Science.gov

Sample records for human bone morphogenetic

  1. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans

    PubMed Central

    Zoricic, Sanja; Maric, Ivana; Bobinac, Dragica; Vukicevic, Slobodan

    2003-01-01

    Bone- and cartilage-derived morphogenetic proteins (BMPs and CDMPs), which are TGFβ superfamily members, are growth and differentiation factors that have been recently isolated, cloned and biologically characterized. They are important regulators of key events in the processes of bone formation during embryogenesis, postnatal growth, remodelling and regeneration of the skeleton. In the present study, we used immunohistochemical methods to investigate the distribution of BMP-2, -3, -5, -6, -7 and CDMP-1, -2, -3 in human osteophytes (abnormal bony outgrowths) isolated from osteoarthritic hip and knee joints from patients undergoing total joint replacement surgery. All osteophytes consisted of three different areas of active bone formation: (1) endochondral bone formation within cartilage residues; (2) intramembranous bone formation within the fibrous tissue cover and (3) bone formation within bone marrow spaces. The immunohistochemistry of certain BMPs and CDMPs in each of these three different bone formation sites was determined. The results indicate that each BMP has a distinct pattern of distribution. Immunoreactivity for BMP-2 was observed in fibrous tissue matrix as well as in osteoblasts; BMP-3 was mainly present in osteoblasts; BMP-6 was restricted to young osteocytes and bone matrix; BMP-7 was observed in hypertrophic chondrocytes, osteoblasts and young osteocytes of both endochondral and intramembranous bone formation sites. CDMP-1, -2 and -3 were strongly expressed in all cartilage cells. Surprisingly, BMP-3 and -6 were found in osteoclasts at the sites of bone resorption. Since a similar distribution pattern of bone morphogenetic proteins was observed during embryonal bone development, it is suggested that osteophyte formation is regulated by the same molecular mechanism as normal bone during embryogenesis. PMID:12713267

  2. Bone Morphogenetic Protein (BMP) signaling in development and human diseases

    PubMed Central

    Wang, Richard N.; Green, Jordan; Wang, Zhongliang; Deng, Youlin; Qiao, Min; Peabody, Michael; Zhang, Qian; Ye, Jixing; Yan, Zhengjian; Denduluri, Sahitya; Idowu, Olumuyiwa; Li, Melissa; Shen, Christine; Hu, Alan; Haydon, Rex C.; Kang, Richard; Mok, James; Lee, Michael J.; Luu, Hue L.; Shi, Lewis L.

    2014-01-01

    Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling. PMID:25401122

  3. Bone morphogenetic proteins in orthopaedic trauma: recent clinical findings with human bone morphogenetic protein-2 (rhBMP-2).

    PubMed

    Patel, A D

    2006-01-01

    This article introduces papers based on presentations from a symposium entitled "Bone Morphogenic Protein Advisory Meeting in Orthopaedic Trauma", where recent clinical findings with human bone morphogenetic protein-2 (rhBMP-2) were reviewed. It also presents two case studies which illustrate the clinical problems with the potential morbidity of tibial fractures and the potential benefits of the use of rhBMP-2 at surgery. The article concludes with a summary of the symposium. Tibial shaft fracture repair is associated with a significant financial burden on the patient, the health care providers and the medical insurance companies. It is anticipated that the clinical advantages of rhBMP-2 could lead to cost savings both inside and outside the hospital setting.

  4. Bone Morphogenetic Proteins: Periodontal Regeneration

    PubMed Central

    Rao, Subramaniam M; Ugale, Gauri M; Warad, Shivaraj B

    2013-01-01

    Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search). All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP. PMID:23626951

  5. Irradiated human chondrocytes expressing bone morphogenetic protein 2 promote healing of osteoporotic bone fracture in rats.

    PubMed

    Yi, Youngsuk; Choi, Kyoung Baek; Lim, Chae-Lyul; Hyun, Jong-Pil; Lee, Hyeon-Youl; Lee, Kun Bok; Yun, Lillian; Ayverdi, Asli; Hwang, Sally; Yip, Vivian; Noh, Moon Jong; Lee, Kwan Hee

    2009-10-01

    Bone morphogenetic protein 2 (BMP2) was selected as a transgene to regenerate osteoporotic bone defects after several BMPs were tested using a bone formation study in nude mice. Human chondrocytes were transduced with a BMP2-containing retroviral vector, and single clones were selected. The cells were characterized over numerous passages for growth and BMP2 expression. The single clones were irradiated and tested for viability. BMP2 expression lasted for 3 weeks before dying off completely after approximately 1 month. Irradiated and non-irradiated transduced chondrocytes successfully healed fractures in osteoporotic rats induced by ovariectomy. The osteoinducing effect of irradiated cells was better than that of their non-irradiated counterparts or a chondrocytes-only control. This study showed that delivering BMP2 from the transduced and irradiated chondrocytes could be an effective and safe method of repairing osteoporotic bone fractures.

  6. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft)

    PubMed Central

    Peckham, Steven M.; Badura, Jeffrey M.

    2007-01-01

    The combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS) carrier has been shown to induce bone formation in a number of preclinical and clinical investigations. In 2002, rhBMP-2/ACS at a 1.5-mg/cc concentration (INFUSE® Bone Graft, Medtronic Spinal and Biologics, Memphis, TN) was FDA-approved as an autograft replacement for certain interbody spinal fusion procedures. In 2004, INFUSE® Bone Graft was approved for open tibial fractures with an intermedullary (IM) nail fixation. Most recently, in March 2007, INFUSE® Bone Graft was approved as an alternative to autogenous bone grafts for sinus augmentations, and for localised alveolar ridge augmentations for defects associated with extraction sockets. The culmination of extensive preclinical and clinical research and three FDA approvals makes rhBMP-2 one of the most studied, published and significant advances in orthopaedics. This review article summarises a number of clinical findings of rhBMP-2/ACS, including the FDA-approved investigational device exemption (IDE) studies used in gaining the aforementioned approvals. PMID:17639384

  7. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  8. A new recombinant human bone morphogenetic protein-2 carrier for bone regeneration.

    PubMed

    Yokota, S; Sonohara, S; Yoshida, M; Murai, M; Shimokawa, S; Fujimoto, R; Fukushima, S; Kokubo, S; Nozaki, K; Takahashi, K; Uchida, T; Yokohama, S; Sonobe, T

    2001-07-31

    A gelatin sponge was formed by foaming and heat treating a gelatin solution, followed by coating the solid with poly(D,L-lactic-co-glycolic acid) to reinforce the gelatin framework. This sponge was tested for its suitability as a biodegradable porous, recombinant human bone morphogenetic protein (rhBMP)-2 carrier. Incorporation of rhBMP-2 into the sponge was closely related to its bulk density of gelatin sponge. The calcium content in the sponges, as assessed by an ectopic bone formation assay in rats, increased with the increasing sponge bulk density. Histologic and peripheral quantitative computed tomography analysis of implants in this ectopic assay system revealed cell growth throughout the carrier in 4 weeks after implantation regardless gelatin bulk density. The carrier containing rhBMP-2 maintained its three-dimensional structure after implantation; the carrier resisted collapse caused by soft tissue pressure during rapid bone formation as assessed by soft X-ray photographs. These results indicate that this newly developed sponge has excellent carrier characteristics to introduce rhBMP-2 into areas needed for bone regeneration.

  9. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  10. Prefabrication of vascularized bone flap induced by recombinant human bone morphogenetic protein 2 (rhBMP-2).

    PubMed

    Alam, M I; Asahina, I; Seto, I; Oda, M; Enomoto, S

    2003-10-01

    An experimental model for the prefabrication of a vascularized bone flap was developed in this study. To form vascularized bone in the desired configuration and to increase the survival rate of the grafted bone, a muscle vascularized pedicle (MVP) was transformed into vascularized bone by the inducer recombinant human bone morphogenetic protein 2 (rhBMP-2). The muscle flap (8 x 8 mm) raised on saphenous vessels in the rat thigh was sandwiched between same-size collagen (Terudermis) sheets in the presence or absence of impregnated 25 microg of rhBMP-2 for the experimental group and the control group, respectively. The flaps were harvested 1, 2 and 3 weeks postoperatively. Bone transformation was detected by gross examination, radiology, and histologic testing. No evidence of muscle tissue transformation was found in control flaps, whereas all of the experimental flaps produced new bone. Saphenous vessels were observed to supply the new bone upon harvesting, and the newly formed vascularized bone showed good configuration with shape of the Terudermis sheet. This study indicates that this model of effective bone reconstruction could be potentially applied in a therapeutic setting.

  11. Enhancement of posterolateral lumbar spine fusion using recombinant human bone morphogenetic protein-2 and mesenchymal stem cells delivered in fibrin glue.

    PubMed

    Liu, Zunpeng; Zhu, Yue; Zhu, Haitao; He, Xiaoning; Liu, Xinchun

    2016-10-01

    Mesenchymal stem cells have shown great potential for accelerating bone healing. In the present study, we evaluate the efficacy of fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 composite for posterolateral spinal fusion in a rabbit model. Forty adult rabbits underwent posterolateral intertransverse fusion at the L5-L6 level. The animals were randomly divided into four groups based on the implant material: fibrin glue, fibrin glue/mesenchymal stem cells composite, fibrin glue-recombinant human bone morphogenetic protein-2 (fibrin glue/recombinant human bone morphogenetic protein-2) composite, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 composite. After six weeks, the rabbits were euthanized for manual palpation, radiographic examination, biomechanical testing, and histology. Manual palpation results showed that the fusion rate for fibrin glue, fibrin glue/mesenchymal stem cells, fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 was 0, 0, 40%, and 70%, respectively. Moreover, fusion rate determined by radiographic examination for fibrin glue, fibrin glue/mesenchymal stem cells, fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 was 0, 0, 40%, and 80%, respectively. Gray analysis showed that fibrin glue/recombinant human bone morphogenetic protein-2 group had higher ossification area and density than fibrin glue group; and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 group had higher ossification area and density than fibrin glue/recombinant human bone morphogenetic protein-2 group. Formation of continuous bone masses between L5 and L6 level in mesenchymal stem cells/recombinant human bone morphogenetic protein-2/fibrin glue group was further confirmed by computed

  12. Heterotopic ossification after the use of recombinant human bone morphogenetic protein-7

    PubMed Central

    Papanagiotou, Marianthi; Dailiana, Zoe H; Karachalios, Theophilos; Varitimidis, Sokratis; Hantes, Michael; Dimakopoulos, Georgios; Vlychou, Marianna; Malizos, Konstantinos N

    2017-01-01

    AIM To present the incidence of heterotopic ossification after the use of recombinant human bone morphogenetic protein-7 (rhBMP-7) for the treatment of nonunions. METHODS Bone morphogenetic proteins (BMPs) promote bone formation by auto-induction. Recombinant human BMP-7 in combination with bone grafts was used in 84 patients for the treatment of long bone nonunions. All patients were evaluated radiographicaly for the development of heterotopic ossification during the standard assessment for the nonunion healing. In all patients (80.9%) with radiographic signs of heterotopic ossification, a CT scan was performed. Nonunion site palpation and ROM evaluation of the adjacent joints were also carried out. Factors related to the patient (age, gender), the nonunion (location, size, chronicity, number of previous procedures, infection, surrounding tissues condition) and the surgical procedure (graft and fixation type, amount of rhBMP-7) were correlated with the development of heterotopic ossification and statistical analysis with Pearsons χ2 test was performed. RESULTS Eighty point nine percent of the nonunions treated with rhBMP-7, healed with no need for further procedures. Heterotopic bone formation occurred in 15 of 84 patients (17.8%) and it was apparent in the routine radiological evaluation of the nonunion site, in a mean time of 5.5 mo after the rhBMP-7 application (range 3-12). The heterotopic ossification was located at the femur in 8 cases, at the tibia in 6, and at the humerus in οne patient. In 4 patients a palpable mass was present and only in one patient, with a para-articular knee nonunion treated with rhBMP-7, the size of heterotopic ossification affected the knee range of motion. All the patients with heterotopic ossification were male. Statistical analysis proved that patient’s gender was the only important factor for the development of heterotopic ossification (P = 0.007). CONCLUSION Heterotopic ossification after the use of rhBMP-7 in nonunions was

  13. Analysis of Recombinant Human Bone Morphogenetic Protein-2 Use in the Treatment of Lumbar Degenerative Spondylolisthesis

    PubMed Central

    Yao, Qingqiang; Cohen, Jeremiah R.; Buser, Zorica; Park, Jong-Beom; Brodke, Darrel S.; Meisel, Hans-Joerg; Youssef, Jim A.; Wang, Jeffrey C.; Yoon, S. Tim

    2016-01-01

    Study Design Retrospective database review. Objective To identify trends of the recombinant human bone morphogenetic protein-2 (rhBMP-2) use in the treatment of lumbar degenerative spondylolisthesis (LDS). Methods PearlDiver Patient Record Database was used to identify patients who underwent lumbar fusion for LDS between 2005 and 2011. The distribution of bone morphogenetic protein use rate (BR) in various surgical procedures was recorded. Patient numbers, reoperation numbers, BR, and per year BR (PYBR) were stratified by geographic region, gender, and age. Results There were 11,335 fusion surgeries, with 3,461 cases using rhBMP-2. Even though PYRB increased between 2005 and 2008, there was a significant decrease in 2010 for each procedure: 404 (34.5%) for posterior interbody fusion, 1,282 (34.3%) for posterolateral plus posterior interbody fusion (PLPIF), 1,477 (29.2%) for posterolateral fusion, and 335 (22.4%) for anterior lumbar interbody fusion. In patients using rhBMP-2, the reoperation rate was significantly lower than in patients not using rhBMP-2 (0.69% versus 1.07%, p < 0.0001). Male patients had higher PYBR compared with female patients in 2008 and 2009 (p < 0.05). The West region and PLPIF had the highest BR and PYBR. Conclusions Our data shows that the revision rates were significantly lower in patients treated with rhBMP-2 compared with patients not treated with rhBMP-2. Furthermore, rhBMP-2 use in LDS varied by year, region, gender, and type of fusion technique. In the West region, the posterior approach and patients 65 to 69 years of age had the highest rate of rhBMP-2 use. PMID:27853658

  14. Expression and purification of active recombinant human bone morphogenetic 7-2 dimer fusion protein.

    PubMed

    Dang, Jianli; Jing, Lei; Shi, Weiwei; Qin, Ping; Li, Yuyin; Diao, Aipo

    2015-11-01

    Bone morphogenetic proteins (BMPs) have been applied in bone regeneration therapy due to their significant osteogenic activity, however, the complicated processing and high cost in producing recombinant BMP have limited their use in the clinic. In this study, we have developed a simple method to prepare recombinant human BMP7-BMP2 fusion protein with a flexible peptide linker (rhBMP7-2). The rhBMP7-2 protein is expressed efficiently in Escherichia coli, and the denatured protein purified by anion exchange chromatography then refolded by dialysis. The yield was about 6.8 mg per gram of wet cell weight. The bioactivity of re-folded rhBMP7-2 was measured by alkaline phosphatase assay and alizarin red staining using both C2C12 and MC3T3-E1 cells, and also using the rat subcutaneous ectopic bone formation model. High level osteogenic activity was found in all the assays tested demonstrating the production of corrected folded and active rhBMP7-2 protein.

  15. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    PubMed

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  16. Treatment of allograft nonunions with recombinant human bone morphogenetic proteins (rhBMP).

    PubMed

    Delloye, Christian; Suratwala, Sanjeev J; Cornu, Olivier; Lee, Francis Y

    2004-12-01

    Fractures and nonunions are the main complications associated with bone allografts. Although the osteogenic role of recombinant human bone morphogenetic proteins (rhBMPs) has been demonstrated in experimental models and human tibial nonunions, the results are unknown for allograft nonunions. In this study, the efficacy of rhBMPs was evaluated in nonunions of femoral allografts. The results of six allograft nonunions in five patients who underwent resection of malignant bone tumours and allograft bone transplantation were analysed one to five years following application of rhBMPs at the nonunion site. There were two osteoarticular allografts and three intercalary allografts. Of three intercalary allografts, one demonstrated nonunion at both ends. Four patients received adjuvant chemotherapy and three had additional radiation therapy. There were two allograft fracture nonunions and four nonunions at the allograft-host junction. Two allograft fracture nonunions and one nonunion at the allograft-host junction were treated with 12 mg of rhBMP-2. The remaining three nonunions were treated with 7 mg of rhBMP-7 (Osigraft). The outcome and radiological evidence of healing were evaluated at a minimal follow-up of twelve months. There was neither healing of allograft fractures nor union of allograft-host junction. There was elongation or enlargement of the callus from the host. One patient continued to develop resorption of the allograft, which led to allograft fracture. Two patients who were treated with rhBMP-7 and corticocancellous allografts developed sterile drainage. There was no tumour recurrence with the use of rhBMPs after a mean follow-up of 39+/-25 months. rhBMP's alone were not sufficient to achieve healing in allograft nonunions and fractures following wide resection including periosteum and soft tissues.

  17. The effect of nicotine on osteoinduction by recombinant human bone morphogenetic protein 2.

    PubMed

    Tamura, K; Togo, Y; Kaihara, S; Hussain, A; Takahashi, K; Bessho, K

    2014-08-01

    Nicotine, one of the constituents of tobacco, is known to have an adverse effect on human health. We sought to clarify the interaction between nicotine and recombinant human bone morphogenetic protein 2 (rhBMP-2) in terms of osteogenesis in vitro and osteoinduction in vivo. Nicotine did not inhibit or stimulate alkaline phosphatase (ALP) activity or the amount of osteocalcin in C2C12 cells in the presence of rhBMP-2 in vitro. Ectopic bone formation using a collagen sponge containing rhBMP-2 was evaluated with and without nicotine after 21 days using radiographic, histological, biochemical, and immunohistochemical analyses. ALP activity in the medium-dose group (2.2±0.9IU/mg protein; P=0.047) and the high-dose group (2.0±0.1IU/mg protein; P=0.03) was significantly lower than in the control group. The calcium content in the medium-dose group (35.4±12.9μg/mg tissue; P=0.0099) and high-dose group (34.8±10.5μg/mg tissue; P=0.006) was significantly lower than in the control group. The number of vascular endothelial growth factor-positive cells in the high-dose group (671.9±57.3cells/mm(2); P=0.03) was significantly lower than in the control group. Results showed that nicotine did not inhibit the stimulatory effect of rhBMP-2 in vitro, but a high dose of nicotine inhibited bone formation in vivo by adversely affecting vascularization.

  18. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    PubMed Central

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  19. Recombinant Human Bone Morphogenetic Protein-2 in Debridement and Impacted Bone Graft for the Treatment of Femoral Head Osteonecrosis

    PubMed Central

    Gao, Fuqiang; Shi, Zhencai; Zhang, Qidong; Guo, Wanshou

    2014-01-01

    The purpose of this study was to compare the clinical outcomes of impacted bone graft with or without recombinant human bone morphogenetic protein-2 (rhBMP-2) for osteonecrosis of the femoral head (ONFH). We examined the effect of bone-grafting through a window at the femoral head-neck junction, known as the “light bulb” approach, for the treatment of ONFH with a combination of artificial bone (Novobone) mixed with or without rhBMP-2. A total of 42 patients (72 hips) were followed-up from 5 to 7.67 years (average of 6.1 years). The patients with and without BMP were the first group (IBG+rhBMP-2) and the second group (IBG), respectively. The clinical effectiveness was evaluated by Harris hip score (HHS). The radiographic follow-up was evaluated by pre-and postoperative X-ray and CT scan. Excellent, good, and fair functions were obtained in 36, 12, and 7 hips, respectively. The survival rate was 81.8% and 71.8% in the first and second group, respectively. However, the survival rate was 90.3% in ARCO stage IIb, c, and only 34.6% in ARCO stage IIIa(P<0.05). It was concluded that good and excellent mid-term follow-up could be achieved in selected patients with ONFH treated with impacted bone graft operation. The rhBMP-2 might improve the clinical efficacy and quality of bone repair. PMID:24956102

  20. A Human Bone Morphogenetic Protein Antagonist Is Down-Regulated in Renal Cancer

    PubMed Central

    Blish, Kimberly Rose; Wang, Wei; Willingham, Mark C.; Du, Wei; Birse, Charles E.; Krishnan, Surekha R.; Brown, Julie C.; Hawkins, Gregory A.; Garvin, A. Julian; D'Agostino, Ralph B.; Torti, Frank M.

    2008-01-01

    We analyzed expression of candidate genes encoding cell surface or secreted proteins in normal kidney and kidney cancer. This screen identified a bone morphogenetic protein (BMP) antagonist, SOSTDC1 (sclerostin domain–containing-1) as down-regulated in kidney tumors. To confirm screening results, we probed cDNA dot blots with SOSTDC1. The SOSTDC1 message was decreased in 20/20 kidney tumors compared with normal kidney tissue. Immunohistochemistry confirmed significant decrease of SOSTDC1 protein in clear cell renal carcinomas relative to normal proximal renal tubule cells (p < 0.001). Expression of SOSTDC1 was not decreased in papillary and chromophobe kidney tumors. SOSTDC1 was abundantly expressed in podocytes, distal tubules, and transitional epithelia of the normal kidney. Transfection experiments demonstrated that SOSTDC1 is secreted and binds to neighboring cells and/or the extracellular matrix. SOSTDC1 suppresses both BMP-7–induced phosphorylation of R-Smads-1, -5, and -8 and Wnt-3a signaling. Restoration of SOSTDC1 in renal clear carcinoma cells profoundly suppresses proliferation. Collectively, these results demonstrate that SOSTDC1 is expressed in the human kidney and decreased in renal clear cell carcinoma. Because SOSTDC1 suppresses proliferation of renal carcinoma cells, restoration of SOSTDC1 signaling may represent a novel target in treatment of renal clear cell carcinoma. PMID:18032587

  1. Recombinant Human Bone Morphogenetic Protein-2 in Posterolateral Spinal Fusion: What's the Right Dose?

    PubMed Central

    Jones, Clifford Barry; Sietsema, Debra Lynn

    2016-01-01

    Study Design Single center retrospective cohort analysis. Purpose The goal was to evaluate the influence of varying amount of recombinant human bone morphogenetic protein 2 (rhBMP-2) per level on fusion rates and complications in posterolateral spinal fusions. Overview of Literature rhBMP-2 has been utilized for lumbar posterolateral fusions for many years. Initial rhBMP-2 recommendations were 20 mg/level of fusion. Dose and concentration per level in current studies vary from 4.2 to 40 mg and 1.5 to 2.0 mg/mL, respectively. Variable fusion and complication rates have been reported. Methods Patients (n=1,610) undergoing instrumented lumbar spinal fusion (2003–2009) with utilization of rhBMP-2 were retrospectively evaluated. Patient demographics, body mass index (BMI), comorbidities, number of levels, associated interbody fusion, and types of bone void filler were analyzed. Fusions rates and nonunions were subdivided into number of levels and amount of rhBMP-2 used per level. Results Patients (n=559) were evaluated with 58.5% females having an average age of 63 years, BMI of 31 kg/m2. Number of levels fused ranged from 1 to 8. rhBMP-2 averaged 7.3 mg/level (range, 1.5–24 mg/level) based upon length of collagen sponge in relation to length of fusion levels. Patients with non-union formation had lower rhBMP-2 dose per level (p=0.016). A significant difference in non-union rate was found between patients undergoing fusion with <6 mg/level compared to those with >6 mg/level (9.1% vs. 2.4%, χ2=0.012). No significant differences were noted between 6–11.9 mg/level and ≥12 mg/level. No threshold was found for seroma formation or bone overgrowth. Conclusions Previous recommendation of 20 mg/level of rhBMP-2 is more than what is required for predictable fusion rates of 98%. No dose related increase of infection, seroma formation, and bone overgrowth has been found. In order to provide variable dosing and cost reduction, industry generated rhBMP-2 kit size should be

  2. Enhanced Control of In Vivo Bone Formation with Surface Functionalized Alginate Microbeads Incorporating Heparin and Human Bone Morphogenetic Protein-2

    PubMed Central

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong

    2013-01-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this “naive carriers” into “mini-reservoirs” for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C2C12 cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to

  3. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    PubMed Central

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  4. Recombinant human bone morphogenetic protein-2 for grade III open segmental tibial fractures from combat injuries in Iraq.

    PubMed

    Kuklo, T R; Groth, A T; Anderson, R C; Frisch, H M; Islinger, R B

    2008-08-01

    This is a retrospective consecutive case series of 138 Gustillo-Anderson type IIIB and IIIC segmental tibial fractures treated at Walter Reed Army Medical Center in soldiers injured in Iraq between March 2003 and March 2005. Five patients with a head injury and four who were lost to follow-up were excluded. The patients were treated definitively with either a ringed external fixator or a reamed intramedullary nail, evaluated in terms of supplementary bone grafting with either autogenous bone (group 1, 67 patients) or recombinant human bone morphogenetic protein-2 at 1.50 mg/ml applied to an absorbable collagen sponge (group 2, 62 patients). The mechanism of injury, defect size and classification, associated injuries, presence of infection, preliminary treatment/fixation, number of procedures before definitive management, time to and details of definitive management, subsequent infection, re-operation, smoking history and other complications were noted. Radiographs were assessed for union, delayed union or nonunion by an independent investigator. All the patients were male. Their mean age was 26.6 years (20 to 42) and the mean follow-up was for 15.6 months (12 to 32). Group 2 had a slightly higher profile of concomitant injuries and a slightly worse fracture classification, but these were not significant. The rate of union was 76% (51 of 67) for group 1 and 92% for group 2 (57 of 62; p = 0.015). There was also a higher rate of subsequent infection in group 1 (14.9%) compared with group 2 (3.2%; p = 0.001) and a higher rate of re-operation (28%) in group 1 (p = 0.003). There were no observed hypersensitivity reactions to the recombinant human bone morphogenetic protein-2 implant.

  5. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling

    PubMed Central

    Mc Alpine, Tristan; Wei, Heng; Martínez, Víctor G.; Entrena, Ana; Melen, Gustavo J; MacDonald, Andrew S.; Phythian-Adams, Alexander; Sacedón, Rosa; Maraskovsky, Eugene; Cebon, Jonathan; Ramírez, Manuel

    2014-01-01

    Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions which are inhibited by the prototypic Th-2 cytokine IL-4 and the TGF-β superfamily members TGF-β1 and activin-A. Interestingly, the largest subgroup of the TGF-β superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling to NK cell effector functions have not been evaluated. Here we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8 which mediate BMP family member signaling. In opposition to the inhibitory effects of TGF-β1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L activated NK cells revealed that BMP signaling optimized IFN-γ and global cytokine and chemokine production; phenotypic activation and proliferation; autologous DC activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one which might be therapeutically manipulated to help eradicate tumors. PMID:25038228

  6. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling.

    PubMed

    Robson, Neil C; Hidalgo, Laura; McAlpine, Tristan; Wei, Heng; Martínez, Víctor G; Entrena, Ana; Melen, Gustavo J; MacDonald, Andrew S; Phythian-Adams, Alexander; Sacedón, Rosa; Maraskovsky, Eugene; Cebon, Jonathan; Ramírez, Manuel; Vicente, Angeles; Varas, Alberto

    2014-09-15

    Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions that are inhibited by the prototypic Th2 cytokine IL4 and the TGFβ superfamily members TGFβ1 and activin-A. Interestingly, the largest subgroup of the TGFβ superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling on NK cell effector functions have not been evaluated. Here, we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8, which mediate BMP family member signaling. In opposition to the inhibitory effects of TGFβ1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L-activated NK cells revealed that BMP signaling optimized IFNγ and global cytokine and chemokine production, phenotypic activation and proliferation, and autologous dendritic cell activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one that might be therapeutically manipulated to help eradicate tumors. Cancer Res; 74(18); 5019-31. ©2014 AACR.

  7. Attenuated Human Bone Morphogenetic Protein-2–Mediated Bone Regeneration in a Rat Model of Composite Bone and Muscle Injury

    PubMed Central

    Li, Mon-Tzu A.; Uhrig, Brent A.; Boerckel, Joel David; Huebsch, Nathaniel; Lundgren, Taran L.; Warren, Gordon L.; Guldberg, Robert E.

    2013-01-01

    Extremity injuries involving large bone defects with concomitant severe muscle damage are a significant clinical challenge often requiring multiple treatment procedures and possible amputation. Even if limb salvage is achieved, patients are typically left with severe short- and long-term disabilities. Current preclinical animal models do not adequately mimic the severity, complexity, and loss of limb function characteristic of these composite injuries. The objectives of this study were to establish a composite injury model that combines a critically sized segmental bone defect with an adjacent volumetric muscle loss injury, and then use this model to quantitatively assess human bone morphogenetic protein-2 (rhBMP-2)–mediated tissue regeneration and restoration of limb function. Surgeries were performed on rats in three experimental groups: muscle injury (8-mm-diameter full-thickness defect in the quadriceps), bone injury (8-mm nonhealing defect in the femur), or composite injury combining the bone and muscle defects. Bone defects were treated with 2 μg of rhBMP-2 delivered in the pregelled alginate injected into a cylindrical perforated nanofiber mesh. Bone regeneration was quantitatively assessed using microcomputed tomography, and limb function was assessed using gait analysis and muscle strength measurements. At 12 weeks postsurgery, treated bone defects without volumetric muscle loss were consistently bridged. In contrast, the volume and mechanical strength of regenerated bone were attenuated by 45% and 58%, respectively, in the identically treated composite injury group. At the same time point, normalized muscle strength was reduced by 51% in the composite injury group compared to either single injury group. At 2 weeks, the gait function was impaired in all injury groups compared to baseline with the composite injury group displaying the greatest functional deficit. We conclude that sustained delivery of rhBMP-2 at a dose sufficient to induce bridging of

  8. Characterization of human bone morphogenetic protein gene variants for possible roles in congenital heart disease

    PubMed Central

    Li, Fei Feng; Deng, Xia; Zhou, Jing; Yan, Peng; Zhao, Er Ying; Liu, Shu Lin

    2016-01-01

    Congenital heart disease (CHD) is a complex illness with high rates of morbidity and mortality. In embryonic development, the heart is the first formed organ, which is strictly controlled by gene regulatory networks, including transcription factors, signaling pathways, epigenetic factors and microRNAs. Bone morphogenetic protein (BMP)-2 and -4 are essential in cardiogenesis as they can induce the expression of transcription factors, NKX2-5 and GATA binding protein 4, which are important in the development of the heart. The inhibition of BMP-2 and 4- inhibits the late expression of NKX2-5 and affects cardiac differentiation. The aim of the present study was to investigate whether BMP-2 and -4 variations may be associated with CHD in Chinese Han populations. The rs1049007, rs235768 and rs17563 single nucleotide polymorphisms (SNPs), which are genetic variations located within the translated region of the BMP-2 and -4, were evaluated in 230 patients with CHD from the Chinese Han population and 160 non CHD control individuals. Statistical analyses were performed using the χ2 test, implemented using SPSS software (version 13.0). The Hardy Weinberg equilibrium test was performed on the population using online Online Encyclopedia for Genetic Epidemiology studies software, and multiple-sequence alignments of the BMP proteins were performed using Vector NTI software. No statistically significant associations were identified between these genetic variations and the risk of CHD (rs1049007, P value=0.560; rs235768, P value=0.972; rs17563, P value=0.787). In addition, no correlation was found between the patients with CHD and the non-CHD control individuals. Therefore, the rs1049007, rs235768 and rs17563 genetic variations of BMP-2 were not associated with CHD in the Chinese Han population. PMID:27357418

  9. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  10. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    PubMed Central

    Qi, Xin; Liu, Yang; Ding, Zhen-yu; Cao, Jia-qing; Huang, Jing-huan; Zhang, Jie-yuan; Jia, Wei-tao; Wang, Jing; Liu, Chang-sheng; Li, Xiao-lin

    2017-01-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration. PMID:28230059

  11. Bone morphogenetic protein-2, -6, and -7 differently regulate osteogenic differentiation of human periodontal ligament stem cells.

    PubMed

    Hakki, Sema S; Bozkurt, Buket; Hakki, Erdogan E; Kayis, Seyit Ali; Turac, Gizem; Yilmaz, Irem; Karaoz, Erdal

    2014-01-01

    The utility of adult stem cells for bone regeneration may be an attractive alternative in the treatment of extensive injury, congenital malformations, or diseases causing large bone defects. To create an environment that is supportive of bone formation, signals from molecules such as the bone morphogenetic proteins (BMPs) are required to engineer fully viable and functional bone. We therefore determined whether BMP-2, -6, and -7 differentially regulate the (1) proliferation, (2) mineralization, and (3) mRNA expression of bone/mineralized tissue associated genes of human periodontal ligament stem cells (hPDLSCs), which were obtained from periodontal ligament tissue of human impacted third molars. hPDLSCs from six participants were isolated and characterized using histochemical and immunohistochemical methods. A real-time cell analyzer was used to evaluate the effects of BMP-2, -6, and -7 on the proliferation of hPDLSCs. hPDLSCs were treated with Dulbecco's modified Eagle's medium containing different concentrations of BMP-2, -6, and -7 (10, 25, 50, 100 ng/mL) and monitored for 264 hours. After dose-response experiments, 50 and 100 ng/mL concentrations of BMPs were used to measure bone/mineralized tissue-associated gene expression. Type I collagen, bone sialoprotein, osteocalcin, osteopontin, and osteoblastic transcription factor Runx2 mRNA expression of hPDLSCs treated with BMP-2, -6, and -7, were evaluated using quantitative RT-PCR. Biomineralization of hPDLSCs was assessed using von Kossa staining. This study demonstrated that BMPs at various concentrations differently regulate the proliferation, mineralization, and mRNA expression of bone/mineralized tissue associated genes in hPDLSCs. BMPs regulate hPDLSC proliferation in a time and dose-dependent manner when compared to an untreated control group. BMPs induced bone/mineralized tissue-associated gene mRNA expression and biomineralization of hPDLSCs. The most pronounced induction occurred in the BMP-6 group in

  12. Bone Morphogenetic Protein-9 Enhances Osteogenic Differentiation of Human Periodontal Ligament Stem Cells via the JNK Pathway

    PubMed Central

    Wang, Xingxing; Pang, Yanan; Yang, Su; Wei, Yibo; Gao, Haochen; Wang, Dalin; Cao, Zhizhong

    2017-01-01

    Bone morphogenetic protein-9 (BMP9) shows great osteoinductive potential in bone regeneration. Periodontal ligament stem cells (PDLSCs) with multi-differentiation capability and low immunogenicity are increasingly used as seed cells for periodontal regenerative therapies. In the present study, we investigated the potent osteogenic activity of BMP9 on human PDLSCs (hPDLSCs), in which the c-Jun N-terminal kinase (JNK) pathway is possibly involved. Our results showed that JNK inhibition by the specific inhibitor SP600125 or adenovirus expressing small interfering RNA (siRNA) targeting JNK (AdR-si-JNK) significantly decreased BMP9-induced gene and protein expression of early and late osteogenic markers, such as runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN), in hPDLSCs. We also confirmed the in-vivo positive effect of JNKs on ectopic bone formation induced by hPDLSCs injected into the musculature of athymic nude mice and BMP9 ex vivo gene delivery. For the cellular mechanism, we found that BMP9 activated the phosphorylation of JNKs and Smad2/3, and that JNKs may engage in cross-talk with the Smad2/3 pathway in BMP9-mediated osteogenesis. PMID:28052093

  13. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis.

    PubMed

    Chatzinikolaidou, Maria; Pontikoglou, Charalampos; Terzaki, Konstantina; Kaliva, Maria; Kalyva, Athanasia; Papadaki, Eleni; Vamvakaki, Maria; Farsari, Maria

    2017-01-01

    The regeneration of bone via a tissue engineering approach involves components from the macroscopic to the nanoscopic level, including appropriate 3D scaffolds, cells and growth factors. In this study, hexagonal scaffolds of different diagonals were fabricated by Direct Laser Writing using a photopolymerizable hybrid material. The proliferation of bone marrow (BM) mesenchymal stem cells (MSCs) cultured on structures with various diagonals, 50, 100, 150 and 200μm increased significantly after 10days in culture, however without significant differences among them. Next, recombinant human bone morphogenetic protein 2 (rhBMP-2) was immobilized onto the hybrid material both via covalent binding and physical adsorption. Both immobilization types exhibited similar high releaseate bioactivity profiles and a sustained delivery of rhBMP-2. The collagen and calcium levels produced in the extracellular matrix (ECM) were significantly elevated for the samples functionalized with BMP-2 compared to those in the osteogenic medium. Furthermore, significant upregulation of gene expression in both types of BMP-2 immobilized scaffolds was observed for alkaline phosphatase (ALPL) and osteocalcin (BGLAP) at days 7, 14, and 21, for RUNX2 at day 21, and for osteonectin (SPARC) at days 7 and 14. The results suggest that the release of bioactive rhBMP-2 from the hybrid scaffolds enhance the control over the osteogenic differentiation during cell culture.

  14. Bone morphogenetic proteins: Signaling periodontal bone regeneration and repair.

    PubMed

    Anusuya, G Sai; Kandasamy, M; Jacob Raja, S A; Sabarinathan, S; Ravishankar, P; Kandhasamy, Balu

    2016-10-01

    Bone morphogenetic proteins (BMPs) are a group of growth factors also known as cytokines and as metabologens. Originally discovered by their ability to induce the formation of bone and cartilage, BMPs are now considered to constitute a group of pivotal morphogenetic signals, orchestrating tissue architecture throughout the body. The important functioning of BMP signals in physiology is emphasized by the multitude of roles for dysregulated BMP signaling in pathological processes. A study done wherein it was found that protein extracts from bone implanted into the animals at nonbone sites induced the formation of new cartilage and bone tissue. This protein extract contained multiple factors that stimulated bone formation and was termed as "BMP." There are at least 15 different BMPs identified to date and are a part of the transforming growth factor-β super family. The most widely studied BMPs are BMP-2, BMP-3 (osteogenin), BMP-4, and BMP-7 (osteogenic protein-1). Now, any recombination type of morphogenic proteins have been synthesized, for example - recombinant human BMPs.

  15. Bone morphogenetic proteins: Signaling periodontal bone regeneration and repair

    PubMed Central

    Anusuya, G. Sai; Kandasamy, M.; Jacob Raja, S. A.; Sabarinathan, S.; Ravishankar, P.; Kandhasamy, Balu

    2016-01-01

    Bone morphogenetic proteins (BMPs) are a group of growth factors also known as cytokines and as metabologens. Originally discovered by their ability to induce the formation of bone and cartilage, BMPs are now considered to constitute a group of pivotal morphogenetic signals, orchestrating tissue architecture throughout the body. The important functioning of BMP signals in physiology is emphasized by the multitude of roles for dysregulated BMP signaling in pathological processes. A study done wherein it was found that protein extracts from bone implanted into the animals at nonbone sites induced the formation of new cartilage and bone tissue. This protein extract contained multiple factors that stimulated bone formation and was termed as “BMP.” There are at least 15 different BMPs identified to date and are a part of the transforming growth factor-β super family. The most widely studied BMPs are BMP-2, BMP-3 (osteogenin), BMP-4, and BMP-7 (osteogenic protein-1). Now, any recombination type of morphogenic proteins have been synthesized, for example - recombinant human BMPs. PMID:27829744

  16. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation.

    PubMed

    Yasmin, Nighat; Bauer, Thomas; Modak, Madhura; Wagner, Karin; Schuster, Christopher; Köffel, Rene; Seyerl, Maria; Stöckl, Johannes; Elbe-Bürger, Adelheid; Graf, Daniel; Strobl, Herbert

    2013-11-18

    Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34(+) hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo. However, immunohistology studies revealed that human LC niches in early prenatal epidermis and adult basal (germinal) keratinocyte layers lack detectable TGF-β1. Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-β1-ALK5 signaling. Conversely, TGF-β1-induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-β1-driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-β1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-β1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-β1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.

  17. Low-intensity pulsed ultrasound enhances bone morphogenetic protein expression of human mandibular fracture haematoma-derived cells.

    PubMed

    Huang, W; Hasegawa, T; Imai, Y; Takeda, D; Akashi, M; Komori, T

    2015-07-01

    We previously demonstrated that human mandibular fracture haematoma-derived cells (MHCs) play an important role in mandibular fracture healing and that low-intensity pulsed ultrasound (LIPUS) accelerates this effect by stimulating various osteogenic cytokines. In the present study, we investigated how LIPUS affects the expression of bone morphogenetic proteins (BMPs), which are also known to have the ability to induce bone formation. MHCs were isolated from human mandibular fracture haematomas and the cells were divided into two groups: a LIPUS (+) group and a LIPUS (-) group, both of which were cultured in osteogenic medium. LIPUS was applied to the LIPUS (+) group 20 min a day for 4, 8, 14, and 20 days (1.5 MHz, 30 mW/cm(2)). Real-time PCR and immunofluorescence studies were carried out to determine the expression of BMP-2, 4, and 7. Compared to the LIPUS (-) group, gene expression levels were significantly increased in the LIPUS (+) group for BMP-2 on day 20 (67.38 ± 26.59 vs. 11.52 ± 3.42, P < 0.001), for BMP-4 on days 14 (45.12 ± 11.06 vs. 9.20 ± 2.88, P = 0.045) and 20 (40.96 ± 24.81 vs. 3.22 ± 1.53, P = 0.035), and for BMP-7 on day 8 (48.11 ± 35.36 vs. 7.03 ± 3.96, P = 0.034). These findings suggest that BMP-2, 4, and 7 may be mediated by LIPUS therapy during the bone repair process.

  18. Bone Morphogenetic Protein-2, But Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells.

    PubMed

    Bach, Frances C; Miranda-Bedate, Alberto; van Heel, Ferdi W M; Riemers, Frank M; Müller, Margot C M E; Creemers, Laura B; Ito, Keita; Benz, Karin; Meij, Björn P; Tryfonidou, Marianna A

    2017-03-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2 (BMP2) on canine and human chondrocyte-like cells (CLCs) derived from the nucleus pulposus of degenerated IVDs were studied. Human and canine CLCs were cultured in 3D microaggregates in basal culture medium supplemented with/without TGF-β1 (10 ng/mL) or BMP2 (100 or 250 ng/mL). Both TGF-β1 and BMP2 increased proliferation and glycosaminoglycan (GAG) deposition of human and canine CLCs. TGF-β1 induced collagen type I deposition and fibrotic (re)differentiation, whereas BMP2 induced more collagen type II deposition. In dogs, TGF-β1 induced Smad1 and Smad2 signaling, whereas in humans, it only tended to induce Smad2 signaling. BMP2 supplementation increased Smad1 signaling in both species. This altogether indicates that Smad1 signaling was associated with collagen type II production, whereas Smad2 signaling was associated with fibrotic CLC (re)differentiation. As a step toward preclinical translation, treatment with BMP2 alone and combined with mesenchymal stromal cells (MSCs) was further investigated. Canine male CLCs were seeded in albumin-based hydrogels with/without female bone marrow-derived MSCs (50:50) in basal or 250 ng/mL BMP2-supplemented culture medium. Although the results indicate that a sufficient amount of MSCs survived the culture period, total GAG production was not increased and GAG production per cell was even decreased by the addition of MSCs, implying that MSCs did not exert additive regenerative effects on the CLCs.

  19. Upregulation of Bone Morphogenetic Protein-2 Synthesis and Consequent Collagen II Expression in Leptin-stimulated Human Chondrocytes.

    PubMed

    Chang, Shun-Fu; Hsieh, Rong-Ze; Huang, Kuo-Chin; Chang, Cheng Allen; Chiu, Fang-Yao; Kuo, Hsing-Chun; Chen, Cheng-Nan; Su, Yu-Ping

    2015-01-01

    Bone morphogenetic proteins (BMPs) play positive roles in cartilage development, but they can barely be detected in healthy articular cartilage. However, recent evidence has indicated that BMPs could be detected in osteoarthritic and damaged cartilage and their precise roles have not been well defined. Extremely high amounts of leptin have been reported in obese individuals, which can be associated with osteoarthritis (OA) development. The aim of this study was to investigate whether BMPs could be induced in human primary chondrocytes during leptin-stimulated OA development and the underlying mechanism. We found that expression of BMP-2 mRNA, but not BMP-4, BMP-6, or BMP-7 mRNA, could be increased in human primary chondrocytes under leptin stimulation. Moreover, this BMP-2 induction was mediated through transcription factor-signal transducer and activator of transcription (STAT) 3 activation via JAK2-ERK1/2-induced Ser727-phosphorylation. Of note, histone deacetylases (HDACs) 3 and 4 were both involved in modulating leptin-induced BMP-2 mRNA expression through different pathways: HDAC3, but not HDAC4, associated with STAT3 to form a complex. Our results further demonstrated that the role of BMP-2 induction under leptin stimulation is to increase collagen II expression. The findings in this study provide new insights into the regulatory mechanism of BMP-2 induction in leptin-stimulated chondrocytes and suggest that BMP-2 may play a reparative role in regulating leptin-induced OA development.

  20. Effects of Recombinant Human Bone Morphogenetic Protein-2 Dose and Ceramic Composition on New Bone Formation and Space Maintenance in a Canine Mandibular Ridge Saddle Defect Model

    PubMed Central

    Talley, Anne D.; Kalpakci, Kerem N.; Shimko, Daniel A.; Zienkiewicz, Katarzyna J.; Cochran, David L.

    2016-01-01

    Treatment of mandibular osseous defects is a significant clinical challenge. Maintenance of the height and width of the mandibular ridge is essential for placement of dental implants and restoration of normal dentition. While guided bone regeneration using protective membranes is an effective strategy for maintaining the anatomic contour of the ridge and promoting new bone formation, complications have been reported, including wound failure, seroma, and graft exposure leading to infection. In this study, we investigated injectable low-viscosity (LV) polyurethane/ceramic composites augmented with 100 μg/mL (low) or 400 μg/mL (high) recombinant human bone morphogenetic protein-2 (rhBMP-2) as space-maintaining bone grafts in a canine mandibular ridge saddle defect model. LV grafts were injected as a reactive paste that set in 5–10 min to form a solid porous composite with bulk modulus exceeding 1 MPa. We hypothesized that compression-resistant LV grafts would enhance new bone formation and maintain the anatomic contour of the mandibular ridge without the use of protective membranes. At the rhBMP-2 dose recommended for the absorbable collagen sponge carrier in dogs (400 μg/mL), LV grafts maintained the width and height of the host mandibular ridge and supported new bone formation, while at suboptimal (100 μg/mL) doses, the anatomic contour of the ridge was not maintained. These findings indicate that compression-resistant bone grafts with bulk moduli exceeding 1 MPa and rhBMP-2 doses comparable to that recommended for the collagen sponge carrier support new bone formation and maintain ridge height and width in mandibular ridge defects without protective membranes. PMID:26800574

  1. Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development.

    PubMed

    Takei, Shunsuke; Ichikawa, Hinako; Johkura, Kohei; Mogi, Akimi; No, Heesung; Yoshie, Susumu; Tomotsune, Daihachiro; Sasaki, Katsunori

    2009-06-01

    Cardiomyocytes derived from human embryonic stem (ES) cells are a potential source for cell-based therapy for heart diseases. We studied the effect of bone morphogenetic protein (BMP)-4 in the presence of fetal bovine serum (FBS) on cardiac induction from human H1 ES cells during embryoid body (EB) development. Suspension culture for 4 days with 20% FBS produced the best results for the differentiation of early mesoderm and cardiomyocytes. The addition of Noggin reduced the incidence of beating EBs from 23.6% to 5.3%, which indicated the involvement of BMP signaling in the spontaneous cardiac differentiation. In this condition, treatment with 12.5-25 ng/ml BMP-4 during the 4-day suspension optimally promoted the cardiomyocyte differentiation. The incidence of beating EBs at 25 ng/ml BMP-4 reached 95.8% on day 6 of expansion and then plateaued until day 20. In real-time PCR analysis, the cardiac development-related genes MESP1 and Nkx2.5 were upregulated in the EB outgrowths by 25 ng/ml BMP-4. The activation of BMP signaling in EBs was confirmed by the increase in the phosphorylation of Smad1/5/8 and by the nuclear localization of phospho-Smad1/5/8 and Smad4. The addition of 150 ng/ml Noggin considerably decreased the incidence of beating EBs and Nkx2.5 expression, and Noggin alone increased Nestin expression and neural differentiation in EB outgrowths. The cardiomyocytes induced by 25 ng/ml BMP-4 showed proper cell biological characteristics and a course of differentiation as judged from isoproterenol administration, gene expression, protein assay, immunoreactivity, and subcellular structures. No remarkable change in the extent of apoptosis and proliferation in the cardiomyocytes was observed by BMP-4 treatment. These findings showed that BMP-4 in combination with FBS at the appropriate time and concentrations significantly promotes cardiomyocyte induction from human ES cells.

  2. Recombinant human bone morphogenetic protein type 2 in the reconstruction of atrophic maxilla: Case report with long-term follow-up

    PubMed Central

    Zétola, André Luiz; Verbicaro, Thalyta; Littieri, Sahara; Larson, Rafaela; Giovanini, Allan Fernando; Deliberador, Tatiana Miranda

    2014-01-01

    Autologous bone is reported by scientific literature as the gold standard for the replacement of the bone loss in maxillary atrophic area. Notwithstanding, this grafting type shows several disadvantages as: The procedure morbidity, limited size of the graft and longer recovering time. Recombinant human bone morphogenetic protein type 2 (rhBMP-2) has been used as bone substitute for the reconstruction of large bone defects. The aim of this case was to report a clinical case exhibiting the reconstruction of the atrophic maxilla through using rhBMP-2 as grafting material associated with absorbable collagen sponge (ACS). At 8 months of following-up, osseointegrated implants were placed. After 2 years and 5 months of following-up, it could be observed an appropriate aesthetical and functional rehabilitation. PMID:25624638

  3. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    PubMed Central

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  4. Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus.

    PubMed

    Hwang, S P; Partin, J S; Lennarz, W J

    1994-03-01

    A cDNA clone encoding a protein homologous to human bone morphogenetic protein 1 (huBMP1) was isolated from a sea urchin embryo cDNA library. This sea urchin gene, named suBMP, encodes a protein of M(r) of 72 x 10(3). The deduced amino acid sequence of suBMP shares 72% sequence similarity (55% identity) with that of huBMP1. Like huBMP1 it also contains an N-terminal metalloendoprotease domain that shares sequence similarity with the astacin protease from crayfish, a C-terminal domain that is similar to the repeat domain found in C1r or C1s serine proteases, and an EGF-like segment. Although suBMP mRNA was detectable at a low level in the unfertilized egg, maximal expression of mRNA was observed at hatched blastula stage, with only a modest decrease in level at later stages of development. In situ hybridization studies revealed that suBMP mRNA is found in both ectodermal and primary mesenchyme cells in hatched blastula-stage embryos. Maximal expression of suBMP was observed at mesenchyme blastula, just before the onset of primitive skeleton (spicule) formation. SuBMP was found by immunoelectronmicroscopy in all cell types in late gastrula stage embryos. The antibody gold particles appeared in small clusters in the cytoplasm, on the surface of the cells and within the blastocoel. This distribution of suBMP, coupled with the finding that it was associated with membranes but was released by sodium carbonate treatment, suggests that the protein is secreted, and subsequently associates with a cell surface component. Two models for the possible function of suBMP in spiculogenesis in the sea urchin embryo are discussed.

  5. Trends of Posterior Long Segment Fusion with and without Recombinant Human Bone Morphogenetic Protein 2 in Patients with Scoliosis

    PubMed Central

    Ruofeng, Yin; Cohen, Jeremiah R.; Buser, Zorica; Yoon, S. Tim; Meisel, Hans-Joerg; Youssef, Jim A.; Park, Jong-Beom; Wang, Jeffrey C.; Brodke, Darrel S.

    2015-01-01

    Study Design  Retrospective study. Objective  Symptomatic scoliosis can be a source of severe pain and disability. When nonoperative treatments fail, spine fusion is considered as an effective procedure in scoliosis management. The purpose of this study was to evaluate the trends of patients with scoliosis undergoing posterior long segment fusion (PLSF) with and without recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods  Patients within the orthopedic subset of Medicare database undergoing PLSF from 2005 to 2011 were identified using the PearlDiver Patient Records Database. Both diagnosis and procedural International Classification of Diseases, ninth edition and Current Procedural Terminology codes were used. The year of procedure, age, sex, region, and rhBMP-2 use were recorded. Results  In total, 1,265,591 patients with scoliosis were identified with 29,787 PLSF surgeries between 2005 and 2011. The incidence of PLSF procedures increased gradually from 2005 to 2009, decreased in 2010 (p < 0 0.01), and grew again in 2011. Patients over age 84 years had the highest incidence of PLSF. The lowest incidence of the procedures was in the Northeast, 5.96 per 100,000 patients. Sex differences were observed with a male-to-female ratio of 0.40 (p < 0.01). The use of rhBMP-2 for PLSF increased steadily from 2005 to 2009; the numbers dropped dramatically in 2010 and returned by 2011. Conclusions  According to our study, patients with scoliosis demonstrated a 0.6575 average incidence increase of PLSF treatments annually. There were significant differences in incidence of PLSF procedure and patient demographics. Additionally, rhBMP-2 consumption significantly changed when we stratified it by sex, age, and region respectively. PMID:27433425

  6. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors

    PubMed Central

    Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C.K.

    2017-01-01

    BACKGROUND Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the

  7. Cross-talk between bone morphogenetic proteins and inflammatory pathways.

    PubMed

    van der Kraan, Peter M; Davidson, Esmeralda N Blaney

    2015-11-23

    Pro-inflammatory cytokines and bone morphogenetic proteins are generally studied separately and considered to be elements of different worlds, immunology and developmental biology. Varas and colleagues report that these factors show cross-talk in rheumatoid arthritis synoviocytes. They show that pro-inflammatory cytokines not only stimulate the production of bone morphogenetic proteins but that these endogenously produced bone morphogenetic proteins interfere with the effects of pro-inflammatory cytokines on synoviocytes.

  8. Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7.

    PubMed

    Babiak, Ireneusz

    2014-10-01

    The aim of the therapy in open tibial fractures grade III was to cover the bone with soft tissue and achieve healed fracture without persistent infection. Open tibial fractures grade IIIC with massive soft tissue damage require combined orthopaedic, vascular and plastic-reconstructive procedures. Negative-pressure wound therapy (NPWT), used in two consecutive cases with open fracture grade IIIC of the tibia diaphysis, healed extensive soft tissue defect with exposure of the bone. NPWT eventually allowed for wound closure by split skin graft within 21-25 days. Ilizarov external fixator combined with application of recombinant human bone morphogenetic protein-7 at the site of delayed union enhanced definitive bone healing within 16-18 months.

  9. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2015-01-01

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation. PMID:25714881

  10. Bovine bone morphogenetic protein-induced dentinogenesis.

    PubMed

    Lianjia, Y; Yuhao, G; White, F H

    1993-10-01

    Differentiation of odontoblasts is important for dentin formation in tooth germs and mature teeth. Although previous reports have indicated that there may be a kind of inductive agent that could induce mesenchymal cells in dental pulps to differentiate into odontoblasts, and secrete dentin matrix, the primary inductive factor of odontoblasts has not been found. Bone morphogenetic protein (BMP), which induces the formation of cartilage and bone when implanted in muscle tissue, is found in dentin matrix. The relationship between the differentiation of odontoblasts and BMP was observed by means of immunohistochemical staining with monoclonal antibody (MAb) against BMP in dental pulp tissue and cell culture; [3H]thymidine incorporation; and measurement of alkaline phosphatase activity. The conclusions are: (1) BMP exists in odontoblasts, ameloblasts, and dentin matrix (the positive reaction in ameloblasts appeared earlier and remained stronger); (2) BMP promotes incorporation of [3H]thymidine and increases the activity of alkaline phosphatase in cultured dental pulp cells; (3) BMP-induced dental pulp cells in dental pulp tissue cultures differentiate from mesenchymal to odontoblast-like cells; and (4) BMP induces formation of osteodentin and tubular dentin when used as a dental capping agent of dogs' teeth. Bone morphogenetic protein plays an important role in differentiation of odontoblasts and might be one of the inductive agents of odontoblasts. Further investigations of BMP as a biologic dental capping agent are warranted.

  11. Recombinant Human Bone Morphogenetic Protein 6 Enhances Oocyte Reprogramming Potential and Subsequent Development of the Cloned Yak Embryos

    PubMed Central

    Pan, Yangyang; He, Honghong; Cui, Yan; Baloch, Abdul Rasheed; Li, Qin; Fan, Jiangfeng; He, Junfeng

    2015-01-01

    Abstract This study investigated the effects of bone morphogenetic protein 6 (BMP6) supplementation in the medium during in vitro maturation (IVM) on the developmental potential of oocytes and in the subsequent development of cloned yak embryos. Cumulus–oocyte complexes (COCs) were aspirated from the antral follicles of yak ovaries and cultured with different concentrations of recombinant human BMP6 in oocyte maturation medium. Following maturation, the metaphase II (MII) oocytes were used for somatic cell nuclear transfer (SCNT), and these were cultured in vitro. The development of blastocysts and cell numbers were detected on day 8. The apoptosis and histone modifications of yak cloned blastocysts were evaluated by detecting the expression of relevant genes and proteins (Bax, Bcl-2, H3K9ac, H3K18ac, and H3K9me3) using relative quantitative RT-PCR or immunofluorescence. The presence of 100 ng/mL BMP6 significantly enhanced the oocyte maturation ratios (66.12 ± 2.04% vs. 73.11 ± 1.38%), cleavage rates (69.40 ± 1.03% vs. 78.16 ± 0.93%), and blastocyst formation rates (20.63 ± 1.32% vs. 28.16 ± 1.67%) of cloned yak embryos. The total blastocysts (85.24 ± 3.12 vs. 103.36 ± 5.28), inner cell mass (ICM) cell numbers (19.59 ± 2.17 vs. 32.20 ± 2.61), and ratio of ICM to trophectoderm (TE) (22.93 ± 1.43% vs. 31.21 ± 1.62%) were also enhanced (p < 0.05). The ratio of the Bax to the Bcl-2 gene was lowest in the SCNT + BMP6 groups (p < 0.05). The H3K9ac and H3K18ac levels were increased in SCNT + BMP6 groups (p < 0.05), whereas the H3K9me3 level was decreased; the differences in blastocysts were not significant (p > 0.05). These study results demonstrate that addition of oocyte maturation medium with recombinant BMP6 enhances yak oocyte developmental potential and the subsequent developmental competence of SCNT embryos, and provides evidence that BMP6 is an important determinant of mammalian

  12. Effects of Escherichia Coli-derived Recombinant Human Bone Morphogenetic Protein-2 Loaded Porous Hydroxyaptite-based Ceramics on Calvarial Defect in Rabbits

    PubMed Central

    Kim, Shin-Young; Lee, Youngkyun; Seo, Seung-Jun; Lim, Jae-Hong

    2017-01-01

    Background Recombinant human bone morphogenetic proteins (rhBMPs) have been widely used in regenerative therapies to promote bone formation. The production of rhBMPs using bacterial systems such as Escherichia coli (E. coli) is estimated to facilitate clinical applications by lowering the cost without compromising biological activity. In clinical practice, rhBMP-2 and osteoconductive carriers (e.g., hydroxyapatite [HA] and bovine bone xenograft) are used together. This study examined the effect of E. coli-derived rhBMP-2 combined with porous HA-based ceramics on calvarial defect in rabbits. Methods Six adult male New Zealand white rabbits were used in this study. The experimental groups were divided into the following 4 groups: untreated (NC), bovine bone graft (BO), porous HA (HA) and porous HA with rhBMP-2 (HA-BMP). Four transosseous defects of 8 mm in diameter were prepared using stainless steel trephine bur in the frontal and parietal bones. Histological and histomorphometric analyses at 4 weeks after surgery revealed significant new bone formation by porous HA alone. Results HA-BMP showed significantly higher degree of bone formation compared with BO and HA group (P<0.05). The average new bone formation % (new bone area per total defect area) of NC, BO, HA, and HA-BMP at 4-week after surgery were 12.65±5.89%, 29.63±6.99%, 28.86±6.17% and 49.56±8.23%, respectively. However, there was no statistical difference in the bone formation between HA and BO groups. Conclusions HA-BMP promoted more bone formation than NC, BO and HA alone. Thus, using E. coli-derived rhBMP-2 combined with porous HA-based ceramics can promote new bone formation. PMID:28326298

  13. [Experimental study on application recombinant human bone morphogenetic protein 2(rhBMP-2)/poly-lactide-co-glycolic acid (PLGA)/fibrin sealant(FS) on repair of rabbit radial bone defect].

    PubMed

    Fan, Zhongkai; Cao, Yang; Zhang, Zhe; Zhang, Mingchao; Lu, Wei; Tang, Lei; Yao, Qi; Lu, Gang

    2012-10-01

    This paper is aimed to investigate the repair of rabbit radial bone defect by the recombinant human bone morphogenetic protein 2/poly-lactideco-glycolic acid microsphere with fibrin sealant (rhBMP-2/PLGA/FS). The radial bone defect models were prepared using New Zealand white rabbits, which were randomly divided into 3 groups, experiment group which were injected with eMP-2/PLGA/FS at bone defect location, control group which were injected with FS at bone defect location, and blank control group without treatment. The ability of repairing bone defect was evaluated with X-ray radiograph. Bone mineral density in the defect regions was analysed using the level of ossification. The osteogenetic ability of repairing bone defect, the degradation of the material, the morphologic change and the bone formation were assessed by HE staining and Masson staining. The result showed that rhBMP-2/PLGA/FS had overwhelming superiority in the osteogenetic ability and quality of bone defect over the control group, and it could promote the repair of bone defect and could especially repair the radial bone defect of rabbit well. It may be a promising and efficient synthetic bone graft.

  14. Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Kim, Jinku; Hollinger, Jeffrey O

    2012-08-01

    The purposes of this study were to determine the pharmacokinetics of recombinant human bone morphogenetic protein-2 (rhBMP-2) from a polyurethane (PUR)-based porous scaffold and to determine the biological responses of human mesenchymal stem cells (hMSCs) to the rhBMP-2 released from those scaffolds. The rhBMP-2 was incorporated into the PUR three-dimensional (3D) porous scaffolds and release profiles were determined using enzyme-linked immunosorbent assay. The bioactivity of the rhBMP-2 containing releasates was determined using hMSCs and compared with exogenous rhBMP-2. Release of rhBMP-2 from PUR-based systems was bi-phasic and characterized by an initial burst followed by a sustained release for up to 21 days. Expression of alkaline phosphatase activity by hMSCs treated with the rhBMP-2 releasates was significantly greater than the cells alone (control) throughout the time periods. Furthermore, after 14 days of culture, the hMSCs cultured with rhBMP-2 releasate had a greater amount of mineralization compared to exogenous rhBMP-2. Overall, the rhBMP-2 release from the PUR-based scaffolds was sustained for 21 days and the releasates appeared to be bioactive and promoted earlier osteogenic differentiation and mineralization of hMSCs than the exogenous rhBMP-2.

  15. Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord

    PubMed Central

    Marupanthorn, Kulisara; Tantrawatpan, Chairat; Kheolamai, Pakpoom; Tantikanlayaporn, Duangrat; Manochantr, Sirikul

    2017-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells that can give rise to different cell types of the mesodermal lineages. They are powerful sources for cell therapy in regenerative medicine as they can be isolated from various tissues, and can be expanded and induced to differentiate into multiple lineages. Recently, the umbilical cord has been suggested as an alternative source of MSCs. Although MSCs derived from the umbilical cord can be induced to differentiate into osteoblasts with a phenotypic similarity to that of bone marrow-derived MSCs, the differentiation ability is not consistent. In addition, MSCs from the umbilical cord require a longer period of time to differentiate into osteoblasts. Previous studies have demonstrated the benefits of bone morphogenetic protein-2 (BMP-2) in bone tissue regeneration. In addition, several studies have supported the use of BMP-2 in periodontal regeneration, sinus lift bone-grafting and non-unions in oral surgery. Although the use of BMP-2 for bone tissue regeneration has been extensively investigated, the BMP-2-induced osteogenic differentiation of MSCs derived from the umbilical cord has not yet been fully examined. Therefore, in this study, we aimed to examine the effects of BMP-2 on the osteogenic differentiation of MSCs derived from umbilical cord compared to that of MSCs derived from bone marrow. The degree of osteogenic differentiation following BMP-2 treatment was determined by assessing alkaline phosphatase (ALP) activity, and the expression profiles of osteogenic differentiation marker genes, osterix (Osx), Runt-related transcription factor 2 (Runx2) and osteocalcin (Ocn). The results revealed that BMP-2 enhanced the osteogenic differentiation capacity of MSCs derived from both bone marrow and umbilical cord as demonstrated by increased ALP activity and the upregulation of osteogenic differentiation marker genes. The enhancement of the osteogenic differentiation capacity of MSCs by BMP-2 suggests that these

  16. Characterization and expression of proprotein convertases in CHO cells: Efficient proteolytic maturation of human bone morphogenetic protein-7.

    PubMed

    Sathyamurthy, Madhavi; Kim, Che Lin; Bang, You Lim; Kim, Young Sik; Jang, Ju Woong; Lee, Gyun Min

    2015-03-01

    Bone morphogenetic protein-7 (BMP-7) is synthesized as a precursor that requires proteolytic cleavage of the propeptide by proprotein convertases (PCs) for its functional activity. A high-level expression of BMP-7 in CHO cells (CHO-BMP-7) resulted in secretion of a mixture of inactive precursor and active BMP-7. In an effort to achieve efficient processing of BMP-7 in CHO cells, PCs responsible for cleavage of the precursors in CHO cells were characterized. Analysis of the mRNA expression levels of four PCs (furin, PACE4, PC5/6, and PC7) revealed that only furin and PC7 genes are expressed in CHO-BMP-7 cells. Specific inhibition of the PCs by hexa-D-arginine (D6R) or decanoyl-RVKR-chloromethyl ketone (RVKR-CMK) further revealed that furin is mainly responsible for the proteolytic processing of BMP-7. To identify a more efficient PC for BMP-7 processing, the four PC genes were transiently expressed in CHO-BMP-7 cells, respectively. Among these, PC5/6 was found to be the most efficient in BMP-7 processing. Stable overexpression of PC5/6ΔC, a secreted form of PC5/6, significantly improved mature BMP-7 production in CHO-BMP-7 cells. When the maximum BMP-7 concentration was obtained in the culture of CHO-BMP-7 cells, approximately 88% of BMP-7 was unprocessed. In contrast, no precursor was found in the culture of PC5/6ΔC-overexpressing cells (clone #97). Furthermore, the in vitro biological activity of the mature BMP-7 from PC5/6ΔC-overexpressing cells was comparable to that from CHO-BMP-7 cells. Taken together, the present results indicate that overexpression of PC5/6ΔC in CHO-BMP-7 cells is an efficient means of increasing the yield of BMP-7.

  17. Surface mineralization of Ti6Al4V substrates with calcium apatites for the retention and local delivery of recombinant human bone morphogenetic protein-2.

    PubMed

    Liu, Pingsheng; Smits, Jonathan; Ayers, David C; Song, Jie

    2011-09-01

    Titanium alloys are prevalently used as orthopedic prosthetics. Inadequate bone-implant interactions can lead to premature prosthetic loosening and implant failure. Local delivery of osteogenic therapeutics promoting osteointegration of the implant is an attractive strategy to address this clinical challenge. Given the affinity of calcium apatites for bone matrix proteins we hypothesize that titanium alloys surface mineralized with calcium apatites should be explored for the retention and local delivery of osteogenic recombinant human bone morphogenetic protein-2 (rhBMP-2). Using a heterogeneous surface nucleation and growth process driven by the gradual pH elevation of an acidic solution of hydroxyapatite via thermal decomposition of urea, Ti6Al4V substrates were surface mineralized with calcium apatite domains exhibiting good affinity for the substrate. The microstructures, size and surface coverage of the mineral domains as a function of the in vitro mineralization conditions were examined by light and scanning electron microscopy and the surface calcium ion content quantified. An optimal mineralization condition was identified to rapidly (<10h) achieve surface mineral coverage far superior to those accomplished by week long incubation in simulated body fluids. In vitro retention-release profiles of rhBMP-2 from the mineralized and unmineralized Ti6Al4V, determined by an enzyme-linked immunosorbent assay, supported a higher degree of retention of rhBMP-2 on the mineralized substrate. The rhBMP-2 retained on the mineralized substrate after 24h incubation in phosphate-buffered saline remained bioactive, as indicated by its ability to induce osteogenic transdifferentiation of C2C12 myoblasts attached to the substrate. This mineralization technique could also be applied to the surface mineralization of calcium apatites on dense tantalum and titanium and porous titanium substrates.

  18. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model.

    PubMed

    Yi, TacGhee; Jun, Choong-Man; Kim, Su Jin; Yun, Jeong-Ho

    2016-03-01

    Human periodontal ligament stem cells (hPDLSCs) are considered potential cellular carriers for gene delivery in the field of tissue regeneration. This study tested the osseoregenerative potential of hPDLSCs transduced with replication-deficient recombinant adenovirus (rAd) containing the gene encoding bone morphogenetic protein-2 (BMP2; hPDLSCs/rAd-BMP2) in both in vivo and in vitro osteogenic environments. After the optimal condition for rAd-mediated transduction was determined, hPDLSCs were transduced to express BMP2. In vivo bone formation was evaluated in a critical-size rat calvarial bone defect model that more closely mimics the harsher in vivo milieu for bone regeneration than subcutaneous transplantation model. As support materials for bone regeneration, block-type biphasic calcium phosphate (BCP) scaffolds were combined with hPDLSCs and/or BMP2 and transplanted into critical-size bone defects in rats. Experimental groups were as follows: BCP scaffold control (group 1 [Gr1]), scaffold containing recombinant human BMP2 (rhBMP2; group 2 [Gr2]), scaffold loaded with normal hPDLSCs (group 3 [Gr3]), scaffold combined with both normal hPDLSCs and rhBMP2 (group 4 [Gr4]), and scaffold loaded with hPDLSCs transduced with rAd-BMP2 (hPDLSCs/rAd-BMP2; group 5 [Gr5]). Our data showed that new bone formation was highest in Gr2. Less mineralization was observed in Gr3, Gr4, and Gr5 in which hPDLSCs were transplanted. In vitro transwell assay demonstrated that hPDLSCs exert an inhibitory activity on BMP2-induced osteogenic differentiation. Our findings suggest that the in vivo bone regenerative potential of BMP2-overexpressing hPDLSCs could be compromised in a critical-size rat calvarial bone defect model. Thus, further investigations are required to elucidate the underlying mechanisms and to develop efficient techniques for improved tissue regeneration.

  19. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2

    PubMed Central

    Neumann, Alexander J.; Gardner, Oliver F. W.; Williams, Rebecca; Alini, Mauro; Archer, Charles W.; Stoddart, Martin J.

    2015-01-01

    Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a

  20. Preparation and biological characteristics of recombinant human bone morphogenetic protein-2-loaded dextran-co-gelatin hydrogel microspheres, in vitro and in vivo studies.

    PubMed

    Chen, Faming; Wu, Zhifen; Wang, Qintao; Wu, Hong; Zhang, Yongjie; Nie, Xin; Jin, Yan

    2005-11-01

    Hydrogels are based on hydrophilic polymers which are cross-linked to prevent dissolution in water. Because hydrogels can contain large amounts of water, they are interesting devices for the delivery of protein drugs. In this contribution, biodegradable dextran-co-gelatin hydrogel microspheres (DG-MPs) are described which are based on physical interactions and are particularly suitable for the controlled delivery of pharmaceutically active proteins. The unique feature of this preparation system is that the hydrogel microsphere formation takes place in an all-aqueous solution, by which the use of organic solvents is avoided. We investigated the preparation and biological activities of recombinant human bone morphogenetic protein-2 (rhBMP2)-loaded dextran-co-gelatin hydrogel microspheres (rhBMP2-DG-MPs), which aimed to keep rhBMP2's biological activity and to achieve a long-term sustained release of rhBMP2. The microspheres' average diameter was about 20-40 microm and rhBMP2 release in vitro could be maintained for >10 days. Cytology studies showed that using rhBMP2-DG-MPs could promote the proliferation and osteoblastic differentiation of periodontal ligament cells better than using rhBMP2 aqueous solution. By a freeze-drying method, rhBMP2-DG-MPs could be adhered in chitosan membranes for guided tissue regeneration use, namely functionalized membranes. To evaluate bone regeneration induced by rhBMP2-DG-MPs, an animal experiment with canine class III furcation defects was adopted and the results indicated that using rhBMP2-DG-MPs incorporating scaffolds and functionalized membranes could gain more periodontal tissue regeneration than using scaffolds and general membranes soaked with concentrated rhBMP2 aqueous solution. Therefore, those studies demonstrate the potential of DG-MPs in the sustained delivery of low dosages of rhBMP2 to periodontal defects.

  1. Recombinant human bone morphogenetic protein-2 inhibits gastric cancer cell proliferation by inactivating Wnt signaling pathway via c-Myc with aurora kinases

    PubMed Central

    Ye, Shuai; Park, Byung Hyun; Kim, Soo Mi

    2016-01-01

    The detailed molecular mechanisms and safety issues of recombinant human bone morphogenetic protein-2 (rhBMP-2) usage in bone graft substitution remain poorly understood. To investigate the molecular mechanisms underlying the function of rhBMP-2 in gastric cancer cells, we used microarrays to determine the gene expression patterns related to the effects of rhBMP-2. Based on a gene ontology analysis, several genes were upregulated during the regulation of the cell cycle and BMP signaling pathway. MYC was found to be significantly decreased along with its downstream target genes, the aurora kinases (AURKs), by rhBMP-2 in the network analysis. We further confirmed this finding with western blot data that rhBMP-2 inhibited c-Myc, AURKs, and β-catenin in SNU484 and SNU638 cells. An AURK inhibitor significantly decreased c-Myc expression in gastric cancer cells. Combination treatment with rhBMP-2 and AURK inhibitor resulted in significantly decreased c-Myc expression compared with gastric cancer cells treated with an rhBMP-2 or AURK inhibitor, respectively. Similar effects for decreased c-Myc expression were observed when we silenced β-catenin in gastric cancer cells. These results indicate that rhBMP-2 attenuated the growth of gastric cancer cells via the inactivation of β-catenin via c-Myc and AURKs. Therefore, our findings suggest that rhBMP-2 could be safely used with patients who undergo gastric or gastroesophageal cancer surgery. PMID:27636990

  2. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling

    PubMed Central

    Chung, Jin-Eun; Park, Jin-Ho; Yun, Jeong-Won; Kang, Young-Hoon; Park, Bong-Wook; Hwang, Sun-Chul; Cho, Yeong-Cheol; Sung, Iel-Yong; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis

  3. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling.

    PubMed

    Chung, Jin-Eun; Park, Jin-Ho; Yun, Jeong-Won; Kang, Young-Hoon; Park, Bong-Wook; Hwang, Sun-Chul; Cho, Yeong-Cheol; Sung, Iel-Yong; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis

  4. The effect of recombinant human osteogenic protein-1 (bone morphogenetic protein-7) impregnation on allografts in a canine intercalary bone defect.

    PubMed

    Cullinane, Dennis M; Lietman, Steven A; Inoue, Nozomu; Deitz, Luke W; Chao, Edmund Y S

    2002-11-01

    The utility of cortical allografts in repairing large bone defects is limited by their slow and incomplete incorporation into host bone. In order to determine the effects of recombinant human osteogenic protein-1 (rhOP-1) impregnation on allograft incorporation, we used a canine intercalary bone defect model. Bilateral resection of a 4 cm segment of the femoral diaphysis and reconstruction with structural bone allografts were performed. In one limb, the allograft was soaked in solution with rhOP-1 for 1 h before implantation. In the other limb, the allograft was soaked in the same solution without rhOP-1. Dynamic load-bearing, radiographic analysis, biomechanical testing, and histomorphometric analysis were conducted. Radiographic analysis showed significantly larger periosteal callus area in the rhOP-1 treated group at week 2. The rhOP-1 significantly increased allograft bone porosity and significantly increased the number of active osteons in the allografts. There were no significant differences between the rhOP-1 treated and non-treated allografts in load bearing and biomechanical analyses. These findings indicate that rhOP- I increases intercalary allograft remodeling without deleterious effects in mechanical and functional strength.

  5. Bioactivity of porous biphasic calcium phosphate enhanced by recombinant human bone morphogenetic protein 2/silk fibroin microsphere.

    PubMed

    Chen, Liang; Gu, Yong; Feng, Yu; Zhu, Xue-Song; Wang, Chun-Zeng; Liu, Hai-Long; Niu, Hai-Yun; Zhang, Chi; Yang, Hui-Lin

    2014-07-01

    To prepare a bioactive bone substitute, which integrates biphasic calcium phosphate (BCP) and rhBMP-2/silk fibroin (SF) microsphere, and to evaluate its characteristics. Hydroxyapatite and β-tricalcium phosphate were integrated with a ratio of 60–40%. RhBMP-2/SF (0.5 μg/1 mg) microsphere was prepared, and its rhBMP-2-release kinetics was assed. After joining pore-forming agent (Sodium chloride, NaCl), porous BCP/rhBMP-2/SF were manufactured, and its characteristics and bioactivity in vitro were evaluated. Mean diameter of rhBMP-2/SF microsphere was 398.7 ± 99.86 nm, with a loading rate of 4.53 ± 0.08%. RhBMP-2 was released in a dual-phase pattern, of which fast-release (nearly half of protein released) focused on the initial 3 days, and slow-release sustained more than 28 days. With the increase in concentration of NaCl, greater was porosity and pore size, but smaller mechanical strength of BCP/rhBMP-2/SF. Material with 150% (w/v) NaCl had an optimal performance, with a porosity of 78.83%, pore size of 293.25 ± 42.77μm and mechanical strength of 31.03 MPa. Proliferation of human placenta-derived mesenchymal stem cells (hPMSCs) on leaching extract medium was similar to the normal medium (P = 0.89), which was better than that on control group (P = 0.03). Activity of alkaline phosphatase on BCP/rhBMP-2/SF surface was higher than on pure BCP at each time point except at 1 day (P < 0.05). RhBMP-2 has a burst release on early times and a sustaining release on later times. BCP/rhBMP-2/SF with 150% (w/v) pore-forming agent has excellent porosity, pore size and mechanical strength. The biomaterial induces proliferation and differentiation hPMSCs effectively.

  6. [Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects].

    PubMed

    Sierra-García, Gerardo Daniel; Castro-Ríos, Rocío; Gónzalez-Horta, Azucena; Lara-Arias, Jorge; Chávez-Montes, Abelardo

    2016-01-01

    Since the introduction of bone morphogenetic proteins, their use has become an invaluable ally for the treatment of bone defects. These proteins are potent growth factors, related to angiogenic and osteogenic activity. The osteoinductive capacity of recombinant bone morphogenetic protein (rhBMP) in the formation of bone and cartilage has been confirmed in in vitro studies and evaluated in clinical trials. To obtain a therapeutic effect, administration is systemic, by injection over the physiological dose. Among the disadvantages, ectopic bone formation or high morbidity in cases of spinal fusion is observed. In this review, the roles of bone morphogenetic proteins in bone repair and clinical applications are analyzed. These findings represent advances in the study of bone regeneration and application of growth factors for more predictable results.

  7. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  8. Synergistic induction of early stage of bone formation by combination of recombinant human bone morphogenetic protein-2 and epidermal growth factor.

    PubMed

    Lee, Jae Hyup; Jang, Soo-Jeong; Baek, Hae-Ri; Lee, Kyung Mee; Chang, Bong-Soon; Lee, Choon-Ki

    2015-04-01

    This study evaluates whether the combination of the rhBMP-2 and various types of growth factors including EGF, FGF, PDGF and VEGF increases osteoinductivity compared to the single use of rhBMP-2 through in vitro and in vivo study. Cultured human MSCs were treated with rhBMP-2 only or in combination with growth factors. For in vivo evaluation, rhBMP-2 only or with growth factors was implanted into the calvarial defect made on SD rats. Both EGF and PDGF significantly increased both ALP activity and expression level in hMSCs when treated in combination with rhBMP-2 at 3 and 7 days of differentiation and significantly raised the accumulation of the calcium at day 14. Furthermore, micro-CT scanning revealed that the EGF an FGF groups show significantly increased new bone surface ratio compared to the rhBMP-2 only group and, the EGF treatment significantly up regulated percent bone volume and trabecular number at two weeks after the surgery. VEGF treatment also significantly raised trabecular number and FGF treatment significantly increased the trabecular thickness. Histological examination revealed that the EGF combination group showed enhanced bone regeneration than the rhBMP-2 only group two weeks after the implantation. Even though the treatment of rhBMP-2 with PDGF and FGF failed to show enhanced osteogenesis in vitro and in vivo simultaneously, these results suggest that the positive effect of the combination of EGF and rhBMP-2 is expected to induce the bone formation earlier compared to the single use of rhBMP-2 in vitro and in vivo.

  9. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    PubMed Central

    Namkoong, Hong; Shin, Seung Min; Kim, Hyun Kee; Ha, Seon-Ah; Cho, Goang Won; Hur, Soo Young; Kim, Tae Eung; Kim, Jin Woo

    2006-01-01

    Background Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. Methods We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. Results DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Conclusion Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good

  10. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    SciTech Connect

    Tada, Hiroyuki; Nemoto, Eiji; Kanaya, Sousuke; Hamaji, Nozomu; Sato, Hisae; Shimauchi, Hidetoshi

    2010-04-16

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stability of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.

  11. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    PubMed

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p<0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p>0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery.

  12. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    PubMed

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  13. ANA deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events.

    PubMed

    Miyai, Kentaro; Yoneda, Mitsuhiro; Hasegawa, Urara; Toita, Sayaka; Izu, Yayoi; Hemmi, Hiroaki; Hayata, Tadayoshi; Ezura, Yoichi; Mizutani, Shuki; Miyazono, Kohei; Akiyoshi, Kazunari; Yamamoto, Tadashi; Noda, Masaki

    2009-04-17

    Ectopic bone formation after joint replacement or brain injury in humans is a serious complication that causes immobility of joints and severe pain. However, mechanisms underlying such ectopic bone formation are not fully understood. Bone morphogenetic protein (BMPs) are defined as inducers of ectopic bone formation, and they are regulated by several types of inhibitors. ANA is an antiproliferative molecule that belongs to Tob/BTG family, but its activity in bone metabolism has not been known. Here, we examined the role of ANA on ectopic bone formation activity of BMP. In ANA-deficient and wild-type mice, BMP2 was implanted to induce ectopic bone formation in muscle. ANA deficiency increased mass of newly formed bone in vivo compared with wild-type based on 3D-muCT analyses. ANA mRNA was expressed in bone in vivo as well as in osteoblastic cells in vitro. Such ANA mRNA levels were increased by BMP2 treatment in MC3T3-E1 osteoblastic cells. Overexpression of ANA suppressed BMP-induced expression of luciferase reporter gene linked to BMP response elements in these cells. Conversely, ANA mRNA knockdown by small interference RNA enhanced the BMP-dependent BMP response element reporter expression. It also enhanced BMP-induced osteoblastic differentiation in muscle-derived C2C12 cells. Immunoprecipitation assay indicated that ANA interacts with Smad8. Thus, ANA is a suppressor of ectopic bone formation induced by BMP, and this inhibitory ANA activity is a part of the negative feedback regulation of BMP function.

  14. Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids

    PubMed Central

    Szymczak, Lindsey C.; Aydin, Taner; Yun, Sijung; Constas, Katharine; Schaeffer, Arielle; Ranjan, Sinthu; Kubba, Saad; Alam, Emad; McMahon, Devin E.; He, Jingpeng; Shwartz, Neta; Tian, Chenxi; Plavskin, Yevgeniy; Lindy, Amanda; Dad, Nimra Amir; Sheth, Sunny; Amin, Nirav M.; Zimmerman, Stephanie; Liu, Dennis; Schwarz, Erich M.; Smith, Harold; Krause, Michael W.; Liu, Jun

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. PMID:25978409

  15. Novel approaches to bone grafting: porosity, bone morphogenetic proteins, stem cells, and the periosteum.

    PubMed

    Petrochenko, Peter; Narayan, Roger J

    2010-01-01

    The disadvantages involving the use of a patient's own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles in determining graft performance. The effective delivery of bone morphogenetic proteins and the ability to restore vascularization also play significant roles in determining the success of a bone graft material. Among current approaches, shorter bone morphogenetic protein sequences, more efficient delivery methods, and periosteal graft supplements have shown significant promise for use in autograft substitutes or autograft extenders.

  16. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength.

    PubMed

    Baud'huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L; Underwood, Kathryn W; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R Scott; Croucher, Peter I

    2012-07-24

    Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A-mFc) in vivo. mBMPR1A-mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A-mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A-mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders.

  17. The Influence of Platelet-Derived Growth Factor and Bone Morphogenetic Protein Presentation on Tubule Organization by Human Umbilical Vascular Endothelial Cells and Human Mesenchymal Stem Cells in Coculture.

    PubMed

    Bayer, Emily A; Fedorchak, Morgan V; Little, Steven R

    2016-11-01

    A three-dimensional in vitro Matrigel plug was used as a model to explore delivery patterns of platelet-derived growth factor (PDGF) and bone morphogenetic protein-2 (BMP-2) to a coculture of human mesenchymal and endothelial cells. While BMP-2 is well recognized for its role in promoting fracture healing through proliferation and differentiation of osteoclast precursors, it is not a growth factor known to promote the process of angiogenesis, which is also critical for complete bone tissue repair. PDGF, in contrast, is a known regulator of angiogenesis, and also a powerful chemoattractant for osteoblast precursor cells. It has been suggested that presentation of PDGF followed by BMP may better promote vascularized bone tissue formation. Yet, it is unclear as to how cells would respond to various durations of delivery of each growth factor as well as to various amounts of overlap in presentation in terms of angiogenesis. Using a three-dimensional in vitro Matrigel plug model, we observed how various presentation schedules of PDGF and BMP-2 influenced tubule formation by human mesenchymal stem cells and human umbilical vascular endothelial cells. We observed that sequential presentation of PDGF to BMP-2 led to increased tubule formation over simultaneous delivery of these growth factors. Importantly, a 2-4 day overlap in the sequential presentation of PDGF and BMP-2 increased tubule formation as compared with groups with zero or complete growth factor overlap, suggesting that a moderate amount of angiogenic and osteogenic growth factor overlap may be beneficial for processes associated with angiogenesis.

  18. Recombinant human bone morphogenetic protein-type 2 (rhBMP-2) enhances local bone formation in the lumbar spine of osteoporotic sheep.

    PubMed

    Zarrinkalam, Mohammad Reza; Schultz, Christopher G; Ardern, David W; Vernon-Roberts, Barrie; Moore, Robert J

    2013-09-01

    The failure of orthopedic implants in osteoporotic patients is attributed to the lack of sufficient bone stock and regenerative capacity but most treatments for osteoporosis fail to address this issue. rhBMP-2 is known to promote bone formation under normal conditions but has not been used clinically in the osteoporotic condition. Osteoporosis was induced in 19 ewes using ovariectomy, low calcium diet, and steroid injection. After induction, the steroid was withdrawn and pellets containing inert carrier with rhBMP-2 in either slow or fast-release formulation were implanted into the lumbar vertebrae of each animal. After 2, 3, and 6 months the spines were harvested and assessed for changes in BMD and histomorphometric indices. BMD did not change after cessation of steroid treatment. After 2 months BV/TV increased in the vicinity of the pellets containing the fast-release rhBMP-2 and was sustained for the duration of the study. Focal voids surrounding all implants, particularly the slow-release formulation, were observed initially but resolved with time. Increased BV/TV adjacent to rhBMP-2 pellets suggests it could be used for localized treatment of osteoporosis. Refinement of the delivery system and supplementary treatments may be necessary to overcome the initial catabolic effects of rhBMP-2.

  19. Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone morphogenetic protein 11 (BMP11) is a key regulatory protein in skeletal development. BMP11 propeptide has been shown to antagonize GDF11 activity in vitro. To explore the role of BMP11 propeptide in skeletal formation in vivo, we generated transgenic mice with skeleton-specific overexpression...

  20. Fine-tuned shuttles for bone morphogenetic proteins.

    PubMed

    Wharton, Kristi A; Serpe, Mihaela

    2013-08-01

    Bone morphogenetic proteins (BMPs) are potent secreted signaling factors that trigger phosphorylation of Smad transcriptional regulators through receptor complex binding at the cell-surface. Resulting changes in target gene expression impact critical cellular responses during development and tissue homeostasis. BMP activity is tightly regulated in time and space by secreted modulators that control BMP extracellular distribution and availability for receptor binding. Such extracellular regulation is key for BMPs to function as morphogens and/or in the formation of morphogen activity gradients. Here, we review shuttling systems utilized to control the distribution of BMP ligands in tissue of various geometries, developing under different temporal constraints. We discuss the biological advantages for employing specific strategies for BMP shuttling and roles of varied ligand forms.

  1. Successful treatment of a humeral capitulum osteonecrosis with bone morphogenetic protein-7 combined with autologous bone grafting.

    PubMed

    Marsell, Richard; Hailer, Nils P

    2014-08-01

    We present the case of a 27-year-old female with subcortical osteonecrosis of the humeral capitulum. Percutaneous retrograde drilling of the lesion and application of recombinant human bone morphogenetic protein (BMP)-7 were combined with autologous bone grafting. At follow-up the patient was almost pain-free, had normalized her range of motion, and radiography showed consolidation of the lesion without any heterotopic bone formation. By timing surgery prior to subchondral collapse, biomechanical stability of the subchondral bone was maintained. To our knowledge, this is the first report on the treatment of an osteonecrosis in this location with a BMP, and this strategy could potentially be applied in other locations with juxta-articular osteonecrosis.

  2. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    SciTech Connect

    Yonezawa, Takayuki; Lee, Ji-Won; Hibino, Ayaka; Asai, Midori; Hojo, Hironori; Cha, Byung-Yoon; Teruya, Toshiaki; Nagai, Kazuo; Chung, Ung-Il; Yagasaki, Kazumi; and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  3. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco

    PubMed Central

    Ceresoli, Valentina; Mainieri, Davide; Del Fabbro, Massimo; Weinstein, Roberto; Pedrazzini, Emanuela

    2016-01-01

    Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs. PMID:27047526

  4. Bone morphogenetic protein 4 and bone morphogenetic protein receptor expression in the pituitary gland of adult dogs in healthy condition and with ACTH-secreting pituitary adenoma.

    PubMed

    Sato, A; Ochi, H; Harada, Y; Yogo, T; Kanno, N; Hara, Y

    2017-01-01

    The purpose of this study was to investigate the expression of bone morphogenetic protein 4 (BMP4) and its receptors, bone morphogenetic protein receptor I (BMPRI) and BMPRII, in the pituitary gland of healthy adult dogs and in those with ACTH-secreting pituitary adenoma. Quantitative polymerase chain reaction analysis showed that the BMP4 messenger RNA expression level in the ACTH-secreting pituitary adenoma samples was significantly lower than that in the normal pituitary gland samples (P = 0.03). However, there were no statistically significant differences between samples with respect to the messenger RNA expression levels of the receptors BMPRIA, BMPRIB, and BMPRII. Double-immunofluorescence analysis of the normal canine pituitary showed that BMP4 was localized in the thyrotroph (51.3 ± 7.3%) and not the corticotroph cells. By contrast, BMPRII was widely expressed in the thyrotroph (19.9 ± 5.2%) and somatotroph cells (94.7 ± 3.6%) but not in the corticotroph cells (P < 0.001, thyrotroph cells vs somatotroph cells). Similarly, in ACTH-secreting pituitary adenoma, BMP4 and BMPRII were not expressed in the corticotroph cells. Moreover, the percentage of BMP4-positive cells was also significantly reduced in the thyrotroph cells of the surrounding normal pituitary tissue obtained from the resected ACTH-secreting pituitary adenoma (8.3 ± 7.9%) compared with that in normal canine pituitary (P < 0.001). BMP4 has been reported to be expressed in corticotroph cells in the human pituitary gland. Therefore, the results of this study reveal a difference in the cellular pattern of BMP4-positive staining in the pituitary gland between humans and dogs and further revealed the pattern of BMPRII-positive staining in the dog pituitary gland. These species-specific differences regarding BMP4 should be considered when using dogs as an animal model for Cushing's disease.

  5. The effect of bone morphogenetic protein-2 on osteosarcoma metastasis

    PubMed Central

    Gill, Jonathan; Connolly, Patrick; Roth, Michael; Chung, So Hak; Zhang, Wendong; Piperdi, Sajida; Hoang, Bang; Yang, Rui; Guzik, Hillary; Gorlick, Richard; Geller, David S.

    2017-01-01

    Purpose Bone Morphogenetic Protein-2 (BMP-2) may offer the potential to enhance allograft-host osseous union in limb-salvage surgery following osteosarcoma resection. However, there is concern regarding the effect of locally applied BMP-2 on tumor recurrence and metastasis. The purpose of this project was to evaluate the effect of exogenous BMP-2 on osteosarcoma migration and invasion across a panel of tumor cell lines in vitro and to characterize the effect of BMP-2 on pulmonary osteosarcoma metastasis within a xenograft model. Experimental design The effect of BMP-2 on in vitro tumor growth and development was assessed across multiple standard and patient-derived xenograft osteosarcoma cell lines. Tumor migration capacity, invasion, and cell proliferation were characterized. In addition, the effect on metastasis was measured using a xenograft model following tail-vein injection. The effect of exogenous BMP-2 on the development of metastases was measured following both single and multiple BMP-2 administrations. Results There was no significant difference in migration capacity, invasion, or cell proliferation between the BMP-2 treated and the untreated osteosarcoma cell lines. There was no significant difference in pulmonary metastases between either the single-dose or multi-dose BMP-2 treated animals and the untreated control animals. Conclusions In the model systems tested, the addition of BMP-2 does not increase osteosarcoma proliferation, migration, invasion, or metastasis to the lungs. PMID:28264040

  6. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation.

    PubMed

    Eixarch, Herena; Calvo-Barreiro, Laura; Montalban, Xavier; Espejo, Carmen

    2017-02-27

    Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease. MS is a demyelinating and neurodegenerative autoimmune disorder of the central nervous system (CNS). MS is a complex pathological condition in which genetic, epigenetic and environmental factors converge, although its aetiology remains elusive. Multifunctional molecules, such as BMPs, are extremely interesting in the field of MS because they are involved in the regulation of several adult tissues, including the CNS and the immune system. In this review, we discuss the extensive data available regarding the role of BMP signalling in neuronal progenitor/stem cell fate and focus on the participation and expression of BMPs in CNS demyelination. Additionally, we provide an overview of the involvement of BMPs as modulators of the immune system, as this subject has not been thoroughly explored even though it is of great interest in autoimmune disorders. Moreover, we describe the data on BMP signalling in autoimmunity and inflammatory diseases, including MS and its experimental models. Thus, we aim to provide an integrated view of the putative role of BMPs in MS pathogenesis and to open the field for the further development of alternative therapeutic strategies for MS patients.

  7. Role of bone morphogenetic protein-7 in renal fibrosis

    PubMed Central

    Li, Rui Xi; Yiu, Wai Han; Tang, Sydney C. W.

    2015-01-01

    Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application. PMID:25954203

  8. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  9. Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone.

    PubMed

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S; Krebsbach, Paul H

    2012-10-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regeneration are not well known. Here, we determined the role of Epo in BMP2-induced bone regeneration using a cranial defect model. Epo administration improved the quality of BMP2-induced bone and more closely resembled natural cranial bone with a higher bone volume (BV) fraction and lower marrow fraction when compared with BMP2 treatment alone. Epo increased red blood cells (RBCs) in peripheral blood and also increased hematopoietic and mesenchymal stem cell (MSC) populations in bone marrow. Consistent with our previous work, Epo increased osteoclastogenesis both in vitro and in vivo. Results from a metatarsal organ culture assay suggested that Epo-promoted osteoclastogenesis contributed to angiogenesis because angiogenesis was blunted when osteoclastogenesis was blocked by alendronate (ALN) or osteoprotegerin (OPG). Earlier calcification of BMP2-induced temporary chondroid tissue was observed in the Epo+BMP group compared to BMP2 alone. We conclude that Epo significantly enhanced the outcomes of BMP2-induced cranial bone regeneration in part through its actions on osteoclastogenesis and angiogenesis.

  10. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-06-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants

  11. Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis.

    PubMed

    Dendooven, Amélie; van Oostrom, Olivia; van der Giezen, Dionne M; Leeuwis, Jan Willem; Snijckers, Cristel; Joles, Jaap A; Robertson, Elizabeth J; Verhaar, Marianne C; Nguyen, Tri Q; Goldschmeding, Roel

    2011-03-01

    Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45(+) cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs.

  12. Loss of Endogenous Bone Morphogenetic Protein-6 Aggravates Renal Fibrosis

    PubMed Central

    Dendooven, Amélie; van Oostrom, Olivia; van der Giezen, Dionne M.; Willem Leeuwis, Jan; Snijckers, Cristel; Joles, Jaap A.; Robertson, Elizabeth J.; Verhaar, Marianne C.; Nguyen, Tri Q.; Goldschmeding, Roel

    2011-01-01

    Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45+ cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs. PMID:21356359

  13. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  14. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  15. Turning Bone Morphogenetic Protein 2 (BMP2) on and off in Mesenchymal Cells.

    PubMed

    Rogers, Melissa B; Shah, Tapan A; Shaikh, Nadia N

    2015-10-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell behavior. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence the allocation of cells to muscle, fat, cartilage, and bone, the mechanisms that regulate the Bmp2 gene are crucial. Key early mesodermal events that require precise Bmp2 regulation include heart specification and morphogenesis. Originally named for its osteoinductive properties, healing fractures requires BMP2. The human Bmp2 gene also has been linked to osteoporosis and osteoarthritis. In addition, all forms of pathological calcification in the vasculature and in cardiac valves involve the pro-osteogenic BMP2. The diverse tissues, mechanisms, and diseases influenced by BMP2 are too numerous to list here (see OMIM: 112261). However, in all BMP2-influenced pathologies, changes in the behavior and differentiation of pluripotent mesenchymal cells are a recurring theme. Consequently, much effort has been devoted to identifying the molecules and conditions that influence BMP2 synthesis and the complex mechanisms that control Bmp2 gene expression. This review begins with an

  16. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures

    PubMed Central

    Lupo, Giuseppe; Novorol, Claire; Smith, Joseph R.; Vallier, Ludovic; Miranda, Elena; Alexander, Morgan; Biagioni, Stefano; Pedersen, Roger A.; Harris, William A.

    2013-01-01

    Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification. PMID:23576785

  17. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  18. A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives

    PubMed Central

    2016-01-01

    Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways. PMID:27433166

  19. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development.

    PubMed

    Estevez, M; Attisano, L; Wrana, J L; Albert, P S; Massagué, J; Riddle, D L

    1993-10-14

    The bone morphogenetic protein (BMP) family is a conserved group of signalling molecules within the transforming growth factor-beta (TGF-beta) superfamily. This group, including the Drosophila decapentaplegic (dpp) protein and the mammalian BMPs, mediates cellular interactions and tissue differentiation during development. Here we show that a homologue of human BMPs controls a developmental switch in the life cycle of the free-living soil nematode Caenorhabditis elegans. Starvation and overcrowding induce C. elegans to form a developmentally arrested, third-stage dauer larva. The daf-4 gene, which acts to inhibit dauer larva formation and promote growth, encodes a receptor protein kinase similar to the daf-1, activin and TGF-beta receptor serine/threonine kinases. When expressed in monkey COS cells, the daf-4 receptor binds human BMP-2 and BMP-4. The daf-4 receptor is the first to be identified for any growth factor in the BMP family.

  20. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Wang, Xiaohong

    2015-09-01

    The initial mineralization centers during human bone formation onto osteoblasts are composed of CaCO3 . Those bioseeds are enzymatically formed via carbonic anhydrase(s) in close association with the cell surface of the osteoblasts. Subsequently, the bicarbonate/carbonate anions are exchanged non-enzymatically by inorganic phosphate [Pi ]. One source for the supply of Pi is polyphosphate [polyP] which is a physiological polymer, formed in the osteoblasts as well as in the platelets. The energy-rich acid anhydride bonds within the polyP chain are cleaved by phosphatase(s); during this reaction free-energy might be released that could be re-used, as metabolic fuel, for the maintenance of the steady-state concentrations of the substrates/products during mineralization. Finally it is outlined that polyP, as a morphogenetically active scaffold, is even suitable for 3D cell printing.

  1. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects.

    PubMed

    Priddy, Lauren B; Chaudhuri, Ovijit; Stevens, Hazel Y; Krishnan, Laxminarayanan; Uhrig, Brent A; Willett, Nick J; Guldberg, Robert E

    2014-10-01

    Autograft treatment of large bone defects and fracture non-unions is complicated by limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone regeneration and restoration of function in a critically sized rat femoral defect model. However, slow degradation of irradiated alginate hydrogels may impede integration and remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been used to promote degradation of alginate matrices. The objective of this study was to evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 26days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed in both groups through 12weeks by radiography, micro-computed tomography analyses, and biomechanical testing. Bone mineral density was significantly greater for the oxidized-irradiated alginate group at 8weeks. Histological analyses of bone defects revealed enhanced degradation of oxidized-irradiated alginate and suggested the presence of more mature bone after 12weeks of healing.

  2. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  3. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    PubMed

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  4. Bone morphogenetic protein-2-encapsulated grafted-poly-lactic acid-polycaprolactone nanoparticles promote bone repair.

    PubMed

    Xu, Xiaojun; Yang, Jun; Ding, Lifeng; Li, Jianjun

    2015-01-01

    The aim of this study is to test the efficacy of a novel tissue-engineered bone in repairing bone defects, using poly-lactic-acid-polycaprolactone (PLA-PCL) scaffolding seeded with PEG-bone morphogenetic protein-2 (BMP-2)-transfected rBMSCs (rabbit bone marrow stromal cells). The rBMSCs were transfected with PEG/BMP-2 or liposome/BMP-2, and then implanted into a PLA-PCL tissue-engineered bone. The protein level of BMP-2 was assessed by Western blot analysis and immunohistochemistry. ELISA was used to measure the amount of BMP-2 secreted in the culture media. The mRNA level of BMP-2 and osteocalcin was assayed quantitatively by real-time PCR. The middle portion of the bilateral radius in New Zealand rabbits was excised and implanted with tissue-engineered bone, and the modified areas were monitored by X-ray, hematoxylin-eosin staining, and immunohistochemistry staining of BMP-2. PEG-BMP-2 nanoparticles (NPs) and BMP-2-loaded PEG-PLA-PCL tissue-engineered bones were successfully constructed. The novel PEG-PLA-PCL NPs/DNA complex was a superior option for transfecting BMP-2 in rBMSCs compared to normal liposomes Moreover, the mRNA level of osteocalcin and alkaline phosphatase activity was also elevated upon transfection of BMP-2-encapsulated NPs. In vivo implants with BMP-2-carried tissue-engineered bone exhibited dramatic augmentation of BMP-2 and effective bone formation in the rabbit ectopic model. The PEG-PLA-PCL NPs/BMP-2 complex had an advantageous effect on bone repair, which provided an important theoretic basis for potential clinical treatments.

  5. Med19 promotes bone metastasis and invasiveness of bladder urothelial carcinoma via bone morphogenetic protein 2.

    PubMed

    Wen, Hui; Feng, Chen-chen; Ding, Guan-xiong; Meng, Dong-liang; Ding, Qiang; Fang, Zu-jun; Xia, Guo-wei; Xu, Gang; Jiang, Hao-wen

    2013-06-01

    Bladder cancer (BCa) remained a major health problem. Med19 was related to tumor growth of BCa. Bone morphogenetic proteins (BMPs) were reported to be critical in bone metastasis of cancer. We therefore investigated the relations between Med19 and BMPs in BCa and their effect on bone metastasis of BCa. Bladder cancer cell lines were cultured and interfered with Med19 shRNA and control. Expressions of BMP-1, BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-9, and BMP-15 were studied between 2 groups. Fifty-two BCa samples were included for immunohistochemical staining of Med19 and BMP-2. Expressions were scored and studied statistically. Invasiveness was studied with Transwell assay. Silencing or Med19 in BCa cells induced altered expressions of BMPs. Increased expressions of BMP-1, BMP-4, BMP-6, BMP-7, and BMP-15 and decreased expressions of BMP-2, BMP-5, and BMP-9 were noticed, but only BMP-2 reached statistical significance. Expressions of Med19 and BMP-2 were significantly higher in cases with bone metastasis and were positively correlated in cases with bone metastasis and muscle invasion. Med19 is a critical factor involved in the invasiveness and promotion of bone metastasis of BCa, possibly via BMP-2.

  6. Activity of bone morphogenetic protein-7 after treatment at various temperatures: freezing vs. pasteurization vs. allograft.

    PubMed

    Takata, Munetomo; Sugimoto, Naotoshi; Yamamoto, Norio; Shirai, Toshiharu; Hayashi, Katsuhiro; Nishida, Hideji; Tanzawa, Yoshikazu; Kimura, Hiroaki; Miwa, Shinji; Takeuchi, Akihiko; Tsuchiya, Hiroyuki

    2011-12-01

    Insufficient bone union is the occasional complication of biomechanical reconstruction after malignant bone tumor resection using temperature treated tumor bearing bone; freezing, pasteurization, and autoclaving. Since bone morphogenetic protein (BMP) plays an important role in bone formation, we assessed the amount and activity of BMP preserved after several temperature treatments, including -196 and -73°C for 20 min, 60 and 100°C for 30 min, 60°C for 10h following -80°C for 12h as an allograft model, and 4°C as the control. The material extracted from the human femoral bone was treated, and the amount of BMP-7 was analyzed using an enzyme-linked immunosorbent assay. Then, the activity of recombinant human BMP-7 after the treatment was assessed using a bioassay with NIH3T3 cells and immunoblotting analysis to measure the amount of phospho-Smad, one of the signaling substrates that reflect the intracellular reaction of BMPs. Both experiments revealed that BMP-7 was significantly better preserved in the hypothermia groups. The percentages of the amount of BMP-7 in which the control group was set at 100% were 114%, 108%, 70%, 49%, and 53% in the -196, -73, 60, 100°C, and the allograft-model group, respectively. The percentages of the amount of phospho-Smad were 89%, 87%, 24%, 4.9%, and 14% in the -196, -73, 60, 100°C, and the allograft-model group, respectively. These results suggested that freezing possibly preserves osteoinductive ability than hyperthermia treatment.

  7. Transforming growth factor-β1 suppresses bone morphogenetic protein-2-induced mesenchymal-epithelial transition in HSC-4 human oral squamous cell carcinoma cells via Smad1/5/9 pathway suppression.

    PubMed

    Chiba, Takahiro; Ishisaki, Akira; Kyakumoto, Seiko; Shibata, Toshiyuki; Yamada, Hiroyuki; Kamo, Masaharu

    2017-02-01

    Squamous cell carcinoma is the most common cancer in the oral cavity. We previously demonstrated that transforming growth factor-β1 (TGF-β1) promotes the epithelial-mesenchymal transition (EMT) of human oral squamous cell carcinoma (hOSCC) cells; however, it remains to be clarified whether the TGF-β superfamily member bone morphogenetic protein (BMP) affects this process in hOSCC cells. Here, we examined the independent and collective effects of TGF-β1 and BMP-2 on EMT and mesenchymal‑epithelial transition (MET) in a panel of four hOSCC cell lines. Notably, we found that HSC-4 cells were the most responsive to BMP-2 stimulation, which resulted in the upregulation of Smad1/5/9 target genes such as the MET inducers ID1 and cytokeratin 9 (CK9). Furthermore, BMP-2 downregulated the mesenchymal marker N-cadherin and the EMT inducer Snail, but upregulated epithelial CK9 expression, indicating that BMP-2 prefers to induce MET rather than EMT. Moreover, TGF-β1 dampened BMP-2-induced epithelial gene expression by inhibiting Smad1/5/9 expression and phosphorylation. Functional analysis revealed that TGF-β1 and BMP-2 significantly enhanced HSC-4 cell migration and proliferation, respectively. Collectively, these data suggest that TGF-β positively regulates hOSCC invasion in the primary tumor, whereas BMP-2 facilitates cancer cell colonization at secondary metastatic sites. Thus, the invasive and metastatic characteristics of hOSCC appear to be reciprocally regulated by BMP and TGF-β.

  8. Bone Morphogenetic Protein-9 Induces PDLSCs Osteogenic Differentiation through the ERK and p38 Signal Pathways

    PubMed Central

    Ye, Guo; Li, Conghua; Xiang, Xuerong; Chen, Chu; Zhang, Ruyi; Yang, Xia; Yu, Xuesong; Wang, Jinhua; Wang, Lan; Shi, Qiong; Weng, Yaguang

    2014-01-01

    Periodontal ligament stem cells (PDLSCs) with bone morphogenic ability are used to treat diseases such as periodontitis. Their treatment potential is increased when used in combination with proteins that induce osteogenic differentiation. For example, bone morphogenetic protein-9 (BMP9) has been found to have potent osteogenic activity. In the present study, PDLSCs were isolated from human periodontal membrane and infected with recombinant adenoviruses expressing BMP9 (Ad-BMP9). Levels of osteogenic markers such as runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) as well as mineralization ability were measured. The results showed that BMP9 promoted bone formation of PDLSCs. In other experiments, SB203580 and PD98059, which are inhibitors of p38 and ERK1/2, respectively, were used to determine if these kinases are involved in the osteogenic differentiation process. The resulting protein expression profiles and osteogenic markers of PDLSCs revealed that the mitogen-activated protein kinase (MAPK) signaling pathway might play an important role in the process of BMP9-induced osteogenic differentiation of PDLSCs. PMID:25136261

  9. Stimulation of bone healing by sustained bone morphogenetic protein 2 (BMP-2) delivery.

    PubMed

    Faßbender, Mirja; Minkwitz, Susann; Strobel, Catrin; Schmidmaier, Gerhard; Wildemann, Britt

    2014-05-14

    The aim of the study was to investigate the effect of a sustained release of bone morphogenetic protein2 (BMP-2) incorporated in a polymeric implant coating on bone healing. In vitro analysis revealed a sustained, but incomplete BMP-2 release until Day 42. For the in vivo study, the rat tibia osteotomy was stabilized either with control or BMP-2 coated wires, and the healing progress was followed by micro computed tomography (µCT), biomechanical testing and histology at Days 10, 28, 42 and 84. MicroCT showed an accelerated formation of mineralized callus, as well as remodeling and an increase of mineralized/total callus volume (p=0.021) at Day 42 in the BMP-2 group compared to the control. Histology revealed an increased callus mineralization at Days 42 and 84 (p=0.006) with reduced cartilage at Day 84 (p=0.004) in the BMP-2 group. Biomechanical stiffness was significantly higher in the BMP-2 group (p=0.045) at Day 42. In summary, bone healing was enhanced after sustained BMP-2 application compared to the control. Using the same drug delivery system, but a burst release of BMP-2, a previous published study showed a similar positive effect on bone healing. Distinct differences in the healing outcome might be explained due to the different BMP release kinetics and dosages. However, further studies are necessary to adapt the optimal release profiles to physiological mechanisms.

  10. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials.

    PubMed

    Açil, Yahya; Springer, Ingo N G; Broek, Vanessa; Terheyden, Hendrik; Jepsen, Søren

    2002-01-01

    The objective of the present study was to investigate the effects of an in vitro stimulation of human osteoblasts by recombinant human bone morphogenetic protein-7 (rhBMP-7) on the collagen types and the quantity of the collagen cross-links synthesized in a three-dimensional culture on various biomaterials for bone replacement. Trabecular bone chips were harvested from human iliac crests, and cell cultures were established at standard conditions. One hundred and fifty nanograms per milliliter of rhBMP-7 was added. For the second passage a cell scraper was used to bring the cells into suspension, and 100 microl osteoblasts (at a density of 3.3 x 10(5)) were transferred onto nine blocks of either Bio-Oss, Tutoplast, or PepGen p-15. Blocks incubated with cells that were not treated with rhBMP-7 served as controls. Cell colonization of the biomaterials was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after a period of 2, 4, and 6 weeks. Throughout the experiment medium, supernatants were collected and collagen was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Finally, the collagen cross-link residues hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) were quantified by HPLC. Within 4 weeks the cells became confluent on all of the studied biomaterials. All samples synthesized bone specific LP and collagen type I. However, in rhBMP-7-stimulated samples, the amount of HP and LP found was increased by 45% compared to non-stimulated samples. Cell proliferation and collagen synthesis was similar on the different biomaterials, but was consistently reduced in specimen not stimulated with rhBMP-7. In vitro stimulation of osteoblasts on Bio-Oss, Tutoplast, or PepGen p-15 with rhBMP-7 and subsequent transplantation of the constructs might lead to an enhanced osseointegration of the biomaterials in vivo.

  11. Effects of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) in grade III open tibia fractures treated with unreamed nails-A clinical and health-economic analysis.

    PubMed

    Alt, Volker; Borgman, Benny; Eicher, Alexander; Heiss, Christian; Kanakaris, Nikolaos K; Giannoudis, Peter V; Song, Fujian

    2015-11-01

    Recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) is licensed in Europe for open tibia fractures treated with unreamed nails. However, there is limited data available on the specific use of rhBMP-2 in combination with unreamed nails for open tibia fractures. The intention of the current study was to evaluate the medical and health-economic effects of rhBMP-2 in Gustilo-Anderson grade III open tibia fractures treated with unreamed nails based on individual patient data from two previously published studies. Linear regression analysis was performed on raw data of 90 patients that were either treated by standard of care with soft tissue management and unreamed nailing (SOC group) (n=50) or with rhBMP-2 in addition to soft tissue management and unreamed nailing (rhBMP-2 group) (n=40). For all types of revision, a significant lower percentage of patients (27.5%) of the rhBMP-2 group had to be revised compared to 48% of the patients of the SOC group (p=0.04). When only invasive secondary interventions such as bone grafting and nail exchange were considered, there was also a statistically significant reduction in the rhBMP-2 group with a revision rate of 10.0% (4 of 40 patients) compared to the SOC group with a revision rate of 28.0% (14 of 50 patients) (p=0.01). Mean fracture healing time of 228 days in the rhBMP-2 compared to 266 days in the SOC group was not statistically significant (p=0.24). Health-economic analysis based on a societal perspective with calculation of overall treatment costs after initial surgery and including productivity losses revealed savings of €6,239 per patient for Germany and €4,752 for the UK in favour of rhBMP-2 which was mainly driven by reduction of productivity losses. In conclusion, rhBMP-2 reduces secondary interventions in patients with grade III open tibia fractures treated with an unreamed nail and its use leads to financial savings for Germany and the UK from a societal perspective.

  12. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  13. Bone morphogenetic proteins, cementogenesis, myoblastic stem cells and the induction of periodontal tissue regeneration.

    PubMed

    Ripamonti, Ugo; Petit, Jean-Claude

    2009-01-01

    'Bone: Formation by autoinduction', initiates by invocation of soluble molecular signals which, when combined to insoluble signals or substrata trigger the ripple-like cascade of bone differentiation by induction. The osteogenic proteins of the transforming growth factor-beta (TGF-beta) superfamily, the bone morphogenetic/osteogenic proteins (BMPs/OPs), and uniquely in the non-human primate Papio ursinus also the three mammalian TGF-beta isoforms, induce endochondral bone formation as recapitulation of embryonic development. The pleiotropic activities of the BMPs/OPs are vast and include the induction of periodontal tissue regeneration. Implantation of naturally derived highly purified osteogenic fractions after sequential adsorption/affinity and gel filtration chromatography in mandibular Class II furcation defects of P. ursinus induces cementogenesis as highly cellular collagenic cementoid attached to the exposed dentine with foci of nascent mineralization with inserted de novo generated Sharpey's fibres. Recombinant human osteogenic protein-1 (hOP-1) when implanted in Class II furcation defects of P. ursinus with surgically exposed dentine matrix preferentially initiates the induction of cementogenesis; on the other hand, hBMP-2 preferentially induces alveolar bone regeneration with mineralized bone covered by prominent osteoid seams. Long-term studies with gamma-irradiated 0.5 and 2.5mg hOP-1 per gram of xenogeneic bovine collagenous matrix induce the restitutio ad integrum of the periodontal tissues in furcation defects exposed by chronic periodontitis in P. ursinus. A challenging question for tissue engineering and regenerative medicine is whether the presence of molecularly different osteogenic proteins of the TGF-beta superfamily has a therapeutic significance. Mechanistically, the specificity of hOP-1 primarily initiating cementogenesis in periodontal defects is regulated by both the dentine extracellular matrix upon which responding cells attach and

  14. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling.

    PubMed

    Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun

    2015-11-05

    Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells.

  15. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  16. An injectable composite material containing bone morphogenetic protein-2 shortens the period of distraction osteogenesis in vivo.

    PubMed

    Eguchi, Yoshitaka; Wakitani, Shigeyuki; Naka, Yoshifumi; Nakamura, Hiroaki; Takaoka, Kunio

    2011-03-01

    To investigate new methods that can decrease the duration of bone transport (BT) distraction osteogenesis, we injected composite materials containing recombinant human bone morphogenetic protein-2 (BMP-2) and induced the generation of a callus bridge by rapid segmental transport (4 mm/day) in a rabbit bone defect model. The composite materials consisted of BMP-2 (0, 30, or 100 µg), β-tricalcium phosphate powder (βTCP, 100 mg/animal; particle size, <100 µm), and polyethylene glycol (PEG; 40 mg/animal). A paste of equivalent composition was percutaneously injected at the lengthening and the docking sites after surgery and after BT, respectively. The radiographic, mechanical, and histological examinations 12 weeks post-operative revealed that the generation of bridging callus in the presence and in the absence of BMP-2 was significantly different. The callus mass in the bone defect region was adequately and consistently developed in the presence of 100 µg of BMP (administered for 6 weeks), and the bones were consolidated in 12 weeks. Such an adequate callus formation was not observed in the control animals without BMP-2 treatment. The result of this experimental study suggests the potential application of BMP-2 in accelerating callus formation and in enabling rapid bone transporting, thereby shortening the treatment period for the repair of diaphyseal bone defects by distraction osteogenesis.

  17. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses

    PubMed Central

    Ali, Imran H A; Brazil, Derek P

    2014-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients. PMID:24758361

  18. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition

    PubMed Central

    Meyers, Emily A.; Gobeske, Kevin T.; Bond, Allison M.; Jarrett, Jennifer C.; Peng, Chian-Yu; Kessler, John A.

    2015-01-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. PMID:26827654

  19. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation.

    PubMed

    Steinbicker, Andrea U; Sachidanandan, Chetana; Vonner, Ashley J; Yusuf, Rushdia Z; Deng, Donna Y; Lai, Carol S; Rauwerdink, Kristen M; Winn, Julia C; Saez, Borja; Cook, Colleen M; Szekely, Brian A; Roy, Cindy N; Seehra, Jasbir S; Cuny, Gregory D; Scadden, David T; Peterson, Randall T; Bloch, Kenneth D; Yu, Paul B

    2011-05-05

    Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6-induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation.

  20. Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein

    PubMed Central

    Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian

    2015-01-01

    Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661

  1. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    PubMed

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10(5) U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  2. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development

    PubMed Central

    Holtzhausen, Alisha; Golzio, Christelle; How, Tam; Lee, Yong-Hun; Schiemann, William P.; Katsanis, Nicholas; Blobe, Gerard C.

    2014-01-01

    The bone morphogenetic protein (BMP) signaling pathways have important roles in embryonic development and cellular homeostasis, with aberrant BMP signaling resulting in a broad spectrum of human disease. We report that BMPs unexpectedly signal through the canonical transforming growth factor β (TGF-β)-responsive Smad2 and Smad3. BMP-induced Smad2/3 signaling occurs preferentially in embryonic cells and transformed cells. BMPs signal to Smad2/3 by stimulating complex formation between the BMP-binding TGF-β superfamily receptors, activin receptor-like kinase (ALK)3/6, and the Smad2/3 phosphorylating receptors ALK5/7. BMP signaling through Smad2 mediates, in part, dorsoventral axis patterning in zebrafish embryos, whereas BMP signaling through Smad3 facilitates cancer cell invasion. Consistent with increased BMP-mediated Smad2/3 signaling during cancer progression, Smad1/5 and Smad 2/3 signaling converge in human cancer specimens. Thus, the signaling mechanisms used by BMPs and TGF-β superfamily receptors are broader than previously appreciated.—Holtzhausen, A., Golzio, C., How, T., Lee, Y.-H., Schiemann, W. P., Katsanis, N., Blobe, G. C. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. PMID:24308972

  3. Expression of CD31, Met/hepatocyte growth factor receptor and bone morphogenetic protein in bone metastasis of osteosarcoma.

    PubMed

    Arihiro, K; Inai, K

    2001-02-01

    The mechanism of metastasis of osteosarcoma cells to other bones has not yet fully been clarified. The purpose of the present study was to examine whether various factors involve the formation of osteosarcoma metastatic foci in other bones. Immunohistochemically, CD31 expression in osteosarcoma with no bone metastasis and osteosarcoma with bone metastasis was noted in 10 and 75% of cases, respectively. Met/hepatocyte growth factor (HGF) receptor expression in osteosarcoma with no bone metastasis and osteosarcoma with bone metastasis was noted in 90 and 25% of cases, respectively. Bone morphogenetic protein (BMP) expression in osteosarcoma with no bone metastasis and osteosarcoma with bone metastasis was noted in 20 and 75% of cases, respectively. Metastasis of osteosarcoma cells to other bones was significantly correlated with expression of BMP and CD31 and with no expression of Met/HGF receptor protein in osteosarcoma cells. In contrast, expression of insulin-like growth factor receptor in osteosarcoma cells did not correlate significantly with bone metastasis. These results suggest that formation of metastatic foci of osteosarcoma cells in other bones is regulated by CD31, which is associated with migration between endothelial cells, by BMP, which can induce and activate various mesenchymal cells affecting bone formation, and by escape of effect by HGF, which promotes differentiation of osteosarcoma cells.

  4. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects.

    PubMed Central

    Takagi, K; Urist, M R

    1982-01-01

    Trephine defects in the adult rat skull 0.8 cm in diameter, which do not spontaneously heal, were filled with a bovine bone morphogenetic protein (BMP) fraction. The defects healed not only by bony ingrowth from the trephine rim, but also by proliferation of pervascular mesenchymal-type cells (pericytes) of the dura mater. Under the influence of BMP, dural pericytes differentiated into chondroid and woven bone. Between three and four weeks postimplantation, sinusoids formed and the woven bone remodelled into lamellar bone. Concurrently, blood-borne bone marrow cells colonized the bone deposits, and the diploe were restored. Demonstrating that it is soluble in interstitial fluid, and diffusible across a nucleopore membrane (which isolated the bony margins of the skull), BMP induced new bone formation in the underlying dura and complete repair of the defect. The response of the dura to the BMP fraction produced more new bone than the response to allogeneic bone matrix. The BMP-induced repair was dose dependent; the quantity of new bone was proportional to the dose of the implanted BMP. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. Fig. 9. PMID:7092346

  5. Μolecular impact of bone morphogenetic protein 7, on lung cancer cells and its clinical significance.

    PubMed

    Liu, Yinan; Chen, Jinfeng; Yang, Yue; Zhang, Lijian; Jiang, Wen G

    2012-06-01

    The aim of this study was to investigate the expression of bone morphogenetic protein 7 (BMP7), in human pulmonary cancer tissues/cells and to evaluate the cellular impact of bone morphogenetic proteins on pulmonary cancer cells. BMP7 expression was determined in human lung cancer cell lines. The invasiveness and growth of cells transfected with BMP7, in vitro, were evaluated using the in vitro invasion assay and in vitro tumour models. Cellular migration was analysed using wounding assays. BMP7-positive tumours correlated with the absence of bone metastasis (P=0.040). In this analysis, we identified that 4 of 4 small cell lung cancer (SCLC) tissue specimens had no BMP7 expression, which illustrated that BMP7 may have no role in SCLC. BMP7 expression was not correlated with the overall survival time in lung cancer patients. Downregulation of BMP7 expression significantly inhibited the invasiveness of SPC-A1 cells (P<0.001) and forced-expression of BMP7 dramatically increased the motility of A549 cells. Overexpression of BMP7 in A549 cells and its knockdown in SPC-A1 cells did not significantly alter proliferation compared with the control cells (P>0.5 respectively). In conclusion, we have demonstrated that BMP7 has an important role in controlling lung cancer cell motility and invasiveness, without affecting the growth process, cell proliferation and cell apoptosis. A higher BMP7 expression may be an indicator for bone metastasis. The therapeutic role of BMP7 warrants further investigation.

  6. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    PubMed Central

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  7. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    PubMed Central

    Cole, Alistair E.; Murray, Simon S.; Xiao, Junhua

    2016-01-01

    Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research. PMID:27293450

  8. Promotive effects of bone morphogenetic protein 2 on angiogenesis in hepatocarcinoma via multiple signal pathways

    PubMed Central

    Zuo, Wei-han; Zeng, Peng; Chen, Xi; Lu, Yan-jun; Li, An; Wu, Jian-bin

    2016-01-01

    The effects of Bone morphogenetic protein 2 (BMP-2) on the angiogenesis of hepatocellular carcinoma have not yet been observed and its molecular mechanisms is not clear. We first constructed the recombinant lentivirus vectors expressing small hairpin RNA against BMP-2 gene (LV-SH-BMP2) and the recombinant lentivirus vectors over-expressing BMP-2 (overexpression-LV-BMP2), and then the two recombinant lentivirus vectors were respectively transfected into Hep G2 cells. The Hep G2 cells transfected with LV-SH-BMP2 or overexpression-LV-BMP2 were respectively co-cultured with human umbilical vein endothelial cells (HUVECs) to observe the effects of BMP-2 on HUVECs. The effect of BMP-2 on tumor microvessel density (MVD) was examined. The abilities of proliferation, migration and angiogenesis were significantly inhibited in the HUVECs co-cultured with BMP-2 knockdown Hep G2 (all P < 0.05), but significantly enhanced in the HUVECs co-cultured with BMP-2 overexpression Hep G2 (all P < 0.05). MVD was significantly increased in overexpression-LV-BMP2-transfected Hep G2 tumor, but decreased in LV-SH-BMP2-transfected Hep G2 tumors. The protein expressions of VEGF, p-P38, p-ERK, p-AKT, p-m-TOR were significantly increased after BMP-2 over-expression, or significantly decreased after BMP-2 knockdown (all P < 0.05). These results reveal that BMP-2 can enhance HUVEC proliferation, migration and angiogenesis through P38, ERK and Akt/m-TOR pathway. PMID:27886213

  9. Coating with a Modular Bone Morphogenetic Peptide Promotes Healing of a Bone-Implant Gap in an Ovine Model

    PubMed Central

    Lu, Yan; Lee, Jae Sung; Nemke, Brett; Graf, Ben K.; Royalty, Kevin; Illgen, Richard; Vanderby, Ray; Markel, Mark D.; Murphy, William L.

    2012-01-01

    Despite the potential for growth factor delivery strategies to promote orthopedic implant healing, there is a need for growth factor delivery methods that are controllable and amenable to clinical translation. We have developed a modular bone growth factor, herein termed “modular bone morphogenetic peptide (mBMP)”, which was designed to efficiently bind to the surface of orthopedic implants and also stimulate new bone formation. The purpose of this study was to coat a hydroxyapatite-titanium implant with mBMP and evaluate bone healing across a bone-implant gap in the sheep femoral condyle. The mBMP molecules efficiently bound to a hydroxyapatite-titanium implant and 64% of the initially bound mBMP molecules were released in a sustained manner over 28 days. The results demonstrated that the mBMP-coated implant group had significantly more mineralized bone filling in the implant-bone gap than the control group in C-arm computed tomography (DynaCT) scanning (25% more), histological (35% more) and microradiographic images (50% more). Push-out stiffness of the mBMP group was nearly 40% greater than that of control group whereas peak force did not show a significant difference. The results of this study demonstrated that mBMP coated on a hydroxyapatite-titanium implant stimulates new bone formation and may be useful to improve implant fixation in total joint arthroplasty applications. PMID:23185610

  10. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo.

    PubMed

    Qiao, Chunyan; Zhang, Kai; Jin, Han; Miao, Leiying; Shi, Ce; Liu, Xia; Yuan, Anliang; Liu, Jinzhong; Li, Daowei; Zheng, Changyu; Zhang, Guirong; Li, Xiangwei; Yang, Bai; Sun, Hongchen

    2013-01-01

    Repair of large bone defects is a major challenge, requiring sustained stimulation to continually promote bone formation locally. Bone morphogenetic protein 2 (BMP-2) plays an important role in bone development. In an attempt to overcome this difficulty of bone repair, we created a delivery system to slowly release human BMP-2 cDNA plasmid locally, efficiently transfecting local target cells and secreting functional human BMP-2 protein. For transfection, we used polyethylenimine (PEI) to create pBMP-2/PEI nanoparticles, and to ensure slow release we used poly(lactic-co-glycolic acid) (PLGA) to create microsphere encapsulated pBMP-2/PEI nanoparticles, PLGA@pBMP-2/PEI. We demonstrated that pBMP-2/PEI nanoparticles could slowly release from the PLGA@pBMP-2/PEI microspheres for a long period of time. The 3-15 μm diameter of the PLGA@pBMP-2/PEI further supported this slow release ability of the PLGA@pBMP-2/PEI. In vitro transfection assays demonstrated that pBMP-2/PEI released from PLGA@pBMP-2/PEI could efficiently transfect MC3T3-E1 cells, causing MC3T3-E1 cells to secrete human BMP-2 protein, increase calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7 and I type collagen (COLL I), and finally induce MC3T3-E1 cell differentiation. Importantly, in vivo data from micro-computed tomography (micro-CT) and histological staining demonstrated that the human BMP-2 released from PLGA@pBMP-2/PEI had a long-term effect locally and efficiently promoted bone formation in the bone defect area compared to control animals. All our data suggest that our PLGA-nanoparticle delivery system efficiently and functionally delivers the human BMP-2 cDNA and has potential clinical application in the future after further modification.

  11. Delivery Systems for Bone Morphogenetic Protein (BMP) for Repair of Battle Incurred Bone Injuries.

    DTIC Science & Technology

    1987-11-01

    infections, congenital malformations that fail to heal are eligible for BMP treatment. I (my child/my ward) will be one of 50 patients to be treated with...Fusions in Dogs 6. Craniotomy Defects in Sheep t0 7. Craniotomy Defects in Monkeys 10 8. BMP Delivery System of Bone Matrix Non Collagenous 11 Proteins...effects. The most important and indispensptle substitutes for experiments in human beings are adult mongrel dogs, monkeys, and sheep . Experimental .S

  12. Comparing the Effect of Nonactivated Platelet-Rich Plasma, Activated Platelet-Rich Plasma, and Bone Morphogenetic Protein-2 on Calvarial Bone Regeneration.

    PubMed

    Jeon, Yeo Reum; Jung, Bok Ki; Roh, Tai Suk; Kang, Eun Hye; Lee, Won Jai; Rah, Dong Kyun; Lew, Dae Hyun; Yun, In Sik

    2016-03-01

    Although platelet-rich plasma (PRP) is widely used to enhance bone graft survival, the effect of PRP itself on bone regeneration is unclear. Because activated PRP releases many growth factors in a bolus, there are controversies regarding the effect of activation of the PRP on bone regeneration. Thus, we studied the effect of activated versus nonactivated PRP on bone regeneration and compared the effect with that of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a critical-sized cranial defect model. Forty New Zealand white rabbits were randomly divided into 4 groups. Defect sizing 15 × 15 mm(2) was created on the cranium of each rabbit, and then a collagen sponge soaked with normal saline, rhBMP-2, nonactivated PRP, or PRP activated with CaCl2 solution was immediately placed on the defect. After 16 weeks, using three-dimensional computed tomography and digital photography, the volume and new bone surface area were measured. The newly created bone was histologically analyzed. The experimental groups showed a significantly increased volume and surface area of new bone compared with the control group (P < 0.05), but no significant differences were found among the experimental groups. Histologic examination in the experimental groups showed newly created bone that had emerged in the center as well as the margin of the defect. Overall, these results indicate that PRP enhanced bony regeneration regardless of activation with an effect that was comparable to that of rhBMP-2. Thus, PRP has therapeutic effects on bone regeneration and may replace rhBMP-2, which is costly.

  13. The Controversy Surrounding Bone Morphogenetic Proteins in the Spine: A Review of Current Research

    PubMed Central

    Hustedt, Joshua W.; Blizzard, Daniel J.

    2014-01-01

    Bone morphogenetic proteins have been in use in spinal surgery since 2002. These proteins are members of the TGF-beta superfamily and guide mesenchymal stem cells to differentiate into osteoblasts to form bone in targeted tissues. Since the first commercial BMP became available in 2002, a host of research has supported BMPs and they have been rapidly incorporated in spinal surgeries in the United States. However, recent controversy has arisen surrounding the ethical conduct of the research supporting the use of BMPs. Yale University Open Data Access (YODA) recently teamed up with Medtronic to offer a meta-analysis of the effectiveness of BMPs in spinal surgery. This review focuses on the history of BMPs and examines the YODA research to guide spine surgeons in their use of BMP in spinal surgery. PMID:25506287

  14. Changes of the intensity of morphogenetic process in the bone skeleton under lowering of gravitational loading

    NASA Astrophysics Data System (ADS)

    Vasilievna Rodionova, Natalia; Zolotova-Haidamaka, Nadezhda

    confirmed by our previous electron microscopic investigations. The study has been performed of the dynamics and intensity of the nuclei labeling of the osteoclasts both in the control and experiment. Our findings obtained show that a continuous support unloading influences the morphogenetic processes in long bones, lowering a bone mass increase and necessitating readaptation during subsequent renewal of support functions.

  15. Autoradiographic studies of the intensity of morphogenetic processes in the bone skeleton under modeling microgravity

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.; Zolotova-Haidamaka, N. V.; Nithevich, T. P.

    electron microscopic investigations. The study has been performed of the dynamics and intensity of the nuclei labeling of the osteoclasts both in the control and experiment. The data obtained show that a continuous support unloading influences the morphogenetic processes in long bones, lowering a bone mass increase and necessitating readaptation during subsequent renewal of support functions.

  16. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  17. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  18. Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension.

    PubMed

    Yamanaka, Ryutaro; Otsuka, Fumio; Nakamura, Kazufumi; Yamashita, Misuzu; Otani, Hiroyuki; Takeda, Masaya; Matsumoto, Yoshinori; Kusano, Kengo F; Ito, Hiroshi; Makino, Hirofumi

    2010-05-01

    Recent genetic studies have uncovered a link between familial and idiopathic pulmonary arterial hypertension (PAH) and germline mutations in the bone morphogenetic protein type-II receptor (BMPRII). The pathology of PAH is characterized by remodeling of the pulmonary arteries due to pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Although increased endothelial injury and impaired suppression of PASMC proliferation are both critical for the cellular pathogenesis of PAH, a detailed molecular mechanism underlying PAH has yet to be elucidated. In the present study, we investigated the roles of the BMP system and other vasoactive factors associated with PAH (including endothelin (ET), angiotensin II (Ang II) and aldosterone) in the mitotic actions of PASMCs isolated from idiopathic and secondary PAH lungs. ET1 and aldosterone stimulated PASMC proliferation of idiopathic PAH more effectively than secondary PAH, whereas Ang II and ET3 failed to activate mitosis in either of the PASMC cell type. The effects of ET1 and aldosterone were blocked by bosentan, an ET type-A/B receptor (ETA/BR) antagonist, and eplerenone, a selective mineralocorticoid receptor (MR) blocker, respectively. Among the BMP ligands examined, BMP-2 and BMP-7, but not BMP-4 or BMP-6, significantly increased cell mitosis in both PASMC cell types. Notably, ET1- and aldosterone-induced mitosis and mitogen-activated protein kinase phosphorylation were significantly increased in the presence of BMP-2 and BMP-7 in PASMCs isolated from idiopathic PAH, although additive effects were not observed in PASMCs isolated from secondary PAH. Inhibition of extracellular signal-regulated kinase 1 (ERK1)/ERK2 signaling suppressed basal-, ET1- and aldosterone-induced PASMC mitosis more potently than that of stress-activated protein kinase/c-Jun NH2-terminal kinase inhibition. Given the fact that BMP-2 and BMP-7 upregulated ETA/BR and MR expression and that BMP-2 decreased 11betaHSD2 (11beta

  19. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  20. Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides.

    PubMed

    Hamilton, Paul T; Jansen, Michelle S; Ganesan, Sathya; Benson, R Edward; Hyde-Deruyscher, Robin; Beyer, Wayne F; Gile, Joseph C; Nair, Shrikumar A; Hodges, Jonathan A; Grøn, Hanne

    2013-01-01

    To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant. Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.

  1. Expression and regulation of the decoy bone morphogenetic protein receptor BAMBI in the developing avian face.

    PubMed

    Higashihori, Norihisa; Song, Yiping; Richman, Joy M

    2008-05-01

    Here, we examine the expression and regulation of the gene BAMBI, a kinase-deficient decoy receptor capable of interacting with type I bone morphogenetic protein (BMP) receptors in avian embryos. Initially, expression was limited to the endoderm during neurula and pharyngula stages. From embryonic day 3.5 (stage 20) and onward, BAMBI expression almost perfectly overlapped with known expression patterns for BMP4, particularly in the face and limbs. We performed bead implant experiments in the face to see which signals could be repressing or promoting expression of BAMBI. Our data point to retinoids and BMPs as being major positive regulators of BAMBI expression; however, fibroblast growth factor 2 acts to repress BAMBI. Furthermore, retinoic acid is likely to act directly on BAMBI as induction occurs in the presence of cycloheximide. The data suggested that BAMBI could be used to regulate Bmp signaling during tissue interactions that are an integral part of facial morphogenesis.

  2. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  3. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    PubMed Central

    Raja, Erna; Edlund, Karolina; Kahata, Kaoru; Zieba, Agata; Morén, Anita; Watanabe, Yukihide; Voytyuk, Iryna; Botling, Johan; Söderberg, Ola; Micke, Patrick; Pyrowolakis, George; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease. PMID:26701726

  4. Enhanced in vivo osteogenesis by nanocarrier-fused bone morphogenetic protein-4

    PubMed Central

    Shiozaki, Yasuyuki; Kitajima, Takashi; Mazaki, Tetsuro; Yoshida, Aki; Tanaka, Masato; Umezawa, Akihiro; Nakamura, Mariko; Yoshida, Yasuhiro; Ito, Yoshihiro; Ozaki, Toshifumi; Matsukawa, Akihiro

    2013-01-01

    Purpose Bone defects and nonunions are major clinical skeletal problems. Growth factors are commonly used to promote bone regeneration; however, the clinical impact is limited because the factors do not last long at a given site. The introduction of tissue engineering aimed to deter the diffusion of these factors is a promising therapeutic strategy. The purpose of the present study was to evaluate the in vivo osteogenic capability of an engineered bone morphogenetic protein-4 (BMP4) fusion protein. Methods BMP4 was fused with a nanosized carrier, collagen-binding domain (CBD), derived from fibronectin. The stability of the CBD-BMP4 fusion protein was examined in vitro and in vivo. Osteogenic effects of CBD-BMP4 were evaluated by computer tomography after intramedullary injection without a collagen–sponge scaffold. Recombinant BMP-4, CBD, or vehicle were used as controls. Expressions of bone-related genes and growth factors were compared among the groups. Osteogenesis induced by CBD-BMP4, BMP4, and CBD was also assessed in a bone-defect model. Results In vitro, CBD-BMP4 was retained in a collagen gel for at least 7 days while BMP4 alone was released within 3 hours. In vivo, CBD-BMP4 remained at the given site for at least 2 weeks, both with or without a collagen–sponge scaffold, while BMP4 disappeared from the site within 3 days after injection. CBD-BMP4 induced better bone formation than BMP4 did alone, CBD alone, and vehicle after the intramedullary injection into the mouse femur. Bone-related genes and growth factors were expressed at higher levels in CBD-BMP4-treated mice than in all other groups, including BMP4-treated mice. Finally, CBD-BMP4 potentiated more bone formation than did controls, including BMP4 alone, when applied to cranial bone defects without a collagen scaffold. Conclusion Altogether, nanocarrier-CBD enhanced the retention of BMP4 in the bone, thereby promoting augmented osteogenic responses in the absence of a scaffold. These results

  5. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    NASA Astrophysics Data System (ADS)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  6. Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro.

    PubMed

    Boden, S D; McCuaig, K; Hair, G; Racine, M; Titus, L; Wozney, J M; Nanes, M S

    1996-08-01

    Bone morphogenetic proteins (BMPs) induce cartilage and bone differentiation in vivo and promote osteoblast differentiation from calvarial and marrow stromal cell preparations. Functional differences between BMP-2, -4, and -6 are not well understood. Recent investigations find that these three closely related osteoinductive proteins may exert different effects in primary rat calvarial cell cultures, suggesting the possibility of unique functions in vivo. In this study, we use a fetal rat secondary calvarial cell culture system to examine the differential effects of BMP-2, -4, and -6 on early osteoblast differentiation. These cells do not spontaneously differentiate into osteoblasts, as do cells in primary calvarial cultures, but rather require exposure to a differentiation initiator such as glucocorticoid or BMP. We determined that BMP-6 is a 2- to 2.5-fold more potent inducer of osteoblast differentiation than BMP-2 or -4. BMP-6 induced the formation of more and larger bone nodules as well as increased osteocalcin secretion. The effects of all three of these BMPs were potentiated up to 10-fold by cotreatment or pretreatment with the glucocorticoid triamcinolone (Trm). The Trm effects were synergistic with those of BMP-2 or -4, suggesting that this glucocorticoid may increase the cell responsiveness to these BMPs. Finally, BMP-6 did not require either cotreatment or pretreatment with Trm to achieve greater amounts of osteoblast differentiation than seen with BMP-2 or BMP-4 treatment, suggesting that BMP-6 may act at an earlier stage of cell differentiation.

  7. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

    PubMed Central

    Teng, Fu-Yuan; Chen, Wen-Cheng; Wang, Yin-Lai; Hung, Chun-Cheng; Tseng, Chun-Chieh

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use. PMID:26977141

  8. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  9. Immature muscular tissue differentiation into bone-like tissue by bone morphogenetic proteins in vitro, with ossification potential in vivo.

    PubMed

    Hayashi, Tatsuhide; Kobayashi, Syuichiro; Asakura, Masaki; Kawase, Mayu; Ueno, Atsuko; Uematsu, Yasuaki; Kawai, Tatsushi

    2014-09-01

    The objective of this study was to induce bone formation from immature muscular tissue (IMT) in vitro, using bone morphogenetic proteins (BMPs) as a cytokine source and an expanded polytetrafluoroethylene (ePTFE) scaffold. In addition, cultured IMTs were implanted subcutaneously into Sprague-Dawley (SD) rats to determine their in vivo ossification potential. BMPs, extracted from bovine cortical bones, were applied to embryonic SD rat IMT cultures, before 2 weeks culture on ePTFE scaffolds. Osteoblast-like cells and osteoid tissues were partially identified by hematoxylin-eosin staining 2 weeks after culture. Collagen type I (Col-I), osteopontin (OP), and osteocalcin (OC) were detected in the osteoid tissues by immunohistochemical staining. OC gene expression remained low, but OP and Col-I were upregulated during the culture period. In vivo implanted IMTs showed slight radiopacity 1 week after implantation and strong radiopacity 2 and 3 weeks after implantation. One week after implantation, migration of numerous capillaries was observed and ossification was detected after 2 weeks by histological observation. These results suggest that IMTs are able to differentiate into bone-like tissue in vitro, with an ossification potential after implantation in vivo.

  10. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  11. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  12. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold.

    PubMed

    Hao, Wei; Dong, Jinlei; Jiang, Ming; Wu, Junwei; Cui, Fuzhai; Zhou, Dongsheng

    2010-12-01

    In this study, rabbit adipose-derived stem cells (rASCs) were isolated, cultured in vitro, and transfected with recombinant adenovirus vector containing human bone morphogenetic protein 2 (Ad-hBMP2). These cells were combined with a nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid) scaffold (nHA/RHLC/PLA) to fabricate a new biocomposite (hBMP2/rASCs-nHA/RHLC/PLA, group 1) and cultured in osteogenic medium. Non-transfected rASCs mixed with nHA/RHLC/PLA (rASCs-nHA/RHLC/PLA, group 2) and nHA/RHLC/PLA scaffold alone (group 3) served as controls. Scanning electron microscope (SEM) demonstrated integration of rASCs with the nHA/RHLC/PLA scaffold. Quantitative real-time RT-PCR analyses of collagen I, osteonectin, and osteopontin cDNA expression indicated that the osteogenic potency of rASCs was enhanced by transfection with Ad-hBMP2. After in vitro culture for seven days, three groups were implanted into 15-mm length critical-sized segmental radial defects in rabbits. After 12 weeks, radiographic and histological analyses were performed. In group 1, the medullary cavity was recanalised, bone was rebuilt and moulding was finished, the bone contour had begun to remodel and scaffold was degraded completely. In contrast, bone defects were not repaired in groups 2 or 3. Furthermore, the scaffold degradation rate in group 1 was significantly higher than in groups 2 or 3. In summary, after transduction with Ad-hBMP2, the osteogenesis of rASCs was enhanced; a new biocomposite created with these cells induced repair of a critical bone defect in vivo in a relatively short time.

  13. Enzymatic crosslinking and degradation of gelatin as a switch for bone morphogenetic protein-2 activity.

    PubMed

    Kuwahara, Kenrick; Fang, Josephine Y; Yang, Zhi; Han, Bo

    2011-12-01

    Current therapies for tissue regeneration rely on the presence or direct delivery of growth factors to sites of repair. Bone morphogenetic protein-2 (BMP-2), combined with a carrier (usually collagen), is clinically proven to induce new bone formation during spinal fusion and nonunion repair. However, due to BMP-2's short half-life and its diffusive properties, orders of magnitude above physiological levels are required to ensure effectiveness. In addition, a high dose of this multifunctional growth factor is known to induce adverse effects in patients. To circumvent these challenges, we proposed and tested a new approach for BMP-2 delivery, by controlling BMP activity via carrier binding and localized proteolysis. BMP-2 was covalently bound to gelatin through site-specific enzymatic crosslinking using a microbial transglutaminase. Binding of BMP-2 to gelatin can completely switch off BMP-2 activity, as evidenced by loss of its transdifferentiating ability toward C2C12 promyoblasts. When gelatin sequestered BMP-2 is incubated with either microbial collagenase or tissue-derived matrix metalloproteinases, BMP-2 activity is fully restored. The activity of released BMP-2 correlates with the protease activity in a dose- and time-dependent manner. This observation suggests a novel way of delivering BMP-2 and controlling its activity. This improved delivery method, which relies on a physiological feedback, should enhance the known potential of this and other growth factors for tissue repair and regeneration.

  14. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  15. The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors

    SciTech Connect

    Kalen, Anders; Wahlstroem, Ola; Linder, Cecilia Halling; Magnusson, Per

    2008-10-17

    Platelet derivates and platelet rich plasma have been used to stimulate bone formation and wound healing because of the rich content of potent growth factors. However, not all reports have been conclusive since some have not been able to demonstrate a positive effect. We investigated the interindividual variation of bone morphogenetic proteins (BMPs) in platelets from healthy donors, and the pH-dependent effect on the release of BMPs in preparations of lysed platelets in buffer (LPB). Platelet concentrates from 31 healthy donors were prepared in pH 4.3 and pH 7.4 buffers and investigated with respect to BMP-2, -4, -6, and -7. BMP-2 and BMP-4 were significantly more common in acidic LPBs in comparison with neutral preparations. We also observed a considerable variation among platelet donors with respect to the release of BMPs at pH 4.3 and 7.4. In conclusion, a considerable variation was found among platelet donors, which may be of importance considering the ambiguous results previously reported on osteoblast proliferation and differentiation.

  16. The importance and the differences of bone morphogenetic proteins for osteoporotic hip fractures.

    PubMed

    Dincel, V Ercan; Sepici-Dincel, Aylin

    2014-06-01

    Bone morphogenetic proteins (BMPs), major contributors to tissue repair, have become one of the most exciting fields in rheumatic and orthopaedic research. In our study we aimed to evaluate the relationship between osteoporotic hip fractures and the serum levels of BMPs to reveal their potential roles in the diagnosis of patients. The study group included 62 patients with osteoporotic hip fracture (Group 1; intertrochanteric fracture, Group 2; collum femoris fracture) and the control group. All fractures were due to low energy trauma, simple falls. For all subjects BMD measurements were in agreement for osteoporosis and no significant differences were observed between the two fracture groups. Biochemical markers; BMP-4 and BMP-7 (pg/mL) were determined by commercial Elisa kits from the serum samples. The mean and standard error values of serum samples for BMP-4 and BMP-7 in Group 1 (100.70 +/- 10.03, 74.41 +/- 6.31 respectively) and in Group 2 (112.34 +/- 11.52, 81.91 +/- 10.14 respectively) were not statistically different however for both groups only BMP-7 values increased statistically when compared to the control group. BMP-7 measurements may not only serve as potential biochemical markers for determining disease severity but also the increased levels, an osteogenic factor and bone stimulating agent in vivo, after trauma elevated levels are adaptive or protective and therefore may reduce the severity of the fracture.

  17. Bone Morphogenetic Protein Signaling Regulates Development and Activation of CD4(+) T Cells.

    PubMed

    Kuczma, Michal; Kraj, Piotr

    2015-01-01

    Bone morphogenetic proteins (BMPs) are growth factors belonging to the TGF-β (transforming growth factor β) superfamily. BMPs were found to regulate multiple cell processes such as proliferation, survival, differentiation, and apoptosis. They were originally described to play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites but were found to play a significant role in embryogenesis and development of multiple tissues and organs. Activities of BMPs are regulated by a number of secreted proteins, which modulate their availability to bind cellular receptors. The functions of individual BMPs are highly redundant due to binding the same receptors and inducing overlapping signal transduction pathways. Recently, BMPs were found to regulate cells of the innate and adaptive immune system. BMPs are involved in thymic development of T cells at the early, double negative, as well as later, double positive, stages of thymopoesis. They specifically modulate thymic development of regulatory T cells (T(reg)). In the periphery, BMPs affect T cell activation, promoting generation of T(reg) cells. We found that mice deficient for one of the receptors activated by BMPs demonstrated slower growth of transplantable melanoma tumors.

  18. Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model.

    PubMed

    Honsawek, Sittisak; Powers, Ralph M; Wolfinbarger, Lloyd

    2005-01-01

    A correlation between extractable bone morphogenetic proteins (BMPs) in demineralized bone matrix (DBM) and osteoinduction has been suggested. Extractable BMP-4 and osteoinductivity of DBM from 40 donors were assessed using enzyme-linked immunosorbent assay (ELISA) and in vivo athymic mouse assay, respectively. Extractable BMP-4 level averaged 3.7 +/- 0.21 ng/g of DBM and correlated with osteoinductivity of the DBM in an in vivo assessment of induced newbone formation.

  19. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors.

    PubMed

    Marques, Cátia L; Cancela, M Leonor; Laizé, Vincent

    2016-01-15

    Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context.

  20. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts.

    PubMed Central

    Gazzerro, E; Gangji, V; Canalis, E

    1998-01-01

    Bone morphogenetic proteins (BMPs) induce the differentiation of cells of the osteoblastic lineage and enhance the function of the osteoblast. Growth factors are regulated by binding proteins, but there is no information about binding proteins for BMPs in skeletal cells. Noggin specifically binds BMPs, but its expression by cells of the osteoblastic lineage has not been reported. We tested for the expression of noggin and its induction by BMP-2 in cultures of osteoblast-enriched cells from 22-d-old fetal rat calvariae (Ob cells). BMP-2 caused a time- and dose-dependent increase in noggin mRNA and polypeptide levels, as determined by Northern and Western blot analyses. The effects of BMP-2 on noggin transcripts were dependent on protein, but independent of DNA synthesis. BMP-2 increased the rates of noggin transcription as determined by nuclear run-on assays. BMP-4, BMP-6, and TGF-beta1 increased noggin mRNA in Ob cells, but basic fibroblast growth factor, platelet- derived growth factor BB, and IGF-I did not. Noggin decreased the stimulatory effects of BMPs on DNA and collagen synthesis and alkaline phosphatase activity in Ob cells. In conclusion, BMPs induce noggin transcription in Ob cells, a probable mechanism to limit BMP action in osteoblasts. PMID:9854046

  1. Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development.

    PubMed

    Singh, A P; Castranio, T; Scott, G; Guo, D; Harris, M A; Ray, M; Harris, S E; Mishina, Y

    2008-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. In the course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3' untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal mouse tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/-) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. The number of embryos exhibiting these abnormalities was increased when, due to different genotypes, expression levels of Bmp2 in maternal tissues were lower. These results suggest that the expression levels of Bmp2 in both embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds.

  2. Mesenchymal Bone Morphogenetic Protein Signaling Is Required for Normal Pancreas Development

    PubMed Central

    Ahnfelt-Rønne, Jonas; Ravassard, Philippe; Pardanaud-Glavieux, Corinne; Scharfmann, Raphaél; Serup, Palle

    2010-01-01

    OBJECTIVE Pancreas organogenesis is orchestrated by interactions between the epithelium and the mesenchyme, but these interactions are not completely understood. Here we investigated a role for bone morphogenetic protein (BMP) signaling within the pancreas mesenchyme and found it to be required for the normal development of the mesenchyme as well as for the pancreatic epithelium. RESEARCH DESIGN AND METHODS We analyzed active BMP signaling by immunostaining for phospho-Smad1,5,8 and tested whether pancreas development was affected by BMP inhibition after expression of Noggin and dominant negative BMP receptors in chicken and mouse pancreas. RESULTS Endogenous BMP signaling is confined to the mesenchyme in the early pancreas and inhibition of BMP signaling results in severe pancreatic hypoplasia with reduced epithelial branching. Notably, we also observed an excessive endocrine differentiation when mesenchymal BMP signaling is blocked, presumably secondary to defective mesenchyme to epithelium signaling. CONCLUSIONS We conclude that BMP signaling plays a previously unsuspected role in the mesenchyme, required for normal development of the mesenchyme as well as for the epithelium. PMID:20522595

  3. Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling.

    PubMed

    Gumienny, Tina L; Macneil, Lesley; Zimmerman, Cole M; Wang, Huang; Chin, Lena; Wrana, Jeffrey L; Padgett, Richard W

    2010-05-20

    Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.

  4. Examining Crosstalk among Transforming Growth Factor β, Bone Morphogenetic Protein, and Wnt Pathways*

    PubMed Central

    Coster, Adam D.; Thorne, Curtis A.; Wu, Lani F.; Altschuler, Steven J.

    2017-01-01

    The integration of morphogenic signals by cells is not well understood. A growing body of literature suggests increasingly complex coupling among classically defined pathways. Given this apparent complexity, it is difficult to predict where, when, or even whether crosstalk occurs. Here, we investigated pairs of morphogenic pathways, previously reported to have multiple points of crosstalk, which either do not share (TGFβ and Wnt/β-catenin) or share (TGFβ and bone morphogenetic protein (BMP)) core signaling components. Crosstalk was measured by the ability of one morphogenic pathway to cross-activate core transcription factors and/or target genes of another morphogenic pathway. In contrast to previous studies, we found a surprising absence of crosstalk between TGFβ and Wnt/β-catenin. Further, we did not observe expected cross-pathway inhibition in between TGFβ and BMP, despite the fact that both use (or could compete) for the shared component SMAD4. Critical to our assays was a separation of timescales, which helped separate crosstalk due to initial signal transduction from subsequent post-transcriptional feedback events. Our study revealed fewer (and different) inter-morphogenic pathway crosstalk connections than expected; even pathways that share components can be insulated from one another. PMID:27895117

  5. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas12

    PubMed Central

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-01-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas. PMID:21390190

  6. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.

  7. In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2

    PubMed Central

    Maes, Ken; Nemeth, Elizabeta; Roodman, G. David; Huston, Alissa; Esteve, Flavia; Freytes, Cesar; Callander, Natalie; Katodritou, Eirini; Tussing-Humphreys, Lisa; Rivera, Seth; Vanderkerken, Karin; Lichtenstein, Alan

    2010-01-01

    Hepcidin is the principal iron-regulatory hormone and a pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contributes to MM-related anemia. Searching for hepcidin-inducing cytokines in MM, we quantified the stimulation of hepcidin promoter-luciferase activity in HuH7 cells by MM sera. MM sera activated the hepcidin promoter significantly more than did normal sera. We then examined the role of bone morphogenetic proteins (BMPs) and interleukin-6 (IL-6), the major transcriptional regulators of hepcidin. Mutations in both BMP-responsive elements abrogated the activation dramatically, while mutations in the IL-6–responsive signal transducer and activator of transcription 3-binding site (STAT3-BS) had only a minor effect. Cotreatment with anti–BMP-2/4 or noggin-Fc blocked the promoter induction with all MM sera, anti–IL-6 blocked it with a minority of sera, whereas anti–BMP-4, -6, or -9 antibodies had no effect. BMP-2–immunodepleted MM sera had decreased promoter stimulatory capacity, and BMP-2 concentrations in MM sera were significantly higher than in normal sera. Our results demonstrate that BMP-2 is a major mediator of the hepcidin stimulatory activity of MM sera. PMID:20679527

  8. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system

    PubMed Central

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-01-01

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. PMID:25952563

  9. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells.

    PubMed

    Boswell, Bruce A; Musil, Linda S

    2015-07-01

    Fibroblast growth factors (FGFs) play a central role in two processes essential for lens transparency--fiber cell differentiation and gap junction-mediated intercellular communication (GJIC). Using serum-free primary cultures of chick lens epithelial cells (DCDMLs), we investigated how the FGF and bone morphogenetic protein (BMP) signaling pathways positively cooperate to regulate lens development and function. We found that culturing DCDMLs for 6 d with the BMP blocker noggin inhibits the canonical FGF-to-ERK pathway upstream of FRS2 activation and also prevents FGF from stimulating FRS2- and ERK-independent gene expression, indicating that BMP signaling is required at the level of FGF receptors. Other experiments revealed a second type of BMP/FGF interaction by which FGF promotes expression of BMP target genes as well as of BMP4. Together these studies reveal a novel mode of cooperation between the FGF and BMP pathways in which BMP keeps lens cells in an optimally FGF-responsive state and, reciprocally, FGF enhances BMP-mediated gene expression. This interaction provides a mechanistic explanation for why disruption of either FGF or BMP signaling in the lens leads to defects in lens development and function.

  10. Downregulation of bone morphogenetic protein receptor 2 promotes the development of neuroblastoma.

    PubMed

    Cui, Ximao; Yang, Yili; Jia, Deshui; Jing, Ying; Zhang, Shouhua; Zheng, Shan; Cui, Long; Dong, Rui; Dong, Kuiran

    2017-01-29

    Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. In this study, we examined the expression of bone morphogenetic protein receptor 2 (BMPR2) in primary NB and adjacent non-tumor samples (adrenal gland). BMPR2 expression was significantly downregulated in NB tissues, particularly in high-grade NB, and was inversely related to the expression of the NB differentiation markers ferritin and enolase. The significance of the downregulation was further explored in cultured NB cells. While enforced expression of BMPR2 decreased cell proliferation and colony-forming activity, shRNA-mediated knockdown of BMPR2 led to increased cell growth and clonogenicity. In mice, NB cells harboring BMPR2 shRNA showed significantly increased tumorigenicity compared with control cells. We also performed a retrospective analysis of NB patients and identified a significant positive correlation between tumor BMPR2 expression and overall survival. These findings suggest that BMPR2 may play an important role in the development of NB.

  11. Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment

    PubMed Central

    Brooker, Sarah M.; Gobeske, Kevin T.; Chen, Jessie; Peng, Chian-Yu; Kessler, John A.

    2016-01-01

    Many antidepressants stimulate adult hippocampal neurogenesis, but the mechanisms by which they increase neurogenesis and modulate behavior are incompletely understood. Here we show that hippocampal bone morphogenetic protein (BMP) signaling is modulated by antidepressant treatment, and that the changes in BMP signaling mediate effects of antidepressant treatment on neural progenitor cell proliferation and behavior. Treatment with the selective serotonin reuptake inhibitor fluoxetine suppressed BMP signaling in the adult mouse hippocampus both by decreasing levels of BMP4 ligand and increasing production of the BMP inhibitor noggin. Increasing BMP signaling in the hippocampus via viral overexpression of BMP4 blocked the effects of fluoxetine on proliferation in the dentate gyrus and on depressive behavior. Conversely, inhibiting BMP signaling via viral overexpression of noggin in the hippocampus or infusion of noggin into the ventricles exerted antidepressant and anxiolytic activity along with an increase in hippocampal neurogenesis. Similarly, conditional genetic deletion of the type II BMP receptor in Ascl1-expressing cells promoted neurogenesis and reduced anxiety- and depression-like behaviors, suggesting that neural progenitor cells contribute to the effects of BMP signaling on affective behavior. These observations indicate that BMP signaling in the hippocampus regulates depressive behavior, and that decreasing BMP signaling may be required for the effects of some antidepressants. Thus BMP signaling is a new and powerful potential target for the treatment of depression. PMID:27698430

  12. Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies.

    PubMed

    Calpe, Silvia; Wagner, Koen; El Khattabi, Mohamed; Rutten, Lucy; Zimberlin, Cheryl; Dolk, Edward; Verrips, C Theo; Medema, Jan Paul; Spits, Hergen; Krishnadath, Kausilia K

    2015-11-01

    Bone morphogenetic proteins (BMP) have important but distinct roles in tissue homeostasis and disease, including carcinogenesis and tumor progression. A large number of BMP inhibitors are available to study BMP function; however, as most of these antagonists are promiscuous, evaluating specific effects of individual BMPs is not feasible. Because the oncogenic role of the different BMPs varies for each neoplasm, highly selective BMP inhibitors are required. Here, we describe the generation of three types of llama-derived heavy chain variable domains (VHH) that selectively bind to either BMP4, to BMP2 and 4, or to BMP2, 4, 5, and 6. These generated VHHs have high affinity to their targets and are able to inhibit BMP signaling. Epitope binning and docking modeling have shed light into the basis for their BMP specificity. As opposed to the wide structural reach of natural inhibitors, these small molecules target the grooves and pockets of BMPs involved in receptor binding. In organoid experiments, specific inhibition of BMP4 does not affect the activation of normal stem cells. Furthermore, in vitro inhibition of cancer-derived BMP4 noncanonical signals results in an increase of chemosensitivity in a colorectal cancer cell line. Therefore, because of their high specificity and low off-target effects, these VHHs could represent a therapeutic alternative for BMP4(+) malignancies.

  13. Catechol-functionalized adhesive polymer nanoparticles for controlled local release of bone morphogenetic protein-2 from titanium surface.

    PubMed

    Lee, Hong Jae; Koo, Ahn Na; Lee, Suk Won; Lee, Myung Hyun; Lee, Sang Cheon

    2013-09-10

    We report on a novel surface functionalization approach to equip the titanium (Ti) surfaces with osteogenic properties. A key feature of the approach is the treatment of the Ti surfaces with Ti-adhesive nanoparticles that can stably load and controllably release bone morphogenetic protein-2 (BMP-2). Ti-adhesive nanoparticles were prepared by self-assembly of a catechol-functionalized poly(amino acid) diblock copolymer, catechol-poly(L-aspartic acid)-b-poly(L-phenylalanine) (Cat-PAsp-PPhe). The nanoparticles consist of Ti-adhesive peripheral catechol groups, anionic PAsp shells, and PPhe inner cores. Field-emission scanning electron microscopy (Fe-SEM) images showed that the Ti-adhesive nanoparticles could be uniformly immobilized on Ti surfaces. X-ray photoelectron spectroscopy (XPS) confirmed the successful anchoring of nanoparticles onto Ti surfaces. After surface immobilization of the nanoparticles, the static water contact angle of the Ti substrate decreased from 75.3° to 50.0° or 36.4°, depending on the surface nanoparticle. Fluorescence microscopic analysis showed that BMP-2 could be effectively incorporated onto the Ti surface with adhesive nanoparticles. BMP-2 was controllably released for up to 40 days. The Ti substrate functionalized with BMP-2-incorporated nanoparticles significantly promoted attachment, proliferation, spreading, and alkaline phosphatase (ALP) activity of human adipose-derived stem cell (hADSC). The catechol-functionalized adhesive nanoparticles may be applied to various medical devices to create surfaces for improved performance.

  14. Bone Morphogenetic Protein Antagonist Noggin Promotes Skin Tumorigenesis via Stimulation of the Wnt and Shh Signaling Pathways

    PubMed Central

    Sharov, Andrey A.; Mardaryev, Andrei N.; Sharova, Tatyana Y.; Grachtchouk, Marina; Atoyan, Ruzanna; Byers, H. Randolph; Seykora, John T.; Overbeek, Paul; Dlugosz, Andrzej; Botchkarev, Vladimir A.

    2009-01-01

    Bone morphogenetic proteins (BMPs) play pivotal roles in the regulation of skin development. To study the role of BMPs in skin tumorigenesis, BMP antagonist noggin was used to generate keratin 14-targeted transgenic mice. In contrast to wild-type mice, transgenic mice developed spontaneous hair follicle-derived tumors, which resemble human trichofolliculoma. Global gene expression profiles revealed that in contrast to anagen hair follicles of wild-type mice, tumors of transgenic mice showed stage-dependent increases in the expression of genes encoding the selected components of Wnt and Shh pathways. Specifically, expression of the Wnt ligands increased at the initiation stage of tumor formation, whereas expression of the Wnt antagonist and tumor suppressor Wnt inhibitory factor-1 decreased, as compared with fully developed tumors. In contrast, expression of the components of Shh pathway increased in fully developed tumors, as compared with the tumor placodes. Consistent with the expression data, pharmacological treatment of transgenic mice with Wnt and Shh antagonists resulted in the stage-dependent inhibition of tumor initiation, and progression, respectively. Furthermore, BMP signaling stimulated Wnt inhibitory factor-1 expression and promoter activity in cultured tumor cells and HaCaT keratinocytes, as well as inhibited Shh expression, as compared with the corresponding controls. Thus, tumor suppressor activity of the BMPs in skin epithelium depends on the local concentrations of noggin and is mediated at least in part via stage-dependent antagonizing of Wnt and Shh signaling pathways. PMID:19700758

  15. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells

    SciTech Connect

    Deng Haiyun; Makizumi, Ryouji; Ravikumar, T.S.; Dong Huali; Yang Wancai; Yang, W.-L. . E-mail: wlyang@nshs.edu

    2007-03-10

    Bone morphogenetic protein (BMP), a member of the TGF-{beta} superfamily, is involved in development, morphogenesis, cell proliferation and apoptosis. Dysregulation of BMP signaling has been suggested in tumorigenesis. In an analysis of human colon normal mucosa and tumors at different stages by immunohistochemistry, we observed that the intensity of BMP-4 staining in late-adenocarcinomas was stronger than that in normal mucosa and adenomas, while there was no difference in the staining of its receptors (BMPR-IA and BMPR-II) at all stages. The up-regulation of BMP-4 was further validated in another panel of tumor tissues by real-time RT-PCR, showing that BMP-4 mRNA levels in primary colonic carcinomas with liver metastasis were significantly higher than that in the matched normal mucosa. In order to understand the functional relevance of BMP-4 expression in colon cancer progression, BMP-4-overexpressing cell clones were generated from HCT116 cells. Overexpression of BMP-4 did not affect the HCT116 cell growth. The cells overexpressing BMP-4 became resistant to serum-starvation-induced apoptosis and exhibited enhanced migration and invasion characteristics. Overexpression of BMP-4 changed cell morphology to invasive spindle phenotype and induced the expression and activity of urokinase plasminogen activator (uPA). These results indicate that BMP-4 confers invasive phenotype during progression of colon cancer.

  16. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  17. Expression of osterix inhibits bone morphogenetic protein-induced chondrogenic differentiation of mesenchymal progenitor cells.

    PubMed

    Tominaga, Hiroyuki; Maeda, Shingo; Miyoshi, Hiroyuki; Miyazono, Kohei; Komiya, Setsuro; Imamura, Takeshi

    2009-01-01

    Osteoblasts and chondrocytes arise from common bipotential mesenchymal progenitor cells. Although the differentiation of these two cell lineages can be induced by treatment with bone morphogenetic proteins (BMPs), the responses of mesenchymal progenitors to BMP differ from cell line to cell line. Here we demonstrate that C3H/10T1/2 cells preferred chondrogenic differentiation, primary bone marrow stroma cells (MSCs) tended to convert to osteoblasts, and ST-2 cells differentiated into both the osteoblastic and chondrocytic lineages simultaneously, suggesting that a molecular switch functions to select cell fate. Osterix, the secondary master regulator of osteoblastogenesis, was induced by BMP at high and low levels in MSCs and ST-2 cells, respectively; in contrast, C3H/10T1/2 cells demonstrated only faint expression. As osterix has been suggested as a negative regulator of chondrogenesis, we hypothesized that the intense chondrocyte differentiation of C3H/10T1/2 cells may have resulted from an absence of osterix. We therefore restored osterix gene expression in C3H/10T1/2 cells using an adenovirus vector. Following BMP treatment, infection with an osterix-encoding virus dramatically inhibited the chondrocytic differentiation of C3H/10T1/2 cells, resulting instead in prominent osteoblast differentiation. These results indicate the chondrogenic potential of C3H/10T1/2 cells was abrogated by osterix expression. Chondrocyte differentiation of MSCs, however, was not enhanced by silencing the osterix gene using lentivirus-mediated shRNA, despite successful suppression of osteoblast differentiation. These results suggest that the low levels of osterix expression remaining after knockdown are sufficient to block chondrogenesis, whereas higher expression may be required to promote osteoblastic differentiation.

  18. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    PubMed Central

    Rakian, Audrey; Yang, Wu-Chen; Gluhak-Heinrich, Jelica; Cui, Yong; Harris, Marie A; Villarreal, Demitri; Feng, Jerry Q; MacDougall, Mary; Harris, Stephen E

    2013-01-01

    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp7+ (Osterix+) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and α-SMA+ cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOSp7-Cre-EGFP. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOSp7-Cre-EGFP. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation. PMID:23807640

  19. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    PubMed

    Liao, Jen-Chung

    2016-07-05

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits.

  20. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release

    DTIC Science & Technology

    2011-04-01

    delivered on a collagen sponge (INFUSE Bone Graft; Medtronic) has been approved by FDA for posterior-lateral spine fusions, tibial fractures, and sinus...area was defined by drawing a quadrilateral area using the periosteal corners of the four host cortices as points of reference. The relative areas of...section of an FR +BMP scaffold in Figure 8 (the ap- proximate boundary of the implant is denoted by the box) shows a mature and fully bridged periosteal

  1. Post-traumatic bone loss of the femur treated with segmental bone allograft and bone morphogenetic protein: a case report.

    PubMed

    D'Agostino, Priscilla; Stassen, Pierre; Delloye, Christian

    2007-06-01

    Reconstruction of a major bone loss remains a challenge for the orthopaedic surgeon. Most of the bone defects result from a bone tumour resection whereas a post-traumatic bone loss is more rare due to the numerous options available for bone fixation. However in high-energy trauma, the injury to bone may be so extensive as to justify removal of fragmented bone. A 57-year-old man presented with a severe injury at the thigh after a hunting accident, including a comminuted fracture of the femoral shaft. After thorough debridement, he was left with a large diaphyseal bone defect which was subsequently treated with a structural bone allograft, autogenous graft and rhBMP-7. Bone healing was achieved after several months.

  2. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2.

    PubMed

    Subramanian, Gayathri; Bialorucki, Callan; Yildirim-Ayan, Eda

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O2 plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile.

  3. A Meta Analysis of Lumbar Spinal Fusion Surgery Using Bone Morphogenetic Proteins and Autologous Iliac Crest Bone Graft

    PubMed Central

    Zhang, Haifei; Wang, Feng; Ding, Lin; Zhang, Zhiyu; Sun, Deri; Feng, Xinmin; An, Jiuli; Zhu, Yue

    2014-01-01

    Background Bone morphogenetic protein (BMPs) as a substitute for iliac crest bone graft (ICBG) has been increasingly widely used in lumbar fusion. The purpose of this study is to systematically compare the effectiveness and safety of fusion with BMPs for the treatment of lumbar disease. Methods Cochrane review methods were used to analyze all relevant randomized controlled trials (RCTs) published up to nov 2013. Results 19 RCTs (1,852 patients) met the inclusion criteria. BMPs group significantly increased fusion rate (RR: 1.13; 95% CI 1.05–1.23, P = 0.001), while there was no statistical difference in overall success of clinical outcomes (RR: 1.04; 95% CI 0.95–1.13, P = 0.38) and complications (RR: 0.96; 95% CI 0.85–1.09, p = 0.54). A significant reduction of the reoperation rate was found in BMPs group (RR: 0.57; 95% CI 0.42–0.77, p = 0.0002). Significant difference was found in the operating time (MD−0.32; 95% CI−0.55, −0.08; P = 0.009), but no significant difference was found in the blood loss, the hospital stay, patient satisfaction, and work status. Conclusion Compared with ICBG, BMPs in lumbar fusion can increase the fusion rate, while reduce the reoperation rate and operating time. However, it doesn’t increase the complication rate, the amount of blood loss and hospital stay. No significant difference was found in the overall success of clinical outcome of the two groups. PMID:24886911

  4. Effects of fibroblast growth factor 2 on osteoblastic proliferation and differentiation by regulating bone morphogenetic protein receptor expression.

    PubMed

    Park, Jun-Beom

    2011-09-01

    Fibroblast growth factors (FGFs) are known to play a critical role in bone growth and development, affecting both osteogenesis and chondrogenesis. Fibroblast growth factor 2 (FGF-2) is produced intracellularly by osteoblasts and secreted into the surrounding matrix in bone.The dose-dependent effects of FGF-2 were tested to examine the relationship between FGF-2 and osteoblast proliferation and differentiation. Tests used included a cell viability test, an alkaline phosphatase activity test, and a Western blot analysis.Cultures growing in the presence of FGF-2 showed an increased value for 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and a decreased value for alkaline phosphatase activity. Results of the Western blot analysis showed that the addition of FGF-2 seems to decrease osteocalcin and bone morphogenetic protein receptor IA.These data show that FGF-2 in the tested dosage within MC3T3-E1 cells seems to affect proliferation and differentiation. Results of the Western blot analysis may add some possible mechanisms, and it may be suggested that treatment of FGF-2 may have an influence on the expression of bone morphogenetic protein receptors in osteoprecursor cells. Further elucidation of the mechanisms related to this mechanism within the in vivo model may be necessary to ascertain greater detail.

  5. Bone Morphogenetic Protein Regulation of Enteric Neuronal Phenotypic Diversity: Relationship to Timing of Cell Cycle Exit

    PubMed Central

    Chalazonitis, Alcmène; Pham, Tuan.D.; Li, Zhishan; Roman, Daniel; Guha, Udayan; Gomes, William; Kan, Lixin; Kessler, John A.; Gershon, Michael D.

    2008-01-01

    The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice over expressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (γ-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene related peptide, TrkC). Numbers of TH- and TrkC-expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH- and TrkC-expressing neurons developing in vitro from immunoselected enteric crest-derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT-3-dependent neurons. The developmental defects in the ENS of noggin overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development. PMID:18537141

  6. Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration.

    PubMed

    Lewis, Christopher J; Mardaryev, Andrei N; Poterlowicz, Krzysztof; Sharova, Tatyana Y; Aziz, Ahmar; Sharpe, David T; Botchkareva, Natalia V; Sharov, Andrey A

    2014-03-01

    Bone morphogenetic protein (BMP) signaling plays a key role in the control of skin development and postnatal remodeling by regulating keratinocyte proliferation, differentiation, and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 (transgenic mice overexpressing a constitutively active form of Smad1 under K14 promoter) mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and quantitative real-time reverse-transcriptase-PCR (qRT-PCR) analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myosin VA (Myo5a), in the epidermis of K14-caSmad1 mice versus wild-type (WT) controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared with WT controls. Finally, small interfering RNA (siRNA)-mediated silencing of BMPR-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17, and Myo5a compared with controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization, and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.

  7. MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a

    PubMed Central

    Man, Xiao-Fei; Tan, Shu-Wen; Tang, Hao-Neng; Guo, Yue; Tang, Chen-Yi; Tang, Jun; Zhou, Ci-La; Zhou, Hou-De

    2016-01-01

    Adipogenesis plays a key role in the regulation of whole-body energy homeostasis and is critically related to obesity. To overcome obesity and its associated disorders, it is necessary to elucidate the molecular mechanisms involved in adipogenesis. An adipogenesis-related miRNA array analysis demonstrated that miR-503 was differentially expressed before and after adipocyte differentiation; however, the exact role of miR-503 in adipocyte differentiation is unclear. Thus, the objective of this study was to further examine miR-503 in adipocyte differentiation. We found significantly decreased expression of miR-503 during adipocyte differentiation process. Using bioinformatic analysis, miR-503 was identified as a potential regulator of Bone Morphogenetic Protein Receptor 1a (BMPR1a). We then validated BMPR1a as the target of miR-503 using a dual luciferase assay, and found decreased miR-503 and increased BMPR1a expression during adipogenesis. Overexpression of miR-503 in preadipocytes repressed expression of BMPR1a and adipogenic-related factors such as CCAAT/enhancer binding protein a (C/EBPα), proliferator-activated receptor-gamma (PPARγ), and adipocyte protein 2 (AP2). In addition, miR-503 overexpression impaired the phosphoinositol-3 kinase (PI3K)/Akt pathway. Inhibition of miR-503 had the opposite effect. Additionally, BMPR1a interference by siRNA attenuated adipocyte differentiation and the accumulation of lipid droplets via downregulating the PI3K/Akt signaling pathway. Our study provides the first evidence of the role miR-503 plays in adipocyte differentiation by regulating BMPR1a via the PI3K/Akt pathway, which may become a novel target for obesity therapy. PMID:27398155

  8. Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration.

    PubMed

    González-Sastre, Alejandro; Molina, Ma Dolores; Saló, Emili

    2012-01-01

    Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea.

  9. Injectable hydrogels embedded with alginate microspheres for controlled delivery of bone morphogenetic protein-2.

    PubMed

    Zhu, Youjia; Wang, Jiulong; Wu, Jingjing; Zhang, Jun; Wan, Ying; Wu, Hua

    2016-03-23

    Some delivery carriers with injectable characteristics were built using the thermosensitive chitosan/dextran-polylactide/glycerophosphate hydrogel and selected alginate microspheres for the controllable release of bone morphogenetic protein-2 (BMP-2). BMP-2 was first loaded into the microspheres with an average size of around 20 μm and the resulting microspheres were then embedded into the gel in order to achieve well-controlled BMP-2 release. The microsphere-embedded gels show their incipient gelation temperature at around 32 °C and pH at about 7.1. Some gels had their elastic modulus close to 1400 Pa and the ratio of elastic modulus to viscous modulus at around 34, revealing that they behaved like mechanically strong gels. Optimized microsphere-embedded gels were found to be able to administer the BMP-2 release without significant initial burst release in an approximately linear manner over a period of time longer than four weeks. The release rate and the released amount of BMP-2 from these gels could be regulated individually or cooperatively by the initial BMP-2 load and the dextran-polylactide content in the gels. Measurements of the BMP-2 induced alkaline phosphatase activity in C2C12 cells confirmed that C2C12 cells responded to BMP-2 in a dose-dependent way and the released BMP-2 from the microsphere-embedded gels well retained their bioactivity. In vivo assessment of some gels revealed that the released BMP-2 maintained its osteogenesis functions.

  10. Estrogen Opposes the Apoptotic Effects of Bone Morphogenetic Protein 7 on Tissue Remodeling

    PubMed Central

    Monroe, David G.; Jin, Donald F.; Sanders, Michel M.

    2000-01-01

    Interactions between estrogen and growth factor signaling pathways at the level of gene expression play important roles in the function of reproductive tissues. For example, estrogen regulates transforming growth factor beta (TGFβ) in the uterus during the proliferative phase of the mammalian reproductive cycle. Bone morphogenetic protein 7 (BMP-7), a member of the TGFβ superfamily, is also involved in the development and function of reproductive tissues. However, relatively few studies have addressed the expression of BMP-7 in reproductive tissues, and the role of BMP-7 remains unclear. As part of an ongoing effort to understand how estrogen represses gene expression and to study its interactions with other signaling pathways, chick BMP-7 (cBMP-7) was cloned. cBMP-7 mRNA levels are repressed threefold within 8 h following estrogen treatment in the chick oviduct, an extremely estrogen-responsive reproductive tissue. This regulation occurs at the transcriptional level. Estrogen has a protective role in many tissues, and withdrawal from estrogen often leads to tissue regression; however, the mechanisms mediating regression of the oviduct remain unknown. Terminal transferase-mediated end-labeling and DNA laddering assays demonstrated that regression of the oviduct during estrogen withdrawal involves apoptosis, which is a novel observation. cBMP-7 mRNA levels during estrogen withdrawal increase concurrently with the apoptotic index of the oviduct. Furthermore, addition of purified BMP-7 induces apoptosis in primary oviduct cells. This report demonstrates that the function of BMP-7 in the oviduct involves the induction of apoptosis and that estrogen plays an important role in opposing this function. PMID:10848589

  11. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    PubMed

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers.

  12. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    PubMed Central

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  13. Effect of Autologous Bone Marrow Stromal Cell Seeding and Bone Morphogenetic Protein-2 Delivery on Ectopic Bone Formation in a Microsphere/Poly(Propylene Fumarate) Composite

    PubMed Central

    Kempen, Diederik H.R.; Kruyt, Moyo C.; Lu, Lichun; Wilson, Clayton E.; Florschutz, Anthony V.; Yaszemski, Michael J.; Dhert, Wouter J.A.

    2009-01-01

    A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 μg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2–loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2–impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 μg/mg BMP-2–loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2–impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites. PMID:18925831

  14. Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation.

    PubMed

    Nam, Jin; Perera, Priyangi; Rath, Bjoern; Agarwal, Sudha

    2013-03-01

    Osteochondral tissue-engineered grafts are proposed to hold greater potential to repair/regenerate damaged cartilage through enhanced biochemical and mechanical interactions with underlying subchondral bone as compared to simple engineered cartilage. Additionally, biomechanical stimulation of articular chondrocytes (ACs) or osteoblasts (OBs) was shown to induce greater morphogenesis of the engineered tissues composed of these cells. In this report, to define the advantages of biomechanical stimulation to osteochondral grafts for tissue engineering, we examined whether (1) ACs and OBs in three-dimensional (3D) osteochondral constructs support functional development of each other at the molecular level, and (2) biomechanical stimulation of osteochondral constructs further promotes the regenerative potential of such grafts. Various configurations of cell/scaffold assemblies, including chondral, osseous, and osteochondral constructs, were engineered with mechano-responsive electrospun poly(ɛ-caprolactone) scaffolds. These constructs were subjected to either static or dynamic (10% cyclic compressive strain at 1 Hz for 3 h/day) culture conditions for 2 weeks. The expression of bone morphogenetic proteins (BMPs) was examined to assess the regenerative potential of each treatment on the cells. Biomechanical stimulation augmented a marked upregulation of Bmp2, Bmp6, and Bmp7 as well as downregulation of BMP antagonist, Bmp3, in a time-specific manner in the ACs and OBs of 3D osteochondral constructs. More importantly, the presence of biomechanically stimulated OBs was especially crucial for the induction of Bmp6 in ACs, a BMP required for chondrocytic growth and differentiation. Biomechanical stimulation led to enhanced tissue morphogenesis possibly through this BMP regulation, evident by the improved effective compressive modulus of the osteochondral constructs (710 kPa of dynamic culture vs. 280 kPa of static culture). Similar BMP regulation was observed in the

  15. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions

    PubMed Central

    Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin

    2016-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506

  16. Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension

    PubMed Central

    Soon, Elaine; Crosby, Alexi; Southwood, Mark; Yang, Peiran; Tajsic, Tamara; Toshner, Mark; Appleby, Sarah; Shanahan, Catherine M.; Bloch, Kenneth D.; Pepke-Zaba, Joanna; Upton, Paul

    2015-01-01

    Rationale: Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20–30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. Objectives: To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. Methods: We used pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2+/−) and wild-type littermates. Measurements and Main Results: Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2+/− mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2+/− mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. Conclusions: This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension. PMID:26073741

  17. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future.

  18. Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins

    PubMed Central

    Indjeian, Vahan B.; Kingman, Garrett A.; Jones, Felicity C.; Guenther, Catherine A.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.

    2016-01-01

    SUMMARY Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone size differences in sticklebacks maps to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form. PMID:26774823

  19. Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists

    PubMed Central

    Fan, Jiabing; Im, Choong Sung; Guo, Mian; Cui, Zhong-Kai; Fartash, Armita; Kim, Soyon; Patel, Nikhil; Bezouglaia, Olga; Wu, Benjamin M.; Wang, Cun-Yu

    2016-01-01

    Although adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP–Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics. Significance Although stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell

  20. Bone morphogenetic protein 2 regulates the differentiation of nitrergic enteric neurons by modulating Smad1 signaling in slow transit constipation.

    PubMed

    Liu, Xuliang; Liu, Shangming; Xu, Yanan; Liu, Xiuqin; Sun, Daqing

    2015-11-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily and have been implicated in chondrogenesis and neuronal differentiation. In order to examine the function of bone morphogenetic protein 2 (BMP‑2) on the differentiation of nitrergic enteric neurons in slow transit constipation (STC), the expression of BMP‑2 and neuronal nitric oxide synthase (nNOS) was investigated in the myenteric nerve plexus in STC and control tissues by immunohistochemical assays. The present study demonstrated that BMP‑2 and nNOS were expressed in the myenteric nerve plexus and their levels were differentially altered in the STC group and control group. In addition, the effect of BMP‑2 on primary myenteric neurons was investigated by measuring the neurite length. The results demonstrated that BMP‑2 regulated the differentiation of primary enteric neurons and increased the length of neurites compared with the control group. In addition, the effect of BMP‑2 on the expression of nNOS was also investigated in primary enteric neurons and the Smad1 signal transduction pathway by western blot analysis, reverse transcription quantitative polymerase chain reaction and immunofluorescence assay. The results suggested that BMP‑2 promoted the expression of nNOS in primary myenteric neurons and induced phosphorylation of Smad1. These data indicate a new role for BMP‑2 as an important transcriptional cofactor that regulates the differentiation of nitrergic enteric neurons through the Smad1 pathway. Intervention of BMP‑2 may be useful for the treatment of STC.

  1. Virtual screening and selection of drug-like compounds to block noggin interaction with bone morphogenetic proteins.

    PubMed

    Ahmed, Shaila; Metpally, Raghu Prasad Rao; Sangadala, Sreedhara; Reddy, Boojala Vijay B

    2010-04-01

    Noggin is a major natural extracellular antagonist to bone morphogenetic proteins (BMPs) which binds to BMPs and blocks binding of them to BMP-specific receptors and thus negatively regulates BMP-induced osteoblastic differentiation. Bone morphogenetic proteins (BMPs) signal through heteromeric protein complexes composed of type I and type II serine/threonine kinase receptors. Preventing the BMP-2/noggin interaction will preserve free BMP-2 and enhance the efficacy of BMP-2 to induce bone formation. This work is an attempt to use the current understanding of BMP-2, and its interaction with its receptors and antagonist to design an inhibitor of BMP-2/noggin interaction with the goal of lowering the dose of BMP-2 required in clinical applications. The crystal structure of the BMP-7/noggin complex, the BMP-2/BMP receptor IA ectodomain complex and the extracellular domain of BMP receptor II monomer are known. We modeled the BMP-2 based on the structure of its homologue BMP-7 and its binding complex with noggin. We also modeled a complex of BMP-2/BMPRIA/BMPRII by modeling BMPRII and replacing ActRIIB in the BMP-2/BMPRIA/ActRIIB complex. We then identified the binding region of noggin with BMP-2 and the receptors with BMP-2. From the analysis of structures of these complexes and modeling we identified the key amino acids present in the entire interacting surfaces among these proteins that play important physiological role in the regulation of cell differentiation and bone metabolism. By in silico screening we selected and ranked several compounds that have high theoretical scores to bind to noggin to block BMP-noggin interaction.

  2. Cloning and characterization of a bone morphogenetic protein homologue of Schistosoma japonicum.

    PubMed

    Liu, Rong; Zhao, Qin-ping; Ye, Qing; Xiong, Tao; Tang, Chun-lian; Dong, Hui-fen; Jiang, Ming-sen

    2013-09-01

    Bone morphogenetic proteins (BMPs) are known to play an important role in the regulation of cell proliferation, survival, differentiation and apoptosis in many vertebrates and invertebrates through the TGF-β signaling pathway. Although the TGF-β signaling pathway exists in schistosomes, BMP homologue, a ligand of TGF-β in Schistosoma japonicum, has not yet been identified. In this study, a BMP homologue of S. japonicum was cloned and characterized. The full length SjBMP cDNA is 3,020 bp and encodes 928 amino acids, which include a TGF-β superfamily conserved domain at the C-terminus. BLAST analysis showed that, SjBMP has 68%, 51% and 43% homology with BMP from Schistosoma mansoni, Schmidtea mediterranea and Dugesia japonica at the amino acid level, respectively. According to data from real-time PCR, SjBMP was expressed in lung-stage schistosomula, 21-day liver-stage schistosomula, 50-day adult worms (the male and female), and eggs. The PCR data also indicated that, there was a ≈ 27- and ≈ 37-fold increase of SjBMP transcripts in the lung-stage schistosomula and eggs, respectively, and that there was relatively more SjBMP transcript in the adult male worm than in the adult female, in which the hepatic schistosomula was set as the calibrator for calculation. In situ hybridization based on FITC-labeled specific antisense oligonucleotide probes showed that SjBMP mRNA localized to the ovary of female worms and the integument and epithelium of female and male worms. After treatment with double-stranded RNA (dsRNA) at a concentration of 8 × 10(-2) μg/ml, which was added to the culture medium every other day for a week, the level of SjBMP mRNA in the cultured adult mixed-sex S. japonicum decreased at a range of ≈ 25-98% within 7 days compared with the level of SjBMP mRNA in the blank control group. On the 2nd day, the number of eggs produced per pair of worms decreased 28.7%, and the percent of normal eggs also decreased (12.7% vs. 4.3%) in the SjBMP ds

  3. Beyond Osteogenesis: An in vitro Comparison of the Potentials of Six Bone Morphogenetic Proteins

    DTIC Science & Technology

    2013-10-01

    compared in terms of their ability to affect the release of stromal derived factor-1 ( SDF -1), vascular endothelial growth factor (VEGF), and basic...fibroblast growth factor (b-FGF) from human bone marrow stromal cells (hBMSCs). Gene expression of ALP, osteocalcin, SDF -1, VEGF, and b-FGF following...BMPs-6 and -9 produced the greatest osteogenic differentiation of C2C12 and hASCs as determined by ALP. The hBMSC secretion of SDF -1 was most

  4. The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Draenert, Florian; Müller, Werner E G

    2013-03-08

    Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.

  5. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    PubMed Central

    Wang, Xiaohong; Schröder, Heinz C.; Feng, Qingling; Draenert, Florian; Müller, Werner E. G.

    2013-01-01

    Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer. PMID:23528950

  6. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis

    PubMed Central

    Qiao, Chunyan; Zhang, Kai; Sun, Bin; Liu, Jinzhong; Song, Jiyu; Hu, Yue; Yang, Shihui; Sun, Hongchen; Yang, Bai

    2015-01-01

    Bone regeneration often requires continuous stimulation to promote local bone formation. In the present study, calcium phosphate (CaPi) was used to promote transfection of human bone morphogenetic protein 2 (BMP-2) cDNA plasmid, and poly (lactic-co-glycolic acid) (PLGA) was used to prepare microspheres of pBMP-2/CaPi (i.e., PLGA@pBMP-2/CaPi) using W/O/W double emulsion solvent evaporation method. We showed that PLGA@pBMP-2/CaPi microspheres were spherical with smooth surface, and the particle size ranged from 0.5 to 35 μm. Encapsulation efficiency was up to 30~50%. The release of BMP-2 cDNA from microspheres continued more than 30 days and constituted, less than 7.5% of total plasmid amount within the first 24 h. Real-time PCR results showed that co-culturing of PLGA@pBMP-2/CaPi with bone marrow-derived mesenchymal stem cells (BMSCs) increased calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7, and collagen type I (COLL I) in a time-dependent manner. Finally, X-ray analysis demonstrated that in vivo delivery of PLGA@pBMP-2/CaPi microspheres into the tibialis anterior muscles of rats promoted the generation of osteoblasts, bone tissue, and bone structure. The findings suggested that PLGA@pBMP-2/CaPi microspheres can promote ectopic osteogenesis in non-bone tissues, with strong prospects in promoting bone regeneration. PMID:26885257

  7. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation

    NASA Astrophysics Data System (ADS)

    Sneddon, Julie B.; Zhen, Hanson H.; Montgomery, Kelli; van de Rijn, Matt; Tward, Aaron D.; West, Robert; Gladstone, Hayes; Chang, Howard Y.; Morganroth, Greg S.; Oro, Anthony E.; Brown, Patrick O.

    2006-10-01

    Although tissue microenvironments play critical roles in epithelial development and tumorigenesis, the factors mediating these effects are poorly understood. In this work, we used a genomic approach to identify factors produced by cells in the microenvironment of basal cell carcinoma (BCC) of the skin, one of the most common human cancers. The global gene expression programs of stromal cell cultures derived from human BCCs showed consistent, systematic differences from those derived from nontumor skin. The gene most consistently expressed at a higher level in BCC tumor stromal cells compared with those from nontumor skin was GREMLIN 1, which encodes a secreted antagonist of the bone morphogenetic protein (BMP) pathway. BMPs and their antagonists are known to play a crucial role in stem and progenitor cell biology as regulators of the balance between expansion and differentiation. Consistent with the hypothesis that BMP antagonists might have a similar role in cancer, we found GREMLIN 1 expression in the stroma of human BCC tumors but not in normal skin in vivo. Furthermore, BMP 2 and 4 are expressed by BCC cells. Ex vivo, BMP inhibits, and Gremlin 1 promotes, proliferation of cultured BCC cells. We further found that GREMLIN 1 is expressed by stromal cells in many carcinomas but not in the corresponding normal tissue counterparts that we examined. Our data suggest that BMP antagonists may be important constituents of tumor stroma, providing a favorable microenvironment for cancer cell survival and expansion in many cancers. cancer biology | stem cell regulation | tissue microenvironment | tumor stroma

  8. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells.

    PubMed

    Nakamura, Toshiaki; Shinohara, Yukiya; Momozaki, Sawako; Yoshimoto, Takehiko; Noguchi, Kazuyuki

    2013-10-18

    Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2+FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9+FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.

  9. Expression of bioactive bone morphogenetic proteins in the subacromial bursa of patients with chronic degeneration of the rotator cuff

    PubMed Central

    Neuwirth, Jana; Fuhrmann, Renée AE; Veit, Amanda; Aurich, Matthias; Stonâns, Ilmars; Trommer, Tilo; Hortschansky, Peter; Chubinskaya, Susanna; Mollenhauer, Juergen A

    2006-01-01

    Degeneration of the rotator cuff is often associated with inflammation of the subacromial bursa and focal mineralization of the supraspinatus tendon. Portions of the supraspinatus tendon distant from the insertion site could transform into fibrous cartilage, causing rotator-cuff tears owing to mechanical instability. Indirect evidence is presented to link this pathology to ectopic production and secretion of bioactive bone morphogenetic proteins (BMPs) from sites within the subacromial bursa. Surgically removed specimens of subacromial bursa tissue from patients with chronic tears of the rotator cuff were analyzed by immunohistochemistry and reverse transcription-PCR. Bioactive BMP was detected in bursa extracts by a bioassay based on induction of alkaline phosphatase in the osteogenic/myogenic cell line C2C12. Topical and differential expression of BMP-2/4 and BMP-7 mRNA and protein was found in bursa tissue. The bioassay of C2C12 cells revealed amounts of active BMP high enough to induce osteogenic cell types, and blocking BMP with specific antibodies or soluble BMP receptors Alk-3 and Alk-6 abolished the inductive properties of the extract. Sufficient information was gathered to explain how ectopic expression of BMP might induce tissue transformation into ectopic bone/cartilage and, therefore, promote structural degeneration of the rotator cuff. Early surgical removal of the subacromial bursa might present an option to interrupt disease progression. PMID:16719933

  10. Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing.

    PubMed

    Moura, J; da Silva, L; Cruz, M T; Carvalho, E

    2013-09-01

    Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.

  11. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    PubMed Central

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-01-01

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis. PMID:28212283

  12. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism.

    PubMed

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J; Vukicevic, Slobodan

    2016-02-01

    Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.

  13. Bone morphogenetic protein 2 promotes osteogenesis of bone marrow stromal cells in type 2 diabetic rats via the Wnt signaling pathway.

    PubMed

    Qian, Chao; Zhu, Chenyuan; Yu, Weiqiang; Jiang, Xinquan; Zhang, Fuqiang; Sun, Jian

    2016-11-01

    Type 2 diabetes mellitus impairs osteogenesis in bone marrow stromal cells (BMSCs). Bone morphogenetic protein 2 (BMP2) has been extensively applied for bone defect restoration and has been shown to activate the Wnt signaling pathway. The objective of this study was to investigate the effects of BMP2 on the cell proliferation and osteogenesis of type 2 diabetic BMSCs in rats and explore whether BMP2 induced osteogenesis via the stimulation of Wnt signaling pathway. The cell experiments were divided into DM (diabetic BMSCs), BMP25 (induced with 25ng/ml BMP2), BMP100 (induced with 100ng/ml BMP2) and BMP25 +XAV groups. All cells with or without the different concentrations of BMP2 were cultured under the same experimental conditions. The in vitro results indicated that BMP2 enhanced cell proliferation by 130%-157% and osteogenic differentiation by approximately two-fold in type 2 diabetic BMSCs. The expression levels of β-catenin, cyclin D1, Runx2 and c-myc related to the Wnt signaling pathway were also upregulated from 180% to 212% in BMP2-induced type 2 diabetic rat BMSCs, while the level of GSK3β decreased to 43%. In BMP2-induced type 2 diabetic BMSCs with calcium phosphate cement (CPC) scaffolds for osteoblast study in vivo, the appearance of newly formed bone dramatically increased to 175% compared with type 2 diabetic BMSCs. These data demonstrated that BMP2 enhanced bone regeneration in diabetic BMSCs by stimulating the Wnt signaling pathway with the accumulation of β-catenin and the depressed expression of GSK3β. Diabetic BMSCs associated with BMP2 might be a potential tissue-engineered construct for bone defects in type 2 diabetes mellitus.

  14. Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway.

    PubMed

    Ding, Sai; Zhang, Jing; Tian, Yu; Huang, Baolin; Yuan, Yuan; Liu, Changsheng

    2016-09-01

    Efficient presentation of growth factors is one of the great challenges in tissue engineering. In living systems, bioactive factors exist in soluble as well as in matrix-bound forms, both of which play an integral role in regulating cell behaviors. Herein, effect of magnesium on osteogenic bioactivity of recombinant human bone morphogenetic protein-2 (rhBMP-2) was investigated systematically with a series of Mg modified calcium phosphate cements (xMCPCs, x means the content of magnesium phosphate cement wt%) as matrix model. The results indicated that the MCPC, especially 5MCPC, could promote the rhBMP-2-induced in vitro osteogenic differentiation via Smad signaling of C2C12 cells. Further studies demonstrated that all MCPC substrates exhibited similar rhBMP-2 release rate and preserved comparable conformation and biological activity of the released rhBMP-2. Also, the ionic extracts of MCPC made little difference to the bioactivity of rhBMP-2, either in soluble or in matrix-bound forms. However, with the quartz crystal microbalance (QCM), we observed a noticeable enhancement of rhBMP-2 mass-uptake on 5MCPC as well as a better recognition of the bound rhBMP-2 to BMPR IA and BMPR II. In vivo results demonstrated a better bone regeneration capacity of 5MCPC/rhBMP-2. From the above, our results demonstrated that it was the Mg anchored on the underlying substrates that tailored the way of rhBMP-2 bound on MCPC, and thus facilitated the recognition of BMPRs to stimulate osteogenic differentiation. The study will guide the development of Mg-doped bioactive bone implants for tissue regeneration.

  15. Phosphorylated, cellulose-based substrates as potential adsorbents for bone morphogenetic proteins in biomedical applications: a protein adsorption screening study using cytochrome C as a bone morphogenetic protein mimic.

    PubMed

    Mucalo, Michael R; Kato, Katsuya; Yokogawa, Yoshiyuki

    2009-06-01

    Screening studies aimed at identifying useful biomedical materials that (when combined with implants) can attract bone morphogenetic proteins to their surfaces have been conducted. In this paper, the screening process has involved carrying out protein adsorption studies using cytochrome C, as a BMP protein mimic on phosphorylated cellulose-based substrates. These studies have shown that phosphorylation of cellulose produces materials that are capable of attracting the adsorption of cytochrome C to their surface. In contrast, negligible cytochrome C adsorption was observed on the unphosphorylated cellulose-based materials. The selective uptake of the positively charged cytochrome C (from solutions at pH 9.51) by the negatively charged phosphorylated cotton and microcrystalline cellulose substrates was primarily due to this protein's high isoelectric point (i.e.p) of 9.8 which gives it a positive charge at pH

  16. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering.

  17. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    PubMed

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish.

  18. Regulation of retinal progenitor cell differentiation by bone morphogenetic protein 4 is mediated by the smad/id cascade.

    PubMed

    Du, Yang; Xiao, Qi; Yip, Henry K

    2010-07-01

    PURPOSE. Bone morphogenetic proteins (BMPs) are secreted signaling molecules that are implicated in the control of multiple events during mouse eye development. However, little is known about the mechanisms by which BMP signaling regulates these retinal developmental processes. METHODS. Real-time PCR, Western blot, and immunohistochemistry were used to investigate the expression of components of BMP signaling in the mouse retina. Retinal progenitor cells (RPCs) were used to study the effects of BMP4 on retinal cell differentiation and regulation of Id protein expression. RESULTS. Results showed that BMP2, -4, and -7; BMP receptor (BMPRIb) mRNAs; and proteins and downstream signaling molecule Smad1/5/8 proteins were all highly expressed in the mouse retina during the embryonic (E13.5-E18.5) and early postnatal (P)1 stage and that the expression was downregulated in the adult. On stimulation with BMP4, cultured mouse RPCs differentiated into neuronal lineage whereas astrocyte cell differentiation was inhibited. BMP4 mainly stimulated production of retinal ganglion cells (RGCs). Results also revealed that BMPs and BMPRIb were co-localized with inhibitors of differentiation (Id) (mainly Id1 and -3) in RGCs in the adult mouse retina. Exposure of RPCs to BMP4 upregulated Id1-3 expression levels, mediated through the phosphorylation of Smad1/5/8 proteins. CONCLUSIONS. These results suggest that Id genes are one of the potential targets of BMP signaling in the differentiation of RPCs.

  19. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: Implications for ligand binding

    SciTech Connect

    Mace, Peter D.; Cutfield, John F.; Cutfield, Sue M. . E-mail: sue.cutfield@otago.ac.nz

    2006-12-29

    BMPRII is a type II TGF-{beta} serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-{beta} type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-{beta} receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-{beta} receptors, may play a key role in ligand recognition.

  20. Evaluating Osteogenic Potential of Ligamentum Flavum Cells Cultivated in Photoresponsive Hydrogel that Incorporates Bone Morphogenetic Protein-2 for Spinal Fusion

    PubMed Central

    Chiang, Chih-Wei; Chen, Wei-Chuan; Liu, Hsia-Wei; Wang, I-Chun; Chen, Chih-Hwa

    2015-01-01

    Regenerative medicine is increasingly important in clinical practice. Ligamentum flava (LF) are typically removed during spine-related surgeries. LF may be a source of cells for spinal fusion that is conducted using tissue engineering techniques. In this investigation, LF cells of rabbits were isolated and then characterized by flow cytometry, morphological observation, and immunofluorescence staining. The LF cells were also cultivated in polyethylene (glycol) diacrylate (PEGDA) hydrogels that incorporated bone morphogenetic protein-2 (BMP-2) growth factor, to evaluate their proliferation and secretion of ECM and differentiation in vitro. The experimental results thus obtained that the proliferation, ECM secretion, and differentiation of the PEGDA-BMP-2 group exceeded those of the PEGDA group during the period of cultivation. The mineralization and histological staining results differed similarly. A nude mice model was utilized to prove that LF cells on hydrogels could undergo osteogenic differentiation in vivo. These experimental results also revealed that the PEGDA-BMP-2 group had better osteogenic effects than the PEGDA group following a 12 weeks after transplantation. According to all of these experimental results, LF cells are a source of cells for spinal fusion and PEGDA-BMP-2 hydrogel is a candidate biomaterial for spinal fusion by tissue engineering. PMID:26426006

  1. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization.

    PubMed

    Kuo, Wan-Jong; Digman, Michelle A; Lander, Arthur D

    2010-11-15

    Cell surface heparan sulfate (HS) not only binds several major classes of growth factors but also sometimes potentiates their activities--an effect usually termed "coreception." A view that coreception is due to the stabilization of growth factor-receptor interactions has emerged primarily from studies of the fibroblast growth factors (FGFs). Recent in vivo studies have strongly suggested that HS also plays an important role in regulating signaling by the bone morphogenetic proteins (BMPs). Here, we provide evidence that the mechanism of coreception for BMPs is markedly different from that established for FGFs. First, we demonstrate a direct, stimulatory role for cell surface HS in the immediate signaling activities of BMP2 and BMP4, and we provide evidence that HS-BMP interactions are required for this effect. Next, using several independent assays of ligand binding and receptor assembly, including coimmunoprecipitation, cross-linking, and fluorescence fluctuation microscopy, we show that HS does not affect BMP binding to type I receptor subunits but instead enhances the subsequent recruitment of type II receptor subunits to BMP-type I receptor complexes. This suggests a view of HS as a catalyst of the formation of signaling complexes, rather than as a stabilizer of growth factor binding.

  2. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke.

    PubMed

    Shin, Jin A; Kang, Jihee Lee; Lee, Kyung-Eun; Park, Eun-Mi

    2012-05-01

    Bone morphogenetic proteins (BMPs) and their antagonists have roles in scar formation and regeneration after central nervous system injuries. However, temporal changes in their expression during astroglial scar formation in the ischemic brain are unknown. Here, we examined protein levels of BMP2, BMP7, and their antagonist noggin in the ischemic brain up to 4 weeks after experimental stroke in mice. BMP2 and BMP7 levels were increased from 1 to 4 weeks in the ischemic brain, and their expression was associated with astrogliosis. BMP7 expression was more intense and co-localized in reactive astrocytes in the ischemic subcortex at 1 week. Noggin expression began to increase after 2 weeks and was further increased at 4 weeks only in the ischemic subcortex, but the intensity was weak compared to the intensity of BMPs. Noggin was co-localized mainly in activated microglia. These findings show that expression of BMPs and noggin differed over time, in intensity and in types of cell, and suggest that BMPs and noggin have different roles in the processes of glial scar formation and neurorestoration in the ischemic brain.

  3. Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish.

    PubMed

    Thorimbert, Valentine; König, Désirée; Marro, Jan; Ruggiero, Florence; Jaźwińska, Anna

    2015-10-01

    Zebrafish fin regeneration involves initial formation of the wound epidermis and the blastema, followed by tissue morphogenesis. The mechanisms coordinating differentiation of distinct tissues of the regenerate are poorly understood. Here, we applied pharmacologic and transgenic approaches to address the role of bone morphogenetic protein (BMP) signaling during fin restoration. To map the BMP transcriptional activity, we analyzed the expression of the evolutionarily conserved direct phospho-Smad1 target gene, id1, and its homologs id2a and id3. This analysis revealed the BMP activity in the distal blastema, wound epidermis, osteoblasts, and blood vessels of the regenerate. Blocking the BMP function with a selective chemical inhibitor of BMP type I receptors, DMH1, suppressed id1 and id3 expression and arrested regeneration after blastema formation. We identified several previously uncharacterized functions of BMP during fin regeneration. Specifically, BMP signaling is required for remodeling of plexus into structured blood vessels in the rapidly growing regenerate. It organizes the wound epithelium by triggering wnt5b expression and promoting Collagen XIV-A deposition into the basement membrane. BMP represents the first known signaling that induces actinotrichia formation in the regenerate. Our data reveal a multifaceted role of BMP for coordinated morphogenesis of distinct tissues during regeneration of a complex vertebrate appendage.

  4. Water temperature induces jaw deformity and bone morphogenetic proteins (BMPs) gene expression in golden pompano Trachinotus ovatus larvae.

    PubMed

    Ma, Zhenhua; Zhang, Nan; Qin, Jian G; Fu, Mingjun; Jiang, Shigui

    2016-01-01

    Golden pompano Trachinotus ovatus larvae were kept at 26, 29 and 33 °C for 15 days from 3-day post hatching (DPH) to 18 DPH to test temperature-dependent growth and jaw malformation. The growth, survival, jaw deformity and the gene expressions of bone morphogenetic proteins (BMPs) were used as criteria to examine the fish response to temperature manipulation. The growth rate of fish at 29 or 33 °C was significantly faster than fish at 26 °C, while fish survival at 29 °C was significantly higher than fish at 33 °C. Jaw deformity was significantly affected by water temperature. The highest jaw deformity occurred on fish at 33 °C, and the lowest jaw deformity was at 26 °C. The expressions of all BMP genes except BMP10 were significantly affected by water temperature. The highest gene expression of BMP2 was on fish at 29 °C, and the lowest expression was at 33 °C. For the BMP4 gene, the highest and lowest expressions were found on fish at 33 and 26 °C, respectively. The present study indicates that jaw deformity of golden pompano larvae increases with increasing temperature, and the gene expression of BMP4 proteins coincides with high jaw deformity and water temperature elevation.

  5. Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors

    PubMed Central

    Calpe, Silvia; Correia, Ana C. P.; Sancho-Serra, Maria del Carmen; Krishnadath, Kausilia K.

    2016-01-01

    ABSTRACT Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications. PMID:26967714

  6. Assignment of a new TGF-{beta} superfamily member, human cartilage-derived morphogenetic protein-1, to chromosome 20q11.2

    SciTech Connect

    Lin, Keming; Thomas, J.T.; McBride, O.W.; Luyten, F.P.

    1996-05-15

    This report describes the localization of a new TGF {beta} superfamily member, human cartilage-derived morphogenetic protein-1, to human chromosome 20q11.2 using southern analysis, RFLP analysis and linkage analysis. 8 refs., 1 tab.

  7. Insight on Bone Morphogenetic Protein 7 in Ankylosing Spondylitis and its association with disease activity and radiographic damage

    PubMed Central

    Mahmoud, Adel; Fayez, Dalia; Gabal, Mervat Mammdouh Abou; Hamza, Sherin Mohamed Hosny; Badr, Takwa

    2016-01-01

    Introduction Fusion of joints as well as intervertebral spaces by the formation of bony spurs appearing as syndesmophytes and osteophytes are the hallmark of spondyloarthropathies which accounts for disability. The aim of this study was to assess the serum level of bone morphogenetic protein (BMP)-7 in ankylosing spondylitis and its relationship with disease activity and the radiographic damage. Methods This longitudinal case control study was conducted in Ain Shams University Hospitals (Egypt). A total of 55 subjects were included in two case groups and one control group. Group I included 20 patients with Ankylosing Spondylitis (AS) assessed at baseline (defined as Ia and after 18 months defined as Ib). Group II included 20 patients with Rheumatoid Arthritis (RA) and Group III included 15 healthy subjects as controls. Patients with other forms of seronegative spondyloarthropathies, bone forming diseases were excluded from the study. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and the Bath Ankylosing Spondylitis Metrology Index (BASMI) were used to assess disease activity in AS patients. RA disease activity was assessed using the disease activity score 28 (DAS28). Radiographic changes were assessed using the Bath AS Radiographic Index (BASRI) in AS and Larsen scores in RA. Laboratory investigations included: Complete blood picture (CBC), Erythrocyte sedimentation rate (ESR), quantitative CRP, serum calcium, phosphorus and alkaline phosphatase. Determination of serum bone morphogenetic protein-7 level (BMP-7) was done using enzyme linked immunosorbent assay (ELISA). Sample collections, clinical and radiological assessments were performed at baseline for all groups and after a mean follow-up of 18 months for Group I. Data were analyzed by SPSS 17, using t-test, Kruskal-Wallis, Mann-Whitney, Fischer exact test, Chi square, and Pearson Product-Moment Correlation Coefficient. Results There were statistically significant differences between the 3

  8. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers

    PubMed Central

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  9. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    PubMed

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries.

  10. Commensal Bacteria-induced Interleukin 1β (IL-1β) Secreted by Macrophages Up-regulates Hepcidin Expression in Hepatocytes by Activating the Bone Morphogenetic Protein Signaling Pathway.

    PubMed

    Shanmugam, Nanda Kumar N; Chen, Kejie; Cherayil, Bobby J

    2015-12-18

    The liver hormone hepcidin is the central regulator of systemic iron metabolism. Its increased expression in inflammatory states leads to hypoferremia and anemia. Elucidation of the mechanisms that up-regulate hepcidin during inflammation is essential for developing rational therapies for this anemia. Using mouse models of inflammatory bowel disease, we have shown previously that colitis-associated hepcidin induction is influenced by intestinal microbiota composition. Here we investigate how two commensal bacteria, Bifidobacterium longum and Bacteroides fragilis, representative members of the gut microbiota, affect hepcidin expression. We found that supernatants of a human macrophage cell line infected with either of the bacteria up-regulated hepcidin when added to a human hepatocyte cell line. This activity was abrogated by neutralization of IL-1β. Moreover, purified IL-1β increased hepcidin expression when added to the hepatocyte line or primary human hepatocytes and when injected into mice. IL-1β activated the bone morphogenetic protein (BMP) signaling pathway in hepatocytes and in mouse liver, as indicated by increased phosphorylation of small mothers against decapentaplegic proteins. Activation of BMP signaling correlated with IL-1β-induced expression of BMP2 in human hepatocytes and activin B in mouse liver. Treatment of hepatocytes with two different chemical inhibitors of BMP signaling or with a neutralizing antibody to BMP2 prevented IL-1β-induced up-regulation of hepcidin. Our results clarify how commensal bacteria affect hepcidin expression and reveal a novel connection between IL-1β and activation of BMP signaling. They also suggest that there may be differences between mice and humans with respect to the mechanism by which IL-1β up-regulates hepcidin.

  11. 1-step versus 2-step immobilization of alkaline phosphatase and bone morphogenetic protein-2 onto implant surfaces using polydopamine.

    PubMed

    Nijhuis, Arnold W G; van den Beucken, Jeroen J J P; Boerman, Otto C; Jansen, John A; Leeuwenburgh, Sander C G

    2013-08-01

    Immobilization of biomolecules onto implant surfaces is highly relevant in many areas of biomaterial research. Recently, a 2-step immobilization procedure was developed for the facile conjugation of biomolecules onto various surfaces using self-polymerization of dopamine into polydopamine. In the current study, a 1-step polydopamine-based approach was applied for alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2) immobilization, and compared to the conventional 2-step polydopamine-based immobilization and plain adsorption. To this end, ALP and BMP-2 were immobilized onto titanium and polytetrafluoroethylene (PTFE) substrates. The absolute quantity and biological activity of immobilized ALP were assessed quantitatively to compare the three types of immobilization. Plain adsorption of both ALP and BMP-2 was inferior to both polydopamine-based immobilization approaches. ALP was successfully immobilized onto titanium and PTFE surfaces via the 1-step approach, and the immobilized ALP retained its enzymatic activity. Using the 1-step approach, the amount of immobilized ALP was increased twofold to threefold compared to the conventional 2-step immobilization process. In contrast, more BMP-2 was immobilized using the conventional 2-step immobilization approach. Retention of ALP and BMP-2 was measured over a period of 4 weeks and was found to be similar for the 1-step and 2-step methods and far superior to the retention of adsorbed biomolecules due to the formation of covalent linkages between catechol moieties and immobilized proteins. The biological behavior of ALP and BMP-2 coatings immobilized using polydopamine (1- and 2-step) as well as adsorption was assessed by culturing rat bone marrow cells, which revealed that the cell responses to the various experimental groups were not statistically different. In conclusion, the 1-step polydopamine-based immobilization method was shown to be more efficient for immobilization of ALP, whereas the conventional 2

  12. Posterior maxillary sandwich osteotomy combined with sinus grafting with bone morphogenetic protein-2 for alveolar reconstruction for dental implants: report of four cases.

    PubMed

    Jensen, Ole T; Cottam, Jared

    2013-01-01

    Four patients underwent posterior sandwich osteotomy combined with sinus floor grafting using bone morphogenetic protein-2 and other grafting materials. The patients were treated over a period of 4 years. Two to four implants were placed in each site subsequently. Of the 12 implants placed, none failed. Alveolar crest bone levels appeared to be stable over time, with an average vertical gain of about 5 mm. Overall vertical gain, including the sinus graft, exceeded 13 mm in all patients. The procedure appears to hold promise for combined vertical alveolar defects and prominent pneumatization of the posterior maxilla.

  13. Bone Morphogenetic Protein 2 and Transforming Growth Factor β1 Inhibit the Expression of the Proinflammatory Cytokine IL-34 in Rheumatoid Arthritis Synovial Fibroblasts.

    PubMed

    Chemel, Marguerite; Brion, Regis; Segaliny, Aude-Isabelle; Lamora, Audrey; Charrier, Celine; Brulin, Benedicte; Maugars, Yves; Le Goff, Benoit; Heymann, Dominique; Verrecchia, Franck

    2017-01-01

    IL-34 is a proinflammatory cytokine implicated in rheumatoid arthritis (RA). The current study aimed to assess the IL-34 expression in response to two members of the transforming growth factor (TGF)-β family, TGF-β1 and bone morphogenetic protein (BMP)-2, in synovial fibroblasts from RA patients. IL-34, TGF-β1, and BMP-2 productions were measured in patient synovial fluids by enzyme-linked immunosorbent assay. IL-34 mRNA levels were quantified by real-time quantitative PCR in human synovial fibroblasts and murine mesenchymal stem cells. Pharmacologic inhibitions were used to determine the involvement of activin receptor-like kinase 1 (ALK1) and ALK5 downstream TGF-β1 and BMP-2. IL-34, TGF-β1, and BMP-2 were expressed in synovial fluids from RA patients. We found a significant correlation between IL-34 and TGF-β1 expressions. Levels of both IL-34 and TGF-β1 were thus correlated with the total leukocyte counts in the synovial fluids. TGF-β1 and BMP-2 decreased IL-34 expression in the synovial fibroblasts or in murine mesenchymal stem cells in a dose- and time-dependent manner through ALK5 and ALK1 pathways, respectively. In addition, TGF-β1 and BMP-2 antagonized tumor necrosis factor α-induced IL-34 gene expression. This work identifies TGF-β1 and BMP-2 as potent inhibitors of IL-34 expression in RA synovial fibroblasts. These cytokines, as upstream inhibitors of IL-34, may thus contribute to antagonize inflammation and bone erosions in RA.

  14. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    SciTech Connect

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-16

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  15. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    SciTech Connect

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  16. Bone response to 3-D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.

    SciTech Connect

    Eurell, Jo Ann; Dellinger, Jennifer Gwynne; Cesarano, Joseph, III; Jamison, Russell D.

    2005-06-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

  17. Morphogenetic fields within the human dentition: A new, clinically relevant synthesis of an old concept☆

    PubMed Central

    Townsend, Grant; Harris, Edward F.; Lesot, Herve; Clauss, Francois; Brook, Alan

    2009-01-01

    This paper reviews the concept of morphogenetic fields within the dentition that was first proposed by Butler (Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond B 1939;109:1–36), then adapted for the human dentition by Dahlberg (Dahlberg AA. The changing dentition of man. J Am Dent Assoc 1945;32:676–90; Dahlberg AA. The dentition of the American Indian. In: Laughlin WS, editor. The Physical Anthropology of the American Indian. New York: Viking Fund Inc.; 1951. p. 138–76). The clone theory of dental development, proposed by Osborn (Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA, editors Development, function and evolution of teeth. London: Academic Press, 1978. p. 171–201), is then considered before these two important concepts are interpreted in the light of recent findings from molecular, cellular, genetic and theoretical and anthropological investigation. Sharpe (Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32:17–25) put forward the concept of an odontogenic homeobox code to explain how different tooth classes are initiated in different parts of the oral cavity in response to molecular cues and the expression of specific groups of homeobox genes. Recently, Mitsiadis and Smith (Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool (Mol Dev Evol) 2006; 306B:177–82.) proposed that the field, clone and homeobox code models could all be incorporated into a single model to explain dental patterning. We agree that these three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing and extra teeth. The proposals are compatible with the unifying aetiological model developed by Brook (Brook AH. A unifying aetiological explanation for anomalies of

  18. Morphogenetic fields within the human dentition: a new, clinically relevant synthesis of an old concept.

    PubMed

    Townsend, Grant; Harris, Edward F; Lesot, Herve; Clauss, Francois; Brook, Alan

    2009-12-01

    This paper reviews the concept of morphogenetic fields within the dentition that was first proposed by Butler (Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond B 1939;109:1-36), then adapted for the human dentition by Dahlberg (Dahlberg AA. The changing dentition of man. J Am Dent Assoc 1945;32:676-90; Dahlberg AA. The dentition of the American Indian. In: Laughlin WS, editor. The Physical Anthropology of the American Indian. New York: Viking Fund Inc.; 1951. p. 138-76). The clone theory of dental development, proposed by Osborn (Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA, editors Development, function and evolution of teeth. London: Academic Press, 1978. p. 171-201), is then considered before these two important concepts are interpreted in the light of recent findings from molecular, cellular, genetic and theoretical and anthropological investigation. Sharpe (Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32:17-25) put forward the concept of an odontogenic homeobox code to explain how different tooth classes are initiated in different parts of the oral cavity in response to molecular cues and the expression of specific groups of homeobox genes. Recently, Mitsiadis and Smith (Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool (Mol Dev Evol) 2006; 306B:177-82.) proposed that the field, clone and homeobox code models could all be incorporated into a single model to explain dental patterning. We agree that these three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing and extra teeth. The proposals are compatible with the unifying aetiological model developed by Brook (Brook AH. A unifying aetiological explanation for anomalies of tooth number

  19. Treatment of neglected femoral neck fractures using the modified dynamic hip screw with autogenous bone and bone morphogenetic protein-2 composite materials grafting

    PubMed Central

    Lin, Dasheng; Zuo, Shenjia; Li, Lin; Wang, Lei; Lian, Kejian

    2015-01-01

    Background: The neglected femoral neck fracture is one where there has been a delay of more than 30 days to seek medical help from the time of the original injury. Salvage procedures, such as osteotomy and other treatment options such as vascularized and nonvascularized bone grafts have high failure rates and arthroplasty procedures are not ideal, given the patient's young age and higher levels of activity. We designed a hollow bone graft dynamic hip screw (Hb-DHS) (modified DHS, Hb-DHS) for use in neglected femoral neck fractures. This study evaluates the efficacy and safety of the modified dynamic hip screw (DHS) with autogenous bone and bone morphogenetic protein 2 (BMP-2) composite materials grafting for the treatment of the neglected femoral neck fractures. Materials and Methods: A prospective study was carried out in twenty patients of neglected femoral neck fractures treated with the modified DHS with autogenous bone and BMP-2 composite materials grafting between July 2007 and February 2010. There were 14 men and 6 women with a mean age of 29.6 years (range 19–42 years). The mean time from injury to surgery was 9.7 weeks (range 6–16 weeks). The operation time, intraoperative blood loss, fracture healing time, Harris scoring for hip function and complications were recorded to evaluate treatment effects. Results: The mean operation time was 75.8 min (range 55–100 min) with mean intraoperative blood loss volume of 105 mL (range 70–220 mL). The mean time to union was 17 weeks (range 12–24 weeks). One patient did not achieve union, and two patients had avascular necrosis of the femoral head. This patient with nonunion underwent intertrochanteric osteotomy. In patients with avascular necrosis one required total hip arthroplasty, the other did not require intervention at the last followup. A total of 14 patients (70%) had excellent results, 2 (10%) had good, 1 (5%) had moderate and 3 (15%) had poor results. Conclusion: The modified DHS with autogenous

  20. Role of a TPA-responsive element in hepcidin transcription induced by the bone morphogenetic protein pathway.

    PubMed

    Kanamori, Yohei; Murakami, Masaru; Matsui, Tohru; Funaba, Masayuki

    2015-10-16

    Systemic iron balance is governed by the liver-derived peptide hormone hepcidin. The transcription of hepcidin is primarily regulated by the bone morphogenetic protein (BMP) and inflammatory cytokine pathways through the BMP-response element (BMP-RE) and STAT-binding site, respectively. In addition to these elements, we previously identified a TPA-responsive element (TRE) in the hepcidin promoter and showed that it mediated the transcriptional activation of hepcidin through activator protein (AP)-1 induced by serum. In the present study, we examined the role of TRE in the BMP-induced transcription of hepcidin in HepG2 liver cells. The serum treatment increased the basal transcription of hepcidin; however, responsiveness to the expression of ALK3(QD), a constitutively active BMP type I receptor, was unaffected. Consistent with these results, mutations in TRE in the hepcidin promoter decreased basal transcription, whereas responsiveness to the expression of ALK3(QD) remained unchanged. HepG2 cells significantly expressed AP-1 components in the basal state, whereas BMP did not up-regulate the expression of these components. The expression of c-fos enhanced the basal transcription of hepcidin as well as ALK3(QD)-mediated hepcidin transcription, whereas that of dominant-negative c-fos decreased hepcidin transcription. The results of the present study suggested that the cis-elements of the hepcidin promoter, BMP-RE and TRE, individually transmitted BMP-mediated and AP-1-mediated signals, respectively, whereas transcription was synergistically increased by the stimulation of BMP-RE and TRE.

  1. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development

    PubMed Central

    LEI, Xiaocan; CUI, Kuiqing; CAI, Xiaoyan; REN, Yanping; LIU, Qingyou; SHI, Deshun

    2016-01-01

    In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture. PMID:27890905

  2. [Changes of bone morphogenetic protein-7 and inhibitory Smad expression in streptozotocin-induced diabetic nephropathy rat kidney].

    PubMed

    Yang, Qin; Han, Bing; Xie, Ru-Jia; Cheng, Ming-Liang

    2007-04-25

    The present study was designed to observe the expressions of bone morphogenetic protein-7 (BMP-7) and inhibitory Smads in kidney of rats with diabetic nephropathy (DN), and explore the possible mechanism of DN. Male Wistar rats weighing 180-220 g were single injected with streptozocin (STZ, 55 mg/kg body weight) for 2, 4, 8 and 16 weeks to induce DN. Blood glucose, kidney weight/body weight and 24-hour urine protein in the control and DN rats were examined; the expressions of BMP-7, Smad6 and Smad7 were detected by using immunohistochemical techniques, Western blot and real-time PCR. The results showed that blood glucose and 24-hour urine protein in DN rats were higher than that in the control rats and kidney weight/body weight was also elevated in DN rats, especially in 16-week STZ-induced rats. The expressions of BMP-7 and Smad6 proteins in DN rats were elevated, while BMP-7 mRNA expression was increased 2 weeks after STZ injection and decreased 16 weeks after STZ injection. The expressions of Smad7 protein and mRNA were elevated in DN rats 2 weeks after STZ injection and decreased 16 weeks after STZ injection. In addition, the expressions of transforming growth factor-beta1 (TGF-beta1) and collagen type I (COL-I) mRNA were increased in DN rats. These results suggest in the early stage of DN, increase in BMP-7 and inhibitory Smad expression may play a role in the feedback regulation and restrain the development of DN.

  3. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects

    PubMed Central

    Jones, Tamsin E M; Day, Robert C; Beck, Caroline W

    2013-01-01

    The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. PMID:23981117

  4. Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4.

    PubMed

    Yao, Yucheng; Shahbazian, Ani; Boström, Kristina I

    2008-05-09

    Arterial calcification is ubiquitous in vascular disease and is, in part, prevented by matrix Gla protein (MGP). MGP binds calcium ions through gamma-carboxylated glutamates (Gla residues) and inhibits bone morphogenetic protein (BMP)-2/-4. We hypothesized that a conserved proline (Pro)64 is essential for BMP inhibition. We further hypothesized that calcium binding by the Gla residues is a prerequisite for BMP inhibition. Site-directed mutagenesis was used to modify Pro64 and the Gla residues, and the effect on BMP-4 activity, and binding of BMP-4 and calcium was tested using luciferase reporter gene assays, coimmunoprecipitation, crosslinking, and calcium quantification. The results showed that Pro64 was critical for binding and inhibition of BMP-4 but not for calcium binding. The Gla residues were also required for BMP-4 binding but flexibility existed. As long as 1 Gla residue remained on each side of Pro64, the ability to bind and inhibit BMP-4 was preserved. Chelation of calcium ions by EDTA or warfarin treatment of cells led to loss of ability of MGP to bind BMP-4. Our results also showed that phenylalanine could replace Pro64 without loss of function and that zebrafish MGP, which lacks upstream Gla residues, did not function as a BMP inhibitor. The effect of MGP mutagenesis on vascular calcification was determined in calcifying vascular cells. Only MGP proteins with preserved ability to bind and inhibit BMP-4 prevented osteogenic differentiation and calcification. Together, our results suggest that BMP and calcium binding in MGP are independent but functionally intertwined processes and that the BMP binding is essential for prevention of vascular calcification.

  5. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps.

  6. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development

    PubMed Central

    Park, Sung Yeon; Stultz, Brian G.; Hursh, Deborah A.

    2015-01-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. PMID:26500262

  7. Bone Morphogenetic Protein-7 Suppresses TGFβ2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention

    PubMed Central

    Shu, Daisy Y.; Wojciechowski, Magdalena C.; Lovicu, Frank J.

    2017-01-01

    Purpose Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a key pathologic mechanism underlying cataract. Two members of the transforming growth factor-β (TGFβ) superfamily, TGFβ and bone morphogenetic protein-7 (BMP-7) have functionally distinct roles in EMT. While TGFβ is a potent inducer of EMT, BMP-7 counteracts the fibrogenic activity of TGFβ. We examine the modulating effect of BMP-7 on TGFβ-induced EMT in LECs. Methods Rat lens epithelial explants were treated exogenously with TGFβ2 alone or in combination with BMP-7 for up to 5 days. Expression levels of E-cadherin, β-catenin, α-smooth muscle actin (α-SMA), and phosphorylated downstream Smads were determined using immunofluorescence and Western blotting. Reverse transcriptase quantitative PCR (RT-qPCR) was used to study gene expression levels of EMT markers and downstream BMP target genes, including the Inhibitors of differentiation (Id). Results Transforming growth factor-β2 induced LECs to transdifferentiate into myofibroblastic cells. Addition of BMP-7 suppressed TGFβ2-induced α-SMA protein levels and mesenchymal gene expression, with retention of E-cadherin and β-catenin expression to the cell membrane. Addition of BMP-7 prevented lens capsular wrinkling and cellular loss associated with TGFβ2-induced EMT over the 5-day treatment period. The inhibitory effect of BMP-7 was accompanied by an early induction of pSmad1/5 and suppression of TGFβ2-induced pSmad2/3. Treatment with TGFβ2 alone suppressed gene expression of Id2/3 and addition of BMP-7 restored Id2/3 expression. Conclusions Exogenous administration of BMP-7 abrogated TGFβ2-induced EMT in rat lens epithelial explants. Understanding the complex interplay between the TGFβ- and BMP-7–associated Smad signaling pathways and their downstream target genes holds therapeutic promise in cataract prevention. PMID:28152139

  8. Localization and action of Dragon (repulsive guidance molecule b), a novel bone morphogenetic protein coreceptor, throughout the reproductive axis.

    PubMed

    Xia, Yin; Sidis, Yisrael; Mukherjee, Abir; Samad, Tarek A; Brenner, Gary; Woolf, Clifford J; Lin, Herbert Y; Schneyer, Alan

    2005-08-01

    Bone morphogenetic proteins (BMPs) play important roles in reproduction including primordial germ cell formation, follicular development, spermatogenesis, and FSH secretion. Dragon, a recently identified glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, is also a BMP coreceptor. In the present study, we determined the tissue and cellular localization of Dragon in reproductive organs using immunohistochemistry and in situ hybridization. Among reproductive organs, Dragon was expressed in testis, epididymis, ovary, uterus, and pituitary. In the testis of early postnatal mice, Dragon was found in gonocytes and spermatogonia, whereas in immature testes, Dragon was only weakly expressed in spermatogonia. Interestingly, pregnant mare serum gonadotropin treatment of immature mice robustly induced Dragon production in spermatocytes. In adult testis, Dragon was found in spermatocytes and round spermatids. In the ovary, Dragon was detected exclusively within oocytes and primarily those within secondary follicles. In the pituitary, Dragon-expressing cells overlapped FSH-expressing cells. Dragon was also expressed in a number of cell lines originating from reproductive tissues including Ishikawa, Hela, LbetaT2, MCF-7, and JEG3 cells. Immunocytochemistry and gradient sucrose ultracentrifugation studies showed Dragon was localized in lipid rafts within the plasma membrane. In reproductive cell lines, Dragon expression enhanced signaling of exogenous BMP2 or BMP4. The present studies demonstrate that Dragon expression is dynamically regulated throughout the reproductive tract and that Dragon protein modulates BMP signaling in cells from reproductive tissues. The overlap between Dragon expression and the functional BMP signaling system suggests that Dragon may play a role in mammalian reproduction.

  9. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    PubMed

    Yang, Xuechao; Walboomers, X Frank; van den Dolder, Juliette; Yang, Fang; Bian, Zhuan; Fan, Mingwen; Jansen, John A

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and bioactivity of the transfection. We also intended to investigate the behavior of transfected cells when seeded on 3-dimensional titanium fiber mesh scaffolds. Nanoparticles of calcium phosphate encapsulating plasmid deoxyribonucleic acid (DNA) (plasmid enhanced green fluorescent protein-BMP2) were prepared. Then, STRO-1-selected rat dental pulp stem cells were transfected using these nanoparticles. Transfection and bioactivity of the secreted BMP2 were examined. Thereafter, the transfected cells were cultured on a fibrous titanium mesh. The cultures were investigated using scanning electron microscipy and evaluated for cell proliferation, alkaline phosphatase activity and calcium content. Finally, real-time polymerase chain reaction was performed for odontogenesis-related gene expression. The results showed that the size of the DNA-loaded particles was approximately 100 nm in diameter. Nanoparticles could protect the DNA encapsulated inside from external DNase and release the loaded DNA in a low-acid environment (pH 3.0). In vitro, nanoparticle transfection was shown to be effective and to accelerate or promote the odontogenic differentiation of rat dental pulp stem cells when cultured in the 3-dimensional scaffolds. Based on our results, plasmid DNA-loaded calcium phosphate nanoparticles appear to be an effective non-viral vector for gene delivery and functioned well for odontogenic differentiation through Bmp2 transfection.

  10. Bone morphogenetic protein 4 inhibits TGF-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of gremlin in ECM modulation.

    PubMed

    Zode, Gulab S; Clark, Abbot F; Wordinger, Robert J

    2009-05-01

    The characteristic cupping of the optic nerve head (ONH) in glaucoma is associated with elevated TGF-beta2 and increased synthesis and deposition of extracellular matrix (ECM) proteins. In addition to TGF-beta2, the human ONH also expresses bone morphogenetic proteins (BMPs) and BMP receptors, which are members of the TGF-beta superfamily. We examined the potential effects of BMP4 and the BMP antagonist gremlin on TGF-beta2 induction of ECM proteins in ONH cells. BMP-4 dose dependently inhibited TGF-beta2-induced fibronectin (FN) and PAI-1 expression in ONH astrocytes and lamina cribrosa (LC) cells and also reduced TGF-beta2 stimulation of collagen I, collagen VI, and elastin. Addition of gremlin blocked this BMP-4 response, increasing cellular and secreted FN as well as PAI-1 levels in both cell types. Gremlin was expressed in ONH tissues and ONH cells, and gremlin protein levels were significantly increased in the LC region of human glaucomatous ONH tissues. Interestingly, recombinant gremlin dose dependently increased ECM protein expression in cultured ONH astrocytes and LC cells. Gremlin stimulation of ECM required activation of TGF-beta receptor and R-Smad3. TGF-beta2 increased gremlin mRNA expression and protein levels in ONH cells. Inhibition of either the type I TGF-beta receptor or Smad3 phosphorylation blocked TGF-beta2-induced gremlin expression. In conclusion, BMP4 blocked the TGF-beta2 induction of ECM proteins in ONH cells. The BMP antagonist gremlin reversed this inhibition, allowing TGF-beta2 stimulation of ECM synthesis. Increased expression of gremlin in the glaucomatous ONH may further exacerbate TGF-beta2 effects on ONH ECM metabolism by inhibiting BMP-4 antagonism of TGF-beta2 signaling. Modulation of the ECM via gremlin provides a novel therapeutic target for glaucoma.

  11. Cloning, expression profiling and promoter functional analysis of Bone morphogenetic protein 6 and 7 in tongue sole (Cynoglossus semilaevis).

    PubMed

    Ma, Qian; Feng, Wenrong; Zhuang, Zhimeng; Liu, Shufang

    2016-12-24

    Bone morphogenetic proteins (BMPs) play crucial roles in vertebrate developmental process and are associated with the mechanisms which drive early skeletal development. As a first approach to elucidating the role of BMPs in regulating fish bone formation and growth, we describe the cloning, expression profiling and promoter functional analysis of bmp6 and bmp7 in tongue sole (Cynoglossus semilaevis). The full length of bmp6 and bmp7 cDNA sequences is 1939 and 1836 bp, which encodes a protein of 428 and 427 amino acids, respectively. Tissue expression distribution of bmp6 and bmp7 was examined in 14 tissues of mature individuals by quantitative real-time PCR (qRT-PCR). The results revealed that bmp6 was predominantly expressed in the gonad, and bmp7 exhibited the highest expression level in the dorsal fin. Further comparison of bmp6 expression levels between female and male gonads showed that the expression in the ovary was significantly higher than in the testis. Moreover, bmp6 and bmp7 expression levels were detected at 15 sampling time points of early developmental stages (egg, larva, juvenile and fingerling stages). The highest expression level of bmp6 was observed in the egg stage (multi-cell and gastrula stage); while bmp7 exhibited the highest expression in the larva stage (1-4 days old). The high expression levels of BMP6 in the ovary as well as at early embryonic stages indicated that the maternally stored transcripts of bmp6 might play a role in early embryonic development. Whole-mount in situ hybridization showed that bmp6 and bmp7 exhibited similar spatial expression patterns. Both bmp6 and bmp7 signals were first detected in the head and anterior regions in newly hatched larvae, and then, the mRNAs appeared in the crown-like larval fin, jaw, operculum and fins (pectoral, dorsal, pelvic and anal) along with early development. Subsequently, we characterized the 5'-flanking regions of bmp6 and bmp7 by testing the promoter activity by luciferase reporter

  12. Neuroendocrine Differentiation in Prostate Cancer: Role of Bone Morphogenetic Protein-6 and Macrophages

    DTIC Science & Technology

    2010-07-01

    7-10-2010 11 Fig 6. When RAW 264.7 cells were treated with SB203580 and BMP-6, ChIP assay using GATA4 antibody no longer amplified...neuroendocrine differentiation was no longer observed. Mechanistically, series of studies including shRNA knockdowns and immunoprecipitation assays have...et al., 2005). These mice express the human diphtheria toxin receptor (DTR) under the control of cd11b, a macrophage-specific promoter. Because the

  13. Regulation of GNRH production by estrogen and bone morphogenetic proteins in GT1-7 hypothalamic cells.

    PubMed

    Otani, Hiroyuki; Otsuka, Fumio; Takeda, Masaya; Mukai, Tomoyuki; Terasaka, Tomohiro; Miyoshi, Tomoko; Inagaki, Kenichi; Suzuki, Jiro; Ogura, Toshio; Lawson, Mark A; Makino, Hirofumi

    2009-10-01

    Recent studies have shown that bone morphogenetic proteins (BMPs) are important regulators in the pituitary-gonadal endocrine axis. We here investigated the effects of BMPs on GNRH production controlled by estrogen using murine GT1-7 hypothalamic neuron cells. GT1-7 cells expressed estrogen receptor alpha (ERalpha; ESR1 as listed in MGI Database), ERbeta (ESR2 as listed in MGI Database), BMP receptors, SMADs, and a binding protein follistatin. Treatment with BMP2 and BMP4 had no effect on Gnrh mRNA expression; however, BMP6 and BMP7 significantly increased Gnrh mRNA expression as well as GnRH production by GT1-7 cells. Notably, the reduction of Gnrh expression caused by estradiol (E(2)) was restored by cotreatment with BMP2 and BMP4, whereas it was not affected by BMP6 or BMP7. E(2) activated extracellular signal-regulated kinase (ERK) 1/2 and stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) signaling but did not activate p38-mitogen-activated protein kinase (MAPK) signaling in GT1-7 cells. Inhibition of ERK1/ERK2 reversed the inhibitory effect of estrogen on Gnrh expression, whereas SAPK/JNK inhibition did not affect the E(2) actions. Expression levels of Eralpha and Erbeta were reduced by BMP2 and BMP4, but were increased by BMP6 and BMP7. Treatment with an ER antagonist inhibited the E(2) effects on Gnrh suppression including reduction of E(2)-induced ERK phosphorylation, suggesting the involvement of genomic ER actions in Gnrh suppression. BMP2 and BMP4 also suppressed estrogen-induced phosphorylation of ERK1/ERK2 and SAPK/JNK signaling, suggesting that BMP2 and BMP4 downregulate estrogen effects by attenuating ER-MAPK signaling. Considering that BMP6 and BMP7 increased the expression of alpha1E-subunit of R-type calcium channel (Cacna1e), which is critical for GNRH secretion, it is possible that BMP6 and BMP7 directly stimulate GNRH release by GT1-7 cells. Collectively, a newly uncovered interaction of BMPs and ER may be involved in

  14. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.

    PubMed

    Chen, Fa-Ming; Zhao, Yi-Min; Sun, Hai-Hua; Jin, Tao; Wang, Qin-Tao; Zhou, Wei; Wu, Zhi-Fen; Jin, Yan

    2007-03-12

    Novel thermomechanical hydrogel scaffolds containing our previously prepared microspheres loaded with bone morphogenetic proteins (BMP) were successfully generated by radical crosslinking and low dose gamma-irradiation from combination of two kind of biomaterials: glycidyl methacrylated dextran (Dex-GMA) and gelatin. The structure of those resulting smart hybrid hydrogels was evaluated by mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) analyses, and as a function of the degree of Dex-GMA's substitution (DS), the proportion between Dex-GMA and gelatin, and the initial polyethyleneglycol (PEG) concentration used in the preparation of the hydrogels. The swelling and degradation properties and the temperature-sensitive drug release manner were determined by dynamic evaluation methods in vitro, and the gel content was also calculated. MIP analysis showed that by systematically altering the preparation parameters, the overall networks were clearly macroporous with pore sizes ranging from 5.6+/-4.2 to 37.7+/-13.7 microm. As expected, the pore size decreased as DS and initial PEG concentration increased, whereas the opposite was found for the gel content. Moreover, the porosity values ranged from 73.7+/-12.4% up to 89.6+/-6.3%. The SEM results also showed the inter-connective pores as well as microspheres encased into their porous structure of those hydrogels. The swelling and degradation properties of the resultant hydrogels varied according to the DS of Dex-GMA and initial PEG concentration, while the proportion between Dex-GMA and gelatin had no significant influence on those characterizations. By changing the composition ratio of the two precursors, the phase transition temperature (lower critical solution temperature, LSCT) of the hydrogel scaffolds could also be adjusted to be or near the body temperature, so BMP release from microsphere-hydrogel compounds could be accordingly controlled and the release period could be varied from 18 to

  15. Odontogenic ameloblasts-associated protein (ODAM), via phosphorylation by bone morphogenetic protein receptor type IB (BMPR-IB), is implicated in ameloblast differentiation.

    PubMed

    Lee, Hye-Kyung; Park, Jong-Tae; Cho, Young-Sik; Bae, Hyun-Sook; Cho, Moon-Il; Park, Joo-Cheol

    2012-05-01

    To elucidate the function of the odontogenic ameloblast-associated protein (ODAM) in ameloblasts, we identified more than 74 proteins that interact with ODAM using protoarray. Of the identified proteins, bone morphogenetic protein receptor type-IB (BMPR-IB) was physiologically relevant in differentiating ameloblasts. ODAM and BMPR-IB exhibited similar patterns of expression in vitro, during ameloblast differentiation. ODAM and BMPR-IB interacted through the C-terminus of ODAM, which resulted in increased ODAM phosphorylation in the presence of bone morphogenetic protein 2 (BMP-2). Immunoprecipitation assays using Ser-Xaa-Glu (SXE) mutants of ODAM demonstrated that the phosphorylation of ODAM by BMPR-IB occurs at this motif, and this phosphorylation is required for the activation of MAPKs. ODAM phosphorylation was detected in ameloblasts during ameloblast differentiation and enamel mineralization in vitro and involved in the activation of downstream factors of MAPKs. Therefore, the BMP-2-BMPR-IB-ODAM-MAPK signaling cascade has important roles in ameloblast differentiation and enamel mineralization. Our data suggest that ODAM facilitates the progression of tooth development in cooperation with BMPR-IB through distinct domains of ODAM.

  16. [Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary].

    PubMed

    Wu, Yan-qing; Chen, Li-yun; Zhang, Zheng-hong; wang, Zheng-chao

    2013-04-01

    In mammals, ovarian follicle is made of an oocyte with its surrounding granulosa cells and theca cells. Follicular growth and development is a highly coordinated programmable process, which guarantees the normal oocyte maturation and makes it having the fertilizing capacity. The paracrine and autocrine between oocytes and granulosa cells are essential for the follicular development to provide a suitable microenvironment. Phosphatidylinositol-3 kinase /protein kinase B is one of these important regulatory signaling pathways during this developmental process, and bone morphogenetic protein-15 an oocyte-specific secreted signal molecule, which regulates the follicular development by paracrine in the mammalian ovary. The present article overviewed the role of phosphatidylinositol-3 kinase / protein kinase B signaling during the follicular development based on our previous investigation about protein kinase B /forkhead transcription factor forkhead family of transcription factors -3a, and then focused on the regulatory effects of bone morphogenetic protein-15, as a downstream signal molecule of phosphatidylinositol-3 kinase / forkhead family of transcription factors -3a pathway, on ovarian follicular development, which helped to further understand the molecular mechanism regulating the follicular development and to treat ovarian diseases like infertility.

  17. Effects of antenatal application of ambroxol and glucocorticoid on lung morphometry and signal transduction of bone morphogenetic protein in the fetal rat.

    PubMed

    Chen, Xiao-Qing; Wu, Sheng-Hua; Guo, Xi-Rong; Zhou, Xiao-Yu

    2012-07-01

    Antenatal ambroxol, dexamethasone (Dex) and betamethasone (Beta) are used to prevent neonate respiratory distress syndrome. The present study aimed to investigate the role of ambroxol, Dex and Beta administered antenatally on lung morphogenesis and signal transduction of bone morphogenetic protein (BMP) in rat embryo. Fetal lungs treated with ambroxol, 1-day Beta, 3-day Dex and 3-day Beta were more mature compared to the controls as determined by light microscopy and transmission electron microscopy. Expression of BMP4 and bone morphogenetic protein receptor II (BMPR‑II) mRNA was upregulated in the 1-day-Beta-, 3-day-Dex- and 3-day-Beta-treated animals. BMP4 and BMPR-II protein were significantly increased in the 1-day-Beta-, 3-day-Dex- and 3-day-Beta-treated animals. Ambroxol, Dex and Beta promoted the morphological development of rat fetal lung; Beta was more effective than Dex. A multi-dose of glucocorticoids exhited a more beneficial effect than a single dose. The effects of Beta and Dex may be mediated by regulation of BMP signal transduction in rat fetal lung.

  18. Dataset of microarray analysis to identify endoglin-dependent bone morphogenetic protein-2-responsive genes in the murine periodontal ligament cell line PDL-L2.

    PubMed

    Ishibashi, Osamu; Inui, Takashi

    2014-12-01

    The periodontal ligament (PDL), connective tissue located between the cementum of teeth and alveolar bone of the mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. We previously reported that endoglin was involved in the bone morphogenetic protein (BMP)-2-induced osteogenic differentiation of mouse PDL cells, which is associated with Smad-2 phosphorylation but not Smad-1/5/8 phosphorylation. Further, we found that the BMP-2-induced Smad-2 phosphorylation was, at least in part, dependent upon endoglin. In this study, to elucidate the detailed mechanism underlying the BMP-2-induced signaling pathway unique to PDL cells, we performed a cDNA microarray analysis to identify endoglin-dependent BMP-2-responsive genes in PDL-L2, a mouse PDL-derived cell line. Here we provide experimental methods and obtained dataset to correspond with our data in Gene Expression Omnibus (GEO) Datasets.

  19. Increased osteoinductivity and mineralization by minimal concentration of bone morphogenetic protein-2 loaded onto biphasic calcium phosphate in a rabbit sinus

    PubMed Central

    2016-01-01

    Purpose The purpose of the present study was to evaluate the effectiveness of a minimal concentration of bone morphogenetic protein-2 (BMP-2) in terms of quantitative and qualitative analyses of newly formed bone in a rabbit maxillary sinus model. Methods In 7 rabbits, sinus windows were prepared bilaterally. Biphasic calcium phosphate (BCP) loaded with 0.05 mg/mL BMP-2 was grafted into one sinus (the BMP group) and saline-soaked BCP was placed into the other (the control group) in each animal. The animals were allowed an 8-week healing period before being sacrificed. Specimens including the augmented area and surrounding tissues were then removed and evaluated both radiographically and histologically. Results There was a difference in the mineralization of new bone between the groups. In the BMP group, the greater part of the new bone consisted of mature lamellar bone with an evident trabecular pattern, whereas the control group showed mostly woven bone, consisting only partially of lamellar bone. Histometrically, the area of new bone was significantly greater (4.55±1.35 mm2 vs. 2.99±0.86 mm2) in the BMP group than in the control group (P<0.05); however, the total augmentation volumes were not significantly different between the groups. Conclusions Within the limitations of this study, it can be suggested that a minimal concentration of BMP-2 (0.05 mg/mL) had an osteoinductive effect with accelerated mineralization in a rabbit sinus model using a BCP carrier. PMID:27800217

  20. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing.

  1. The maturation-inducing hormone 17a-20b-dihydroxy-4pregnen-3-one regulates gene expression of inhibin A and bambi (bone morphogenetic protein and activin membrane bound inhibitor) in the rainbow trout ovary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transforming growth factor-beta (TGFb) superfamily members are important paracrine and autocrine regulators of ovarian development and steroidogenesis in mammals and birds, but their reproductive roles in fish are not well understood. The activin system, Tgfb, and bone morphogenetic protein 15 (Bmp...

  2. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads.

    PubMed

    Sangadala, Sreedhara; Boden, Scott D; Viggeswarapu, Manjula; Liu, Yunshan; Titus, Louisa

    2006-06-23

    Development and repair of the skeletal system and other organs is highly dependent on precise regulation of bone morphogenetic proteins (BMPs), their receptors, and their intracellular signaling proteins known as Smads. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, control of cellular responsiveness to BMPs is now a critical area that is poorly understood. We determined that LMP-1, a LIM domain protein capable of inducing de novo bone formation, interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads. In the region of LMP responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and can effectively compete with Smad1 and Smad5 for binding. We have shown that small peptides containing this motif can mimic the ability to block Smurf1 from binding Smads. This novel interaction of LMP-1 with the WW2 domain of Smurf1 to block Smad binding results in increased cellular responsiveness to exogenous BMP and demonstrates a novel regulatory mechanism for the BMP signaling pathway.

  3. Bone remodeling during prenatal morphogenesis of the human mental foramen.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Lajvardi, Souzan; Schneider, Richard A

    2004-08-01

    From a morphogenetic point of view, the mental foramen of the mandible is a highly suitable model to study the interactions of different tissues such as nerves, vessels, mesenchymal cells, cartilage, and bone. In previous work, we provided a three-dimensional description of the mental foramen at different developmental stages, and now we complement those studies with a three-dimensional visualization of different bone remodeling activities around the mental foramen. Histological serial sections of human embryos and fetuses, ranging in size from 25 to 117 mm crown-rump-length (CRL), were used to characterize the bone remodeling activity (apposition, inactivity, and resorption). We quantified and reconstructed this activity in three dimensions, and included information on the spatial relationship of the nerves, vessels, and dental primordia. In general, the mandible showed strong apposition at its outer surfaces. The brim of the mental foramen, however, displayed changing remodeling activity at different stages. In the depth of the bony gutter, which provides space for the nerve and the blood vessels, we found bone resorption beneath the inferior alveolar vein. Bone was also resorbed in proximity to the dental primordia. In future studies, we will relate gene expression data to these morphological findings in order to identify molecular mechanisms that regulate this complex system.

  4. Metabolic differences in bovine cumulus-oocyte complexes matured in vitro in the presence or absence of follicle-stimulating hormone and bone morphogenetic protein 15.

    PubMed

    Sutton-McDowall, Melanie L; Mottershead, David G; Gardner, David K; Gilchrist, Robert B; Thompson, Jeremy G

    2012-10-01

    Bidirectional communication between cumulus cells and the oocyte is necessary to achieve oocyte developmental competence. The aim of the present study was to examine the effects of recombinant human bone morphogenetic protein 15 (rhBMP15) and follicle-stimulating hormone (FSH) supplementation on bovine cumulus-oocyte complex (COC) metabolism during maturation. Bovine COCs were matured in the presence of absence of FSH, rhBMP15, or both for 23 h. The addition of FSH and rhBMP15 increased blastocyst development (without rhBMP15 and FSH, 28.4% ± 7.4%; with FSH and rhBMP15, 51.5% ± 5.4%; P < 0.05). Glucose uptake and lactate production was significantly increased by greater than 2-fold with FSH (P < 0.05), whereas rhBM15 supplementation did not increase these levels. rhBMP15 supplementation (regardless of FSH) significantly decreased ADP levels in COCs, leading to an increase in ATP:ADP ratios (P < 0.05). Indicators of mitochondrial activity and cellular REDOX, oxidized flavin adenine dinucleotide (FAD(++)) and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), levels within the oocyte of COCs were significantly higher with rhBMP15 alone, whereas the presence of FSH diminished the rhBMP15 effect. Regardless of treatment, no changes in REDOX state (FAD(++):NAD(P)H). The significant increase in FAD(++) and NAD(P)H in COCs with rhBMP15 was mediated via cumulus cells, because no differences were found in denuded oocytes cultured in the presence or absence of FSH, rhBMP15, or both. The present study demonstrates that a principal metabolic consequence of FSH supplementation of COCs is to alter the glycolytic rate of cumulus cells, whereas that of rhBMP15 is to regulate oxidative phosphorylation in the oocyte, even though it acts via cumulus cells. These effects are tempered when FSH and rhBMP15 are present together but, nonetheless, yield the best oocyte developmental competence.

  5. Gremlin-mediated decrease in bone morphogenetic protein signaling promotes aristolochic acid-induced epithelial-to-mesenchymal transition (EMT) in HK-2 cells.

    PubMed

    Li, Yi; Wang, Zihua; Wang, Shuai; Zhao, Jinghong; Zhang, Jingbo; Huang, Yunjian

    2012-07-16

    Ingestion of aristolochic acid (AA) is associated with the development of aristolochic acid nephropathy (AAN), which is characterized by progressive tubulointerstitial fibrosis, chronic renal failure and urothelial cancer. Our previous study showed that bone morphogenetic protein-7 (BMP-7) could attenuate AA-induced epithelial-to-mesenchymal transition (EMT) in human proximal tubule epithelial cells (PTEC). However, how gremlin (a BMP-7 antagonist) antagonizes the BMP-7 action in PTEC remained unsolved. The aim of the current study was to investigate the role of gremlin in AA-induced EMT in PTEC (HK-2 cells). HK-2 cells were treated with AA (10 μmol/L) for periods up to 72 h. Cell viability was determined by tetrazolium dye (MTT) assay. Morphological changes were assessed by phase-contrast microscopy. Markers of EMT, including E-cadherin and α-smooth muscle actin (α-SMA) were detected by indirect immunofluorescence stains. The BMP-7 and gremlin mRNA and protein expression in HK-2 cells were analyzed by quantitative real-time PCR (real-time RT-PCR) and western blotting after exposure to AA. The level of phosphorylated Smad1/5/8, a marker of BMP-7 activity, was also determined by western blot analysis. Cells were transfected with gremlin siRNA to determine the effects of gremlin knockdown on markers of EMT following treatment with AA. Our results indicated that AA-induced EMT was associated with acquisition of fibroblast-like cell shape, loss of E-cadherin, and increases of alpha-SMA and collagen type I. Interestingly, exposure of HK-2 cells to 10 μmol/L AA increased the mRNA and protein expression of gremlin in HK-2 cells. This increase was in parallel with a decrease in BMP-7 expression and a down-regulation of phosphorylated Smad1/5/8 protein levels. Moreover, transfection with siRNA to gremlin was able to recover BMP-7 signaling activity, and attenuate EMT-associated phenotypic changes induced by AA. Together, these observations strongly suggest that gremlin

  6. A fluorescence study of type I and type II receptors of bone morphogenetic proteins with bis-ANS (4, 4'-dianilino-1, 1'-bisnaphthyl-5, 5' disulfonic acid).

    PubMed

    Yin, Huiran; Zhou, Qing; Panda, Markandeswar; Yeh, Lee-Chuan C; Zavala, Michelle C; Lee, John C

    2007-04-01

    Crystallography studies on several members of the bone morphogenetic protein (BMP) receptors suggested that hydrophobic regions in these proteins play an important role in their structure and function. In the present study, the environment sensitive fluorescent probe 4, 4'-dianilino-1, 1'-bisnaphthyl-5, 5' disulfonic acid (bis-ANS) was used to study the hydrophobic regions of the extracellular domain of the type I and II receptors for bone morphogenetic proteins (ecBMPR-IB and ecBMPR-II). A single bis-ANS binding site per receptor molecule was found for both receptors, but the two receptors interacted with bis-ANS with distinctive characteristics. A significant shift in the emission maximum from 498 to 510 nm was detected when bis-ANS binds ecBMPR-IB, but a negligible change in the emission maximum was observed when the dye binds ecBMPR-II. Under identical reaction conditions, the maximum fluorescence intensities of the probe (I(max)) for the ecBMPR-IB and -II are 4.0 and 6.2 x 10(4) arbitrary units, respectively. The probe binds to ecBMPR-IB and -II with K(d)=11.0 and 17.5 microM, respectively. The bis-ANS modified site on both receptor types was not readily accessible to acrylamide quenching. Fluorescence energy transfer experiments further revealed close proximity between the tyrosine (in ecBMPR-IB) and the tryptophan residue (in ecBMPR-II) and the respective bis-ANS binding site in these receptors. The binding of bis-ANS did not alter the ligand binding activity of ecBMPR-IB, but enhanced that of ecBMPR-II. These results show that the bis-ANS-modified hydrophobic site on the ecBMPR-IB and -II molecules plays a different functional role.

  7. Crystallization and preliminary X-ray analysis of the complex of the first von Willebrand type C domain bound to bone morphogenetic protein 2

    SciTech Connect

    Qiu, Li-yan; Zhang, Jin-li; Kotzsch, Alexander; Sebald, Walter; Mueller, Thomas D.

    2008-04-01

    Crystals of the complex of the first von Willebrand type C domain (VWC1) of crossveinless 2 (CV2) bound to bone morphogenetic protein 2 (BMP2) exist in two tetragonal crystal forms belonging to either space group P4{sub 1}2{sub 1}2 or I4{sub 1}, with one complete BMP2 dimer and two CV2 VWC1 domains per asymmetric unit, and diffract to 2.6 Å resolution. Crossveinless 2 (CV2) is a member of the chordin family, a protein superfamily that modulates the activity of bone morphogenetic proteins such as BMP2. The BMPs represent a large group of secreted proteins that control many steps during embryonal development and in tissue and organ homeostasis in the adult organism. The gene encoding the first von Willebrand type C domain (VWC1) of CV2 was cloned, expressed in Escherichia coli and purified to homogeneity. The binary complex of CV2 VWC1 and BMP2 was purified and subjected to crystallization. Crystals of SeMet-labelled proteins were obtained in two different forms belonging to the tetragonal space groups P4{sub 1}2{sub 1}2 and I4{sub 1}, with unit-cell parameters a = b = 86.7, c = 139.2 Å and a = b = 83.7, c = 139.6 Å, respectively. Initial analysis suggests that a complete binary complex consisting of one BMP2 dimer bound to two CV2 VWC1 domains is present in the asymmetric unit.

  8. Does LED phototherapy influence the repair of bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration? A description of the repair process on rodents.

    PubMed

    Pinheiro, Antonio L B; Soares, Luiz G P; Barbosa, Artur F S; Ramalho, Luciana M P; dos Santos, Jean N

    2012-09-01

    This work carried out a histological analysis on bone defects grafted (MTA) treated or not with LED, BMPs, and membrane (GBR). Benefits of their isolated or combined usage on bone repair were reported, but not their association. Ninety rats were divided into ten groups and each subdivided into three. Defects on G II and I were filled with the blood clot. G II was further LED irradiated. G III and IV were filled with MTA; G IV was further LED irradiated. In G V and VI, the defects were filled with MTA and covered with a membrane (GBR). G VI was further LED irradiated. In G VII and VIII, BMPs were added to the MTA and group VIII was further LED irradiated. In G IX and X, the MTA + BMP graft was covered with a membrane (GBR). G X was further LED irradiated. LED was applied over the defect at 48-h intervals and repeated for 15 days. Specimens were processed, cut, and stained with H&E and Sirius red and underwent histological analysis. The use of LED light alone dramatically reduced inflammation. However, its use on MTA associated with BMP and/or GBR increased the severity of the inflammatory reaction. Regarding bone reabsorption, the poorest result was seen when the LED light was associated with the MTA + BMP graft. In the groups Clot and MTA + GBR, no bone reabsorption was detectable. Increased collagen deposition was observed when the LED light was associated with the use of the MTA associated with BMP and/or GBR. Increased new bone formation was observed when the LED light was used alone or associated with the use of MTA + GBR, MTA + BMP, on association of MTA + BMP + GBR and when BMP was added to the MTA. Our results indicate that the use of LED light alone or in association with MTA, MTA + BMP, MTA + GBR, and MTA + BMP + GBR caused less inflammation, and an increase of both collagen deposition and bone deposition as seen on both histological and morphometric analysis.

  9. Cartilage repair by local delivery of transforming growth factor-β1 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic-co-glycolic bilayered scaffold.

    PubMed

    Reyes, Ricardo; Delgado, Araceli; Solis, Raul; Sanchez, Esther; Hernandez, Antonio; San Roman, Julio; Evora, Carmen

    2014-04-01

    This study aimed to analyze the in vitro and in vivo release kinetics and evaluate the grades of repair induced by either the release of 50 ng of transforming growth factor-β1 or 2.5 or 5 μg of bone morphogenetic protein-2 (BMP-2) from a bilayer scaffold of segmented polyurethane/polylactic-co-glycolic (SPU/PLGA) in osteochondral defects, in a rabbit model. The scaffold consisted of a porous, bone-directed PLGA layer, overlaid with a cartilage-directed layer of growth factor (GF)-loaded PLGA microspheres, dispersed in a matrix of SPU. The PLGA porous layer was fabricated by gas foaming. Microspheres were prepared by a double emulsion method. SPU was synthesized by following the two-step method. GF release kinetics were assessed using iodinated ((125)I) GFs. The in vivo release profiles of both GFs fitted to zero-order kinetics, demonstrating a consistently good control of their release rates by SPU. Cartilage-like tissue, characterized by histological analysis, scoring, and immunolabeling of chondrogenic differentiation markers, was observed only after 12 weeks, maintaining integrity up to at least 24 weeks, independently of the GF and the dose of BMP-2. The biocompatibility and the resulting good quality, hyaline repair cartilage convert this system into a promising candidate for future applications in osteochondral lesions.

  10. Delivery of plasmid DNA encoding bone morphogenetic protein-2 with a biodegradable branched polycationic polymer in a critical-size rat cranial defect model.

    PubMed

    Chew, Sue Anne; Kretlow, James D; Spicer, Patrick P; Edwards, Austin W; Baggett, L Scott; Tabata, Yasuhiko; Kasper, F Kurtis; Mikos, Antonios G

    2011-03-01

    This study investigated the delivery of plasmid DNA (pDNA) encoding bone morphogenetic protein-2 in the form of polyplexes with a biodegradable branched triacrylate/amine polycationic polymer (TAPP) that were complexed with gelatin microparticles (GMPs) loaded within a porous tissue engineering scaffold. More specifically, the study investigated the interplay between TAPP degradation, gelatin degradation, pDNA release, and bone formation in a critical-size rat cranial defect model. The pDNA release kinetics in vitro were not affected by the crosslinking density of the GMPs but depended, rather, on the degradation rates of the TAPPs. Besides the initial release of polyplexes not bound to the GMPs and the minimal release of polyplexes through diffusion or dissociation from the GMPs, the pDNA was likely released as naked pDNA or as part of an incomplete polyplex, after the degradation of fragments of the polycationic polymer. After 30 days, significantly higher amounts of pDNA were released (93%-98%) from composite scaffolds containing naked pDNA or pDNA complexed with P-AEPZ (synthesized with 1-[2-aminoethyl]piperazine, a faster degrading TAPP) compared with those containing pDNA complexed with P-DED (synthesized with N,N-dimethylethylenediamine, a slower degrading TAPP) (74%-82%). Composite scaffolds containing GMPs complexed with TAPP/pDNA polyplexes did not result in enhanced bone formation, as analyzed by microcomputed tomography and histology, in a critical-size rat cranial defect at 12 weeks postimplantation compared with those loaded with naked pDNA. The results demonstrate that polycationic polymers with a slow degradation rate can prolong the release of pDNA from the composite scaffolds and suggest that a gene delivery system comprising biodegradable polycationic polymers should be designed to release the pDNA in an intact polyplex form.

  11. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.

    PubMed

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D

    2009-12-01

    The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1DeltaSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and

  12. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity‡

    PubMed Central

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B.; Titus, Louisa; Boden, Scott D.

    2010-01-01

    The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1ΔSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and

  13. Occult peri-implant oroantral fistulae: posterior maxillary peri-implantitis/sinusitis of zygomatic or dental implant origin. Treatment and prevention with bone morphogenetic protein-2/absorbable collagen sponge sinus grafting.

    PubMed

    Jensen, Ole T; Adams, Mark; Cottam, Jared R; Ringeman, Jason

    2013-01-01

    Sinus floor grafting with bone morphogenetic protein-2 for transsinus implant placement or as a salvage technique for sinus-involved peri-implantitis has been found to be successful. Transsinus implants for All-on-Four treatment, zygomatic implants including quad zygomatics, and infected transsinus implants underwent peri-implant grafting, which was found to seal off the sinus cavity from the oral cavity in an effort to prevent or treat sinusitis/peri-implantitis.

  14. Co-delivery and controlled release of stromal cell-derived factor-1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein-2-driven osteogenesis in rats

    PubMed Central

    SUN, HAIPENG; WANG, JINMING; DENG, FEILONG; LIU, YUN; ZHUANG, XIUMEI; XU, JIAYUN; LI, LONG

    2016-01-01

    There has been considerable focus in investigations on the delivery systems and clinical applications of bone morphogenetic protein-2 (BMP-2) for novel bone formation. However, current delivery systems require high levels of BMP-2 to exert a biological function. There are several concerns in using of high levels of BMP-2, including safety and the high cost of treatment. Therefore, the development of strategies to decrease the levels of BMP-2 required in these delivery systems is required. In our previous studies, a controlled-release system was developed, which used Traut's reagent and the cross-linker, 4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC), to chemically conjugate BMP-2 directly on collagen discs. In the current study, retention efficiency and release kinetics of stromal cell-derived factor-1α (SDF-1α) cross-linked on collagen scaffolds were detected. In addition, the osteogenic activity of SDF-1α and suboptimal doses of BMP-2 cross-linked on collagen discs following subcutaneous implantation in rats were evaluated. Independent two-tailed t-tests and one-way analysis of variance were used for analysis. In the present study, the controlled release of SDF-1α chemically conjugated on collagen scaffolds was demonstrated. By optimizing the concentrations of Traut's reagent and the Sulfo-SMCC cross-linker, a significantly higher level of SDF-1α was covalently retained on the collagen scaffold, compared with that retained using a physical adsorption method. Mesenchymal stem cell homing indicated that the biological function of the SDF-1α cross-linked on the collagen scaffolds remained intact. In rats, co-treatment with SDF-1α and a suboptimal dose of BMP-2 cross-linked on collagen scaffolds using this chemically conjugated method induced higher levels of ectopic bone formation, compared with the physical adsorption method. No ectopic bone formation was observed following treatment with a

  15. C-terminal Domain (CTD) Small Phosphatase-like 2 Modulates the Canonical Bone Morphogenetic Protein (BMP) Signaling and Mesenchymal Differentiation via Smad Dephosphorylation*

    PubMed Central

    Zhao, Yulan; Xiao, Mu; Sun, Baoguo; Zhang, Zhengmao; Shen, Tao; Duan, Xueyan; Yu, Paul Borchyung; Feng, Xin-Hua; Lin, Xia

    2014-01-01

    The bone morphogenetic protein (BMP) signaling pathway regulates a wide range of cellular responses in metazoans. A key step in the canonical BMP signaling is the phosphorylation and activation of transcription factors Smad1, Smad5, and Smad8 (collectively Smad1/5/8) by the type I BMP receptors. We previously identified PPM1A as a phosphatase toward dephosphorylation of all receptor-regulated Smads (R-Smads), including Smad1/5/8. Here we report another nuclear phosphatase named SCP4/CTDSPL2, belonging to the FCP/SCP family, as a novel Smad phosphatase in the nucleus. SCP4 physically interacts with and specifically dephosphorylates Smad1/5/8, and as a result attenuates BMP-induced transcriptional responses. Knockdown of SCP4 in multipotent mesenchymal C2C12 cells leads to increased expression of BMP target genes and consequently promotes BMP-induced osteogenic differentiation. Collectively, our results demonstrate that SCP4, as a Smad phosphatase, plays a critical role in BMP-induced signaling and cellular functions. PMID:25100727

  16. WASP is activated by phosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bone morphogenetic protein signaling

    PubMed Central

    Habets, Ron L. P.; Slabbaert, Jan R.; Verstreken, Patrik

    2010-01-01

    Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is a membrane lipid involved in several signaling pathways. However, the role of this lipid in the regulation of synapse growth is ill-defined. Here we identify PI(4,5)P2 as a gatekeeper of neuromuscular junction (NMJ) size. We show that PI(4,5)P2 levels in neurons are critical in restricting synaptic growth by localizing and activating presynaptic Wiscott-Aldrich syndrome protein/WASP (WSP). This function of WSP is independent of bone morphogenetic protein (BMP) signaling but is dependent on Tweek, a neuronally expressed protein. Loss of PI(4,5)P2-mediated WSP activation results in increased formation of membrane-organizing extension spike protein (Moesin)-GFP patches that concentrate at sites of bouton growth. Based on pharmacological and genetic studies, Moesin patches mark polymerized actin accumulations and correlate well with NMJ size. We propose a model in which PI(4,5)P2- and WSP-mediated signaling at presynaptic termini controls actin-dependent synapse growth in a pathway at least in part in parallel to synaptic BMP signaling. PMID:20844206

  17. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways.

    PubMed

    Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki

    2015-04-20

    We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21(WAF1/CIP1) and p27(KIP1) expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2'-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC.

  18. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways

    PubMed Central

    Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki

    2015-01-01

    We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254

  19. Scleraxis modulates bone morphogenetic protein 4 (BMP4)-Smad1 protein-smooth muscle α-actin (SMA) signal transduction in diabetic nephropathy.

    PubMed

    Abe, Hideharu; Tominaga, Tatsuya; Matsubara, Takeshi; Abe, Naoko; Kishi, Seiji; Nagai, Kojiro; Murakami, Taichi; Araoka, Toshikazu; Doi, Toshio

    2012-06-08

    Activation of mesangial cells (MCs), which is characterized by induction of smooth muscle α-actin (SMA) expression, contributes to a key event in various renal diseases; however, the mechanisms controlling MC differentiation are still largely undefined. Activated Smad1 induced SMA in a dose-dependent manner in MCs. As a direct regulating molecule for SMA, we identified and characterized scleraxis (Scx) as a new phenotype modulator in advanced glycation end product (AGE)-exposed MCs. Scx physically associated with E12 and bound the E-box in the promoter of SMA and negatively regulated the AGE-induced SMA expression. Scx induced expression and secretion of bone morphogenetic protein 4 (BMP4), thereby controlling the Smad1 activation in AGE-treated MCs. In diabetic mice, Scx was concomitantly expressed with SMA in the glomeruli. Inhibitor of differentiation 1 (Id1) was further induced by extended treatment with AGE, thereby dislodging Scx from the SMA promoter. These data suggest that Scx and Id1 are involved in the BMP4-Smad1-SMA signal transduction pathway besides the TGFβ1-Smad1-SMA signaling pathway and modulate phenotypic changes in MCs in diabetic nephropathy.

  20. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review

    PubMed Central

    de Castro, Fernanda Cavallari; Cruz, Maria Helena Coelho; Leal, Claudia Lima Verde

    2016-01-01

    Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-β) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review. PMID:26954112

  1. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling.

    PubMed

    Messina, Andrea; Lan, Lei; Incitti, Tania; Bozza, Angela; Andreazzoli, Massimiliano; Vignali, Robert; Cremisi, Federico; Bozzi, Yuri; Casarosa, Simona

    2015-08-01

    It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.

  2. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis

    PubMed Central

    1996-01-01

    In the present study, we screened for subtilisin-like proprotein convertases (SPCs) that potentially regulate the activation of known growth factors during embryonic development. We isolated a novel protease, SPC7, as well as several known SPCs. SPC7, like SPC1, is expressed ubiquitously throughout development. In contrast, SPC4 and SPC6 exhibit dynamic expression patterns. SPC4 transcripts were initially detected in the granulosa cells of secondary follicles. Shortly after implantation, SPC4 transcripts are localized to extraembryonic cell populations, and at later stages are detected in discrete tissues including the primitive gut, heart, neural tube, and limb buds. Within the limb buds, SPC4 mRNA is most abundant in the apical ectodermal ridge (AER). At later stages of limb development, SPC4 mRNA is strongly expressed in cartilage and in the interdigital mesenchyme. In contrast, high SPC6 mRNA levels are detected in somites, the dorsal surface ectoderm, and in vertebral cartilage primordia. In limb buds, SPC6 is strongly expressed in the AER, and at later stages in dorsal mesenchyme. A comparison of these expression patterns with those of several bone morphogenetic proteins (BMPs) indicates that processing of these growth factors may be limited by the local availability of SPCs. PMID:8698813

  3. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.

    PubMed

    Wilson, T; Wu, X Y; Juengel, J L; Ross, I K; Lumsden, J M; Lord, E A; Dodds, K G; Walling, G A; McEwan, J C; O'Connell, A R; McNatty, K P; Montgomery, G W

    2001-04-01

    The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23-31, which is syntenic to human chromosome 4q21-25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-beta (TGF-beta) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-beta pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.

  4. Overexpression of bone morphogenetic protein-6 (BMP-6) in the epidermis of transgenic mice: inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions

    PubMed Central

    1996-01-01

    Bone morphogenetic protein-6 (BMP-6) belongs to the family of TGF-beta- related growth factors. In the developing epidermis, expression of BMP- 6 coincides with the onset of stratification. Expression persists perinatally but declines after day 6 postpartum, although it can still be detected in adult skin by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. We constitutively overexpressed BMP-6 in suprabasal layers of interfollicular epidermis in transgenic mice using a keratin 10 promoter. All mice expressing the transgene developed abnormalities in the skin, indicating an active transgene-derived factor. Depending on the pattern of transgene expression, the effects on proliferation and differentiation were completely opposite. Strong and uniform expression of the BMP-6 transgene resulted in severe repression of cell proliferation in embryonic and perinatal epidermis but had marginal effects on differentiation. Weaker and patchy expression of the transgene evoked strong hyperproliferation and parakeratosis in adult epidermis and severe perturbations of the usual pattern of differentiation. These perturbations included changes in the expression of keratins and integrins. Together with an inflammatory infiltrate both in the dermis and in the epidermis, these aspects present all typical histological and biochemical hallmarks of a human skin disease: psoriasis. PMID:8858176

  5. Continuous release of bone morphogenetic protein-2 through nano-graphene oxide-based delivery influences the activation of the NF-κB signal transduction pathway

    PubMed Central

    Zhong, Cheng; Feng, Jun; Lin, Xiangjin; Bao, Qi

    2017-01-01

    Graphene oxide (GO) has been used as a delivery vehicle for small molecule drugs and nucleotides. To further investigate GO as a smart biomaterial for the controlled release of cargo molecules, we hypothesized that GO may be an appropriate delivery vehicle because it releases bone morphogenetic protein 2 (BMP2). GO characterization indicated that the size distribution of the GO flakes ranged from 81.1 nm to 45,749.7 nm, with an approximate thickness of 2 nm. After BMP2 adsorption onto GO, Fourier-transformed infrared spectroscopy (FTIR) and thermal gravimetric analysis were performed. Compared to GO, BMP2-GO did not induce significant changes in the characteristics of the materials. GO continuously released BMP2 for at least 40 days. Bone marrow stem cells (BMSCs) and chondrocytes were treated with BMP2-GO in interleukin-1 media and assessed in terms of cell viability, flow cytometric characterization, and expression of particular mRNA. Compared to GO, BMP2-GO did not induce any significant changes in biocompatibility. We treated osteoarthritic rats with BMP2 and BMP2-GO, which showed significant differences in Osteoarthritis Research Society International (OARSI) scores (P<0.05). Quantitative assessment revealed significant differences compared to that using BMP2 and BMP2-GO (P<0.05). These findings indicate that GO may be potentially used to control the release of carrier materials. The combination of BMP2 and GO slowed the progression of NF-κB-activated degenerative changes in osteoarthritis. Therefore, we infer that our BMP2-GO strategy could alleviate the NF-κB pathway by inducing continuous BMP2 release. PMID:28243085

  6. The binding of the bone morphogenetic protein antagonist gremlin to kidney heparan sulfate: Such binding is not essential for BMP antagonism.

    PubMed

    Tatsinkam, Arnold Junior; Rune, Naomi; Smith, Joy; Norman, Jill T; Mulloy, Barbara; Rider, Christopher C

    2017-02-01

    Gremlin-1, a bone morphogenetic protein (BMP) antagonist, has essential roles in kidney and limb bone development, and is important in chronic diseases including tissue fibrosis. It also functions as an activating ligand of the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), and binds strongly to the sulfated polysaccharide, heparin. Here we investigated the extent to which gremlin binds to the related polysaccharide heparan sulfate (HS), which unlike heparin is widely distributed spread within tissues. We determined that both highly sulfated HS and kidney HS are able to partially compete for the binding of heparin to gremlin, whereas low sulfated HS is a poor competitor. In further investigations of the interaction between gremlin and HS, we found that wild-type gremlin is able to bind broadly across the various regions of kidney in an HS-dependent manner, with particularly intense binding to tubular structures in the renal cortex. In a model of chronic kidney disease, fibrotic changes in the kidney result in a loss of gremlin binding sites. Gremlin mutants with reduced affinity for heparin showed negligible binding under the same conditions. These mutants nonetheless remain functional as BMP antagonists on C2C12 myoblastic cells transfected with a Smad 1 reporter gene construct. Overall our findings indicate that on secretion, gremlin will bind to HS structures on the cell surface and in the extracellular matrix, thus providing for a localised reservoir which can modulate BMP activity in a temporospatially restricted manner. Although binding of heparin/HS to gremlin has been shown elsewhere to be necessary for gremlin activation of VEGFR2, this does not appear to be essential for BMP antagonism by gremlin. Thus these sulfated polysaccharides differentially regulate the activities of gremlin.

  7. Continuous release of bone morphogenetic protein-2 through nano-graphene oxide-based delivery influences the activation of the NF-κB signal transduction pathway.

    PubMed

    Zhong, Cheng; Feng, Jun; Lin, Xiangjin; Bao, Qi

    2017-01-01

    Graphene oxide (GO) has been used as a delivery vehicle for small molecule drugs and nucleotides. To further investigate GO as a smart biomaterial for the controlled release of cargo molecules, we hypothesized that GO may be an appropriate delivery vehicle because it releases bone morphogenetic protein 2 (BMP2). GO characterization indicated that the size distribution of the GO flakes ranged from 81.1 nm to 45,749.7 nm, with an approximate thickness of 2 nm. After BMP2 adsorption onto GO, Fourier-transformed infrared spectroscopy (FTIR) and thermal gravimetric analysis were performed. Compared to GO, BMP2-GO did not induce significant changes in the characteristics of the materials. GO continuously released BMP2 for at least 40 days. Bone marrow stem cells (BMSCs) and chondrocytes were treated with BMP2-GO in interleukin-1 media and assessed in terms of cell viability, flow cytometric characterization, and expression of particular mRNA. Compared to GO, BMP2-GO did not induce any significant changes in biocompatibility. We treated osteoarthritic rats with BMP2 and BMP2-GO, which showed significant differences in Osteoarthritis Research Society International (OARSI) scores (P<0.05). Quantitative assessment revealed significant differences compared to that using BMP2 and BMP2-GO (P<0.05). These findings indicate that GO may be potentially used to control the release of carrier materials. The combination of BMP2 and GO slowed the progression of NF-κB-activated degenerative changes in osteoarthritis. Therefore, we infer that our BMP2-GO strategy could alleviate the NF-κB pathway by inducing continuous BMP2 release.

  8. Characterization of a novel gene product (mammalian tolloid-like) with high sequence similarity to mammalian tolloid/bone morphogenetic protein-1

    SciTech Connect

    Takahara, Kazuhiko; Brevard, R.; Hoffman, G.G.; Greenspan, D.S.

    1996-06-01

    Bone morphogenetic protein-1 (BMP-1), a metalloprotease isolated from osteogenic extracts of demineralized bone, is capable of cleaving the C-propeptides of procollagen types I, II, and III. A single mammalian gene produces alternatively spliced RNA transcripts for BMP-1 and for a second longer protein, designated mammalian tolloid (mTld) due to a domain structure identical to that of the Drosophilia dorsal-ventral patterning gene product tolloid (Tld). Here we report the use of a cDNA library, prepared from BMP-1/mTld-null mouse embryos, to solate cDNA clones for a novel mammalian protein with a domain structure identical to that of mTld. The new protein, designated mammalian tolloid-like (mTll), has 76% identity with mTld for amino acid residues in all domains downstream of, and including, the protease domain. In contrast, the N-terminal activation domains of the two proteins show little similarity. In situ hybridizations show the distribution of mTll RNA to overlap extensively that previously shown for the BMP-1 and mTld RNA forms. However, mTll shows additional strong expression in structures of the developing, neonatal, and adult brain in which expression of BMP-1 and mTld has not been observed. The murine mTl1 gene (Tll) is mapped to central chromosome 8, which is a different chromosomal location than that of the BMP-1/mTld gene. Loci for some developmental abnormalities map to the same general chromosomal location as Tll. 38 refs., 6 figs.

  9. Effects of Roughly Focused Extracorporeal Shock Waves Therapy on the Expressions of Bone Morphogenetic Protein-2 and Osteoprotegerin in Osteoporotic Fracture in Rats

    PubMed Central

    Huang, Hai-Ming; Li, Xiao-Lin; Tu, Shu-Qiang; Chen, Xiao-Feng; Lu, Chang-Chun; Jiang, Liang-Hua

    2016-01-01

    Background: Roughly focused extracorporeal shock waves therapy (ESWT) is characterized by a wide focal area, a large therapy zone, easy positioning, and less pain during treatment. The purpose of this study was to investigate the effects of roughly focused ESWT on the expression of osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) in osteoporotic fractures in rats. Methods: Seventy-two female Sprague-Dawley (SD) rats, 3 months old, were divided into sham-operated group (n = 6) and an ovariectomized (OVX) group (n = 66). Sixty OVX SD rats were used as a model of double proximal tibial osteotomy and inner fixation. The osteotomy site in the left tibia was treated with roughly focused ESWT once at an energy density of 0.26 mJ/mm2, 60 doses/min, and 2000 pact quantities. The contralateral right tibia was left untreated and served as a control. Expression of OPG and BMP-2 in the callus of the osteoporotic fracture area was assessed using immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blotting analysis. Results: Bone mineral density (BMD) at the proximal tibia, femur, and L5 spine was significantly reduced after ovariectomy. BMD of proximal tibia was 12.9% less in the OVX group than that in the sham-operated group. Meanwhile, bilateral oophorectomy resulted in a lower trabecular bone volume fraction (BV/TV) in the proximal tibia of the sham-OVX animals. Three months after bilateral oophorectomy, BV/TV was 14.29% of baseline BV/TV in OVX legs versus 45.91% in the sham-OVX legs (P < 0.001). These data showed that the SD rats became a suitable model of osteoporosis, 3 months after they were OVX. Immunohistochemical analysis showed higher levels of BMP-2 and OPG expression in the treatment group than those in the control group. Compared with the contralateral controls, decreased expression of OPG and BMP-2 at 3 days after roughly focused ESWT, followed by a later increase at 7 days, was indicated by real-time PCR and Western

  10. Intact growth factors are conserved in the extracellular matrix of ancient human bone and teeth: a storehouse for the study of human evolution in health and disease.

    PubMed

    Schmidt-Schultz, Tyede H; Schultz, Michael

    2005-08-01

    For the first time we have extracted, solubilized and identified growth factors, such as insulin growth factor II (IGF-II), bone morphogenetic protein-2 (BMP-2), and transforming growth factor-beta (TGF-beta), from archaeological compact human bone and tooth dentin dating from the late pre-ceramic pottery Neolithic (late PPNB) and the early Middle Ages. These factors are typical of special physiological or pathological situations in the metabolism of bone. The extracellular matrix proteins from bone and teeth of individuals from the late PPNB and early Middle Ages were separated by 2-D electrophoresis and more than 300 different protein spots were detected by silver staining. The matrix protein patterns of compact bone and tooth from the same individual (early Middle Ages) are very different and only 16% of the protein spots were detected in both compact bone and tooth dentin.

  11. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-21

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca²⁺ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  12. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    PubMed Central

    Wang, Xiaohong; Schröder, Heinz C.; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E. G.

    2014-01-01

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  13. Improved Bone Healing by Angiogenic Factor-Enriched Platelet-Rich Plasma and Its Synergistic Enhancement by Bone Morphogenetic Protein-2

    PubMed Central

    Park, Eun-Jin; Kim, Eun-Seok; Weber, Hans-Peter; Wright, Robert F.

    2010-01-01

    (1) Purpose The purpose of this study was to modify the method of platelet-rich plasma (PRP) preparation for obtaining optimal angiogenic potential and accelerate bone healing. Also, the potential synergistic effect of a suboptimal concentration of bone morphogenic protein-2 (BMP-2) and modified PRP (mPRP) on bone healing was evaluated in vivo. (2) Materials and Methods The angiogenic factor-enriched PRP which includes peripheral blood mononuclear cells (mostly lymphocytes and monocytes fraction, excluding polymorphonuclear leukocyte, PMNs) was achieved by lowering concentrations of thrombin and CaCl2, after pre-activation with shear stress using a table-top vortex machine and collagen. In vitro, endothelial cell migration activity in the mPRP group was compared to conventional PRP preparation using a modified Boyden chamber assay. In an animal study, PGA scaffold, PGA scaffold + mPRP, PGA scaffold + mPRP + rhBMP-2, and PGA scaffold + rhBMP-2 were applied to 28 NIH nude rats’ critical size calvarial defects. At 2 weeks, periosteal blood flow was measured using LDPI, and bone formation was evaluated at 8 weeks by histology, DEXA, and μCT. (3) Results mPRP induced faster migration of cord blood-derived outgrowth endothelial-like cells. In vivo, mPRP with low dose rhBMP-2 group showed significantly increased numbers of blood vessels at 2 weeks, and notable synergistic effect on bone healing at 8 weeks as evaluated with histology, bone mineral density (BMD) and bone mineral content (BMC, and μCT. (4) Conclusion mPRP used in this study improved vascular perfusion around the defect, and resulted in enhanced bone healing. Also, combining mPRP with a suboptimal dosage of rhBMP-2 improved bone formation and enhanced bone density. PMID:19014150

  14. Influence of Simultaneous Targeting of the Bone Morphogenetic Protein Pathway and RANK-RANKL Axis in Osteolytic Prostate Cancer Lesion in Bone

    PubMed Central

    Virk, Mandeep S.; Petrigliano, Frank A.; Liu, Nancy Q.; Chatziioannou, Arion F.; Stout, David; Kang, Christine O.; Dougall, William C.; Lieberman, Jay R.

    2009-01-01

    Metastasis to bone is the leading cause of morbidity and mortality in advanced prostate cancer patients. Considering the complex reciprocal interactions between the tumor cells and the bone microenvironment, there is increasing interest in developing combination therapies targeting both the tumor growth and the bone microenvironment. In this study, we investigated the effect of simultaneous blockade of BMP pathway and RANK-RANKL axis in an osteolytic prostate cancer lesion in bone. We used a retroviral vector encoding noggin (Retronoggin) to antagonize the effect of BMPs and RANK: Fc, which is a recombinant RANKL antagonist was used to inhibit RANK-RANKL axis. The tumor growth and bone loss were evaluated using plain radiographs, hind limb tumor measurements, micro PET-CT (18F- fluorodeoxyglucose [FDG] and 18F-fluoride tracer), and histology. Tibias implanted with PC-3 cells developed pure osteolytic lesions at 2 weeks with progressive increase in cortical bone destruction at successive time points. Tibias implanted with PC-3 cells over expressing noggin (Retronoggin) resulted in reduced tumor size and decreased bone loss compared to the implanted tibias in untreated control animals. RANK: Fc administration inhibited the formation of osteoclasts, delayed the development of osteolytic lesions, decreased bone loss and reduced tumor size in tibias implanted with PC-3 cells. The combination therapy with RANK: Fc and noggin over expression effectively delayed the radiographic development of osteolytic lesions, and decreased the bone loss and tumor burden compared to implanted tibias treated with noggin over expression alone. Furthermore, the animals treated with the combination strategy exhibited decreased bone loss (micro CT) and lower tumor burden (FDG micro PET) compared to animals treated with RANK: Fc alone. Combined blockade of RANK-RANKL axis and BMP pathway resulted in reduced tumor burden and decreased bone loss compared to inhibition of either individual

  15. Atomic scale chemical tomography of human bone

    NASA Astrophysics Data System (ADS)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  16. Atomic scale chemical tomography of human bone

    PubMed Central

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone. PMID:28054636

  17. Engineering anatomically shaped human bone grafts.

    PubMed

    Grayson, Warren L; Fröhlich, Mirjam; Yeager, Keith; Bhumiratana, Sarindr; Chan, M Ete; Cannizzaro, Christopher; Wan, Leo Q; Liu, X Sherry; Guo, X Edward; Vunjak-Novakovic, Gordana

    2010-02-23

    The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a "biomimetic" scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle-in vitro cultivation of viable bone grafts of complex geometries-to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions.

  18. Role of morphogenetic proteins in skeletal tissue engineering and regeneration.

    PubMed

    Reddi, A H

    1998-03-01

    Morphogenesis is the developmental cascade of pattern formation and body plan establishment, culminating in the adult form. It has formed the basis for the emerging discipline of tissue engineering, which uses principles of molecular developmental biology and morphogenesis gleaned through studies on inductive signals, responding stem cells, and the extracellular matrix to design and construct spare parts that restore function to the human body. Among the many organs in the body, bone has considerable powers for regeneration and is a prototype model for tissue engineering. Implantation of demineralized bone matrix into subcutaneous sites results in local bone induction. This model mimics sequential limb morphogenesis and has permitted the isolation of bone morphogens, such as bone morphogenetic proteins (BMPs), from demineralized adult bone matrix. BMPs initiate, promote, and maintain chondrogenesis and osteogenesis, but are also involved in the morphogenesis of organs other than bone. The symbiosis of the mechanisms underlying bone induction and differentiation is critical for tissue engineering and is governed by both biomechanics (physical forces) and context (microenvironment/extracellular matrix), which can be duplicated by biomimetic biomaterials such as collagens, hydroxyapatite, proteoglycans, and cell adhesion glycoproteins, including fibronectins and laminin. Rules of tissue architecture elucidated in bone morphogenesis may provide insights into tissue engineering and be universally applicable for all organs/tissues, including bones and joints.

  19. Insulin-like growth factor-1 and bone morphogenetic protein-2 jointly mediate prostaglandin E2-induced adipogenic differentiation of rat tendon stem cells.

    PubMed

    Liu, Junpeng; Chen, Lei; zhou, You; Liu, Xiangzhou; Tang, Kanglai

    2014-01-01

    Tendinopathy is characterized histopathologically by lipid accumulation and tissue calcification. Adipogenic and osteogenic differentiation of tendon stem cells (TSCs) are believed to play key roles in these processes. The major inflammatory mediator prostaglandin E2 (PGE2) has been shown to induce osteogenic differentiation of TSCs via bone morphogenetic protein-2 (BMP-2), and BMP-2 has also been implicated in adipogenic differentiation of stem cells. We therefore examined the mechanisms responsible for PGE2-induced adipogenesis in rat TSCs in vitro. Insulin-like growth factor-1 (IGF-1) mRNA and protein were significantly up-regulated in PGE2-stimulated TSCs, measured by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Incubation with specific inhibitors of cAMP, cAMP-dependent protein kinase A (PKA), and CCAAT/enhancer binding protein-δ (CEBPδ) demonstrated that IGF-1 up-regulation occurred via a cAMP/PKA/CEBPδ pathway. Furthermore, neither IGF-1 nor BMP-2 alone was able to mediate adipogenic differentiation of TSCs, but IGF-1 together with BMP-2 significantly increased adipogenesis, indicated by Oil Red O staining. Moreover, knock-down of endogenous IGF-1 and BMP2 abolished PGE2-induced adipogenic differentiation. Phosphorylation of CREB and Smad by IGF-1 and BMP-2, respectively, were required for induction of the adipogenesis-related peroxisome proliferator-activated receptor γ2 (PPARγ2) gene and for adipogenic differentiation. In conclusion, IGF-1 and BMP-2 together mediate PGE2-induced adipogenic differentiation of TSCs in vitro via a CREB- and Smad-dependent mechanism. This improved understanding of the mechanisms responsible for tendinopathies may help the development of more effective therapies.

  20. Interaction between gonadotropin-releasing hormone and bone morphogenetic protein-6 and -7 signaling in LβT2 gonadotrope cells.

    PubMed

    Takeda, Masaya; Otsuka, Fumio; Takahashi, Hiroaki; Inagaki, Kenichi; Miyoshi, Tomoko; Tsukamoto, Naoko; Makino, Hirofumi; Lawson, Mark A

    2012-01-02

    It is known that bone morphogenetic proteins (BMPs) regulate gonadotropin transcription and production by pituitary gonadotrope cells. However, the role of BMPs in gonadotropin-releasing hormone (GnRH)-induced FSH production remains uncertain. Here, we describe a functional link between BMP-6 and BMP-7 signals and FSH transcriptional activity induced by GnRH using mouse gonadotrope LβT2 cells. In LβT2 cells, BMP-6 and BMP-7 increased mouse FSHβ-promoter activity in a concentration-dependent manner. The induction by BMP-6 and BMP-7 was inhibited by treatment with extracellular domains of ActRII but not BMPRII. These findings suggest that the type II receptor ActRII participates in BMP-induced FSHβ transcription regulation. Notably, BMP-6, but not BMP-7, enhanced GnRH-induced FSHβ-promoter activity in LβT2 cells. Since GnRH stimulated MAPK phosphorylation in LβT2 cells, a functional link between MAPK and FSHβ transcription was examined. Inhibition of the ERK pathway, but not that of p38 or SAPK/JNK signaling, suppressed GnRH-induced FSHβ transcription, suggesting that ERK is functionally involved in GnRH-induced FSHβ transcription. Co-treatment with BMP-7, but not with BMP-6, suppressed GnRH-induced MAPK phosphorylation in LβT2 cells. Thus, the difference between BMP-6 and BMP-7 in enhancing GnRH-induced FSHβ transcription may be due to the differential effects of BMP ligands on GnRH-induced ERK signaling. On the other hand, GnRH reduced Smad1/5/8 phosphorylation but increased Smad6/7 expression. These findings imply the presence of a functional link between GnRH action, MAPK signaling and the BMP system in pituitary gonadotropes for fine-tuning of FSH gene expression.

  1. BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons.

    PubMed

    Schnitzler, Aletta C; Mellott, Tiffany J; Lopez-Coviella, Ignacio; Tallini, Yvonne N; Kotlikoff, Michael I; Follettie, Maximillian T; Blusztajn, Jan Krzysztof

    2010-06-16

    Acetylcholine (ACh) synthesis and release from basal forebrain cholinergic neurons (BFCN) innervating the cerebral cortex and hippocampus are essential processes for normal learning, memory and attention. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiation factor in the developing septum that increases ACh synthesis and choline acetyltransferase (Chat) gene expression both in vivo and in vitro. We investigated the possible induction of cholinergic trophic factors by BMP9 in murine septal cells. Nerve growth factor (NGF) protein expression and secretion into the medium was increased in cultured embryonic septal cells treated with BMP9, and partially mediated BMP9-induced acetylcholine production and Chat gene expression. BMP9-induced Ngf gene expression was detected in postmitotic cells, required new protein synthesis and was blocked by BMP type I receptor inhibition. Cholinergic neurons were isolated by fluorescence-activated cell sorting based on either transgenic expression of green fluorescent protein driven by the Chat promoter or NGF receptor (p75) immunostaining. Although both noncholinergic and cholinergic neurons in untreated cultures expressed similar low levels of Ngf, increased Ngf gene expression was restricted to Chat-positive neurons in BMP9-treated cultures. Likewise, similar levels of Ngf mRNA were detected in p75-negative and p75-positive septal cells, yet only p75-positive BFCN increased their Ngf gene expression when treated with BMP9, and only these cells expressed the Alk1 BMP receptor. The data suggest an autocrine/paracrine role for NGF in the development and/or maintenance of BFCN and imply that the stimulation of NGF production and release contributes to the cholinergic-supportive properties of BMP9.

  2. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    PubMed

    Abadjieva, Desislava; Kistanova, Elena

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  3. Fibroblast growth factor 17 and bone morphogenetic protein 15 enhance cumulus expansion and improve quality of in vitro-produced embryos in cattle.

    PubMed

    Machado, Mariana Fernandes; Caixeta, Ester Siqueira; Sudiman, Jaqueline; Gilchrist, Robert B; Thompson, Jeremy G; Lima, Paula Fernanda; Price, Christopher A; Buratini, José

    2015-08-01

    Bone morphogenetic protein 15 (BMP15) and members of the fibroblast growth factor (FGF) family are expressed by the oocyte and are involved in the control of cumulus cell function. We tested the hypothesis that FGF17, alone or combined with BMP15 in the maturation medium, enhances cumulus expansion, meiosis progression, embryonic development, and expression of mRNA encoding key genes regulating expansion (prostaglandin-endoperoxide synthase 2 [PTGS2], hyaluronan synthase 2 [HAS2], tumor necrosis factor-stimulated gene 6 [TNFAIP6], and pentraxin 3 [PTX3]) and markers of oocyte developmental competence (phosphofructokinase [PFKP], gremlin [GREM1], versican [VCAN], and the genomic progesterone receptor [nPR]) in cumulus cells. Fibroblast growth factor 17 and BMP15 increased the percentage of fully expanded cumulus-oocyte complexes (COCs), but there was no additive effect when both were combined. Neither FGF17 nor BMP15 altered the percentage of oocytes reaching meiosis II at the end of COC culture or cleavage and blastocyst rates after IVF. However, embryo quality, as assessed by the number of cells in the inner cell mass, was improved by the combination of FGF17 with BMP15. Fibroblast growth factor 17 alone did not alter gene expression in cumulus cells at the end of IVM, whereas BMP15 increased PTGS2 and PTX3 mRNA levels. The combination of FGF17 and BMP15 increased nPR mRNA abundance in cumulus cells but did not change the expression of other markers of developmental competence. This study provides novel evidence that FGF17 enhances cumulus expansion in bovine COCs submitted to IVM and that the supplementation of the IVM medium with FGF17 and BMP15 may improve embryo quality.

  4. Effects of simulated weightlessness on the kinase activity of MEK1 induced by bone morphogenetic protein-2 in rat osteosarcoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.

    Objective The mRNA expression of alpha 1 chain of type I collagen COL-I alpha 1 in rat osteosarcoma ROS17 2 8 cells induced by bone morphogenetic protein-2 BMP-2 was reduced under simulated microgravity The protein kinase MEK1 of MAPK signal pathway plays an important role in the expression of COL-I alpha 1 mRNA The purpose of this study is to investigate the effects of simulated weightlessness on the activity of MEK1 induced by BMP-2 in ROS17 2 8 cells Methods ROS17 2 8 cells were cultured in 1G control and rotating clinostat simulated weightlessness for 24 h 48 h and 72 h BMP-2 500 ng ml was added into the medium 1 h before the culture ended There was a control group in which ROS17 2 8 cells were cultured in 1G condition without BMP-2 Then the total protein of cells was extracted and the expression of phosphated-ERK1 2 p-ERK1 2 protein was detected by means of Western Blotting to show the kinase activity of MEK1 Results There were no significant differences in the expression of total ERK1 2 among all groups The expression of p-ERK1 2 was unconspicuous in the control group without BMP-2 but increased significantly when BMP-2 was added P 0 01 The level of p-ERK1 2 in simulated weightlessness group was much more lower than that in 1G group in every time point P 0 01 The expression of p-ERK1 2 gradually decreased along with the time of weightlessness simulation P 0 01 Conclusions The kinase activity of MEK1 induced by BMP-2 in rat osteosarcoma cells was reduced under simulated weightlessness

  5. Runx1 contributes to the functional switching of bone morphogenetic protein 4 (BMP4) from neurite outgrowth promoting to suppressing in dorsal root ganglion.

    PubMed

    Yoshikawa, Masaaki; Masuda, Tomoyuki; Kobayashi, Azusa; Senzaki, Kouji; Ozaki, Shigeru; Aizawa, Shin; Shiga, Takashi

    2016-04-01

    The runt-related transcription factor Runx1 regulates cell-type specification and axonal projections of nociceptive dorsal root ganglion (DRG) neurons, whereas bone morphogenetic protein 4 (BMP4) is required for axonal growth during neuronal development. Although Runx1 has been shown to be involved in BMP4 signaling in non-neural tissues, the Runx1 function in BMP4-dependent regulation of neuronal development is unclear. To investigate interactions between Runx1 and BMP4 in neurite outgrowth, we cultured DRGs from wild-type and Runx1-deficient mouse embryos in the presence or absence of BMP4. Neurite outgrowth was decreased in BMP4-treated wild-type DRGs and untreated Runx1-deficient DRGs, suggesting the inhibitory effect of BMP4 and facilitatory effect of Runx1 on neurite outgrowth. In addition, the combination of BMP4 treatment and Runx1 deficiency increased neurite outgrowth, suggesting that Runx1 is required for BMP4-induced suppression of neurite outgrowth and that the loss of Runx1 results in a functional switch of BMP4 from neurite growth suppressing to neurite growth promoting. Both BMP4 treatment and Runx1 deficiency increased calcitonin gene-related peptide (CGRP)-positive neurons, and CGRP expression was not increased by BMP4 treatment in Runx1-deficient mice, suggesting that Runx1 contributes to BMP4-induced CGRP expression in DRG neurons. Thus, Runx1 contributes to BMP4 regulation of neurite outgrowth and CGRP expression in DRG and may control BMP4 functional switching during embryogenesis.

  6. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    PubMed Central

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  7. Inhibitory role of REV-ERBα in the expression of bone morphogenetic protein gene family in rat uterus endometrium stromal cells.

    PubMed

    Tasaki, Hirotaka; Zhao, Lijia; Isayama, Keishiro; Chen, Huatao; Yamauchi, Nobuhiko; Shigeyoshi, Yasufumi; Hashimoto, Seiichi; Hattori, Masa-aki

    2015-04-01

    Uterus circadian rhythms have been implicated in the gestation processes of mammals through entraining of the clock proteins to numerous downstream genes. Bone morphogenetic proteins (BMPs), having clock-controlled regulatory sites in their gene promoters, are expressed in the uterus during decidualization, but the regulation of the Bmp gene expression is poorly understood. The present study was designed to dissect the physiological roles of the uterus oscillators in the Bmp expression using the uterus endometrial stromal cells (UESCs) isolated from Per2-dLuc transgenic rats on day 4.5 of gestation. The in vitro decidualization of UESCs was induced by medroxyprogesterone acetate and 2-O-dibutyryl cAMP. A significant decline of Per2-dLuc bioluminescence activity was induced in decidual cells, and concomitantly, the expression of canonical clock genes was downregulated. Conversely, the expression of the core Bmp genes Bmp2, Bmp4, Bmp6, and Bmp7 was upregulated. In UESCs transfected with Bmal1-specific siRNA, in which Rev-erbα expression was downregulated, Bmp genes, such as Bmp2, Bmp4, and Bmp6 were upregulated. However, Bmp1, Bmp7, and Bmp8a were not significantly affected by Bmal1 silencing. The expression of all Bmp genes was enhanced after treatment with the REV-ERBα antagonist (SR8278), although their rhythmic profiles were differed from each other. The binding of REV-ERBα to the proximal regions of the Bmp2 and Bmp4 promoters was revealed by chromatin immunoprecipitation-PCR analysis. Collectively, these results indicate that the Bmp genes are upregulated by the attenuation of the cellular circadian clock; in particular, its core component REV-ERBα functions as a transcriptional silencer in the Bmp gene family.

  8. Exogenous bone morphogenetic protein-7 reduces hepatic fibrosis in Schistosoma japonicum-infected mice via transforming growth factor-β/Smad signaling

    PubMed Central

    Chen, Bo-Lin; Peng, Jie; Li, Qing-Fu; Yang, Min; Wang, Yuan; Chen, Wei

    2013-01-01

    AIM: To investigate the antifibrotic effects of bone morphogenetic protein-7 (BMP-7) on Schistosoma japonicum (S. japonicum)-induced hepatic fibrosis in BALB/C mice. METHODS: Sixty BALB/C mice were randomly divided into three groups, including a control group (group A, n = 20), model group (group B, n = 20) and BMP-7 treated group (group C, n = 20). The mice in group B and group C were abdominally infected with S. japonicum cercariae to induce a schistosomal hepatic fibrosis model. The mice in group C were administered human recombinant BMP-7. Liver samples were extracted from mice sacrificed at 9 and 15 wk after modeling. Hepatic histopathological changes were assessed using Masson’s staining. Transforming growth factor-beta 1 (TGF-β1), alpha-smooth muscle actin (α-SMA), phosphorylated Smad2/3 (pSmad2/3) and Smad7 protein levels and localization were measured by Western blotting and immunohistochemistry, respectively, and their mRNA expressions were detected by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: The schistosomal hepatic fibrosis mouse model was successfully established, as the livers of mice in group B and group C showed varying degrees of typical schistosomal hepatopathologic changes such as egg granuloma and collagen deposition. The degree of collagen deposition in group C was higher than that in group A (week 9: 22.95 ± 6.66 vs 2.02 ± 0.76; week 15: 12.84 ± 4.36 vs 1.74 ± 0.80; P < 0.05), but significantly lower than that in group B (week 9: 22.95 ± 6.66 vs 34.43 ± 6.96; week 15: 12.84 ± 4.36 vs 18.90 ± 5.07; P < 0.05) at both time points. According to immunohistochemistry data, the expressions of α-SMA, TGF-β1 and pSmad2/3 protein in group C were higher than those in group A (α-SMA: week 9: 21.24 ± 5.73 vs 0.33 ± 0.20; week 15: 12.42 ± 4.88 vs 0.34 ± 0.27; TGF-β1: week 9: 37.00 ± 13.74 vs 3.73 ± 2.14; week 15: 16.71 ± 9.80 vs 3.08 ± 2.35; pSmad2/3: week 9: 12.92 ± 4.81 vs 0.83 ± 0.48; week 15: 7.87 ± 4

  9. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    SciTech Connect

    Kihara, Tasuku; Ichikawa, Saki; Yonezawa, Takayuki; Lee, Ji-Won; Akihisa, Toshihiro; Woo, Je Tae; Michi, Yasuyuki; Amagasa, Teruo; Yamaguchi, Akira

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  10. Profiling bone morphogenetic proteins and transforming growth factor-βs by hTGF-β3 pre-treated coral-derived macroporous bioreactors: the power of one.

    PubMed

    Ripamonti, Ugo; Dix-Peek, Thérèse; Parak, Ruqayya; Milner, Brenda; Duarte, Raquel

    2015-05-01

    To study the expression profile of bone morphogenetic proteins and transforming growth factor-βs (BMPs and TGFβs), coral-derived calcium carbonate-based macroporous bioreactors with limited conversion to hydroxyapatite (7% HA/CC) were pre-loaded with and without 250 μg hTGF-β3 and implanted in the rectus abdominis of 3 non-human primates Papio ursinus euthanized on day 60. To investigate the required dose of hNoggin, a BMPs antagonist that controls the induction of bone formation, 7% HA/CC were pre-loaded with 150 μg hNoggin, with 125 μg hTGF-β3/150 μg hNoggin, with or without 125 μg hTGF-β3 and implanted in the r. abdominis of 3 additional animals euthanized on day 90. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) evaluated the expression' profile of BMP-2, BMP-3, BMP-4, BMP-6, BMP-7 and TGF-β1, -β2, and -β3 in tissue generating bioreactors as well as in the adjacent r. abdominis muscle. On day 60, 250 μg hTGF-β3 induced bone formation at the periphery of the implanted bioreactors only. On day 90, 125 μg hTGF-β3/treated bioreactors showed the induction of bone formation throughout the macroporous spaces. Untreated bioreactors induced bone, 4.11% vs. 2.00% on days 60 and 90, respectively. In hTGF-β3/treated bioreactors, BMP-2 and BMP-3 were up-regulated at both time periods, both in the homogenized constructs and in the adjacent r. abdominis muscle whilst BMP-4 in the homogenized construct only. In untreated 7% HA/CC constructs, BMP-2 was up-regulated in the macroporous construct only. On day 60, 250 μg hTGF-β3/treated and untreated macroporous constructs showed up-regulation of TGF-β1 with a six fold increase vs. TGF-β1 expression in adjacent muscle of untreated constructs. TGF-β2 was down regulated in both untreated and 250 μg hTGF-β3/treated bioreactors. On day 60, 250 μg hTGF-β3/treated bioreactors showed TGF-β3 expression in untreated, treated and adjacent muscle tissues. On day 90, BMP-2 was up

  11. Haplotype-based gene-gene interaction of bone morphogenetic protein 4 and interferon regulatory factor 6 in the etiology of non-syndromic cleft lip with or without cleft palate in a Chilean population.

    PubMed

    Blanco, Rafael; Colombo, Alicia; Pardo, Rosa; Suazo, José

    2017-04-01

    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common craniofacial birth defect in humans, the etiology of which can be dependent on the interactions of multiple genes. We previously reported haplotype associations for polymorphic variants of interferon regulatory factor 6 (IRF6), msh homeobox 1 (MSX1), bone morphogenetic protein 4 (BMP4), and transforming growth factor beta 3 (TGFB3) in Chile. Here, we analyzed the haplotype-based gene-gene interaction for markers of these genes and NSCL/P risk in the Chilean population. We genotyped 15 single nucleoptide polymorphisms (SNPs) in 152 Chilean patients and 164 controls. Linkage disequilibrium (LD) blocks were determined using the Haploview software, and phase reconstruction was performed by the Phase program. Haplotype-based interactions were evaluated using the multifactor dimensionality reduction (MDR) method. We detected two LD blocks composed of two SNPs from BMP4 (Block 1) and three SNPs from IRF6 (Block 2). Although MDR showed no statistical significance for the global interaction model involving these blocks, we found four combinations conferring a statistically significantly increased NSCL/P risk (Block 1-Block 2): T-T/T-G C-G-T/G-A-T; T-T/T-G C-G-C/C-G-C; T-T/T-G G-A-T/G-A-T; and T-T/C-G G-A-T/G-A-T. These findings may reflect the presence of a genomic region containing potential causal variants interacting in the etiology of NSCL/P and may contribute to disentangling the complex etiology of this birth defect.

  12. Headbobber: a combined morphogenetic and cochleosaccular mouse model to study 10qter deletions in human deafness.

    PubMed

    Buniello, Annalisa; Hardisty-Hughes, Rachel E; Pass, Johanna C; Bober, Eva; Smith, Richard J; Steel, Karen P

    2013-01-01

    The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac. Moreover, we detect severe abnormalities of the cochlear sensory hair cells, the stria vascularis looks severely disorganised, Reissner's membrane is collapsed and no endocochlear potential is detected. Myo7a and Kcnj10 expression analysis show a lack of the melanocyte-like intermediate cells in hb/hb stria vascularis, which can explain the absence of endocochlear potential. We use Trp2 as a marker of melanoblasts migrating from the neural crest at E12.5 and show that they do not interdigitate into the developing strial epithelium, associated with abnormal persistence of the basal lamina in the hb/hb cochlea. We perform array CGH, deep sequencing as well as an extensive expression analysis of candidate genes in the headbobber region of hb/hb and littermate controls, and conclude that the headbobber phenotype is caused by: 1) effect of a 648 kb deletion on distal Chr7, resulting in the loss of three protein coding genes (Gpr26, Cpmx2 and Chst15) with expression in the inner ear but unknown function; and 2) indirect, long range effect of the deletion on the expression of neighboring genes on Chr7, associated with downregulation of Hmx3, Hmx2 and Nkx1.2 homeobox transcription factors. Interestingly, deletions of the orthologous region in humans, affecting the same genes, have been reported in nineteen patients with common features including sensorineural hearing loss and vestibular problems. Therefore, we propose that headbobber is a useful model to gain insight into the mechanisms underlying deafness in human 10qter

  13. DSP-PP Precursor Protein Cleavage by Tolloid-Related-1 Protein and by Bone Morphogenetic Protein-1

    PubMed Central

    Ritchie, Helena H.; Yee, Colin T.; Tang, Xu-na; Dong, Zhihong; Fuller, Robert S.

    2012-01-01

    Dentin sialoprotein (DSP) and phosphophoryn (PP), acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG447↓D448DPN. DSP-PP240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP430 and PP240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog), we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1) that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP1 in processing DSP-PP in

  14. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1.

    PubMed

    Ritchie, Helena H; Yee, Colin T; Tang, Xu-Na; Dong, Zhihong; Fuller, Robert S

    2012-01-01

    Dentin sialoprotein (DSP) and phosphophoryn (PP), acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP(240), a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP(240) secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG(447)↓D(448)DPN. DSP-PP(240) is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP(430) and PP(240) products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog), we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1) that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP(240) processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP(240) in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP(240) in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP1 in

  15. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells

    PubMed Central

    Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan

    2016-01-01

    Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering. PMID:27725853

  16. Bone morphogenetic protein-9 is a potent growth inhibitor of hepatocellular carcinoma and reduces the liver cancer stem cells population

    PubMed Central

    Jung, Jae Woo; Yoon, So-Mi; Kim, Subin; Jeon, Yun-Hui; Yoon, Byung-Hak; Yang, Su-Geun; Kim, Min Kyoung; Choe, Senyon; Kuo, Mario Meng-Chiang

    2016-01-01

    The biological role of BMP-9 signaling in liver cancer remains dubious. To explore the potential use of BMP-9 signaling for anti-cancer therapy, we used recombinant human BMP-9, which we referred to as MB109, to study the effect on growth of fifteen hepatocellular carcinoma (HCC) cell lines. MB109 effectively inhibits the proliferation of nine HCC cells in vitro. The anti-proliferative effect was found to be induced by turning on p21 signaling, which caused survivin suppression and G0/G1 cell cycle arrest. ID3 was identified to be the mediator of the MB109-induced p21 expression. Blocking the activity of p38 MAPK diminished ID3 and p21 expression, indicating that MB109 signals through a p38 MAPK/ID3/p21 pathway to arrest cell cycle progression. Moreover, prolonged MB109 treatment suppressed the expression of five prominent liver cancer stem cell (LCSC) markers, including CD44, CD90, AFP, GPC3 and ANPEP. Xenograft model confirmed the anti-tumor and LCSC-suppression capability of MB109 in vivo. Contrary to ongoing efforts of suppressing BMP-9 signaling to inhibit angiogenesis of cancer tissue, these results demonstrate an unexpected therapeutic potential of MB109 to stimulate BMP-9 signaling for anti-cancer therapies. PMID:27650540

  17. Bone morphogenetic protein-4 interacts with activin and GnRH to modulate gonadotrophin secretion in LbetaT2 gonadotrophs.

    PubMed

    Nicol, L; Faure, M-O; McNeilly, J R; Fontaine, J; Taragnat, C; McNeilly, A S

    2008-03-01

    We have shown previously that, in sheep primary pituitary cells, bone morphogenetic proteins (BMP)-4 inhibits FSHbeta mRNA expression and FSH release. In contrast, in mouse LbetaT2 gonadotrophs, others have shown a stimulatory effect of BMPs on basal or activin-stimulated FSHbeta promoter-driven transcription. As a species comparison with our previous results, we used LbetaT2 cells to investigate the effects of BMP-4 on gonadotrophin mRNA and secretion modulated by activin and GnRH. BMP-4 alone had no effect on FSH production, but enhanced the activin+GnRH-induced stimulation of FSHbeta mRNA and FSH secretion, without any effect on follistatin mRNA. BMP-4 reduced LHbeta mRNA up-regulation in response to GnRH (+/-activin) and decreased GnRH receptor expression, which would favour FSH, rather than LH, synthesis and secretion. In contrast to sheep pituitary gonadotrophs, which express only BMP receptor types IA (BMPRIA) and II (BMPRII), LbetaT2 cells also express BMPRIB. Smad1/5 phosphorylation induced by BMP-4, indicating activation of BMP signalling, was the same whether BMP-4 was used alone or combined with activin+/-GnRH. We hypothesized that activin and/or GnRH pathways may be modulated by BMP-4, but neither the activin-stimulated phosphorylation of Smad2/3 nor the GnRH-induced ERK1/2 or cAMP response element-binding phosphorylation were modified. However, the GnRH-induced activation of p38 MAPK was decreased by BMP-4. This was associated with increased FSHbeta mRNA levels and FSH secretion, but decreased LHbeta mRNA levels. These results confirm 1. BMPs as important modulators of activin and/or GnRH-stimulated gonadotrophin synthesis and release and 2. important species differences in these effects, which could relate to differences in BMP receptor expression in gonadotrophs.

  18. Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy.

    PubMed

    Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun

    2016-07-01

    In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. c

  19. Alterations in bone morphogenetic protein 15, growth differentiation factor 9, and gene expression in granulosa cells in preovulatory follicles of dairy cows given porcine LH.

    PubMed

    Behrouzi, Amir; Colazo, Marcos Germán; Ambrose, Divakar Justus

    2016-04-15

    In a previous work, using porcine LH (pLH) in lieu of GnRH for synchronizing ovulation in dairy cows improved pregnancy rates without increasing plasma progesterone concentrations after ovulation. The LH profile is known to remain elevated above basal concentrations (≥1 ng/mL) for up to 20 hours in pLH-treated cows compared to less than 6 hours in GnRH-treated cows. Because LH triggers a cascade of signaling networks in the preovulatory follicle to promote final maturation and support oocyte competence, we hypothesized that dissimilar LH profiles will differentially regulate the intrafollicular factors and expression of downstream genes associated with improved oocyte competence. Specific objectives were to determine differences in the abundance of oocyte-secreted factors in the preovulatory follicular fluid and target genes in granulosa cells associated with oocyte competence, in response to exogenous porcine LH or GnRH-induced endogenous bovine LH exposure, in dairy cows. Follicular contents were aspirated by a transvaginal ultrasound-guided procedure from the preovulatory follicle of cyclic, nonlactating Holstein cows 21 ± 1 hour after administration of either pLH (25-mg) or GnRH (100-μg). Mature forms of bone morphogenetic protein 15, growth differentiation factor 9, and transforming growth factorβ1 were approximately 2-fold more abundant in pLH-treated cows which were exposed to an extended, low LH profile, than in GnRH-treated cows that had a short, high LH profile. The relative abundance of messenger RNA for cyclooxygenase-2, LH receptor, and progesterone receptor in granulosa cells, was about two-, eight-, and two-fold higher, respectively, in cows subjected to pLH than GnRH treatment. We infer that the improved pregnancy rate after pLH-induced ovulation reported previously, occurred through greater activation of intrafollicular transforming growth factor-β1 superfamily members, as these proteins promote cumulus expansion and oocyte competence.

  20. Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

    PubMed Central

    Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun

    2016-01-01

    In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. c

  1. The synergistic effect of SaOS-2 cell extract and other bone-inducing agents on human bone cell cultivation.

    PubMed

    Saif, Ashraf; Wende, Kristian; Lindequist, Ulrike

    2012-12-01

    Human osteosarcoma cell line SaOS-2 is an osteoblastic cell model that contains factors like bone morphogenetic proteins necessary for initiating bone formation. The cell line also expresses high levels of osteoinductive activity. In contrast to highly complicated and expensive ways to identify, purify, and separate specific bone-inducing agents from SaOS-2 cells, lysate can be used as an alternative to isolated bone-stimulating factors. Lysates of SaOS-2 stimulate the activity of the alkaline phosphatase of human osteoblastic cells HOS 58 in vitro. In other words, they probably possess osteoinductive activity. Different serial concentrations of substances like dexamethasone and insulin were tested with and without a lysate of SaOS-2 cells to assay their synergistic action. Results showed that a lysate of the SaOS-2 cell line acts as a synergistic agent and increases the osteoinductive activity of known bone-inducing agents. SaOS-2 cell lysate could be used in the future as a clinical agent to promote bone repair and possibly enhance osteointegration. Using SaOS-2 total cellular extract offers the possibility of lowering the effective dose of other bone-inducing agents.

  2. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  3. Shear Strength Behavior of Human Trabecular Bone

    PubMed Central

    Sanyal, Arnav; Gupta, Atul; Bayraktar, Harun H.; Kwon, Ronald Y.; Keaveny, Tony M.

    2012-01-01

    The shear strength of human trabecular bone may influence overall bone strength under fall loading conditions and failure at bone-implant interfaces. Here, we sought to compare shear and compressive yield strengths of human trabecular bone and elucidate the underlying failure mechanisms. We analyzed 54 specimens (5-mm cubes), all aligned with the main trabecular orientation and spanning four anatomic sites, 44 different cadavers, and a wide range of bone volume fraction (0.06–0.38). Micro-CT-based non-linear finite element analysis was used to assess the compressive and shear strengths and the spatial distribution of yielded tissue; the tissue-level constitutive model allowed for kinematic non-linearity and yielding with strength asymmetry. We found that the computed values of both the shear and compressive strengths depended on bone volume fraction via power law relations having an exponent of 1.7 (R2=0.95 shear; R2=0.97 compression). The ratio of shear to compressive strengths (mean ± SD, 0.44 ± 0.16) did not depend on bone volume fraction (p=0.24) but did depend on microarchitecture, most notably the intra-trabecular standard deviation in trabecular spacing (R2=0.23, p<0.005). For shear, the main tissue-level failure mode was tensile yield of the obliquely oriented trabeculae. By contrast, for compression, specimens having low bone volume fraction failed primarily by large-deformation-related tensile yield of horizontal trabeculae and those having high bone volume failed primarily by compressive yield of vertical trabeculae. We conclude that human trabecular bone is generally much weaker in shear than compression at the apparent level, reflecting different failure mechanisms at the tissue level. PMID:22884967

  4. Investigation of gene expressions in differentiated cell derived bone marrow stem cells during bone morphogenetic protein-4 treatments with Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zafari, Jaber; Jouni, Fatemeh Javani; Ahmadvand, Ali; Abdolmaleki, Parviz; Soodi, Malihe; Zendehdel, Rezvan

    2017-02-01

    A model was set up to predict the differentiation patterns based on the data extracted from FTIR spectroscopy. For this reason, bone marrow stem cells (BMSCs) were differentiated to primordial germ cells (PGCs). Changes in cellular macromolecules in the time of 0, 24, 48, 72, and 96 h of differentiation, as different steps of the differentiation procedure were investigated by using FTIR spectroscopy. Also, the expression of pluripotency (Oct-4, Nanog and c-Myc) and specific genes (Mvh, Stella and Fragilis) were investigated by real-time PCR. However, the expression of genes in five steps of differentiation was predicted by FTIR spectroscopy. FTIR spectra showed changes in the template of band intensities at different differentiation steps. There are increasing changes in the stepwise differentiation procedure for the ratio area of CH2, which is symmetric to CH2 asymmetric stretching. An ensemble of expert methods, including regression tree (RT), boosting algorithm (BA), and generalized regression neural network (GRNN), was the best method to predict the gene expression by FTIR spectroscopy. In conclusion, the model was able to distinguish the pattern of different steps from cell differentiation by using some useful features extracted from FTIR spectra.

  5. Bone health and human immunodeficiency virus infection.

    PubMed

    Schafer, Jason J; Manlangit, Kristine; Squires, Kathleen E

    2013-06-01

    Low bone mineral density is common among persons with human immunodeficiency virus (HIV) infection, and studies reporting increased fracture rates in this patient population are emerging. The causes of low bone mineral density, osteoporosis, and fractures in persons with HIV are likely multifactorial, involving traditional risk factors, HIV infection, and exposure to antiretroviral treatment. Specific antiretrovirals such as tenofovir may cause a greater loss of bone mineral density compared with other agents and have recently been linked to an increased risk for fracture. As a result, recent treatment guidelines suggest that clinicians consider avoiding tenofovir as initial therapy in postmenopausal women. Evaluating bone mineral density and vitamin D status in persons with HIV may be important steps in identifying those requiring pharmacotherapy; however, the appropriate timing for bone mineral density and vitamin D screening is uncertain, as is the appropriate method of replacing vitamin D in HIV-positive patients who are deficient. Further study is necessary to definitively determine the approach to evaluating bone health and managing low bone mineral density and vitamin D deficiency in patients with HIV infection.

  6. Future human bone research in space

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Shackelford, L.; Schneider, V.

    1998-01-01

    Skylab crewmembers demonstrated negative calcium (Ca) balance reaching about -300 mg/day by flight day 84. Limited bone density (BMD) measurements documented that bone was not lost equally from all parts of the skeleton. Subsequent BMD studies during long duration Russian flights documented the regional extent of bone loss. These studies demonstrated mean losses in the spine, femur neck, trochanter, and pelvis of about 1%-1.6% with large differences between individuals as well as between bone sites in a given individual. Limited available data indicate postflight bone recovery occurred in some individuals, but may require several years for complete restoration. Long duration bedrest studies showed a similar pattern of bone loss and calcium balance (-180 mg/day) as spaceflight. During long duration bedrest, resorption markers were elevated, formation markers were unchanged, 1,25 vitamin D (VitD) and calcium absorption were decreased, and serum ionized Ca was increased. Although this information is a good beginning, additional spaceflight research is needed to assess architectural and subregional bone changes, elucidate mechanisms, and develop efficient as well as effective countermeasures. Space research poses a number of unique problems not encountered in ground-based laboratory research. Therefore, researchers contemplating human spaceflight research need to consider a number of unique problems related to spaceflight in their experimental design.

  7. Cadmium content of human cancellous bone

    SciTech Connect

    Knuuttila, M.; Lappalainen, R.; Olkkonen, H.; Lammi, S.; Albava, E.M.

    1982-09-01

    The cadmium content of human cancellous bone was related to age, sex, bone loss, physical properties, and elemental composition. Bone specimens from the anterior iliac crest were collected from 88 cadavers with a normal mineral status, and from 50 cadavers which had bone loss from chronic diseases and immobilization. The element concentrations were analyzed using atomic absorption spectrophotometry. Bone fluoride levels were determined with the ion specific electrode, the mineral density with the gamma ray attenuation method, and the compressive strength with a strain transducer. The data were analyzed using multiple linear regression analysis. The mean cadmium content of 0.22 +/- 0.16 ..mu..g/g dry weight (+/- SD) in the samples did not change with age and its content was slightly greater in males than in females. Furthermore, no statistically significant relationship was found in cadmium content to bone loss changes or to the calcium content of bone. The cadmium content had a high statistically significant positive correlation with the strontium and nickel content.

  8. Endogenous BMPR-IB signaling is required for early osteoblast differentiation of human bone cells.

    PubMed

    Singhatanadgit, Weerachai; Olsen, Irwin

    2011-03-01

    Osteoblast differentiation is tightly regulated by a number of cytokines and growth factors, including bone morphogenetic proteins (BMP) which stimulate osteoblast differentiation by signal transduction via three BMP receptors (BMPR-IA, -IB and -II). Although the mechanisms which regulate osteoblast differentiation are not fully understood, it is possible that endogenous BMPR signaling could play an important part in this process. To test this hypothesis, we have examined the expression and the functional significance of BMPR during osteoblast differentiation of primary human bone cells. The results showed that although the expression of BMPR-IA and -II transcripts were constantly expressed while the bone cells underwent osteoblast differentiation, the level of BMPR-IB mRNA was transiently, but significantly, up-regulated by threefold on day 3. This increase in BMPR-IB expression was found to be associated with the significant up-regulation of core binding factor alpha 1 (Cbfa1) and alkaline phosphatase (ALP) transcripts as well as the ALP activity, the well-established early markers of osteoblast differentiation. Transfection of bone cells with BMPR-IB small interfering RNA (siRNA) was found to significantly ablate the expression of BMPR-IB which subsequently resulted in reduction of Cbfa1 and ALP mRNA as well as the ALP activity. Moreover, exogenously added BMP-2 failed to rescue osteoblast differentiation of BMPR-IB siRNA-transfected bone cells. In conclusion, the present study has shown that endogenous BMPR-IB signaling is required for early phase of osteoblast differentiation of human bone cells in vitro, suggesting that BMPR-IB could be a therapeutic target for initiating bone healing in vivo.

  9. Temporal regulation of mRNAs for select bone morphogenetic proteins (BMP), BMP receptors and their associated SMAD proteins during bovine early embryonic development: effects of exogenous BMP2 on embryo developmental progression

    PubMed Central

    2014-01-01

    Background We previously demonstrated embryotrophic actions of maternal (oocyte-derived) follistatin during bovine early embryogenesis. Classical actions of follistatin are attributed to inhibition of activity of growth factors including activins and bone morphogenetic proteins (BMP). However, temporal changes in BMP mRNA in early bovine embryos and the effects of exogenous BMP on embryo developmental progression are not understood. The objectives of present studies were to characterize mRNA abundance for select BMP, BMP receptors and BMP receptor associated SMADs during bovine oocyte maturation and early embryogenesis and determine effects of addition of exogenous BMP protein on early development. Methods Relative abundance of mRNA for BMP2, BMP3, BMP7, BMP10, SMAD1, SMAD5, ALK3, ALK6, ALK2, BMPR2, ACVR2A and ACVR2B was determined by RT-qPCR analysis of germinal vesicle (GV) and in vitro matured metaphase II (MII) oocytes and in vitro produced embryos collected at pronuclear, 2-cell (C), 4C, 8C, 16C, morula and blastocyst stages. Effects of addition of recombinant human BMP2 (0, 1, 10 and 100 ng/ml) during initial 72 h of embryo culture on early cleavage (within 30 h post insemination), total cleavage, development to 8C-16C and blastocyst stages and blastocyst mRNA abundance for markers of inner cell mass (NANOG) and trophectoderm (CDX2) were also determined. Results Abundance of mRNA for BMP2, BMP10, SMAD1, SMAD5, ALK3, ALK2, BMPR2 and ACVR2B was elevated in MII oocytes and/or pronuclear stage embryos (relative to GV) and remained elevated through the 8C -16C stages, whereas BMP3, BMP7 and ALK2 mRNAs were transiently elevated. Culture of embryos to the 8C stage in the presence of α-amanitin resulted in increased abundance for all of above transcripts examined relative to untreated 8C embryos. Effects of addition of exogenous BMP2 on early cleavage rates and rates of development to 8C-16C and blastocyst stages were not observed, but BMP2 treatment increased

  10. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration in a rodent model: a description of the bone repair by light microscopy

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio Luiz B.; Aciole, Gilberth T. S.; Soares, Luiz G. P.; Correia, Neandder A.; N. dos Santos, Jean

    2011-03-01

    We carried out a histological analysis on surgical bone defects grafted or not with MTA, treated or not with LED, BMPs and GBR. We have used several models to assess the effects of laser on bone. Benefits of the isolated or combined use them on bone healing has been suggested. There is no previous report on their association with LED light. 90 rats were divided into 10 groups. On Groups II and I the defect were filled with the clot. On Group II, were further irradiated. On groups III-VI, defect was filled with MTA + Collagen gel (III); animals of group IV were further irradiated. On groups V and VI, the defects filled with the MTA were covered with a membrane. Animals of Group VI were further irradiated. On Groups VII and VIII a pool of BMPs was added to the MTA and was further irradiated. On groups IX and X, the MTA + BMP graft was covered with a membrane. On group X, the defect was further irradiated. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 54s, 0.3W/cm2, 16 J/cm2) was applied at 48 h intervals during 15 days. Specimens were taken, processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA seemed not being affected by LED light. However, its use positively affected healing around the graft. It is concluded that MTA is not affected by the LED light due to it characteristics, but beneficial results with LED usage was found.

  11. Counteracting bone fragility with human amniotic mesenchymal stem cells

    PubMed Central

    Ranzoni, Anna M.; Corcelli, Michelangelo; Hau, Kwan-Leong; Kerns, Jemma G.; Vanleene, Maximilien; Shefelbine, Sandra; Jones, Gemma N.; Moschidou, Dafni; Dala-Ali, Benan; Goodship, Allen E.; De Coppi, Paolo; Arnett, Timothy R.; Guillot, Pascale V.

    2016-01-01

    The impaired maturation of bone-forming osteoblasts results in reduced bone formation and subsequent bone weakening, which leads to a number of conditions such as osteogenesis imperfecta (OI). Transplantation of human fetal mesenchymal stem cells has been proposed as skeletal anabolic therapy to enhance bone formation, but the mechanisms underlying the contribution of the donor cells to bone health are poorly understood and require further elucidation. Here, we show that intraperitoneal injection of human amniotic mesenchymal stem cells (AFSCs) into a mouse model of OI (oim mice) reduced fracture susceptibility, increased bone strength, improved bone quality and micro-architecture, normalised bone remodelling and reduced TNFα and TGFβ sigalling. Donor cells engrafted into bones and differentiated into osteoblasts but importantly, also promoted endogenous osteogenesis and the maturation of resident osteoblasts. Together, these findings identify AFSC transplantation as a countermeasure to bone fragility. These data have wider implications for bone health and fracture reduction. PMID:27995994

  12. Diagnostic dry bone histology in human paleopathology.

    PubMed

    de Boer, H H Hans; Van der Merwe, A E Lida

    2016-10-01

    Paleopathology is the study of trauma and disease as may be observed in ancient (human) remains. In contrast to its central role in current medical practice, microscopy plays a rather modest role in paleopathology. This is at least partially due to the differences between fresh and decomposed (i.e., skeletonized or "dry bone") tissue samples. This review discusses these differences and describes how they affect the histological analysis of paleopathological specimens. First, we provide a summary of some general challenges related to the histological analysis of palaeopathological specimens. Second, the reader is introduced in bone tissue histology and bone tissue dynamics. The remainder of the paper is dedicated to the diagnostic value of dry bone histology. Its value and limitations are illustrated by comparing several well-studied paleopathological cases with similar contemporary, clinical cases. This review illustrates that due to post-mortem loss of soft tissue, a limited number of disorders display pathognomonic features during histological analysis of skeletonized human remains. In the remainder of cases, histology may help to narrow down the differential diagnosis or is diagnostically unspecific. A comprehensive, multidisciplinary diagnostic approach therefore remains essential. Clin. Anat. 29:831-843, 2016. © 2016 Wiley Periodicals, Inc.

  13. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713

    PubMed Central

    1994-01-01

    The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF

  14. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  15. Engineering a humanized bone organ model in mice to study bone metastases.

    PubMed

    Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W

    2017-04-01

    Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.

  16. Effect of rhBMP-2 on guided bone regeneration in humans.

    PubMed

    Jung, Ronald E; Glauser, Roland; Schärer, Peter; Hämmerle, Christoph H F; Sailer, Hermann F; Weber, Franz E

    2003-10-01

    The aim of the present clinical study was to test whether or not the addition of recombinant human bone morphogenetic protein-2 (rhBMP-2) to a xenogenic bone substitute mineral (Bio-Oss) will improve guided bone regeneration therapy regarding bone volume, density and maturation. In 11 partially edentulous patients, 34 Brånemark implants were placed at two different sites in the same jaw (five maxillae, six mandibles) requiring lateral ridge augmentation. The bone defects were randomly assigned to test and control treatments: the test and the control defects were both augmented with the xenogenic bone substitute and a resorbable collagen membrane (Bio-Gide). At the test sites, the xenogenic bone substitute mineral was coated with rhBMP-2 in a lyophilization process. Following implant insertion (baseline), the peri-implant bone defect height was measured from the implant shoulder to the first implant-bone contact. After an average healing period of 6 months (SD 0.17, range 5.7-6.2), the residual defects were again measured and trephine burs were used to take 22 bone biopsies from the augmented regions. The healing period was uneventful except for one implant site that showed a wound dehiscence, which spontaneously closed after 4 weeks. Later at reentry, all implants were stable. At baseline, the mean defect height was 7.0 mm (SD 2.67, range 3-12 mm) at test and 5.8 mm (SD 1.81, range 3-8 mm) at control sites. At reentry, the mean defect height decreased to 0.2 mm (SD 0.35, range 0-1 mm) at test sites (corresponding to 96% vertical defect fill) and to 0.4 mm (SD 0.66, range 0-2 mm) at the control site (vertical defect fill of 91%). Reduction in defect height from baseline to reentry for both test and control sites was statistically significant (Wilcoxon P<0.01). Histomorphometric analysis showed an average area density of 37% (SD 11.2, range 23-51%) newly formed bone at test sites and 30% (SD 8.9, range 18-43%) at control sites. The fraction of mineralized bone

  17. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2.

    PubMed

    van Gastel, Nick; Stegen, Steve; Stockmans, Ingrid; Moermans, Karen; Schrooten, Jan; Graf, Daniel; Luyten, Frank P; Carmeliet, Geert

    2014-09-01

    The preservation of the bone-forming potential of skeletal progenitor cells during their ex vivo expansion remains one of the major challenges for cell-based bone regeneration strategies. We report that expansion of murine periosteal cells in the presence of FGF2, a signal present during the early stages of fracture healing, is necessary and sufficient to maintain their ability to organize in vivo into a cartilage template which gives rise to mature bone. Implantation of FGF2-primed cells in a large bone defect in mice resulted in complete healing, demonstrating the feasibility of using this approach for bone tissue engineering purposes. Mechanistically, the enhanced endochondral ossification potential of FGF2-expanded periosteal cells is predominantly driven by an increased production of BMP2 and is additionally linked to an improved preservation of skeletal progenitor cells in the cultures. This characteristic is unique for periosteal cells, as FGF2-primed bone marrow stromal cells formed significantly less bone and progressed exclusively through the intramembranous pathway, revealing essential differences between both cell pools. Taken together, our findings provide insight in the molecular regulation of fracture repair by identifying a unique interaction between periosteal cells and FGF2. These insights may promote the development of cell-based therapeutic strategies for bone regeneration which are independent of the in vivo use of growth factors, thus limiting undesired side effects.

  18. Mechanistic fracture criteria for the failure of human cortical bone

    SciTech Connect

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  19. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells

    PubMed Central

    Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  20. Effect of boron on osteogenic differentiation of human bone marrow stromal cells.

    PubMed

    Ying, Xiaozhou; Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Shen, Yue; Cheng, Xiaojie; Rompis, Ferdinand An; Peng, Lei; Zhu Lu, Chuan

    2011-12-01

    Bone marrow stromal cells (BMSCs) have been well established as an ideal source of cell-based therapy for bone tissue engineering applications. Boron (B) is a notable trace element in humans; so far, the effects of boron on the osteogenic differentiation of BMSCs have not been reported. The aim of this study was to evaluate the effects of boron (0, 1, 10,100, and 1,000 ng/ml) on osteogenic differentiation of human BMSCs. In this study, BMSCs proliferation was analyzed by cell counting kit-8 (CCK8) assay, and cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity assay, Von Kossa staining, and real-time PCR. The results indicated that the proliferation of BMSCs was no different from the control group when added with B at the concentration of 1, 10, and 100 ng/ml respectively (P > 0.05); in contrast, 1,000 ng/ml B inhibited the proliferation of BMSCs at days 4, 7, and 14 (P < 0.05). By ALP staining, we discovered that BMSCs treated with 10 and 100 ng/ml B presented a higher ALP activity compared with control (P < 0.05). By real-time PCR, we detected the messenger RNA expression of ALP, osteocalcin, collagen type I, and bone morphogenetic proteins 7 were also increased in 10 and 100 ng/ml B treatment groups (P < 0.05). The calcium depositions were increased in 1 and 10 ng/ml B treatment groups (P < 0.05). Taken all together, it was the first time to report that B could increase osteogenic effect by stimulating osteogenic differentiation-related marker gene synthesis during the proliferation and differentiation phase in human BMSCs and could be a promising approach for enhancing osteogenic capacity of cell-based construction in bone tissue engineering.

  1. Ultrasonic characterization of human trabecular bone microstructure.

    PubMed

    Hakulinen, Mikko A; Day, Judd S; Töyräs, Juha; Weinans, Harrie; Jurvelin, Jukka S

    2006-03-21

    New quantitative ultrasound (QUS) techniques involving ultrasound backscattering have been introduced for the assessment of bone quality. QUS parameters are affected by the transducer characteristics, e.g. frequency range, wave and pulse length. Although frequency-dependent backscattering has been studied extensively, understanding of the ultrasound scattering phenomenon in trabecular bone is still limited. In the present study, the relationships between QUS parameters and the microstructure of human trabecular bone were investigated experimentally and by using numerical simulations. Speed of sound (SOS), normalized broadband ultrasound attenuation (nBUA), average attenuation, integrated reflection coefficient (IRC) and broadband ultrasound backscatter (BUB) were measured for 26 human trabecular bone cylinders. Subsequently, a high-resolution microCT system was used to determine the microstructural parameters. Moreover, based on the sample-specific microCT data, a numerical model for ultrasound propagation was developed for the simulation of experimental measurements. Experimentally, significant relationships between the QUS parameters and microstructural parameters were demonstrated. The relationships were dependent on the frequency, and the strongest association (r = 0.88) between SOS and structural parameters was observed at a centre frequency of 5 MHz. nBUA, average attenuation, IRC and BUB showed somewhat lower linear correlations with the structural properties at a centre frequency of 5 MHz, as compared to those determined at lower frequencies. Multiple regression analyses revealed that the variation of acoustic parameters could best be explained by parameters reflecting the amount of mineralized tissue. A principal component analysis demonstrated that the strongest determinants of BUB and IRC were related to the trabecular structure. However, other structural characteristics contributed significantly to the prediction of the acoustic parameters as well. The

  2. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects

    PubMed Central

    Ode, G.; Hoelscher, G.; Ingram, J.; Bethea, S.; Bosse, M. J.

    2016-01-01

    Objectives The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with

  3. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.

    PubMed

    Neufurth, Meik; Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Diehl-Seifert, Bärbel; Ziebart, Thomas; Steffen, Renate; Wang, Shunfeng; Müller, Werner E G

    2014-10-01

    Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca(2+)-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca(2+)-complex, the cells proliferate with a generation time of approximately 47-55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence of the polymer. The reduced Young's modulus for the alginate/gelatin hydrogel is approximately 13-14 kPa, and this value drops to approximately 0.5 kPa after incubation of the cell containing scaffolds for 5 d. In the presence of 100 μm polyP·Ca(2+)-complex, the reduced Young's modulus increases to about 22 kPa. The hardness of the polyP·Ca(2+)-complex containing hydrogel remains essentially constant if cells are absent in the matrix, but it drops to 3.2 kPa after a 5 d incubation period in the presence of SaOS-2 cells, indicating that polyP·Ca(2+)-complex becomes metabolized, degraded, by the cells. The alginate/gelatine-agarose system with polyP·Ca(2+)-complex cause a significant increase in the mineralization of the cells. SEM analyses revealed that the morphology of the mineral nodules formed on the surface of the cells embedded in the alginate/gelatin hydrogel do not significantly differ from the nodules on cells growing in monolayer cultures. The newly developed technique, using cells encapsulated into an alginate/gelatin hydrogel and a secondary layer containing the morphogenetically active, growth promoting polymer polyP·Ca(2+)-complex opens new possibilities for the application of 3D bioprinting in bone tissue engineering.

  4. Multifunctional Thin Film Biomatrice Biosensor in a Degradable Scaffold Containing Bone Morphogenetic Protein-2 (BMP-2) for Controlled Release in Skeletal Tissue Engineering

    NASA Astrophysics Data System (ADS)

    McDaniel, Harvey; Lomax, Linda

    2001-03-01

    Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused

  5. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways.

    PubMed

    Guan, Junhong; Du, Shaonan; Lv, Tao; Qu, Shengtao; Fu, Qiang; Yuan, Ye

    2016-01-01

    Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia.

  6. Coordinated regulation of dorsal bone morphogenetic protein 4 and ventral Sonic hedgehog signaling specifies the dorso-ventral polarity in the optic vesicle and governs ocular morphogenesis through fibroblast growth factor 8 upregulation.

    PubMed

    Kobayashi, Takuma; Yasuda, Kunio; Araki, Masasuke

    2010-05-01

    Dorsal and ventral specification in the early optic vesicle plays a crucial role in vertebrate ocular morphogenesis, and proper dorsal-ventral polarity in the optic vesicle ensures that distinct structures develop in separate domains within the eye primordium. The polarity is determined progressively during development by coordinated regulation of extraocular dorsal and ventral factors. In the present study, we cultured discrete portions of embryonic chick brains by preparing anterior cephalon, anterior dorsal cephalon and anterior ventral cephalon, and clearly demonstrate that bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) constitute a dorsal-ventral signaling system together with fibroblast growth factor 8 (FGF8). BMP4 and Shh upregulate Tbx5 and Pax2, as reported previously, and at the same time Shh downregulates Tbx5, while BMP4 affects Pax2 expression to downregulate similarly. Shh induces Fgf8 expression in the ventral optic vesicle. This, in turn, determines the distinct boundary of the retinal pigmented epithelium and the neural retina by suppressing Mitf expression. The lens develops only when signals from both the dorsal and ventral regions come across together. Inverted deposition of Shh and BMP4 signals in organ-cultured optic vesicle completely re-organized ocular structures to be inverted. Based on these observations we propose a novel model in which the two signals govern the whole of ocular development when they encounter each other in the ocular morphogenic domain.

  7. Protein kinase signalling pathways involved in the up-regulation of the rat alpha1(I) collagen gene by transforming growth factor beta1 and bone morphogenetic protein 2 in osteoblastic cells.

    PubMed Central

    Palcy, S; Goltzman, D

    1999-01-01

    Transforming growth factor beta (TGFbeta) family members are known for their important role in bone physiology. TGFbeta(1) and, to a smaller extent, bone morphogenetic protein 2 (BMP-2) have been reported to regulate the gene expression of different osteoblast markers in vitro. However, little is known about the molecular mechanisms involved in these actions. Here we report that BMP-2, like TGFbeta(1), up-regulated alpha1(I) collagen mRNA expression in ROS 17/2.8 osteoblastic cells. This was mediated through an increase in the transcriptional rate of the gene rather than through the stabilization of alpha1(I) collagen mRNA, and required new protein synthesis. In addition, TGFbeta(1)- and BMP-2-induced increases in alpha1(I) collagen mRNA levels were both dependent on protein kinase C and protein tyrosine kinase activities. Furthermore, the mitogen-activated protein kinase (MAPK) [MAPK/extracellular signal-regulated protein kinase kinase 1/extracellular signal-regulated protein kinase (MEK-1/ERK)] pathway participated in the up-regulation of alpha1(I) collagen gene expression by TGFbeta(1) and BMP-2. In response to either TGFbeta(1) or BMP-2, the stimulation of alpha1(I) collagen mRNA levels was paralleled by an early increase in extracellular signal-regulated kinase protein activity. Moreover, the effects of both TGFbeta(1) and BMP-2 on alpha1(I) collagen gene expression were markedly decreased in transfected ROS 17/2.8 cells expressing a dominant-negative MEK-1. Our findings therefore show that TGFbeta(1) and BMP-2, which signal through discrete cell-surface receptors, are able to trigger analogous, if not identical, protein-phosphorylation-transducing cascades leading to comparable actions on the transcription of the alpha1(I) collagen gene in osteoblastic cells. PMID:10493907

  8. Osteogenic Differentiation of Human and Ovine Bone Marrow Stromal Cells in response to β-Glycerophosphate and Monosodium Phosphate.

    PubMed

    Bottagisio, Marta; Lovati, Arianna B; Lopa, Silvia; Moretti, Matteo

    2015-08-01

    Bone defects are severe burdens in clinics, and thus cell therapy offers an alternative strategy exploiting the features of bone marrow stromal cells (BMSCs). Sheep are a suitable orthopedic preclinical model for similarities with humans. This study compares the influence of two phosphate sources combined with bone morphogenetic protein-2 (BMP-2) on the osteogenic potential of human and ovine BMSCs. β-Glycerophosphate (β-GlyP) and monosodium phosphate (NaH2PO4) were used as organic and inorganic phosphate sources. Osteogenic differentiation of the BMSCs was assessed by calcified matrix, alkaline phosphatase (ALP) activity, and gene expression analysis. A higher calcified matrix deposition was detected in BMSCs cultured with NaH2PO4. Although no significant differences were detected among media for human BMSCs, β-GlyP with or without BMP-2 determined a positive trend in ALP levels compared to NaH2PO4. In contrast, NaH2PO4 had a positive effect on ALP levels in ovine BMSCs. β-GlyP better supported the expression of COL1A1 in human BMSCs, whereas all media enhanced RUNX2 and SPARC expression. Ovine BMSCs responded poorly to any media for RUNX2, COL1A1, and SPARC expression. NaH2PO4 improved calcified matrix deposition without upregulating the transcriptional expression of osteogenic markers. A further optimization of differentiation protocols needs to be performed to translate the procedures from preclinical to clinical models.

  9. Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein.

    PubMed

    Tiaden, André N; Breiden, Maike; Mirsaidi, Ali; Weber, Fabienne A; Bahrenberg, Gregor; Glanz, Stephan; Cinelli, Paolo; Ehrmann, Michael; Richards, Peter J

    2012-10-01

    Mammalian high-temperature requirement serine protease A1 (HTRA1) is a secreted member of the trypsin family of serine proteases which can degrade a variety of bone matrix proteins and as such has been implicated in musculoskeletal development. In this study, we have investigated the role of HTRA1 in mesenchymal stem cell (MSC) osteogenesis and suggest a potential mechanism through which it controls matrix mineralization by differentiating bone-forming cells. Osteogenic induction resulted in a significant elevation in the expression and secretion of HTRA1 in MSCs isolated from human bone marrow-derived MSCs (hBMSCs), mouse adipose-derived stromal cells (mASCs), and mouse embryonic stem cells. Recombinant HTRA1 enhanced the osteogenesis of hBMSCs as evidenced by significant changes in several osteogenic markers including integrin-binding sialoprotein (IBSP), bone morphogenetic protein 5 (BMP5), and sclerostin, and promoted matrix mineralization in differentiating bone-forming osteoblasts. These stimulatory effects were not observed with proteolytically inactive HTRA1 and were abolished by small interfering RNA against HTRA1. Moreover, loss of HTRA1 function resulted in enhanced adipogenesis of hBMSCs. HTRA1 Immunofluorescence studies showed colocalization of HTRA1 with IBSP protein in osteogenic mASC spheroid cultures and was confirmed as being a newly identified HTRA1 substrate in cell cultures and in proteolytic enzyme assays. A role for HTRA1 in bone regeneration in vivo was also alluded to in bone fracture repair studies where HTRA1 was found localized predominantly to areas of new bone formation in association with IBSP. These data therefore implicate HTRA1 as having a central role in osteogenesis through modification of proteins within the extracellular matrix.

  10. Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones

    SciTech Connect

    Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre; Braz, Delson; Almeida, Carlos Eduardo de; Borba de Andrade, Cherley; Tromba, Giuliana

    2012-05-17

    This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software. Resolution yielded was excellent what facilitate quantification of bone microstructures.

  11. Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones

    NASA Astrophysics Data System (ADS)

    Nogueira, Liebert Parreiras; Barroso, Regina Cély; de Almeida, André Pereira; Braz, Delson; de Almeida, Carlos Eduardo; de Andrade, Cherley Borba; Tromba, Giuliana

    2012-05-01

    This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 μm tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software. Resolution yielded was excellent what facilitate quantification of bone microstructures.

  12. Enoxaparin and rivaroxaban have different effects on human mesenchymal stromal cells in the early stages of bone healing

    PubMed Central

    Fröbel, J.; Prodinger, P. M.; Mrotzek, S. J.; Fischer, J. C.; Zilkens, C.; Bittersohl, B.; Krauspe, R.

    2016-01-01

    Objectives Venous thromboembolism (VTE) is a major potential complication following orthopaedic surgery. Subcutaneously administered enoxaparin has been used as the benchmark to reduce the incidence of VTE. However, concerns have been raised regarding the long-term administration of enoxaparin and its possible negative effects on bone healing and bone density with an increase of the risk of osteoporotic fractures. New oral anticoagulants such as rivaroxaban have recently been introduced, however, there is a lack of information regarding how these drugs affect bone metabolism and post-operative bone healing. Methods We measured the migration and proliferation capacity of mesenchymal stem cells (MSCs) under enoxaparin or rivaroxaban treatment for three consecutive weeks, and evaluated effects on MSC mRNA expression of markers for stress and osteogenic differentiation. Results We demonstrate that enoxaparin, but not rivaroxaban, increases the migration potential of MSCs and increases their cell count in line with elevated mRNA expression of C-X-C chemokine receptor type 4 (CXCR4), tumor necrosis factor alpha (TNFα), and alpha-B-crystallin (CryaB). However, a decrease in early osteogenic markers (insulin-like growth factors 1 and 2 (IGF1, IGF2), bone morphogenetic protein2 (BMP2)) indicated inhibitory effects on MSC differentiation into osteoblasts caused by enoxaparin, but not by rivaroxaban. Conclusions Our findings may explain the adverse effects of enoxaparin treatment on bone healing. Rivaroxaban has no significant impact on MSC metabolism or capacity for osteogenic differentiation in vitro. Cite this article: Dr H. Pilge. Enoxaparin and rivaroxaban have different effects on human mesenchymal stromal cells in the early stages of bone healing. Bone Joint Res 2016;5:95–100. DOI: 10.1302/2046-3758.53.2000595. PMID:26989119

  13. Sequential extracts of human bone show differing collagen synthetic rates.

    PubMed

    Babraj, J; Cuthbertson, D J; Rickhuss, P; Meier-Augenstein, W; Smith, K; Bohé, J; Wolfe, R R; Gibson, J N A; Adams, C; Rennie, M J

    2002-04-01

    Type I collagen is the major bone protein. Little is known quantitatively about human bone collagen synthesis in vivo, despite its importance for the understanding of bone formation and turnover. Our aim was to develop a method that could be used for the physiological and pathophysiological investigation of human bone collagen synthesis. We have carried out preliminary studies in patients undergoing hip replacement and in pigs to validate the use of the flooding dose method using (13)C- or (15)N-labelled proline and we have now refined our techniques to allow them to be used in a normal clinical or physiological setting. The results show that the application of a flooding dose causes bone free-proline labelling to equilibrate with that of blood in pigs and human beings, so that only 150 mg of bone will provide enough sample to prepare and measure the labelling of three fractions of bone collagen (dissolved in NaCl, acetic acid and pepsin/acetic acid) which have the same relative labelling (1.0:0.43:0.1) as measured by GC-combustion-isotope ratio MS. The rates of incorporation were substantially faster than in skeletal muscle samples taken at the same time. The results suggest that different fractions of human bone collagen turnover at markedly higher rates than had been previously considered. This approach should allow us to discover how growth and development, food, activity and drugs affect bone collagen turnover and to measure the effects on it of ageing and bone disease.

  14. Histological determination of the human origin of bone fragments.

    PubMed

    Cattaneo, Cristina; Porta, David; Gibelli, Daniele; Gamba, Corrado

    2009-05-01

    A frequently encountered task in the forensic scenario is verification of the human origin of severely degraded fragments of bone. In these cases histological methods which consider osteon size and morphology can prove to be useful. The authors in the present study verify the applicability of published algorithms to flat and subadult bones from human, dog, cat, cow, rabbit, sheep, pig, chicken, quail, and turkey samples. Metric analysis was performed on 2031 Haversian canals. Analyses carried out on human samples confirmed a success rate of around 70% on long adult bones; however the percentage of wrong answers was particularly high in the case of newborns and older subadults as well as on flat bones in general. Results therefore suggest that such regression equations should be limited only to bone fragments from long adult bones.

  15. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Fortini, Cinzia; Setti, Stefania; De Mattei, Monica

    2014-09-01

    Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.

  16. Fundamental ratios and logarithmic periodicity in human limb bones.

    PubMed

    Pietak, Alexis; Ma, Siyan; Beck, Caroline W; Stringer, Mark D

    2013-05-01

    Fundamental mathematical relationships are widespread in biology yet there is little information on this topic with regard to human limb bone lengths and none related to human limb bone volumes. Forty-six sets of ipsilateral upper and lower limb long bones and third digit short bones were imaged by computed tomography. Maximum bone lengths were measured manually and individual bone volumes calculated from computed tomography images using a stereologic method. Length ratios of femur : tibia and humerus : ulna were remarkably similar (1.21 and 1.22, respectively) and varied little (<7%) between individuals. The volume ratio of femur : tibia was approximately half that of humerus : ulna (1.58 and 3.28, respectively; P < 0.0001). Lower limb bone volume ratios varied much more than upper limb ratios. The relationship between bone length and volume was found to be well described by power laws, with R(2) values ranging from 0.983 to 0.995. The most striking finding was a logarithmic periodicity in bone length moving from distal to proximal up the limb (upper limb λ = 0.72, lower limb λ = 0.93). These novel data suggest that human limb bone lengths and volumes follow fundamental and highly conserved mathematical relationships, which may contribute to our understanding of normal and disordered growth, stature estimation, and biomechanics.

  17. Fundamental ratios and logarithmic periodicity in human limb bones

    PubMed Central

    Pietak, Alexis; Ma, Siyan; Beck, Caroline W; Stringer, Mark D

    2013-01-01

    Fundamental mathematical relationships are widespread in biology yet there is little information on this topic with regard to human limb bone lengths and none related to human limb bone volumes. Forty-six sets of ipsilateral upper and lower limb long bones and third digit short bones were imaged by computed tomography. Maximum bone lengths were measured manually and individual bone volumes calculated from computed tomography images using a stereologic method. Length ratios of femur : tibia and humerus : ulna were remarkably similar (1.21 and 1.22, respectively) and varied little (<7%) between individuals. The volume ratio of femur : tibia was approximately half that of humerus : ulna (1.58 and 3.28, respectively; P < 0.0001). Lower limb bone volume ratios varied much more than upper limb ratios. The relationship between bone length and volume was found to be well described by power laws, with R2 values ranging from 0.983 to 0.995. The most striking finding was a logarithmic periodicity in bone length moving from distal to proximal up the limb (upper limb λ = 0.72, lower limb λ = 0.93). These novel data suggest that human limb bone lengths and volumes follow fundamental and highly conserved mathematical relationships, which may contribute to our understanding of normal and disordered growth, stature estimation, and biomechanics. PMID:23521756

  18. Role of calcium in the regulation of bone morphogenetic protein 2, runt-related transcription factor 2 and Osterix in primary renal tubular epithelial cells by the vitamin D receptor.

    PubMed

    Jia, Zhaohui; Wang, Shaogang; He, Deng; Cui, Lei; Lu, Yuchao; Hu, Henglong; Qin, Baolong; Zhao, Zhenyu

    2015-08-01

    The aim of the present study was to investigate the effect of 1,25(OH)2D3/vitamin D receptor (VDR) and calcium on the expression levels of osteogenic factors in primary renal tubular epithelial cells (RTECs) using genetic hypercalciuric rats. The basal levels of osteogenic factors were detected in Sprague Dawley and genetic hypercalciuric rats. The gene and protein levels of bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2) and osterix were detected in the RTECs transduced with Lenti-VDR-sh and were incubated with calcium. Using the o-cresolphthalein complexone method, the calcium levels of the primary RTECs cultured with Lenti-VDR-sh and with 1,25(OH)2D3 were assessed. The basal levels of BMP2, Runx2 and Osterix in the cells were significantly higher in the genetic hypercalciuric rats compared with the control rats. VDR knockdown in the RTECs reduced the expression levels of BMP2, Runx2 and Osterix. The calcium depositions in the primary RTECs were also decreased following exposure to Lenti-VDR-sh, but increased following treatment with 1,25(OH)2D3. The expression levels of BMP2, Runx2 and Osterix were markedly increased in the cells incubated with calcium compared with the cells treated with normal saline and the untreated cells. These findings indicated that osteogenic factors, including BMP2, Runx2 and Osterix may be important in renal stone formation in idiopathic hypercalciuria. VDR may mediate the increased expression levels of BMP2, Runx2 and Osterix by positively regulating calcium levels in primary RTECs.

  19. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro.

    PubMed

    Guo, H H; Yu, C C; Sun, S X; Ma, X J; Yang, X C; Sun, K N; Jin, Q H

    2013-10-01

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  20. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways.

    PubMed

    Sapkota, Gopal; Knockaert, Marie; Alarcón, Claudio; Montalvo, Ermelinda; Brivanlou, Ali H; Massagué, Joan

    2006-12-29

    Smad proteins transduce bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFbeta) signals upon phosphorylation of their C-terminal SXS motif by receptor kinases. The activity of Smad1 in the BMP pathway and Smad2/3 in the TGFbeta pathway is restricted by pathway cross-talk and feedback through protein kinases, including MAPK, CDK2/4, p38MAPK, JNK, and others. These kinases phosphorylate Smads 1-3 at the region that links the N-terminal DNA-binding domain and the C-terminal transcriptional domain. Phosphatases that dephosphorylate the linker region are therefore likely to play an integral part in the regulation of Smad activity. We reported previously that small C-terminal domain phosphatases 1, 2, and 3 (SCP1-3) dephosphorylate Smad1 C-terminal tail, thereby attenuating BMP signaling. Here we provide evidence that SCP1-3 also dephosphorylate the linker regions of Smad1 and Smad2/3 in vitro, in mammalian cells and in Xenopus embryos. Overexpression of SCP 1, 2, or 3 decreased linker phosphorylation of Smads 1, 2 and 3. Moreover, RNA interference-mediated knockdown of SCP1/2 increased the BMP-dependent phosphorylation of the Smad1 linker region as well as the C terminus. In contrast, SCP1/2 knockdown increased the TGFbeta-dependent linker phosphorylation of Smad2/3 but not the C-terminal phosphorylation. Consequently, SCP1/2 knockdown inhibited TGFbeta transcriptional responses, but it enhanced BMP transcriptional responses. Thus, by dephosphorylating Smad2/3 at the linker (inhibitory) but not the C-terminal (activating) site, the SCPs enhance TGFbeta signaling, and by dephosphorylating Smad1 at both sites, the SCPs reset Smad1 to the basal unphosphorylated state.

  1. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass.

    PubMed

    Halm, S; Ibañez, A J; Tyler, C R; Prat, F

    2008-09-10

    Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), have crucial roles in primary follicle growth in mammals. To initiate investigations into their significance in teleost oogenesis, we set out to clone and characterise the cDNAs of gdf9 and bmp15 and analysed their patterns of gene expression during the ovarian reproductive cycle in the European sea bass (Dicentrachus labrax). Sea bass gdf9 and bmp15 cDNAs were 2200 and 2049 bp long, coding for 438 and 459 amino acids (aas), respectively, and were most similar to zebrafish gdf9 and bmp15 (64.4 and 56.1%, respectively). By Northern analysis, sea bass gdf9 and bmp15 mRNA transcripts were detected in the ovary only of the tissues analysed and their sizes were 2.2 and 2.1 kb, respectively. Dot-blot analysis revealed high levels of gdf9 and bmp15 expression in the ovary during primary oocyte growth and previtellogenesis (July to October), with a significant decline at the onset of vitellogenesis (November) and remaining low until the beginning of new oocyte growth (April/May). There was a highly significant positive correlation (r=0.939) between gdf9 and bmp15 gene expression in individual samples. The high levels of gdf9 and bmp15 mRNA transcripts in the ovary, especially during the previtellogenic growth period suggest an important role for these factors in early primary oocyte growth in the European sea bass.

  2. Trends in Bone Morphogenetic Protein Usage since the U.S. Food and Drug Administration Advisory in 2008: What Happens to Physician Practices When the Food and Drug Administration Issues an Advisory?

    PubMed

    Mckie, Janay; Qureshi, Sheeraz; Iatridis, James; Egorova, Natalia; Cho, Samuel; Hecht, Andrew

    2014-06-01

    Study Design Retrospective cross-sectional study of spinal procedures from 2002 to 2010 using the Nationwide Inpatient Sample database. Objective To determine the patterns of bone morphogenetic protein (BMP) usage in fusion surgery before and after the U.S. Food and Drug Administration (FDA) 2008 advisory for the anterior cervical spine to understand how advisories affect U.S. physician practices. Methods Procedures were identified through International Classification of Diseases, Ninth Revision procedure codes and were plotted over time based on fusion procedure type, site, and area of fusion. U.S. national trends were approximated by polynomial regression analysis. Results The majority of the data trends of BMP usage reflect a second-order polynomial model. BMP usage in anterior cervical spine fusion procedures plateaued during the fourth quarter of 2007. The most apparent change in trend was noted in BMP usage pre- and postadvisory in the analysis of anterior cervical spine fusions. BMP percentage of use decreased in this area by 5% from the time of the FDA advisory to the fourth quarter of 2010. Conclusions The decrease in BMP usage in anterior cervical spinal fusion procedures coincided with the timing of the FDA advisory. The fact that BMP continued to be used in cervical spine fusion procedures, even at lower rates, despite the advisory, may reflect the availability of new clinical information that could lessen complications (i.e., lower BMP dose, perioperative steroids, BMP containment). Furthermore, factors like the natural ceiling effect of use or demand for new technology, complications, prohibitive institutional costs, access to information, and insurance compensation may have all contributed to the BMP usage trends observed.

  3. The osteogenic potential of human bone callus

    PubMed Central

    Han, Weiqi; He, Wei; Yang, Wanlei; Li, Jianlei; Yang, Zhifan; Lu, Xuanyuan; Qin, An; Qian, Yu

    2016-01-01

    Bone callus, generated during fracture healing, is commonly discarded during surgical procedures. The aim of this study was to investigate the osteogenic potential of bone callus and its possible use as autograft material for patients needing bone grafts. Histology, immunohistochemistry, micro-computed tomography, and biomechanics were performed to examine osteogenic cells, osteoinductive factors, and the osteoconductive structure of bone callus. Alkaline phosphatase-positive osteoblasts, osteoinductive factors (including BMP2, FGF2, TGFB1, and IGF1), and a porous structure were found in bone callus. Early-stage callus (within 3 months after fracture) presented significantly improved osteogenic properties compared to medium- (3–9 months) and late-stage (longer than 9 months) callus. The results revealed that bone callus induced new bone formation in a nude mouse model. Early-stage callus showed better performance to medium- and late-stage callus in the induction of new bone formation at both 8 and 12 weeks. These findings indicated that bone callus, especially early-stage callus, possesses osteogenic potential and can potentially serve as an alternative source of material for bone grafts. PMID:27796345

  4. Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins

    PubMed Central

    Filler, Aaron G.

    2007-01-01

    Background Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale. Methodology/Principal Findings This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)–quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)–frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)–duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)–emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)–inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems. Conclusion/Significance Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new “hominiform” clade and suggests a homeotic

  5. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats.

    PubMed

    Balmayor, Elizabeth R; Geiger, Johannes P; Aneja, Manish K; Berezhanskyy, Taras; Utzinger, Maximilian; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-05-01

    Limitations associated to the use of growth factors represent a major hurdle to musculoskeletal regeneration. On the one hand, they are needed to induce neo-tissue formation for the substitution of a necrotic or missing tissue. On the other hand, these factors are used in supraphysiological concentrations, are short lived and expensive and result in many side effects. Here we develop a gene transfer strategy based on the use of chemically modified mRNA (cmRNA) coding for human bone morphogenetic protein 2 (hBMP-2) that is non-immunogenic and highly stable when compared to unmodified mRNA. Transfected stem cells secrete hBMP-2, show elevated alkaline phosphatase levels and upregulated expression of RunX2, ALP, Osterix, Osteocalcin, Osteopontin and Collagen Type I genes. Mineralization was induced as seen by positive Alizarin red staining. hBMP-2 cmRNA transfected human fat tissue also yielded an osteogenic response in vitro as indicated by expression of hBMP-2, RunX2, ALP and Collagen Type I. Delivering hBMP-2 cmRNA to a femur defect in a rat model results in new bone tissue formation as early as 2 weeks after application of very low doses. Overall, our studies demonstrate the feasibility and therapeutic potential of a new cmRNA-based gene therapy strategy that is safe and efficient. When applied clinically, this approach could overcome BMP-2 growth factor associated limitations in bone regeneration.

  6. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields.

    PubMed

    Clark, Charles C; Wang, Wei; Brighton, Carl T

    2014-07-01

    The objective of the described experiments was to determine the electrical parameters that lead to optimal expression of a number of bone-related genes in cultured human bone cells exposed to a capacitively coupled electric field. Human calvarial osteoblasts were grown in modified plastic Cooper dishes in which the cells could be exposed to various capacitively coupled electric fields. The optimal duration of stimulation and optimal duration of response to the electrical field, and the optimal amplitude, frequency and duty cycle were all determined for each of the genes analyzed. Results indicated that a capacitively coupled electric field of 60 kHz, 20 mV/cm, 50% duty cycle for 2 h duration per day significantly up-regulated mRNA expression of a number of transforming growth factor (TGF)-β family genes (bone morphogenetic proteins (BMP)-2 and -4, TGF-β1, - β2 and -β3) as well as fibroblast growth factor (FGF)-2, osteocalcin (BGP) and alkaline phosphatase (ALP). Protein levels of BMP-2 and -4, and TGF-β1 and - β2 were also elevated. The clinical relevance of these findings in the context of a noninvasive treatment modality for delayed union and nonunion fracture healing is discussed.

  7. Three-dimensional terahertz computed tomography of human bones.

    PubMed

    Bessou, Maryelle; Chassagne, Bruno; Caumes, Jean-Pascal; Pradère, Christophe; Maire, Philippe; Tondusson, Marc; Abraham, Emmanuel

    2012-10-01

    Three-dimensional terahertz computed tomography has been used to investigate dried human bones such as a lumbar vertebra, a coxal bone, and a skull, with a direct comparison with standard radiography. In spite of lower spatial resolution compared with x-ray, terahertz imaging clearly discerns a compact bone from a spongy one, with strong terahertz absorption as shown by additional terahertz time-domain transmission spectroscopy.

  8. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)

    PubMed Central

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-01-01

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541

  9. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  10. Multi-axial mechanical properties of human trabecular bone.

    PubMed

    Rincón-Kohli, Liliana; Zysset, Philippe K

    2009-06-01

    In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric-elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.

  11. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    PubMed Central

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  12. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    PubMed

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  13. The Procuring and Processing of Human Cadaveric Bone Marrow

    DTIC Science & Technology

    1990-01-01

    PROCESSING OF HUMAN CADAVERIC BONE MARROW 12. PERSONAL AUTHOR(S) Timothy R. Faloon 13a. TYPE OF REPORT 13b. TIMECiOVED 14. DATE OF REPORT (Year, Month, Day) S...CADAVERIC BONE MARROW PROCESSING PROTOCOL ................ 15 Procedure for processing and freezing . .................................. 15 CELL VIABILITY...18 Procedure . ....................................................... 18 USING THE COULTER COUNTER

  14. Sizzled Is Unique among Secreted Frizzled-related Proteins for Its Ability to Specifically Inhibit Bone Morphogenetic Protein-1 (BMP-1)/Tolloid-like Proteinases*

    PubMed Central

    Bijakowski, Cécile; Vadon-Le Goff, Sandrine; Delolme, Frédéric; Bourhis, Jean-Marie; Lécorché, Pascaline; Ruggiero, Florence; Becker-Pauly, Christoph; Yiallouros, Irene; Stöcker, Walter; Dive, Vincent; Hulmes, David J. S.; Moali, Catherine

    2012-01-01

    BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a Ki of 1.5 ± 0.5 nm, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs. PMID:22825851

  15. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.

    PubMed

    Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben

    2016-02-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis

  16. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification

    PubMed Central

    Dang, Phuong N.; Dwivedi, Neha; Phillips, Lauren M.; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D.; Murphy, William L.

    2016-01-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance This study demonstrates the regulation of chondrogenesis

  17. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts.

    PubMed

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  18. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    PubMed

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the

  19. Development of optical immunosensors and their application to the analysis of human bone morphogenetic protein-7 (BMP-7)

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Kwang; Rhee, Jong Il; Sohn, Ok-Jae

    2011-03-01

    In this study, a few optical immunosensors were developed to determine the concentration of BMP-7. Hydrophilic CdSe/ZnS quantum dots (QDs) were synthesized and conjugated to the antibody of BMP-7 (BMP-7Ab). The QDconjugated BMP-7Ab was used as a fluorescence probe at excitation and emission wavelengths of 470 nm and 585 nm, respectively. It was immobilized either on the bottom of the well of a 96-well microtiter plate or on the tip of an optical fiber. Two immunoassays, i.e. the direct and sandwich assays, were studied for their sensitivity. The sensitivity of the direct immunoassay was 1296.21, compared to 384.69 for the sandwich assay. The linear detection range was 0.0-1.0 ng/mL for both assays. Based on the results of the microtiter plate technique, the direct assay technique was used for the development of an optical fiber immunosensor. The optical fiber immunosensor has a linear detection range between 0.0 and 10.0 ng/mL with a detection limit of 0.413 ng/mL. The optical fiber immunosensor was applied to the sequential injection analysis for the automatic determination of BMP-7.

  20. Bioreactor cultivation of anatomically shaped human bone grafts.

    PubMed

    Temple, Joshua P; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L

    2014-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes.

  1. Morphogenetic roles of acetylcholine.

    PubMed Central

    Lauder, J M; Schambra, U B

    1999-01-01

    In the adult nervous system, neurotransmitters mediate cellular communication within neuronal circuits. In developing tissues and primitive organisms, neurotransmitters subserve growth regulatory and morphogenetic functions. Accumulated evidence suggests that acetylcholine, (ACh), released from growing axons, regulates growth, differentiation, and plasticity of developing central nervous system neurons. In addition to intrinsic cholinergic neurons, the cerebral cortex and hippocampus receive extensive innervation from cholinergic neurons in the basal forebrain, beginning prenatally and continuing throughout the period of active growth and synaptogenesis. Acute exposure to ethanol in early gestation (which prevents formation of basal forebrain cholinergic neurons) or neonatal lesioning of basal forebrain cholinergic neurons, significantly compromises cortical development and produces persistent impairment of cognitive functions. Neonatal visual deprivation alters developmental expression of muscarinic acetylcholine receptors (mAChR) in visual cortex, whereas local infusion of mAChR antagonists impairs plasticity of visual cortical neurons. These findings raise the possibility that exposure to environmental neurotoxins that affect cholinergic systems may seriously compromise brain development and have long-lasting morphologic, neurochemical, and functional consequences. PMID:10229708

  2. Ethanol inhibits human bone cell proliferation and function in vitro

    SciTech Connect

    Friday, K.E.; Howard, G.A. )

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  3. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  4. Multifrequency electron paramagnetic resonance study on deproteinized human bone

    NASA Astrophysics Data System (ADS)

    Strzelczak, Grażyna; Sadło, Jarosław; Danilczuk, Marek; Stachowicz, Wacław; Callens, Freddy; Vanhaelewyn, Gauthier; Goovaerts, Etienne; Michalik, Jacek

    2007-08-01

    Irradiated samples of deproteinized powdered human bone ( femur) have been examined by electron paramagnetic resonance (EPR) spectroscopy in X, Q and W bands. In the bone powder sample only one type of CO 2- radical ion is stabilized in the hydroxyapatite structure in contrast to powdered human tooth enamel, a material also containing hydroxyapatite, widely used for EPR dosimetry and in which a few radicals are stable at room temperature. It is suggested that the use of deproteinized bone for EPR dosimetry could improve the accuracy of dose determination.

  5. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration.

    PubMed

    Robey, Pamela G; Kuznetsov, Sergei A; Ren, Jiaqiang; Klein, Harvey G; Sabatino, Marianna; Stroncek, David F

    2015-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone.

  6. MxA Is a Novel Regulator of Endosome-Associated Transcriptional Signaling by Bone Morphogenetic Proteins 4 and 9 (BMP4 and BMP9)

    PubMed Central

    Yuan, Huijuan; Sehgal, Pravin B.

    2016-01-01

    There is confusion about the role that IFN-α plays in the pathogenesis of pulmonary arterial hypertension (PAH) with different investigators reporting a causative or a protective role. There is now clear evidence in PAH pathogenesis for the involvement of BMP4 and BMP9 signaling, and its disruption by mutations in BMPR2. In the present study, we investigated MxA, an IFN-α-inducible cytoplasmic dynamin-family GTPase for effects on BMP4/9 signaling, including in the presence of PAH-disease-associated mutants of BMPR2. In human pulmonary arterial endothelial cells (HPAECs), IFN-α-induced endogenous as well as exogenously expressed MxA was associated with endosomes that aligned alongside microtubules and tubules of the endoplasmic reticulum (ER). Moreover, IFN-α and MxA stimulated basal and BMP4/9 signaling to a Smad1/5/8-responsive pBRE-Luc reporter. In HEK293T cells, immunoelectron microscopy confirmed the association of MxA with endosomes, and immunofluorescence methods showed these to be positive for early endosome markers (early endosomal antigen 1, clathrin light chain and Rab5) and RSmad1/5/8. Functionally, using different genetic and inhibitor approaches, we observed that clathrin-mediated endocytosis enhanced and caveolin-mediated endocytosis inhibited the transcriptional response to BMP4 and BMP9. MxA produced a further 3-4-fold enhancement of the BMP-induced response in a clathrin-endocytosis dependent manner. The microtubule inhibitor nocodazole and stabilizer paclitaxel respectively attenuated and enhanced the effect of MxA, implicating microtubule integrity in this process. MxA enhanced BMP-induced signaling in the presence of wild-type BMPR2, and partially rescued signaling from some PAH-disease-associated BMPR2 mutants. Taken together, the data identify MxA as a novel stimulator of BMP4 and BMP9 transcriptional signaling, and suggest it to be a candidate IFN-α-inducible mechanism that might have a protective role against development of PAH and

  7. A method for whole protein isolation from human cranial bone.

    PubMed

    Lyon, Sarah M; Mayampurath, Anoop; Rogers, M Rose; Wolfgeher, Donald J; Fisher, Sean M; Volchenboum, Samuel L; He, Tong-Chuan; Reid, Russell R

    2016-12-15

    The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4 to 629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions.

  8. Regulation of the laminin beta 1 (LAMB1), retinoic acid receptor beta, and bone morphogenetic protein 2 genes in mutant F9 teratocarcinoma cell lines partially deficient in cyclic AMP-dependent protein kinase activity.

    PubMed

    Shen, J; Li, C; Gudas, L J

    1997-12-01

    We stably transfected a gene encoding a dominant negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA) into F9 cells and generated cell lines partially deficient in PKA activity (DN16 and DN19). In these cell lines, the retinoic acid (RA) receptor beta and laminin beta(1) chain (LAMB1) genes were regulated normally by RA alone, indicating that in the absence of exogenous modulation of cAMP levels, the PKA signaling pathway does not seem to play a major role in the RA-associated regulation of these genes. However, alterations in gene regulation were observed when the mutant cell lines were treated with a combination of RA and cAMP analogues. Moreover, in the DN16 cell line, which exhibits the lowest PKA activity among the mutant cell lines [22% of wild type (WT) at 1 microM cAMP], there was a significant decrease in the cAMP-associated activation of the LAMB1 gene DNase I hypersensitivity site 2 enhancer, as measured by chloramphenicol acetyl transferase assays. Using electrophoretic mobility shift assays, less protein binding was observed at one of the motifs (C2) within this enhancer region in the DN16 cells as compared to the F9 WT cells after treatment of the cells with RA and cAMP analogues for 24 h. Furthermore, no increase in C2 binding was observed when extracts from RA-treated F9 ST or DN16 cells were subjected to in vitro phosphorylation, suggesting that PKA is involved in the induction of the C2-binding protein in RA-treated cells. In contrast to the results with RA receptor beta and LAMB1, the effects of cAMP analogues on the RA-associated regulation of the bone morphogenetic protein 2 gene were not altered in the cell lines that exhibited reduced PKA activity. These results suggest that a partial reduction in PKA activity is not sufficient to abrogate the effects of cAMP analogues on all of the genes regulated by RA.

  9. Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration.

    PubMed

    Tsai, Tsung-Lin; Li, Wan-Ju

    2017-02-14

    Maintaining properties of human bone marrow-derived mesenchymal stem cells (BMSCs) in culture for regenerative applications remains a great challenge. An emerging approach of constructing a culture environment mimicking the bone marrow niche to regulate BMSC activities has been developed. In this study, we have demonstrated a systematic approach to identify soluble factors of interest extracted from human bone marrow and used them in BMSC culture for tissue regeneration. We have found that lipocalin-2 and prolactin are key factors in bone marrow, involved in regulating BMSC activities. Treating the cell with lipocalin-2 and prolactin delays cellular senescence of BMSCs and primes the cell for osteogenesis and chondrogenesis. We have also demonstrated that BMSCs pretreated with lipocalin-2 and prolactin can enhance the repair of calvarial defects in mice. Together, our study provides research evidence of using a viable approach to prime BMSC properties in vitro for improving cell-based tissue regeneration in vivo.

  10. Synchrotron Study of Strontium in Modern and Ancient Human Bones

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Cruz-Jimenez, G.

    2001-05-01

    Archaeologists use the strontium in human bone to reconstruct diet and migration in ancient populations. Because mammals discriminate against strontium relative to calcium, carnivores show lower bone Sr/Ca ratios than herbivores. Thus, in a single population, bone Sr/Ca ratios can discriminate a meat-rich from a vegetarian diet. Also, the ratio of 87-Sr to 86-Sr in soils varies with the underlying geology; incorporated into the food chain, this local signature becomes embedded in our bones. The Sr isotopic ratio in the bones of individuals or populations which migrate to a different geologic terrane will gradually change as bone remodels. In contrast, the isotopic ratio of tooth enamel is fixed at an early age and is not altered later in life. Addition of Sr to bone during post-mortem residence in moist soil or sediment compromises application of the Sr/Ca or Sr-isotope techniques. If this post-mortem Sr resides in a different atomic environment than the Sr deposited in vivo, x-ray absorption spectroscopy could allow us to distinguish pristine from contaminated, and thus unreliable, samples. Initial examination of a suite of modern and ancient human and animal bones by extended x-ray absorption fine structure (EXAFS) showed no obvious differences between the fresh and buried materials. We note, with obvious concern, that the actual location of Sr in modern bone is controversial: there is evidence both that Sr substitutes for Ca and that Sr is sorbed on the surfaces of bone crystallites. Additional material is being studied.

  11. Use of Human Fascia Lata in Rat Calvarial Bone Defects.

    PubMed

    Amer, Mariano A R; Rodríguez, Pablo A; Renou, Sandra J; Guglielmotti, María B

    2015-12-01

    Tooth loss leads to a decrease in alveolar bone volume, and consequently to the need for guided bone regeneration (GBR) techniques to restore bone anatomy, and the adequate choice of therapy. Fascia lata membrane (FLM) has been used in surgical procedures in neurology, orthopedics, otorhinolaryngology, cardiology, vascular surgery, gynecology, and dentistry for guided tissue regeneration. The aim of the present preliminary study was to evaluate bone tissue response in rat calvarial bone defects covered with human fascia lata membrane (FLM). Eight Wistar rats, 230g body weight, were subjected to bone surgery to create a 5x5mm long/ 1mm deep calvarial bone defect on either side of the median suture, using a piezoelectric scalpel and irrigation. The animals were treated according to the following protocol: Group I (GI): placement of a single layer of FLM (Biotar, Rosario, Prov. de Santa Fe, Argentina) to cover the defects; Group II (GII): double layer of FLM to cover the defects; Group III: no membrane; Group IV: control. All the animals were euthanized 60 days post-surgery; the heads were resected, radiographed, decalcified, and processed for embedding in paraffin and Hematoxylin-Eosin and Masson's trichrome staining. All bone defects covered with a single or double layer of FLM showed adequate osteogenesis, and none exhibited an inflammatory response. Groups III and IV Control showed scant osteogenesis and no alterations in soft tissues. The results obtained with this experimental model show biocompatibility of FML with the surrounding tissues at the studied time points. No alterations were observed in osteocytic lacunae or osteocytes in the bone after osteotomy using a piezoelectric scalpel. Further studies need to be conducted to assess bone tissue response to FLM in combination with bone substitutes.

  12. Bone quality and biomechanical function: a lesson from human ossicles.

    PubMed

    Duboeuf, François; Burt-Pichat, Brigitte; Farlay, Delphine; Suy, Paul; Truy, Eric; Boivin, Georges

    2015-04-01

    In humans, the middle ear contains a chain of three ossicles with a major highly specific mechanical property (transmission of vibrations) and modeling that stops rapidly after birth. Their bone quality has been rarely studied either in noninflammatory ossicles or in those from ears with chronic inflammation. Our primary goal was to assess bone microarchitecture, morphology and variables reflecting bone quality from incuses, in comparison with those from human femoral cortical bone as controls. Secondly, the impact of chronic inflammation on quality of ossicles was documented. The study was performed on 15 noninflammatory incuses from 15 patients (35±32 years, range: 2-91). Comparisons were performed with 13 inflammatory incuses from 13 patients (55±20 years, range: 1-79) with chronic inflammation of the middle ear, essentially cholesteatoma. Microarchitecture and bone mineral density (BMD) were assessed by microcomputed tomography. Microhardness was measured by microindentation. Mineral and organic characteristics were investigated by Fourier transform infrared microspectroscopy. Noninflammatory incuses were composed of a compact, well mineralized bone without bone marrow and with sparse vessels. Remodeling activity was rarely observed. Woven or lamellar textures and numerous osteocytes were observed. In inflammatory incuses, architecture was degraded, organic tissue was abundant and bone cavities contained fibrocellular tissue and adipocytes. BMD of noninflammatory incuses was significantly higher than BMD from both control bones (4 embedded cortical femoral bone samples; age: 72±15 years, range: 50-85) and inflammatory incuses. Noninflammatory incuses were less hard than both control bone (8 cortical femoral bone samples; age: 49±18 years, range: 24-74) and inflammatory incuses. All incuses were more mineralized and less mature than controls. In conclusion, bone quality of incuses (dense, well mineralized, hard) is well adapted to their function of sound

  13. Differentiating fragmented human and nonhuman long bone using osteon circularity.

    PubMed

    Crescimanno, Annamaria; Stout, Sam D

    2012-03-01

    Distinguishing between human and nonhuman bone is important in forensic anthropology and archeology when remains are fragmentary and DNA cannot be obtained. Histological examination of bone is affordable and practical in such situations. This study suggests using osteon circularity to distinguish human bone fragments and hypothesizes that osteons will more closely resemble a perfect circle in nonhumans than in humans. Standard histological methods were used, and circularity was determined using an image analysis program, where circularity was controlled for by Haversian canal measurements. Homogeneity was first tested for multiple variables within human and nonhuman samples. No significant differences were found between human sexes (p = 0.657) or among nonhuman species (p = 0.553). Significant differences were found among intraskeletal elements of both humans (p = 0.016) and nonhumans (p = 0.013) and between pooled samples of humans and nonhumans (p < 0.001). Results of this study indicate that osteon circularity can be used to distinguish between fragmented human and nonhuman long bone.

  14. DNA and bone structure preservation in medieval human skeletons.

    PubMed

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified.

  15. Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone

    PubMed Central

    Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland

    2013-01-01

    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465

  16. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  17. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  18. Re-evaluating the toughness of human cortical bone.

    PubMed

    Yang, Q D; Cox, B N; Nalla, R K; Ritchie, R O

    2006-06-01

    Data for fracture in human humeral cortical bone are re-analyzed to assess the validity for this material of linear-elastic fracture mechanics (LEFM), which is the standard method of analyzing toughness and one basis for analyzing clinical data relating to bone quality. A nonlinear fracture model, which is based on representing the damage zone in the bone by a cohesive model, is calibrated against a number of sets of test data for normal (not diseased or aged) human cortical bone taken from cadavers. The data consist of load vs. load-point displacement measurements from standard compact-tension fracture tests. Conventional LEFM is unable to account for the shape of the load-displacement curves, but the nonlinear model overcomes this deficiency. Calibration of the nonlinear model against one data curve leads to predictions of the peak load and the displacement to peak load for two other data curves that are, for this limited test set, more accurate than those made using LEFM. Furthermore, prior observations of damage mechanisms in bone are incompatible with the modeling assumption of LEFM that all nonlinearity is confined to a zone much smaller than the specimen and the crack length. The predictions of the cohesive model and the prior observations concur that the length of the nonlinear zone in human cortical bone varies in the range 3-10 mm, which is comparable to or larger than naturally-occurring bones and the specimens used to test them. We infer that LEFM is not an accurate model for cortical bone. The fracture toughness of bone deduced via LEFM from test data will not generally be a material constant, but will take different values for different crack lengths and test configurations. The accuracy of using LEFM or single-parameter fracture toughness for analyzing the significance of data from clinical studies is called into question. The nonlinear cohesive zone model is proposed to be a more accurate model of bone and the traction-displacement or cohesive law

  19. Microscopic residues of bone from dissolving human remains in acids.

    PubMed

    Vermeij, Erwin; Zoon, Peter; van Wijk, Mayonne; Gerretsen, Reza

    2015-05-01

    Dissolving bodies is a current method of disposing of human remains and has been practiced throughout the years. During the last decade in the Netherlands, two cases have emerged in which human remains were treated with acid. In the first case, the remains of a cremated body were treated with hydrofluoric acid. In the second case, two complete bodies were dissolved in a mixture of hydrochloric and sulfuric acid. In both cases, a great variety of evidence was collected at the scene of crime, part of which was embedded in resin, polished, and investigated using SEM/EDX. Apart from macroscopic findings like residual bone and artificial teeth, in both cases, distinct microscopic residues of bone were found as follows: (partly) digested bone, thin-walled structures, and recrystallized calcium phosphate. Although some may believe it is possible to dissolve a body in acid completely, at least some of these microscopic residues will always be found.

  20. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.

    PubMed

    Lambers, Floor M; Bouman, Amanda R; Rimnac, Clare M; Hernandez, Christopher J

    2013-01-01

    Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumulation and mechanical failure is not well understood. The aim of the current study was to determine how microdamage accumulates in human vertebral cancellous bone subjected to cyclic fatigue loading. Cancellous bone cores (n = 32) from the third lumbar vertebra of 16 donors (10 male, 6 female, age 76 ± 8.8, mean ± SD) were subjected to compressive cyclic loading at σ/E0 = 0.0035 (where σ is stress and E0 is the initial Young's modulus). Cyclic loading was suspended before failure at one of seven different amounts of loading and specimens were stained for microdamage using lead uranyl acetate. Damage volume fraction (DV/BV) varied from 0.8 ± 0.5% (no loading) to 3.4 ± 2.1% (fatigue-loaded to complete failure) and was linearly related to the reductions in Young's modulus caused by fatigue loading (r(2) = 0.60, p<0.01). The relationship between reductions in Young's modulus and proportion of fatigue life was nonlinear and suggests that most microdamage generation occurs late in fatigue loading, during the tertiary phase. Our results indicate that human vertebral cancellous bone tissue with a DV/BV of 1.5% is expected to have, on average, a Young's modulus 31% lower than the same tissue without microdamage and is able to withstand 92% fewer cycles before failure than the same tissue without microdamage. Hence, even small amounts of microscopic tissue damage in human vertebral cancellous bone may have large effects on subsequent biomechanical performance.

  1. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  2. Ancient DNA in human bone remains from Pompeii archaeological site.

    PubMed

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  3. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  4. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton

    PubMed Central

    Chirchir, Habiba

    2016-01-01

    There is evidence for variation in trabecular bone density and volume within an individual skeleton, albeit in a few anatomical sites, which is partly dependent on mechanical loading. However, little is known regarding the basic variation in trabecular bone density throughout the skeleton in healthy human adults. This is because research on bone density has been confined to a few skeletal elements, which can be readily measured using available imaging technology particularly in clinical settings. This study comprehensively investigates the distribution of trabecular bone density within the human skeleton in nine skeletal sites (femur, proximal and distal tibia, third metatarsal, humerus, ulna, radius, third metacarpal, and axis) in a sample of N = 20 individuals (11 males and 9 females). pQCT results showed that the proximal ulna (mean = 231.3 mg/cm3) and axis vertebra (mean = 234.3 mg/cm3) displayed significantly greater (p < 0.01) trabecular bone density than other elements, whereas there was no significant variation among the rest of the elements (p > 0.01). The homogeneity of the majority of elements suggests that these sites are potentially responsive to site-specific genetic factors. Secondly, the lack of correlation between elements (p > 0.05) suggests that density measurements of one anatomical region are not necessarily accurate measures of other anatomical regions. PMID:27148458

  5. Dating human bone: is racemization dating species-specific?

    PubMed

    Moini, Mehdi; Rollman, Christopher M; France, Christine A M

    2013-12-03

    Our recently developed dating technique based on the racemization rate of aspartic acid was applied to dating human bone, as well as that of other mammals, utilizing capillary electrophoresis mass spectrometry. First, several well-dated (mostly (14)C-dated and with strong archeological evidence) human bones ranging in age from 150 to ~10,000 years were used to develop a calibration curve for human bone. The D/L ratio of aspartic acid for these specimens ranged from 2.4% to ~10%, with a correlation coefficient of better than 0.99, indicating a strong linear relationship between the d/l ratio of aspartic acid and the age of the specimens. This calibration curve can now be used to date human archeological specimens of unknown age, up to ~10,000 years. However, when the technique was applied to well-dated mixed species of larger mammal bones such as bison, whale, llama, etc., the calibration curve showed a slower rate of racemization with a lower correlation (0.88). As additional large mammal bones with less certain age (i.e., using archeological evidence alone with no (14)C-dating) were dated the correlation coefficient decreased to 0.70. The correlation coefficient decreased further to 0.58 when the racemization data from all mammals (including human) were added to the calibration curve, indicating the importance of using well-dated, species-specific specimens for forming a calibration curve. This conclusion is consistent with our previously published calibration curve for a single species of silk (Bombyx mori), which followed the expected reversible first-order kinetics. These results support species specificity of amino acid racemization dating.

  6. Bone-like nodules formed by human bone marrow stromal cells: comparative study and characterization.

    PubMed

    Schecroun, N; Delloye, C h

    2003-03-01

    Autologous bone marrow stromal cells have been proposed as an adjuvant in the treatment of bone nonunion. This cell therapy would require the establishment of culture conditions that permit the rapid expansion of these cells ex vivo while retaining their potential for further differentiation. Our aim was to achieve a full differentiation process using human bone marrow aspirates. We first analyzed the effects of mineralization medium (with ascorbic acid and phosphate) and dexamethasone (dex) during the primary culture of human bone marrow stromal (HBMS) cells on the proliferation/differentiation behavior of first-passage cells. The most appropriate schedule was then selected to further characterize this differentiation model. We showed that primary culture of HBMS cells in proliferation medium (DMEM supplemented with 10% fetal calf serum), with a 48-h treatment by mineralization medium and dex resulted in a better osteoblastic differentiation of first-passage cells than primary culture carried out in mineralization medium with or without dex. We showed that culture of HBMS cells under these conditions (primary culture in proliferation medium, followed by subculture in mineralization medium) led to the formation of specifically mineralized bone-like nodules similar to the ones observed with rat bone marrow stromal cells. Our nodules exhibited three distinct cell types, reproducing in vitro a tissue-like structure. This treatment demonstrated an optimal proliferation and expression of osteoblastic markers such as alkaline phosphatase, osteocalcin, and type I collagen. The primary culture allowed the multiplication of the number of adherent progenitor cells at the initial time of plating by a mean factor of 44,000, which was found to be negatively correlated with age. Thus, this differentiation model could provide a new tool to elaborate an autologous cell therapy designed to enhance osteogenesis.

  7. A review of radiologically important trace elements in human bones.

    PubMed

    Tandon, L; Iyengar, G V; Parr, R M

    1998-08-01

    The authors recently compiled and reviewed the literature for minor and trace elements in human bones and teeth as a part of an International Atomic Energy Agency (IAEA) study. Various aspects of elemental composition, analytical methodologies, quality assurance and quality control methods for hard tissue analysis were evaluated. Important data on selected radiologically important elements (Cs, Pu, Ra, Sr, Th, and U) in calcified tissue from various countries are discussed. The results of this compilation study suggest a need for new reference materials with matrix properties similar to bones including one with separated cortical and trabecular segments.

  8. A simplified procedure for preparation of undecalcified human bone sections.

    PubMed

    Wallin, J A; Tkocz, I; Levinsen, J

    1985-11-01

    A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim-type diamond cut-off wheel and a slowly advancing table carrying the specimen held in a rotating mount. Sections may be cut at a thickness of 80 micron +/- 1%. After cleaning in an ultrasonic bath, these can be mounted on slides for quantitative microscopic examination with transmitted light. Grinding and polishing are not necessary. The results obtained are illustrated.

  9. Recent origin of low trabecular bone density in modern humans.

    PubMed

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  10. Recent origin of low trabecular bone density in modern humans

    PubMed Central

    Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.

    2015-01-01

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  11. Fantastic plastic? Experimental evaluation of polyurethane bone substitutes as proxies for human bone in trauma simulations.

    PubMed

    Smith, Martin J; James, Stephen; Pover, Tim; Ball, Nina; Barnetson, Victoria; Foster, Bethany; Guy, Carl; Rickman, John; Walton, Virginia

    2015-09-01

    Recent years have seen steady improvements in the recognition and interpretation of violence related injuries in human skeletal remains. Such work has at times benefited from the involvement of biological anthropologists in forensic casework and has often relied upon comparison of documented examples with trauma observed in skeletal remains. In cases where no such example exists investigators must turn to experimentation. The selection of experimental samples is problematic as animal proxies may be too dissimilar to humans and human cadavers may be undesirable for a raft of reasons. The current article examines a third alternative in the form of polyurethane plates and spheres marketed as viable proxies for human bone in ballistic experiments. Through subjecting these samples to a range of impacts from both modern and archaic missile weapons it was established that such material generally responds similarly to bone on a broad, macroscopic scale but when examined in closer detail exhibits a range of dissimilarities that call for caution in extrapolating such results to real bone.

  12. Bone loss and human adaptation to lunar gravity

    NASA Technical Reports Server (NTRS)

    Keller, T. S.; Strauss, A. M.

    1992-01-01

    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.

  13. Emerging bone problems in patients infected with human immunodeficiency virus.

    PubMed

    Mondy, Kristin; Tebas, Pablo

    2003-04-01

    Recently, a high incidence of osteopenia and osteoporosis has been observed in individuals infected with human immunodeficiency virus (HIV). This problem appears to be more frequent in patients receiving potent antiretroviral therapy. Other bone-related complications in HIV-infected individuals, including avascular necrosis of the hip and compression fracture of the lumbar spine, have also been reported. People living with HIV have significant alterations in bone metabolism, regardless of whether they are receiving potent antiretroviral therapy. The underlying mechanisms to account for these observations remain unknown, although studies are underway to examine the relationship between the bone abnormalities and other complications associated with HIV and antiretroviral therapy. HIV-infected patients with osteopenia or osteoporosis should be treated similarly to HIV-seronegative patients with appropriate use of nutritional supplements (calcium and vitamin D) and exercise. Hormone replacement and antiresorptive therapies might be also indicated.

  14. Interrelationships between electrical properties and microstructure of human trabecular bone

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Hakulinen, M. A.; Töyräs, J.; Day, J. S.; Weinans, H.; Kiviranta, I.; Jurvelin, J. S.; Lappalainen, R.

    2006-10-01

    Microstructural changes, such as reduction of trabecular thickness and number, are characteristic signs of osteoporosis leading to diminished bone strength. Electrical and diele