 and 12 weeks post implantation. Histomorphometric comparisons were made between naturally forming trabecular bone (control) and defects implanted with scaffolds fabricated with micro-size (M-HA) and nano-size HA (N-HA) ceramic surfaces. Scaffold architecture was similar to trabecular bone formed in control defects at 3 weeks. No significant differences were identified between the two HA scaffolds; however, significant bone in-growth was observed by 12 weeks with 43.9 +/- 4.1% and 50.4 +/- 8.8% of the cross-sectional area filled with mineralized bone in M-HA and N-HA scaffolds, respectively. Partially organized, lamellar collagen fibrils were identified by birefringence under cross-polarized light at both 3 and 12 weeks post implantation. Substantial blood vessel infiltration was identified in the scaffolds and compared with the distribution and diameter of vessels in the surrounding cortical bone. Vessels were less numerous but significantly larger than native cortical Haversian and Volkmann canals reflecting the scaffold architecture where open spaces allowed interconnected channels of bone to form. This study demonstrated the potential of trabecular bone modeled, highly porous and interconnected, HA scaffolds for regenerative orthopedics.

  1. Synthesis and characterization of collagen-chitosan-hydroxyapatite artificial bone matrix.

    PubMed

    Wang, Yan; Zhang, Lihai; Hu, Min; Liu, Hongchen; Wen, Weisheng; Xiao, Hongxi; Niu, Yu

    2008-07-01

    In this study, a new artificial bone matrix was constructed with collagen and Ca(5)(PO(4))(3)OH (hydroxyapatite/HA) which are the main components of natural bone. To improve the property of the artificial bone matrix, chitosan (CS), a kind of positive charged polysaccharide, was crosslinked into the scaffolds. Solid-liquid phase separation method was used to shape 3D porous structure benefited for cells growing into. The artificial bone matrix was investigated by transmission electron microscopy, scanning electron microscopy, and electron spectroscopy for chemical analysis, etc. for structures and characteristics. And its ability of bone repair was investigated by orthotope bone defect reparation in vivo. The results showed that the artificial bone matrix was a porousscaffold with three-dimension interconnected fiber microstructure. HA particles were dispersed evenly among collagen fiber and CS was modified on the surface of collagen fiber. It was indicated that this artificial bone matrix could be used as a bone substitute with outstanding properties. (c) 2007 Wiley Periodicals, Inc.

  2. Bone response to porous polymethylmethacrylate cement loaded with hydroxyapatite particles in a rabbit mandibular model.

    PubMed

    Sa, Yue; Yu, Na; Wolke, Joop G C; Chanchareonsook, Nattharee; Goh, Bee Tin; Wang, Yining; Yang, Fang; Jansen, John A

    2017-04-03

    The aim of the current study was to evaluate bone formation and tissue response to porous polymethylmethacrylate (PMMA) cement with or without hydroxyapatite (HA) in a rabbit mandibular model. Therefore, fourteen New Zealand white rabbits were randomly divided into two groups of seven according to the designed study end points of 4 and 12 weeks. For each rabbit, two decorticated defects (6 mm in height and 10 mm in width for each) were prepared at both sides of the mandible. Subsequently, the defects were filled with respectively porous PMMA and porous PMMA-HA cement. After reaching the designated implantation period, the rabbits were euthanized and the mandibles were retrieved for histological analysis. Results showed that both porous PMMA and porous PMMA-HA supported bone repair. Neither of the bone cements caused significant inflammation to nerve or other surrounding tissues. After implantation of 12 weeks, majority of the porosity was filled with newly formed bone for both cements, which supports the concept that a porous structure within PMMA can enhance bone ingrowth. Histomorphometrical evaluation, using histological grading scales, demonstrated that, at both implantation times, the presence of HA in the PMMA enhanced bone formation. Bone was always in direct contact with the HA particles, while intervening fibrous tissue was present at the PMMA-bone interface. On the basis of results, it was concluded that injectable porous PMMA-HA cement might be a good candidate for craniofacial bone repair, which should be further evaluated in a more clinically relevant large animal model.

  3. Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor.

    PubMed

    Tamai, Noriyuki; Myoui, Akira; Kudawara, Ikuo; Ueda, Takafumi; Yoshikawa, Hideki

    2010-07-01

    Large bone defects remaining after curettage of benign bone tumors should be filled with a substitute to restore mechanical strength. In 2000, we developed a fully interconnected porous calcium hydroxyapatite ceramic (IPCHA, NEOBONE) and have utilized it as a bone substitute. IP-CHA has a finely organized, three-dimensional interconnecting pore structure. The large interconnecting channels (average diameter 40 microm) permit easy penetration of tissue into the deep pores, so IP-CHA can itself induce local bone repair processes. The purpose of this study was to evaluate the clinical outcomes with the use of IP-CHA as bone substitute after curettage of benign bone tumors. We reviewed the results of 71 patients with benign bone tumors sequentially treated by curettage followed by implantation of IP-CHA between 2000 and 2006. There were 29 women and 42 men, with a mean age of 28 years. Assessment was based on radiography at each time point during the follow-up. Radiographic findings were classified into five stages: stage 0, no change; stage 1, slight bone formation; stage 2, moderate bone formation; stage 3, consolidation; stage 4, absorption. In 70 of 74 operated lesions, radiographs showed that implanted IP-CHA proceeded to stage 2 or more within an average of 8 months after the surgery. In addition, 17 lesions proceeded to stage 4 within 35 months after surgery, on average. However, there were 10 local recurrences, which is similar to the recurrence rate for such tumors treated with or without implantation of CHAs and reflects the biological nature of each tumor. In this study, we utilized IP-CHA as a bone substitute after curettage of benign bone tumors and demonstrated its usefulness in the clinical situation. IP-CHA comparatively exhibited excellent bone formation at an early stage although the problem of recurrence of the tumor remained. We conclude that IP-CHA is a useful bone substitute for the treatment of benign bone tumors.

  4. Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications.

    PubMed

    Perez, R A; Altankov, G; Jorge-Herrero, E; Ginebra, M P

    2013-05-01

    Novel hydroxyapatite (HA)-collagen microcarriers (MCs) with different micro/nanostructures were developed for bone tissue-engineering applications. The MCs were fabricated via calcium phosphate cement (CPC) emulsion in oil. Collagen incorporation in the liquid phase of the CPC resulted in higher MC sphericity. The MCs consisted of a porous network of entangled hydroxyapatite crystals, formed as a result of the CPC setting reaction. The addition of collagen to the MCs, even in an amount as small as 0.8 wt%, resulted in an improved interaction with osteoblast-like Saos-2 cells. The micro/nanostructure and the surface texture of the MCs were further tailored by modifying the initial particle size of the CPC. A synergistic effect between the presence of collagen and the nanosized HA crystals was found, resulting in significantly enhanced alkaline phosphatase activity on the collagen-containing nanosized HA MCs.

  5. Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration.

    PubMed

    Chiu, Chi-Kai; Ferreira, Joao; Luo, Tzy-Jiun M; Geng, Haixia; Lin, Feng-Chang; Ko, Ching-Chang

    2012-09-01

    Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11-19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes.

  6. Direct Scaffolding of Biomimetic Hydroxyapatite-gelatin Nanocomposites using Aminosilane Cross-linker for Bone Regeneration

    PubMed Central

    Chiu, Chi-Kai; Ferreira, Joao; Luo, Tzy-Jiun M.; Geng, Haixia; Lin, Feng-Chang; Ko, Ching-Chang

    2012-01-01

    Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11–19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes. PMID:22669282

  7. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  8. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Muñoz-Espí, Rafael; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2016-02-01

    There is increasing evidence that inorganic calcium-polyphosphates (polyP) are involved in human bone hydroxyapatite (HA) formation. Here we investigated the morphology of the particles, containing calcium phosphate (CaP) with different concentrations of various Na-polyP concentrations, as well as their effects in cell culture. We used both SaOS-2 cells and human mesenchymal stem cells. The polymeric phosphate readily binds calcium ions under formation of insoluble precipitates. We found that addition of low concentrations of polyP (<10wt.%, referred to the CaP deposits) results in an increased size of the HA crystals. Surprisingly, at higher polyP concentrations (>10wt.%) the formation of crystalline HA is prevented and amorphous polyP/HA hybrid particles with a size of ≈50nm are formed, most likely consisting of polyP molecules linked via Ca(2+) bridges to the surface of the CaP deposits. Further studies revealed that the polyP-CaP particles cause a strong upregulation of the expression of the genes encoding for two marker proteins of bone formation, collagen type I and alkaline phosphatase. Based on their morphogenetic activity the amorphous polyP-CaP particles offer a promising material for the development of bone implants, formed from physiological inorganic precursors/polymers. Hydroxyapatite (HA) is a naturally occurring mineral of vertebrate bone. Natural HA, a bio-ceramic material which is crystalline to different scale, has been used as a biomaterial to fabricate scaffolds for in situ bone regeneration and other tissue engineering purposes. In contrast to natural HA, synthetic apatite is much less effective. In general, while HA is bioactive, its interaction and biocompatibility with existing bone tissue is low. These properties have been attributed to a minimal degradability in the physiological environment. In the present study we introduce a new Ca-phosphate (CaP) fabrication technology, starting from calcium chloride and dibasic ammonium phosphate

  9. The relationship between particle morphology and rheological properties in injectable nano-hydroxyapatite bone graft substitutes.

    PubMed

    Ryabenkova, Y; Pinnock, A; Quadros, P A; Goodchild, R L; Möbus, G; Crawford, A; Hatton, P V; Miller, C A

    2017-06-01

    Biomaterials composed of hydroxyapatite (HA) are currently used for the treatment of bone defects resulting from trauma or surgery. However, hydroxyapatite supplied in the form of a paste is considered a very convenient medical device compared to the materials where HA powder and liquid need to be mixed immediately prior to the bone treatment during surgery. In this study we have tested a series of hydroxyapatite (HA) pastes with varying microstructure and different rheological behaviour to evaluate their injectability and biocompatibility. The particle morphology and chemical composition were evaluated using HRTEM, XRD and FTIR. Two paste-types were compared, with the HA particles of both types being rod shaped with a range of sizes between 20 and 80nm while differing in the particle aspect ratio and the degree of roundness or sharpness. The pastes were composed of pure HA phase with low crystallinity. The rheological properties were evaluated and it was determined that the pastes behaved as shear-thinning, non-Newtonian liquids. The difference in viscosity and yield stress between the two pastes was investigated. Surprisingly, mixing of these pastes at different ratios did not alter viscosity in a linear manner, providing an opportunity to produce a specific viscosity by mixing the two materials with different characteristics. Biocompatibility studies suggested that there was no difference in vitro cell response to either paste for primary osteoblasts, bone marrow mesenchymal stromal cells, osteoblast-like cells, and fibroblast-like cells. This class of nanostructured biomaterial has significant potential for use as an injectable bone graft substitute where the properties may be tailored for different clinical indications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    PubMed

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preparation, bioactivity and mechanism of nano-hydroxyapatite/sodium alginate/chitosan bone repair material.

    PubMed

    Liao, Jianguo; Li, Yanqun; Li, Haiyan; Liu, Jingxian; Xie, Yufen; Wang, Jianping; Zhang, Yongxiang

    2017-08-11

    As the major inorganic component of natural bone, nano-hydroxyapatite (n-HA) on its own is limited in its use in bone repair, due to its brittleness. Chitosan (CS) and sodium alginate (SAL) are used to reduce its brittleness and tendency to degradation. However, the compressive strength of the composite is still low, and its biological performance needs further study. Nano-hydroxyapatite/sodium alginate/chitosan (n-HA/SAL/CS) composite was prepared via an in situ synthesis method. Further, we prepared the n-HA/SAL/CS self-setting bone repair material by mixing n-HA/SAL/CS powder with a curing liquid (20 wt.% citric acid). In addition, the in vitro bioactivity and cell cytotoxicity were also explored. Transmission electron microscopy photos revealed that the n-HA crystals were uniformly distributed throughout the polymer matrix. Infrared IR spectroscopy indicated that the HA interacted with the COO- of SAL and NH2- of CS. The compressive strength of the n-HA/SAL/CS bone cement was 34.3 MPa and matched the demands of weight-bearing bones. Soaking in vitro in simulated body fluid demonstrated that the composite material had reasonably good bioactivity, while cytotoxicity tests indicated that the n-HA/SAL/CS cement could promote cell proliferation and was biocompatible. Compressive strength of n-HA/SAL/CS can satisfy the needs of cancellous bone, and in vitro bioactivity and cytotoxicity tests results indicated that the n-HA/SAL/CS composite could act as an optimal bone repair material.

  12. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  13. Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis.

    PubMed

    Pathi, Siddharth P; Lin, Debra D W; Dorvee, Jason R; Estroff, Lara A; Fischbach, Claudia

    2011-08-01

    Breast cancer frequently metastasizes to bone, where it leads to secondary tumor growth, osteolytic bone degradation, and poor clinical prognosis. Hydroxyapatite Ca(10)(PO(4))(6)(OH)(2) (HA), a mineral closely related to the inorganic component of bone, may be implicated in these processes. However, it is currently unclear how the nanoscale materials properties of bone mineral, such as particle size and crystallinity, which change as a result of osteolytic bone remodeling, affect metastatic breast cancer. We have developed a two-step hydrothermal synthesis method to obtain HA nanoparticles with narrow size distributions and varying crystallinity. These nanoparticles were incorporated into gas-foamed/particulate leached poly(lactide-co-glycolide) scaffolds, which were seeded with metastatic breast cancer cells to create mineral-containing scaffolds for the study of breast cancer bone metastasis. Our results suggest that smaller, poorly-crystalline HA nanoparticles promote greater adsorption of adhesive serum proteins and enhance breast tumor cell adhesion and growth relative to larger, more crystalline nanoparticles. Conversely, the larger, more crystalline HA nanoparticles stimulate enhanced expression of the osteolytic factor interleukin-8 (IL-8). Our data suggest an important role for nanoscale HA properties in the vicious cycle of bone metastasis and indicate that mineral-containing tumor models may be excellent tools to study cancer biology and to define design parameters for non-tumorigenic mineral-containing or mineralized matrices for bone regeneration.

  14. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering.

    PubMed

    Venugopal, J; Prabhakaran, Molamma P; Zhang, Yanzhong; Low, Sharon; Choon, Aw Tar; Ramakrishna, S

    2010-04-28

    The fracture of bones and large bone defects owing to various traumas or natural ageing is a typical type of tissue malfunction. Surgical treatment frequently requires implantation of a temporary or permanent prosthesis, which is still a challenge for orthopaedic surgeons, especially in the case of large bone defects. Mimicking nanotopography of natural extracellular matrix (ECM) is advantageous for the successful regeneration of damaged tissues or organs. Electrospun nanofibre-based synthetic and natural polymer scaffolds are being explored as a scaffold similar to natural ECM for tissue engineering applications. Nanostructured materials are smaller in size falling, in the 1-100 nm range, and have specific properties and functions related to the size of the natural materials (e.g. hydroxyapatite (HA)). The development of nanofibres with nano-HA has enhanced the scope of fabricating scaffolds to mimic the architecture of natural bone tissue. Nanofibrous substrates supporting adhesion, proliferation, differentiation of cells and HA induce the cells to secrete ECM for mineralization to form bone in bone tissue engineering. Our laboratory (NUSNNI, NUS) has been fabricating a variety of synthetic and natural polymer-based nanofibrous substrates and synthesizing HA for blending and spraying on nanofibres for generating artificial ECM for bone tissue regeneration. The present review is intended to direct the reader's attention to the important subjects of synthetic and natural polymers with HA for bone tissue engineering.

  15. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  16. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.

    PubMed

    Panseri, Silvia; Cunha, Carla; D'Alessandro, Teresa; Sandri, Monica; Russo, Alessandro; Giavaresi, Gianluca; Marcacci, Maurilio; Hung, Clark T; Tampieri, Anna

    2012-01-01

    In case of degenerative disease or lesion, bone tissue replacement and regeneration is an important clinical goal. In particular, nowadays, critical size defects rely on the engineering of scaffolds that are 3D structural supports, allowing cellular infiltration and subsequent integration with the native tissue. Several ceramic hydroxyapatite (HA) scaffolds with high porosity and good osteointegration have been developed in the past few decades but they have not solved completely the problems related to bone defects. In the present study we have developed a novel porous ceramic composite made of HA that incorporates magnetite at three different ratios: HA/Mgn 95/5, HA/Mgn 90/10 and HA/Mgn 50/50. The scaffolds, consolidated by sintering at high temperature in a controlled atmosphere, have been analysed in vitro using human osteoblast-like cells. Results indicate high biocompatibility, similar to a commercially available HA bone graft, with no negative effects arising from the presence of magnetite or by the use of a static magnetic field. HA/Mgn 90/10 was shown to enhance cell proliferation at the early stage. Moreover, it has been implanted in vivo in a critical size lesion of the rabbit condyle and a good level of histocompatibility was observed. Such results identify this scaffold as particularly relevant for bone tissue regeneration and open new perspectives for the application of a magnetic field in a clinical setting of bone replacement, either for magnetic scaffold fixation or magnetic drug delivery.

  17. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts.

    PubMed

    Benlidayi, M Emre; Tatli, Ufuk; Kurkcu, Mehmet; Uzel, Aslihan; Oztunc, Haluk

    2012-01-01

    The aim of this retrospective study was to compare the long-term outcomes of secondary alveolar bone grafting (SABG) using bovine-derived hydroxyapatite versus autogenous bone. The subjects in this study were 23 patients with unilateral cleft lip and palate (13 male, 10 female) who underwent SABG from 2004 through 2009. The patients were recalled and examined to evaluate the success of the long-term outcomes of SABG. In group 1, there were 12 patients (7 male, 5 female) who underwent grafting with anterior iliac crest bone; in group 2, 11 patients (6 male, 5 female) underwent grafting with bovine-derived hydroxyapatite. The mean ages at grafting were 13 ± 3.76 years in group 1 and 10.82 ± 2.6 years in group 2 (P = .134). The mean lengths of follow-up were 47.33 ± 13.79 months in group 1 and 67.82 ± 10.36 months in group 2 (P = .002). Pocket depth, periodontal index, and gingival index scores were similar and indicated acceptable periodontal status in the 2 groups. The results for patient satisfaction were not statistically different (P > .05). There was no statistically significant difference between the 2 groups when results of the Chelsea scale were analyzed (P > .05). The radiologic results showed an 83.4% success rate in group 1 and a 100% success rate in group 2 (P = .478). When the densitometric values for cleft sites were analyzed, the difference between the 2 groups was not statistically significant (P = .190). Bovine-derived hydroxyapatite is as successful as the iliac graft for the SABG procedure. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics.

    PubMed

    Nakamura, Satoshi; Kobayashi, Takayuki; Nakamura, Miho; Itoh, Soichiro; Yamashita, Kimihiro

    2010-01-01

    Bone ingrowth enhancement by the surface induced charges of the electrically polarized hydroxyapatite (HA)/beta-tricalcium phosphate (beta-TCP) ceramics was histologically investigated to clarify the early stage events of ossification. The HA/beta-TCP specimens with a relatively low porosity of 45% for bone ingrowth were polarized in a dc electric field at 400 degrees C for 1 h. The large preserved charges of 8 muC cm(-2) significantly promoted the bone ingrowth process of the porous ceramics implanted in femoral diaphyses of New Zealand white rabbits. The bone formation in the pores of the polarized HA/beta-TCP specimens was observed within 1 week after surgery. The bone occupancy of the polarized HA/beta-TCP pores reached more than 90% at as early as 2 weeks and significantly higher than that of the nonpolarized. The electrical polarization was proved to be effective for bone penetration improvement of low porosity ceramics. The electrically polarized HA/beta-TCP bone grafts with a lower porosity and a higher mechanical strength combined high osteoconductivity generated by the induced surface charges.

  19. Stereomorphologic observation of bone tissue response to hydroxyapatite using SEM with the EDTA-KOH method.

    PubMed

    Lin, T C; Su, C Y; Chang, C S

    1997-07-01

    To obtain further information on the interaction of hydroxyapatite (HA) and the bony implantation bed, 20- to 40- mesh dense HA particles were implanted into the tibiae of dogs. Following healing periods of 2 weeks, 1 month, and 3 months, the specimens were retrieved and prepared by either conventional preparatory procedures for scanning electron microscopy (SEM) of the EDTA-KOH method. Under SEM observation, the interparticular osteogenesis among HA particles progressed in a programmed sequence. Ample blood supply and osteoblasts initially presented in the interparticular space. The secretion of bone matrix resulted in the formation of immature bone. This scaffold was then transformed into mature lamellar bone during the following bone remodeling process. The serial changes closely resembled the pattern viewed in controls that did not implant HA. A spatial relationship between bone cells and HA was clearly demonstrated. In particular, the osteoblasts displayed an extremely flat appearance with many microappendages. The microappendages anchored cells to the HA surface and fused with granular material covering the HA crystals. The more characteristic cellular morphology was revealed by the EDTA-KOH method. Microscopic pictures clearly identified the three-dimensional images of ruffled borders of osteoclasts and the slender cytoplasmic processes of osteocytes. This study provided further evidence for the favorable biological response of HA to bone cells as well as the value of the EDTA-KOH method in examining the stereomorphology of bone cells.

  20. Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling.

    PubMed

    Ayukawa, Yasunori; Suzuki, Yumiko; Tsuru, Kanji; Koyano, Kiyoshi; Ishikawa, Kunio

    2015-01-01

    Carbonate apatite (CO3Ap), the form of apatite found in bone, has recently attracted attention. The purpose of the present study was to histologically evaluate the tissue/cellular response toward the low-crystalline CO3Ap fabricated using a dissolution-precipitation reaction with set gypsum as a precursor. When set gypsum was immersed in a 100°C 1 mol/L Na3PO4 aqueous solution for 24 h, the set gypsum transformed into CO3Ap. Both CO3Ap and sintered hydroxyapatite (s-HAp), which was used as a control, were implanted into surgically created tibial bone defects of rats for histological evaluation. Two and 4 weeks after the implantation, histological sections were created and observed using light microscopy. The CO3Ap granules revealed both direct apposition of the bone matrix by osteoblasts and osteoclastic resorption. In contrast, the s-HAp granules maintained their contour even after 4 weeks following implantation which implied that there was a lack of replacement into the bone. The s-HAp granules were sometimes encapsulated with fibrous tissue, and macrophage polykaryon was occasionally observed directly apposed to the implanted granules. From the viewpoint of bone remodeling, the CO3Ap granules mimicked the bone matrix, suggesting that CO3Ap may be an appropriate bone substitute.

  1. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.

    PubMed

    Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S

    2006-03-01

    Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.

  2. Fabrication of Porous Hydroxyapatite Scaffolds as Artificial Bone Preform and its Biocompatibility Evaluation

    PubMed Central

    2014-01-01

    In this study, a novel porous hydroxyapatite scaffold was designed and fabricated to imitate natural bone through a multipass extrusion process. The conceptual design manifested unidirectional microchannels at the exterior part of the scaffold to facilitate rapid biomineralization and a central canal that houses the bone marrow. External and internal fissures were minimized during microwave sintering at 1,100°C. No deformation was noted, and a mechanically stable scaffold was fabricated. Detailed microstructure of the fabricated artificial bone was examined by scanning electron microscope and X-ray diffractometer, and material properties like compressive strength were evaluated. The initial biocompatibility was examined by the cell proliferation of MG-63 osteoblast-like cells using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Preliminary in vivo investigation in a rabbit model after 4 weeks and 8 weeks of implantation showed full osteointegration of the scaffold with the native tissue, and formation of bone tissue within the pore network, as examined by microcomputed tomography analyses and histological staining. Osteon-like bone microarchitecture was observed along the unidirectional channel with microblood vessels. These confirm a biomimetic regeneration model in the implanted bone scaffold, which can be used as an artificial alternative for damaged bone. PMID:24399056

  3. Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface.

    PubMed

    Edwards, J T; Brunski, J B; Higuchi, H W

    1997-09-15

    For load-bearing calcium-phosphate biomaterials, it is important to understand the relative contributions of direct physical-chemical bonding vs. mechanical interlocking to interfacial strength. In the limit of a perfectly smooth hydroxyapatite (HA) surface, a tensile test of the bone-HA interface affords an opportunity to isolate the bonding contribution related to HA surface chemistry alone. This study measured the bone-HA interfacial tensile strength for highly polished (approximately 0.05 micron alumina) dense HA disks (5.25 mm in diameter, 1.3 in mm thickness) in rabbit tibiae. Each of five rabbits received four HA disks, two per proximal tibia. Pull-off loads ranged from 3.14 +/- 2.38N at 55 days after implantation to 18.35 +/- 11.9N at 88 days; nominal interfacial tensile strengths were 0.15 +/- 0.11 MPa and 0.85 +/- 0.55 MPa, respectively. SEM of failed interfaces revealed failures between HA and bone, within the HA itself and within adjacent bone. Tissue remnants on HA were identified as mineralized bone with either a lamellar or trabecular structure. Oriented collagen fibers in the bone intricately interdigitated with the HA surface, which frequently showed breakdown at material grain boundaries and a rougher surface than originally implanted. Mechanical interlocking could not be eliminated as a mode of tissue attachment and contribution to bone-HA bonding, even after implanting an extremely smooth HA surface.

  4. Biodegradation rate of shellac coated bovine hydroxyapatite for bone filler material

    NASA Astrophysics Data System (ADS)

    Triyono, Joko; Triyono, Susilowati, Endang; Murdiyantara, Suci Anindya

    2016-03-01

    This work reports on the effect of shellac coated hydroxyapatite (HA) on the biodegradation rate. The HA was processed from bovine bone. Shellac was derived from the resinous secretion of the lac insect. The aims of the addition of shellac solution is to know how the biodegradation rate material in the Phosphate Buffered Saline (PBS) solution. The four different of shellac solutions (2,5%; 5%; 7,5%; and 10% weight) coated HA scaffoldand one ratio as a control. It was concluded that the ability of biodegradation rate a materialwas not influenced by the ratio of shellac. All materials were biodegradedwhen they were soaked in PBS solution.

  5. Systemic and local zoledronic acid treatment with hydroxyapatite bone graft: A histological and histomorphometric experimental study

    PubMed Central

    Günes, Nedim; Dundar, Serkan; Saybak, Arif; Artas, Gökhan; Acikan, Izzet; Ozercan, I. Hanifi; Atilgan, Serhat; Yaman, Ferhan

    2016-01-01

    In this study, the aim was to compare the relative efficacy of systemic and local zoledronic acid (ZA) on a hydroxyapatite (HA) bone graft in a rat critical-size calvarial bone defect. In total, 84 female rats were divided into four groups: Empty control (EC) group with no treatment applied; HA group, in which only HA bone graft material was used in the calvarium; and HA plus local ZA (HA+LZA) and HA plus systemic ZA (HA+SZA) groups, in which animals received ZA locally or systemically, respectively, with HA bone graft material in the calvarium. A 5-mm standardised critical-size calvarial bone defect was created with a standard trephine drill and the respective treatment was applied. Rats were sacrificed 7, 14 and 28 days later. The numbers of osteoclasts and osteoblasts, and degree of bone formation were evaluated histopathologically and histomorphometrically. Statistically significant differences were detected between the HA, HA+LZA and HA+SZA groups and the EC group for new bone formation (P<0.05). Osteoblast numbers in the HA+LZA and HA+SZA groups were significantly higher compared with those in the EC and HA groups (P<0.05). No statistically significant difference was detected between the HA+LZA and HA+SZA groups in new bone formation or osteoblast number (P>0.05). Bone formation was significantly higher in the HA group than in the EC group (P<0.05). The numbers of osteoclasts in the HA+LZA and HA+SZA groups were significantly higher than those in the groups EC and HA (P<0.05); however, there was no significant difference between groups HA+LZA and HA+SZA (P>0.05). Within the limitations of this study, systemic or local administration of ZA enhanced new bone formation with a HA bone graft in a rat critical-size calvarial defect model. PMID:27698743

  6. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering.

    PubMed

    Gloria, A; Russo, T; D'Amora, U; Zeppetelli, S; D'Alessandro, T; Sandri, M; Bañobre-López, M; Piñeiro-Redondo, Y; Uhlarz, M; Tampieri, A; Rivas, J; Herrmannsdörfer, T; Dediu, V A; Ambrosio, L; De Santis, R

    2013-03-06

    In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.

  7. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

    PubMed Central

    Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdörfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.

    2013-01-01

    In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218

  8. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant.

    PubMed

    Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2011-11-01

    In this study, we report fabrication of strontium (Sr) and magnesium (Mg) doped hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) substrates using inductively coupled radio frequency (RF) plasma spray. HA powder was doped with 1 wt % Sr (Sr-HA) and 1 wt % Mg (Mg-HA), heat treated at 800°C for 6 h and then used for plasma spray coating. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis indicated that the coatings were primarily composed of phase pure crystalline HA. When compared to undoped HA coating, physical properties such as microstructure, grain size, and adhesive bond strength of the doped HA coatings did not change significantly. Microstructure of the coatings showed coherency in the structure with an average grain size of 200-280 μm HA particles, where each of the HA grains consisted of 20-30 nm sized particles. An average adhesive bond strength of 17 MPa ensured sufficient mechanical strength of the coatings. A chemistry dependent improvement in bone cell-coating interaction was noticed for doped coatings although it had minimal effect on physical properties of the coatings. In vitro cell-materials interactions using human fetal osteoblasts (hFOB) showed better cell attachment and proliferation on Sr-HA coatings compared to HA or Mg-HA coatings. Presence of Sr in the coating also stimulated hFOB cell differentiation and alkaline phosphatase (ALP) expression. Improvement in bioactivity of Sr doped HA coatings on Ti without compromising its mechanical properties makes it an excellent material of choice for coated implant.

  9. Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants.

    PubMed

    Guimond-Lischer, Stefanie; Ren, Qun; Braissant, Olivier; Gruner, Philipp; Wampfler, Bruno; Maniura-Weber, Katharina

    2016-03-10

    Fast and efficient osseointegration of implants into bone is of crucial importance for their clinical success; a process that can be enhanced by coating the implant surface with hydroxyapatite (HA) using the vacuum plasma spray technology (VPS). However, bacterial infections, especially the biofilm formation on implant surfaces after a surgery, represent a serious complication. With ever-increasing numbers of antibiotic-resistant bacteria, there is great interest in silver (Ag) as an alternative to classical antibiotics due to its broad activity against Gram-positive and Gram-negative bacterial strains. In the present study, silver ions were introduced into HA spray powder by ion exchange and the HA-Ag powder was applied onto titanium samples by VPS. The Ag-containing surfaces were evaluated for the kinetics of the silver release, its antibacterial effect against Staphylococcus aureus as well as Escherichia coli, and possible cytotoxicity against human bone cells. The HA-Ag coatings with different concentrations of Ag displayed mechanical and compositional properties that fulfill the regulatory requirements. Evaluation of the Ag release kinetic showed a high release rate in the first 24 h followed by a decreasing release rate over the four subsequent days. The HA-Ag coatings showed no cytotoxicity to primary human bone cells while exhibiting antibacterial activity to E. coli and S. aureus.

  10. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.

  11. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.

    PubMed

    Thomson, R C; Yaszemski, M J; Powers, J M; Mikos, A G

    1998-11-01

    A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.

  12. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.

  13. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.

    PubMed

    Tencer, A F; Woodard, P L; Swenson, J; Brown, K L

    1988-01-01

    CHAG, that is, porous hydroxyapatite hydrothermally converted from the calcium carbonate exoskeleton of a coral (genus Goniopora), has been shown to be effective as a scaffold for bone ingrowth. The large pores in the material, however, resulted in low compressive strengths. Compressive testing was performed to assess the changes in mechanical properties by coating the internal surfaces of CHAG with DL-PLA. Plugs of CHAG with thick (3:1 chloroform to DL-PLA by weight), medium (10:1), and thin (30:1) coatings as well as uncoated CHAG were then implanted transcortically in the proximal third of the diaphysis of rabbit tibiae to assess the in vivo response. The mechanical tests demonstrated significantly improved compressive strength, stiffness, and energy absorption for coated specimens compared with uncoated specimens. Coated specimens were not significantly different from canine tibial cancellous bone in strength and stiffness although they achieved only 36% of the energy absorption capacity. Specimens from rabbit tibiae were harvested at 3, 12, and 24 weeks for interface shear strength determination and contralaterally for histological and histomorphometric assessment. At 12 weeks, uncoated CHAG plugs developed an average ultimate interface shear stress of 26.7 MPa compared with 17 MPa for specimens with 30:1 coatings and 8 MPa for specimens with 10:1 and 3:1 coatings. At 24 weeks, there were no significant differences in shear stress between any of the specimens. Histomorphometric assessments showed that the ratio of area fraction of new bone to area fraction of new bone and void space increased from 68-70% for specimens with 3:1 and 10:1 coatings at 3 weeks to 85.5-89.5% at 24 weeks. In comparison, uncoated and 30:1 specimens had area fraction ratios of about 82% at 3 weeks and 93% at 24 weeks. Histologic sections demonstrated direct apposition of new bone to both the coating and the hydroxyapatite as well as degradation of the coating.

  14. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts

    PubMed Central

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme

  15. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.

    PubMed

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I; Davison, Noel L; de Vries, Teun J; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme

  16. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.

    PubMed

    Zhukauskas, Rasa; Dodds, Robert A; Hartill, Caroline; Arola, Travis; Cobb, Ronald R; Fox, Casey

    2010-03-01

    Complex fractures resulting in bone loss or impaired fracture healing remain problematic in trauma and orthopedic surgeries. Many bone graft substitutes have been developed and are commercially available. These products differ in their osteoconductive and osteoinductive properties. Differential enhancement of these properties may optimize the performance of these products for various orthopedic and craniofacial applications. The use of bone graft substitutes offers the ability to lessen the possible morbidity of the harvest site in autografts. The objective of the present study was to compare the ability of two bone graft substitutes, BioSet RT, an allograft demineralized bone matrix formulation, and ProOsteon 500R, a coralline hydroxyapatite, in a rabbit critical tibial defect model. BioSet RT and ProOsteon 500R were implanted into a unicortical proximal metaphyseal tibial defect and evaluated for new bone formation. Samples were analyzed radiographically and histologically at 1 day, 6 weeks, 12 weeks, and 24 weeks post surgery. Both materials were biocompatible and demonstrated significant bone growth and remodeling. At 12 weeks, the BioSet RT implanted sites demonstrated significantly more defect closure and bone remodeling as determined by radiographic analyses with 10 out of 14 defects being completely healed versus 1 out of 14 being completely healed in the ProOsteon 500R implanted sites. At 24 weeks, both materials demonstrated complete closure of the defect as determined histologically. There were no statistical differences in radiographic scores between the two implanted materials. However, there was an observable trend that the BioSet RT material generated higher histological and radiographic scores, although not statistically significant. This study provides evidence that both BioSet RT and ProOsteon 500R are biocompatible and able to induce new bone formation as measured in this rabbit model. In addition, this in vivo study demonstrates the ability of

  17. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone.

    PubMed

    Yamamoto, Kazufumi; Nakatsuji, Tomohiro; Yaoi, Yuichiro; Yamato, Yu; Yanagitani, Takahiko; Matsukawa, Mami; Yamazaki, Kaoru; Matsuyama, Yukihiro

    2012-03-01

    Quantitative ultrasound (QUS) is now widely used for evaluating bone in vivo, because obtained ultrasonic wave properties directly reflect the visco-elasticity. Bone tissue is composed of minerals like hydroxyapatite (HAp) and a collagen matrix. HAp crystallites orientation is thus one parameter of bone elasticity. In this study, we experimentally investigated the anisotropy of ultrasonic wave velocity and the HAp crystallites orientation in the axial-radial and axial-tangential planes in detail, using cylindrical specimens obtained from the cortical bone of three bovine femurs. Longitudinal bulk wave propagation was investigated by using a conventional ultrasonic pulse system. We used the one cycle of sinusoidal pulse which was emitted from wide band transmitter. The nominal frequency of the pulse was 1MHz. First, we investigated the anisotropy of longitudinal wave velocity, measuring the anisotropy of velocity in two planes using cylindrical specimens obtained from identical bone areas. The wave velocity changed due to the rotation angle, showing the maximum value in the direction a little off the bone axis. Moreover, X-ray pole figure measurements also indicated that there were small tilts in the HAp crystallites orientation from the bone axis. The tilt angles were similar to those of the highest velocity direction. There were good correlations between velocity and HAp crystallites orientation obtained in different directions. However, a comparatively low correlation was found in posterior bone areas, which shows the stronger effects of bone microstructure. In the radial-tangential plane, where the HAp crystallites hardly ever align, weak anisotropy of velocity was found which seemed to depend on the bone microstructure. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds.

    PubMed

    Russo, A; Bianchi, M; Sartori, M; Boi, M; Giavaresi, G; Salter, D M; Jelic, M; Maltarello, M C; Ortolani, A; Sprio, S; Fini, M; Tampieri, A; Marcacci, M

    2017-02-15

    Magnetic scaffolds have recently attracted significant attention in tissue engineering due to the prospect of improving bone tissue formation by conveying soluble factors such as growth factors, hormones, and polypeptides directly to the site of implantation, as well as to the possibility of improving implant fixation and stability. The objective of this study was to compare bone tissue formation in a preclinical rabbit model of critical femoral defect treated either with a hydroxyapatite (HA)/magnetite (90/10 wt %) or pure HA porous scaffolds at 4 and 12 weeks after implantation. The biocompatibility and osteogenic activity of the novel magnetic constructs was assessed with analysis of the amount of newly formed bone tissue and its nanomechanical properties. The osteoconductive properties of the pure HA were confirmed. The HA/magnetite scaffold was able to induce and support bone tissue formation at both experimental time points without adverse tissue reactions. Biomechanically, similar properties were obtained from nanoindentation analysis of bone formed following implantation of magnetic and control scaffolds. The results indicate that the osteoconductive properties of an HA scaffold are maintained following inclusion of a magnetic component. These provide a basis for future studies investigating the potential benefit in tissue engineering of applying magnetic stimuli to enhance bone formation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  19. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits.

    PubMed

    Lambert, France; Lecloux, Geoffrey; Léonard, Angelique; Sourice, Sophie; Layrolle, Pierre; Rompen, Eric

    2013-06-01

    The first objective of this study was to qualitatively and quantitatively assess the bone formation process, particularly the long-term behavior and three-dimensional volume stability of subsinusal bone regeneration, using titanium (Ti) or bovine hydroxyapatite (BHA) granules, in a rabbit model. The second objective was to evaluate the effect of the hydration of the BHA particles with a therapeutic concentration of doxycycline solution on the osteogenesis and biomaterial resorption. Rabbits underwent a double sinus lift procedure using one of three materials: grade 1 porous Ti particles, BHA, or BHA hydrated with doxycycline solution (0.1mg/ml) (BHATTC). Animals were sacrificed after 1 week, 5 weeks, or 6 months. Samples were analyzed using µCT and nondecalcified histology. The materials used in each of the three groups allowed an optimal bone formation; bone quantities and densities were not statistically different between the three groups. At 6 months, more stable three-dimensional volume stability was found with Ti and BHATTC (p=.0033). At 5 weeks and 6 months, bone to material contact corroborating osteoconduction was significantly higher with BHA and BHATTC than with Ti (p<.0001). Even though the studied biomaterials displayed different architectures, they are relevant candidates for sinus lift bone augmentation prior to dental implants because they allow adequate three-dimensional stability and osteogenesis. However, to recommend the clinical use of Ti, both an observation on the drilling effects of Ti particles and clinical trials are needed. © 2011 Wiley Periodicals, Inc.

  20. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    PubMed Central

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. PMID:27103801

  1. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride

    PubMed Central

    Qiao, Wei; Liu, Quan; Li, Zhipeng; Zhang, Hanqing; Chen, Zhuofan

    2017-01-01

    Abstract As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite. PMID:28243337

  2. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    PubMed

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 μm, a specific surface area of 40 m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales.

  3. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits.

    PubMed

    Huber, Franz-Xaver; Berger, Irina; McArthur, Nicholas; Huber, Colette; Kock, Hans-Peter; Hillmeier, Jürgen; Meeder, Peter Jürgen

    2008-01-01

    The purpose of our study was to test the effectiveness of Ostim nanocrystalline hydroxyapatite paste and Cerabone ceramic by treating a critical size bone defect (CSD) on the right foreleg of a white New Zealand rabbit. Evaluation was carried out by comparing four groups each with a different CSD filling: an only OSTIM bone filling, an only Cerabone filling, an OSTIM-Cerabone combination, and a control group with no filling of the CSD. The results of this study display a rapid and uniform bone ingrowth following the CSD filling with Ostim. The histological and histomorphometrical data have shown similarly excellent results for both the Ostim and Cerabone-Ostim groups. The control group faired poorly in comparison, as three cases of non-union were observed and none of the defects were totally refilled with fresh bone within 60 days. The successful bone healing with osseous consolidation verifies the importance of the nanocrystalline hydroxyapatite in the treatment of metaphyseal osseous volume defects in the metaphyseal spongiosa.

  4. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors

    PubMed Central

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H. H.; Friedrich, Heiner; Brylka, Laura J.; Hilbers, Peter A. J.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2011-01-01

    Bone is a composite material, in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals1,2. In the periodic 67 nm cross-striated pattern of the collagen fibril3–5, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow6–9. This process is believed to be directed by highly acidic non-collagenous proteins6,7,9–11; however, the role of the collagen matrix12–14 during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography15 with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation. PMID:20972429

  5. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.

    PubMed

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H H; Friedrich, Heiner; Brylka, Laura J; Hilbers, Peter A J; de With, Gijsbertus; Sommerdijk, Nico A J M

    2010-12-01

    Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.

  6. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation.

    PubMed

    Gonçalves, Elsa M; Oliveira, Filipe J; Silva, Rui F; Neto, Miguel A; Fernandes, M Helena; Amaral, Margarida; Vallet-Regí, María; Vila, Mercedes

    2016-08-01

    A three-phase [nanocrystalline hydroxyapatite (HA), carbon nanotubes (CNT), mixed in a polymeric matrix of polycaprolactone (PCL)] composite scaffold produced by 3D printing is presented. The CNT content varied between 0 and 10 wt % in a 50 wt % PCL matrix, with HA being the balance. With the combination of three well-known materials, these scaffolds aimed at bringing together the properties of all into a unique material to be used in tissue engineering as support for cell growth. The 3D printing technique allows producing composite scaffolds having an interconnected network of square pores in the range of 450-700 μm. The 2 wt % CNT scaffold offers the best combination of mechanical behaviour and electrical conductivity. Its compressive strength of ∼4 MPa is compatible with the trabecular bone. The composites show typical hydroxyapatite bioactivity, good cell adhesion and spreading at the scaffolds surface, this combination of properties indicating that the produced 3D, three-phase, scaffolds are promising materials in the field of bone regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1210-1219, 2016. © 2015 Wiley Periodicals, Inc.

  7. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.

    PubMed

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham; Webster, Thomas J

    2009-04-29

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml(-1) HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  8. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J.

    2009-04-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml-1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  9. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.

    PubMed

    Rathbone, C R; Guda, T; Singleton, B M; Oh, D S; Appleford, M R; Ong, J L; Wenke, J C

    2014-05-01

    Highly porous hydroxyapatite (HA) scaffolds were developed as bone graft substitutes using a template coating process, characterized, and seeded with bone marrow-derived mesenchymal stem cells (BMSCs). To test the hypothesis that cell-seeded HA scaffolds improve bone regeneration, HA scaffolds without cell seeding (HA-empty), HA scaffolds with 1.5 × 10(4) BMSCs (HA-low), and HA scaffolds with 1.5 × 10(6) BMSCs (HA-high) were implanted in a 10-mm rabbit radius segmental defect model for 4 and 8 weeks. Three different fluorochromes were administered at 2, 4, and 6 weeks after implantation to identify differences in temporal bone growth patterns. It was observed from fluorescence histomorphometry analyses that an increased rate of bone infiltration occurred from 0 to 2 weeks (p < 0.05) of implantation for the HA-high group (2.9 ± 0.5 mm) as compared with HA-empty (1.8 ± 0.8 mm) and HA-low (1.3 ± 0.2 mm) groups. No significant differences in bone formation within the scaffold or callus formation was observed between all groups after 4 weeks, with a significant increase in bone regenerated for all groups from 4 to 8 weeks (28.4% across groups). Although there was no difference in bone formation within scaffolds, callus formation was significantly higher in HA-empty scaffolds (100.9 ± 14.1 mm(3) ) when compared with HA-low (57.8 ± 7.3 mm(3) ; p ≤ 0.003) and HA-high (69.2 ± 10.4 mm(3) ; p ≤ 0.02) after 8 weeks. These data highlight the need for a better understanding of the parameters critical to the success of cell-seeded HA scaffolds for bone regeneration.

  10. Investigating the weight ratio variation of alginate-hydroxyapatite composites for vertebroplasty method bone filler material

    NASA Astrophysics Data System (ADS)

    Lestari, Gusti Ruri; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    One of the newly developed methods for curing spinal fracture due to osteoporosis is vertebroplasty. The method is basically based on injection of special material directly to the fractured spine in order to commence the formation of new bone. Therefore, appropriate injectable materials are very important to the curing success. In this study, injectable alginate-hydroxyapatite (HA) composites were fabricated varying the weight percentage of alginate upon synthesis procedure. The result of injection capability and compressive tests as well as Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) suggested that bone filler composite containing 60 wt% alginate is the optimum composition obtaining a compressive modulus up to 0.15 MPa, injection capability of more than 85% and morphology with uniform porous and fibrous structure. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method.

  11. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite

  12. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  13. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  14. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants

    PubMed Central

    Nithya, Rajendran; Meenakshi Sundaram, Nachiappan

    2015-01-01

    Introduction In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. Aim The objective of the study reported here was to prepare a composite film of nanocrystalline hydroxyapatite (HAp) and polycaprolactone (PCL) polymer loaded with ciprofloxacin, a frequently used antibiotic agent for bone infections. Methods Nanocrystalline HAp was synthesized by precipitation method using the precursor obtained from eggshell. The nanocomposite film (HAp-PCL-ciprofloxacin) was prepared by solvent evaporation. Drug-release and biodegradation studies were undertaken by immersing the composite film in phosphate-buffered saline solution, while a cytotoxicity test was performed using the fibroblast cell line NIH-3T3 and osteoblast cell line MG-63. Results The pure PCL film had quite a low dissolution rate after an initial sharp weight loss, whereas the ciprofloxacin-loaded HAp-PCL nanocomposite film had a large weight loss due to its fast drug release. The composite film had higher water absorption than the pure PCL, and increasing the concentration of the HAp increased the water absorption. The in vitro cell-line study showed a good biocompatibility and bioactivity of the developed nanocomposite film. Conclusion The prepared film will act as a sustainable bone implant in addition to controlled drug delivery. PMID:26491313

  15. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration.

    PubMed

    Diaz-Gomez, Luis; García-González, Carlos A; Wang, Jiamian; Yang, Fang; Aznar-Cervantes, Salvador; Cenis, Jose Luis; Reyes, Ricardo; Delgado, Araceli; Évora, Carmen; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2017-07-15

    Regenerative medicine seeks advanced solutions for bone repair in the form of bioactive synthetic scaffolds by using simple and reproducible processing techniques. In this work, poly-ε-caprolactone (PCL)-based porous scaffolds with improved osteoconductive and osteoinductive properties were processed by supercritical foaming through a careful tuning of components and processing conditions. Composite scaffolds were prepared from various combinations of PCL, silk fibroin and nano-hydroxyapatite (nHA). The green and cost-effective supercritical CO2 foaming method applied rendered solid scaffolds with 67-70% porosity. The incorporation of fibroin and nHA in the scaffolds increased the compressive modulus, cellular adhesion and calcium deposition. The composite scaffolds were tested in vivo in a large-scale calvarial defect model, and bone regeneration was evaluated for up to 14 weeks after implantation. Histomorphometric results showed that all implanted constructs gave rise to the endochondral bone formation and unveiled the synergistic effect of silk fibroin and nHA on the bone repair extent. The information gathered may shed light on the design and processing criteria of bioactive bone scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.

    PubMed

    Pallela, Ramjee; Venkatesan, Jayachandran; Janapala, Venkateswara Rao; Kim, Se-Kwon

    2012-02-01

    Tricomponent scaffold systems prepared by natural materials especially of marine origin are gaining much attention nowadays for the application in bone tissue engineering. A novel scaffold (Chi-HAp-MSCol) containing chitosan (Chi), hydroxyapatite (HAp) derived from Thunnus obesus bone and marine sponge (Ircinia fusca) collagen (MSCol) was prepared using freeze-drying and lyophilization method. This biomimetic scaffold, along with the Chi and Chi-HAp scaffolds were characterized biophysicochemically for their comparative significance in bone grafting applications. The structural composition of the chitosan, Chi-Hap, and Chi-HAp-MSCol scaffolds were characterized by Fourier Transform Infrared spectroscopy. The porosity, water uptake, and retention abilities of the composite scaffolds decreased, whereas Thermogravimetric and Differential Thermal Analyses results revealed the increase in thermal stability in the scaffold because of the highly stable HAp and MSCol. Homogeneous dispersion of HAp and MSCol in chitosan matrix with interconnected porosity of 60-180 μm (Chi-HAp) and 50-170 μm (Chi-HAp-MSCol) was observed by Scanning Electron Microscopy, X-ray diffraction, and optical microscopy. Cell proliferation in composite scaffolds was relatively higher than pure chitosan when observed by MTT assay and Hoechst staining in vitro using MG-63 cell line. These observations suggest that the novel Chi-HAp-MSCol composite scaffolds are promising biomaterials for matrix-based bone repair and bone augmentation. Copyright © 2011 Wiley Periodicals, Inc.

  17. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion

    PubMed Central

    Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun

    2016-01-01

    Objective To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. Methods From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). Results We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). Conclusion The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might

  18. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    PubMed Central

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  19. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation.

  20. [Repairing bone defect with nano-hydroxyapatite and polyamide 66 composite after giant cell tumor operations].

    PubMed

    Zhang, Shu-liang; Zhou, Yong; Duan, Hong; Min, Li; Zhang, Hui; Shi, Rui; Tu, Chong-qia; Pei, Fu-xing

    2012-05-01

    To evaluate the clinical effectiveness and safety of using granular type nano-hydroxyapatite and polyamide 66 (n-HA/PA66) composite in repairing bone defects caused by giant cell tumors. 48 patients with giant cell tumors, who underwent lesion curettage, inactivation and cavities fill-in with granular type n-HA/PA66 from December 2007 to May 2011, were followed up. Routine blood tests, liver and kidney functions, serum calcium and phosphorus, and immunologic parameters were examined before and after the surgeries. Radiological examinations were carried out 1 week and 1, 3, 6 and 12 months post operations to monitor the bone repairing process. The n-HA/ PA66 in bone issues was detected with hematoxylin-eosin staining. 45 patients completed the follow-up. No significant abnormalities in routine blood tests, serum calcium and phosphorus, and immunologic parameters were found pre- and post-operations. Nor abnormal liver and kidney functional lesions were identified. The radiological examination showed gradual increase in the density of the focal zone after bone implanting operations. The bone density of the implanted areas got close to normal 1 year after operations. The histological examination found that osteoblasts grew into the hole of n-HA/PA66; calcium was deposited on the materials; and large amount of osteocytes inlaid into the composite. The composite was integrated into new bone and surrounding tissues. n-HA/PA66 has good biocompatibility and biological safety. It also has good osteoconduction and osteogenesis activity. The n-HA/PA66 composite is one perfect bone repair material.

  1. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki

    2007-09-01

    Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.

  2. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    PubMed

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks.

  3. Nano-Hydroxyapatite Doped with Ho-166 as Drug Delivery System for Bone Cancer Therapy and Diagnosis: Developing a Theragnostic Radiopharmaceuticals.

    PubMed

    da Silva, Franciana Maria Rosa; de Almeida, Julio Cezar; Oliveira, Elizabeth Eugenio de Mello; de Souza Albernaz, Marta; Rossi, Alexandre Malta; Santos-Oliveira, Ralph

    2017-01-01

    The use of nanobiomaterials is increasing each day. Among the immense variety of nanomaterials developed and studied the hydroxyapatite is one of the most ones. In this study we developed and tested nano-hydroxyapatite dopped with Ho-166 for bone cancer. The results showed that the nano-hydroxyapatite dopped with Ho-166 has a great affinity for the bone. The pre-clinical studies support the use as a nano-radiopharmaceuticals for bone cancer treatment and diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis

    PubMed Central

    Vaca-Cornejo, Fabiola; Reyes, Héctor Macías; Jiménez, Sergio H. Dueñas; Velázquez, Ricardo A. Llamas; Jiménez, Judith M. Dueñas

    2017-01-01

    Periodontitis is an infectious and inflammatory disease associated with significant loss of alveolar crest and soft tissue attached to the teeth. Chitosan and hydroxyapatite are biomaterials used for bone tissue repair because of their biodegradability and biocompatibility in nature. The present study evaluated the effects of chitosan (CH) in combination with hydroxyapatite (HAP) to promote alveolar bone growth. A chitosan implant mixed with hydroxyapatite was implanted into the affected area of 9 patients suffering chronic periodontitis. Patients were evaluated through X-ray images and a millimetric slide over a one year period. The application of CH/HAP produced an average alveolar bone growth of 5.77 mm (±1.87 mm). At the onset of the study, the dental pocket exhibited a depth level (DPDL) of 8.66 mm and decreased to 3.55 mm one year after the implant. Tooth mobility grade was 2.44 mm at the onset and 0.8 mm at the end of the study with a significant difference of p < 0.001. Moreover, the bone density in the affected areas was similar to the density of the bone adjacent to it. This result was confirmed with the software implant viewer from Anne Solutions Company. In conclusion, the CH/HAP implant promoted alveolar bone growth in periodontitis patients. PMID:28753925

  5. Effect of Heat Treatment Temperature on Chemical Compositions of Extracted Hydroxyapatite from Bovine Bone Ash

    NASA Astrophysics Data System (ADS)

    Younesi, M.; Javadpour, S.; Bahrololoom, M. E.

    2011-11-01

    This article presents the effect of heat treating temperature on chemical composition of hydroxyapatite (HA) that was produced by burning bovine bone, and then heat treating the obtained bone ash at different temperatures in range of 600-1100 °C in air. Bone ash and the resulting white powder from heat treating were characterized by Fourier transformed infrared spectroscopy (FT-IR) and x-ray diffractometry (XRD). The FT-IR spectra confirmed that heat treating of bone ash at temperature of 800 °C removed the total of organic substances. x-ray diffraction analysis showed that the white powder was HA and HA was the only crystalline phase indicated in heat treating product. x-ray fluorescence analyses revealed that calcium and phosphorous were the main elements and magnesium and sodium were minor impurities of produced powder at 800 °C. The results of the energy dispersive x-ray analysis showed that Ca/P ratio in produced HA varies in range of 1.46-2.01. The resulting material was found to be thermally stable up to 1100 °C.

  6. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications.

  7. Calcium hydroxyapatite ceramic implants in bone tumour surgery. A long-term follow-up study.

    PubMed

    Matsumine, A; Myoui, A; Kusuzaki, K; Araki, N; Seto, M; Yoshikawa, H; Uchida, A

    2004-07-01

    We reviewed the results of 51 patients with benign bone tumours treated by curettage and implantation of calcium hydroxyapatite ceramic (CHA). The mean follow-up was 11.4 years (10 to 15.5). Post-operative fractures occurred in two patients and three had local recurrences; three had slightly limited movement of the adjacent joint and one had mild osteoarthritis. There were no allergic or neoplastic complications. In all cases, radiographs showed that the CHA was well incorporated into the host bone. Statistical analysis showed that absorption of the implanted CHA was greater in males (odds ratio, 6.2; 95% CI, 1.6 to 23.7) and younger patients (odds ratio, 0.6 for increase in age of 10 years; 95% CI, 0.91 to 0.99). However, the implanted CHA was not completely absorbed in any patient. We conclude that CHA is a useful and safe bone substitute for the treatment of benign bone tumours.

  8. Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone.

    PubMed

    Culpepper, Bonnie K; Morris, David S; Prevelige, Peter E; Bellis, Susan L

    2013-03-01

    Hydroxyapatite (HA) is the principal constituent of bone mineral, and synthetic HA is widely used as a biomaterial for bone repair. Previous work has shown that polyglutamate domains bind selectively to HA and that these domains can be utilized to couple bioactive peptides onto many different HA-containing materials. In the current study we have adapted this technology to engineer polyglutamate domains into cargo-loaded nanocage structures derived from the P22 bacteriophage. P22 nanocages have demonstrated significant potential as a drug delivery system due to their stability, large capacity for loading with a diversity of proteins and other types of cargo, and ability to resist degradation by proteases. Site-directed mutagenesis was used to modify the primary coding sequence of the P22 coat protein to incorporate glutamate-rich regions. Relative to wild-type P22, the polyglutamate-modified nanocages (E2-P22) exhibited increased binding to ceramic HA disks, particulate HA and allograft bone. Furthermore, E2-P22 binding was HA selective, as evidenced by negligible binding of the nanocages to non-HA materials including polystyrene, agarose, and polycaprolactone (PCL). Taken together these results establish a new mechanism for the directed coupling of nanocage drug delivery systems to a variety of HA-containing materials commonly used in diverse bone therapies.

  9. Poly (1,8 Octanediol-co-Citrate) Hydroxyapatite Composite as Antibacterial Biodegradable Bone Screw

    NASA Astrophysics Data System (ADS)

    Widiyanti, P.; Sholikhah, I.; Isfandiary, A.; Hasbiyani, NAF; Lazuardi, M. B.; Laksana, R. D.

    2017-05-01

    The high bone fracture rates reaching up to 300-400 cases per month have been treated with surgical procedure of internal fixation. Nevertheless, the commonly used metal screw has shown several weaknesses. Therefore, it is required bone screw of which primary characteristics include being biocompatible, bio-functional, biodegradable, and anticorrosive. The study aimed to synthesize Antibacterial Poly 1,8-Octanediol-co-Citrate (POC) and investigated the effect of chitosan on the antibacterial and compatibility characteristics of POC-HA composite as antibacterial biodegradable bone screw. The characterization were conducted on POC-HA composite to assess its functional cluster, antibacterial activity, cytotoxicity, degradation capacity, and morphology. Pre-polymer POC was composited with 62% nano-HA, followed by post-polymerization treatment. The sample then coated by chitosan with composition variations of 1%, 3%, and 5%. The nano-HA marked with the appearance of phosphate cluster on the wavenumber of 872.17 cm-1 and 559.51 cm-1, while the chitosan marked with C=O stretch cluster of esther at 1729 cm-1 from Fourier Transform Infra-Red (FTIR) measurement. The best result was obtained with 3% chitosan coating. The POC-HA composites showed bacterial inhibiting ability of 16.92 mm with non-toxic characteristics. These results indicated that chitosan coating Poly 1,8-Octanediol-co-Citrate (POC)-Nano Hydroxyapatite composite is a potential candidate for an antibacterial biodegradable bone screw.

  10. Hydroxyapatite nanorod-reinforced biodegradable poly(L-lactic acid) composites for bone plate applications.

    PubMed

    Aydin, Erkin; Planell, Josep A; Hasirci, Vasif

    2011-11-01

    Novel PLLA composite fibers containing hydroxyapatite (HAp) nanorods with or without surface lactic acid grafting were produced by extrusion for use as reinforcements in PLLA-based bone plates. Fibers containing 0-50% (w/w) HAp nanorods, aligned parallel to fiber axis, were extruded. Lactic acid surface grafting of HAp nanorods (lacHAp) improved the tensile properties of composites fibers better than the non-grafted ones (nHAp). Best tensile modulus values of 2.59, 2.49, and 4.12 GPa were obtained for loadings (w/w) with 30% lacHAp, 10% nHAp, and 50% amorphous HAp nanoparticles, respectively. Bone plates reinforced with parallel rows of these composite fibers were molded by melt pressing. The best compressive properties for plates were obtained with nHAp reinforcement (1.31 GPa Young's Modulus, 110.3 MPa compressive strength). In vitro testing with osteoblasts showed good cellular attachment and spreading on composite fibers. In situ degradation tests revealed faster degradation rates with increasing HAp content. To our knowledge, this is the first study containing calcium phosphate-polymer nanocomposite fibers for reinforcement of a biodegradable bone plate or other such implants and this biomimetic design was concluded to have potential for production of polymer-based biodegradable bone plates even for load bearing applications.

  11. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting.

    PubMed

    Chris Arts, J J; Verdonschot, Nico; Schreurs, Berend W; Buma, Pieter

    2006-03-01

    Calcium phosphates such as TCP-HA granules are considered promising bone graft substitutes. In the future, they may completely replace allograft bone for impaction grafting procedures. Mechanically, acetabular reconstructions with TCP-HA granules show high stability, however this is partly caused by excessive cement penetration, which is unfavourable from a biological perspective. It has been hypothesised that mixtures of morselised cancellous bone grafts (MCB) and/or TCP-HA granules with a nano-crystalline hydroxyapatite paste (Ostim) may reduce cement penetration while maintaining adequate implant stability and biocompatibility of the graft mixture. To investigate this hypothesis, destructive lever-out tests and in vivo animal test were performed with various combinations of materials. Mechanically, the addition of 10% Ostim to mixtures of MCB and/or TCP-HA granules reduced cement penetration and resulted in a mechanical stability comparable to pure allograft (the current gold standard). Biologically, the application of Ostim with MCB or TCP-HA granules did not hamper the biocompatibility of the materials. Ostim was mostly osseous-integrated with MCB or TCP-HA granules after 8 weeks. Also, non-osseous-integrated Ostim remnants were observed. In tartrate resistant acid phosphatase stained sections, these few non-osseous integrated Ostim remnants were actively being resorbed by osteoclasts. In conclusion, Ostim HA-paste could be a valuable addition when TCP-HA ceramic granules are being used for acetabular bone impaction grafting procedures.

  12. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering.

    PubMed

    Wang, Huanan; Li, Yubao; Zuo, Yi; Li, Jihua; Ma, Sansi; Cheng, Lin

    2007-08-01

    In this study, we prepared nano-hydroxyapatite/polyamide (n-HA/PA) composite scaffolds utilizing thermally induced phase inversion processing technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Mesenchymal stem cells (MSCs) derived from bone marrow of neonatal rabbits were cultured, expanded and seeded on n-HA/PA scaffolds. The MSC/scaffold constructs were cultured for up to 7 days and the adhesion, proliferation and differentiation of MSCs into osteoblastic phenotype were determined using MTT assay, alkaline phosphatase (ALP) activity and collagen type I (COL I) immunohistochemical staining and scanning electronic microscopy (SEM). The results confirm that n-HA/PA scaffolds are biocompatible and have no negative effects on the MSCs in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure n-HA/PA scaffolds and MSC/scaffold constructs were implanted in rabbit mandibles and studied histologically and microradiographically. The results show that n-HA/PA composite scaffolds exhibit good biocompatibility and extensive osteoconductivity with host bone. Moreover, the introduction of MSCs to the scaffolds dramatically enhanced the efficiency of new bone formation, especially at the initial stage after implantation. In long term (more than 12 weeks implantation), however, the pure scaffolds show as good biocompatibility and osteogenesis as the hybrid ones. All these results indicate that the scaffolds fulfill the basic requirements of bone tissue engineering scaffold, and have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery.

  13. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    NASA Astrophysics Data System (ADS)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  14. Bioinspired Composite Matrix Containing Hydroxyapatite-Silica Core-Shell Nanorods for Bone Tissue Engineering.

    PubMed

    A, Anitha; Menon, Deepthy; T B, Sivanarayanan; Koyakutty, Manzoor; Mohan, Chandini C; Nair, Shantikumar V; Nair, Manitha B

    2017-08-16

    Development of multifunctional bioinspired scaffolds that can stimulate vascularization and regeneration is necessary for the application in bone tissue engineering. Herein, we report a composite matrix containing hydroxyapatite (HA)-silica core-shell nanorods with good biocompatibility, osteogenic differentiation, vascularization, and bone regeneration potential. The biomaterial consists of a crystalline, rod-shaped nanoHA core with uniform amorphous silica sheath (Si-nHA) that retains the characteristic phases of the individual components, confirmed by high-resolution transmission electron microscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The nanorods were blended with gelatinous matrix to develop as a porous, composite scaffold. The viability and functionality of osteogenically induced mesenchymal stem cells as well as endothelial cells have been significantly improved through the incorporation of Si-nHA within the matrix. Studies in the chicken chorioallantoic membrane and rat models demonstrated that the silica-containing scaffolds not only exhibit good biocompatibility, but also enhance vascularization in comparison to the matrix devoid of silica. Finally, when tested in a critical-sized femoral segmental defect in rats, the nanocomposite scaffolds enhanced new bone formation in par with the biomaterial degradation. In conclusion, the newly developed composite biomimetic scaffold may perform as a promising candidate for bone tissue engineering applications.

  15. Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone

    PubMed Central

    Culpepper, Bonnie K.; Morris, David S.; Prevelige, Peter E.; Bellis, Susan L.

    2013-01-01

    Hydroxyapatite (HA) is the principal constituent of bone mineral, and synthetic HA is widely used as a biomaterial for bone repair. Previous work has shown that polyglutamate domains bind selectively to HA and that these domains can be utilized to couple bioactive peptides onto many different HA-containing materials. In the current study we have adapted this technology to engineer polyglutamate domains into cargo-loaded nanocage structures derived from the P22 bacteriophage. P22 nanocages have demonstrated significant potential as a drug delivery system due to their stability, large capacity for loading with a diversity of proteins and other types of cargo, and ability to resist degradation by proteases. Site-directed mutagenesis was used to modify the primary coding sequence of the P22 coat protein to incorporate glutamate-rich regions. Relative to wild-type P22, the polyglutamate-modified nanocages (E2-P22) exhibited increased binding to ceramic HA disks, particulate HA and allograft bone. Furthermore, E2-P22 binding was HA selective, as evidenced by negligible binding of the nanocages to non-HA materials including polystyrene, agarose, and polycaprolactone (PCL). Taken together these results establish a new mechanism for the directed coupling of nanocage drug delivery systems to a variety of HA-containing materials commonly used in diverse bone therapies. PMID:23312905

  16. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-21

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 ± 476 nm and 438 ± 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.

  17. Development of a new carbon nanotube–alginate–hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering

    PubMed Central

    Rajesh, Rajendiran; Dominic Ravichandran, Y

    2015-01-01

    In recent times, tricomponent scaffolds prepared from naturally occurring polysaccharides, hydroxyapatite, and reinforcing materials have been gaining increased attention in the field of bone tissue engineering. In the current work, a tricomponent scaffold with an oxidized multiwalled carbon nanotube (fMWCNT)–alginate–hydroxyapatite with the required porosity was prepared for the first time by a freeze-drying method and characterized using analytical techniques. The hydroxyapatite for the scaffold was isolated from chicken bones by thermal calcination at 800°C. The Fourier transform infrared spectra and X-ray diffraction data confirmed ionic interactions and formation of the fMWCNT–alginate–hydroxyapatite scaffold. Interconnected porosity with a pore size of 130–170 µm was evident from field emission scanning electron microscopy. The total porosity calculated using the liquid displacement method was found to be 93.85%. In vitro biocompatibility and cell proliferation on the scaffold was checked using an MG-63 cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell attachment by Hoechst stain assay. In vitro studies showed better cell proliferation, cell differentiation, and cell attachment on the prepared scaffold. These results indicate that this scaffold could be a promising candidate for bone tissue engineering. PMID:26491303

  18. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering.

    PubMed

    Rajesh, Rajendiran; Ravichandran, Y Dominic

    2015-01-01

    In recent times, tricomponent scaffolds prepared from naturally occurring polysaccharides, hydroxyapatite, and reinforcing materials have been gaining increased attention in the field of bone tissue engineering. In the current work, a tricomponent scaffold with an oxidized multiwalled carbon nanotube (fMWCNT)-alginate-hydroxyapatite with the required porosity was prepared for the first time by a freeze-drying method and characterized using analytical techniques. The hydroxyapatite for the scaffold was isolated from chicken bones by thermal calcination at 800°C. The Fourier transform infrared spectra and X-ray diffraction data confirmed ionic interactions and formation of the fMWCNT-alginate-hydroxyapatite scaffold. Interconnected porosity with a pore size of 130-170 µm was evident from field emission scanning electron microscopy. The total porosity calculated using the liquid displacement method was found to be 93.85%. In vitro biocompatibility and cell proliferation on the scaffold was checked using an MG-63 cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell attachment by Hoechst stain assay. In vitro studies showed better cell proliferation, cell differentiation, and cell attachment on the prepared scaffold. These results indicate that this scaffold could be a promising candidate for bone tissue engineering.

  19. VO2+-hydroxyapatite complexes as models for vanadyl coordination to phosphate in bone

    NASA Astrophysics Data System (ADS)

    Dikanov, Sergei A.; Liboiron, Barry D.; Orvig, Chris

    2013-10-01

    We describe a 1D and 2D electron spin echo envelope modulation investigation of VO2+ adsorbed on hydroxyapatite (HA) at different concentrations and compare with VO2+-triphosphate (TPH) complexes studied previously in detail, in an effort to provide more insight into the structure of VO2+ coordination in bone. Structures of this interaction are important because of the role of bone in the long-term storage of administered vanadium, and the likely role of bone in the steady-state release of vanadium leading to the chronic insulin-enhancing anti-diabetic effects of vanadyl complexes. Three similar sets of cross-peaks from phosphorus nuclei observed in the 31P hyperfine sublevel correlation (HYSCORE) spectra of VO2+-HA, VO2+-TPH and VO2+-bone suggest a common tridentate binding motif for triphosphate moieties to the vanadyl ion. The similarities between the systems present the possibility that in vivo vanadyl coordination in bone is relatively uniform. Experiments with HA samples containing different amounts of adsorbed VO2+ demonstrate additional peculiarities of the ion-adsorbent interaction which can be expected in vivo. The HYSCORE spectra of HA samples show varying relative intensities of 31P lines from phosphate ligands and 1H lines, especially lines from protons of coordinated water molecules. This result suggests that the number of equatorial phosphate ligands in HA could be different depending on the water content of the sample and the VO2+ concentration; complexes of different structures probably contribute to the spectra of VO2+-HA. Similar behaviour can also be expected in vivo during VO2+ accumulation in bones.

  20. Cancellous bone healing around strontium-doped hydroxyapatite in osteoporotic rats previously treated with zoledronic acid.

    PubMed

    Li, Yunfeng; Shui, Xueping; Zhang, Li; Hu, Jing

    2016-04-01

    Bisphosphonates (BPs) are potent anti-osteoporotic agents. Strontium-doped hydroxyapatite (HA) (SrHA) has been reported to increase bone density and improve trabecular microarchitecture in osteoporotic animals. But information about the effect of SrHA on the surrounding bone tissue in osteoporotic animals previously on BPs treatment is limited. We hypothesize that SrHA will induce increased bone density in the vicinity of the material when compared to HA, even in osteoporotic animals previously treated with BPs. HA and 10%SrHA (HA with 10 mol % calcium substituted by strontium) implants were prepared and characterized by scanning electronic microscopy (SEM), X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). Osteoporotic animal model was established by bilateral ovariectomy. Twelve weeks later, all OVX rats accepted subcutaneous injection of zoledronic acid (ZOL) at the dose of 1.5 μg/kg weekly for another twelve weeks. Subsequently, rod-shaped HA and SrHA implants were inserted in the distal femur of the OVX animals previously treated with ZOL. Eight weeks after implantation, specimens were harvested for histological and micro-computed tomography (micro-CT) analysis. Compared to HA, 10%SrHA raised the percent bone volume by 32.7%, the mean trabecular thickness by 36.5%, the mean trabecular number by 34.3%, the mean connectivity density by 38.4%, while the mean trabecular separation showed no significant difference. 10%SrHA also increased the bone area density by 36.3% in histological analysis. Results from this study indicated that 10%SrHA increased bone density and improved trabecular microarchitecture around implants in osteoporotic animals previously treated with ZOL when compared to HA.

  1. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone.

    PubMed

    Venkatesan, Jayachandran; Qian, Zhong Ji; Ryu, BoMi; Thomas, Noel Vinay; Kim, Se Kwon

    2011-06-01

    In the present study, hydroxyapatite (HAp) was isolated from Thunnus obesus bone using alkaline hydrolysis and thermal calcination methods. The obtained ceramic has been characterized by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction analysis (XRD), field-emission scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy (TEM), selected area diffraction analysis, cytotoxic analysis and cell proliferation analysis. The results indicate that there are significant differences between the ceramics and T. obesus bone. FT-IR and TGA results affirmed that the collagen and organic moieties have been eliminated by both the proposed methods. XRD results were in agreement with JCPDS data. TEM and selective area diffraction images have signified that the thermal calcination method produces good crystallinity with dimensions 0.3-1.0 µm, whereas the alkaline hydrolysis method produces nanostructured HAp crystals with 17-71 nm length and 5-10 nm width. Biocompatibility of HAp crystals was evaluated by cytotoxicity and cell proliferation with human osteoblast-like cell MG-63.

  2. Bioinspired synthesis of hydroxyapatite nanocrystals in the presence of collagen and l-arginine: Candidates for bone regeneration.

    PubMed

    Brasinika, Despoina; Tsigkou, Olga; Tsetsekou, Athena; Missirlis, Yiannis F

    2016-04-01

    This work aims at the bioinspired synthesis of hydroxyapatite (HAp) crystals in the presence of both collagen and l-arginine, in an effort to obtain a homogeneous hybrid material, having a bone-like nanostructure. Collagen (Col) is the most commonly utilized protein in most species of life, while L-arginine (Arg) encourages cell attachment, proliferation, and differentiation on HAp surfaces. Transmission electron microscopy, X-ray diffraction and Fourier transform-infrared spectroscopy were used to analyze surface morphology and structure of nanocrystals obtained under different synthesis conditions. It was shown that collagen and arginine content affect HAp crystallization. Collagen has an inhibition effect since HAp crystal size is reduced with the increase of collagen content. The presence of arginine is crucial as a critical content exists (Ca(2+):Arg = 1:1) under which HAp nanocrystals coexist with brushite. Under the optimum synthesis conditions (HAp/Col weight ratio 70/30 and Ca(2+):Arg molar ratio 1:1) HAp nanoplates of a uniform size (around 10 × 10 nm) were obtained. The biocompatibility of this hybrid powder was assessed using human bone marrow derived mesenchymal stem cells (MSCs). Cell response in terms of MSC attachment (scanning electron microscopy) and viability/proliferation (Alamar Blue) demonstrated a noncytotoxic effect of the new material.

  3. The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration.

    PubMed

    Guarino, Vincenzo; Causa, Filippo; Netti, Paolo A; Ciapetti, Gabriela; Pagani, Stefania; Martini, Desiree; Baldini, Nicola; Ambrosio, Luigi

    2008-08-01

    Highly porous composites made up of biodegradable poly-epsilon-caprolactone (PCL) and stoichiometric hydroxyapatite (HA) particles have been developed as substrate for bone-tissue regeneration. The processing technique consists of phase inversion and particulate (salt crystals) leaching. Three different HA contents (13, 20 and 26 vol %) in PCL-based composite were considered in this study. Pore microstructure with fully interconnected network and pore sizes ranging around a few hundred of mum (macroporosity) was obtained as a result of salt particles removal by leaching process. Several microns (microporosity) porosity was also created through phase inversion of polymer solution. Total porosity up to 95% was achieved. Human marrow stromal cells (MSC) were seeded onto porous PCL-based composites for 1-5 weeks and cultured in osteogenic medium. MSC were able to adhere and grow on PCL-based substrates with a plateau at 3-4 weeks. However, the small effect of bioactive signals on the biological response evaluated in MSC cell culture suggests a prior role of topography on the biological response. Importantly, the presence of HA as a bioactive solid signal determines an increase of mechanical properties. On the overall, the results indicated that porous PCL-based composites are potential candidate for bone substitution with beneficial influence on structural characteristics by solid signal addition.

  4. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.

    PubMed

    Chen, Yantian; Zhang, Fengli; Fu, Qiang; Liu, Yong; Wang, Zejian; Qi, Nianmin

    2016-09-01

    Injectable thermo-sensitive hydrogels have a potential application in bone tissue engineering for their sensitivities and minimal invasive properties. Human dental pulp stem cells have been considered a promising tool for tissue reconstruction. The objective of this study was to investigate the proliferation and osteogenic differentiation of dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel in vitro. The chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were prepared using the sol-gel method. The injectability of chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel was measured using a commercial disposable syringe. Scanning electron microscopy was used to observe the inner structure of hydrogels. Then dental pulp stem cells were seeded in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel, respectively. The growth of dental pulp stem cells was periodically observed under an inverted microscope. The proliferation of dental pulp stem cells was detected by using an Alamar Blue kit, while cell apoptosis was determined by using a Live/Dead Viability/Cytotoxicity kit. The osteogenic differentiations of dental pulp stem cells in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were evaluated by alkaline phosphatase activity assay and mRNA expression of osteogenesis gene for 21 days in osteogenic medium. The results indicated that there was no significant difference between chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel in injectability. Cells within the chitosan/β-glycerophosphate/hydroxyapatite hydrogel displayed a typical adherent cell morphology and rapid proliferation with high cellular viability after 14 days of culture. Dental pulp stem cells seeded in chitosan/β-glycerophosphate/hydroxyapatite

  5. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering.

    PubMed

    Fabbri, Paola; Bondioli, Federica; Messori, Massimo; Bartoli, Cristina; Dinucci, Dinuccio; Chiellini, Federica

    2010-01-01

    Polycaprolactone/hydroxyapatite (PCL/HA) composites were prepared by in situ generation of HA in the polymer solution starting from the precursors calcium nitrate tetrahydrate and ammonium dihydrogen phosphate via sol-gel process. Highly interconnected porosity was achieved by means of the salt-leaching technique using a mixture of sodium chloride and sodium bicarbonate as porogens. Structure and morphology of the PCL/HA composites were investigated by scanning electron microscopy, and mechanical properties were determined by means of tensile and compression tests. The possibility to employ the developed composites as scaffolds for bone tissue regeneration was assessed by cytotoxicity test of the PCL/HA composites extracts and cell adhesion and proliferation in vitro studies.

  6. Hydroxyapatite whisker reinforced 63s glass scaffolds for bone tissue engineering.

    PubMed

    Shuai, Cijun; Cao, Yiyuan; Gao, Chengde; Feng, Pei; Xiao, Tao; Peng, Shuping

    2015-01-01

    Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity.

  7. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering.

    PubMed

    Dellinger, Jennifer G; Cesarano, Joseph; Jamison, Russell D

    2007-08-01

    Model hydroxyapatite (HA) scaffolds with porosities spanning multiple length scales were fabricated by robocasting, a solid freeform fabrication technique based on the robotic deposition of colloidal pastes. Scaffolds of various architectures including periodic, radial, and superlattice structures were constructed. Macropores (100-600 microm) were designed by controlling the arrangement and spacing between rods of HA. Micropores (1-30 microm) and submicron pores (less than 1 microm) were produced within the rods by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds. These model scaffolds may be used to systematically study the effects of scaffold porosity on bone ingrowth processes both in vitro and in vivo.

  8. Hydroxyapatite coating of cellulose sponges attracts bone-marrow-derived stem cells in rat subcutaneous tissue

    PubMed Central

    Tommila, Miretta; Jokilammi, Anne; Terho, Perttu; Wilson, Timothy; Penttinen, Risto; Ekholm, Erika

    2009-01-01

    The presence of bone-marrow-derived stem cells was investigated in a wound-healing model where subcutaneously implanted cellulose sponges were used to induce granulation tissue formation. When cellulose was coated with hydroxyapatite (HA), the sponges attracted circulating haemopoietic and mesenchymal progenitor cells more efficiently than uncoated cellulose. We hypothesized that the giant cells/macrophages of HA-coated sponges recognize HA as foreign material, phagocyte or hydrolyse it and release calcium ions, which are recognized by the calcium-sensing receptors (CaRs) expressed on many cells including haemopoietic progenitors. Our results showed, indeed, that the HA-coated sponges contained more CaR-positive cells than untreated sponges. The stem cells are, most probably, responsible for the richly vascularized granulation tissue formed in HA-coated sponges. This cell-guiding property of HA-coated cellulose might be useful in clinical situations involving impaired wound repair. PMID:19324666

  9. Hydroxyapatite Whisker Reinforced 63s Glass Scaffolds for Bone Tissue Engineering

    PubMed Central

    Shuai, Cijun; Cao, Yiyuan; Gao, Chengde; Feng, Pei; Xiao, Tao; Peng, Shuping

    2015-01-01

    Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity. PMID:25821798

  10. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects.

    PubMed

    Wang, Qi; Chen, Cheng; Liu, Wen; He, Xiaoqiang; Zhou, Nian; Zhang, Dongli; Gu, Hongchen; Li, Jidong; Jiang, Jiaxing; Huang, Wei

    2017-02-02

    Chronic osteomyelitis is a prolonged persistent disease accompanied by bone destruction and sequestrum formation, it is very difficult to treat. Antibiotic loaded polymethyl methacrylate (PMMA) has been used in clinical. However, when PMMA was implanted in the body, the deficiencies is that it is non-biodegradable and a second operation is needed. Here, we synthesize a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds, and evaluated the therapeutic effect in treating chronic osteomyelitis with bone defects in rabbit model compared with bulk PMMA. X-ray, Micro CT, gross pathology as well as immunohistochemical staining were performed at predesignated time points (1, 3, 6 and 12 weeks). Our results demonstrated that the efficiency of mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds loaded with 5 mg levofloxacin was much better at treating bone defects than the other groups. This novel synthetic scaffold may provide a solution for the treatment of chronic osteomyelitis.

  11. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects

    PubMed Central

    Wang, Qi; Chen, Cheng; Liu, Wen; He, Xiaoqiang; Zhou, Nian; Zhang, Dongli; Gu, Hongchen; Li, Jidong; Jiang, Jiaxing; Huang, Wei

    2017-01-01

    Chronic osteomyelitis is a prolonged persistent disease accompanied by bone destruction and sequestrum formation, it is very difficult to treat. Antibiotic loaded polymethyl methacrylate (PMMA) has been used in clinical. However, when PMMA was implanted in the body, the deficiencies is that it is non-biodegradable and a second operation is needed. Here, we synthesize a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds, and evaluated the therapeutic effect in treating chronic osteomyelitis with bone defects in rabbit model compared with bulk PMMA. X-ray, Micro CT, gross pathology as well as immunohistochemical staining were performed at predesignated time points (1, 3, 6 and 12 weeks). Our results demonstrated that the efficiency of mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds loaded with 5 mg levofloxacin was much better at treating bone defects than the other groups. This novel synthetic scaffold may provide a solution for the treatment of chronic osteomyelitis. PMID:28150731

  12. Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering.

    PubMed

    Park, Sung-Bin; Hasegawa, Urara; van der Vlies, André J; Sung, Moon-Hee; Uyama, Hiroshi

    2014-01-01

    A hybrid monolith of poly(γ-glutamic acid) and hydroxyapatite (PGA/HAp monolith) was prepared via biomineralization and used as a macroporous cell scaffold in bone tissue engineering. The PGA monolith having a bimodal pore size distribution was used as a substrate to induce biomineralization. The PGA/HAp monolith was obtained by immersing the PGA monolith in simulated body fluid. Pretreatment with CaCl2 enhanced the apatite-forming ability of the PGA monolith. Murine osteoblastic MC3T3-E1 cells efficiently attached and proliferated on the PGA/HAp monolith. MTT assay showed that both the PGA and PGA/HAp monolith did not have apparent cytotoxicity. Moreover, the PGA and PGA/HAp monoliths adsorbed bone morphogenetic protein-2 (BMP-2) by electrostatic interaction which was slowly released in the medium during cell culture. The PGA/HAp monolith enhanced BMP-2 induced alkaline phosphatase activity compared to the PGA monolith and a polystyrene culture plate. Thus, these PGA/HAp monoliths may have potential in bone tissue engineering.

  13. Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization

    NASA Astrophysics Data System (ADS)

    Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh

    2017-08-01

    Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.

  14. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byung Yeol; Padalhin, Andrew Reyas; Sarker, Avik; Carpena, Nathaniel; Kim, Boram; Paul, Kallyanshish; Choi, Hwan Jun; Bae, Sang-Ho; Lee, Byong Taek

    2016-01-01

    In this work, we report brushite-based calcium phosphate cement (CPC) system to enhance the in vivo biodegradation and tissue in-growth by incorporation of micro-channeled hydroxyapatite (HAp) granule and silicon and sodium addition in calcium phosphate precursor powder. Sodium- and silicon-rich calcium phosphate powder with predominantly tri calcium phosphate (TCP) phase was synthesized by an inexpensive wet chemical route to react with mono calcium phosphate monohydrate (MCPM) for making the CPC. TCP nanopowder also served as a packing filler and moderator of the reaction kinetics of the setting mechanism. Strong sintered cylindrical HAp granules were prepared by fibrous monolithic (FM) process, which is 800 µm in diameter and have seven micro-channels. Acid sodium pyrophosphate and sodium citrate solution was used as the liquid component which acted as a homogenizer and setting time retarder. The granules accelerated the degradation of the brushite cement matrix as well as improved the bone tissue in-growth by permitting an easy access to the interior of the CPC through the micro-channels. The addition of micro-channeled granule in the CPC introduced porosity without sacrificing much of its compressive strength. In vivo investigation by creating a critical size defect in the femur head of a rabbit model for 1 and 2 months showed excellent bone in-growth through the micro-channels. The granules enhanced the implant degradation behavior and bone regeneration in the implanted area was significantly improved after two months of implantation.

  15. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    PubMed

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Ren, Li-Mei; Todo, Mitsugu; Arahira, Takaaki; Yoshikawa, Hideki; Myoui, Akira

    2012-12-01

    Calcium phosphate-based bioceramics have been widely used as artificial bone substitute materials because of their superior biocompatibility and osteoconductivity. In the present study, mechanical properties changes of two hydroxyapatite (HA) ceramics induced by bone ingrowth were tested and evaluated in a rabbit model. Both materials (NEOBONE®, Apaceram-AX®) have highly interconnected pores with a porosity of 75-85%. The major structural difference between them lies in that Apaceram-AX® has micropores smaller than 10 micrometers in diameter, whereas NEOBONE® does not contain such micropores. Both materials were implanted into the femoral condyles of rabbits for the specified observation period (1, 5, 12, 24, and 48 weeks) and then evaluated by experimental approach in combination with finite element method (FEM). Results indicate that two porous bioceramics exhibit different degradability in vivo, and remarkably different variation of total stiffness, elastic modulus distribution, as well as strain energy density distribution calculated by FE simulation. These results demonstrate how the internal microstructures affect the progress of bone regeneration and mechanical properties with the duration of implantation, emphasizing the importance of biomaterial design tailored to various clinic applications. Additionally, this study showed a potential for applying the computational method to monitor the time-dependent biomechanical changes of implanted porous bioceramics.

  17. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering.

    PubMed

    Zhang, Yan; Chen, Liangjian; Zeng, Jing; Zhou, Kechao; Zhang, Dou

    2014-06-01

    It was proposed that the piezoelectric effect played an important physiological role in bone growth, remodelling and fracture healing. An aligned porous piezoelectric composite scaffold was fabricated by freeze casting hydroxyapatite/barium titanate (HA/BT) suspensions. The highest compressive strength and lowest porosity of 14.5MPa and 57.4% with the best parallelism of the pore channels were achieved in the HA10/BT90 composite. HA30/BT70 and HA10/BT90 composites exhibited piezoelectric coefficient d33 of 1.2 and 2.8pC/N, respectively, both of which were higher than the piezoelectric coefficient of natural bone. Increase of the solid loading of the suspension and solidification velocity led to the improvement of piezoelectric coefficient d33. Meanwhile, double-templates resulted in the coexistence of lamellar pores and aligned macro-pores, exhibiting the ability to produce an oriented long-range ordered architecture. The manipulation flexibility of this method indicated the potential for customized needs in the application of bone substitute. An MTT assay indicated that the obtained scaffolds had no cytotoxic effects on L929 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces*

    PubMed Central

    Zhao, Shi-fang; Dong, Wen-jing; Jiang, Qiao-hong; He, Fu-ming; Wang, Xiao-xiang; Yang, Guo-li

    2013-01-01

    Objective: The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite (Zn-HA) coating, applied by an electrochemical process, on implant osseointegraton in a rabbit model. Methods: A Zn-HA coating or an HA coating was deposited using an electrochemical process. Surface morphology was examined using field-emission scanning electron microscopy. The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). A total of 78 implants were inserted into femurs and tibias of rabbits. After two, four, and eight weeks, femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque (RTQ) tests. Results: Rod-like HA crystals appeared on both implant surfaces. The dimensions of the Zn-HA crystals seemed to be smaller than those of HA. XRD patterns showed that the peaks of both coatings matched well with standard HA patterns. FTIR spectra showed that both coatings consisted of HA crystals. The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks (P<0.05), the bone to implant contact (BIC) at four weeks (P<0.05), and RTQ values after four and eight weeks (P<0.05). Conclusions: The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface. PMID:23733429

  19. Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules

    PubMed Central

    2012-01-01

    The goal of this study was to investigate the feasibility of bacterial cellulose (BC) scaffold to support osteoblast growth and bone formation. BC was produced by culturing Acetobacter xylinum supplemented with hydroxyapatite (HA) to form BC membranes (without HA) and BC/HA membranes. Membranes were subjected to X-ray photoelectron spectroscopy (XPS) analysis to determine surface element composition. The membranes were further used to evaluate osteoblast growth, alkaline phosphatase activity and bone nodule formation. BC was free of calcium and phosphate. However, XPS analysis revealed the presence of both calcium (10%) and phosphate (10%) at the surface of the BC/HA membrane. Osteoblast culture showed that BC alone was non-toxic and could sustain osteoblast adhesion. Furthermore, osteoblast adhesion and growth were significantly (p ≤0.05) increased on BC/HA membranes as compared to BC alone. Both BC and BC/HA membranes improved osteoconductivity, as confirmed by the level of alkaline phosphatase (ALP) activity that increased from 2.5 mM with BC alone to 5.3 mM with BC/HA. BC/HA membranes also showed greater nodule formation and mineralization than the BC membrane alone. This was confirmed by Alizarin red staining (ARS) and energy dispersive X-ray spectroscopy (EDX). This work demonstrates that both BC and BC/HA may be useful in bone tissue engineering. PMID:23174338

  20. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery.

    PubMed

    Huang, Di; Zuo, Yi; Zou, Qin; Zhang, Li; Li, Jidong; Cheng, Lin; Shen, Juan; Li, Yubao

    2011-01-01

    This study describes a new drug-loaded coating scaffold applied in infection therapy during bone regeneration. Chitosan (CS) containing antibacterial berberine was coated on a nano-hydroxyapatite/polyamide66 (n-HA/PA66) scaffold to realize bone regeneration together with antimicrobial properties. The porous scaffold was fabricated using the phase-inversion method with a porosity of about 84% and macropore size of 400-600 μm. The morphology, mechanical properties and drug-release behavior were investigated at different ratios of chitosan to berberine. The results show that the elastic modulus and compressive strength of the coated scaffolds were improved to 35.4 MPa and 1.7 MPa, respectively, about 7 times and 3 times higher than the uncoated scaffolds. After a burst release of berberine within the first 3 h in PBS solution, a continuous berberine release can last 150 h, which is highly dependent on the coating concentration and suitable for antibacterial requirement of orthopaedic surgery. The bactericidal test confirms a strong antibiotic effect of the delivery system and the minimum inhibitory concentration of the drug is 0.02 mg/ml. Moreover, in vitro biological evaluation demonstrates that the coating scaffolds act as a good matrix for MG63 adhesion, crawl, growth and proliferation, suggesting that the antibacterial delivery system has no cytotoxicity. We expect the drug-delivery system to have a potential application in bone regeneration or defect repair.

  1. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures.

    PubMed

    D'Elía, Noelia L; Mathieu, Colleen; Hoemann, Caroline D; Laiuppa, Juan A; Santillán, Graciela E; Messina, Paula V

    2015-11-28

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.

  2. Hydroxyapatite Formation on a Novel Dental Cement in Human Saliva

    PubMed Central

    Engstrand, Johanna; Unosson, Erik; Engqvist, Håkan

    2012-01-01

    Dental materials have to meet high standards regarding mechanical strength and handling properties. There is however only a limited amount of research that has been devoted to natural formation of hydroxyapatite (HA) in contact with the materials. The objective of the current investigation was to study the surface reactions occurring in human salvia on a novel dental cement. Ceramir Crown & Bridge, a bioceramic luting agent intended for permanent cementation of conventional oral prosthetics, was evaluated by immersing discs made from the cement in human saliva and phosphate buffered saline (PBS) for seven days, after which they were dried and analyzed. The analytical methods used in order to verify HA formation on the surface were grazing incidence X-ray diffraction (GI-XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results showed that HA was formed on the surfaces of samples stored in saliva as well as on samples stored in PBS. The possibility of a dental luting cement to promote natural formation of HA at the tooth interface increases the stability and durability of the system and could help prevent secondary caries. PMID:23056955

  3. Bone response to 3-D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.

    SciTech Connect

    Eurell, Jo Ann; Dellinger, Jennifer Gwynne; Cesarano, Joseph, III; Jamison, Russell D.

    2005-06-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

  4. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    DTIC Science & Technology

    2013-01-01

    compared as experimental treatment groups to an empty untreated defect as a negative control or a defect filled with autologous bone grafts as a positive...defect site in rabbits and was a comparable synthetic alternative to autologous bone grafts in all metrics measured in this study. Acknowledgments...regeneration and repair as compared to grafting materials alone.9 Guided bone regen- eration (GBR), which refers to using barrier membrane guides, has been

  5. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing.

    PubMed

    Simon, Joshua L; Michna, Sarah; Lewis, Jennifer A; Rekow, E Dianne; Thompson, Van P; Smay, James E; Yampolsky, Andrew; Parsons, J Russell; Ricci, John L

    2007-12-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 microm in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 microm(2) in quadrant 1, 250 x 500 microm(2) in quadrants 2 and 4, and 500 x 500 microm(2) in quadrant 3. In the second group, HA rods (400 microm in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 microm(2) in quadrant 1, 500 x 750 microm(2) in quadrants 2 and 4, and 750 x 750 microm(2) in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 degrees C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

  6. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo

    PubMed Central

    Jo, You-Young; Kim, Seong-Gon; Kwon, Kwang-Jun; Kweon, HaeYong; Chae, Weon-Sik; Yang, Won-Geun; Lee, Eun-Young; Seok, Hyun

    2017-01-01

    The aim of this study was to evaluate the in vivo bone regeneration capability of alginate (AL), AL/hydroxyapatite (HA), and AL/HA/silk fibroin (SF) composites. Forty Sprague Dawley rats were used for the animal experiments. Central calvarial bone (diameter: 8.0 mm) defects were grafted with AL, AL/HA, or AL/HA/SF. New bone formation was evaluated by histomorphometric analysis. To demonstrate the immunocompatibility of each group, the level of tumor necrosis factor (TNF)-α expression was studied by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) at eight weeks post implantation. Additionally, osteogenic markers, such as fibroblast growth factor (FGF)-23, osteoprotegerin (OPG), and Runt-related transcription factor (Runx2) were evaluated by qPCR or IHC at eight weeks post implantation. The AL/HA/SF group showed significantly higher new bone formation than did the control group (p = 0.044) and the AL group (p = 0.035) at four weeks post implantation. Additionally, the AL/HA/SF group showed lower relative TNF-α mRNA levels and higher FGF-23 mRNA levels than the other groups did at eight weeks post implantation. IHC results demonstrated that the AL/HA/SF group had lower TNF-α expression and higher OPG and Runx2 expression at eight weeks post implantation. Additionally, no evidence of the inflammatory reaction or giant cell formation was observed around the residual graft material. We concluded that the AL/HA/SF composite could be effective as a scaffold for bone tissue engineering. PMID:28420224

  7. Effect of hydroxyapatite concentration on high-modulus composite for biodegradable bone-fixation devices.

    PubMed

    Heimbach, Bryant; Grassie, Kevin; Shaw, Montgomery T; Olson, James R; Wei, Mei

    2017-10-01

    There are over 3 million bone fractures in the United States annually; over 30% of which require internal mechanical fixation devices to aid in the healing process. The current standard material used is a metal plate that is implanted onto the bone. However, metal fixation devices have many disadvantages, namely stress shielding and metal ion leaching. This study aims to fix these problems of metal implants by making a completely biodegradable material that will have a high modulus and exhibit great toughness. To accomplish this, long-fiber poly-l-lactic acid (PLLA) was utilized in combination with a matrix composed of polycaprolactone (PCL) and hydroxyapatite (HA) nano-rods. Through single fibril tensile tests, it was found that the PLLA fibers have a Young's modulus of 8.09 GPa. Synthesized HA nanorods have dimensions in the nanometer range with an aspect ratio over 6. By dip coating PLLA fibers in a suspension of PCL and HA and hot pressing the resulting coated fibers, dense fiber-reinforced samples were made having a flexural modulus up to 9.2 GPa and a flexural strength up to 187 MPa. The flexural modulus of cortical bone ranges from 7 to 25 GPa, so the modulus of the composite material falls into the range of bone. The typical flextural strength of bone is 130 MPa, and the samples here greatly exceed that with a strength of 187 MPa. After mechanical testing to failure the samples retained their shape, showing toughness with no catastrophic failure, indicating the possibility for use as a fixation material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1963-1971, 2017. © 2016 Wiley Periodicals, Inc.

  8. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    PubMed

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Study of nano-hydroxyapatite/zirconia stabilized with yttria in bone healing: histopathological study in rabbit model.

    PubMed

    Abedi, Gholamreza; Jahanshahi, Amirali; Fathi, Mohamad Hosein; Haghdost, Iraj Sohrabi; Veshkini, Abas

    2014-03-01

    Acceleration of bone healing has always been a major challenge in orthopedic surgery, the aim of this study was an evaluation of the biological effects of zirconia-stabilized yttria on bone healing, using an in vivo model. Nano-hydroxyapatite powder with zirconia-stabilized yttria were inserted in rabbit tibia and then histologically analyzed and compared with non-treated controls so thirty six. New Zealand white male rabbits randomly divided into two groups of 18 rabbits each. A cortical hole of 4 mm diameter and 8 mm depth in each tibia was drilled. In group I, the defect was left empty, whereas in group II, the bone defect was packed with nano-hydroxyapatite/5% zirconia stabilized with yttria. Histological evaluations were performed at two, four and six weeks after the implantation. Microscopic changes on two groups along with the time course were scored and statistical analysis showed that the average scores in group II were significantly higher than the other groups (p < 0.05). Histological analysis was shown to be significantly improved by the nano-hydroxyapatite/5% zirconia stabilized with yttria compared with the control group, suggesting that this biomaterial promote the healing of cortical bone, presumably by acting as an osteoconductive.

  10. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    PubMed

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Microsphere-Based Scaffolds Encapsulating Tricalcium Phosphate And Hydroxyapatite For Bone Regeneration

    PubMed Central

    Gupta, Vineet; Lyne, Dina V.; Barragan, Marilyn; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix (ECM) components relevant to bone tissue compared to the “blank” (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  12. Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration.

    PubMed

    Sariibrahimoglu, Kemal; Yang, Wanxun; Leeuwenburgh, Sander C G; Yang, Fang; Wolke, Joop G C; Zuo, Yi; Li, Yubao; Jansen, John A

    2015-06-01

    Polyurethane (PU) has been widely used for the biomedical applications but its potential for bone regeneration is limited due to its lack of osteoconductive properties. Strontium substituted hydroxyapatite (SrHA) particles, on the other hand, are known to exhibit a positive effect on bone formation. Therefore, the aim of this study was to (i) develop porous polyurethane scaffolds containing strontium SrHA nanoparticles (PU/SrHA) and (ii) compare their in vitro biological performance for applications in bone regeneration to PU scaffolds. SrHA and HA was synthesized using a conventional wet-chemical neutralization reaction at temperatures of 25, 50, and 80°C. Chemical analysis was performed by inductively coupled plasma-optical emission spectrometry. Synthesizing temperatures at 25 and at 50°C were selected for the composite preparation (abbreviated as HA-25, SrHA-25, HA-50, and SrHA-50, respectively). PU was synthesized from isophorone diisocyanate, polytetramethylene ether glycol, and 1,4-butanediol. Composite scaffolds were prepared by addition of HA or SrHA nanoparticles into PU scaffolds during polymer preparation. The results showed that the Sr content in HA nanoparticles increased with increasing synthesis temperature. The addition of nanoparticles decreased the elongation-at-break and tensile strength, but significantly increased the surface wettability of the PU scaffolds. In vitro degradation tests demonstrated that release of cations was significantly higher from PU/SrHA-50 composite scaffolds. Cell culture tests indicated that PU composites containing either HA or SrHA nanoparticles increased proliferation of bone marrow stem cells as compared to plain PU scaffolds, whereas osteogenic differentiation was not affected by the incorporation of HA nanoparticles irrespective of the incorporation of Sr.

  13. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values.

  14. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering.

    PubMed

    Shavandi, Amin; Bekhit, Alaa El-Din A; Sun, Zhifa; Ali, Azam; Gould, Maree

    2015-10-01

    Squid pen chitosan was used in the fabrication of biocomposite scaffolds for bone tissue engineering. Hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) obtained from waste mussel shells were used as the calcium phosphate source. The composite was prepared using 2.5% tripolyphosphate (TPP) and 1% glycerol as a cross-linker and plasticizer, respectively. The weight percent (wt.%) ratios of the ceramic components in the composite were 20/10/70, 30/20/50 and 40/30/30 (HA/β-TCP/Chi). The biodegradation rate and structural properties of the scaffolds were investigated. Scanning electron microscopy (SEM) and microCT(μCT) results indicated that the composites have a well defined lamellar structure with an average pore size of 200 μm. The porosity of the composites decreased from 88 to 56% by increasing the ratio of HA/β-TCP from 30 to 70%. After 28 days of incubation in a physiological solution, the scaffolds were degraded by approximately 30%. In vitro investigations showed that the composites were cytocompatible and supported the growth of L929 and Saos-2 cells. The obtained data suggests that the squid pen chitosan composites are potential candidates for bone regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements

    PubMed Central

    Shin, Ueon Sang; Yoon, Il-Kyu; Lee, Gil-Su; Jang, Won-Cheoul; Knowles, Jonathan C.; Kim, Hae-Won

    2011-01-01

    Hydroxyapatite (HA), as a bone mineral component, has been an attractive bioceramic for the reconstruction of hard tissues. However, its poor mechanical properties, including low fracture toughness and tensile strength, have been a significant challenge to the application of HA for the replacement of load-bearing and/or large bone defects. Among materials studied to reinforce HA, carbon nanotubes (CNTs: single-walled or multiwalled) have recently gained significant attention because of their unprecedented mechanical properties (high strength and toughness) and physicochemical properties (high surface area, electrical and thermal conductivity, and low weight). Here, we review recent studies of the organization of HA-CNTs at the nanoscale, with a particular emphasis on the functionalization of CNTs and their dispersion within an HA matrix and induction of HA mineralization. The organization of CNTs and HA implemented at the nanoscale can further be developed in the form of coatings, nanocomposites, and hybrid powders to enable potential applications in hard tissue reconstruction. PMID:21776341

  16. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.

    PubMed

    Kim, Jung-Ho; Kim, Dong-Kyu; Lee, Ok Joo; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Lee, Jun Ho; Park, Chan Hum

    2016-01-01

    The present study demonstrated the fabrication that incorporation of titanium isopropoxide (TiO2) and hydroxyapatite (HA) nanoparticles into the silk fibroin (SF) scaffolds. In this process, we prepared TiO2 nanoparticles using sol-gel synthesis and the porous structure was developed by salt-leaching process. Homogeneous distribution of TiO2 and HA nanoparticles were confirmed by images of VP-FE-SEM and those equipped with energy dispersive X-ray spectrometer. Structural characteristics of the porous SF/TiO2/HA hybrid scaffold were also determined using FTIR analysis and X-ray diffractometer. In this study, the porous SF/TiO2/HA hybrid scaffold showed similar porosity, enhanced mechanical property, but decreased water binding abilities, compared with the porous SF scaffold. For evaluation of the osteogenic differentiation of rat bone marrow mesenchymal stem cells, alkaline phosphatase activity and osteogenic gene expression were employed. Our results revealed that the porous SF/TiO2/HA hybrid scaffold had improved osteoinductivity compared with the porous SF scaffold. These results suggest that the osteogenic property as well as mechanical property of the porous SF/TiO2/HA hybrid scaffold could be better than the porous SF scaffold. Therefore, the porous SF/TiO2/HA hybrid scaffold may be a good promising biomaterial for bone tissue engineering application.

  17. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.

    PubMed

    Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Viet, Pham Hung; Migliaresi, Claudio

    2014-04-01

    This study presents the physicochemical characterization of the pluronic surfactant-assisted size control of hydroxyapatite (HAp) nanorods for bone tissue engineering (BTE). Rod-shaped HAp nanoparticles were synthesized via a simple route by hydrothermal treatment and with the assistance of the triblock co-polymer PEO20-PPO70-PEO20 (P123). The films of poly (d, l) lactic acid (PDLLA) were prepared as a substrate to spread synthesized HAp nanorods. Powder X-ray diffraction (XRD), field electron scanning microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms, and energy-dispersive X-ray spectroscopy were used to characterize the structure and composition of the HAp samples. Results showed that regular rod-shaped HAp nanoparticles (with a mean length of 120 nm and a mean width of 28 nm) were successfully produced. Moreover, synthesized HAp nanorods revealed the rapid formation of bone-like apatite with a distinctive morphology, similar to flower-like apatite; the formation was observed as early as 7 days after incubation in stimulated body fluids. This study is a positive addition to the ongoing research on the preparation of HAp nanostructures toward the development of biocompatible composite scaffolds for BTE applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies.

    PubMed

    Milovac, Dajana; Gamboa-Martínez, Tatiana C; Ivankovic, Marica; Gallego Ferrer, Gloria; Ivankovic, Hrvoje

    2014-09-01

    In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    PubMed

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue.

    PubMed

    Hu, Jingxiao; Zhu, Youjia; Tong, Hua; Shen, Xinyu; Chen, Li; Ran, Jiabing

    2016-01-01

    Agarose/hydroxyapatite (agar/HA) nanocomposites for load-bearing bone substitutes were successfully fabricated via a novel in situ precipitation method. Observation via SEM and TEM revealed that the spherical inorganic nanoparticles of approximately 50 nm were well dispersed in the organic matrix, and the crystallographic area combined closely with the amorphous area. The uniform dispersion of HA nanoparticles had prominent effect on improving the mechanical properties of the agar/HA nanocomposites (the highest elastic modulus: 1104.42 MPa; the highest compressive strength: 400.039 MPa), which proved to be potential load-bearing bone substitutes. The thermal stability of agarose and nanocomposites was also studied. The MG63 osteoblast-like cells on the composite disks displayed fusiform and polygonal morphology in the presence of HA, suggesting that the cell maturation was promoted. The results of cell proliferation and cell differentiation indicated that the cells cultured on the agar/HA composite disks significantly increased the alkaline phosphatase activity and calcium deposition. The structural role of agarose in the composite system was investigated to better understand the effect of biopolymer on structure and properties of the composites. The optimal properties were the result of a comprehensive synergy of the components.

  1. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration.

    PubMed

    Nakasa, Tomoyuki; Ishida, Osamu; Sunagawa, Toru; Nakamae, Atsuo; Yokota, Kazunori; Adachi, Nobuo; Ochi, Mitsuo

    2008-06-15

    The aim of this study was to demonstrate the feasibility of the prefabricated vascularized bone graft using an interconnected porous calcium hydroxyapatite ceramic (IP-CHA) in combination with vascular bundle implantation and basic fibroblast growth factor (FGF-2) administration in rabbit model. Thirty Japanese white rabbits were used. To make a prefabricated bone graft, the saphenous artery and vein were passed through the hole of the IP-CHA. Hundred micrograms of FGF-2 was administered into the IP-CHA before implanting the vascular bundle. First and foremost, the IP-CHA was placed subcutaneously in the medial thigh of rabbits for 4 weeks. In the experimental group, a prefabricated vascularized bone graft was used while IP-CHA alone was used in the control group. Second, the prefabricated vascularized bone graft was transplanted from the subcutaneous implanted site into the medial femoral condyle defect of the same rabbit and IP-CHA alone was implanted as the control graft in a different animal. At 4 weeks posttransplantation, bone union with host bone could be observed in the experimental group. However, the area of bone formation of the control group was significantly higher than in the experimental at 2 and 4 weeks posttransplantation. We conclude that the prefabricated vascularized bone graft when transplanted into a bone defect showed the ability for bone union with the host bone, although further studies are needed to accelerate the process of bone formation.

  2. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone.

    PubMed

    MacMillan, Adam K; Lamberti, Francis V; Moulton, Julia N; Geilich, Benjamin M; Webster, Thomas J

    2014-01-01

    While there have been numerous studies to determine osteoblast (bone forming cell) functions on nanocrystalline compared to micron crystalline ceramics, there have been few studies which have examined osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and receptor activator of nuclear factor κB [RANK]). This is despite the fact that osteoclasts are an important part of maintaining healthy bone since they resorb bone during the bone remodeling process. Moreover, while it is now well documented that bone formation is enhanced on nanoceramics compared to micron ceramics, some have pondered whether osteoblast functions (such as osteoprotegerin and RANK ligand [RANKL]) are normal (ie, non-diseased) on such materials compared to natural bone. For these reasons, the objective of the present in vitro study was to determine various functions of osteoclasts and osteoblasts on nanocrystalline and micron crystalline hydroxyapatite as well as tri-calcium phosphate materials and compare such results to cortical and cancellous bone. Results showed for the first time similar osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and RANK) and osteoblast activity (osteoprotegerin and RANKL) on nanocrystalline hydroxyapatite compared to natural bone, whereas osteoclast and osteoblast functions on micron crystalline versions of these ceramics were much different than natural bone. In this manner, this study provides additional evidence that nanocrystalline calcium phosphates can serve as suitable synthetic analogs to natural bone to improve numerous orthopedic applications. It also provides the first data of healthy osteoclast and osteoblast functions on nanocrystalline calcium phosphates compared to natural bone.

  3. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair.

  4. A clinical evaluation of a bioresorbable membrane and porous hydroxyapatite in the treatment of human molar class II furcations

    PubMed Central

    Malathi, K. Gita; Dev, J. Narendra; Kumar, K. Suresh; Srikanth, Chitta; Ravi Chandra, P. V.; Paul, Arpita

    2013-01-01

    Background: The ultimate goal of periodontal therapy is predictable regeneration of a functional attachment apparatus destroyed as a result of periodontitis. Reconstructive procedures have been used with varying success during the past decades to accomplish this goal. Aim: To evaluate whether the use of porous hydroxyapatite alone or a bioresorbable membrane alone would enhance the clinical results in the treatment of class II furcation defects in human lower molars. Materials and Methods: Fifteen patients with chronic periodontitis, aged between 39 and 49 years, with a pair of similar bilateral class II furcation defects (classification of Hamp et al.) in mandibular first molars were selected. A split-mouth design was incorporated and the selected 30 furcation defects were assigned to one of the two treatment groups, i.e., Group I treated with a bioresorbable membrane from bovine-derived collagen guided tissue regeneration membrane and Group II treated using porous hydroxyapatite bone graft material on the contralateral sides. Evaluation of clinical parameters, probing depths and attachment levels, and radiographs was done preoperatively and 6 months postoperatively. Results: Both the groups showed statistically significant mean reduction in probing depths and gain in clinical attachment levels and linear bone fill. Comparison between Group I and Group II showed insignificant difference. Conclusion: Within the limits of this study, both the treatment modalities are beneficial for the treatment of human mandibular class II furcation defects. PMID:24174756

  5. Preparation and biocompatibility of nanohybrid scaffolds by in situ homogeneous formation of nano hydroxyapatite from biopolymer polyelectrolyte complex for bone repair applications.

    PubMed

    Chen, Jingdi; Yu, Qifeng; Zhang, Guodong; Yang, Shen; Wu, Jiulin; Zhang, Qiqing

    2012-05-01

    The achievement of nano distribution for inorganic reinforced filler is a big challenge to three-dimensional porous composite scaffolds. In this paper, a homogeneous nano hydroxyapatite/polyelectrolyte complex (HAP/PEC) hybrid scaffold was developed and investigated. Based on the enhancing properties of the formation of PEC between chitosan and hyaluronic acid, the introduction of nano HAP via in situ crystallization from the PEC achieved nano distribution in the PEC matrix and supplied nano topographies of extracellular environments for the nanohybrid scaffold. The biocompatibility and bioactivity were evaluated by Human bone mesenchymal stem cells (hBMSCs) proliferation (MTT assay), maturation (alkaline phosphatase (ALP) activity) and histological analysis. The in vitro tests show the scaffold is excellent for cell penetration, growth, and proliferation and it is promising for bone repair application.

  6. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    NASA Astrophysics Data System (ADS)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  7. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.

    PubMed

    Lowe, Baboucarr; Venkatesan, Jayachandran; Anil, Sukumaran; Shim, Min Suk; Kim, Se-Kwon

    2016-12-01

    Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hyaluronic-Acid-Hydroxyapatite Colloidal Gels Combined with Micronized Native ECM as Potential Bone Defect Fillers.

    PubMed

    Dennis, S Connor; Whitlow, Jonathan; Detamore, Michael S; Kieweg, Sarah L; Berkland, Cory J

    2017-01-10

    One of the grand challenges in translational regenerative medicine is the surgical placement of biomaterials. For bone regeneration in particular, malleable and injectable colloidal gelsare frequently designed to exhibit self-assembling and shear-response behavior which facilitates biomaterial placement in tissue defects. The current study demonstrated that by combining native extracellular matrix (ECM) microparticles, i.e., demineralized bone matrix (DBM) and decellularized cartilage (DCC), with hyaluronic acid (HA) and hydroxyapatite (HAP) nanoparticles, a viscoelastic colloidal gel consisting exclusively of natural materials was achieved. Rheological testing of HA-ECM suspensions and HA-HAP-ECM colloidal gels concluded either equivalent or substantially higher storage moduli (G' ≈ 100-10 000 Pa), yield stresses (τy ≈ 100-1000 Pa), and viscoelastic recoveries (G'recovery ≥ 87%) in comparison with controls formulated without ECM, which indicated a previously unexplored synergy in fluid properties between ECM microparticles and HA-HAP colloidal networks. Notable rheological differences were observed between respective DBM and DCC formulations, specifically in HA-HAP-DBM mixtures, which displayed a mean 3-fold increase in G' and a mean 4-fold increase in τy from corresponding DCC mixtures. An initial in vitro assessment of these potential tissue fillers as substrates for cell growth revealed that all formulations of HA-ECM and HA-HAP-ECM showed no signs of cytotoxicity and appeared to promote cell viability. Both DBM and DCC colloidal gels represent promising platforms for future studies in bone and cartilage tissue engineering. Overall, the current study identified colloidal gels constructed exclusively of natural materials, with viscoelastic properties that may facilitate surgical placement for a wide variety of therapeutic applications.

  9. Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts.

    PubMed

    Garai, Subhadra; Sinha, Arvind

    2014-03-01

    An innovative biomimetic synthesis of novel three dimensional micro/macro porous carboxymethyl cellulose (CMC)-hydroxyapatite (HA) nanocomposites having four systematically different compositions has been established for its possible application as a load bearing synthetic bone graft. Our process, being in situ, involves a simple and cost effective route akin to a matrix mediated biomineralization process. Developed synthesis route not only controls the size of HA particles in the range of 15-50 nm, embedded in CMC matrix, but also assists in the formation of a mechanically strong three dimensional nanocomposite structures due to physical cross linking of HA impregnated CMC matrix. The process does not involve any toxic cross linker and works at near ambient conditions. The nanocomposites are systematically structurally and mechanically characterized using various techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), solid state (13)C nuclear magnetic resonance ((13)C NMR), thermo-gravimetric analysis (TGA) and Universal mechanical test. It reveals that the ionic/polar or electrostatic interactions are the main driving force for formation of load bearing three dimensional nanocomposites via a process similar to matrix mediated biomineralization. Compressive strength and compressive modulus of nanocomposites, being in the range of 1.74-12 MPa and 157-330 MPa, respectively, meet the desired range of compressive strength for the synthetic grafts used in cancellous bone. An increase in the compressive strength with increase in the porosity has been an interesting observation in the present study. In vitro cytotoxicity of the synthesized nanocomposites has been evaluated using bone marrow mesenchymal stem cells (BMSC) isolated from Wistar rat.

  10. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    PubMed Central

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was

  11. [Study on injectable bioactive bone repairing material of nano-hydroxyapatite and polyamide-66 composite].

    PubMed

    Wei, Shicheng; Li, Yubao; Zheng, Qian; Wei, Jie; Zhou, Liwei; Zuo, Yi

    2003-12-01

    The aim of this study was to evaluate the injectability, histocompatibility, function and other properties of the injectable bioactive bone repairing material of nano-hydroxyapatite and polyamide-66 (n-HA/PA66) composite. The XRD pattern, the relationship between the injectability and liquid-powder ratio, setting time and liquid-powder ratio, compressive strength and liquid-powder ratio were assessed. The size of the composite was determined to be 70 nm in length and 30 to 50 nm in width, and the molecular weight of polyamides-66 was 18000. The diameter of pores of the composite was about 200 to 400 micrometer. To evaluate the histocompatibility and function, 8 male dogs were studied with the injectable n-HA/PA66 composite implanted in the artificial defected alveolus of mandible on only one side to be compared with the intact alveolus on the other side. The specimens were taken at 4, 8, 12, 16 months after the implantation and the results were evaluated. The XRD pattern of the solidificated n-HA/PA66 composite was the same as the powdered n-HA/PA66 composite. The injectable n-HA/PA66 composite had a good injectability, 25 to 30 minutes setting time and about 37 MPa compressive strength when the liquid-powder ratio was 0.50. The healing of the gingiva was well at the implanted areas in all animals. The height of the repaired alveolar bone was obvious higher than that of the blank control. The earlier sign of ossification was histologically observed at 16 weeks after implantation. The injectable n-HA/PA66 composite has good biocompatibility and osteoconductive property. As an injectable material, with good maneuverability, it is useful for repairing irregular bone defects, especially in oral and maxillofacial surgery.

  12. Osseointegration aspects of placed implant in bone reconstruction with newly developed block-type interconnected porous calcium hydroxyapatite

    PubMed Central

    DOI, Kazuya; KUBO, Takayasu; MAKIHARA, Yusuke; OUE, Hiroshi; MORITA, Koji; OKI, Yoshifumi; KAJIHARA, Shiho; TSUGA, Kazuhiro

    2016-01-01

    ABSTRACT Artificial bone has been employed to reconstruct bone defects. However, only few reports on implant placement after block bone grafting exist. Objectives The purpose of this study was to evaluate the osseointegration of dental implant in bone reconstructions with interconnected porous calcium hydroxyapatite (IP-CHA). Material and Methods The IP-CHA cylinders (D; 4.3 mm, H; 10.0 mm) were placed into bone sockets in each side of the femurs of four male dogs. The IP-CHA on the right side was a 24-week sample. Twelve weeks after placement, a titanium implant was placed into a socket that was prepared in half of the placed IP-CHA cylinder on the right side. On the left side, another IP-CHA cylinder was placed as a 12-week sample. After another 12 weeks, the samples were harvested, and the bone regeneration and bone-implant contact (BIC) ratios were measured. Results New bone formation area was superior in the 24-week IP-CHA compared with the 12-week IP-CHA. BIC was not significantly different between IP-CHA and the parent sites. Osseointegration was detected around the implant in IP-CHA-reconstructed bone. Conclusion Our preliminary results suggest that IP-CHA may be a suitable bone graft material for reconstructing bones that require implant placement. PMID:27556202

  13. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.

    PubMed

    Paşcu, Elena I; Stokes, Joseph; McGuinness, Garrett B

    2013-12-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw=90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (±0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (±0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples prepared with

  14. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Xie, Xingyi; Hu, Kaiwen; Fang, Dongdong; Shang, Lihong; Tran, Simon D.; Cerruti, Marta

    2015-04-01

    Graphene-nanoparticle (NP) composites have shown potential in applications ranging from batteries to, more recently, tissue engineering. Graphene and NPs should be integrated into uniform free-standing structures for best results. However, to date, this has been achieved only in few examples; in most cases, graphene/NP powders lacking three-dimensional (3D) structure were produced. Here we report a facile and universal method that can be used to synthesize such structures based on colloidal chemistry. We start from aqueous suspensions of both graphene oxide nanosheets and citrate-stabilized hydroxyapatite (HA) NPs. Hydrothermal treatment of the mixtures of both suspensions reduces graphene oxide to graphene, and entraps colloidal HA NPs into the 3D graphene network thanks to a self-assembled graphite-like shell formed around it. Dialysis through this shell causes uniform NP deposition onto the graphene walls. The resulting graphene-HA gels are highly porous, strong, electrically conductive and biocompatible, making them promising scaffolds for bone tissue engineering. This method can be applied to produce a variety of free-standing 3D graphene-based nanocomposites with unprecedented homogeneity.Graphene-nanoparticle (NP) composites have shown potential in applications ranging from batteries to, more recently, tissue engineering. Graphene and NPs should be integrated into uniform free-standing structures for best results. However, to date, this has been achieved only in few examples; in most cases, graphene/NP powders lacking three-dimensional (3D) structure were produced. Here we report a facile and universal method that can be used to synthesize such structures based on colloidal chemistry. We start from aqueous suspensions of both graphene oxide nanosheets and citrate-stabilized hydroxyapatite (HA) NPs. Hydrothermal treatment of the mixtures of both suspensions reduces graphene oxide to graphene, and entraps colloidal HA NPs into the 3D graphene network thanks to

  15. Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion.

    PubMed

    Bansal, Sanjay; Chauhan, Vijendra; Sharma, Sansar; Maheshwari, Rajesh; Juyal, Anil; Raghuvanshi, Shailendra

    2009-07-01

    Autologous cancellous bone is the most effective biological graft material. However, harvest of autologous bone is associated with significant morbidity. Since porous hydroxyapatite and beta-tricalcium phosphate are biodegradable materials and can be replaced by bone tissue, but it lacks osteogenic property. We conducted a study to assess their use as a scaffold and combine them with bone marrow aspirate for bone regeneration using its osteogenic property for posterolateral spinal fusion on one side and autologous bone graft on the other side and compare them radiologically in terms of graft incorporation and fusion. Thirty patients with unstable dorsal and lumbar spinal injuries who needed posterior stabilization and fusion were evaluated in this prospective study from October 2005 to March 2008. The posterior stabilization was done using pedicle screw and rod assembly, and fusion was done using hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute over one side of spine and autologous bone graft obtained from iliac crest over other side of spine. The patients were followed up to a minimum of 12 months. Serial radiographs were done at an interval of 3, 6, and 12 months and CT scan was done at one year follow-up. Graft incorporation and fusion were assessed at each follow-up. The study was subjected to statistical analysis using chi-square and kappa test to assess graft incorporation and fusion. At the end of the study, radiological graft incorporation and fusion was evident in all the patients on the bone graft substitute side and in 29 patients on the autologous bone graft side of the spine (P > 0.05). One patient showed lucency and breakage of distal pedicle screw in autologous bone graft side. The interobserver agreement (kappa) had an average of 0.72 for graft incorporation, 0.75 for fusion on radiographs, and 0.88 for the CT scan findings. Hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow

  16. Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion

    PubMed Central

    Bansal, Sanjay; Chauhan, Vijendra; Sharma, Sansar; Maheshwari, Rajesh; Juyal, Anil; Raghuvanshi, Shailendra

    2009-01-01

    Background: Autologous cancellous bone is the most effective biological graft material. However, harvest of autologous bone is associated with significant morbidity. Since porous hydroxyapatite and beta-tricalcium phosphate are biodegradable materials and can be replaced by bone tissue, but it lacks osteogenic property. We conducted a study to assess their use as a scaffold and combine them with bone marrow aspirate for bone regeneration using its osteogenic property for posterolateral spinal fusion on one side and autologous bone graft on the other side and compare them radiologically in terms of graft incorporation and fusion. Materials and Methods: Thirty patients with unstable dorsal and lumbar spinal injuries who needed posterior stabilization and fusion were evaluated in this prospective study from October 2005 to March 2008. The posterior stabilization was done using pedicle screw and rod assembly, and fusion was done using hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute over one side of spine and autologous bone graft obtained from iliac crest over other side of spine. The patients were followed up to a minimum of 12 months. Serial radiographs were done at an interval of 3, 6, and 12 months and CT scan was done at one year follow-up. Graft incorporation and fusion were assessed at each follow-up. The study was subjected to statistical analysis using chi-square and kappa test to assess graft incorporation and fusion. Results: At the end of the study, radiological graft incorporation and fusion was evident in all the patients on the bone graft substitute side and in 29 patients on the autologous bone graft side of the spine (P > 0.05). One patient showed lucency and breakage of distal pedicle screw in autologous bone graft side. The interobserver agreement (kappa) had an average of 0.72 for graft incorporation, 0.75 for fusion on radiographs, and 0.88 for the CT scan findings. Conclusion: Hydroxyapatite

  17. A method for whole protein isolation from human cranial bone.

    PubMed

    Lyon, Sarah M; Mayampurath, Anoop; Rogers, M Rose; Wolfgeher, Donald J; Fisher, Sean M; Volchenboum, Samuel L; He, Tong-Chuan; Reid, Russell R

    2016-12-15

    The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4 to 629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions.

  18. Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model.

    PubMed

    Pinheiro, Antonio Luiz B; Martinez Gerbi, Marleny E; de Assis Limeira, Francisco; Carneiro Ponzi, Elizabeth Arruda; Marques, Aparecida M C; Carvalho, Carolina Montagn; de Carneiro Santos, Rafael; Oliveira, Priscila Chagas; Nóia, Manuela; Ramalho, Luciana Maria Pedreira

    2009-03-01

    The aim of the investigation was to assess histologically the effect of laser photobiomodulation (LPBM) on a repair of defects surgically created in the femurs of rats. Forty-five Wistar rats were divided into four groups: group I (control); group II (LPBM); group III (hydroxyapatite guided bone regeneration; HA GBR); group IV (HA GBR LPBM). The animals in the irradiated groups were subjected to the first irradiation immediately after surgery, and it was repeated every day for 2 weeks. The animals were killed 15 days, 21 days and 30 days after surgery. When the groups irradiated with implant and membrane were compared, it was observed that the repair of the defects submitted to LPBM was also processed faster, starting from the 15th day. At the 30th day, the level of repair of the defects was similar in the irradiated groups and those not irradiated. New bone formation was seen inside the cavity, probably by the osteoconduction of the implant, and, in the irradiated groups, this new bone formation was incremental. The present preliminary data seem to suggest that LPMB therapy might have a positive effect upon early wound healing of bone defects treated with a combination of HA and GBR.

  19. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-05-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  20. Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering

    PubMed Central

    Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Brown, Justin L.; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Nair, Lakshmi S.; Allcock, Harry R; Laurencin, Cato T.

    2009-01-01

    The non-toxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopaedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups namely leucine, valine and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 °C) and hence was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46–81 MPa with mean pore diameters in the range of 86–145 µm. The three-dimensional polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation and alkaline phosphatase expression, and are potential suitors for bone tissue engineering applications. PMID:18517248

  1. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility.

    PubMed

    Hernández, Lidia; Parra, Juan; Vázquez, Blanca; Bravo, Antonio López; Collía, Francisco; Goñi, Isabel; Gurruchaga, Marilo; San Román, Julio

    2009-01-01

    Radiopaque bone cements have been formulated to provide injectable pastes with improved bioactivity to be applied in vertebroplasty and kyphoplasty techniques. The bioactive compound was strontium containing hydroxyapatite salt, which was introduced as obtained (SrHA) or after treatment with MMA monomer (SrHA-t). The in vitro bioactivity of the cements was tested in cement films or in cement pastes introduced directly in a simulated body fluid (SBF) solution at 37 degrees C to mimic the in vivo conditions. Precipitation of an apatite-like layer was observed for the 20 wt %-SrHA-t containing cement in the first experiments, and in all formulations in the second ones. The deposited particles were characterized by FTIR spectroscopy and by EDAX analysis. Radiopacity of cements after immersion in SBF was confirmed. The biocompatibility exhibited by the SrHA containing cements was, in some cases, superior to that shown by a formulation with 10 wt % of BaSO(4). The new formulations prepared with the treated filler exhibited the lowest cytotoxicity and enhanced cellular proliferation. The in vivo biocompatibility tested by an intramuscular model in rats indicated the formation of a membrane formed by collagen fibers containing fibroblasts with no inflammatory cells, such as macrophages, giant cells or lymphocytes in all formulations.

  3. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.

    PubMed

    Lao, Lihong; Wang, Yingjun; Zhu, Yang; Zhang, Yuying; Gao, Changyou

    2011-08-01

    Poly(lactide-co-glycolide) (PLGA) nanofibrous composite scaffolds having nano-hydroxyapatite particles (HAp) in the fibers were prepared by electrospinning of PLGA and HAp with an average diameter of 266.6 ± 7.3 nm. Microscopy and spectroscopy characterizations confirmed integration of the crystalline HAp in the scaffolds. Agglomerates gradually appeared and increased on the fiber surface along with increase of the HAp concentration. In vitro mineralization in a 5 × simulated body fluid (SBF) revealed that the PLGA/HAp nanofibrous scaffolds had a stronger biomineralization ability than the control PLGA scaffolds. Biological performance of the nanofibrous scaffolds of the control PLGA and PLGA with 5 wt% HAp (PLGA/5HAp) was assessed by in vitro culture of neonatal mouse calvaria-derived MC3T3-E1 osteoblasts. Both types of the scaffolds could support cell proliferation and showed sharp increase of viability until 7 days, but the cells cultured on the PLGA/5HAp nanofibers showed a more spreading morphology. Despite the similar level of the cell viability and cell number at each time interval, the alkaline phosphatase secretion was significantly enhanced on the PLGA/5HAp scaffolds, indicating the higher bioactivity of the as-prepared nano-HAp and the success of the present method for preparing biomimetic scaffold for bone regeneration.

  4. Effect of cyclic loading on the nanoscale deformation of hydroxyapatite and collagen fibrils in bovine bone.

    PubMed

    Singhal, Anjali; Stock, Stuart R; Almer, Jonathan D; Dunand, David C

    2014-06-01

    Cyclic compressive loading tests were carried out on bovine femoral bones at body temperature (37 °C), with varying mean stresses (-55 to -80 MPa) and loading frequencies (0.5-5 Hz). At various times, the cyclic loading was interrupted to carry out high-energy X-ray scattering measurements of the internal strains developing in the hydroxyapatite (HAP) platelets and the collagen fibrils. The residual strains upon unloading were always tensile in the HAP and compressive in the fibrils, and each increases in magnitude with loading cycles, which can be explained from damage at the HAP–collagen interface and accumulation of plastic deformation within the collagen phase. The samples tested at a higher mean stress and stress amplitude, and at lower loading frequencies exhibit greater plastic deformation and damage accumulation, which is attributed to greater contribution of creep. Synchrotron microcomputed tomography of some of the specimens showed that cracks are produced during cyclic loading and that they mostly occur concentric with Haversian canals.

  5. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering

    PubMed Central

    Feng, Pei; Niu, Man; Gao, Chengde; Peng, Shuping; Shuai, Cijun

    2014-01-01

    In this study, nano-hydroxyapatite scaffolds with high mechanical strength and an interconnected porous structure were prepared using NTSS for the first time. The first step was performed using a laser characterized by the rapid heating to skip the surface diffusion and to obtain the driving force for grain boundary diffusion. Additionally, the interconnected porous structure was achieved by SLS. The second step consisted of isothermal heating in a furnace at a lower temperature (T2) than that of the laser beam to further increase the density and to suppress grain growth by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The results indicated that the mechanical properties first increased and then decreased as T2 was increased from 1050 to 1250°C. The optimal fracture toughness, compressive strength and stiffness were 1.69 MPam1/2, 18.68 MPa and 245.79 MPa, respectively. At the optimal point, the T2 was 1100°C, the grain size was 60 nm and the relative density was 97.6%. The decrease in mechanical properties was due to the growth of grains and the decomposition of HAP. The cytocompatibility test results indicated that cells adhered and spread well on the scaffolds. A bone-like apatite layer formed, indicating good bioactivity. PMID:24998362

  6. Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste

    NASA Astrophysics Data System (ADS)

    Coelho, T. M.; Nogueira, E. S.; Weinand, W. R.; Lima, W. M.; Steimacher, A.; Medina, A. N.; Baesso, M. L.; Bento, A. C.

    2007-04-01

    In a previous study, natural hydroxyapatite (HAp) from the bones of Brazilian river fish was calcined at 900 °C (4-12 h), and optical characterization using the near infrared photoacoustic spectroscopy technique enabled the establishment of 8 h as the best calcination time for nanostructure stabilization when milled in a high-energy milling device [T. M. Coelho, E. S. Nogueira, W. R. Weinand, W. M. Lima, A. Steimacher, A. N. Medina, M. L. Baesso, and A. C. Bento, J. Appl. Phys. 100, 094312 (2006)]. The fish wastes used were from species such as pintado (Pseudoplatystoma corruscans), jaú (Paulicea lutkeni), and cachara (Pseudoplatystoma fasciatum). In this study, the characterization of the thermal properties of the same natural HAp is discussed for samples milled from 0 to 32 h, with nanostructures from 80 to 24 nm. The powders were pressed into disks at 350 MPa and sintered for 4 h at 1000 °C. Thermophysical parameters were obtained by thermal wave interferometry and nonadiabatic relaxation calorimetry. Results for thermal diffusivity and thermal conductivity showed that the parameters increase with milling time, although they present a transition (a plateau) in the interval from 8 to 16 h. Two different slopes were observed and this was interpreted as being due to the size of the crystallites, which fall rapidly, dropping from 80 nm to near 22 nm when milling time is increased from 0 to 16 h, and forming agglomerates up to 32 h.

  7. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering.

    PubMed

    Xie, Xingyi; Hu, Kaiwen; Fang, Dongdong; Shang, Lihong; Tran, Simon D; Cerruti, Marta

    2015-05-07

    Graphene-nanoparticle (NP) composites have shown potential in applications ranging from batteries to, more recently, tissue engineering. Graphene and NPs should be integrated into uniform free-standing structures for best results. However, to date, this has been achieved only in few examples; in most cases, graphene/NP powders lacking three-dimensional (3D) structure were produced. Here we report a facile and universal method that can be used to synthesize such structures based on colloidal chemistry. We start from aqueous suspensions of both graphene oxide nanosheets and citrate-stabilized hydroxyapatite (HA) NPs. Hydrothermal treatment of the mixtures of both suspensions reduces graphene oxide to graphene, and entraps colloidal HA NPs into the 3D graphene network thanks to a self-assembled graphite-like shell formed around it. Dialysis through this shell causes uniform NP deposition onto the graphene walls. The resulting graphene-HA gels are highly porous, strong, electrically conductive and biocompatible, making them promising scaffolds for bone tissue engineering. This method can be applied to produce a variety of free-standing 3D graphene-based nanocomposites with unprecedented homogeneity.

  8. Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds.

    PubMed

    Beşkardeş, Işıl Gerçek; Demirtaş, Tuğrul Tolga; Durukan, Müge Dağlı; Gümüşderelioğlu, Menemşe

    2015-11-01

    In this study, a novel scaffold fabrication method was developed by combining microwave irradiation and gas foaming. Chitosan superporous hydrogels (SPHs) and chitosan-hydroxyapatite (HA) superporous hydrogel composites (SPHCs) were prepared by using this method in the presence of crosslinking agent, glyoxal, and a gas-blowing agent, NaHCO3. In order to examine the effect of HA on composite structure and cellular behaviour, two types of HA particles, i.e. spherical beads in 45-80 µm diameter and powder form, were used. While rapid heating with microwave irradiation enhances gas blowing, pH increment, which is accelerated by NaHCO3 decomposition, provides better crosslinking. Thus, interconnected and well-established macroporous hydrogels/hydrogel composites were produced easily and rapidly (~1 min). Cell culture studies, which were carried out under static and dynamic conditions with MC3T3-E1 pre-osteoblastic cells, indicated that chitosan-HA bead SPHCs supported cellular proliferation and osteoblastic differentiation better than chitosan SPHs and chitosan-HA powder SPHCs. In conclusion, simultaneous gas foaming and microwave crosslinking can be evaluated for the preparation of composite scaffolds which have superior properties for bone tissue engineering.

  9. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Feng, Pei; Niu, Man; Gao, Chengde; Peng, Shuping; Shuai, Cijun

    2014-07-07

    In this study, nano-hydroxyapatite scaffolds with high mechanical strength and an interconnected porous structure were prepared using NTSS for the first time. The first step was performed using a laser characterized by the rapid heating to skip the surface diffusion and to obtain the driving force for grain boundary diffusion. Additionally, the interconnected porous structure was achieved by SLS. The second step consisted of isothermal heating in a furnace at a lower temperature (T2) than that of the laser beam to further increase the density and to suppress grain growth by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The results indicated that the mechanical properties first increased and then decreased as T2 was increased from 1050 to 1250°C. The optimal fracture toughness, compressive strength and stiffness were 1.69 MPam(1/2), 18.68 MPa and 245.79 MPa, respectively. At the optimal point, the T2 was 1100°C, the grain size was 60 nm and the relative density was 97.6%. The decrease in mechanical properties was due to the growth of grains and the decomposition of HAP. The cytocompatibility test results indicated that cells adhered and spread well on the scaffolds. A bone-like apatite layer formed, indicating good bioactivity.

  10. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    PubMed

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial

    PubMed Central

    Raina, D. B.; Gupta, A.; Petersen, M. M.; Hettwer, W.; McNally, M.; Tägil, M.; Zheng, M-H.; Kumar, A.

    2016-01-01

    Objectives We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy. Results C2C12 cells differentiated into osteoblast-like cells expressing prominent bone markers after seeding on the biomaterial. The conditioned media of the ROS 17/2.8 contained bone morphogenetic protein-2 (BMP-2 8.4 ng/mg, standard deviation (sd) 0.8) and BMP-7 (50.6 ng/mg, sd 2.2). In vitro, this secretome induced differentiation of skeletal muscle cells L6 towards an osteogenic lineage. Conclusion Extra cellular matrix proteins and growth factors leaking from a bone cavity, along with a ceramic biomaterial, can synergistically enhance the process of ectopic ossification. The overlaying muscle acts as an osteoinductive niche, and provides the required cells for bone formation. Cite this article: D. B. Raina, A. Gupta, M. M. Petersen, W. Hettwer, M. McNally, M. Tägil, M-H. Zheng, A. Kumar, L. Lidgren. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial. Bone Joint Res 2016;5:500–511. DOI: 10.1302/2046-3758.510.BJR-2016-0133.R1. PMID:27784668

  12. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    PubMed

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Reverse micelle mediated synthesis, processing, mechanical and biological characterization of hydroxyapatite nanopowders for bone graft application

    NASA Astrophysics Data System (ADS)

    Banerjee, Ashis

    Hydroxyapatite (HA) is the most widely used bioceramic material in bone graft applications because of its compositional similarity with natural bone. However, synthetic HA does not show similar mechanical and biological properties to the inorganic component of bone. Properties of ceramic material depend on starting materials, processing techniques, densification and microstructure of the final product. The objective of this research was to process HA whisker reinforced HA composite using HA nanopowders and whiskers. HA nanopowders with different length scale and morphology were synthesized by reverse micelle system using NP5 and NP12 as surfactants and cyclohexane as organic solvent. The lowest average aspect ratio was 1.357+/-0.39 with average particle size of 66 nm and the highest average aspect ratio was 7.277+/-3.227 with average length of 150 nm and width of 20 nm, were synthesized. Micron sized HA whiskers with aspect ratio between 20 and 50, average particle length of 15 mum and width of 400 nm was synthesized using urea as a precipitating agent. Desired microstructure was obtained after sintering with spherical HA nanopowder and whiskers along with dopants. Addition of whiskers decreased density of the sintered compacts. However, at 10 wt% whisker content sample showed microhardness and fracture toughness of 3.6 GPa and 1.5 MPa.m1/2, respectively, and a compressive strength of 80 MPa was obtained. Mineralization study in simulated body fluid (SBF) showed formation of apatite layer on the dense HA compacts indicating a good tendency of bond formation with natural bone. Cytotoxicity results showed excellent cell attachment on the HA surface. In the Appendices, 3 journal articles have been attached which describe synthesis, processing and characterization of undoped and doped PZT nanopowders. Free standing and agglomerated PZT nanopowders were synthesized by the sucrose templated method and the citrate nitrate autocombustion method. Particle size in the range

  14. Evaluation of a novel silicate substituted hydroxyapatite bone graft substitute in a rabbit posterolateral fusion model.

    PubMed

    Fredericks, Douglas C; Petersen, Emily B; Sahai, Nikhil; Corley, Katherine Gibson N; DeVries, Nicole; Grosland, Nicole M; Smucker, Joseph D

    2013-01-01

    Randomized, controlled study in a laboratory setting. Blinded observations/assessment of study outcomes. The purpose of this study is to determine the performance characteristics of a novel silicate-substituted hydroxyapatite bone graft substitute (BGS), SiCaP EP (Baxter Healthcare/ ApaTech, Elstree, UK), in a stand-alone mode, a stand-alone with bone marrow aspirate (BMA) mode, and an extender mode with iliac crest autograft (ICBG) in a rabbit posterolateral spine fusion model. The investigational BGS is compared to a standard iliac crest autograft (ICBG) control. The rabbit posterolateral fusion model is an established environment for testing of fusion efficacy. It offers the opportunity to obtain radiographic, histological, and biomechanical data on novel bone graft substitutes. One hundred and twenty rabbits were entered into the study with 116 used for analysis. Bilateral posterolateral lumbar intertransverse fusions were performed at L5-L6. The lateral two thirds of the transverse processes were decorti cated and covered with graft material in the following five groups: ICBG, SiCaP EP stand-alone, SiCaP EP with BMA (1:0.5 by volume), and SiCaP EP with ICBG (1:3 by volume). Rabbits were necropsied at 4, 8, and 12-week time points and fusion rate, quantity, and quality was evaluated based on manual palpation, mechanical stiffness testing, pqCT, and histological assessment. SiCaP EP, ICBG+SiCaP EP (3:1), and SiCaP EP+BMA (1:0.5) compare favorably to iliac crest autologous bone by multiple metrics in this rabbit posterolateral fusion model. Fusion efficacy via manual palpation and mechanical stiffness testing metrics indicate that all SiCaP EP groups had similar group-to-group performance, and were not significantly different than the ICBG control at each time period evaluated. In this commonly used rabbit posterolateral fusion model, SiCaP EP utilized as a stand-alone, as a stand-alone with BMA, and as an autograft (ICBG) extender produces results that are

  15. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep.

    PubMed

    Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren

    2015-04-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices.

  16. Bone Healing Improvements Using Hyaluronic Acid and Hydroxyapatite/Beta-Tricalcium Phosphate in Combination: An Animal Study

    PubMed Central

    Chang, Yen-Lan; Lo, Yi-June; Huang, Yu-Chih; Tsai, Hsin-Yuan; Lin, Che-Tong; Fan, Kan-Hsin

    2016-01-01

    The purpose of this study was to investigate whether the use of HLA as an aqueous binder of hydroxyapatite/beta-tricalcium phosphate (HA-βTCP) particles can reduce the amount of bone graft needed and increase ease of handling in clinical situations. In this study, HA/βTCP was loaded in commercially available crosslinking HLA to form a novel HLA/HA-βTCP composite. Six New Zealand White rabbits (3.0–3.6 kg) were used as test subjects. Four 6 mm defects were prepared in the parietal bone. The defects were filled with the HLA/HA-βTCP composite as well as HA-βTCP particle alone. New bone formation was analyzed by micro-CT and histomorphometry. Our results indicated that even when the HA-βTCP particle numbers were reduced, the regenerative effect on bone remained when the HLA existed. The bone volume density (BV/TV ratio) of HLA/HA-βTCP samples was 1.7 times larger than that of the control sample at week 2. The new bone increasing ratio (NBIR) of HLA/HA-βTCP samples was 1.78 times higher than the control group at week 2. In conclusion, HA-βTCP powder with HLA contributed to bone healing in rabbit calvarial bone defects. The addition of HLA to bone grafts not only promoted osteoconduction but also improved handling characteristics in clinical situations. PMID:28070520

  17. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities.

    PubMed

    Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V

    2016-09-01

    Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour.

    PubMed

    Oledzka, Ewa; Sobczak, Marcin; Kolmas, Joanna; Nalecz-Jawecki, Grzegorz

    2015-09-14

    The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched), and contained an active substance-bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA) or hyperbranched 2,2-bis(hydroxymethyl)propionic acid polyester-16-hydroxyl (bis-MPA) initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol). The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites.

  19. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    PubMed Central

    Rodriguez, Isaac A.; Sell, Scott A.; McCool, Jennifer M.; Saxena, Gunjan; Spence, Andrew J.; Bowlin, Gary L.

    2013-01-01

    The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma), hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone. PMID:24709699

  20. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour

    PubMed Central

    Oledzka, Ewa; Sobczak, Marcin; Kolmas, Joanna; Nalecz-Jawecki, Grzegorz

    2015-01-01

    The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched), and contained an active substance—bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA) or hyperbranched 2,2-bis(hydroxymethyl)propionic acid polyester-16-hydroxyl (bis-MPA) initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol). The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites. PMID:26389884

  1. Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion.

    PubMed

    Chang, Wei-Chieh; Tsou, Hsi-Kai; Chen, Wen-Shian; Chen, Chi-Chang; Shen, Chiung-Chyi

    2009-06-01

    We compared the preliminary outcomes of cervical fusion performed using radiolucent cages containing either cancellous bone or hydroxyapatite graft. From July 2004 to June 2006, 45 consecutive patients presented with a total of 109 levels of degenerative disc disease between the C2 and C7 levels. Each patient underwent anterior cervical discectomy and fusion (ACDF) for each affected cervical disc. The retrospective analysis of the cage fillers was divided into group 1 (23 patients with 56 affected cervical levels) who received cages packed with cancellous bone marrow, and group 2 (22 patients with 53 affected cervical levels) who received cages packed with hydroxyapatite graft. Bone marrow was harvested from the anterior iliac crest. The Prolo scale was used to assess both the economic and functional status postoperatively. The Yates' correction to test independence in a contingency was used to compare the fusion rate of both groups post-operatively at day 1 and at 1, 3 and 6 month follow-up. At a mean follow-up of 12 months, the fusion rates observed in groups 1 and 2, respectively, were 21.4% and 13.2% after 1 month, 76.8% and 64.2% after 3 months, and 98.2% and 96.2% after 6 months. Functional and economic status were better in group 2, with a statistical significance (p<0.05) observed at the 3-month follow-up. Although hydroxyapatite graft is an osteoconductive, rather than osteoinductive, material, when used as a cage filler it is a safe and efficient substitute for cancellous bone.

  2. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Nair, Manitha; Nancy, D.; Krishnan, Amit G.; Anjusree, G. S.; Vadukumpully, Sajini; Nair, Shantikumar V.

    2015-04-01

    In this study, graphene oxide (GO) nanoflakes (0.5 and 1 wt%) were incorporated into a gelatin-hydroxyapatite (GHA) matrix through a freeze drying technique and its effect to enhance mechanical strength and osteogenic differentiation was studied. The GHA matrix with GO demonstrated less brittleness in comparison to GHA scaffolds. There was no significant difference in mechanical strength between GOGHA0.5 and GOGHA1.0 scaffolds. When the scaffolds were immersed in phosphate buffered saline (to mimic physiologic condition) for 60 days, around 50-60% of GO was released in sustained and linear manner and the concentration was within the toxicity limit as reported earlier. Further, GOGHA0.5 scaffolds were continued for cell culture experiments, wherein the scaffold induced osteogenic differentiation of human adipose derived mesenchymal stem cells without providing supplements like dexamethasone, L-ascorbic acid and β glycerophosphate in the medium. The level of osteogenic differentiation of stem cells was comparable to those cultured on GHA scaffolds with osteogenic supplements. Thus biocompatible, biodegradable and porous GO reinforced gelatin-HA 3D scaffolds may serve as a suitable candidate in promoting bone regeneration in orthopaedics.

  3. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen

    PubMed Central

    Wang, Yan-Fu; Wang, Cheng-Yue; Wan, Peng; Wang, Shao-Gang; Wang, Xiu-Mei

    2016-01-01

    To study the effect of two composition ratios of nano-hydroxyapatite and collagen (NHAC) composites on repairing alveolar bone defect of dogs. Eighteen healthy adult dogs were randomly divided into three groups. Two kinds of the NHAC composites were prepared according to the constituent ratios of 3:7 and 5:5; immediately after extraction of the mandibular second premolars, each kind of the NHAC composite was implanted into extraction socket, respectively: Group I, nHA/Col = 3:7; Group II, nHA/Col = 5:5 and Group III, blank control group. The bone-repairing ability of the two grafts was separately analyzed by morphometric measurement, X-ray tomography examination and biomechanical analysis at 1st, 3rd and 6th month post-surgical, respectively. The NHAC composites were absorbed gradually after implanting into alveolar bone defect and were replaced by new bone. The ratios of new bone formation of Group I was significantly higher than that of Group II after 3 months (P < 0.05). The structure and bioactive performance can be improved when the ratio between the collagen and the hydroxyapatite was reasonable, and the repairing ability and effect in extraction sockets are obviously better. PMID:26816654

  4. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects.

    PubMed

    Yan, Ling; Jiang, Dian-ming

    2015-01-01

    The purpose of this study was to investigate the effect of bone-like hydroxyapatite/polyamino acid (BHA/PAA) in the osteogenesis and reconstruction of long segmental bone defects. In vitro, MG63 cells were cultured with BHA/PAA. The osteoinductive activity of the BHA/PAA material was evaluated using inverted microscopy, scanning electron microscopy, MTT proliferation assay, and the determination of alkaline phosphatase activity and Ca(2+) content. In vivo, the radial bone defect was made in 20 New Zealand White rabbits, and then these animal were randomly divided into two groups (n=10), the experimental group (with BHA/PAA) and the control group (without BHA/PAA). Postoperatively, the osteogenesis effect of BHA/PAA was evaluated through X-ray, hematoxylin-eosin staining, observation of the gross bone specimen, immunohistochemistry, and fluorescent confocal scanning microscopy. In vitro, BHA/PAA promoted the adhesion, growth, and calcium nodule formation of MG63 cells, and it had good osteogenesis activity. In vivo, with BHA/PAA material degradation and absorption, the new bone gradually formed, and the bone defect gradually recovered in the experimental group. In the control group, a limited bone formation was found at the bone broken ends, and the bone defect was obviously visible. In vitro and in vivo, we confirmed that BHA/PAA was effective in inducing osteogenesis and reconstructing a long segmental bone defect.

  5. A comparative study of radiographic results using HEALOS collagen-hydroxyapatite sponge with bone marrow aspiration versus local bone graft in the same patients undergoing posterolateral lumbar fusion.

    PubMed

    Kunakornsawat, Sombat; Kirinpanu, Arthithat; Piyaskulkaew, Chaiwat; Sathira-Angkura, Vera

    2013-08-01

    Autologous bone harvested from the iliac crest is the gold standard for lumbar spinal fusion. However postoperative donor site pain and morbidity have been reported. Local bone graft is insufficient and contains some soft-tissue attachment. Therefore, Healos (DePuy Spine, Raynham, MA, USA) is currently bone graft substitute that was introduced for spinal fusion with good results but radiographic fusion rate has not been clearly defined yet. To assess the radiographic fusion rate of HEALOS with bone marrow aspiration versus autologous bone graft in the same patients undergoing posterolateral lumbar fusion. A retrospective radiographic outcome study of radiographic fusion rate from plain radiographs in 55patients indicatedforposterolateral lumbar fusion in Lerdsin General Hospital between April 2005 and December 2006 was done. The patients were implanted with HEALOS collagen-hydroxyapatite sponge with bone marrow aspiration and local bone graft on each side of Posterolateral Lumbar Fusion. Twenty-seven patients were included in the present study according to the authors'inclusion criteria. Plain radiographs were collected and radiographic fusion rate was assessed for at least two years follow-up. The two years post operative radiographic fusion rate was 29.63% (8/27) in Healos/BMA group and 62.96% (17/27) in LBG group. At three-years follow-up, radiographic fusion rate of 36.84% (7/19) was achieved in the Healos/ BMA group and 78.93% (15/19) in the LBG group. In the present study, Healos collagen-hydroxyapatite sponge with bone marrow aspiration had lower radiographic fusion rate when compared to local bone graft in posterolateral lumbar fusion at two years post operative. The results of the Healos/BMA group was increased fusion rate with time but remained lower than LBG group at three and four years follow-up.

  6. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit.

    PubMed

    Rahimzadeh, Rasoul; Veshkini, Abbas; Sharifi, Davood; Hesaraki, Saeed

    2012-02-01

    To evaluate the osteo-regenerative capacity of proprietary bone grafting material as a bone defect filler and osteogenetic stimulation to speed up bone healing too. Eighteen adult male New Zealand white rabbits were anesthetized and a segmental full thickness bone defect of 10 mm in length was created in the middle of the right radial shaft in all rabbits. They were divided into two groups of 9 rabbits. Group I was considered as control and the fractured site was fixed using finger bone plate with 4 screws, whereas the cancellous bone scaffold coated with Nano-Hydroxyapatite was used to fill the gap after fracture fixation in Group II. Radiography, two dimensional and color Doppler ultrasonography were done before and after creating defects and on 0, 15, 30, 60 and 90 days to evaluate local reaction as far as new blood vessels network and callus formation are observed. On the radiographs during the whole process, bone repair in Group I was not as perfect as those in Group II samples and trace of internal callus filled the gap incompletely in 60 days in Group I, whereas in Group II internal callus almost was formed on 30 days and in addition intercortical callus was seen supporting to cover and filled the gap completely in this group in 60 day; Sonographic findings confirmed the protrusion of newly formed blood vascular network in 30 days in Group I and from 15 days in Group II and remarkably increased till end of observation period. The nano-hydroxyapatite with more features and shorter in time, made possible the reconstruction of bone tissue and alternative techniques as well as previous bone graft, also radiography and ultrasonography are reliable techniques to trace local reaction at proper time.

  7. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; Qiang, Zhou; Tu, Kai-kai; Huang, Zheng-Liang; Xu, Hong-Ming; Sun, Tao; Lv, Yang-Xun; Cui, Wei; Yang, Lei

    2016-02-01

    Previous studies have demonstrated the effect of human parathyroid hormone (1-34) (PTH) or strontium-doped hydroxyapatite coating (Sr-HA) on osteoporotic bone implantation. However, reports about effects of PTH plus Sr-HA on bone osseointegration of titanium implants in a state of osteoporosis were limited. This study was designed to investigate the effects of intermittent administration of human parathyroid hormone (1-34) on strontium-doped hydroxyapatite coating (Sr-HA) implant fixation in ovariectomized (OVX) rats. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups including control group, Sr group, PTH group and PTH+Sr group. Forty OVX rats accepted implant insertion in the distal femurs, control group, and PTH group with HA implants and the Sr group and PTH+Sr group with Sr-HA implants. Animals from PTH group and PTH+Sr group then randomly received PTH (60 µg/kg, 3 times a week) until death at 12 weeks. After 12-week healing period, implants from group PTH+Sr revealed improved osseointegration compared with other treatment groups, which is manifested by the exceeding increase of bone area ratio and bone-to-implant contact, the trabecular microarchitecture and the maximal push-out force displayed by tests like histomorphometry, micro-CT, and biomechanics evaluation. These results demonstrated that PTH+ Sr-HA coatings could enhance implant osseointegration in OVX rats, and suggested the feasibility of using this method to improve implant fixation in osteoporotic bone.

  8. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    PubMed

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  9. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  10. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    PubMed

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  11. Biological assessment of a calcium silicate incorporated hydroxyapatite-gelatin nanocomposite: a comparison to decellularized bone matrix.

    PubMed

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration.

  12. The inhibitory effect of alendronate-hydroxyapatite composite coating on wear debris-induced peri-implant high bone turnover.

    PubMed

    Niu, Shun; Cao, Xiaorui; Zhang, Yan; Zhu, Qingsheng; Zhu, Jinyu

    2013-01-01

    Bisphosphonate (BP) has been confirmed as the most potent drug for enhancing implant stability. There have been few studies focused on BP-hydroxyapatite (HA) composite coatings, and the mechanisms through which BPs inhibit wear debris-induced high bone turnover have not been comprehensively discussed. Thirty rabbits were divided into three groups. HA-coated implants were inserted into the proximal region of the medullary cavity of the left tibia. In groups II and III, particles were injected around the implant and into the knee joint during implantation. Low-dose alendronate (ALN) was combined with the HA coating in group III. The efficacy of the composite coating was evaluated using several parameters, including the intra-articular pressure, histology of the synovial membranes and bone-implant interfaces, bone histomorphometry and mineralization, implant stability, osteolysis-related cytokine levels, and the duration of ALN release in vitro. The results indicate that the ALN-HA composite coating reduces peri-implant high bone turnover; improves bone-implant integration, bone quality, and implant stability; and inhibits particle migration. In vitro results suggest that the ALN-HA composite coating can afford long release duration. This study may help us further realize the mechanisms through which BPs enhance bone-implant integration in a state of peri-implant high bone turnover. BP-HA composite coatings are promising materials, particularly in revision surgeries. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis.

    PubMed

    Sahana, H; Khajuria, Deepak Kumar; Razdan, Rema; Mahapatra, D Roy; Bhat, M R; Suresh, Sarasija; Rao, R Ramachandra; Mariappan, L

    2013-02-01

    A superior drug formulation capable of achieving efficient osteogenesis is in imperative demand for the treatment of osteoporosis. In the present study we investigated the potential of using novel risedronate-hydroxyapatite (HA) nanoparticle based formulation in an animal model of established osteoporosis. Nanoparticles of HA loaded with risedronate (NHLR) of various sizes (80-130 nm) were generated for bone targeted drug delivery. Three months after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups and treated with various doses of NHLR (500, 350 and 250 microg/kg intravenous single dose) and sodium risedronate (500 microg/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. One month after drug administration, the left tibia and femur were tested for bone mechanical properties and histology, respectively. In the right femur, bone density was measured by method based on Archimedes principle and bone porosity analyses were performed using X-ray imaging. NHLR (250 microg/kg) showed a significant increase in bone density and reduced bone porosity when compared with OVX control. Moreover, NHLR (250 microg/kg) significantly increased bone mechanical properties and bone quality when compared with OVX control. The results strongly suggest that the NHLR, which is a novel nanoparticle based formulation, has a therapeutic advantage over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model of postmenopausal osteoporosis.

  14. Bone augmentation after ectopic implantation of a cell-free collagen-hydroxyapatite scaffold in the mouse

    PubMed Central

    Calabrese, Giovanna; Giuffrida, Raffaella; Forte, Stefano; Salvatorelli, Lucia; Fabbi, Claudia; Figallo, Elisa; Gulisano, Massimo; Parenti, Rosalba; Magro, Gaetano; Colarossi, Cristina; Memeo, Lorenzo; Gulino, Rosario

    2016-01-01

    The bone grafting is the classical way to treat large bone defects. Among the available techniques, autologous bone grafting is still the most used but, however, it can cause complications such as infection and donor site morbidity. Alternative and innovative methods rely on the development of biomaterials mimicking the structure and properties of natural bone. In this study, we characterized a cell-free scaffold, which was subcutaneously implanted in mice and then analyzed both in vivo and ex vivo after 1, 2, 4, 8 and 16 weeks, respectively. Two types of biomaterials, made of either collagen alone or collagen plus magnesium-enriched hydroxyapatite have been used. The results indicate that bone augmentation and angiogenesis could spontaneously occur into the biomaterial, probably by the recruitment of host cells, and that the composition of the scaffolds is crucial. In particular, the biomaterial more closely mimicking the native bone drives the process of bone augmentation more efficiently. Gene expression analysis and immunohistochemistry demonstrate the expression of typical markers of osteogenesis by the host cells populating the scaffold. Our data suggest that this biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors. PMID:27821853

  15. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    PubMed Central

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration. PMID:25054149

  16. A comparison of fatigue crack growth in human enamel and hydroxyapatite.

    PubMed

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne D

    2008-12-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (p<0.0001) than that for HAp (C=2.0 E+00 (mm/cycle)x(MPa m(0.5))(-m)). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth.

  17. A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite

    PubMed Central

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne

    2008-01-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m = 7.7±1.0) was similar to that for HAp (m = 7.9±1.4), whereas the crack growth coefficient (C) for enamel (C=8.7E-04 (mm/cycle)·(MPa·m0.5)-m) was significantly lower (p<0.0001) than that for HAp (C = 2.0E+00 (mm/cycle)·(MPa·m0.5)-m). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth. PMID:18804277

  18. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    PubMed

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  19. The Identification of Proteoglycans and Glycosaminoglycans in Archaeological Human Bones and Teeth

    PubMed Central

    Coulson-Thomas, Yvette M.; Coulson-Thomas, Vivien J.; Norton, Andrew L.; Gesteira, Tarsis F.; Cavalheiro, Renan P.; Meneghetti, Maria Cecília Z.; Martins, João R.; Dixon, Ronald A.; Nader, Helena B.

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology. PMID:26107959

  20. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion.

    PubMed

    Minamide, Akihito; Yoshida, Munehito; Kawakami, Mamoru; Yamasaki, Satoru; Kojima, Hirotsugu; Hashizume, Hiroshi; Boden, Scott D

    2005-05-15

    Posterolateral lumbar transverse process fusion was completed using the cultured bone marrow cells in type I collagen gel and porous hydroxyapatite. To compare the efficacy of cultured bone marrow cells with that of bone morphogenetic protein (BMP) as a graft alternative to autologous bone for posterolateral spine fusion. The clinical application of BMP for spinal fusion may be limited by high dose and cost. Recently, mesenchymal stem cells have been studied in various fields because of their capability to differentiate into various cells, including those in the osteogenic lineage. Thirty adult rabbits were used. Each underwent single-level, bilateral, posterolateral intertransverse process fusions at L4-L5. The animals were divided into 4 groups, each according to the material implanted: (1) autologous bone (autograft, n = 9); (2) porous hydroxyapatite (HA) particles and type I collagen sheet with 100 microg rhBMP-2 (BMP-HA, n = 7); (3) bone marrow cells (1 x 10(6) cells/mL, low-marrow-HA, n = 7); and (4) bone marrow cells (1 x 10(8) cells/mL, high-marrow-HA, n = 7). Before implantation for groups 3 and 4, fresh bone marrow cells from the iliac crest of each animal were cultured in a standard medium for 2 weeks. For one additional week, the marrow cells were cultured in 10(-8) M dexamethasone, type I collagen gel, and HA. Animals were euthanized 6 weeks after surgery. Spinal fusions were evaluated by radiograph, manual palpation, and histology. The fusion rates were 4 of 7 in the autograft group, 7 of 7 in the BMP-HA group, 0 of 7 in the low-marrow-HA group, and 5 of 7 in the high-marrow-HA group. The histology in the BMP-HA and high-marrow-HA groups showed that grafted HA fragments were connected with mature new bone. The pores of HA fragments were filled up with bone matrix. In the low-marrow-HA group, fibrous tissue was predominant in the grafted fragments. This study shows that the cultured bone marrow cells can act as a substitute for autograft or BMP in

  1. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.

    PubMed

    Khalid, P; Hussain, M A; Rekha, P D; Arun, A B

    2015-05-01

    As a bone mineral component, hydroxyapatite (HA) has been an attractive bioceramic for the reconstruction of hard tissues. However, its poor mechanical properties, including low fracture toughness and tensile strength, have been a substantial challenge to the application of HA for the replacement of load-bearing and/or large bone defects. In this study, HA is reinforced with high-purity and well-functionalized multiwalled carbon nanotubes (MWCNTs; >99 wt%) having an average diameter of 15 nm and length from 10 to 20 μm. The cellular response of these functionalized CNTs and its composites were examined in human osteoblast sarcoma cell lines. Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) were used to synthesize HA in situ. MWCNTs were functionalized by heating at 100°C in 3:1 ratio of sulfuric acid and nitric acid for 60 min with stirring and dispersed in sodium dodecyl benzene sulfonate by sonication. HA particles were produced in MWCNTs solution by adding Ca(NO3)2·4H2O and (NH4)2HPO4 under vigorously stirring conditions. The composite was dried and washed in distilled water followed by heat treatment at 250°C to obtain CNT-HA powder. Physiochemical characterization of the composite material was carried out using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectrometer, and X-ray diffractometer. Furthermore, this study investigates the cytotoxic effects of functionalized-MWCNTs (f-MWCNTs) and its composites with HA in human osteoblast sarcoma cell lines. Human osteoblast cells were exposed with different concentrations of f-MWCNTs and its composite with HA. The interactions of f-MWCNT and MWCNT-HA composites were analyzed by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The results indicate no detrimental effect on survival or mitochondrial activity of the osteoblast cells. Cell viability decreased with an increase in CNT

  2. Manipulation of Mg(2+)-Ca(2+) Switch on the Development of Bone Mimetic Hydroxyapatite.

    PubMed

    Andrés, Nancy C; D'Elía, Noelia L; Ruso, Juan M; Campelo, Adrián E; Massheimer, Virginia L; Messina, Paula V

    2017-05-10

    Ionic substitution can affect essential physicochemical properties leading to a specific biological behavior upon implantation. Therefore, it has been proposed as a tool to increase the biological efficiency of calcium phosphate based materials. In the following study, we have evaluated the contribution of an important cation in nature, Mg(2+), into the structure of previously studied biocompatible and biodegradable hydroxyapatite (HA) nanorods and its subsequent effect on its chemical, morphology, and bone mimetic articulation. Mg(2+)-substituted HA samples were synthesized by an aqueous wet-chemical precipitation method, followed by an hydrothermal treatment involving a Mg(2+) precursor that partially replace Ca(2+) ions into HA crystal lattice; Mg(2+) concentrations were modulated to obtain a nominal composition similar to that exists in calcified tissues. Hydrothermally synthesized Mg(2+)-substituted HA nanoparticles were characterized by X-ray powder diffraction, FT-NIR and EDX spectroscopies, field emission scanning and high resolution transmission electron microscopies (FE-SEM, H-TEM). Molecular modeling combining ab initio methods and power diffraction data were also performed. Results showed that Mg(2+)-substitution promoted the formation of calcium deficient HA (cdHA) where Mg(2+) replacement is energetically favored at Ca(1) position in a limited and specific amount directing the additional Mg(2+) toward the surface of the crystal. The control of Mg(2+) incorporation into HA nanorods gave rise to a tailored crystallinity degree, cell parameters, morphology, surface hydration, solubility, and degradation properties in a dose-replacement dependent manner. The obtained materials show qualities that conjugated together to drive an optimal in vitro cellular viability, spreading, and proliferation confirming their biocompatibility. In addition, an improved adhesion of osteoblast was evidenced after Mg(2+)-Ca(2+) substitution.

  3. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration.

    PubMed

    Frasnelli, Matteo; Cristofaro, Francesco; Sglavo, Vincenzo M; Dirè, Sandra; Callone, Emanuela; Ceccato, Riccardo; Bruni, Giovanna; Cornaglia, Antonia Icaro; Visai, Livia

    2017-02-01

    The production of stable suspensions of strontium-substituted hydroxyapatite (Sr-HA) nanopowders, as Sr ions vector for bone tissue regeneration, was carried out in the present work. Sr-HA nanopowders were synthesized via aqueous precipitation methods using Sr(2+) amount from 0 to 100mol% and were characterized by several complementary techniques such as solid-state Nuclear Magnetic Resonance spectroscopy, X-ray diffraction, Infrared spectroscopy, N2 physisorption and Transmission Electron Microscopy. The substitution of Ca(2+) with Sr(2+) in HA is always isomorphic with gradual evolution between the two limit compositions (containing 100% Ca and 100% Sr), this pointing out the homogeneity of the synthesized nanopowders and the complete solubility of strontium in HA lattice. Strontium addition is responsible for an increasing c/a ratio in the triclinic unit cell. A significant variation of the nanopowders shape and dimension is also observed, a preferential growth along the c-axis direction being evident at higher strontium loads. Modifications in the local chemical environment of phosphate and hydroxyl groups in the apatite lattice are also observed. Stable suspensions were produced by dispersing the synthesized nanopowders in bovine serum albumin. Characterization by Dynamic Light Scattering and ζ-potential determination allowed to show that Ca(2+)→Sr(2+) substitution influences the hydrodynamic diameter, which is always twice the particles size determined by TEM, the nanoparticles being always negatively charged as a result from the albumin rearrangement upon the interaction with nanoparticles surface. The biocompatibility of the suspensions was studied in terms of cell viability, apoptosis, proliferation and morphology, using osteosarcoma cell line SAOS-2. The data pointed out an increased cell proliferation for HA nanoparticles containing larger Sr(2+) load, the cells morphology remaining essentially unaffected. Copyright © 2016 Elsevier B.V. All rights

  4. Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration.

    PubMed

    Eilbagi, Marjan; Emadi, Rahmatollah; Raeissi, Keyvan; Kharaziha, Mahshid; Valiani, Ali

    2016-11-01

    Despite the attractive characteristics of three-dimensional pure hydroxyapatite (HA) scaffolds, due to their weak mechanical properties, researches have focused on the development of composite scaffolds via introducing suitable secondary components. The aim of this study was to develop, for the first time, three-dimensional HA-bredigite (Ca7MgSi4O16) scaffolds containing various amounts of bredigite nanopowder (0, 5, 10 and 15wt.%) using space holder technique. Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction spectroscopy were applied in order to study the morphology, fracture surface and phase compositions of nanopowders and scaffolds. Furthermore, the effects of scaffold composition on the mechanical properties, bioactivity, biodegradability, and cytotoxicity were also evaluated. Results showed that the composite scaffolds with average pore size in the range of 220-310μm, appearance porosity of 63.1-75.9% and appearance density of 1.1±0.04g/cm(3) were successfully developed, depending on bredigite content. Indeed, the micropore size of the scaffolds reduced with increasing bredigite content confirming that the sinterability of the scaffolds was improved. Furthermore, the compression strength and modulus of the scaffolds significantly enhanced via incorporation of bredigite content from 0 to 15wt.%. The composite scaffolds revealed superior bioactivity and biodegradability with increasing bredigite content. Moreover, MTT assay confirmed that HA-15wt.% bredigite scaffold significantly promoted cell proliferation compared to tissue culture plate (control) and HA scaffold. Based on these results, three-dimensional HA-bredigite scaffolds could be promising replacements for HA scaffolds in bone regeneration.

  5. Long-term clinical outcomes following the use of synthetic hydroxyapatite and bone graft in impaction in revision hip arthroplasty.

    PubMed

    Aulakh, Tajeshwar S; Jayasekera, Narlaka; Kuiper, Jan-Herman; Richardson, James B

    2009-03-01

    Impaction grafting using morsellised allograft bone restores bone stock, but carries the potential for transmission of infection. Synthetic bone graft substitutes can eliminate this risk but may, however, influence outcome. In this study we tested the hypothesis that a 50/50 mix of hydroxyapatite and allograft does not affect long-term function, survival or radiological outcome. Sixty-five patients had revision hip arthroplasty using impaction grafting with either pure allograft (42 patients) or a 50/50 mixture of allograft and solid particulate hydroxyapatite. Harris hip scores were assessed pre-operatively and annual intervals thereafter. Function was analyzed using multilevel modeling, the Kaplan-Meier method used for survival analysis and graft incorporation was assessed radiologically. The hip score improved in both groups but showed a small annual decline (average 1.2/year, p<0.01). This decline was higher for females (average 3.4, p=0.025) and significantly related to pre-op scores (p<0.001). After adjusting for these, allograft patients had marginally higher scores (difference=3.1, p=0.3). The majority of revisions were for aseptic loosening. At 13 years survival in the allograft group was 84%, and 82% in the mixture group (p=0.96, log rank test). Radiologically the graft incorporation was similar in both groups (p=0.62). We conclude that long-term prosthesis survival and function following revision arthroplasty with a 50/50 mixture of allograft and hydroxyapatite are comparable to allograft alone.

  6. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds.

    PubMed

    Bi, Lianxiang; Jung, Steve; Day, Delbert; Neidig, Katie; Dusevich, Vladimir; Eick, David; Bonewald, Lynda

    2012-12-01

    Bioactive glasses are biocompatible materials that convert to hydroxyapatite in vivo, and potentially support bone formation, but have mainly been available in particulate and not scaffold form. In this study, borosilicate and borate bioactive glass scaffolds were evaluated in critical-sized rat calvarial defects. Twelve-week-old rats were implanted with 45S5 silicate glass particles and scaffolds of 1393 silicate, 1393B1 borosilicate, and 1393B3 borate glass. After 12 weeks, the defects were harvested, stained with hematoxylin and eosin to evaluate bone regeneration, Periodic Acid Schiff to quantitate blood vessel area, and von Kossa and backscatter SEM to estimate newly mineralized bone and hydroxyapatite conversion of bioactive glasses. The amount of new bone was 12.4% for 45S5, 8.5% for 1393, 9.7% for 1393B1, and 14.9% for 1393B3 (*p = 0.04; cf. 1393 and 1393B1). Blood vessel area was significantly higher (p = 0.009) with 45S5 (3.8%), with no differences among 1393 (2.0%), 1393B1 (2.4%), or 1393B3 (2.2%). Percent von Kossa-positive area was 18.7% for 45S5, 25.4% for 1393, 29.5% for 1393B1, and 30.1% for 1393B3, significantly higher (p = 0.014) in 1393B1 and 1393B3 glasses than in 45S5. 45S5 and 1393B3 converted completely to HA in vivo. The 1393B3 glass provided greater bone formation and may be more promising for bone defect repair due to its capacity to be molded into scaffolds. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3267-3275, 2012.

  7. The impact of orthopedic device associated with carbonated hydroxyapatite on the oxidative balance: experimental study of bone healing rabbit model.

    PubMed

    Jebahi, Samira; Nsiri, Riadh; Boujbiha, Mohammed; Bouroga, Ezedine; Rebai, Tarek; Keskes, Hassib; El Feki, Abdelfattah; Oudadesse, Hassane; El Feki, Hafed

    2013-10-01

    Orthopedic devices are used in pathologic disorder as an adjunct to bone grafts to provide immediate structural stability. Unfortunately, the use of metallic devices has some complications. This study aimed to characterize the oxidative stress biomarker and the antioxidant enzyme profiles during bone regeneration. New Zealand White rabbits were divided into 4 groups: Group (I) was used as control (T), Groups II, III, and IV were used, respectively, as implanted tissue with carbonated hydroxyapatite (CHA), carbonated hydroxyapatite associated with external fixator (CHA + EF), and presenting empty defects (ED). Grafted bone tissues were carefully removed to measure malondialdehyde (MDA) concentration, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities (GPx). Our results showed that 4 weeks after operation, treatment of rabbits with CHA + EF showed a significantly higher malondialdehyde (MDA) concentration when compared to that of control group. The SOD, CAT, and GPx in CHA + EF group showed significantly lower activities when compared to those in control group. Eight weeks after surgery, the CHA + EF group presented a lower concentration of MDA as compared to those seen after the first 4 weeks after surgery. On the other hand, the SOD, CAT, and GPx showed a higher activity when compared with the same group. Consequently, MDA concentration and the antioxidant enzyme activities were not significant (p > 0.05) when compared to those in control group rabbits. Histologic sampling has demonstrated successful time-patterned resorption accompanied by bone replacement and remodeling. These results suggest that there was a temporary increase in the oxidative marker level in CHA + EF healing bone and the 8-week period was sufficient to re-establish oxidant-antioxidant balance accompanied by bone repair in the tibia rabbit model.

  8. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.

    PubMed

    Zong, Chen; Qian, Xiaodan; Tang, Zihua; Hu, Qinghong; Chen, Jiarong; Gao, Changyou; Tang, Ruikang; Tong, Xiangmin; Wang, Jinfu

    2014-06-01

    Copolymer composite scaffolds and bioceramic/polymer composite scaffolds are two representative forms of composite scaffolds used for bone tissue engineering. Studies to compare biocompatibility and bone-repairing effects between these two scaffolds are significant for selecting or improving the scaffold for clinical application. We prepared two porous scaffolds comprising poly-lactic-acid/poly-glycolic-acid (PLGA) and poly-lactic-acid/nano-hydroxyapatite (nHAP/PLA) respectively, and examined their biocompatibility with human bone marrow-derived mesenchymal stem cells (hMSCs) through evaluating adhesion, proliferation and osteogenic differentiation potentials of hMSCs in the scaffold. Then, the PLGA scaffold with hMSCs (PM construct) and the nHAP/PLA scaffold with hMSCs (HPM construct) were transplanted into the rat calvarial defect areas to compare their effects on the bone reconstruction. The results showed that the nHAP/PLA scaffold was in favor of adhesion, matrix deposition and osteogenic differentiation of hMSCs. For in vivo transplantation, both HPM and PM constructs led to mineralization and osteogenesis in the defect area of rat. However, the area grafted with PM construct showed a better formation of mature bone than that with HPM construct. In addition, the evaluation of in vitro and in vivo degradation indicated that the degradation rate of nHAP/PLA scaffold was much lower than that of PLGA scaffold. It is inferred that the lower degradation of nHAP/PLA scaffold should result in its inferior bone reconstruction in rat calvaria. Therefore, the preparation of an ideal composite scaffold for bone tissue engineering should be taken into account of the balance between its biocompatibility, degradation rate, osteoconductivity and mechanical property.

  9. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  10. Bone Marrow Stem Cells Added to a Hydroxyapatite Scaffold Result in Better Outcomes after Surgical Treatment of Intertrochanteric Hip Fractures

    PubMed Central

    Gutierres, Manuel; Lopes, M. Ascenção; Santos, J. Domingos; Cabral, A. T.; Pinto, R.

    2014-01-01

    Introduction. Intertrochanteric hip fractures occur in the proximal femur. They are very common in the elderly and are responsible for high rates of morbidity and mortality. The authors hypothesized that adding an autologous bone marrow stem cells concentrate (ABMC) to a hydroxyapatite scaffold and placing it in the fracture site would improve the outcome after surgical fixation of intertrochanteric hip fractures. Material and Methods. 30 patients were randomly selected and divided into 2 groups of 15 patients, to receive either the scaffold enriched with the ABMC (Group A) during the surgical procedure, or fracture fixation alone (Group B). Results. There was a statistically significant difference in favor of group A at days 30, 60, and 90 for Harris Hip Scores (HHS), at days 30 and 60 for VAS pain scales, for bedridden period and time taken to start partial and total weight bearing (P < 0.05). Discussion. These results show a significant benefit of adding a bone marrow enriched scaffold to surgical fixation in intertrochanteric hip fractures, which can significantly reduce the associated morbidity and mortality rates. Conclusion. Bone marrow stem cells added to a hydroxyapatite scaffold result in better outcomes after surgical treatment of intertrochanteric hip fractures. PMID:24955356

  11. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  12. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    NASA Astrophysics Data System (ADS)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-02-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H2DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly ( p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant ( p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  13. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    PubMed Central

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-01-01

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries. PMID:25789500

  14. New bioactive hybrid material of nano-hydroxyapatite based on N-carboxyethylchitosan for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Zhu, Aiping; Wang, Wanpeng; Shi, Hongchan

    2010-09-01

    N-carboxyethylchitosan/nano-hydroxyapatite (NCECS/HA) composite films were fabricated and their potential applications in guiding bone regeneration were investigated in terms of their in vitro cellular activity. Fourier ransform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to investigate the structure and composition of the composite film. Field Emission scanning electron microscopy (FESEM) revealed that HA nanoparticles were dispersed homogeneously in NCECS matrix. The composite film has sufficient mechanical properties for tissue engineering scaffold. The composite film was found to have better cartilage cell adhesion and growth than pure NCECS film.

  15. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    PubMed

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect.

  16. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering.

    PubMed

    Saravanan, Sekaran; Nethala, Sricharan; Pattnaik, Soumitri; Tripathi, Anjali; Moorthi, Ambigapathi; Selvamurugan, Nagarajan

    2011-08-01

    In this study, a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg) was developed by freeze drying technique, followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan. The scaffolds were characterized using SEM, FT-IR, XRD, swelling, and biodegradation studies. The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity. The scaffold materials were also found to be non-toxic to rat osteoprogenitor cells and human osteosarcoma cell line. Thus, these results suggested that CS/nHAp/nAg bio-composite scaffolds have the potential in controlling implant associated bacterial infection during reconstructive surgery of bone.

  17. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Stanić, Vojislav; Janaćković, Djordje; Dimitrijević, Suzana; Tanasković, Sladjana B.; Mitrić, Miodrag; Pavlović, Mirjana S.; Krstić, Aleksandra; Jovanović, Dragoljub; Raičević, Slavica

    2011-02-01

    Monophase silver-doped hydroxyapatite (AgxCa10-x(PO4)6(OH)2; 0.002 ≤ x ≤ 0.04) nanoparticles were prepared using a neutralization method and investigated with respect to potential medical applications. This method consists of dissolving Ag2O in solution of H3PO4, and the slow addition to suspension of Ca(OH)2 was applied for the purpose of homogenous distribution of silver ions. Characterization studies from XRD, TEM and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that particles of all samples are of nano size, with average length of 70 nm and about 15-25 nm in diameter. Antimicrobial studies have demonstrated that all silver-doped hydroxyapatite samples exhibit excellent antimicrobial activity in vitro against the following pathogens: Staphylococcus aureus, Escherichia coli and Candida albicans. The hydroxyapatite sample with the highest content of silver has shown the highest antimicrobial activity; killed all cells of E. coli and brought to more than 99% reduction in viable counts of S. aureus and C. albicans. The atomic force microscopic studies illustrate that silver-doped hydroxyapatite sample causes considerable morphological changes of microorganism cells which might be the cause of cells' death. Hemolysis ratios of the silver-doped hydroxyapatite samples were below 3%, indicating good blood compatibility and that are promising as biomaterials.

  18. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.

    PubMed

    Zhi, Wei; Zhang, Cong; Duan, Ke; Li, Xiaohong; Qu, Shuxin; Wang, Jianxin; Zhu, Zhuoli; Huang, Peng; Xia, Tian; Liao, Ga; Weng, Jie

    2014-08-01

    In vivo engineering of bone autografts using bioceramic scaffolds with appropriate porous structures is a potential approach to prepare autologous bone grafts for the repair of critical-sized bone defects. This study investigated the evolutionary process of osteogenesis, angiogenesis, and compressive strength of bioceramic scaffolds implanted in two non-osseous sites of dogs: the abdominal cavity and the dorsal muscle. Hydroxyapatite (HA) sphere-accumulated scaffolds with controlled porous structures were prepared and placed in the two sites for up to 6 months. Analyses of retrieved scaffolds found that osteogenesis and angiogenesis were faster in scaffolds implanted in dorsal muscles compared with those placed in abdominal cavities. The abdominal cavity, however, can accommodate larger bone grafts with designed shape. Analyses of scaffolds implanted in abdominal cavities [an environment of a low mesenchymal stem cell (MSC) density] further demonstrated that angiogenesis play critical roles during osteogenesis in the scaffolds, presumably by supplying progenitor cells and/or MSCs as seed cells. This study also examined the relationship between the volume of bone grafts and the physiological environment of in vivo bioreactor. These results provide basic information for the selection of appropriate implanting sites and culture time required to engineer autologous bone grafts for the clinical bone defect repair. Based on these positive results, a pilot study has applied the grafts constructed in canine abdominal cavity to repair segmental bone defect in load-bearing sites (limbs).

  19. Investigating the effects of particle size and chemical structure on cytotoxicity and bacteriostatic potential of nano hydroxyapatite/chitosan/silica and nano hydroxyapatite/chitosan/silver; as antibacterial bone substitutes

    NASA Astrophysics Data System (ADS)

    Tavakol, Shima; Nikpour, Mohammad Reza; Hoveizi, Elham; Tavakol, Behnaz; Rezayat, Seyed Mahdi; Adabi, Mahdi; Shajari Abokheili, Sahebeh; Jahanshahi, Mohsen

    2014-10-01

    The restoration of defective bone tissue and complications related to surgery and fracture site infection are major concerns in orthopedic surgeries. However, it is crucial to develop osteoconductive and bacteriostatic composites. Chitosan/nano hydroxyapatite (CT/n-HAp) powder containing of Ag and Si were prepared by an in situ hybridization method. The aim of this work was to elucidate the effect of size, surface roughness, and chemical structure of mentioned nanocomposites on cytotoxicity and bacteriostatic activity via human osteoblast cells and Escherichia Coli, respectively. Particle size, surface roughness, reactive oxygen specious production, and bioactivity of nanocomposites were investigated by X ray diffraction, atomic force microscopy, DPPH assay, and SEM/UV-Visible spectrophotometer, respectively. Bacterial colony counting test, MTT assay and lactate dehydrogenase (LDH) release were performed as bacteriostatic and biocompatibility tests. The results showed that CT/n-HAp/Ag with smaller particle size in the range of 1-22.6 nm (10.00 ± 0.09 nm) than CT/n-HAp/Si in the range of 3-72.5 nm (18.00 ± 0.14 nm) exhibits higher cell viability and bacteriostatic activity, and less LDH release from cell plasma membrane. Integration of Ag into the nanocomposite hindered the release of Ag+ ions and restricts cytotoxic potential on cells. Higher cytotoxic effect of CT/n-HAp/Si might be related to proton concentration derived from nanocomposite and its chemical structure. In conclusion, the strong bone regeneration potential of CT/n-HAp and good biocompatibility and bacteriostatic activity of CT/n-HAp/Ag make it as potential bacteriostatic bone filler in site of infected bone fracture.

  20. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Li, Yubao; Zou, Qin

    2009-04-01

    Porous scaffold containing 30 wt% nano-hydroxyapatite (n-HA) and 70 wt% polyurethane (PU) from castor oil was prepared by a foaming method and investigated by X-ray diffraction (XRD), Fourier transform infrared absorption (FTIR), scanning electron microscopy (SEM) techniques. The results show that n-HA particles disperse homogeneously in the PU matrix. The porous scaffold has not only macropores of 100-800 μm in size but also a lot of micropores on the walls of macropores. The porosity and compressive strength of scaffold are 80% and 271 kPa, respectively. After soaking in simulated body fluid (SBF), hydrolysis and deposition partly occur on the scaffold. The biological evaluation in vitro and in vivo shows that the n-HA/PU scaffold is non-cytotoxic and degradable. The porous structure provides a good microenvironment for cell adherence, growth and proliferation. The n-HA/PU composite scaffold can be satisfied with the basic requirement for tissue engineering, and has the potential to be applied in repair and substitute of human menisci of the knee-joint and articular cartilage.

  1. Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation.

    PubMed

    Ehret, C; Aid-Launais, R; Sagardoy, T; Siadous, R; Bareille, R; Rey, S; Pechev, S; Etienne, L; Kalisky, J; de Mones, E; Letourneur, D; Amedee Vilamitjana, J

    2017-01-01

    Previous studies performed using polysaccharide-based matrices supplemented with hydroxyapatite (HA) particles showed their ability to form in subcutaneous and intramuscular sites a mineralized and osteoid tissue. Our objectives are to optimize the HA content in the matrix and to test the combination of HA with strontium (Sr-HA) to increase the matrix bioactivity. First, non-doped Sr-HA powders were combined to the matrix at three different ratios and were implanted subcutaneously for 2 and 4 weeks. Interestingly, matrices showed radiolucent properties before implantation. Quantitative analysis of micro-CT data evidenced a significant increase of mineralized tissue formed ectopically with time of implantation and allowed us to select the best ratio of HA to polysaccharides of 30% (w/w). Then, two Sr-substitution of 8% and 50% were incorporated in the HA powders (8Sr-HA and 50Sr-HA). Both Sr-HA were chemically characterized and dispersed in matrices. In vitro studies performed with human mesenchymal stem cells (MSCs) demonstrated the absence of cytotoxicity of the Sr-doped matrices whatever the amount of incorporated Sr. They also supported osteoblastic differentiation and activated the expression of one late osteoblastic marker involved in the mineralization process i.e. osteopontin. In vivo, subcutaneous implantation of these Sr-doped matrices induced osteoid tissue and blood vessels formation.

  2. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants

    PubMed Central

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E

    2015-01-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting. PMID:12899541

  3. Repair of segmental radial defect with autologous bone marrow aspirate and hydroxyapatite in rabbit radius: A clinical and radiographic evaluation

    PubMed Central

    Yassine, Kalbaza Ahmed; Mokhtar, Benchohra; Houari, Hemida; Karim, Amara; Mohamed, Melizi

    2017-01-01

    Aim: Finding an ideal bone substitute to treat large bone defects, delayed union and nonunions remain a challenge for orthopedic surgeons and researchers. Several studies have been conducted on bone regeneration; each has its own advantages and disadvantages. The aim of this study was to evaluate the effect of a combination of hydroxyapatite (HA) powder with autologous bone marrow (BM) aspirate on the repair of segmental radial defect in a rabbit model. Materials and Methods: A total of 36 male and adult New Zealand rabbit with a mean weight of 2.25 kg were used in this study. Approximately, 5 mm defect was created in the mid-shaft of the radius to be filled with HA powder in the control group “HA” (n=18) and with a combination of HA powder and autologous BM aspirate in the test group “HA+BM” (n=18). Animals were observed daily for healing by inspection of the surgical site, and six rabbits of each group were sacrificed at 30, 60, and 90 post-operative days to perform a radiographic evaluation of defect site. Results: Obtained results revealed a better and more rapid bone regeneration in the test group: Since the defect was rapidly and completely filled with mature bone tissue after 90 days. Conclusion: Based on these findings, we could infer that adding a BM aspirate to HA is responsible of a better regeneration process leading to a complete filling of the defect. PMID:28831217

  4. Repair of segmental long bone defect in a rabbit radius nonunion model: comparison of cylindrical porous titanium and hydroxyapatite scaffolds.

    PubMed

    Zhang, Ming; Wang, Guang-lin; Zhang, Hong-fang; Hu, Xu-dong; Shi, Xiao-yuan; Li, Sen; Lin, Wei

    2014-06-01

    A segmental long bone defect in a rabbit radius nonunion model was repaired using cylindrical porous titanium (Ti) and hydroxyapatite (HA) scaffolds. Each scaffold was produced using the same method, namely, a slurry foaming method. Repairing ability was characterized using x-radiographic score 12 and 24 weeks postprocedure; failure load of the radius-ulna construct, under three-point bending, 12 weeks postprocedure; and the percentage of newly formed bone within the implant, 12 and 24 weeks after postprocedure. For each of these parameters, the difference in the results when porous Ti scaffold was used compared with when HA scaffolds were used was not significant; both porous scaffolds showed excellent repairing ability. Because the trabecular bone is a porous tissue, the interconnected porous scaffolds have the advantages of natural bone, and vasculature can grow into the porous structure to accelerate the osteoconduction and osteointegration between the implant and bone. The porous Ti scaffold not only enhanced the bone repair process, similar to porous HA scaffolds, but also has superior biomechanical properties. The present results suggest that porous Ti scaffolds may have promise for use in the clinical setting.

  5. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    PubMed

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  6. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts.

    PubMed

    Carmona-Rodríguez, Bruno; Alvarez-Pérez, Marco Antonio; Narayanan, A Sampath; Zeichner-David, Margarita; Reyes-Gasga, José; Molina-Guarneros, Juan; García-Hernández, Ana Lilia; Suárez-Franco, José Luis; Chavarría, Ivet Gil; Villarreal-Ramírez, Eduardo; Arzate, Higinio

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  7. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  8. Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration.

    PubMed

    Killion, John A; Geever, Luke M; Devine, Declan M; Higginbotham, Clement L

    2014-04-01

    The aim of this study was to improve the bioactive and compressive properties of photopolymerisable polyethylene glycol hydrogels with the incorporation of hydroxyapatite at different loadings. The synthesis of pure hydroxyapatite was verified through Fourier transform infrared spectroscopy (FTIR) analysis by the complete reaction of all constituents. The formation of a bioactive layer of the hydrogel based composites was confirmed through the formation of carbonate hydroxyapatite after soaking the samples in simulated body fluid. The incorporation of hydroxyapatite into the system resulted in an increase in Young's modulus from 4.36 to 12.73 MPa and an increase in the stress at limit value from 1.20 to 4.42 MPa. This was due to the hydroxyapatite absorbing the compressive load, the polymer matrix distributing the load, a reduction in swelling and the presence of physical crosslinking between both components. Drug dissolution testing showed that the release rate of a drug from the hydrogels was dependent on the molecular weight of the polymer and the type of drug used.

  9. Use of the volar fixed angle plate for comminuted distal radius fractures and augmentation with a hydroxyapatite bone graft substitute.

    PubMed

    Goto, Akira; Murase, Tsuyoshi; Oka, Kunihiro; Yoshikawa, Hideki

    2011-01-01

    Treatment of distal radius fractures with a volar fixed angle plate achieves sufficient stabilisation and permits early physical exercise. However, secondary displacement after surgery sometimes occurs in elderly patients with a metaphyseal comminution and/or cases in which the subchondral support pegs were not placed immediately below the subchondral zone. We treated elderly patients suffering from distal radius fractures with metaphyseal comminution, using both volar fixed angle plate with or without augmentation with a hydroxyapatite bone graft substitute to investigate the benefit of augmentation for maintaining a fracture reduction. We evaluated the differences among radiographic parameters including palmar tilt, radial inclination, and ulnar variance on immediate postoperative and final follow-up radiographs to analyse the maintenance of the initial reduction. There were no significant differences between the two groups in terms of palmar tilt (P = 0.80) and radial inclination (P = 0.17); however, ulnar variance increased significantly in the group treated with a volar fixed angle plate without augmentation (P < 0.05). It might be useful to use a combination technique of a locking plate system and the hydroxyapatite bone graft substitute as augmentation to treat distal radius comminuted fractures in elderly patients.

  10. Comparative Evaluation of Bioactive Synthetic NovaBone Putty and Calcified Algae-derived Porous Hydroxyapatite Bone Grafts for the Treatment of Intrabony Defects

    PubMed Central

    Bembi, Sumit; Mago, Jyoti; Baweja, Gurpreet Kaur; Baweja, Parvinder Singh

    2016-01-01

    Introduction To compare and evaluate clinically and radio-graphically the bone regeneration and the amount of bone fill in intrabony component of periodontal osseous defects through the osteoconductive and osteostimulative effect of bioactive synthetic NovaBone Putty - CMF and osteoconductive effect of calcified algae-derived porous hydroxyapatite Frios® Algi-pore® bone grafts. Materials and methods Twenty-two sites in 11 patients, within the age range of 25 to 60 years, showing intrabony defects were selected according to split mouth design and divided into group I (Frios® Algipore®) and group II (NovaBone Putty - CMF). All the selected sites were assessed with the clinical and radiographic parameters like plaque index, gingival index (full mouth and site specific), sulcus bleeding index, probing pocket depth, clinical attachment level, gingival recession, and radiographic bone fill. All the clinical and radiographic parameter values obtained at different intervals (baseline, 3, and 6 months) were subjected to statistical analysis. Results A statistically significant reduction in pocket depth of 2.55 ± 0.52 mm (group I), 2.64 ± 0.67 mm (group II) and gain in clinical attachment level of 7.55 ± 1.44 mm (group I), 7.55 ± 2.38 mm (group II) were recorded at the end of the study. A slight increase in gingival recession was observed. The mean percentage change in amount of radiographic bone fill of group II (71.34%) was more than group I (61.93%). Conclusion Both NovaBone Putty - CMF and Frios® Algipore® improve healing outcomes and lead to a reduction of probing depth, a resolution of osseous defects, and a gain in clinical attachment, but radiographic observation found better results with NovaBone Putty. How to cite this article Bembi NN, Bembi S, Mago J, Baweja GK, Baweja PS. Comparative Evaluation of Bioactive Synthetic NovaBone Putty and Calcified Algae-derived Porous Hydroxyapatite Bone Grafts for the Treatment of Intrabony Defects. Int J Clin Pediatr

  11. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat

    PubMed Central

    Nandi, Samit Kumar; Ghosh, Samir Kumar; De, Dipak Kumar; Basu, Debabrata

    2008-01-01

    The present study was undertaken to evaluate porous hydroxyapatite (HAp), the powder of which was prepared by a novel aqueous solution combustion technique, as a bone substitute in healing bone defects in vivo, as assessed by radiologic and histopathologic methods, oxytetracycline labeling, and angiogenic features in Bengal goat. Bone defects were created in the diaphysis of the radius and either not filled (group I) or filled with a HAp strut (group II). The radiologic study in group II showed the presence of unabsorbed implants which acted as a scaffold for new bone growth across the defect, and the quality of healing of the bone defect was almost indistinguishable from the control group, in which the defect was more or less similar, although the newly formed bony tissue was more organized when HAp was used. Histologic methods showed complete normal ossification with development of Haversian canals and well-defined osteoblasts at the periphery in group II, whereas the control group had moderate fibro-collagenization and an adequate amount of marrow material, fat cells, and blood vessels. An oxytetracycline labeling study showed moderate activity of new bone formation with crossing-over of new bone trabeculae along with the presence of resorption cavities in group II, whereas in the control group, the process of new bone formation was active from both ends and the defect site appeared as a homogenous non-fluoroscent area. Angiograms of the animals in the control group showed uniform angiogenesis in the defect site with establishment of trans-transplant angiogenesis, whereas in group II there was complete trans-transplant shunting of blood vessel communication. Porous HAp ceramic prepared by an aqueous combustion technique promoted bone formation over the defect, confirming their biologic osteoconductive property. PMID:18487940

  12. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat.

    PubMed

    Nandi, Samit Kumar; Kundu, Biswanath; Ghosh, Samir Kumar; De, Dipak Kumar; Basu, Debabrata

    2008-06-01

    The present study was undertaken to evaluate porous hydroxyapatite (HAp), the powder of which was prepared by a novel aqueous solution combustion technique, as a bone substitute in healing bone defects in vivo, as assessed by radiologic and histopathologic methods, oxytetracycline labeling, and angiogenic features in Bengal goat. Bone defects were created in the diaphysis of the radius and either not filled (group I) or filled with a HAp strut (group II). The radiologic study in group II showed the presence of unabsorbed implants which acted as a scaffold for new bone growth across the defect, and the quality of healing of the bone defect was almost indistinguishable from the control group, in which the defect was more or less similar, although the newly formed bony tissue was more organized when HAp was used. Histologic methods showed complete normal ossification with development of Haversian canals and well-defined osteoblasts at the periphery in group II, whereas the control group had moderate fibro-collagenization and an adequate amount of marrow material, fat cells, and blood vessels. An oxytetracycline labeling study showed moderate activity of new bone formation with crossing-over of new bone trabeculae along with the presence of resorption cavities in group II, whereas in the control group, the process of new bone formation was active from both ends and the defect site appeared as a homogenous non-fluoroscent area. Angiograms of the animals in the control group showed uniform angiogenesis in the defect site with establishment of trans-transplant angiogenesis, whereas in group II there was complete trans-transplant shunting of blood vessel communication. Porous HAp ceramic prepared by an aqueous combustion technique promoted bone formation over the defect, confirming their biologic osteoconductive property.

  13. Histological Evaluation of Hydroxyapatite Granules with and without Platelet-Rich Plasma versus an Autologous Bone Graft

    PubMed Central

    Zakaria, Zamzuri; Seman, Che N. Z. C.; Buyong, Zunariah; Sharifudin, Mohd A.; Zulkifly, Ahmad H.; Khalid, Kamarul A.

    2016-01-01

    Objectives Hydroxyapatite (HA) has osteoconductive properties and is widely used as a bone graft substitute. Platelet-rich plasma (PRP) is an autologous product with osteoinductive effects. Hypothetically, a combination of both would augment the bone formation effect of HA and widen its application in spinal fusion surgeries. This study aimed to compare new bone formation with HA granules alone and in combination with PRP versus an autologous bone graft during a lumbar intertransverse process spinal fusion. Methods A total of 16 adult New Zealand white rabbits underwent single-level bilateral intertransverse process fusion at the L5–L6 vertebrae. One side of the spine received either HA granules alone or a combination of HA granules and PRP, while the contralateral side received an autologous bone graft. Four animals each from the HA group and the HA plus PRP group versus the autograft group were assessed either at six or 16 weeks by undecalcified histology and histomorphometry. The mean percentage of new bone areas over the corresponding fusion masses were compared between groups. Results No significant difference in new bone formation was observed between the HA and HA plus PRP groups at six or 16 weeks. The autograft group had significantly more new bone formation at six and 16 weeks (P = 0.004 and <0.001, respectively). Conclusion An autologous bone graft remains superior to HA granules, with or without PRP. HA granules demonstrated an excellent osteoconductive scaffold but had poor biodegradability. While PRP enhances the properties of HA granules, these biomaterials do not have a synergistic effect. PMID:28003887

  14. Stimulation of Osteogenesis in Bone Defects Implanted with Biodegradable Hydroxyapatite Composed of Rod-Shaped Particles under Mechanical Unloading

    PubMed Central

    Ikeda, Tohru; Gonda, Yoshinori; Tatsukawa, Eri; Shibata, Yasuaki; Kamitakahara, Masanobu; Okuda, Takatoshi; Yonezawa, Ikuho; Kurosawa, Hisashi; Ioku, Koji

    2012-01-01

    The aim of this study was to evaluate the influence of mechanical unloading on the repair of bone defects with implantation of biodegradable bone substitutes. Spherical granules of biodegradable hydroxyapatite composed of rod-shaped particles (RHA) or beta-tricalcium phosphate composed of rod-shaped particles (RTCP) were implanted into a bone defect created in the distal end of the right femur of 8-week-old Wistar rats. Two, 6, 10, and 22 weeks after implantation, part of the sciatic nerve in the thigh was resected and exposed to mechanical unloading for 2 weeks. Then, 4, 8, 12 and 24 weeks after implantation, repair of the bone defect was analyzed. As a control, the bone defect without implantation of ceramic granules was also analyzed. Both RHA and RTCP tended to be reduced, but the reduction was not obvious during the experimental period. At 12 and 24 weeks after implantation, the amount of newly formed bone in the animal implanted with RHA was significantly greater than that at 4 weeks after implantation, but that in the animal implanted with RTCP or without implantation was not significantly different. The number of osteoclasts in the region implanted with RHA was significantly larger than that of the region implanted with RTCP or without implantation at 12 and 24 weeks. The activities of alkaline phosphatase in osteoblasts and tartrate-resistant acid phosphatase in osteoclasts were remarkably increased in the bone defects with implantation compared with those in the bone defects without implantation. These results suggested that RHA stimulated osteogenesis and osteoclastogenesis even after 2 weeks of mechanical unloading, and that RHA could be expected to improve the repair of bone defects in patients under the condition of skeletal unloading. PMID:23209337

  15. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.

    PubMed

    Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana

    2013-10-01

    Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.

  16. Enhanced fixation of implants by bone ingrowth to titanium fiber mesh: effect of incorporation of hydroxyapatite powder.

    PubMed

    Tsukeoka, Tadashi; Suzuki, Masahiko; Ohtsuki, Chikara; Tsuneizumi, Yoshikazu; Miyagi, Jin; Sugino, Atsushi; Inoue, Takayuki; Michihiro, Ryouichi; Moriya, Hideshige

    2005-10-01

    Tight fixation between bone and implant materials is of great importance for a successful outcome of procedures such as total knee arthroplasty (TKA) and total hip arthroplasty (THA). Titanium fiber mesh is an attractive structure for the establishment of tight fixation between bone and implant by bone ingrowth into the spaces among the fibers. Enhancement of bone ingrowth is desired not only for tight fixation but also for a fast recovery. Our hypothesis is that just the presence of hydroxyapatite (HA) particles ensures improved bone ingrowth, and that long-term stability can be obtained by mechanical anchoring of bone in the spaces among titanium fibers. In this study, we examine our hypothesis by in vivo experiment using dog femur. HA particles were incorporated in titanium fiber mesh coated on titanium alloy rod by dipping in a slurry of HA with hydroxy-propyl-cellulose in an ethanol solution. Specimens were implanted for 3, 5, and 8 weeks, and were then compared with the results from specimens without the use of HA. Bonding strength was evaluated by push-out test, and histomorphometric measurements were made with analysis software to calculate the average value of bone ingrowth. A significantly higher bonding strength was observed for the specimens with HA-incorporated implant at 3 and 5 weeks, and larger bone ingrowth deep inside the titanium fiber mesh was measured at 3 weeks. Our proposed method has the additional advantage of not requiring a high temperature that may result in changes in characters of HA powder such as phase transition, grain growth, and decomposition. Moreover, this technique of HA powder incorporation without high-temperature treatment allows the use of several types of metallic fiber mesh, as well as the application to fiber mesh made of organic polymers. We conclude that this simple modification of titanium fiber mesh with HA powder can improve the fixation of implant to bone in the initial stage after operation.

  17. Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial

    NASA Astrophysics Data System (ADS)

    Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.

  18. In vitro evaluation of the biological compatibility and antibacterial activity of a bone substitute material consisting of silver-doped hydroxyapatite and Bio-Oss(®).

    PubMed

    Gong, Jingjue; Yang, Lei; He, Qi; Jiao, Ting

    2017-02-10

    This study evaluated biological compatibility and antibacterial activity of a bone substitute material consisting of silver-doped hydroxyapatite (AgHA) and Bio-Oss(®) with different mixture ratios in vitro and investigated its antibacterial mechanism. AgHA was synthesized by a chemical precipitation method. After characterization, AgHA was mixed with Bio-Oss(®) at three ratios: 1:1, 1:2, and 1:4 by weight. Then, Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were used to test the antibacterial activity of the mixture. Human periodontal ligament fibroblasts and rat bone marrow stromal cells were selected for cytocompatibility experiments. According to results, the peak value of the size of the AgHA was concentrated in the 100-200 nm range, and AgHA particles consisted of short rods. It was confirmed that the structure of AgHA was similar to that of standard hydroxyapatite. All three mixture ratios exhibited obvious antimicrobial properties, which increased with increasing AgHA. According to the effects on the expression of bacterial virulence genes, groups 1:1 and 1:2 both negatively affected Pg and Fn more significantly than group 1:4. Cytotoxicity experiments showed that 1:1 caused little cytotoxicity, while groups 1:2 and 1:4 exerted no significant cytotoxicity. Considering its biological compatibility and antibacterial activity, group 1:2 is the most recommended. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  19. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.

    PubMed

    Uswatta, Suren P; Okeke, Israel U; Jayasuriya, Ambalangodage C

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33mm (n=25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93mm (n=25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores <10 and 2μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93MPa. Standardize UCS values were 79.98MPa and 357MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p<0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p<0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro studies. 2% n

  20. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    NASA Technical Reports Server (NTRS)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  1. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    NASA Technical Reports Server (NTRS)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  2. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility

    PubMed Central

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery. PMID:24669191

  3. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    PubMed

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

  4. Effects of cigarette smoke inhalation and coffee consumption on bone formation and osseous integration of hydroxyapatite implant.

    PubMed

    Andrade, A R; Sant'Ana, D C M; Mendes, J A; Moreira, M; Pires, G C; Santos, M P; Fernandes, G J M; Nakagaki, W R; Garcia, J A D; Lima, C C; Soares, E A

    2013-02-01

    The present study aims to assess the effects of cigarette smoke inhalation and/or coffee consumption on bone formation and osseous integration of a dense hydroxyapatite (DHA) implant in rats. For this study, 20 male rats were divided into four groups (n = 5): CT (control) group, CE (coffee) group, CI (cigarette) group and CC (coffee + cigarette) group. During 16 weeks, animals in the CI group were exposed to cigarette smoke inhalation equivalent to 6 cigarettes per day; specimens in the CE group drank coffee as liquid diet; and rats in the CC group were submitted to both substances. In the 6th week a 5 mm slit in the parietal bone and a 4 mm slit in the tibia were performed on the left side: the former was left open while the latter received a DHA implant. As soon as surgeries were finished, the animals returned to their original protocols and after 10 weeks of exposure they were euthanised (ethically sacrificed) and the mentioned bones collected for histological processing. Data showed that exposure to cigarette smoke inhalation and coffee consumption did not interfere in weight gain and that solid and liquid diet consumption was satisfactory. Rats in the CC group showed a decrease in bone neoformation around the tibial DHA implant (31.8 ± 2.8) as well as in bone formation in the parietal slit (28.6 ± 2.2). On their own, cigarette smoke inhalation or coffee consumption also led to diminished bone neoformation around the implant and delayed the bone repair process in relation to the CT group. However, reduction in the bone repair process was accentuated with exposure to both cigarette smoke inhalation and coffee consumption in this study.

  5. Sinus Floor Augmentation Comparing an In Situ Hardening Biphasic Calcium Phosphate (Hydroxyapatite/β-Tricalcium Phosphate) Bone Graft Substitute with a Particulate Biphasic Calcium Phosphate (Hydroxyapatite/β-Tricalcium Phosphate) Bone Graft Substitute: An Experimental Study in Sheep.

    PubMed

    Wildburger, Angelika; Bubalo, Vladimir; Magyar, Marton; Nagursky, Heiner; Jakse, Norbert; Schmelzeisen, Rainer; Sauerbier, Sebastian

    2017-07-01

    The aim of the present split-mouth study in sheep was to assess the influence of in situ hardening properties of a biphasic calcium phosphate (BCP) bone graft substitute (BGS) (ratio hydroxyapatite/β-tricalcium phosphate = 60/40) compared with a particulate BGS with the same biphasic core-granule composition without in situ hardening properties on sinus floor augmentation. Therefore, bilateral sinus floor augmentation was performed in eight sheep. Poly(lactide-co-glycolide) (PLGA)-coated, in situ hardening biphasic BGS (PLGA-NMP [N-Methyl-2-pyrrolidone]-BCP) was placed at the test site, and a particulate biphasic BGS without PLGA coating (BCP) was used for the contralateral site as a control. Animals were sacrificed after 21 weeks. Sinus augmentation sites were analyzed histologically. The volume was analyzed by computed tomography. Histomorphometric parameters were assessed for the 12 and 21 weeks' time points. Slopes of new bone formation over time were compared with a linear growth regression model. Bone formation after 12 and 21 weeks of healing was 8.94% (±3.74) and 19.82% (±6.29) for PLGA-NMP-BCP and 7.00% (±2.58) and 14.38% (±4.51) for BCP, respectively. The bone growth rate for PLGA-NMP-BCP was higher than the growth rate for BCP (probability 97.5%). The total fraction of calcified hard tissue (% bone fraction + % biomaterial) was around 46% for both tested biomaterials, 21 weeks after sinus floor augmentation. The in situ hardening BGS (PLGA-NMP-BCP) performed better than the particulate material (BCP) in terms of bone formation rate. The in situ hardening properties of the PLGA-NMP-BCP material mediated by the PLGA coating and NMP solution as plasticizer had no negative influence on the bone formation.

  6. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds.

    PubMed

    Sprio, Simone; Tampieri, Anna; Celotti, Giancarlo; Landi, Elena

    2009-04-01

    This work deals with the preparation of bioactive ceramic composites to be employed for the development of load-bearing bone substitutes, made of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2), HA) and bioactive dicalcium silicate (Ca(2)SiO(4), C(2)S) as a reinforcing phase. The composite materials were prepared by Fast Hot-Pressing (FHP), which allowed the rapid sintering of monolithic ceramics at temperatures up to 1500 degrees C, well above the commonly adopted temperatures for the consolidation of hydroxyapatite (1200-1300 degrees C). The purpose was to achieve the grain coalescence of both HA and the strengthening phase, so that to obtain a homogeneous ceramic material characterized by controlled phase composition and improved mechanical strength; the dwell time was reduced as much as possible to prevent HA decomposition and excessive grain growth. The most remarkable result, in terms of phase composition, was the absence of any secondary phases in the final ceramics other than HA and C(2)S, even after sintering at 1500 degrees C. The flexure strength of the composite materials was found to be much higher than that of HA alone. Further mechanical characterization was also carried out on HA and composites, sintered in different conditions, to evaluate the elastic properties and fracture toughness, and properties close to those of mineral bone were found. These preliminary results confirmed that composites of HA and Ca(2)SiO(4) are promising for the development of bioactive load-bearing ceramic bone substitutes with controlled phase composition.

  7. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  8. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.

    PubMed

    Chuenjitkuntaworn, Boontharika; Osathanon, Thanaphum; Nowwarote, Nunthawan; Supaphol, Pitt; Pavasant, Prasit

    2016-01-01

    Major drawbacks of using an autograft are the possibilities of insufficient bony source and patient's morbidity after operation. Bone tissue engineering technology, therefore, has been applied for repairing bony defects. Previous study showed that a novel fabricated 3D-Polycaprolactone/Hydroxyapatite (PCL/HAp) scaffold possessed a good biocompatibility for bone cells. This study aimed to determine the ability of PCL/HAp for supporting cell growth, gene expression, and osteogenic differentiation in three types of mesenchymal stem cells, including bone marrow-derived mesenchymal stem cells (BMSCs), dental pulp stem cells (DPSCs), and adiposed-derived mesenchymal stem cells (ADSCs). These were assessed by cell viability assay (MTT), reverse-transcription polymerase chain reaction (RT-PCR) analysis, alkaline phosphatase activity, and osteogenic differentiation by alizarin red-S staining. The results showed that PCL/HAp scaffold could support growth of all three types of mesenchymal stem cells. In addition, DPSCs with PCL/HAp showed the highest level of calcium deposition compared to other groups. In conclusion, DPSCs exhibited a better compatibility with these scaffolds compared to BMSCs and ADSCs. However, the PCL/HAp could be a good candidate scaffold for all tested mesenchymal stem cells in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  9. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration

    PubMed Central

    Yu, Wei-Lin; Sun, Tuan-Wei; Qi, Chao; Zhao, Hua-Kun; Ding, Zhen-Yu; Zhang, Zhi-Wang; Sun, Ben-Ben; Shen, Ji; Chen, Feng; Zhu, Ying-Jie; Chen, Dao-Yun; He, Yao-Hua

    2017-01-01

    Biomaterials with both excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. In this study, simvastatin with both osteogenic and angiogenic activities was incorporated into the mesoporous hydroxyapatite microspheres (MHMs) synthesized through a microwave-assisted hydrothermal method using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phosphorous source. The effects of the simvastatin-loaded MHMs (S-MHMs) on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and angiogenesis in EA.hy926 cells were investigated. The results showed that the S-MHMs not only enhanced the expression of osteogenic markers in rBMSCs but also promoted the migration and tube formation of EA.hy926 cells. Furthermore, the S-MHMs were incorporated into collagen matrix to construct a novel S-MHMs/collagen composite scaffold. With the aid of MHMs, the water-insoluble simvastatin was homogenously incorporated into the hydrophilic collagen matrix and presented a sustained release profile. In vivo experiments showed that the S-MHMs/collagen scaffolds enhanced the bone regeneration and neovascularization simultaneously. These results demonstrated that the water-insoluble simvastatin could be incorporated into the MHMs and maintained its biological activities, more importantly, the S-MHMs/collagen scaffolds fabricated in this study are of immense potential in bone defect repair by enhancing osteogenesis and angiogenesis simultaneously. PMID:28287178

  10. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    PubMed Central

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  11. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization.

    PubMed

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-06

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid-liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50-250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration.

  12. Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering.

    PubMed

    Jiang, Liuyun; Li, Ye; Xiong, Chengdong; Su, Shengpei; Ding, Haojie

    2017-02-08

    In this study, bamboo fiber was first designed to incorporate into nano-hydroxyapatite/poly(lactic-co-glycolic) to obtain a new composite scaffold of bamboo fiber/nano-hydroxyapatite/poly(lactic-co- glycolic) (BF/n-HA/PLGA) by freeze-drying method. The effect of their components and some factors consisting of different freeze temperatures, concentrations, and pore-forming agents on the porous morphology, porosity, and compressive properties of the scaffold were investigated by scanning electron microscope, modified liquid displacement method, and electromechanical universal testing machine. The results indicated that the 5% BF/30% n-HA/PLGA composite scaffold, prepared with 5% (w/v) high concentration and frozen at -20 °C without pore-forming agent, had the best ideal porous structure and porosity as well as compressive properties, which far exceed those of n-HA/PLGA composite scaffold. In addition, the in vitro simulated body fluids soaking and cell culture experiment showed the addition of BF into the scaffold accelerated the BF/n-HA/PLGA composite scaffolds degradation and exhibited good cytocompatibility, including attachment and proliferation. All the results of the study show that BF has improved the properties of n-HA/PLGA composite scaffolds and BF/n-HA/PLGA might have a great potential for bone tissue engineering scaffold.

  13. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    PubMed

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  14. The evaluation of the possibilities of using PLGA co-polymer and its composites with carbon fibers or hydroxyapatite in the bone tissue regeneration process - in vitro and in vivo examinations.

    PubMed

    Cieślik, Magdalena; Mertas, Anna; Morawska-Chochól, Anna; Sabat, Daniel; Orlicki, Rajmund; Owczarek, Aleksander; Król, Wojciech; Cieślik, Tadeusz

    2009-07-15

    Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.19 human osteoblast-like cells was assessed. Moreover, during the one-year contact of the assessed materials with living osseous tissue, the progress of bone formation was analyzed and the accompanying process of the materials' degradation was evaluated. The materials under evaluation proved to be biocompatible.

  15. The Evaluation of the Possibilities of Using PLGA Co-Polymer and Its Composites with Carbon Fibers or Hydroxyapatite in the Bone Tissue Regeneration Process – in Vitro and in Vivo Examinations

    PubMed Central

    Cieślik, Magdalena; Mertas, Anna; Morawska-Chochólł, Anna; Sabat, Daniel; Orlicki, Rajmund; Owczarek, Aleksander; Król, Wojciech; Cieślik, Tadeusz

    2009-01-01

    Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.19 human osteoblast-like cells was assessed. Moreover, during the one-year contact of the assessed materials with living osseous tissue, the progress of bone formation was analyzed and the accompanying process of the materials’ degradation was evaluated. The materials under evaluation proved to be biocompatible. PMID:19742134

  16. Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim): preliminary clinical and histological results.

    PubMed

    Strietzel, Frank Peter; Reichart, Peter A; Graf, Hans-Ludwig

    2007-12-01

    The purpose of this preliminary two-center clinical prospective study was to evaluate the tissue composition of augmented sites after the use of a nano-crystalline hydroxyapatite (ncHA) bone substitution material by clinical and histological examinations. A synthetic ncHA augmentation material was used without any additives in 14 patients requiring lateral ridge augmentation 6-7 months before (10 patients) or at implant placement (four patients). The ncHA material was covered by a titanium mesh for space maintenance. Clinical and radiographic parameters were evaluated and bone biopsy cores, obtained 6-7 months following augmentation, were assessed histologically and histomorphometrically. One patient showed gingival swelling, redness and pain at the augmentation site requiring removal of the titanium mesh 6 weeks postoperatively. In seven patients, a premature exposure of the titanium mesh without any inflammatory symptoms was noted. The width of the fixed gingival and the alveolar ridge height did not change significantly at least 6 months following augmentation (P>0.5), whereas a significant gain in alveolar ridge width (P=0.01) was noted. After a median period of prosthetic loading of 24 months, no implant was considered to be a failure. Histology revealed ncHA remnants in peripheral and central parts of biopsy cores obtained from seven patients after at least 6 months without histological symptoms of inflammation, whereas histomorphometry of bone cores revealed no significant differences of the mean percentage area of ncHA in peripheral (23.4%) and central (15.1%) parts of biopsy cores (P=0.262). The mean percentage area of bone colonizing the defect was 52.3%. Small amounts of ncHA were found after at least 6 months in bone biopsies. The former defect space was filled with bone. The alveolar ridge width gain was found to be significant after lateral augmentation utilizing ncHA, providing a quantitatively and qualitatively sufficient site for primary stable