Ripamonti, U; Crooks, J; Petit, J C; Rueger, D C
2001-08-01
Native and recombinant human bone morphogenetic/osteogenic proteins (BMPs/ OPs) singly initiate bone induction in vivo. The finding of synchronous but spatially different BMPs/OPs expression during periodontal tissue morphogenesis suggests novel therapeutic approaches using morphogen combinations based on recapitulation of embryonic development. Twelve furcation defects prepared in the first and second mandibular molars of three adult baboons (Papio ursinus) were used to assess whether qualitative histological aspects of periodontal tissue regeneration could be enhanced and tissue morphogenesis modified by combined or single applications of recombinant hOP-1 and hBMP-2. Doses of BMPs/OPs were 100 microg of each protein per 1 g of insoluble collagenous bone matrix as carrier. Approximately 200 mg of carrier matrix was used per furcation defect. Undecalcified sections cut for histological analysis 60 d after healing of hOP-1-treated specimens showed substantial cementogenesis with scattered remnants of the collagenous carrier. hBMP-2 applied alone induced greater amounts of mineralized bone and osteoid when compared to hOP-1 alone or to combined morphogen applications. Combined applications of hOP-1 and hBMP-2 did not enhance alveolar bone regeneration or new attachment formation over and above the single applications of the morphogens. The results of this study, which is the first to attempt to address the structure-activity relationship amongst BMP/OP family members, indicate that tissue morphogenesis induced by hOP-1 and hBMP-2 is qualitatively different when the morphogens are applied singly, with hOP-1 inducing substantial cementogenesis. hBMP-2 treated defects, on the other hand, showed limited cementum formation but a temporal enhancement of alveolar bone regeneration and remodelling. The demonstration of therapeutic mosaicism in periodontal regeneration will require extensive testing of ratios and doses of recombinant morphogen combinations for optimal tissue engineering in clinical contexts.
Positive modulator of bone morphogenic protein-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua
Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.
Positive modulator of bone morphogenic protein-2
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD
2009-01-27
Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.
Dragonas, Panagiotis; Palin, Charles; Khan, Saba; Gajendrareddy, Praveen K; Weiner, Whitney D
2017-10-01
This case report aims to describe in detail a complication associated with resorption of regenerated bone following implant placement and ridge augmentation using recombinant human bone morphogenic protein-2 (rhBMP-2) in combination with allograft and xenograft. Bilateral maxillary sinus and ridge augmentation procedures were completed using rhBMP-2 combined with allograft and xenograft. Five months later, significant bone augmentation was achieved, which allowed for the placement of 4 implants. Upon stage 2 surgery, significant dehiscence was noted in all implants. Treatment steps to address this complication included implant removal, guided bone regeneration with xenograft only, and placement of new implants followed by soft-tissue grafting. At the time of publication, this patient is status 1½ years post case completion with maintenance of therapy outcomes. Off-label use of rhBMP-2 has gained significant acceptance in implant dentistry. However, there is limited evidence regarding the bone maturation process when rhBMP-2 is combined with other biomaterials. More research may be needed regarding the timing and process of bone healing in the presence of rhBMP-2, in an effort to avoid surgical complications.
Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review.
Fisher, Daniel Mark; Wong, James Min-Leong; Crowley, Conor; Khan, Wasim S
2013-05-01
Bone healing is a complex process. Whilst the majority of fractures heal with conventional treatment, open fractures, large bone defects and non unions still provide great challenges to Orthopaedic Surgeons. Whilst autologous bone graft is seen as the gold standard, the use of growth factors is a growing area of research to find an effective alternative with lower side effects such as donor site morbidity and the finite amount available. This systematic review aims to summarize the pre clinical in-vivo studies and examine the clinical studies on the use of growth factors in bone healing. Databases: PubMed, Medline, OVID, and Cochrane library. The following key words and search terms were used: Growth Factors, Bone Healing, Bone Morphogenic Protein, Transforming Growth Factor Beta, Insulin Like Growth Factor, Platelet Derived Growth Factor, Fracture. All articles were screened based on title with abstracts and full text articles reviewed as appropriate. Reference lists were reviewed from relevant articles to ensure comprehensive and systematic review. Three tables of studies were constructed focussing on Bone Morphogenic Proteins, Platelet Rich Plasma and Growth Factors and Tissue Engineering. Bone Morphogenic Proteins and Platelet Rich Plasma, which contains multiple growth factors, have been shown in preclinical and clinical trials to be an effective alternative to autologous bone graft. Bone Morphogenic Proteins have been shown to be effective in fracture non union, and in open tibial fractures. Platelet Rich Plasma has shown promise in preclinical trials and some small clinical trials, however numbers are limited. Bone Morphogenic Proteins have been shown to be superior to Platelet Rich Protein in one trial. Combining these growth factors with tissue engineering techniques is the focus of ongoing research, and through further clinical trials the most effective techniques for enhancing bone healing will be revealed.
Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.
Mody, Avani A; Wordinger, Robert J; Clark, Abbot F
2017-02-01
Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.
Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.
Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin
2014-03-01
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.
Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2016-01-01
In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411
Herberg, Samuel; Varghai, Daniel; Cheng, Yuxuan; Dikina, Anna D.; Dang, Phuong N.; Rolle, Marsha W.; Alsberg, Eben
2018-01-01
Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating in vitro endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects. PMID:29577017
Bone morphogenic protein: an elixir for bone grafting--a review.
Shah, Prasun; Keppler, Louis; Rutkowski, James
2012-12-01
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor beta superfamily. This literature review focuses on the molecular biology of BMPs, their mechanism of action, and subsequent applications. It also discusses uses of BMPs in the fields of dentistry and orthopedics, research on methods of delivering BMPs, and their role in tissue regeneration. BMP has positive effects on bone grafts, and their calculated and timely use with other growth factors can provide extraordinary results in fractured or nonhealing bones. Use of BMP introduces new applications in the field of implantology and bone grafting. This review touches on a few unknown facts about BMP and this ever-changing field of research to improve human life.
NASA Astrophysics Data System (ADS)
Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong
2017-10-01
There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.
Biomaterial delivery of morphogens to mimic the natural healing cascade in bone
Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J
2012-01-01
Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. PMID:22626978
Development of 3D in vitro platform technology to engineer mesenchymal stem cells.
Hosseinkhani, Hossein; Hong, Po-Da; Yu, Dah-Shyong; Chen, Yi-Ru; Ickowicz, Diana; Farber, Ira-Yudovin; Domb, Abraham J
2012-01-01
This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC) to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
A role for NRAGE in NF-κB activation through the non-canonical BMP pathway
2010-01-01
Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315
Biomaterial delivery of morphogens to mimic the natural healing cascade in bone.
Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J
2012-09-01
Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biver, Emmanuel, E-mail: ebiver@yahoo.fr; Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex; Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14
2012-11-02
Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exertmore » their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.« less
Molecular mechanisms underlying the actions of dietary factors on the skeleton
USDA-ARS?s Scientific Manuscript database
This book chapter summarizes the current state of knowledge on molecular mechanisms whereby nutritional status and dietary factors found in fruits, vegetables, and grains affect bone turnover and skeletal quality. The Wnt-beta catenin and bone morphogenic protein (BMP) pathways in osteoblast bone ce...
NASA Technical Reports Server (NTRS)
Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert;
2003-01-01
Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.
USDA-ARS?s Scientific Manuscript database
Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or...
SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.
Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan
2013-04-30
The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.
Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung
2013-11-01
Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.
NASA Astrophysics Data System (ADS)
Li, Cuidi; Jiang, Chuan; Deng, Yuan; Li, Tao; Li, Ning; Peng, Mingzheng; Wang, Jinwu
2017-01-01
A major limitation in the development of effective scaffolds for bone regeneration has been the limited vascularization of the regenerating tissue. Here, we propose the development of a novel calcium phosphate cement (CPC)-based scaffold combining the properties of mesoporous silica (MS) with recombinant human bone morphogenic protein-2 (rhBMP-2) to facilitate vascularization and osteogenesis. Specifically, the development of a custom MS/CPC paste allowed the three-dimensional (3D) printing of scaffolds with a defined macroporous structure and optimized silicon (Si) ions release profile to promote the ingrowth of vascular tissue at an early stage after implantation in support of tissue viability and osteogenesis. In addition, the scaffold microstructure allowed the prolonged release of rhBMP-2, which in turn significantly stimulated the osteogenesis of human bone marrow stromal cells in vitro and of bone regeneration in vivo as shown in a rabbit femur defect repair model. Thus, the combination MS/CPC/rhBMP-2 scaffolds might provide a solution to issues of tissue necrosis during the regeneration process and therefore might be able to be readily developed into a useful tool for bone repair in the clinic.
2013-01-01
Background The goal of this study was to determine a predominant cell type expressing fractalkine receptor (CX3CR1) in mature ovarian teratomas and to establish functional significance of its expression in cell differentiation. Methods Specimens of ovarian teratoma and human fetal tissues were analyzed by immunohistochemistry for CX3CR1expression. Ovarian teratocarcinoma cell line PA-1 was used as a model for cell differentiation. Results We found that the majority of the specimens contained CX3CR1-positive cells of epidermal lineage. Skin keratinocytes in fetal tissues were also CX3CR1- positive. PA-1 cells with downregulated CX3CR1 failed to express a skin keratinocyte marker cytokeratin 14 when cultured on Matrigel in the presence of a morphogen, bone morphogenic protein 4 (BMP-4), as compared to those expressing scrambled shRNA. Conclusions Here we demonstrate that CX3CR1 is expressed in both normally (fetal skin) and abnormally (ovarian teratoma) differentiated keratinocytes and is required for cell differentiation into epidermal lineage. PMID:23958497
Development of novel microfluidic platforms for neural stem cell research
NASA Astrophysics Data System (ADS)
Chung, Bonggeun
This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have also developed a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients. MMI consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuations of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients. The development of novel gradient-generating microfluidic platforms will help in advancing our understanding of brain development and provide a versatile tool with basic and applied studies in stem cell biology.
Kim, Hak-Jun; Park, Kyeongsoon; Kim, Sung Eun; Song, Hae-Ryong
2014-01-01
The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects. PMID:24804202
Woo, Su-Mi; Kim, Won-Jae; Lim, Hae-Soon; Choi, Nam-Ki; Kim, Sun-Hun; Kim, Seon-Mi; Jung, Ji-Yeon
2016-01-01
Recent reports have shown that the combined use of platelet-rich fibrin (PRF), an autologous fibrin matrix, and mineral trioxide aggregate (MTA) as root filling material is beneficial for the endodontic management of an open apex. However, the potential of the combination of MTA and PRF as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro has not yet been studied. The purpose of this study was to evaluate the effect of the combination of MTA and PRF on odontoblastic maturation in HDPCs. HDPCs extracted from third molars were directly cultured with MTA and PRF extract (PRFe). Odontoblastic differentiation of HDPCs was evaluated by measuring the alkaline phosphatase (ALP) activity, and the expression of odontogenesis-related genes was detected using reverse-transcription polymerase chain reaction or Western blot. Mineralization formation was assessed by alizarin red staining. HDPCs treated with MTA and PRFe significantly up-regulated the expression of dentin sialoprotein and dentin matrix protein-1 and enhanced ALP activity and mineralization compared with those with MTA or PRFe treatment alone. In addition, the combination of MTA and PRFe induced the activation of bone morphogenic proteins (BMP)/Smad, whereas LDN193189, the bone morphogenic protein inhibitor, attenuated dentin sialophosphoprotein and dentin matrix protein-1 expression, ALP activity, and mineralization enhanced by MTA and PRFe treatment. This study shows that the combination of MTA and PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs via the modulation of the BMP/Smad signaling pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Cecchinato, Francesca; Atefyekta, Saba; Wennerberg, Ann; Andersson, Martin; Jimbo, Ryo; Davies, Julia R
2016-07-01
Mesoporous (MP) titania films used as implant coatings have recently been considered as release systems for controlled administration of magnesium to enhance initial osteoblast proliferation in vitro. Tuning of the pore size in such titania films is aimed at increasing the osteogenic potential through effects on the total loading capacity and the release profile of magnesium. In this study, evaporation-induced self-assembly (EISA) was used with different structure-directing agents to form three mesoporous films with average pore sizes of 2nm (MP1), 6nm (MP2) and 7nm (MP3). Mg adsorption and release was monitored using quartz crystal microbalance with dissipation (QCM-D). The film surfaces were characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect of different Mg release on osteogenesis was investigated in human fetal osteoblasts (hFOB) using pre-designed osteogenesis arrays and real-time polymerase chain reaction (RT-PCR). Results showed a sustained release from all the films investigated, with higher magnesium adsorption into MP1 and MP3 films. No significant differences were observed in the surface nanotopography of the films, either with or without the presence of magnesium. MP3 films (7nm pore size) had the greatest effect on osteogenesis, up-regulating 15 bone-related genes after 1 week of hFOB growth and significantly promoting bone morphogenic protein (BMP4) expression after 3 weeks of growth. The findings indicate that the increase in pore width on the nano scale significantly enhanced the bioactivity of the mesoporous coating, thus accelerating osteogenesis without creating differences in surface roughness. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai
2018-04-01
A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction
Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana
2016-01-01
Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665
Orthobiologics in Pediatric Sports Medicine.
Bray, Christopher C; Walker, Clark M; Spence, David D
2017-07-01
Orthobiologics are biological substances that allow injured muscles, tendons, ligaments, and bone to heal more quickly. They are found naturally in the body; at higher concentrations they can aid in the healing process. These substances include autograft bone, allograft bone, demineralized bone matrix, bone morphogenic proteins, growth factors, stem cells, plasma-rich protein, and ceramic grafts. Their use in sports medicine has exploded in efforts to increase graft incorporation, stimulate healing, and get athletes back to sport with problems including anterior cruciate ligament ruptures, tendon ruptures, cartilage injuries, and fractures. This article reviews orthobiologics and their applications in pediatric sports medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
Johnson, David H; Taylor, William R; Aboelsoud, Mohammed M; Foote, Patrick H; Yab, Tracy C; Cao, Xiaoming; Smyrk, Thomas C; Loftus, Edward V; Mahoney, Douglas W; Ahlquist, David A; Kisiel, John B
2016-07-01
Stool DNA testing in patients with inflammatory bowel disease (IBD) may detect colorectal cancer and advanced precancers with high sensitivity; less is known about the presence of DNA markers in small IBD lesions, their association with metachronous neoplasia, or contribution to stool test positivity. At a single center in 2 blinded phases, we assayed methylated bone morphogenic protein 3, methylated N-Myc downstream-regulated gene 4, and mutant KRAS in DNA extracted from paraffin-embedded benign lesions, and matched control tissues of patients with IBD, who were followed for subsequent colorectal dysplasia. Stool samples from independent cases and controls with lesions <1 cm or advanced neoplasms were assayed for the same markers. Among IBD lesions (29 low-grade dysplasia, 19 serrated epithelial change, and 10 sessile serrated adenoma/polyps), the prevalence of methylation was significantly higher than in mucosae from 44 matched IBD controls (P < 0.0001 for methylated bone morphogenic protein 3 or methylated N-Myc downstream-regulated gene 4). KRAS mutations were more abundant in serrated epithelial change than all other groups (P < 0.001). Subsequent dysplasia was not associated with DNA marker levels. In stools, the sensitivity of methylated bone morphogenic protein 3 as a single marker was 60% for all lesions <1 cm, 63% for low-grade dysplasia ≥1 cm and 81% for high-grade dysplasia/colorectal cancer, all at 91% specificity (P < 0.0001). Selected DNA markers known to be present in advanced IBD neoplasia can also be detected in both tissues and stools from IBD patients with small adenomas and serrated lesions. Mutant KRAS exfoliated from serrated epithelial change lesions might raise false-positive rates. These findings have relevance to potential future applications of stool DNA testing for IBD surveillance.
Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge
2007-08-01
Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.
Platelet-rich plasma for long bone healing
Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario
2013-01-01
ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757
Marsano, Anna; Medeiros da Cunha, Carolina M; Ghanaati, Shahram; Gueven, Sinan; Centola, Matteo; Tsaryk, Roman; Barbeck, Mike; Stuedle, Chiara; Barbero, Andrea; Helmrich, Uta; Schaeren, Stefan; Kirkpatrick, James C; Banfi, Andrea; Martin, Ivan
2016-12-01
: Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk-1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype. ©AlphaMed Press.
Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine
2014-04-01
Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.
Hara, Yoshiaki; Ghazizadeh, Mohammad; Shimizu, Hajime; Matsumoto, Hisashi; Saito, Nobuyuki; Yagi, Takanori; Mashiko, Kazuki; Mashiko, Kunihiro; Kawai, Makoto; Yokota, Hiroyuki
2017-01-01
The healing process of bone fracture requires a well-controlled multistage and sequential order beginning immediately after the injury. However, complications leading to nonunion exist, creating serious problems and costs for patients. Transforming growth factor-beta 1 (TGF-β1) and bone morphogenic protein 2 (BMP-2) are two major growth factors involved in human bone fracture healing by promoting various stages of bone ossification. In this study, we aimed to determine the role of these factors during the fracture healing of human long bones and assess their impacts on nonunion condition. We performed a comprehensive analysis of plasma TGF-β1 and BMP-2 levels in blood samples from 10 patients with proved nonunion and 10 matched patients with normal union following a predetermined time schedule. The concentrations of TGF-β1 and BMP-2 were measured at each time point using a solid-phase ELISA. TGF-β1 and BMP-2 levels were detectable in all patients. For all patients, a maximal peak for TGF-β1 was found at 3-week. In normal union group, TGF-β1 showed a maximal peak at 2-week while nonunion group had a delayed maximal peak at 3-week. Plasma levels of BMP-2 for all patients and for normal union group reached a maximal peak at 1-week, but nonunion group showed a delayed maximal peak at 2-week. In general, plasma TGF-β1 or BMP-2 level was not significantly different between normal union and nonunion groups. The expression levels of TGF-β1 and BMP-2 appeared to be delayed in nonunion patients which could play an important role in developing an early marker of fracture union condition and facilitate improved patient's management.
There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...
Haematopoietic stem and progenitor cells from human pluripotent stem cells
Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.
2018-01-01
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439
TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation
Chen, Guiqian; Deng, Chuxia; Li, Yi-Ping
2012-01-01
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation. PMID:22298955
NASA Astrophysics Data System (ADS)
Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu
2013-11-01
The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.
Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William
2018-05-01
Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most promise in alveolar cleft reconstruction.
Li, Li; Dong, Ji; Yan, Liying; Yong, Jun; Liu, Xixi; Hu, Yuqiong; Fan, Xiaoying; Wu, Xinglong; Guo, Hongshan; Wang, Xiaoye; Zhu, Xiaohui; Li, Rong; Yan, Jie; Wei, Yuan; Zhao, Yangyu; Wang, Wei; Ren, Yixin; Yuan, Peng; Yan, Zhiqiang; Hu, Boqiang; Guo, Fan; Wen, Lu; Tang, Fuchou; Qiao, Jie
2017-06-01
Human fetal germ cells (FGCs) are precursors to sperm and eggs and are crucial for maintenance of the species. However, the developmental trajectories and heterogeneity of human FGCs remain largely unknown. Here we performed single-cell RNA-seq analysis of over 2,000 FGCs and their gonadal niche cells in female and male human embryos spanning several developmental stages. We found that female FGCs undergo four distinct sequential phases characterized by mitosis, retinoic acid signaling, meiotic prophase, and oogenesis. Male FGCs develop through stages of migration, mitosis, and cell-cycle arrest. Individual embryos of both sexes simultaneously contain several subpopulations, highlighting the asynchronous and heterogeneous nature of FGC development. Moreover, we observed reciprocal signaling interactions between FGCs and their gonadal niche cells, including activation of the bone morphogenic protein (BMP) and Notch signaling pathways. Our work provides key insights into the crucial features of human FGCs during their highly ordered mitotic, meiotic, and gametogenetic processes in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu
2016-03-01
Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.
Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells
Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin
2000-01-01
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043
Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.
Wang, W; Mariani, F V; Harland, R M; Luo, K
2000-12-19
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.
Koga, Mitsuhisa; Engberding, Niels; Dikalova, Anna E.; Chang, Kyung Hwa; Seidel-Rogol, Bonnie; Long, James S.; Lassègue, Bernard; Jo, Hanjoong
2013-01-01
Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease. PMID:23812391
Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A
2014-01-01
In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.
Das, Anusuya; Barker, Daniel A.; Wang, Tiffany; Lau, Cheryl M.; Lin, Yong; Botchwey, Edward A.
2014-01-01
In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy. PMID:25077607
A current review of core decompression in the treatment of osteonecrosis of the femoral head.
Pierce, Todd P; Jauregui, Julio J; Elmallah, Randa K; Lavernia, Carlos J; Mont, Michael A; Nace, James
2015-09-01
The review describes the following: (1) how traditional core decompression is performed, (2) adjunctive treatments, (3) multiple percutaneous drilling technique, and (4) the overall outcomes of these procedures. Core decompression has optimal outcomes when used in the earliest, precollapse disease stages. More recent studies have reported excellent outcomes with percutaneous drilling. Furthermore, adjunct treatment methods combining core decompression with growth factors, bone morphogenic proteins, stem cells, and bone grafting have demonstrated positive results; however, larger randomized trial is needed to evaluate their overall efficacy.
Brillouin light scattering spectroscopy for tissue engineering application
NASA Astrophysics Data System (ADS)
Akilbekova, Dana; Yakupov, Talgat; Ogay, Vyacheslav; Umbayev, Bauyrzhan; Yakovlev, Vladislav V.; Utegulov, Zhandos N.
2018-02-01
Biomechanical properties of mammalian bones, such as strength, toughness and plasticity, are essential for understanding how microscopic scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) micro-spectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins (BMPs) and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free imaging modality for probing mechanical properties of hard tissues that can give information on structure-function properties of normal and pathological tissues. Results showed that HCF gels containing combination of all factors had the best effect with complete defect regeneration at week 9 and that the bones with fully consolidated fractures have higher values of elastic moduli compared to the bones with defects.
Effects of Bone Morphogenic Proteins on Engineered Cartilage
NASA Technical Reports Server (NTRS)
Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.
2007-01-01
A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.
Nemashkalo, Anastasiia; Ruzo, Albert; Heemskerk, Idse; Warmflash, Aryeh
2017-09-01
Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation. © 2017. Published by The Company of Biologists Ltd.
The biochemistry of hematopoietic stem cell development.
Kaimakis, P; Crisan, M; Dzierzak, E
2013-02-01
The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC generation in the developing embryo provides important new knowledge on how these complex stem cells are made, sustained and expanded in the embryo to give rise to the complete adult hematopoietic system, thus stimulating novel strategies for producing increased numbers of clinically useful HSCs. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Busilacchi, Alberto; Gigante, Antonio; Mattioli-Belmonte, Monica; Manzotti, Sandra; Muzzarelli, Riccardo A A
2013-10-15
The idea of using chitosan as a functional delivery aid to support simultaneously PRP, stem cells and growth factors (GF) is associated with the intention to use morphogenic biomaterials to modulate the natural healing sequence in bone and other tissues. For example, chitosan-chondroitin sulfate loaded with platelet lysate was included in a poly(D,L-lactate) foam that was then seeded with human adipose-derived stem cells and cultured in vitro under osteogenic stimulus: the platelet lysate provided to the bone tissue the most suitable assortment of GF which induces the osteogenic differentiation of the mesenchymal stem cells. PDGF, FGF, IGF and TGF-β were protagonists in the repair of callus fractures. The release of GF from the composites of chitosan-PRP and either nano-hydroxyapatite or tricalcium phosphate was highly beneficial for enhancing MSC proliferation and differentiation, thus qualifying chitosan as an excellent vehicle. A number of biochemical characteristics of chitosan exert synergism with stem cells in the regeneration of soft tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yin, Jinlong; Jung, Ji-Eun; Choi, Sun Il; Kim, Sung Soo; Oh, Young Taek; Kim, Tae-Hoon; Choi, Eunji; Lee, Sun Joo; Kim, Hana; Kim, Eun Ok; Lee, Yu Sun; Chang, Hee Jin; Park, Joo Yong; Kim, Yeejeong; Yun, Tak; Heo, Kyun; Kim, Youn-Jae; Kim, Hyunggee; Kim, Yun-Hee; Park, Jong Bae; Choi, Sung Weon
2018-02-01
Despite expressing high levels of the epidermal growth factor receptor (EGFR), a majority of oral squamous cell carcinoma (OSCC) patients show limited response to cetuximab and ultimately develop drug resistance. However, mechanism underlying cetuximab resistance in OSCC is not clearly understood. Here, using a mouse orthotopic xenograft model of OSCC, we show that bone morphogenic protein-7-phosphorylated Smad-1, -5, -8 (BMP7-p-Smad1/5/8) signaling contributes to cetuximab resistance. Tumor cells isolated from the recurrent cetuximab-resistant xenograft models exhibited low EGFR expression but extremely high levels of p-Smad1/5/8. Treatment with the bone morphogenic protein receptor type 1 (BMPRI) inhibitor, DMH1 significantly reduced cetuximab-resistant OSCC tumor growth, and combined treatment of DMH1 and cetuximab remarkably reduced relapsed tumor growth in vivo. Importantly, p-Smad1/5/8 level was elevated in cetuximab-resistant patients and this correlated with poor prognosis. Collectively, our results indicate that the BMP7-p-Smad1/5/8 signaling is a key pathway to acquired cetuximab resistance, and demonstrate that combination therapy of cetuximab and a BMP signaling inhibitor as potentially a new therapeutic strategy for overcoming acquired resistance to cetuximab in OSCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Calcium Sulphate/Hydroxyapatite Carrier for Bone Formation in the Femoral Neck of Osteoporotic Rats.
Sirka, Aurimas; Raina, Deepak Bushan; Isaksson, Hanna; Tanner, K Elizabeth; Smailys, Alfredas; Kumar, Ashok; Tarasevicius, Sarunas; Tägil, Magnus; Lidgren, Lars
2018-06-01
We investigated bone regeneration in the femoral neck canal of osteoporotic rats using a novel animal model. We used a calcium sulphate (CS)/ Hydroxyapatite (HA) carrier to locally deliver a bisphosphonate, zoledronic acid (ZA), with or without added recombinant human bone morphogenic protein-2 (rhBMP-2). Ovariectomized Sprague-Dawley rats of 28 weeks age were used. A 1 mm diameter and 8 mm long defect was created in the femoral neck by drilling from the lateral cortex in the axis of the femoral neck leaving the surrounding cortex intact. Three treatment groups and one control group were used 1) CS/HA alone, 2) CS/HA+ ZA (10 μg) 3) CS/HA+ZA (10 μg)+rhBMP-2 (4 μg) and 4) Empty defect. The bone formation was assessed at 4 weeks post-surgery using in vivo micro computed tomography (micro-CT). At 8 weeks post-surgery, the animals were sacrificed and both defect and contralateral femurs were subjected to micro-CT, mechanical testing and histology. Micro-CT results showed that the combination of CS/HA with ZA or ZA+rhBMP-2 increased the bone formation in the defect when compared to the other groups and to the contralateral hips. Evidence of new dense bone formation in CS/HA+ZA and CS/HA+ZA+rhBMP-2 groups was seen histologically. Mechanical testing results showed no differences in the load to fracture between the treatments in either of the treated or contralateral legs. The CS/HA biomaterial can be used as a carrier for ZA and rhBMP-2 to regenerate bone in the femoral neck canal of osteoporotic rats.
Bénazet, Jean-Denis; Zeller, Rolf
2009-10-01
A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag model, which is a classic among morphogen gradient models. Subsequent molecular and genetic analysis in the mouse identified retinoic acid as proximal signal, and fibroblast growth factors (FGFs) and sonic hedgehog (SHH) as the essential instructive signals produced by AER and ZPA, respectively. Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools. The determination of particular fates seems to occur rather late and depends on additional signals such as bone morphogenetic proteins (BMPs), which indicates that cells integrate signaling inputs over time and space. The coordinate regulation of PD and AP axis patterning is controlled by an epithelial-mesenchymal feedback signaling system, in which transcriptional regulation of the BMP antagonist Gremlin1 integrates inputs from the BMP, SHH, and FGF pathways. Vertebrate limb-bud development is controlled by a 4-dimensional (4D) patterning system integrating positive and negative regulatory feedback loops, rather than thresholds set by morphogen gradients.
Fractional calculus and morphogen gradient formation
NASA Astrophysics Data System (ADS)
Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja
2012-12-01
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.
Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration
Kruger, Thomas E.; Miller, Andrew H.; Wang, Jinxi
2013-01-01
Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ 3 and αvβ 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration. PMID:23653530
Collagen scaffolds in bone sialoprotein-mediated bone regeneration.
Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi
2013-01-01
Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds α v β 3 and α v β 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration.
Kiuru, Maija; Solomon, Jason; Ghali, Bassem; van der Meulen, Marjolein; Crystal, Ronald G; Hidaka, Chisa
2009-01-01
Bone formation and remodeling involve coordinated interactions between osteoblasts and osteoclasts through signaling networks involving a variety of molecular pathways. We hypothesized that overexpression of Sonic hedgehog (Shh), a morphogen with a crucial role in skeletal development, would stimulate osteoblastogenesis and bone formation in adult animals in vivo. Systemic administration of adenovirus expressing the N-terminal form of Shh into adult mice resulted in a primary increase in osteoblasts and their precursors. Surprisingly, however, this was associated with altered trabecular morphology, decreased bone volume, and decreased compressive strength in the vertebrae. Whereas no change was detected in the number of osteoclast precursors, bone marrow stromal cells from Shh-treated mice showed enhanced osteoclastogenic potential in vitro. These effects were mediated by the PTH/PTH-related protein (PTHrP) pathway as evidenced by increased sensitivity to PTH stimulation and upregulation of the PTH/PTHrP receptor (PPR). Together, these data show that Shh has stimulatory effects on osteoprogenitors and osteoblasts in adult animals in vivo, which results in bone remodeling and reduced bone strength because of a secondary increase in osteoclastogenesis. PMID:19338448
De Rosa, Alfredo; Tirino, Virginia; Paino, Francesca; Tartaglione, Antonella; Mitsiadis, Thimios; Feki, Anis; d'Aquino, Riccardo; Laino, Luigi; Colacurci, Nicola; Papaccio, Gianpaolo
2011-03-01
Mesenchymal stem cells are present in many tissues of the human body, including amniotic fluid (AF) and dental pulp (DP). Stem cells of both AF and DP give rise to a variety of differentiated cells. In our experience, DP stem cells (DPSCs) display a high capacity to produce bone. Therefore, our aim was to investigate if AF-derived stem cells (AFSCs) were able to undergo bone differentiation in the presence of DPSCs. AFSCs were seeded under three different conditions: (i) cocultured with DPSCs previously differentiated into osteoblasts; (ii) cultured in the conditioned medium of osteoblast-differentiated DPSCs; (iii) cultured in the osteogenic medium supplemented with vascular endothelial growth factor and bone morphogenetic protein-2 (BMP-2). Results showed that AFSCs were positive for mesenchymal markers, and expressed high levels of Tra1-60, Tra1-80, BMPR1, BMPR2, and BMP-2. In contrast, AFSCs were negative for epithelial and hematopoietic/endothelial markers. When AFSCs were cocultured with DPSCs-derived osteoblasts, they differentiated into osteoblasts. A similar effect was observed when AFSCs were cultured in the presence of a conditioned medium originated from DPSCs. We found that osteoblasts derived from DPSCs released large amounts of BMP-2 and vascular endothelial growth factor into the culture medium and that those morphogens significantly upregulate RUNX-2 gene, stimulating osteogenesis. This study highlights the mechanisms of osteogenesis and strongly suggests that the combination of AFSCs with DPSCs may provide a rich source of soluble proteins useful for bone engineering purposes.
Deshpande, Mugdha; Rodal, Avital A
2016-02-01
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Local accumulation times for spatial difference in morphogen concentration
NASA Astrophysics Data System (ADS)
Wen, Xiaoqing; Yin, Hongwei
During development of multicellular organisms, spatial patterns of cells and tissue organizations rely on the action of morphogens, which are signaling molecules and act as dose-dependent regulators of gene expression and cellular differentiation. Since some experimental evidences have indicated that the spatial difference in morphogen concentration regulates cellular proliferation rather than this concentration profile in developing tissues, we propose spatially discrete models to describe this difference for a synthesis-diffusion-degradation process of morphogen in infinite and finite development fields, respectively. For both of models, we respectively derive analytical expressions of local accumulation times, which are required to form the steady state of the spatial difference in morphogen concentration. Our results show that the local accumulation times for the spatial difference in morphogen concentrations are different from the ones for morphogen concentration profiles.
McCully, Mark; Conde, João; V Baptista, Pedro; Mullin, Margaret; Dalby, Matthew J; Berry, Catherine C
2018-01-01
Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-tagged nanoparticles offer as novel therapeutics in regenerative medicine.
Sazonova, E N; Yakovenko, I G; Kryzhanovskaya, S Yu; Budylev, A A; Timoshin, S S
2012-01-01
DNA-synthetic activity of myocardial cells was studied by (3)H-thymidine autoradiography in newborn albino rats after intraperitoneal injection of hydra peptide morphogen and its analogues. Administration of hydra peptide morphogen stimulated proliferative activity in the myocardium. Short analogues of hydra peptide morphogen, 6C and 3C peptides, produced a similar effect. Administration of arginine-containing analogue of hydra peptide morphogen significantly reduced the number of DNA-synthesizing nuclei in the ventricular myocardium of newborn albino rats. The role of the structure of the peptide molecule in the realization of the morphogenetic effects of hydra peptide morphogen is discussed.
Müller, Patrick; Rogers, Katherine W.; Yu, Shuizi R.; Brand, Michael; Schier, Alexander F.
2013-01-01
The graded distribution of morphogens underlies many of the tissue patterns that form during development. How morphogens disperse from a localized source and how gradients in the target tissue form has been under debate for decades. Recent imaging studies and biophysical measurements have provided evidence for various morphogen transport models ranging from passive mechanisms, such as free or hindered extracellular diffusion, to cell-based dispersal by transcytosis or cytonemes. Here, we analyze these transport models using the morphogens Nodal, fibroblast growth factor and Decapentaplegic as case studies. We propose that most of the available data support the idea that morphogen gradients form by diffusion that is hindered by tortuosity and binding to extracellular molecules. PMID:23533171
Nissan, Xavier; Larribere, Lionel; Saidani, Manoubia; Hurbain, Ilse; Delevoye, Cédric; Feteira, Jessica; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine
2011-09-06
Melanocytes are essential for skin homeostasis and protection, and their defects in humans lead to a wide array of diseases that are potentially extremely severe. To date, the analysis of molecular mechanisms and the function of human melanocytes have been limited because of the difficulties in accessing large numbers of cells with the specific phenotypes. This issue can now be addressed via a differentiation protocol that allows melanocytes to be obtained from pluripotent stem cell lines, either induced or of embryonic origin, based on the use of moderate concentrations of a single cytokine, bone morphogenic protein 4. Human melanocytes derived from pluripotent stem cells exhibit all the characteristic features of their adult counterparts. This includes the enzymatic machinery required for the production and functional delivery of melanin to keratinocytes. Melanocytes also integrate appropriately into organotypic epidermis reconstructed in vitro. The availability of human cells committed to the melanocytic lineage in vitro will enable the investigation of those mechanisms that guide the developmental processes and will facilitate analysis of the molecular mechanisms responsible for genetic diseases. Access to an unlimited resource may also prove a vital tool for the treatment of hypopigmentation disorders when donors with matching haplotypes become available in clinically relevant banks of pluripotent stem cell lines.
Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells
Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha
2012-01-01
Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for functional osteogenic cells. PMID:22612317
Engineered decellularized matrices to instruct bone regeneration processes.
Papadimitropoulos, Adam; Scotti, Celeste; Bourgine, Paul; Scherberich, Arnaud; Martin, Ivan
2015-01-01
Despite the significant progress in the field of bone tissue engineering, cell-based products have not yet reached the stage of clinical adoption. This is due to the uncertain advantages from the standard-of-care, combined with challenging cost-and regulatory-related issues. Novel therapeutic approaches could be based on exploitation of the intrinsic regenerative capacity of bone tissue, provided the development of a deeper understanding of its healing mechanisms. While it is well-established that endogenous progenitors can be activated toward bone formation by overdoses of single morphogens, the challenge to stimulate the healing processes by coordinated and controlled stimulation of specific cell populations remains open. Here, we review the recent approaches to generate osteoinductive materials based on the use of decellularized extracellular matrices (ECM) as reservoirs of multiple factors presented at physiological doses and through the appropriate ligands. We then propose the generation of customized engineered and decellularized ECM (i) as a tool to better understand the processes of bone regeneration and (ii) as safe and effective "off-the-shelf" bone grafts for clinical use. This article is part of a Special Issue entitled Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Huh, Jeong-Eun; Seo, Dong-Min; Baek, Yong-Hyeon; Choi, Do-Young; Park, Dong-Suk; Lee, Jae-Dong
2010-04-01
Osteoarthritis is a multifactorial disease characterized by loss of articular cartilage and subchondral plate thickening. Therefore, biochemical analysis of the underlying bone tissue has provided important information for treatment of osteoarthritis. In this study, we determined the potential role of formononetin, a phytoestrogen isolated from Astragalus membranaceus to alter the expression of metabolic markers and cytokine production of human normal osteoblasts (Obs) and osteoarthritis subchondral osteoblasts (OA Obs). Human OA Obs and normal Obs were cultured for 3days, 7days or 14days in the present medium only or were treated with various doses of formononetin. Cells were analyzed for viability by WST-8 assay, alkaline phosphatase (ALP) activity, osteogenic markers (osteocalcin (OCN) and type I collagen (Col I)) and cytokines (interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), bone morphogenic protein-2 (BMP-2)). The level of IL-6, VEGF, BMP-2, OCN and Col I was increased in OA Obs compared with normal Obs. Formononetin dose-dependently decreased ALP, IL-6, VEGF, BMP-2, OCN and Col I in OA Obs, while markedly increased ALP, VEGF, BMP-2, OCN and Col I in normal Obs. Interestingly, formononetin markedly increased the expression of VEGF and BMP-2 for 3days of culture and significantly increased OCN and Col I at 14days in human normal Obs. The remodeling effect of formononetin on osteogenic markers and cytokines of inflammatory mediators was more striking in OA Obs as well. Taken together, these results could suggest that formononetin has biphasic positive effects on normal Obs and OA Obs by modifying their biological synthetic capacities. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.
Bidirectional transport model of morphogen gradient formation via cytonemes
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Kim, Hyunjoong
2018-03-01
Morphogen protein gradients play an important role in the spatial regulation of patterning during embryonic development. The most commonly accepted mechanism for gradient formation is diffusion from a source combined with degradation. Recently, there has been growing interest in an alternative mechanism, which is based on the direct delivery of morphogens along thin, actin-rich cellular extensions known as cytonemes. In this paper, we develop a bidirectional motor transport model for the flux of morphogens along cytonemes, linking a source cell to a one-dimensional array of target cells. By solving the steady-state transport equations, we show how a morphogen gradient can be established, and explore how the mean velocity of the motors affects properties of the morphogen gradient such as accumulation time and robustness. In particular, our analysis suggests that in order to achieve robustness with respect to changes in the rate of synthesis of morphogen, the mean velocity has to be negative, that is, retrograde flow or treadmilling dominates. Thus the potential targeting precision of cytonemes comes at an energy cost. We then study the effects of non-uniformly allocating morphogens to the various cytonemes projecting from a source cell. This competition for resources provides a potential regulatory control mechanism not available in diffusion-based models.
Shimoda, Shinji; Mishima, Kenji; Higashiyama, Hiroyuki; Idaira, Yayoi; Asada, Yoshinobu; Kitamura, Hiroshi; Yamasaki, Satoru; Hojyo, Shintaro; Nakayama, Manabu; Ohara, Osamu; Koseki, Haruhiko; dos Santos, Heloisa G.; Bonafe, Luisa; Ha-Vinh, Russia; Zankl, Andreas; Unger, Sheila; Kraenzlin, Marius E.; Beckmann, Jacques S.; Saito, Ichiro; Rivolta, Carlo; Ikegawa, Shiro; Superti-Furga, Andrea; Hirano, Toshio
2008-01-01
Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction. PMID:18985159
Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli
2018-03-01
Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.
PROGRESSIVE OSSIFYING FIBRODYSPLASIA: CASE REPORT
Romani, Fabiana; de Menezes Karam, Simone
2015-01-01
Progressive ossifying fibrodysplasia is a rare genetic disease that affects one individual in every two million births. Its main consequence is heterotopic ossification, i.e. formation of additional bone in abnormal locations. It is an autosomal dominant disease, usually caused by a new mutation in the ACVR1 receptor gene, which is in the signaling pathway for bone morphogenic protein. This abnormality is not related to gender, ethnicity or consanguinity. The present study reports the case of A.C., a 17-year-old girl. Her clinical investigation began at the age of four years, but she was only diagnosed with FOP at the age of 15 years, after being evaluated by several specialists in different centers. The patient has two siblings, but her family history did not reveal any similar cases. PMID:27047836
Theoretical analysis of degradation mechanisms in the formation of morphogen gradients
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
2015-07-01
Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.
Kim, Ji-Eun; Takanche, Jyoti Shrestha; Kim, Jeong-Seok; Lee, Min-Ho; Jeon, Jae-Gyu; Park, Il-Song; Yi, Ho-Keun
2018-04-12
Poor bone quality and osteolysis are the major causes of implant failure in dentistry. Here, this study tested the effect of phelligridin D-loaded nanotubes titanium (Ti) for bone formation around the dental implants. The purpose of this study was to enhance osseointegration of phelligridin D-loaded implant into the bone for bone formation and prevention of osteolysis. Cell viability, crystal violet staining, Western blot, alizarin red S staining, alkaline phosphatase activity, tartrate-resistant acid phosphatase staining, micro-computed tromography (μ-CT), hematoxylin and eosin (H&E) and immunohistochemical staining were used in vitro and in vivo to test the biocompatibility of phelligridin D. Phelligridin D enhanced osteoblast differentiation and mineralization by increasing bone morphogenic protein-2/7 (BMP-2/7), Osterix, Runx-2, osteoprotegerin (OPG), alkaline phosphatase and inhibited osteoclast differentiation by decreasing receptor activator of nuclear factor kappa-B ligand (RANKL) in MC-3T3 E1 cells. Further, phelligridin D promoted bone regeneration around nanotube Ti implant surface by increasing the levels of BMP-2/7 and OPG in a rat model. Phelligridin D also inhibited osteolysis by suppressing the expression of RANKL. These findings strongly suggest that phelligridin D is a new compound representing a potential therapeutic candidate for implant failure caused by osteolysis and poor bone quality of teeth.
Raina, Deepak Bushan; Larsson, David; Mrkonjic, Filip; Isaksson, Hanna; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2018-02-28
In this study, a novel macroporous composite biomaterial consisting of gelatin-hydroxyapatite-calcium sulphate for delivery of bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) has been developed. The biomaterial scaffold has a porous structure and functionalization of the scaffold with rhBMP-2 induces osteogenic differentiation of MC3T3-e1 cells seen by a significant increase in biochemical and genetic markers of osteoblastic differentiation. In-vivo muscle pouch experiments showed higher mineralization using scaffold+rhBMP-2 when compared to an approved absorbable collagen sponge (ACS)+rhBMP-2 as verified by micro-CT. Co-delivery of rhBMP-2+ZA via the novel scaffold enabled a reduction in the effective rhBMP-2 doses. The presence of tartrate resistant acid phosphatase staining in the rhBMP-2 group indicates osteoclastic resorption, which could be stalled by adding ZA, which by speculation could explain the net increase in mineralization. The new scaffold allowed for slow release of rhBMP-2 in-vitro (3.3±0.1%) after 4weeks. Using single photon emission computed tomography (SPECT), the release kinetics of 125 I-rhBMP-2 in-vivo was followed for 4weeks and a total of 65.3±15.2% 125 I-rhBMP-2 was released from the scaffolds. In-vitro 14 C-ZA release curve shows an initial burst release on day 1 (8.8±0.7%) followed by a slow release during the following 4weeks (13±0.1%). In-vivo, an initial release of 43.2±7.6% of 14 C-ZA was detected after 1day, after which the scaffold retained the remaining ZA during 4-weeks. Taken together, our results show that the developed biomaterial is an efficient carrier for spatio-temporal delivery of rhBMP-2 and ZA leading to increased bone formation compared to commercially available carrier for rhBMP-2. Copyright © 2018 Elsevier B.V. All rights reserved.
Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.
Nowak, Matthias; Machate, Anja; Yu, Shuizi Rachel; Gupta, Mansi; Brand, Michael
2011-02-01
Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.
Shetty, Rohit; Rajiv Kumar, Nimisha; Pahuja, Natasha; Deshmukh, Rashmi; Vunnava, KrishnaPoojita; Abilash, Valsala Gopalakrishnan; Sinha Roy, Abhijit; Ghosh, Arkasubhra
2018-03-01
To evaluate the correlation of visual and keratometry outcomes after corneal cross-linking (CXL) in patients with keratoconus with cone epithelium-specific gene expression levels. Corneal epithelium was obtained from 35 eyes that underwent accelerated CXL (KXLII, 9 mW/cm for 10 min). Using corneal topography, epithelium over the cone and periphery was obtained separately from each subject. The ratio of gene expression for lysyl oxidase (LOX), matrix metalloproteinase 9 (MMP9), bone morphogenic protein 7, tissue inhibitor of metalloproteinase 1, collagen, type I, alpha 1, and collagen, type IV, alpha 1 (COL IVA1) from the cone and peripheral cornea was correlated with the outcome of cross-linking surgery. Patients were assessed for visual acuity, keratometry, refraction, and corneal densitometry before and 6 months after surgery. Based on the change in corneal flattening indicated by ΔKmax, the outcomes were classified as a higher response or lower response. Reduction in keratometric indices correlated with improved spherical equivalent after CXL. Preoperative levels of cone-specific LOX expression in cases with a higher response were significant (P = 0.001). COL IVA1, bone morphogenic protein 7, and tissue inhibitor of metalloproteinase 1 gene expressions were reduced in the cones of the subjects with a lower response. MMP9 levels were relatively lower in cases with a higher response compared with those with a lower response. Our study demonstrates that preoperative levels of molecular factors such as LOX, MMP9, and COL IVA1 aid in understanding CXL outcomes at the tissue level.
Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains*
Kienast, Yvonne; Jucknischke, Ute; Scheiblich, Stefan; Thier, Martina; de Wouters, Mariana; Haas, Alexander; Lehmann, Christian; Brand, Verena; Bernicke, Dirk; Honold, Konrad; Lorenz, Stefan
2016-01-01
By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. PMID:26677222
Raghavendran, Hanumantha Rao Balaji; Mohan, Saktiswaren; Genasan, Krishnamurithy; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Talebian, Sepehr; McKean, Robert; Kamarul, Tunku
2016-03-01
Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
Signaling networks in joint development
Salva, Joanna E.; Merrill, Amy E.
2016-01-01
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints unite adjacent bones through either a hyaline cartilage or fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. PMID:27859991
A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration
Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim
2013-01-01
A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983
Rolland-Lagan, Anne-Gaëlle; Paquette, Mathieu; Tweedle, Valerie; Akimenko, Marie-Andrée
2012-03-01
The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.
The Role of Endocytosis during Morphogenetic Signaling
Gonzalez-Gaitan, Marcos; Jülicher, Frank
2014-01-01
Morphogens are signaling molecules that are secreted by a localized source and spread in a target tissue where they are involved in the regulation of growth and patterning. Both the activity of morphogenetic signaling and the kinetics of ligand spreading in a tissue depend on endocytosis and intracellular trafficking. Here, we review quantitative approaches to study how large-scale morphogen profiles and signals emerge in a tissue from cellular trafficking processes and endocytic pathways. Starting from the kinetics of endosomal networks, we discuss the role of cellular trafficking and receptor dynamics in the formation of morphogen gradients. These morphogen gradients scale during growth, which implies that overall tissue size influences cellular trafficking kinetics. Finally, we discuss how such morphogen profiles can be used to control tissue growth. We emphasize the role of theory in efforts to bridge between scales. PMID:24984777
Dettman, Robert W.; Birch, Derin; Fernando, Augusta; Kessler, John A.; Dizon, Maria L.V.
2018-01-01
Hypoxic-ischemic injury (HI) to the neonatal human brain results in myelin loss that, in some children, can manifest as cerebral palsy. Previously, we had found that neuronal overexpression of the bone morphogenic protein (BMP) inhibitor noggin during development increased oligodendroglia and improved motor function in an experimental model of HI utilizing unilateral common carotid artery ligation followed by hypoxia. As BMPs are known to negatively regulate oligodendroglial fate specification of neural stem cells and alter differentiation of committed oligodendroglia, BMP signaling is likely an important mechanism leading to myelin loss. Here, we showed that BMP signaling is upregulated within oligodendroglia of the neonatal brain. We tested the hypothesis that inhibition of BMP signaling specifically within neural progenitor cells (NPCs) is sufficient to protect oligodendroglia. We conditionally deleted the BMP receptor 2 subtype (BMPR2) in NG2-expressing cells after HI. We found that BMPR2 deletion globally protects the brain as assessed by MRI and protects motor function as assessed by digital gait analysis, and that conditional deletion of BMPR2 maintains oligodendrocyte marker expression by immunofluorescence and Western blot and prevents loss of oligodendroglia. Finally, BMPR2 deletion after HI results in an increase in noncompacted myelin. Thus, our data indicate that inhibition of BMP signaling specifically in NPCs may be a tractable strategy to protect the newborn brain from HI. PMID:29324456
Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.
Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen
2014-01-01
In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, p<0.001), TGF-β1 (r=0.85, p<0.001), VEGF (r=0.46, p<0.01) and PDGF-bb (r=0.9, p<0.001). Our results demonstrate that selected growth factors are present in the platelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.
Orthobiologics in the augmentation of osteoporotic fractures.
Watson, J Tracy; Nicolaou, Daemeon A
2015-02-01
Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.
Intra-articular therapies for osteoarthritis.
Yu, Shirley P; Hunter, David J
2016-10-01
Conventional medical therapies for osteoarthritis are mainly palliative in nature, aiming to control pain and symptoms. Traditional intra-articular therapies are not recommended in guidelines as first line therapy, but are potential alternatives, when conventional therapies have failed. Current and future intra-articular drug therapies for osteoarthritis are highlighted, including corticosteroids, hyaluronate, and more controversial treatments marketed commercially, namely platelet rich plasma and mesenchymal cell therapy. Intraarticular disease modifying osteoarthritis drugs are the future of osteoarthritis treatments, aiming at structural modification and altering the disease progression. Interleukin-1β inhibitor, bone morphogenic protein-7, fibroblast growth factor 18, bradykinin B2 receptor antagonist, human serum albumin, and gene therapy are discussed in this review. The evolution of drug development in osteoarthritis is limited by the ability to demonstrate effect. High quality trials are required to justify the use of existing intra-articular therapies and to advocate for newer, promising therapies. Challenges in osteoarthritis therapy research are fundamentally related to the complexity of the pathological mechanisms of osteoarthritis. Novel drugs offer hope in a disease with limited medical therapy options. Whether these future intra-articular therapies will provide clinically meaningful benefits, remains unknown.
Mammalian Twisted Gastrulation Is Essential for Skeleto-Lymphogenesis
Nosaka, Tetsuya; Morita, Sumiyo; Kitamura, Hidetomo; Nakajima, Hideaki; Shibata, Fumi; Morikawa, Yoshihiro; Kataoka, Yuki; Ebihara, Yasuhiro; Kawashima, Toshiyuki; Itoh, Tsuneo; Ozaki, Katsutoshi; Senba, Emiko; Tsuji, Kohichiro; Makishima, Fusao; Yoshida, Nobuaki; Kitamura, Toshio
2003-01-01
Dorsoventral patterning depends on the local concentrations of the morphogens. Twisted gastrulation (TSG) regulates the extracellular availability of a mesoderm inducer, bone morphogenetic protein 4 (BMP-4). However, TSG function in vivo is still unclear. We isolated a TSG cDNA as a secreted molecule from the mouse aorta-gonad-mesonephros region. Here we show that TSG-deficient mice were born healthy, but more than half of the neonatal pups showed severe growth retardation shortly after birth and displayed dwarfism with delayed endochondral ossification and lymphopenia, followed by death within a month. TSG-deficient thymus was atrophic, and phosphorylation of SMAD1 was augmented in the thymocytes, suggesting enhanced BMP-4 signaling in the thymus. Since BMP-4 promotes skeletogenesis and inhibits thymus development, our findings suggest that TSG acts as both a BMP-4 agonist in skeletogenesis and a BMP-4 antagonist in T-cell development. Although lymphopenia in TSG-deficient mice would partly be ascribed to systemic effects of runtiness and wasting, our findings may also provide a clue for understanding the pathogenesis of human dwarfism with combined immunodeficiency. PMID:12665593
Samavedi, Satyavrata; Guelcher, Scott A; Goldstein, Aaron S; Whittington, Abby R
2012-11-01
Biomaterial scaffolds with gradients in architecture, mechanical and chemical properties have the potential to improve the osseointegration of ligament grafts by recapitulating phenotypic gradients that exist at the natural ligament-bone (L-B) interface. Towards the larger goal of regenerating the L-B interface, this in vitro study was performed to investigate the potential of two scaffolds with mineral gradients in promoting a spatial gradient of osteoblastic differentiation. Specifically, the first graded scaffold was fabricated by co-electrospinning two polymer solutions (one doped with nano-hydroxyapatite particles) from offset spinnerets, while the second was created by immersing the first scaffold in a 5 × simulated body fluid. Rat bone marrow stromal cells, cultured in the presence of osteogenic supplements, were found to be metabolically active on all regions of both scaffolds after 1 and 7 days of culture. Gene expression of bone morphogenic protein-2 and osteopontin was elevated on mineral-containing regions as compared to regions without mineral, while the expression of alkaline phosphatase mRNA revealed the opposite trend. Finally, the presence of osteopontin and bone sialoprotein confirmed osteoblastic phenotypic maturation by day 28. This study indicates that co-electrospun scaffolds with gradients in mineral content can guide the formation of phenotypic gradients and may thus promote the regeneration of the L-B interface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption.
Limmer, Andreas; Wirtz, Dieter C
2017-06-01
Background Stimulating bone regeneration is a central aim in orthopaedic and trauma surgery. Although the replacement of bone with artificial materials like cement or apatite helps to keep up bone stability, new bone often cannot be regenerated. Increasing research efforts have led to the clinical application of growth factors stimulating bone growth (e.g. bone morphogenic protein, BMP) and inhibitors preventing bone consumption (e.g. RANKL blocking antibodies). These factors mostly concentrate on stimulating osteoblast or preventing osteoclast activity. Current Situation It is widely accepted that osteoblasts and osteoclasts are central players in bone regeneration. This concept assumes that osteoblasts are responsible for bone growth while osteoclasts cause bone consumption by secreting matrix-degrading enzymes such as cathepsin K and matrix metalloproteinases (MMP). However, according to new research results, bone growth or consumption are not regulated by single cell types. It is rather the interaction of various cell types that regulates bone metabolism. While factors secreted by osteoblasts are essential for osteoclast differentiation and activation, factors secreted by activated osteoclasts are essential for osteoblast activity. In addition, recent research results imply that the influence of the immune system on bone metabolism has long been neglected. Factors secreted by macrophages or T cells strongly influence bone growth or degradation, depending on the bone microenvironment. Infections, sterile inflammation or tumour metastases not only affect bone cells directly, but also influence immune cells such as T cells indirectly. Furthermore, immune cells and bone are mechanistically regulated by similar factors such as cytokines, chemokines and transcription factors, suggesting that the definition of bone and immune cells has to be thought over. Outlook Bone and the immune system are regulated by similar mechanisms. These newly identified similarities between bone and the immune system imply that medication developed for tumour and autoimmune patients could also be applied in bone diseases. Georg Thieme Verlag KG Stuttgart · New York.
Walcott, Brian P; Winkler, Ethan A; Zhou, Sirui; Birk, Harjus; Guo, Diana; Koch, Matthew J; Stapleton, Christopher J; Spiegelman, Dan; Dionne-Laporte, Alexandre; Dion, Patrick A; Kahle, Kristopher T; Rouleau, Guy A; Lawton, Michael T
2018-01-01
Brain arteriovenous malformations (AVMs) are abnormal connections between arteries and veins that can result in hemorrhagic stroke. A genetic basis for AVMs is suspected, and we investigated potential mutations in a 14-year-old girl who developed a recurrent brain AVM. Whole-exome sequencing (WES) of AVM lesion tissue and blood was performed accompanied by in silico modeling, protein expression observation in lesion tissue and zebrafish modeling. A stop-gain mutation (c.C739T:p.R247X) in the gene SMAD family member 9 ( SMAD9 ) was discovered. In the human brain tissue, immunofluorescent staining demonstrated a vascular predominance of SMAD9 at the protein level. Vascular SMAD9 was markedly reduced in AVM peri-nidal blood vessels, which was accompanied by a decrease in phosphorylated SMAD4, a downstream effector protein of the bone morphogenic protein signaling pathway. Zebrafish modeling ( Tg kdrl:eGFP ) of the morpholino splice site and translation-blocking knockdown of SMAD9 resulted in abnormal cerebral artery-to-vein connections with morphologic similarities to human AVMs. Orthogonal trajectories of evidence established a relationship between the candidate mutation discovered in SMAD9 via WES and the clinical phenotype. Replication in similar rare cases of recurrent AVM, or even more broadly sporadic AVM, may be informative in building a more comprehensive understanding of AVM pathogenesis.
Wingless promotes proliferative growth in a gradient-independent manner.
Baena-Lopez, Luis Alberto; Franch-Marro, Xavier; Vincent, Jean-Paul
2009-10-06
Morphogens form concentration gradients that organize patterns of cells and control growth. It has been suggested that, rather than the intensity of morphogen signaling, it is its gradation that is the relevant modulator of cell proliferation. According to this view, the ability of morphogens to regulate growth during development depends on their graded distributions. Here, we describe an experimental test of this model for Wingless, one of the key organizers of wing development in Drosophila. Maximal Wingless signaling suppresses cellular proliferation. In contrast, we found that moderate and uniform amounts of exogenous Wingless, even in the absence of endogenous Wingless, stimulated proliferative growth. Beyond a few cell diameters from the source, Wingless was relatively constant in abundance and thus provided a homogeneous growth-promoting signal. Although morphogen signaling may act in combination with as yet uncharacterized graded growth-promoting pathways, we suggest that the graded nature of morphogen signaling is not required for proliferation, at least in the developing Drosophila wing, during the main period of growth.
Morphogengineering roots: comparing mechanisms of morphogen gradient formation
2012-01-01
Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698
New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence
Plikus, Maksim V.
2014-01-01
Summary The timing mechanism of the hair cycle remains poorly understood. However, it has become increasingly clear that the telogen-to-anagen transition is controlled jointly by at least the bone morphogenic protein (BMP), WNT, fibroblast growth factor (FGF), and transforming growth factor (TGF)-β signaling pathways. New research shows that Fgf18 signaling in hair follicle stem cells synergizes BMP-mediated refractivity, whereas Tgf-β2 signaling counterbalances it. Loss of Fgf18 signaling markedly accelerates anagen initiation, whereas loss of Tgf-β2 signaling significantly delays it, supporting key roles for these pathways in hair cycle timekeeping. PMID:22499035
Decapentaplegic and growth control in the developing Drosophila wing.
Akiyama, Takuya; Gibson, Matthew C
2015-11-19
As a central model for morphogen action during animal development, the bone morphogenetic protein 2/4 (BMP2/4)-like ligand Decapentaplegic (Dpp) is proposed to form a long-range signalling gradient that directs both growth and pattern formation during Drosophila wing disc development. While the patterning role of Dpp secreted from a stripe of cells along the anterior-posterior compartmental boundary is well established, the mechanism by which a Dpp gradient directs uniform cell proliferation remains controversial and poorly understood. Here, to determine the precise spatiotemporal requirements for Dpp during wing disc development, we use CRISPR-Cas9-mediated genome editing to generate a flippase recognition target (FRT)-dependent conditional null allele. By genetically removing Dpp from its endogenous stripe domain, we confirm the requirement of Dpp for the activation of a downstream phospho-Mothers against dpp (p-Mad) gradient and the regulation of the patterning targets spalt (sal), optomotor blind (omb; also known as bifid) and brinker (brk). Surprisingly, however, third-instar wing blade primordia devoid of compartmental dpp expression maintain relatively normal rates of cell proliferation and exhibit only mild defects in growth. These results indicate that during the latter half of larval development, the Dpp morphogen gradient emanating from the anterior-posterior compartment boundary is not directly required for wing disc growth.
Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor.
Nguyen, Bao-Ngoc B; Ko, Henry; Fisher, John P
2016-08-01
The use of bioreactors for bone tissue engineering has been widely investigated. While the benefits of shear stress on osteogenic differentiation are well known, the underlying effects of dynamic culture on subpopulations within a bioreactor are less evident. In this work, we explore the influence of applied flow in the tubular perfusion system (TPS) bioreactor on the osteogenic differentiation of human mesenchymal progenitor cells (hMPCs), specifically analyzing the effects of axial position along the growth chamber. TPS bioreactor experiments conducted with unidirectional flow demonstrated enhanced expression of osteogenic markers in cells cultured downstream from the inlet flow. We utilized computational fluid dynamic modeling to confirm uniform shear stress distribution on the surface of the scaffolds and along the length of the growth chamber. The concept of paracrine signaling between cell populations was validated with the use of alternating flow, which diminished the differences in osteogenic differentiation between cells cultured at the inlet and outlet of the growth chamber. After the addition of controlled release of bone morphogenic protein-2 (BMP-2) into the system, osteogenic differentiation among subpopulations along the growth chamber was augmented, yet remained homogenous. These results allow for greater understanding of axial bioreactor cultures, their microenvironment, and how well-established parameters of osteogenic differentiation affect bone tissue development. With this work, we have demonstrated the capability of tuning osteogenic differentiation of hMPCs through the application of fluid flow and the addition of exogenous growth factors. Such precise control allows for the culture of distinct subpopulation within one dynamic system for the use of complex engineered tissue constructs. Biotechnol. Bioeng. 2016;113: 1805-1813. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Horstmann, Peter Frederik; Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Lidgren, Lars; Petersen, Michael Mørk; Tägil, Magnus
2017-12-01
Restoring lost bone is a major challenge in orthopedic surgery. Currently available treatment strategies have shortcomings, such as risk of infection, nonunion, and excessive resorption. Our primary aim was to study if a commercially available gentamicin-containing composite calcium sulfate/hydroxyapatite biomaterial (GBM) could serve as a carrier for local delivery of bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) in a tibia defect model in rats. Empty and allograft-filled defects were used as controls. A 3 × 4-mm metaphyseal bone defect was created in the proximal tibia, and the rats were grouped according to defect filling: (1) Empty, (2) Allograft, (3) GBM, (4) GBM + ZA, and (5) GBM + ZA + BMP-2. In vivo microcomputed tomography (micro-CT) images at 4 weeks showed significantly higher mineralized tissue volume (MV) in the intramedullary defect region and the neocortical/callus region in all GBM-treated groups. After euthanization at 8 weeks, ex vivo micro-CT showed that addition of ZA (GBM + ZA) and BMP-2 (GBM + ZA + BMP-2) mainly increased the neocortical and callus formation, with the highest MV in the combined ZA and BMP-2-treated group. Qualitative histological analysis, verifying the increased neocortical/callus thickness and finding of trabecular bone in all GBM-treated groups, supported that the differences in MV measured with micro-CT in fact represented bone tissue. In conclusion, GBM can serve as a carrier for ZA and BMP-2 leading to increased MV in the neocortex and callus of a metaphyseal bone defect in rats.
Yamaguchi, Masayoshi; Moore, Terry W; Sun, Aiming; Snyder, James P; Shoji, Mamoru
2012-08-01
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss is induced due to decreased osteoblastic bone formation and increased osteoclastic bone resorption with various pathologic states. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Pharmacologic and functional food factors may play a role in the prevention of bone loss with aging. This study was undertaken to determine the effect of curcumin analogues (curcumin, EF31, ECMN909, and UBS109), which were newly synthesized, on osteoblastogenesis and osteoclastogenesis in vitro. Among these compounds, UBS109 had a unique stimulatory effect on osteoblastic differentiation and mineralization. UBS109 stimulated both basal and bone morphogenic protein-2 (BMP2)-increased Smad-luciferase activity, the Smad signaling of which is related to osteoblastogenesis. Such an effect was not seen with other compounds. Moreover, UBS109 potently suppressed tumor necrosis factor-α (TNF-α)-increased osteoblastic nuclear factor kappa B (NF-κB)-luciferase activity. In addition, EF31, ECMN909, and UBS109 had a suppressive effect on osteoclastogenesis as compared with that of curcumin. ECMN909 and UBS109 potently inhibited the receptor activator of NF-κB (RANK) ligand (RANKL)-increased preosteoclastic NF-κB-luciferase activity, in which NF-κB signaling plays a pivotal role in osteoclastogenesis. In the present study, curcumin analogue UBS109 was found to have a stimulating effect on osteoblastogenesis and a suppressive effect on osteoclastogenesis in vitro, suggesting an anabolic effect of the compound on bone mass.
Development of morphogen gradient: The role of dimension and discreteness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teimouri, Hamid; Kolomeisky, Anatoly B.
2014-02-28
The fundamental processes of biological development are governed by multiple signaling molecules that create non-uniform concentration profiles known as morphogen gradients. It is widely believed that the establishment of morphogen gradients is a result of complex processes that involve diffusion and degradation of locally produced signaling molecules. We developed a multi-dimensional discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It provided a full analytical description for stationary profiles and for important dynamic properties such as local accumulation times, variances, and mean first-passage times. The role of discreteness in developing of morphogen gradients is analyzed by comparing with available continuummore » descriptions. It is found that the continuum models prediction about multiple time scales near the source region in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that view the degradation process as an effective potential, the effect of dimensionality on establishment of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion processes are modified with changing the size of the source region.« less
Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A
2012-03-01
We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.
Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth.
Poh, Chye Khoon; Shi, Zhilong; Tan, Xiao Wei; Liang, Zhen Chang; Foo, Xue Mei; Tan, Hark Chuan; Neoh, Koon Gee; Wang, Wilson
2011-09-01
Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity and long-term results. Therefore, we investigated the effects of BMP peptide covalently grafted to CoCr alloy on osteogenesis. The BMP peptide was derived from the knuckle epitope of bone morphogenic protein-2 (BMP-2) and was conjugated via a cysteine amino acid at the N-terminus. X-ray photoelectron spectroscopy and o-phthaldialdehyde were used to verify successful grafting at various stages of surface functionalization. Surface topography was evaluated from the surface profile determined by atomic force microscopy. Osteoblastic cells (MC3T3-E1) were seeded on the substrates, and the effects of BMP peptide on osteogenic differentiation were evaluated by measuring alkaline phosphatase (ALP) activity and calcium mineral deposition. The functionalized surfaces showed a twofold increase in ALP activity after 2 weeks incubation and a fourfold increase in calcium content after 3 weeks incubation compared to the pristine substrate. These findings are potentially useful in the development of improved CoCr implants for use in orthopedic applications. Copyright © 2011 Orthopaedic Research Society.
Cunniffe, Gráinne M; Gonzalez-Fernandez, Tomas; Daly, Andrew; Sathy, Binulal N; Jeon, Oju; Alsberg, Eben; Kelly, Daniel J
2017-09-01
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-γ-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bone marrow-derived mesenchymal stem cells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization and mineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
Ogino, Yukiko; Hirakawa, Ikumi; Inohaya, Keiji; Sumiya, Eri; Miyagawa, Shinichi; Denslow, Nancy; Yamada, Gen; Tatarazako, Norihisa; Iguchi, Taisen
2014-02-01
Androgens play key roles in the morphological specification of male type sex attractive and reproductive organs, whereas little is known about the developmental mechanisms of such secondary sex characters. Medaka offers a clue about sexual differentiation. They show a prominent masculine sexual character for appendage development, the formation of papillary processes in the anal fin, which has been induced in females by exogenous androgen exposure. This current study shows that the development of papillary processes is promoted by androgen-dependent augmentation of bone morphogenic protein 7 (Bmp7) and lymphoid enhancer-binding factor-1 (Lef1). Androgen receptor (AR) subtypes, ARα and ARβ, are expressed in the distal region of outgrowing bone nodules of developing papillary processes. Development of papillary processes concomitant with the induction of Bmp7 and Lef1 in the distal bone nodules by exposure to methyltestosterone was significantly suppressed by an antiandrogen, flutamide, in female medaka. When Bmp signaling was inhibited in methyltestosterone-exposed females by its inhibitor, dorsomorphin, Lef1 expression was suppressed accompanied by reduced proliferation in the distal bone nodules and retarded bone deposition. These observations indicate that androgen-dependent expressions of Bmp7 and Lef1 are required for the bone nodule outgrowth leading to the formation of these secondary sex characteristics in medaka. The formation of androgen-induced papillary processes may provide insights into the mechanisms regulating the specification of sexual features in vertebrates.
Alpan, Aysan Lektemur; Toker, Hülya; Ozer, Hatice
2016-08-01
Bone healing is impaired in diabetes mellitus (DM) cases. The aim of this study is to investigate, both morphometrically and immunohistochemically, the effect of gaseous ozone on bone healing in diabetic rat calvarial defects treated with xenografts. DM was induced with 50 mg/kg intraperitoneal streptozotocin in 56 male Wistar rats. Study groups were as follows: 1) empty defect (control, n = 14); 2) xenograft (XG, n = 14); 3) empty defect treated with ozone therapy (control + ozone, n = 14); and 4) xenograft and ozone application (XG + ozone, n = 14). Critical-size defects were created in all rats. Bovine-derived xenograft was applied to XG groups. Gaseous ozone was applied on the operation day and daily for 2 weeks (140 ppm at 2 L/d, 2.24 mg). Rats were sacrificed at 4 or 8 weeks post-surgery. Total bone area, newly formed bone, and residual graft material were measured histomorphometrically. Osteocalcin and bone morphogenic protein (BMP)-2 expression was evaluated immunohistochemically. Osteoclast numbers in the XG + ozone group were higher than the other groups at week 4 (P <0.05). XG + ozone group revealed more total bone area and new bone area than the XG group at weeks 4 (P <0.05) and 8 (P >0.05). Residual graft materials were decreased in the XG + ozone group and the same group revealed more BMP-2 positivity compared with other groups. Osteocalcin positivity in XG groups was higher than in control groups. Within the limitations of this DM animal study, gaseous ozone application accelerates xenograft resorption and enhances bone regeneration, especially in the early stages of bone healing.
Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.
Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F
2018-02-01
Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization. We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation. The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs. The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Mechanochemical Symmetry Breaking in Hydra Aggregates
Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna
2015-01-01
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896
Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients
Wan, Frederic Y.M.
2013-01-01
The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound non-signaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans (HSPG). The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell-surface nonreceptors. Perturbation and asymptotic solutions obtained for i) low (receptor and nonreceptor) occupancy, and ii) high nonreceptor concntration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness. PMID:25232201
Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension.
Johnson, Jennifer A; Hemnes, Anna R; Perrien, Daniel S; Schuster, Manfred; Robinson, Linda J; Gladson, Santhi; Loibner, Hans; Bai, Susan; Blackwell, Tom R; Tada, Yuji; Harral, Julie W; Talati, Megha; Lane, Kirk B; Fagan, Karen A; West, James
2012-03-01
The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.
Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael
2009-09-24
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Chang, Yung-Heng; Sun, Yi Henry
2014-01-01
Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen. PMID:25360738
Vitamin D receptor-mediated control of Soggy, Wise, and Hairless gene expression in keratinocytes.
Hsieh, Jui-Cheng; Estess, Rudolf C; Kaneko, Ichiro; Whitfield, G Kerr; Jurutka, Peter W; Haussler, Mark R
2014-02-01
The vitamin D receptor (VDR), but not its hormonal ligand, 1,25-dihydroxyvitamin D3 (1,25D), is required for the progression of the mammalian hair cycle. We studied three genes relevant to hair cycle signaling, DKKL1 (Soggy), SOSTDC1 (Wise), and HR (Hairless), to determine whether their expression is regulated by VDR and/or its 1,25D ligand. DKKL1 mRNA was repressed 49-72% by 1,25D in primary human and CCD-1106 KERTr keratinocytes; a functional vitamin D responsive element (VDRE) was identified at -9590 bp in murine Soggy. Similarly, SOSTDC1 mRNA was repressed 41-59% by 1,25D in KERTr and primary human keratinocytes; a functional VDRE was located at -6215 bp in human Wise. In contrast, HR mRNA was upregulated 1.56- to 2.77-fold by 1,25D in primary human and KERTr keratinocytes; a VDRE (TGGTGAgtgAGGACA) consisting of an imperfect direct repeat separated by three nucleotides (DR3) was identified at -7269 bp in the human Hairless gene that mediated dramatic induction, even in the absence of 1,25D ligand. In parallel, a DR4 thyroid hormone responsive element, TGGTGAggccAGGACA, was identified at +1304 bp in the human HR gene that conferred tri-iodothyronine (T3)-independent transcriptional activation. Because the thyroid hormone receptor controls HR expression in the CNS, whereas VDR functions in concert with the HR corepressor specifically in skin, a model is proposed wherein unliganded VDR upregulates the expression of HR, the gene product of which acts as a downstream comodulator to feedback-repress DKKL1 and SOSTDC1, resulting in integration of bone morphogenic protein and Wnt signaling to drive the mammalian hair cycle and/or influencing epidermal function.
Directing adult human periodontal ligament-derived stem cells to retinal fate.
Huang, Li; Liang, Jiajian; Geng, Yiqun; Tsang, Wai-Ming; Yao, Xiaowu; Jhanji, Vishal; Zhang, Mingzhi; Cheung, Herman S; Pang, Chi Pui; Yam, Gary Hin-Fai
2013-06-06
To investigate the retinal fate competence of human postnatal periodontal ligament (PDL)-derived stem cells (PDLSC) through a directed differentiation mimicking mammalian retinogenesis. Human teeth were collected from healthy subjects younger than 35 years old. Primary PDLSC were isolated by collagenase digestion and cultivated. PDLSC at passage 3 were cultured in the induction media containing Noggin (antagonist of bone morphogenic protein) and Dkk-1 (antagonist of Wnt/β-catenin signaling). Gene expression of neural crest cells, retinal progenitors, and retinal neurons, including photoreceptors, was revealed by RNA analyses, immunofluorescence, and flow cytometry. The neuronal-like property of differentiated cells in response to excitatory glutamate was examined by fluo-4-acetoxymethyl calcium imaging assay. Primary human PDLSC stably expressed marker genes for neural crest (Notch1, BMP2, Slug, Snail, nestin, and Tuj1), mesenchymal stem cell (CD44, CD90, and vimentin), and embryonic stem cell (c-Myc, Klf4, Nanog, and SSEA4). Under low attachment culture, PDLSC generated neurospheres expressing nestin, p75/NGFR, Pax6, and Tuj1 (markers of neural progenitors). When neurospheres were plated on Matrigel-coated surface, they exhibited rosette-like outgrowth. They expressed eye field transcription factors (Pax6, Rx, Lhx, Otx2). By flow cytometry, 94% of cells were Pax6(nuclear)Rx(+), indicative of retinal progenitors. At prolonged induction, they expressed photoreceptor markers (Nrl, rhodopsin and its kinase) and showed significant responsiveness to excitatory glutamate. Primary human PDLSC could be directed to retinal progenitors with competence for photoreceptor differentiation. Human neural crest-derived PDL is readily accessible and can be an ample autologous source of undifferentiated cells for retinal cell regeneration.
Lohse, N; Moser, N; Backhaus, S; Annen, T; Epple, M; Schliephake, H
2015-12-28
The aim of the present study was to test the hypothesis that different amounts of vascular endothelial growth factor and bone morphogenic protein differentially affect bone formation when applied for repair of non-healing defects in the rat mandible. Porous composite PDLLA/CaCO3 carriers were fabricated as slow release carriers and loaded with rhBMP2 and rhVEGF165 in 10 different dosage combinations using gas foaming with supercritical carbon dioxide. They were implanted in non-healing defects of the mandibles of 132 adult Wistar rats with additional lateral augmentation. Bone formation was assessed both radiographically (bone volume) and by histomorphometry (bone density). The use of carriers with a ratio of delivery of VEGF/BMP between 0.7 and 1.2 was significantly related to the occurrence of significant increases in radiographic bone volume and/or histologic bone density compared to the use of carriers with a ratio of delivery of ≤ 0.5 when all intervals and all outcome parameters were considered. Moreover, simultaneous delivery at this ratio helped to "save" rhBMP2 as both bone volume and bone density after 13 weeks were reached/surpassed using half the dosage required for rhBMP2 alone. It is concluded, that the combined delivery of rhVEGF165 and rhBMP2 for repair of critical size mandibular defects can significantly enhance volume and density of bone formation over delivery of rhBMP2 alone. It appears from the present results that continuous simultaneous delivery of rhVEGF165 and rhBMP2 at a ratio of approximately 1 is favourable for the enhancement of bone formation. Copyright © 2015. Published by Elsevier B.V.
Gupta, Vineet; Lyne, Dina V.; Barragan, Marilyn; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix (ECM) components relevant to bone tissue compared to the “blank” (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903
Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel
2016-10-01
The momentum to compose this Leading Opinion on the synergistic induction of bone formation suddenly arose when a simple question was formulated during a discussion session on how to boost the often limited induction of bone formation seen in clinical contexts. Re-examination of morphological and molecular data available on the rapid induction of bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) shows that hTGF-β3 replicates the synergistic induction of bone formation as invocated by binary applications of hOP-1:hTGF-β1 at 20:1 by weight when implanted in heterotopic sites of the rectus abdominis muscle of the Chacma baboon, Papio ursinus. The rapid induction of bone formation in primates by hTGF-β3 may stem from bursts of cladistic evolution, now redundant in lower animal species but still activated in primates by relatively high doses of hTGF-β3. Contrary to rodents, lagomorphs and canines, the three mammalian TGF-β isoforms induce rapid and substantial bone formation when implanted in heterotopic rectus abdominis muscle sites of P. ursinus, with unprecedented regeneration of full thickness mandibular defects with rapid mineralization and corticalization. Provocatively, thus providing potential molecular and biological rationales for the apparent redundancy of osteogenic molecular signals in primates, binary applications of recombinant human osteogenic protein-1 (hOP-1) with low doses of hTGF-β1 and -β3, synergize to induce massive ossicles in heterotopic rectus abdominis, orthotopic calvarial and mandibular sites of P. ursinus. The synergistic binary application of homologous but molecularly different soluble molecular signals has indicated that per force several secreted molecular signals are required singly, synchronously and synergistically to induce optimal osteogenesis. The morphological hallmark of the synergistic induction of bone formation is the rapid differentiation of large osteoid seams enveloping haematopoietic bone marrow that forms by day 15 in heterotopic rectus abdominis sites. Synergistic binary applications also induce the morphogenesis of rudimentary embryonic growth plates indicating that the "memory" of developmental events in embryo can be redeployed postnatally by the application of morphogen combinations. Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that hTGF-β3 induces bone by expressing a variety of inductive morphogenetic proteins that result in the rapid induction of bone formation. Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of bone formation by binary applications of hTGF-β1 and -β3 isoforms with hOP-1. Both synergistic strategies result in the rapid induction and expansion of the transformed mesenchymal tissue into large corticalized heterotopic ossicles with osteoblast-like cell differentiation at the periphery of the implanted reconstituted specimens with "tissue transfiguration" in vivo. Molecularly, the rapid induction of bone formation by binary applications of hOP-1 and hTGF-β3 or by hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue induction and morphogenesis, Osteocalcin, RUNX-2, OP-1, TGF-β1 and -β3 with however the noted lack of TGF-β2 up-regulation. Copyright © 2016. Published by Elsevier Ltd.
Extracorporeal shock wave therapy in periodontics: A new paradigm.
Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K
2014-05-01
The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.
Functionalized scaffolds to control dental pulp stem cell fate
Piva, Evandro; Silva, Adriana F.; Nör, Jacques E.
2014-01-01
Emerging understanding about interactions between stem cells, scaffolds and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a sub-population of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic signals give rise to a pulp-like tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells, despite the well known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals, where access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled release device for angiogenic factors. The aim of this manuscript is to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. PMID:24698691
Phenotypic variability in patients with osteogenesis imperfecta caused by BMP1 mutations.
Pollitt, Rebecca C; Saraff, Vrinda; Dalton, Ann; Webb, Emma A; Shaw, Nick J; Sobey, Glenda J; Mughal, M Zulf; Hobson, Emma; Ali, Farhan; Bishop, Nicholas J; Arundel, Paul; Högler, Wolfgang; Balasubramanian, Meena
2016-12-01
Osteogenesis Imperfecta (OI) is an inherited bone fragility disorder most commonly associated with autosomal dominant mutations in the type I collagen genes. Autosomal recessive mutations in a number of genes have also been described, including the BMP1 gene that encodes the mammalian Tolloid (mTLD) and its shorter isoform bone morphogenic protein-1 (BMP1). To date, less than 20 individuals with OI have been identified with BMP1 mutations, with skeletal phenotypes ranging from mild to severe and progressively deforming. In the majority of patients, bone fragility was associated with increased bone mineral density (BMD); however, the full range of phenotypes associated with BMP1 remains unclear. Here, we describe three children with mutations in BMP1 associated with a highly variable phenotype: a sibship homozygous for the c.2188delC mutation that affects only the shorter BMP1 isoform and a further patient who is compound heterozygous for a c.1293C>G nonsense mutation and a c.1148G>A missense mutation in the CUB1 domain. These individuals had recurrent fractures from early childhood, are hypermobile and have no evidence of dentinogenesis imperfecta. The homozygous siblings with OI had normal areal BMD by dual energy X-ray absorptiometry whereas the third patient presented with a high bone mass phenotype. Intravenous bisphosphonate therapy was started in all patients, but discontinued in two patients and reduced in another due to concerns about increasing bone stiffness leading to chalk-stick fractures. Given the association of BMP1-related OI with very high bone material density, concerns remain whether anti-resorptive therapy is indicated in this ultra-rare form of OI.© 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation.
Kwon, Hyuck Joon
2013-01-01
Skeletal patterns are prefigured by prechondrogenic condensation. Morphogens such as fibroblast growth factor (FGF) and sonic hedgehog (Shh) specify the skeletal patterns in limb development. However, how morphogens regulate prechondrogenic condensation has remained unclear. Recently, it was demonstrated that synchronized Adenosine triphosphate (ATP) oscillations play a critical role in prechondrogenic condensation. Thus, the present study has focused on whether ATP oscillations mediate the actions of major developmental morphogens such as FGF and Shh on prechondrogenic condensation. It has been shown that both FGF and Shh signalling promoted cellular condensation but not chondrogenic differentiation and also induced ATP oscillations. In addition, blockage of FGF and Shh signalling prevented both ATP oscillations and prechondrogenic condensation. Furthermore, it was found that inhibition of ATP oscillations suppressed FGF/Shh-induced prechondrogenic condensation. These results indicate that ATP oscillations mediate the actions of FGF and Shh signalling on prechondrogenic condensation. This study proposes that morphogens organize skeletal patterns via ATP oscillations. Copyright © 2012 John Wiley & Sons, Ltd.
Recasens-Alvarez, Carles; Ferreira, Ana; Milán, Marco
2017-01-01
A stable pool of morphogen-producing cells is critical for the development of any organ or tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and contributing to the growth of the Hedgehog-expressing cell population. We also unravel an early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a later one in restricting the Dpp-organizing activity to the appendage itself. These results unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and growth by regulating morphogen production and signalling, and a function of pro-survival cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a developing organ. PMID:28045022
The zebrafish dorsal axis is apparent at the four-cell stage.
Gore, Aniket V; Maegawa, Shingo; Cheong, Albert; Gilligan, Patrick C; Weinberg, Eric S; Sampath, Karuna
2005-12-15
A central question in the development of multicellular organisms pertains to the timing and mechanisms of specification of the embryonic axes. In many organisms, specification of the dorsoventral axis requires signalling by proteins of the Transforming growth factor-beta and Wnt families. Here we show that maternal transcripts of the zebrafish Nodal-related morphogen, Squint (Sqt), can localize to two blastomeres at the four-cell stage and predict the dorsal axis. Removal of cells containing sqt transcripts from four-to-eight-cell embryos or injection of antisense morpholino oligonucleotides targeting sqt into oocytes can cause a loss of dorsal structures. Localization of sqt transcripts is independent of maternal Wnt pathway function and requires a highly conserved sequence in the 3' untranslated region. Thus, the dorsoventral axis is apparent by early cleavage stages and may require the maternally encoded morphogen Sqt and its associated factors. Because the 3' untranslated region of the human nodal gene can also localize exogenous sequences to dorsal cells, this mechanism may be evolutionarily conserved.
Left-right asymmetry: cilia stir up new surprises in the node.
Babu, Deepak; Roy, Sudipto
2013-05-29
Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left-right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the 'morphogen hypothesis' believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the 'two-cilia model' posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left-right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved.
Left–right asymmetry: cilia stir up new surprises in the node
Babu, Deepak; Roy, Sudipto
2013-01-01
Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left–right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the ‘morphogen hypothesis’ believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the ‘two-cilia model’ posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left–right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved. PMID:23720541
Zhu, Xiaolu; Gojgini, Shiva; Chen, Ting-Hsuan; Fei, Peng; Dong, Siyan; Ho, Chih-Ming; Segura, Tatiana
2017-01-01
Physical scaffolds are useful for supporting cells to form three-dimensional (3D) tissue. However, it is non-trivial to develop a scheme that can robustly guide cells to self-organize into a tissue with the desired 3D spatial structures. To achieve this goal, the rational regulation of cellular self-organization in 3D extracellular matrix (ECM) such as hydrogel is needed. In this study, we integrated the Turing reaction-diffusion mechanism with the self-organization process of cells and produced multicellular 3D structures with the desired configurations in a rational manner. By optimizing the components of the hydrogel and applying exogenous morphogens, a variety of multicellular 3D architectures composed of multipotent vascular mesenchymal cells (VMCs) were formed inside hyaluronic acid (HA) hydrogels. These 3D architectures could mimic the features of trabecular bones and multicellular nodules. Based on the Turing reaction-diffusion instability of morphogens and cells, a theoretical model was proposed to predict the variations observed in 3D multicellular structures in response to exogenous factors. It enabled the feasibility to obtain diverse types of 3D multicellular structures by addition of Noggin and/or BMP2. The morphological consistency between the simulation prediction and experimental results probably revealed a Turing-type mechanism underlying the 3D self-organization of VMCs in HA hydrogels. Our study has provided new ways to create a variety of self-organized 3D multicellular architectures for regenerating biomaterial and tissues in a Turing mechanism-based approach.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies.
Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang
2013-12-07
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies
Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.
2013-01-01
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509
Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May
2015-04-01
The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.
Rainger, Joe; van Beusekom, Ellen; Ramsay, Jacqueline K.; McKie, Lisa; Al-Gazali, Lihadh; Pallotta, Rosanna; Saponari, Anita; Branney, Peter; Fisher, Malcolm; Morrison, Harris; Bicknell, Louise; Gautier, Philippe; Perry, Paul; Sokhi, Kishan; Sexton, David; Bardakjian, Tanya M.; Schneider, Adele S.; Elcioglu, Nursel; Ozkinay, Ferda; Koenig, Rainer; Mégarbané, Andre; Semerci, C. Nur; Khan, Ayesha; Zafar, Saemah; Hennekam, Raoul; Sousa, Sérgio B.; Ramos, Lina; Garavelli, Livia; Furga, Andrea Superti; Wischmeijer, Anita; Jackson, Ian J.; Gillessen-Kaesbach, Gabriele; Brunner, Han G.; Wieczorek, Dagmar; van Bokhoven, Hans; FitzPatrick, David R.
2011-01-01
Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice. PMID:21750680
Rainger, Joe; van Beusekom, Ellen; Ramsay, Jacqueline K; McKie, Lisa; Al-Gazali, Lihadh; Pallotta, Rosanna; Saponari, Anita; Branney, Peter; Fisher, Malcolm; Morrison, Harris; Bicknell, Louise; Gautier, Philippe; Perry, Paul; Sokhi, Kishan; Sexton, David; Bardakjian, Tanya M; Schneider, Adele S; Elcioglu, Nursel; Ozkinay, Ferda; Koenig, Rainer; Mégarbané, Andre; Semerci, C Nur; Khan, Ayesha; Zafar, Saemah; Hennekam, Raoul; Sousa, Sérgio B; Ramos, Lina; Garavelli, Livia; Furga, Andrea Superti; Wischmeijer, Anita; Jackson, Ian J; Gillessen-Kaesbach, Gabriele; Brunner, Han G; Wieczorek, Dagmar; van Bokhoven, Hans; Fitzpatrick, David R
2011-07-01
Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a)) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a)). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a) embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.
NASA Technical Reports Server (NTRS)
Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo
2007-01-01
Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.
Effects of Testosterone on Erythropoiesis in a Female Mouse Model of Anemia of Inflammation
Schmidt, Paul J.; Fleming, Mark D.; Bhasin, Shalender
2016-01-01
The anemia of inflammation is a common problem in inflammatory and autoimmune diseases. We characterized a mouse model of anemia of chronic inflammation induced by repeated injections of low doses of heat-killed Brucella abortus (HKBA), and determined the effects of T administration on erythropoiesis in this model. Female C57BL/6NCrl mice were injected weekly with HKBA for 10 wk. Weekly injections of T or vehicle oil were started 4 wk later. Control mice were injected with saline and vehicle oil in parallel. HKBA-injected mice had significantly lower hemoglobin, hematocrit, mean corpuscular volume, reticulocyte hemoglobin, transferrin saturation (TSAT), and tissue nonheme iron in liver and spleen, enlarged spleen, and up-regulated hepatic expression of inflammatory markers, serum amyloid A1, and TNFα, but down-regulated IL-6, bone morphogenic protein 6, and hepcidin compared with saline controls. HKBA also reduced serum hepcidin and increased serum erythropoietin. Bone marrow erythroid precursors were substantially reduced in HKBA-injected mice. Cotreatment with T increased the percentage of late-stage erythroid precursors in the bone marrow relative to HKBA-injected and saline controls and reversed HKBA-induced suppression of hemoglobin and hematocrit. T also normalized serum erythropoietin, TSAT, and reticulocyte hemoglobin without correcting the expression of the hepatic inflammation markers. Conclusions are that low-dose HKBA induces moderate anemia characterized by chronic inflammation, decreased iron stores, and suppression of erythroid precursors in the bone marrow. T administration reverses HKBA-induced anemia by stimulating erythropoiesis, which is associated with a shift toward accelerated maturation of erythroid precursors in the bone marrow. PMID:27074351
Extracorporeal shock wave therapy in periodontics: A new paradigm
Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K.
2014-01-01
The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome. PMID:25024562
Knockaert, Marie; Sapkota, Gopal; Alarcón, Claudio; Massagué, Joan; Brivanlou, Ali H.
2006-01-01
Smad transcription factors are key signal transducers for the TGF-β/bone morphogenetic protein (BMP) family of cytokines and morphogens. C-terminal serine phosphorylation by TGF-β and BMP membrane receptors drives Smads into the nucleus as transcriptional regulators. Dephosphorylation and recycling of activated Smads is an integral part of this process, which is critical for agonist sensing by the cell. However, the nuclear phosphatases involved have remained unknown. Here we provide functional, biochemical, and embryological evidence identifying the SCP (small C-terminal domain phosphatase) family of nuclear phosphatases as mediators of Smad1 dephosphorylation in the BMP signaling pathway in vertebrates. Xenopus SCP2/Os4 inhibits BMP activity in the presumptive ectoderm and leads to neuralization. In Xenopus embryos, SCP2/Os4 and human SCP1, 2, and 3 cause selective dephosphorylation of Smad1 compared with Smad2, inhibiting BMP- and Smad1-dependent transcription and leading to the induction of the secondary dorsal axis. In human cells, RNAi-mediated depletion of SCP1 and SCP2 increases the extent and duration of Smad1 phosphorylation in response to BMP, the transcriptional action of Smad1, and the strength of endogenous BMP gene responses. The present identification of the SCP family as Smad C-terminal phosphatases sheds light on the events that attenuate Smad signaling and reveals unexpected links to the essential phosphatases that control RNA polymerase II in eukaryotes. PMID:16882717
Farkas, Laszlo; Farkas, Daniela; Gauldie, Jack; Warburton, David; Shi, Wei; Kolb, Martin
2011-01-01
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of the lung parenchyma, without curative treatment. Gremlin is a bone morphogenic protein (BMP) antagonist, its expression being increased in IPF lungs. It has been implicated in promoting myofibroblast accumulation, likely through inhibited fibroblast apoptosis and epithelial-to-mesenchymal transition. In the current study, we examined the effects of selective adenovirus-mediated overexpression of Gremlin in rat lungs. We show that transient Gremlin overexpression results in activation of alveolar epithelial cells with proliferation and apoptosis, as well as partly reversible lung fibrosis. We found myofibroblasts arranged in fibroblastic foci. Fibroblast proliferation occurred delayed as compared with epithelial changes. Fibrotic pathology significantly declined after Day 14, the reversal being associated with an increase of the epithelium-protective element, fibroblast growth factor (FGF)–10. Our data indicate that Gremlin-mediated BMP inhibition results in activation of epithelial cells and transient fibrosis, but also induction of epithelium-protective FGF10. A Gremlin–BMP–FGF10 loop may explain these results, and demonstrate that the interactions between different factors are quite complex in fibrotic lung disease. Increased Gremlin expression in human IPF tissue may be an expression of continuing epithelial injury, and Gremlin may be part of activated repair mechanisms. PMID:20705941
The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells
Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso
2016-01-01
The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ). PMID:26857282
Kim, Kyobum; Dean, David; Wallace, Jonathan; Breithaupt, Rob; Mikos, Antonios G.; Fisher, John P.
2011-01-01
Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration. PMID:21396709
Sousa, Vitor H.; Fishell, Gord
2010-01-01
Morphogens act during development to provide graded spatial information that controls patterning and cell lineage specification in the nervous system. The role of morphogen signaling in instructing the expression of downstream effector transcription factors has been well established. However, a key requirement for morphogen signaling is the existence of functional intracellular machinery able to mediate the appropriate response in target cells. Here we suggest that dynamic changes in the temporal responses to Shh in the developing ventral telencephalon occur through alterations in progenitor competence. We suggest these developmental changes in competence are mediated by a transcriptional mechanism that intrinsically integrates information from the distinct signaling pathways that act to pattern the telencephalic neuroepithelium. PMID:20466536
Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry
2016-08-01
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. Copyright © 2016 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chang; Chen, Lin; Zeng, Jing
Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observedmore » that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic differentiaton and expression of BMP2 in PMVECs. • CBDL-rat serum activates the BMP2/smad signaling pathway. • The downregulation of Smurf1 stimulates the accumulation of Smad1/5 in PMVECs. • Noggin reverses partially the myogenic differentiaton in PMVECs.« less
Kona, S S R; Praveen Chakravarthi, V; Siva Kumar, A V N; Srividya, D; Padmaja, K; Rao, V H
2016-01-15
Quantitative patterns of expression of the growth differentiation factor 9 (GDF9) and bone morphogenic protein 15 (BMP15) genes in different development stages of in vivo and in vitro grown ovarian follicles in sheep were studied for the first time. Both GDF9 and BMP15 were expressed in the cumulus cells and oocytes at all the development stages of in vivo and in vitro grown ovarian follicles. Growth differentiation factor 9 and bone morphogenic protein 15 exhibited stage-specific undulations in the expression in the cumulus cells and oocytes isolated from in vivo grown ovarian follicles. These undulations could be related to discrete development events during the ovarian follicle development. The expression of GDF9 and BMP15 was highest (3.38 ± 0.02 and 2.69 ± 0.06, respectively; P ≤ 0.05) in the primordial follicles compared with preantral, early antral, antral, and large antral stages. Similarly, GDF9 and BMP15 expression in the cumulus cells (0 ± 0.16 and 0 ± 0.07) and oocytes (1.47 ± 0.07 and 1.32 ± 0.03) was lowest (P ≤ 0.05) in the in vivo grown antral follicles. In the cultured follicles, the stage-specific undulations observed in the expression of GDF9 and BMP15 in the in vivo grown follicles were either different or abolished. For example, in the oocytes from in vitro grown follicles, the expression of BMP15 did not change as the development progressed all the way from preantral to large antral follicle stage although in the oocytes from in vivo grown follicles BMP15 expression exhibited stage-specific variations. It is concluded that GDF9 and BMP15 follow a stage-specific pattern of expression during the in vivo development of ovarian follicles in sheep, and in vitro culture altered the stage-specific changes in the expression of these two genes. Copyright © 2016 Elsevier Inc. All rights reserved.
Otaki, Joji M
2011-06-01
Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.
Thawani, Ankita; Sirohi, Devika; Kuhn, Richard J; Fekete, Donna M
2018-04-17
Zika virus (ZIKV) is associated with severe neurodevelopmental impairments in human fetuses, including microencephaly. Previous reports examining neural progenitor tropism of ZIKV in organoid and animal models did not address whether the virus infects all neural progenitors uniformly. To explore this, ZIKV was injected into the neural tube of 2-day-old chicken embryos, resulting in nonuniform periventricular infection 3 days later. Recurrent foci of intense infection were present at specific signaling centers that influence neuroepithelial patterning at a distance through secretion of morphogens. ZIKV infection reduced transcript levels for 3 morphogens, SHH, BMP7, and FGF8 expressed at the midbrain basal plate, hypothalamic floor plate, and isthmus, respectively. Levels of Patched1, a SHH-pathway downstream gene, were also reduced, and a SHH-dependent cell population in the ventral midbrain was shifted in position. Thus, the diminishment of signaling centers through ZIKV-mediated apoptosis may yield broader, non-cell-autonomous changes in brain patterning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
ROBUSTNESS OF SIGNALING GRADIENT IN DROSOPHILA WING IMAGINAL DISC
Lei, Jinzhi; Wan, Frederic Y. M.; Lander, Arthur D.; Nie, Qing
2012-01-01
Quasi-stable gradients of signaling protein molecules (known as morphogens or ligands) bound to cell receptors are known to be responsible for differential cell signaling and gene expressions. From these follow different stable cell fates and visually patterned tissues in biological development. Recent studies have shown that the relevant basic biological processes yield gradients that are sensitive to small changes in system characteristics (such as expression level of morphogens or receptors) or environmental conditions (such as temperature changes). Additional biological activities must play an important role in the high level of robustness observed in embryonic patterning for example. It is natural to attribute observed robustness to various type of feedback control mechanisms. However, our own simulation studies have shown that feedback control is neither necessary nor sufficient for robustness of the morphogen decapentaplegic (Dpp) gradient in wing imaginal disc of Drosophilas. Furthermore, robustness can be achieved by substantial binding of the signaling morphogen Dpp with nonsignaling cell surface bound molecules (such as heparan sulfate proteoglygans) and degrading the resulting complexes at a sufficiently rapid rate. The present work provides a theoretical basis for the results of our numerical simulation studies. PMID:24098092
Gaffney, E A; Lee, S Seirin
2015-03-01
Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Salazar, Valerie S.; Zarkadis, Nicholas; Huang, Lisa; Norris, Jin; Grimston, Susan K.; Mbalaviele, Gabriel; Civitelli, Roberto
2013-01-01
Summary To examine interactions between bone morphogenic protein (BMP) and canonical Wnt signaling during skeletal growth, we ablated Smad4, a key component of the TGF-β–BMP pathway, in Osx1+ cells in mice. We show that loss of Smad4 causes stunted growth, spontaneous fractures and a combination of features seen in osteogenesis imperfecta, cleidocranial dysplasia and Wnt-deficiency syndromes. Bones of Smad4 mutant mice exhibited markers of fully differentiated osteoblasts but lacked multiple collagen-processing enzymes, including lysyl oxidase (Lox), a BMP2-responsive gene regulated by Smad4 and Runx2. Accordingly, the collagen matrix in Smad4 mutants was disorganized, but also hypomineralized. Primary osteoblasts from these mutants did not mineralize in vitro in the presence of BMP2 or Wnt3a, and Smad4 mutant mice failed to accrue new bone following systemic inhibition of the Dickkopf homolog Dkk1. Consistent with impaired biological responses to canonical Wnt, ablation of Smad4 causes cleavage of β-catenin and depletion of the low density lipoprotein receptor Lrp5, subsequent to increased caspase-3 activity and apoptosis. In summary, Smad4 regulates maturation of skeletal collagen and osteoblast survival, and is required for matrix-forming responses to both BMP2 and canonical Wnt. PMID:24006258
Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May
2015-01-01
Background: The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. Objectives: This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Materials and Methods: Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Results: Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). Conclusions: P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption. PMID:26034550
Mausner-Fainberg, Karin; Kolb, Hadar; Penn, Moran; Regev, Keren; Vaknin-Dembinsky, Adi; Gadoth, Avi; Kestenbaum, Meir; Karni, Arnon
2016-03-15
Bone morphogenic proteins (BMPs) signaling blockade induce neurogenesis and oligodendrogenesis. Differential screening-selected gene aberrative in neuroblastoma (DAN) is a glycoprotein that antagonizes BMPs. We found that DAN levels were higher in CSF compared to serum in all participants. CSF-DAN levels were elevated in RR-and progresssive MS patients compared to controls. Moreover, serum-DAN levels were reduced in those patients, but elevated in IFN-β1a treated patients. The main source of DAN is apparently CNS- resident cells. The enhanced levels of CSF-DAN in MS patients suggest a tendency to induce neurogenesis/oligodendrogenesis in the patients CNS. Our results suggest an unreported mode of action of IFN-β1a. Copyright © 2016 Elsevier B.V. All rights reserved.
Neugebauer, Judith M; Kwon, Sunjong; Kim, Hyung-Seok; Donley, Nathan; Tilak, Anup; Sopory, Shailaja; Christian, Jan L
2015-05-05
Bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) are morphogens that signal as either homodimers or heterodimers to regulate embryonic development and adult homeostasis. BMP4/7 heterodimers exhibit markedly higher signaling activity than either homodimer, but the mechanism underlying the enhanced activity is unknown. BMPs are synthesized as inactive precursors that dimerize and are then cleaved to generate both the bioactive ligand and prodomain fragments, which lack signaling activity. Our study reveals a previously unknown requirement for the BMP4 prodomain in promoting heterodimer activity. We show that BMP4 and BMP7 precursor proteins preferentially or exclusively form heterodimers when coexpressed in vivo. In addition, we show that the BMP4 prodomain is both necessary and sufficient for generation of stable heterodimeric ligands with enhanced activity and can enable homodimers to signal in a context in which they normally lack activity. Our results suggest that intrinsic properties of the BMP4 prodomain contribute to the relative bioactivities of homodimers versus heterodimers in vivo. These findings have clinical implications for the use of BMPs as regenerative agents for the treatment of bone injury and disease.
Papanna, M C; Al-Hadithy, N; Somanchi, B V; Sewell, M D; Robinson, P M; Khan, S A; Wilkes, R A
2012-07-01
The aim of the present study was to investigate the safety and efficacy of local implantation of BMP-7 for the treatment of resistant non-unions in the upper and lower limb. Fifty-two patients (30 males, mean age 52.8 years; range 20-81) were treated with local BMP-7 implantation in a bovine bone-derived collagen paste with or without revision of fixation. Thirty-six patients had closed injuries, ten had open injuries and six had infected non-unions. Patients had undergone a mean of 2 (1-5) operations prior to implantation of BMP-7. Clinical and radiological union was achieved in 94% at a mean time of 5.6 months (3-19). Two patients with subtrochanteric femoral fractures failed to achieve union secondary to inadequate fracture stabilisation, persistent unfavourable biological environment and systemic co-morbidities. One patient developed synostosis attributed to the BMP-7 application. This study demonstrates BMP-7 implanted in a bovine-derived collagen paste is an effective adjunctive treatment for resistant non-unions in the upper and lower limb. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fradin, Cécile
2017-11-01
Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Raspopovic, J; Marcon, L; Russo, L; Sharpe, J
2014-08-01
During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. Copyright © 2014, American Association for the Advancement of Science.
Optimization and characterization of bioactive glass nanofibers and nanocomposites
NASA Astrophysics Data System (ADS)
Scarber, Reginna E.
Disease affects different areas of the bone and can impact individuals of all pathologies and ethnicities. These bone diseases can result in weakening which leads to trauma during ordinary function, the need for reconstructive surgery, and eventual bone replacement. Tissue engineering can provide a less traumatic and more fundamental solution to the current therapies. Bioactive glasses are promising materials in tissue engineering applications because of their ability to form hydroxycarbonate apatite in the presence of simulated body fluid, support cell adhesion, growth, and differentiation, induce bone formation, and concentrate bone morphogenic proteins in vivo. The research in this dissertation will attempt to improve the quality, yield, and toughness of bioactive glass nanofibrous scaffolds. The three specific aims of this research include, (1) Optimization and Characterization of Surfactant Modified Bioactive Glass (2) Optimization of Direct Synthesis Bioactive glass Nanofibers from Sols (3) Mechanical Properties and In-vitro Biomineralization of Bioglass-loaded Polyglyconate Nanocomposites Created Using the Particulate Leaching Method. The purpose of the first specific aim was to optimize the processing of bioactive glass nanofibers, resulting in greater fiber uniformity with a reduction in beading. The increase in viscosity coupled with the ability of the surfactant to limit polymeric secondary bonding led to improved fiber quality. The focal point of the second specific aim is the production of sol-gel derived glass fibers with high bioactivity prepared by electrospinning without the use of any polymer carrier system. Advantages of this method include decreased processing time, increased production of fibers, and a decrease in the loss of material due to the calcining process. The solvent cast/ particulate leaching method was used to create a nanocomposite of bioglass and the co-polymer polyglyconate (MaxonRTM) for bone tissue scaffolds The biocompatibility of the composite foams was observed and calcium phosphate presence was quantified. The incorporation of bioglass into the polymer matrix improved the strength (modulus - 21.47 MPa) and biocompatibility of the polyglyconate foam. Keywords: Bioactive glass, Electrospinning, Solvent Casting/Particulate Leaching Method, Nanocomposites
Zhang, Wenjie; Wang, Xiuli; Wang, Shaoyi; Zhao, Jun; Xu, Lianyi; Zhu, Chao; Zeng, Deliang; Chen, Jake; Zhang, Zhiyuan; Kaplan, David L.; Jiang, Xinquan
2011-01-01
Sonication-induced silk hydrogels were previously prepared as an injectable bone replacement biomaterial, with a need to improve osteogenic features. Vascular endothelial growth factor (VEGF165) and bone morphogenic protein-2 (BMP-2) are key regulators of angiogenesis and osteogenesis, respectively, during bone regeneration. Therefore, the present study aimed at evaluating in situ forming silk hydrogels as a vehicle to encapsulate dual factors for rabbit maxillary sinus floor augmentation. Sonication-induced silk hydrogels were prepared in vitro and the slow release of VEGF165 and BMP-2 from these silk gels was evaluated by ELISA. For in vivo studies for each time point (4 and 12 weeks), 24 sinus floors elevation surgeries were made bilaterally in 12 rabbits for the following four treatment groups: silk gel (group Silk gel), silk gel/VEGF165 (group VEGF), silk gel/BMP-2 (group BMP-2), silk gel/VEGF165/BMP-2 (group V+B) (n=6 per group). Sequential florescent labeling and radiographic observations were used to record new bone formation and mineralization, along with histological and histomorphometric analysis. At week 4, VEGF165 promoted more tissue infiltration into the gel and accelerated the degradation of the gel material. At this time point, the bone area in group V+B was significantly larger than those in the other three groups. At week 12, elevated sinus floor heights of groups BMP-2 and V+B were larger than those of the Silk gel and VEGF groups, and the V+B group had the largest new bone area among all groups. In addition, a larger blood vessel area formed in the remaining gel areas in groups VEGF and V+B. In conclusion, VEGF165 and BMP-2 released from injectable and biodegradable silk gels promoted angiogenesis and new bone formation, with the two factors demonstrating an additive effect on bone regeneration. These results indicate that silk hydrogels can be used as an injectable vehicle to deliver multiple growth factors in a minimally invasive approach to regenerate irregular bony cavities. PMID:21889205
Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery.
Markov, Dmitry A; Lu, Jenny Q; Samson, Philip C; Wikswo, John P; McCawley, Lisa J
2012-11-07
We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow "mammospheres" if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our "drug" delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells.
Grusch, M.; Petz, M.; Metzner, T.; Öztürk, D.; Schneller, D.; Mikulits, W.
2010-01-01
Both RAS and transforming growth factor (TGF)-β signaling cascades are central in tumorigenesis and show synergisms depending on tumor stage and tissue context. In this review we focus on the interaction of RAS subeffector proteins with signaling components of the TGF-β family including those of TGF-βs, activins and bone morphogenic proteins. Compelling evidence indicates that RAS signaling is essentially involved in the switch from tumor-suppressive to tumor-promoting functions of the TGF-β family leading to enhanced cancer growth and metastatic dissemination of primary tumors. Thus, the interface of these signaling cascades is considered as a promising target for the development of novel cancer therapeutics. The current pharmacological anti-cancer concepts combating the molecular cooperation between RAS and TGF-β family signaling during carcinoma progression are critically discussed. PMID:20718708
Serup, Palle; Gustavsen, Carsten; Klein, Tino; Potter, Leah A.; Lin, Robert; Mullapudi, Nandita; Wandzioch, Ewa; Hines, Angela; Davis, Ashley; Bruun, Christine; Engberg, Nina; Petersen, Dorthe R.; Peterslund, Janny M. L.; MacDonald, Raymond J.; Grapin-Botton, Anne; Magnuson, Mark A.; Zaret, Kenneth S.
2012-01-01
SUMMARY Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements. PMID:22888097
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.
McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B
2015-01-01
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration
McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.
2015-01-01
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors. PMID:26444546
NASA Astrophysics Data System (ADS)
Lakshmana, Shruthi M.
Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (p<0.05). Cells were encapsulated in 0.2% PuraMatrix(TM) at cell densities of 10x104, 20x104, 40x10 4 and 80x104. Cell viability with WST and proliferation with Live-Dead cell assays showed viable cells at all cell concentrations (p<0.05). A two- fold upregulation of ALP gene was seen for cells encapsulated in PuraMatrix(TM) with osteogenic medium compared to cells in culture medium (p<0.05). HUMSCs encapsulated in PuraMatrix(TM) were treated with BMP2 at doses of 50ng/ml, 100ng/ml and 200ng/ml. A significant upregulation of ALP gene in BMP2 treated cells was seen compared to HUMSCs treated in osteogenic medium (p<0.05). Peak osteogenic activity was noted at BMP2 dose of 100ng/ml (p<0.05). We have developed a composite system of HUMSCs, PuraMatrix(TM) and BMP2 for repair of bone defects that is injectable precluding additional surgeries.
Ward-Caviness, Cavin K.; Neas, Lucas M.; Blach, Colette; Haynes, Carol S.; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Elaine; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Lynn Miranda, Marie; Gregory, Simon G.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.
2016-01-01
There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family, associated with PAD via an interaction with traffic air pollution exposure. These results also highlight the potential for interactions studies, particularly at the genome scale, to reveal novel biology linking environmental exposures to clinical outcomes. PMID:27082954
Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies
Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R
2016-01-01
Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. Conclusions There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall. PMID:27909654
2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeanie Lee
Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditionalmore » and new model organisms are selected from plants, fungi, and metazoans.« less
[Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi].
García-Rico, Ramón O; Fierro, Francisco
The phylum Ascomycota comprises about 75% of all the fungal species described, and includes species of medical, phytosanitary, agricultural, and biotechnological importance. The ability to spread, explore, and colonise new substrates is a feature of critical importance for this group of organisms. In this regard, basic processes such as conidial germination, the extension of hyphae and sporulation, make up the backbone of development in most filamentous fungi. These processes require specialised morphogenic machinery, coordinated and regulated by mechanisms that are still being elucidated. In recent years, substantial progress has been made in understanding the role of the signalling pathway mediated by heterotrimericG proteins in basic biological processes of many filamentous fungi. This review focuses on the role of the alpha subunits of heterotrimericG proteins in the morphogenic processes of filamentous Ascomycota. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Stability and nuclear dynamics of the Bicoid morphogen gradient
Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.
2008-01-01
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061
Advances in surgical management of lumbar degenerative disease.
Silber, Jeff S; Anderson, D Greg; Hayes, Victor M; Vaccaro, Alexander R
2002-07-01
The past several years have seen many advances in spine technology. Some of these advances have improved the quality of life of patients suffering from disabling low back pain from degenerative disk disease. Traditional fusion procedures are trending toward less invasive approaches with less iatrogenic soft-tissue morbidity. The diversity of bone graft substitutes is increasing with the potential for significant improvements in fusion success with the future introduction of several well tested bone morphogenic proteins to the spinal market. Biologic solutions to modify the natural history of disk degeneration are being investigated. Recently, electrothermal modulation of the posterior annulus fibrosis has been published as a semi-invasive technique to relieve low back pain generated by fissures in the outer annulus and ingrowing nociceptors (intradiskal electrothermal therapy, and intradiskal electrothermal annuloplasty). Initial results are promising, however, prospective randomized studies comparing this technique with conservative therapy are still lacking. The same is true for artificial nucleus pulposus replacement using hydrogel cushions implanted in the intervertebral space after removal of the nucleus pulposus posterior or through an anterior approach. Intervertebral disk prostheses are presently being studied in small prospective patient cohorts. As with all new developments, careful prospective, long-term trials are needed to fully define the role of these technologies in the management of symptomatic lumbar degenerative disk disease.
Lamorte, Louie; Rodrigues, Sonia; Naujokas, Monica; Park, Morag
2002-10-04
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.
Carucci, Nicoletta; Cacci, Emanuele; Nisi, Paola S; Licursi, Valerio; Paul, Yu-Lee; Biagioni, Stefano; Negri, Rodolfo; Rugg-Gunn, Peter J; Lupo, Giuseppe
2017-04-01
During vertebrate neural development, positional information is largely specified by extracellular morphogens. Their distribution, however, is very dynamic due to the multiple roles played by the same signals in the developing and adult neural tissue. This suggests that neural progenitors are able to modify their competence to respond to morphogen signalling and autonomously maintain positional identities after their initial specification. In this work, we take advantage of in vitro culture systems of mouse neural stem/progenitor cells (NSPCs) to show that NSPCs isolated from rostral or caudal regions of the mouse neural tube are differentially responsive to retinoic acid (RA), a pivotal morphogen for the specification of posterior neural fates. Hoxb genes are among the best known RA direct targets in the neural tissue, yet we found that RA could promote their transcription only in caudal but not in rostral NSPCs. Correlating with these effects, key RA-responsive regulatory regions in the Hoxb cluster displayed opposite enrichment of activating or repressing histone marks in rostral and caudal NSPCs. Finally, RA was able to strengthen Hoxb chromatin activation in caudal NSPCs, but was ineffective on the repressed Hoxb chromatin of rostral NSPCs. These results suggest that the response of NSPCs to morphogen signalling across the rostrocaudal axis of the neural tube may be gated by the epigenetic configuration of target patterning genes, allowing long-term maintenance of intrinsic positional values in spite of continuously changing extrinsic signals.
Measurement and Perturbation of Morphogen Lifetime: Effects on Gradient Shape
Drocco, Jeffrey A.; Grimm, Oliver; Tank, David W.; Wieschaus, Eric
2011-01-01
Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation. PMID:22004733
Devaney, Joseph M; Tosi, Laura L; Fritz, David T; Gordish-Dressman, Heather A; Jiang, Shan; Orkunoglu-Suer, Funda E; Gordon, Andrew H; Harmon, Brennan T; Thompson, Paul D; Clarkson, Priscilla M; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Brandoli, Cinzia; Hoffman, Eric P; Rogers, Melissa B
2009-08-15
A classic morphogen, bone morphogenetic protein 2 (BMP2) regulates the differentiation of pluripotent mesenchymal cells. High BMP2 levels promote osteogenesis or chondrogenesis and low levels promote adipogenesis. BMP2 inhibits myogenesis. Thus, BMP2 synthesis is tightly controlled. Several hundred nucleotides within the 3' untranslated regions of BMP2 genes are conserved from mammals to fishes indicating that the region is under stringent selective pressure. Our analyses indicate that this region controls BMP2 synthesis by post-transcriptional mechanisms. A common A to C single nucleotide polymorphism (SNP) in the BMP2 gene (rs15705, +A1123C) disrupts a putative post-transcriptional regulatory motif within the human ultra-conserved sequence. In vitro studies indicate that RNAs bearing the A or C alleles have different protein binding characteristics in extracts from mesenchymal cells. Reporter genes with the C allele of the ultra-conserved sequence were differentially expressed in mesenchymal cells. Finally, we analyzed MRI data from the upper arm of 517 healthy individuals aged 18-41 years. Individuals with the C/C genotype were associated with lower baseline subcutaneous fat volumes (P = 0.0030) and an increased gain in skeletal muscle volume (P = 0.0060) following resistance training in a cohort of young males. The rs15705 SNP explained 2-4% of inter-individual variability in the measured parameters. The rs15705 variant is one of the first genetic markers that may be exploited to facilitate early diagnosis, treatment, and/or prevention of diseases associated with poor fitness. Furthermore, understanding the mechanisms by which regulatory polymorphisms influence BMP2 synthesis will reveal novel pharmaceutical targets for these disabling conditions. (c) 2009 Wiley-Liss, Inc.
Devaney, Joseph M.; Tosi, Laura L.; Fritz, David T.; Gordish-Dressman, Heather A.; Jiang, Shan; Orkunoglu-Suer, Funda E.; Gordon, Andrew H.; Harmon, Brennan T.; Thompson, Paul D.; Clarkson, Priscilla M.; Angelopoulos, Theodore J.; Gordon, Paul M.; Moyna, Niall M.; Pescatello, Linda S.; Visich, Paul S.; Zoeller, Robert F.; Brandoli, Cinzia; Hoffman, Eric P.; Rogers, Melissa B.
2014-01-01
A classic morphogen, bone morphogenetic protein 2 (BMP2) regulates the differentiation of pluripotent mesenchymal cells. High BMP2 levels promote osteogenesis or chondrogenesis and low levels promote adipogenesis. BMP2 inhibits myogenesis. Thus, BMP2 synthesis is tightly controlled. Several hundred nucleotides within the 3′ untranslated regions of BMP2 genes are conserved from mammals to fishes indicating that the region is under stringent selective pressure. Our analyses indicate that this region controls BMP2 synthesis by post-transcriptional mechanisms. A common A to C single nucleotide polymorphism (SNP) in the BMP2 gene (rs15705, +A1123C) disrupts a putative post-transcriptional regulatory motif within the human ultra-conserved sequence. In vitro studies indicate that RNAs bearing the A or C alleles have different protein binding characteristics in extracts from mesenchymal cells. Reporter genes with the C allele of the ultra-conserved sequence were differentially expressed in mesenchymal cells. Finally, we analyzed MRI data from the upper arm of 517 healthy individuals aged 18–41 years. Individuals with the C/C genotype were associated with lower baseline subcutaneous fat volumes (P = 0.0030) and an increased gain in skeletal muscle volume (P = 0.0060) following resistance training in a cohort of young males. The rs15705 SNP explained 2–4% of inter-individual variability in the measured parameters. The rs15705 variant is one of the first genetic markers that maybe exploited to facilitate early diagnosis, treatment, and/or prevention of diseases associated with poor fitness. Furthermore, understanding the mechanisms by which regulatory polymorphisms influence BMP2 synthesis will reveal novel pharmaceutical targets for these disabling conditions. PMID:19492344
Bassuk, Alexander G.; Muthuswamy, Lakshmi B.; Boland, Riley; Smith, Tiffany L.; Hulstrand, Alissa M.; Northrup, Hope; Hakeman, Matthew; Dierdorff, Jason M.; Yung, Christina K.; Long, Abby; Brouillette, Rachel B.; Au, Kit Sing; Gurnett, Christina; Houston, Douglas W.; Cornell, Robert A.; Manak, J. Robert
2013-01-01
Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development. PMID:23223018
Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko
2016-01-01
The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.
Centola, Matteo; Tonnarelli, Beatrice; Schären, Stefan; Glaser, Nicolas; Barbero, Andrea; Martin, Ivan
2013-11-01
The field of regenerative medicine has increasingly recognized the importance to be inspired by developmental processes to identify signaling pathways crucial for 3D organogenesis and tissue regeneration. Here, we aimed at recapitulating the first events occurring during limb development (ie, cell condensation and expansion of an undifferentiated mesenchymal cell population) to prime 3D cultures of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) toward the chondrogenic route. Based on embryonic development studies, we hypothesized that Wnt3a and fibroblast growth factor 2 (FGF2) induce hBM-MSC to proliferate in 3D culture as an undifferentiated pool of progenitors (defined by clonogenic capacity and expression of typical markers), retaining chondrogenic potential upon induction by suitable morphogens. hBM-MSC were responsive to Wnt signaling in 3D pellet culture, as assessed by significant upregulation of main target genes and increase of unphosphorylated β-catenin levels. Wnt3a was able to induce a five-fold increase in the number of proliferating hBM-MSC (6.4% vs. 1.3% in the vehicle condition), although total DNA content of the 3D construct was decreasing over time. Preconditioning with Wnt3a improved transforming growth factor-β1 mediated chondrogenesis (30% more glycosaminoglycans/cell in average). In contrast to developmental and 2D MSC culture models, FGF2 antagonized the Wnt-mediated effects. Interestingly, the CD146⁺ subpopulation was found to be more responsive to Wnt3a. The presented data indicate a possible strategy to prime 3D cultures of hBM-MSC by invoking a "developmental engineering" approach. The study also identifies some opportunities and challenges to cross-fertilize skeletal development models and 3D hBM-MSC culture systems.
A computational statistics approach for estimating the spatial range of morphogen gradients
Kanodia, Jitendra S.; Kim, Yoosik; Tomer, Raju; Khan, Zia; Chung, Kwanghun; Storey, John D.; Lu, Hang; Keller, Philipp J.; Shvartsman, Stanislav Y.
2011-01-01
A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo. PMID:22007136
Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag
2003-01-01
The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness. PMID:12686619
Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar
2013-01-01
Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. GABA and ORZ from GBR stimulates osteoblastogenesis by upregulation of bone formation genes, possibly via the activation of GABAB receptors and by inhibiting the activity of inflammatory cytokines and reactive oxygen species. Therefore, it could be used effectively in the management of osteoporosis.
Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar
2013-01-01
Background Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. Methods In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). Results The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. Conclusion GABA and ORZ from GBR stimulates osteoblastogenesis by upregulation of bone formation genes, possibly via the activation of GABAB receptors and by inhibiting the activity of inflammatory cytokines and reactive oxygen species. Therefore, it could be used effectively in the management of osteoporosis. PMID:24098073
Activin signalling and response to a morphogen gradient.
Gurdon, J B; Harger, P; Mitchell, A; Lemaire, P
1994-10-06
Using combinations of amphibian embryo tissues, it is shown that the selection of genes expressed by a cell is determined by its distance from a source of activin, a peptide growth factor contained in vegetal cells and able to induce other cells to form mesoderm. This long-range signal spreads over at least 10 cell diameters in a few hours. It does so by passive diffusion, because it can by-pass cells that do not themselves respond to the signal nor synthesize protein. These results provide direct support for the operation of a morphogen concentration gradient in vertebrate development.
Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John
2015-01-01
Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.
Generation of iPS-derived model cells for analyses of hair shaft differentiation.
Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei
2017-09-01
Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.
Systems biology derived source-sink mechanism of BMP gradient formation
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei
2017-01-01
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. PMID:28826472
Systems biology derived source-sink mechanism of BMP gradient formation.
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C
2017-08-09
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.
Lee, Sang Jin; Lee, Donghyun; Yoon, Taek Rim; Kim, Hyung Keun; Jo, Ha Hyeon; Park, Ji Sun; Lee, Jun Hee; Kim, Wan Doo; Kwon, Il Keun; Park, Su A
2016-08-01
For tissue engineering, a bio-porous scaffold which is applied to bone-tissue regeneration should provide the hydrophilicity for cell attachment as well as provide for the capability to bind a bioactive molecule such as a growth factor in order to improve cell differentiation. In this work, we prepared a three-dimensional (3D) printed polycaprolactone scaffold (PCLS) grafted with recombinant human bone morphogenic protein-2 (rhBMP2) attached via polydopamine (DOPA) chemistry. The DOPA coated PCL scaffold was characterized by contact angle, water uptake, and X-ray photoelectron spectroscopy (XPS) in order to certify that the surface was successfully coated with DOPA. In order to test the loading and release of rhBMP2, we examined the release rate for 28days. For the In vitro cell study, pre-osteoblast MC3T3-E1 cells were seeded onto PCL scaffolds (PCLSs), DOPA coated PCL scaffold (PCLSD), and scaffolds with varying concentrations of rhBMP2 grafted onto the PCLSD 100 and PCLSD 500 (100 and 500ng/ml loaded), respectively. These scaffolds were evaluated by cell proliferation, alkaline phosphatase activity, and real time polymerase chain reaction with immunochemistry in order to verify their osteogenic activity. Through these studies, we demonstrated that our fabricated scaffolds were well coated with DOPA as well as grafted with rhBMP2 at a quantity of 22.7±5ng when treatment with 100ng/ml rhBMP2 and 153.3±2.4ng when treated with 500ng/ml rhBMP2. This grafting enables rhBMP2 to be released in a sustained pattern. In the in vitro results, the cell proliferation and an osteoconductivity of PCLSD 500 groups was greater than any other group. All of these results suggest that our manufactured 3D printed porous scaffold would be a useful construct for application to the bone tissue engineering field. Tissue-engineered scaffolds are not only extremely complex and cumbersome, but also use organic solvents which can negatively influence cellular function. Thus, a rapid, solvent-free method is necessary to improve scaffold generation. Recently, 3D printing such as a rapid prototyping technique has several benefits in that manufacturing is a simple process using computer aided design and scaffolds can be generated without using solvents. In this study, we designed a bio-active scaffold using a very simple and direct method to manufacture DOPA coated 3D PCL porous scaffold grafted with rhBMP2 as a means to create bone-tissue regenerative scaffolds. To our knowledge, our approach can allow for the generation of scaffolds which possessed good properties for use as bone-tissue scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Visualization of an endogenous retinoic acid gradient across embryonic development.
Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi
2013-04-18
In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.
Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D'Arcy Thompson.
De Robertis, Edward M; Moriyama, Yuki; Colozza, Gabriele
2017-09-01
The classic book "On Growth and Form" by naturalist D'Arcy Thompson was published 100 years ago. To celebrate this landmark, we present experiments in the Xenopus embryo that provide a framework for understanding how simple, quantitative transformations of a morphogen gradient might have affected evolution and morphological diversity of organisms. D'Arcy Thompson proposed that different morphologies might be generated by modifying physical parameters in an underlying system of Cartesian coordinates that pre-existed in Nature and arose during evolutionary history. Chordin is a BMP antagonist secreted by the Spemann organizer located on the dorsal side of the gastrula. Chordin generates a morphogen gradient as first proposed by mathematician Alan Turing. The rate-limiting step of this dorsal-ventral (D-V) morphogen is the degradation of Chordin by the Tolloid metalloproteinase in the ventral side. Chordin is expressed at gastrula on the dorsal side where BMP signaling is low, while at the opposite side peak levels of BMP signaling are reached. In fishes, amphibians, reptiles and birds, high BMP signaling in the ventral region induces transcription of a secreted inhibitor of Tolloid called Sizzled. By depleting Sizzled exclusively in the ventral half of the embryo we were able to expand the ventro-posterior region in an otherwise normal embryo. Conversely, ventral depletion of Tolloid, which stabilizes Chordin, decreased ventral and tail structures, phenocopying the tolloid zebrafish mutation. We explain how historical constraints recorded in the language of DNA become subject to the universal laws of physics when an ancestral reaction-diffusion morphogen gradient dictates form. © 2017 Japanese Society of Developmental Biologists.
Dhungel, Bidur; Otaki, Joji M
2009-11-01
Butterfly wing color patterns can be changed by the application of a temperature shock or pharmacological agents such as tungstate, producing a distinctive type of elemental modification called the TS (temperature shock) type. Heterochronic uncoupling between the signaling and reception steps during the color-pattern determination process has been proposed as a mechanism for TS-type changes. As an extension of this hypothesis, both the parafocal element (PFE) and the eyespot in the same wing compartment are considered to be determined by morphogenic signal(s) emitted from the same eyespot focus. However, these models need to be examined with additional experimental data. Furthermore, there is controversy as to whether the action of tungstate on wing color patterns is direct or Indirect. Using a species of nymphalid butterfly (Junonia orithya), we have devised a simple method for the local application of pharmacological agents directly on developing wings of pupae. Local tungstate application resulted in reduced eyespots and circular dislocated PFEs in the eyespot-less compartments only on the treated wing, demonstrating that tungstate directly induces color-pattern changes on wings. We further examined the eyespot-PFE relationship in normal and cold-shocked Individuals, showing that an eyespot can be superimposed on a PFE and vice versa, probably depending on the timing of their fate determination. Taken together, we propose a two-morphogen model for the normal color-pattern determination, in which the morphogenic signals for the eyespot and PFE are different from each other despite their Identical origin. This two-morphogen model is compatible with the heterochronic uncoupling model for TS-type changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Dongren; Howard, Angela; Bruun, Donald
2008-04-01
A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrationsmore » that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.« less
Schumacher, Jennifer A; Hashiguchi, Megumi; Nguyen, Vu H; Mullins, Mary C
2011-01-01
The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.
O'Hara, William A; Azar, Walid J; Behringer, Richard R; Renfree, Marilyn B; Pask, Andrew J
2011-12-01
Desert hedgehog (DHH) belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH) receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby) to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a) not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice), but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis.
Schwartz, Carolyn E; Martha, Julia F; Kowalski, Paulette; Wang, David A; Bode, Rita; Li, Ling; Kim, David H
2009-05-29
Autogenous Iliac Crest Bone Graft (ICBG) has been the "gold standard" for spinal fusion. However, bone graft harvest may lead to complications, such as chronic pain, numbness, and poor cosmesis. The long-term impact of these complications on patient function and well-being has not been established but is critical in determining the value of expensive bone graft substitutes such as recombinant bone morphogenic protein. We thus aimed to investigate the long-term complications of ICBG. Our second aim was to evaluate the psychometric properties of a new measure of ICBG morbidity that would be useful for appropriately gauging spinal surgery outcomes. Prospective study of patients undergoing spinal fusion surgery with autologous ICBG. The SF-36v2, Oswestry Disability Index, and a new 14-item follow-up questionnaire addressing persistent pain, functional limitation, and cosmesis were administered with an 83% response rate. Multiple regression analyses examined the independent effect of ICBG complications on physical and mental health and disability. The study population included 170 patients with a mean age of 51.1 years (SD = 12.2) and balanced gender (48% male). Lumbar fusion patients predominated (lumbar = 148; cervical n = 22). At 3.5 years mean follow-up, 5% of patients reported being bothered by harvest site scar appearance, 24% reported harvest site numbness, and 13% reported the numbness as bothersome. Harvest site pain resulted in difficulty with household chores (19%), recreational activity (18%), walking (16%), sexual activity (16%), work activity (10%), and irritation from clothing (9%). Multivariate regression analyses revealed that persistent ICBG complications 3.5 years post-surgery were associated with significantly worse disability and showed a trend association with worse physical health, after adjusting for age, workers' compensation status, surgical site pain, and arm or leg pain. There was no association between ICBG complications and mental health in the multivariate model. Chronic ICBG harvest site pain and discomfort is reported by a significant percentage of patients undergoing this procedure more than three years following surgery, and these complications are associated with worse patient-reported disability. Future studies should consider employing a control group that does not include autologous bone graft harvest, e.g., a group utilizing rhBMP, to determine whether eliminating harvest-site morbidity does indeed lead to observable improvement in clinical outcome sufficient to justify the increased cost of bone graft substitutes.
Bakopoulou, Athina; Papachristou, Eleni; Bousnaki, Maria; Hadjichristou, Christina; Kontonasaki, Eleana; Theocharidou, Anna; Papadopoulou, Lambrini; Kantiranis, Nikolaos; Zachariadis, George; Leyhausen, Gabriele; Geurtsen, Werner; Koidis, Petros
2016-08-01
This study aimed to investigate the potential of Mg-based bioceramic scaffolds combined with human treated-dentin matrices (hTDMs) and dentinogenesis-related morphogens to promote odontogenic differentiation and dentin-like tissue formation by Dental Pulp Stem Cells-DPSCs. DPSC cultures were established and characterized by flow cytometry. Experimental cavities were prepared inside crowns of extracted teeth and demineralized by EDTA (hTDMs). Zn-doped, Mg-based bioceramic scaffolds, synthesized by the sol-gel technique, were hosted inside the hTDMs. DPSCs were spotted inside the hTDMs/scaffold constructs with/without additional exposure to DMP-1 or BMP-2 (100ng/ml, 24h). Scanning Electron Microscopy-SEM, live/dead fluorescence staining and MTT assay were used to evaluate cell attachment and viability; Real time PCR for expression of osteo/odontogenic markers; Inductively Coupled Plasma-Atomic Emission Spectrometry-ICP/AES for scaffold elemental release analysis; ELISA for hTDM growth factor release analysis; SEM and X-ray Diffraction-XRD for structural/chemical characterization of the regenerated tissues. Scaffolds constantly released low concentrations of Mg(2+), Ca(2+), Zn(2+) and Si(4+), while hTDMs growth factors, like DMP-1, BMP-2 and TGFβ-1. hTDMs/scaffold constructs supported DPSC viability, inducing their rapid odontogenic shift, indicated by upregulation of DSPP, BMP-2, osteocalcin and osterix expression. Newly-formed Ca-P tissue overspread the scaffolds partially transforming into bioapatite. Exposure to DMP-1 or BMP-2 pronouncedly enhanced odontogenic differentiation phenomena. This is the first study to validate that combining the bioactivity and ion releasing properties of bioceramic materials with growth factor release by treated natural dentin further supported by exogenous addition of key dentinogenesis-related morphogens (DMP-1, BMP-2) can be a promising strategy for targeted dentin regeneration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone
Thibaudeau, Laure; Taubenberger, Anna V.; Holzapfel, Boris M.; Quent, Verena M.; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D.; Dalton, Paul D.; Power, Carl A.; Hollier, Brett G.; Hutmacher, Dietmar W.
2014-01-01
ABSTRACT The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276
Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm
Daniels, Brian R.; Rikhy, Richa; Renz, Malte; Dobrowsky, Terrence M.; Lippincott-Schwartz, Jennifer
2012-01-01
Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional “compartmentalization” has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients. PMID:22592793
NASA Astrophysics Data System (ADS)
Xie, Xinhui
Bone defect is a common orthopaedic problem caused by many pathologic disorders such as tumor, trauma or metabolic diseases, including osteonecrosis (ON). ON is a disabling clinical condition characterized by the death of osteocytes, aggregation of marrow fat cells, a decrease in activity of bone marrow stem cells (BMSCs) pool, and degeneration of trabecular bone matrix, which affect more frequently young adults that usually leads to bone and articular cartilage destruction in joints, especially in hip and knee. High dose of steroid is one of the risk factors associated with ON, which sometimes is used for treatment of some medical conditions such as systemic lupus erythematosus (SLE), organ transplantation, asthma, rheumatologic arthritis (RA), and severe acute respiratory syndrome (SARS). Core decompression has been efficacious for treatment of early ON stages when the necrotic lesion is still small in size. However, ON lesion, weakens the cancellous bone within and adjacent to the necrotic region. Thus orthopaedic challenges in repair for steroid-associated ON lesion after core decompression may include the impaired osteogenic potential of stem-cell-pool under the influence of pulsed steroid and lack of platform for bone or/and neovascularization ingrowth after removal of large size necrotic bone. The proposed strategies for treatment of steroid-associated ON lesion are to provide biocompatible scaffold with required structure to fill the defect area after core decompression and osteogenic stimulator facilitating the repair of ON lesion. Previous works show that the PLGA (poly-lactic glycolic acid) and TCP (tricalcium phosphate) have good biocompatibility, osteoconduction and biodegradation to be used in bone defect repair, however no significant osteopromotive effects. Many endogenous factors are osteopromotive and also eventually osteoinductive, such as bone morphogenic proteins (BMPs). As an extraneous molecular, Icaritin, a small molecule derived from Epimedium -derived flavonoids (EF), is found to be able to facilitate matrix calcification, stimulate osteogenesis and inhibit adipogenesis of BMSCs. The present thesis work hypothesizes that the PLGA/TCP incorporating Icaritin to form a porous composite scaffold is osteopromotive and is able to enhance the repair of necrotic bone defect with steroid-associated ON after core decompression. The findings implied that the porous composite PLGA/TCP/Icaritin scaffold would be an appropriate osteopromotive scaffold implant or bone graft substitute biomaterial for potential application in skeletal tissue engineering. It was the first study to incorporate or homogenize the Chinese herbal molecule into the porous composite biomaterials for medical testing. Though the osteopromotive effect in ON model was observed in vivo, the molecular mechanism of osteogenesis remains for future investigations. (Abstract shortened by UMI.)
St John, Hillary C; Hansen, Sydney J; Pike, J Wesley
2016-11-01
Transcribed from the SOST gene, sclerostin is an osteocyte-derived negative regulator of bone formation that inhibits osteoblastogenesis via antagonism of the Wnt pathway. Sclerostin is a promising therapeutic target for low bone mass diseases and neutralizing antibody therapies that target sclerostin are in development. Diverse stimuli regulate SOST including the vitamin D hormone, forskolin (Fsk), bone morphogenic protein 2 (BMP-2), oncostatin M (OSM), dexamethasone (Dex), and transforming growth factor (TGFβ 1 ). To explore the mechanisms by which these compounds regulate SOST expression, we examined their ability to regulate a SOST reporter minigene containing the entire SOST locus including the downstream regionor mutant minigenes containing a deletion of the -1kb to -2kb promoter proximal region (-1kb), ECR2, ECR5, or two point mutations in the MEF2 binding site of ECR5 (ECR5/MEF2). Previous reports suggest that both the PTH and TGFβ 1 effects on SOST are mediated through ECR5 and that the action of PTH is mediated specifically via the MEF2 binding site at ECR5. Consistent with these reports, the suppressive effects of Fsk were abrogated following both ECR5 deletion and ECR5/MEF2 mutation. In contrast, we found that TGFβ 1 negatively regulated SOST and that neither ECR5 nor ECR5/MEF2 was involved. Surprisingly, none of these four deletions/mutations abrogated the suppressive effects of the vitamin D hormone, OSM, Dex, or TGFβ 1 , or the positive effects of BMP-2. These data suggest that we need to move beyond ECR5 to understand SOST regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Engineering a humanized bone organ model in mice to study bone metastases.
Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W
2017-04-01
Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.
Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang
2014-04-01
The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.
[Comparation on Haversian system between human and animal bones by imaging analysis].
Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan
2006-04-01
To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.
The impact of various scaffold components on vascularized bone constructs.
Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila
2017-06-01
Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct. Collagen matrix and a smaller particle size provided more favorable results in terms of vascularization and tissue formation than diluted fibrin and larger Nanobone particles. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy.
Goldstein, Jeffery A; Kelly, Sean M; LoPresti, Peter P; Heydemann, Ahlke; Earley, Judy U; Ferguson, Edwin L; Wolf, Matthew J; McNally, Elizabeth M
2011-03-01
Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction.
SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy
Goldstein, Jeffery A.; Kelly, Sean M.; LoPresti, Peter P.; Heydemann, Ahlke; Earley, Judy U.; Ferguson, Edwin L.; Wolf, Matthew J.; McNally, Elizabeth M.
2011-01-01
Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction. PMID:21138941
Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin
2009-10-01
During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.
Cell death and morphogenesis during early mouse development: Are they interconnected?
Bedzhov, Ivan; Zernicka-Goetz, Magdalena
2015-01-01
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. PMID:25640415
Prospective study of iliac crest bone graft harvest site pain and morbidity.
Kim, David H; Rhim, Richard; Li, Ling; Martha, Juli; Swaim, Bryan H; Banco, Robert J; Jenis, Louis G; Tromanhauser, Scott G
2009-11-01
Morbidity associated with autologous bone graft harvest is an important factor in determining the utility of expensive alternatives such as recombinant bone morphogenic protein. The most frequently reported complication associated with graft harvest is chronic pain. To prospectively determine the degree of pain and morbidity associated with autologous iliac crest bone graft harvest and its effect on activities of daily living. Prospective observational cohort study. One hundred ten adult patients undergoing elective posterior lumbar spinal fusion surgery involving autologous iliac crest bone graft harvest. Patient self-reported Visual Analog Scale (VAS) scores for pain and a study-specific questionnaire regarding activities of daily living. One hundred ten patients were prospectively enrolled. Postoperative VAS scores (0-100) for harvest site pain were obtained at 6-week, 6- and 12-month follow-up. Patients completed a 12-month questionnaire regarding the persistence of specific symptoms and resulting limitation of specific activities. One hundred four patients were available for 1-year follow-up. Mean VAS pain scores (scale 0-100) at 6 weeks, 6 and 12 months were 22.7 (standard deviation [SD], 25.9), 15.9 (SD, 21.5), and 16.1 (SD, 24.6), respectively. At 12 months, 16.5% reported more severe pain from the harvest site than the primary surgical site, 29.1% reported numbness, and 11.3% found the degree of numbness bothersome, whereas 3.9% were bothered by scar appearance. With respect to activity limitations resulting from harvest site pain at 1 year, 15.1% reported some difficulty walking, 5.2% with employment, 12.9% with recreation, 14.1% with household chores, 7.6% with sexual activity, and 5.9% irritation from clothing. There is a significant rate of persistent pain and morbidity from iliac crest bone graft harvest when associated with elective spine surgery. Mean pain scores progressively decline over the first postoperative year. Nevertheless, harvest site pain remains functionally limiting in a significant percentage of patients 1 year after surgery. Rates of functional limitation are higher than previously reported and may be because of increased sensitivity of the prospective study design and targeted investigation of these specific symptoms. Validity of these findings is necessarily limited by patient ability to discriminate harvest site pain from alternative sources of back and buttock pain.
Cheng, Henry; Reddy, Aneela; Sage, Andrew; Lu, Jinxiu; Garfinkel, Alan; Tintut, Yin; Demer, Linda L
2012-01-01
In embryogenesis, structural patterns, such as vascular branching, may form via a reaction-diffusion mechanism in which activator and inhibitor morphogens guide cells into periodic aggregates. We previously found that vascular mesenchymal cells (VMCs) spontaneously aggregate into nodular structures and that morphogen pairs regulate the aggregation into patterns of spots and stripes. To test the effect of a focal change in activator morphogen on VMC pattern formation, we created a focal zone of high cell density by plating a second VMC layer within a cloning ring over a confluent monolayer. After 24 h, the ring was removed and pattern formation monitored by phase-contrast microscopy. At days 2-8, the patterns progressed from uniform distributions to swirl, labyrinthine and spot patterns. Within the focal high-density zone (HDZ) and a narrow halo zone, cells aggregated into spot patterns, whilst in the outermost zone of the plate, cells formed a labyrinthine pattern. The area occupied by aggregates was significantly greater in the outermost zone than in the HDZ or halo. The rate of pattern progression within the HDZ increased as a function of its plating density. Thus, focal differences in cell density may drive pattern formation gradients in tissue architecture, such as vascular branching. Copyright © 2012 S. Karger AG, Basel.
EFFECTS OF SOG ON DPP-RECEPTOR BINDING*
LOU, YUAN; NIE, QING; WAN, FREDERIC Y. M.
2007-01-01
Concentration gradients of morphogens are known to be instrumental in cell signaling and tissue patterning. Of interest here is how the presence of a competitor of BMP ligands affects cell signaling. The effects of Sog on the binding of Dpp with cell receptors are analyzed for dorsal-ventral morphogen gradient formation in vertebrate and Drosophila embryos. This prototype system includes diffusing ligands, degradation of morphogens, and cleavage of Dpp-Sog complexes by Tolloid to free up Dpp. Simple and biologically meaningful necessary and sufficient conditions for the existence of a steady state gradient configuration are established, and existence theorems are proved. For high Sog production rates (relative to the Dpp production rate), it is found that the steady state configuration exhibits a more intense Dpp-receptor concentration near the dorsal midline. Numerical simulations of the evolution of the system show that, beyond some threshold Sog production rate, the transient Dpp-receptor concentration at the dorsal midline would become more intense than that of the steady state, before subsiding and approaching a nonuniform steady state of lower magnitude. The magnitude of the transient concentration has been found to increase by several fold with increasing Sog production rate. The highly intense Dpp activity at and around the dorsal midline is consistent with available experimental observations and other analytical studies. PMID:17377624
Fortes, Ana M; Santos, Filipa; Pais, Maria S
2010-01-01
The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites. Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications.
Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression
Verd, Berta; Crombach, Anton
2017-01-01
Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development. PMID:28158178
Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression.
Verd, Berta; Crombach, Anton; Jaeger, Johannes
2017-02-01
Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development.
Swarms, phase transitions, and collective intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millonas, M.M.
1992-01-01
A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, butmore » with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.« less
Swarms, phase transitions, and collective intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millonas, M.M.
1992-12-31
A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, butmore » with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.« less
Smith, Michael L; Bain, Gregory I; Chabrel, Nick; Turner, Perry; Carter, Chris; Field, John
2009-01-01
The primary aim of our study was to investigate use of long axis computed tomography (CT) in predicting avascular necrosis of the proximal pole of the scaphoid and subsequent fracture nonunion after internal fixation. In addition, we describe a new technique of measuring the position of a scaphoid fracture and provide data on its reproducibility. Thirty-one patients operated on by the senior author for delayed union or nonunion of scaphoid fracture were included. Preoperative CT scans were independently assessed for increased radiodensity of the proximal pole, converging trabeculae, degree of deformity, comminution, and fracture position. Intraoperative biopsies of the proximal pole were obtained and histologically assessed for evidence of avascular necrosis. The radiologic variables were statistically compared with the histologic findings. The presence of avascular necrosis was also compared with postoperative union status, identified on longitudinal CT scans. Preoperative CT features that statistically correlated with histologic evidence of avascular necrosis were increased radiodensity of the proximal pole and the absence of any converging trabeculae between the fracture fragments. The radiologic changes of avascular necrosis and the histologic confirmation of avascular necrosis were associated with persistent nonunion. Preoperative longitudinal CT of scaphoid nonunion is of great value in identifying avascular necrosis and predicting subsequent fracture union. If avascular necrosis is suspected based on preoperative CT, management options include vascularized bone grafts and bone morphogenic protein for younger patients and limited wrist arthrodesis for older patients. Diagnostic II.
Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John
2015-01-01
Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707
The Hippo signaling pathway provides novel anti-cancer drug targets
Bae, June Sung; Kim, Sun Mi; Lee, Ho
2017-01-01
The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy. PMID:28035075
The Hippo signaling pathway provides novel anti-cancer drug targets.
Bae, June Sung; Kim, Sun Mi; Lee, Ho
2017-02-28
The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.
Ski represses BMP signaling in Xenopus and mammalian cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
kluo@lbl.gov
2001-05-16
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less
Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma
2017-01-01
The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell–ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand–receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention. PMID:28573199
Differentiating human bone from animal bone: a review of histological methods.
Hillier, Maria L; Bell, Lynne S
2007-03-01
This review brings together a complex and extensive literature to address the question of whether it is possible to distinguish human from nonhuman bone using the histological appearance of cortical bone. The mammalian species included are rat, hare, badger, racoon dog, cat, dog, pig, cow, goat, sheep, deer, horse, water buffalo, bear, nonhuman primates, and human and are therefore not exhaustive, but cover those mammals that may contribute to a North American or Eurasian forensic assemblage. The review has demonstrated that differentiation of human from certain nonhuman species is possible, including small mammals exhibiting Haversian bone tissue and large mammals exhibiting plexiform bone tissue. Pig, cow, goat, sheep, horse, and water buffalo exhibit both plexiform and Haversian bone tissue and where only Haversian bone tissue exists in bone fragments, differentiation of these species from humans is not possible. Other primate Haversian bone tissue is also not distinguishable from humans. Where differentiation using Haversian bone tissue is undertaken, both the general microstructural appearance and measurements of histological structures should be applied. Haversian system diameter and Haversian canal diameter are the most optimal and diagnostic measurements to use. Haversian system density may be usefully applied to provide an upper and lower limit for humans.
Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein.
Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B
2014-02-21
Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.
Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein
Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B.
2015-01-01
Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapes made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target; and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses. PMID:24385607
Cell death and morphogenesis during early mouse development: are they interconnected?
Bedzhov, Ivan; Zernicka-Goetz, Magdalena
2015-04-01
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.
Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa
2011-01-01
Background Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. Methodology/Principal Findings ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34+ cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34+ cells. ESC-derived CD34+ cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34− cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Conclusions/Significance Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures. PMID:21364915
Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa
2011-02-25
Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34(+) cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34(+) cells. ESC-derived CD34(+) cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34(-) cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures.
Simmons, T; Goodburn, B; Singhrao, S K
2016-01-01
This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralized, transverse sections of cranial bone, from all variables and specimen states, were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions. © The Author(s) 2015.
Histological determination of the human origin from dry bone: a cautionary note for subadults.
Caccia, Giulia; Magli, Francesca; Tagi, Veronica Maria; Porta, Davide Guido Ampelio; Cummaudo, Marco; Márquez-Grant, Nicholas; Cattaneo, Cristina
2016-01-01
Anthropologists are frequently required to confirm or exclude the human origin of skeletal remains; DNA and protein radioimmunoassays are useful in confirming the human origin of bone fragments but are not always successful. Histology may be the solution, but the young subadult structure could create misinterpretation. Histological tests were conducted on femur and skull of 31 human subjects. Each sample was observed focusing on presence or absence of fibrous bone, lamellar bone, radial lamellar bone, plexiform bone, reticular pattern, osteon banding, Haversian bone, primary osteons, secondary osteon and osteon fragments. Samples were divided into five age classes; 1 (<1 year), 2 (1-5 years), 3 (6-10 years), 4 (11-15 years) and 5 (16-20 years). Regarding femurs, class 1 presented the following: 87.5% fibrous bone, 37.5% plexiform bone, 12.5% reticular pattern and 12.5% lamellar bone radially oriented. Class 2 showed 37.5% of fibrous bone, 12.5% of reticular pattern and 37.5% of osteon banding. In the higher age classes, the classical human structures, lamellar bone and osteons were frequently visible, except for one case of reticular pattern, generally considered a distinctive non-human structure. The situation appeared different for the skull, where there was a lack of similar information, both in human and non-human. An analysis of the percentage of lamellar bone and osteons was conducted on femur and skull fragments. A trend of increase of primary osteon number and a decrease of the lamellar bone area has been detected in the femur. The present study has therefore shed some light on further pitfalls in species determination of subadult bone.
Croker, Sarah L; Reed, Warren; Donlon, Denise
2016-03-01
The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone thickness data for a range of bones, this study may be able to assist in the identification of some bone fragments by providing another piece of evidence that, used in conjunction with other clues, can provide a likely determination of the origin of a bone fragment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana
2016-01-01
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596
2012-01-01
Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells. PMID:23088614
fussel (fuss)--A negative regulator of BMP signaling in Drosophila melanogaster.
Fischer, Susanne; Bayersdorfer, Florian; Harant, Eva; Reng, Renate; Arndt, Stephanie; Bosserhoff, Anja-Katrin; Schneuwly, Stephan
2012-01-01
The TGF-β/BMP signaling cascades control a wide range of developmental and physiological functions in vertebrates and invertebrates. In Drosophila melanogaster, members of this pathway can be divided into a Bone Morphogenic Protein (BMP) and an Activin-ß (Act-ß) branch, where Decapentaplegic (Dpp), a member of the BMP family has been most intensively studied. They differ in ligands, receptors and transmitting proteins, but also share some components, such as the Co-Smad Medea (Med). The essential role of Med is to form a complex with one of the two activating Smads, mothers against decapentaplegic (Mad) or dSmad, and to translocate together to the nucleus where they can function as transcriptional regulators of downstream target genes. This signaling cascade underlies different mechanisms of negative regulation, which can be exerted by inhibitory Smads, such as daughters against decapentaplegic (dad), but also by the Ski-Sno family. In this work we identified and functionally analyzed a new member of the Ski/Sno-family, fussel (fuss), the Drosophila homolog of the human functional suppressing element 15 (fussel-15). fuss codes for two differentially spliced transcripts with a neuronal expression pattern. The proteins are characterized by a Ski-Sno and a SAND homology domain. Overexpression studies and genetic interaction experiments clearly reveal an interaction of fuss with members of the BMP pathway, leading to a strong repression of BMP-signaling. The protein interacts directly with Medea and seems to reprogram the Smad pathway through its influence upon the formation of functional Mad/Medea complexes. This leads amongst others to a repression of downstream target genes of the Dpp pathway, such as optomotor blind (omb). Taken together we could show that fuss exerts a pivotal role as an antagonist of BMP signaling in Drosophila melanogaster.
Kim, Jinhee; Lee, Hyejin; Kang, Ki Sung; Chun, Kwang-Hoon; Hwang, Gwi Seo
2014-01-01
Background Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-induced osteoporosis mouse model were investigated. Methods MC3T3-E1 cells were exposed to dexamethasone (Dex) with or without KRG and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction was performed to evaluate the apoptotic gene expression; osteogenic gene expression and alkaline phosphatase (ALP) activity were also measured. Western blotting was performed to evaluate the mitogen-activated protein kinase (MAPK) proteins. A GC-induced osteoporosis animal model was used for in vivo study. Results and conclusion The MTT assay revealed that Korean Red Ginseng (KRG) prevents loss of cell viability caused by Dex-induced apoptosis in MC3T3E1 cells. Real-time polymerase chain reaction data showed that groups treated with both Dex and KRG exhibited lower mRNA levels of caspase-3 and -9, whereas the mRNA levels of Bcl2, IAPs, and XIAP increased. Moreover, groups treated with both Dex and KRG demonstrated increased mRNA levels of ALP, RUNX2, and bone morphogenic proteins as well as increased ALP activity in MC3T3-E1 cells, compared to cells treated with Dex only. In addition, KRG increased protein kinase B (AKT) phosphorylation and decreased c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, microcomputed tomography analysis of the femurs showed that GC implantation caused trabecular bone loss. However, a significant reduction of bone loss was observed in the KRG-treated group. These results suggest that the molecular mechanism of KRG in the GC-induced apoptosis may lead to the development of therapeutic strategies to prevent and/or delay osteoporosis. PMID:25535476
High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats
You, Li; Sheng, Zheng-yan; Tang, Chuan-ling; Chen, Lin; Pan, Ling; Chen, Jin-yu
2011-01-01
Aim: To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats. Methods: Female Sprague-Dawley rats were randomly separated into 3 groups: (1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food, 3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet. Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry. Serum levels of oestradiol (E2), osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA. Gene expression profile was determined with microarray. Mouse osteoblast cells (MC3T3-E1) were used for in vitro study. Proliferation, differentiation and oxidative stress of the osteoblasts were investigated using MTT, qRT-PCR and biochemical methods. Results: In high cholesterol fed rats, the femur BMD and serum BGP level were significantly reduced, while the CTX level was significantly increased. DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats. Of these genes, 1626 were also down-regulated and 1466 were up-regulated in OVX rats. In total, 370 genes were up-regulated in both groups, and 976 genes were down-regulated. Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways. The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions. Treatment of MC3T3-E1 cells with cholesterol (12.5-50 μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner. The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1, and increased the oxidative injury in MC3T3-E1 cells. Conclusion: The results suggest a close correlation between hypercholesterolaemia and osteoporosis. High cholesterol diet increases the risk of osteoporosis, possible via inhibiting the differentiation and proliferation of osteoblasts. PMID:22036861
An in vitro study of adherence of coagulase-negative staphylococci to bone chip columns.
Lazarovich, Zilia; Boldur, Ida; Reifer, Rachel; Nitzan, Yeshayahu
2006-09-01
Coagulase-negative staphylococci (CNS) have become a dominant cause of bone infections and their adherence to the infected bones is a prerequisite for the initiation of these infections. In the present study we investigated and compared the adherence of CNS bacteria to human, chicken and rabbit bones. The study was performed using columns made of bone powder from the three different sources, and measurement of the extent of adhesion to bones of CNS bacteria as an in vitro model which is based on particles of matrix that are closely related to the natural matrix. The adhesion to rabbit bone was relatively high, while adhesion to both human and chicken bone columns was lower and almost identical. Pretreatment of the CNS bacteria with sodium periodate, beta-galactosidase or proteinase K significantly inhibited by 50-60% the adhesion to human bones. Pretreatment of CNS bacteria with subinhibitory concentrations of vancomycin or tunicamycin increased their adherence to human bones several-fold. When the bones were pretreated with vancomycin a considerable increase in the adhesion rate of the bacteria to human and chicken bones was seen. A smaller increase in adherence was observed after pretreatment of human bones with the antibiotic tunicamycin. Salicylic acid or benzalkonium chloride (BZC) also resulted in an increase in adhesion to these pretreated bones. From the results obtained it seems that pretreatment of the CNS bacteria with certain reagents exposes adhesins on the surface of the CNS bacteria. On the other hand, pretreatment of the bones with other reagents may enable a better exposure of receptors located on the bone cells and, as a consequence, may improve the adhesion of the CNS bacteria to the treated bones.
The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans
2013-01-01
Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830
NASA Astrophysics Data System (ADS)
Borgers, Charlotte; van Wieringen, Astrid; D'hondt, Christiane; Verhaert, Nicolas
2018-05-01
The cochlea is the main contributor in bone conduction perception. Measurements of differential pressure in the cochlea give a good estimation of the cochlear input provided by bone conduction stimulation. Recent studies have proven the feasibility of intracochlear pressure measurements in chinchillas and in human temporal bones to study bone conduction. However, similar measurements in fresh-frozen whole human cadaveric heads could give a more realistic representation of the five different transmission pathways of bone conduction to the cochlea compared to human temporal bones. The aim of our study is to develop and validate a framework for intracochlear pressure measurements to evaluate different aspects of bone conduction in whole human cadaveric heads. A proof of concept describing our experimental setup is provided together with the procedure. Additionally, we also present a method to fix the stapes footplate in order to simulate otosclerosis in human temporal bones. The effectiveness of this method is verified by some preliminary results.
Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena
2016-11-22
One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.
Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena
2016-01-01
One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes. PMID:27765913
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre
2012-05-17
This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software.more » Resolution yielded was excellent what facilitate quantification of bone microstructures.« less
Atomic scale chemical tomography of human bone
NASA Astrophysics Data System (ADS)
Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn
2017-01-01
Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.
Long-Bone Injury Criteria for Use with the Articulated Total Body Model
1981-01-01
bone - human, canine, bovine, etc.; condition of bone - dry, wet , embalmed , fresh; subject variations - height, weight, health, sex, age, etc; whole bone...stress strain curves ob- tained by McElhaney for various strain rates in compression. This is for embalmed human compact bone. Ultimate stress, ultimate...reported for fresh human bone of 25,000 psi (see Table 1). Recall that the McElhaney data is from embalmed subjects. If it is assumed, for lack of any real
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... individuals were identified. The 60 associated funerary objects are 1 splinter awl made from deer bone, 1 tip... flakes, 47 non-human skeletal fragments and non-human teeth, and 2 bags of non-human bone. In the Federal... identified. The 34 associated funerary objects are 28 non-human bone fragments, 1 miniature bone club, and 5...
Ectodysplasin A Pathway Contributes to Human and Murine Skin Repair.
Garcin, Clare L; Huttner, Kenneth M; Kirby, Neil; Schneider, Pascal; Hardman, Matthew J
2016-05-01
The highly conserved ectodysplasin A (EDA)/EDA receptor signaling pathway is critical during development for the formation of skin appendages. Mutations in genes encoding components of the EDA pathway disrupt normal appendage development, leading to the human disorder hypohidrotic ectodermal dysplasia. Spontaneous mutations in the murine Eda (Tabby) phenocopy human X-linked hypohidrotic ectodermal dysplasia. Little is known about the role of EDA signaling in adult skin homeostasis or repair. Because wound healing largely mimics the morphogenic events that occur during development, we propose a role for EDA signaling in adult wound repair. Here we report a pronounced delay in healing in Tabby mice, demonstrating a functional role for EDA signaling in adult skin. Moreover, pharmacological activation of the EDA pathway in both Tabby and wild-type mice significantly accelerates healing, influencing multiple processes including re-epithelialization and granulation tissue matrix deposition. Finally, we show that the healing promoting effects of EDA receptor activation are conserved in human skin repair. Thus, targeted manipulation of the EDA/EDA receptor pathway has clear therapeutic potential for the future treatment of human pathological wound healing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G
2017-08-14
This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.
NASA Astrophysics Data System (ADS)
Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A.; Janeczek, Agnieszka A.; Kontouli, Nasia; Kanczler, Janos M.; Evans, Nicholas D.; Oreffo, Richard Oc
2016-08-01
Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.
Validating in vivo Raman spectroscopy of bone in human subjects
NASA Astrophysics Data System (ADS)
Esmonde-White, Francis W. L.; Morris, Michael D.
2013-03-01
Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.
Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François
2017-01-01
Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107
A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.
Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing
2008-04-01
To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.
Histomorphological analysis of the variability of the human skeleton: forensic implications.
Cummaudo, Marco; Cappella, Annalisa; Biraghi, Miranda; Raffone, Caterina; Màrquez-Grant, Nicholas; Cattaneo, Cristina
2018-01-20
One of the fundamental questions in forensic medicine and anthropology is whether or not a bone or bone fragment is human. Surprisingly at times for the extreme degradation of the bone (charred, old), DNA cannot be successfully performed and one must turn to other methods. Histological analysis at times can be proposed. However, the variability of a single human skeleton has never been tested. Forty-nine thin sections of long, flat, irregular and short bones were obtained from a well-preserved medieval adult human skeleton. A qualitative histomorphological analysis was performed in order to assess the presence of primary and secondary bone and the presence, absence and orientation of vascular canals. No histological sections exhibited woven or fibro-lamellar bone. Long bones showed a higher variability with an alternation within the same section of areas characterized by tightly packed secondary osteons and areas with scattered secondary osteons immersed in a lamellar matrix. Flat and irregular bones appeared to be characterized by a greater uniformity with scattered osteons in abundant interstitial lamellae. Some cases of "osteon banding" and "drifting osteons" were observed. Although Haversian bone represent the most frequent pattern, a histomorphological variability between different bones of the same individual, in different portions of the same bone, and in different parts of the same section has been observed. Therefore, the present study has highlighted the importance of extending research to whole skeletons without focusing only on single bones, in order to have a better understanding of the histological variability of both human and non-human bone.
The safety of bone allografts used in dentistry: a review.
Holtzclaw, Dan; Toscano, Nicholas; Eisenlohr, Lisa; Callan, Don
2008-09-01
Recent media reports concerning "stolen body parts" have shaken the public's trust in the safety of and the use of ethical practices involving human allografts. The authors provide a comprehensive review of the safety aspects of human bone allografts. The authors reviewed U.S. government regulations, industry standards, independent industry association guidelines, company guidelines and scientific articles related to the use of human bone allografts in the practice of dentistry published in the English language. The use of human bone allografts in the practice of dentistry involves the steps of procurement, processing, use and tracking. Rigorous donor screening and aseptic proprietary processing programs have rendered the use of human bone allografts safe and effective as a treatment option. When purchasing human bone allografts for the practice of dentistry, one should choose products accredited by the American Association of Tissue Banks for meeting uniformly high safety and quality control measures. Knowledge of human bone allograft procurement, processing, use and tracking procedures may allow dental clinicians to better educate their patients and address concerns about this valuable treatment option.
Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K
2005-03-15
Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.
Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J
2017-07-28
Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.
Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco
2013-02-01
It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.
High-strength mineralized collagen artificial bone
NASA Astrophysics Data System (ADS)
Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai
2014-03-01
Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.
Effects of Recombinant Human Lactoferrin on Osteoblast Growth and Bone Status in Piglets.
Li, Qiuling; Zhao, Jie; Hu, Wenping; Wang, Jianwu; Yu, Tian; Dai, Yunping; Li, Ning
2018-04-03
Lactoferrin (LF), an ~80 kDa iron-binding glycoprotein, modulates many biological effects, including antimicrobial and immunomodulatory activities. Recently, it was shown that LF also regulates bone cell activity, suggesting its therapeutic effect on postmenopausal bone loss. However, a minimal amount is known regarding the effects of recombinant human LF (rhLF) supplementation on bone status in young healthy infants. We found osteoblast cell differentiation was significantly promoted in vitro. Furthermore, treatment of human osteoblast cells with rhLF rapidly induced phosphorylation of p44/p42 mitogen-activated protein kinase (p44/p42 MAPK, ERK1/2). In order to investigate the effects of rhLF on bone status in vivo, we used a piglet model, which is a useful model for human infants. Piglets were supplemented with rhLF milk for 30 days. Bone formation markers, Serum calcium concentration, bone mineral density (BMD), bone mineral content (BMC), tibia bone strength, and the overall metabolite profile analysis showed that rhLF was advantageous to the bone growth in piglets. These findings suggest that rhLF supplementation benefits neonate bone health by modulating bone formation.
On the Evolution of the Cardiac Pacemaker
Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen
2017-01-01
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536
The Genetics of Pulmonary Arterial Hypertension
Austin, Eric D.; Loyd, James E.
2014-01-01
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease for which there is an ever-expanding body of genetic and related pathophysiological information on disease pathogenesis. A number of germline gene mutations have now been described, including mutations in the gene coding bone morphogenic protein receptor type 2 (BMPR2) and related genes. Recent advanced gene sequencing methods have facilitated the discovery of additional genes with mutations among those with and without familial forms of PAH (CAV1, KCNK3, EIF2AK4). The reduced penetrance, variable expressivity, and female predominance of PAH suggest that genetic, genomic and other factors modify disease expression. These multi-faceted variations are an active area of investigation in the field, including but not limited to common genetic variants and epigenetic processes, and may provide novel opportunities for pharmacologic intervention in the near future. They also highlight the need for a systems-oriented multi-level approach to incorporate the multitude of biologic variations now associated with PAH. Ultimately, improved understanding provides the opportunity for improved patient and family counseling about this devastating disease, but do require in depth understanding of the genetic factors relevant to PAH. PMID:24951767
Interspecies comparison of subchondral bone properties important for cartilage repair.
Chevrier, Anik; Kouao, Ahou S M; Picard, Genevieve; Hurtig, Mark B; Buschmann, Michael D
2015-01-01
Microfracture repair tissue in young adult humans and in rabbit trochlea is frequently of higher quality than in corresponding ovine or horse models or in the rabbit medial femoral condyle (MFC). This may be related to differences in subchondral properties since repair is initiated from the bone. We tested the hypothesis that subchondral bone from rabbit trochlea and the human MFC are structurally similar. Trochlea and MFC samples from rabbit, sheep, and horse were micro-CT scanned and histoprocessed. Samples were also collected from normal and lesional areas of human MFC. The subchondral bone of the rabbit trochlea was the most similar to human MFC, where both had a relatively thin bone plate and a more porous and less dense character of subchondral bone. MFC from animals all displayed thicker bone plates, denser and less porous bone and thicker trabeculae, which may be more representative of older or osteoarthritic patients, while both sheep trochlear ridges and the horse lateral trochlea shared some structural features with human MFC. Since several cartilage repair procedures rely on subchondral bone for repair, subchondral properties should be accounted for when choosing animal models to study and test procedures that are intended for human cartilage repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Kawai, Tadashi; Suzuki, Osamu; Matsui, Keiko; Tanuma, Yuji; Takahashi, Tetsu; Kamakura, Shinji
2017-05-01
Recently it was reported that the implantation of octacalcium phosphate (OCP) and collagen composite (OCP-collagen) was effective at promoting bone healing in small bone defects after cystectomy in humans. In addition, OCP-collagen promoted bone regeneration in a critical-sized bone defect of a rodent or canine model. In this study, OCP-collagen was implanted into a human mandibular bone defect with a longer axis of approximately 40 mm, which was diagnosed as a residual cyst with apical periodontitis. The amount of OCP-collagen implanted was about five times greater than the amounts implanted in previous clinical cases. Postoperative wound healing was satisfactory and no infection or allergic reactions occurred. The OCP-collagen-treated lesion was gradually filled with radio-opaque figures, and the alveolar region occupied the whole of the bone defect 12 months after implantation. This study suggests that OCP-collagen could be a useful bone substitute material for repairing large bone defects in humans that might not heal spontaneously. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Inca - interparietal bones in neurocranium of human skulls in central India
Marathe, RR; Yogesh, AS; Pandit, SV; Joshi, M; Trivedi, GN
2010-01-01
Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists. PMID:21799611
Inca - interparietal bones in neurocranium of human skulls in central India.
Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn
2010-01-01
Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.
Relatively well preserved DNA is present in the crystal aggregates of fossil bones
Salamon, Michal; Tuross, Noreen; Arensburg, Baruch; Weiner, Steve
2005-01-01
DNA from fossil human bones could provide invaluable information about population migrations, genetic relations between different groups and the spread of diseases. The use of ancient DNA from bones to study the genetics of past populations is, however, very often compromised by the altered and degraded state of preservation of the extracted material. The universally observed postmortem degradation, together with the real possibility of contamination with modern human DNA, makes the acquisition of reliable data, from humans in particular, very difficult. We demonstrate that relatively well preserved DNA is occluded within clusters of intergrown bone crystals that are resistant to disaggregation by the strong oxidant NaOCl. We obtained reproducible authentic sequences from both modern and ancient animal bones, including humans, from DNA extracts of crystal aggregates. The treatment with NaOCl also minimizes the possibility of modern DNA contamination. We thus demonstrate the presence of a privileged niche within fossil bone, which contains DNA in a better state of preservation than the DNA present in the total bone. This counterintuitive approach to extracting relatively well preserved DNA from bones significantly improves the chances of obtaining authentic ancient DNA sequences, especially from human bones. PMID:16162675
Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert
2013-09-10
The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.
Halling Linder, Cecilia; Enander, Karin; Magnusson, Per
2016-03-01
Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆
Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.
2013-01-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972
Ash content of bones in the pigtail monkey, Macaca nemestrina.
NASA Technical Reports Server (NTRS)
Vose, G. P.; Roach, T. L.
1972-01-01
Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.
Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis
2014-09-01
13. SUPPLEMENTARY NOTES 14. ABSTRACT Bone is the most common site of metastasis for human breast cancer (BCa), which results in significant...to all major bones as in human patients. 15. SUBJECT TERMS Bone metastasis; osteolysis; osteoprotegerin 16. SECURITY CLASSIFICATION OF: 17...metastasis for human breast cancer (BCa), which results in significant morbidity and mortality in patients with advanced disease. A vicious cycle
Terhune, Claire E; Kimbel, William H; Lockwood, Charles A
2013-08-01
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder
Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less
Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading.
Ryan, Timothy M; Shaw, Colin N
2015-01-13
The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.
Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
Osinga, Rik; Di Maggio, Nunzia; Todorov, Atanas; Allafi, Nima; Barbero, Andrea; Laurent, Frédéric; Schaefer, Dirk Johannes; Martin, Ivan; Scherberich, Arnaud
2016-08-01
: Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. Unlike bone marrow-derived stromal cells (also known as bone marrow-derived mesenchymal stromal/stem cells), adipose-derived stromal cells (ASC) have so far failed to form a bone organ by ECO. The goal of the present study was to assess whether priming human ASC to a defined stage of chondrogenesis in vitro allows their autonomous ECO upon ectopic implantation. ASC were cultured either as micromass pellets or into collagen sponges in chondrogenic medium containing transforming growth factor-β3 and bone morphogenetic protein-6 for 4 weeks (early hypertrophic templates) or for two additional weeks in medium supplemented with β-glycerophosphate, l-thyroxin, and interleukin1-β to induce hypertrophic maturation (late hypertrophic templates). Constructs were implanted in vivo and analyzed after 8 weeks. In vitro, ASC deposited cartilaginous matrix positive for glycosaminoglycans, type II collagen, and Indian hedgehog. Hypertrophic maturation induced upregulation of type X collagen, bone sialoprotein, and matrix metalloproteinase13 (MMP13). In vivo, both early and late hypertrophic templates underwent cartilage remodeling, as assessed by MMP13- and tartrate-resistant acid phosphatase-positive staining, and developed bone ossicles, including bone marrow elements, although to variable degrees of efficiency. In situ hybridization for human-specific sequences and staining with a human specific anti-CD146 antibody demonstrated the direct contribution of ASC to bone and stromal tissue formation. In conclusion, despite their debated skeletal progenitor nature, human ASC can generate bone organs through ECO when suitably primed in vitro. Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. This study demonstrated that expanded, human adult adipose-derived stromal cells can generate ectopic bone through ECO, as previously reported for bone marrow stromal cells. This system can be used as a model in a variety of settings for mimicking ECO during development, physiology, or pathology (e.g., to investigate the role of BMPs, their receptors, and signaling pathways). The findings have also translational relevance in the field of bone regeneration, which, despite several advances in the domains of materials and surgical techniques, still faces various limitations before being introduced in the routine clinical practice. ©AlphaMed Press.
Dense Bicoid hubs accentuate binding along the morphogen gradient
Mir, Mustafa; Reimer, Armando; Haines, Jenna E.; Li, Xiao-Yong; Stadler, Michael; Garcia, Hernan
2017-01-01
Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient “hubs” of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors. PMID:28982761
An Autonomous BMP2 Regulatory Element in Mesenchymal Cells
Kruithof, Boudewijn P.T.; Fritz, David T.; Liu, Yijun; Garsetti, Diane E.; Frank, David B.; Pregizer, Steven K.; Gaussin, Vinciane; Mortlock, Douglas P.; Rogers, Melissa B.
2014-01-01
BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3′untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3′UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3′UTR functions independently of promoter, coding region, and 3′UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements. PMID:21268088
Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism.
Di Patti, Francesca; Lavacchi, Laura; Arbel-Goren, Rinat; Schein-Lubomirsky, Leora; Fanelli, Duccio; Stavans, Joel
2018-05-01
Under nitrogen deprivation, the one-dimensional cyanobacterial organism Anabaena sp. PCC 7120 develops patterns of single, nitrogen-fixing cells separated by nearly regular intervals of photosynthetic vegetative cells. We study a minimal, stochastic model of developmental patterns in Anabaena that includes a nondiffusing activator, two diffusing inhibitor morphogens, demographic fluctuations in the number of morphogen molecules, and filament growth. By tracking developing filaments, we provide experimental evidence for different spatiotemporal roles of the two inhibitors during pattern maintenance and for small molecular copy numbers, justifying a stochastic approach. In the deterministic limit, the model yields Turing patterns within a region of parameter space that shrinks markedly as the inhibitor diffusivities become equal. Transient, noise-driven, stochastic Turing patterns are produced outside this region, which can then be fixed by downstream genetic commitment pathways, dramatically enhancing the robustness of pattern formation, also in the biologically relevant situation in which the inhibitors' diffusivities may be comparable.
Probing the limits to positional information
Gregor, Thomas; Tank, David W.; Wieschaus, Eric F.; Bialek, William
2008-01-01
The reproducibility and precision of biological patterning is limited by the accuracy with which concentration profiles of morphogen molecules can be established and read out by their targets. We consider four measures of precision for the Bicoid morphogen in the Drosophila embryo: The concentration differences that distinguish neighboring cells, the limits set by the random arrival of Bicoid molecules at their targets (which depends on absolute concentration), the noise in readout of Bicoid by the activation of Hunchback, and the reproducibility of Bicoid concentration at corresponding positions in multiple embryos. We show, through a combination of different experiments, that all of these quantities are ~10%. This agreement among different measures of accuracy indicates that the embryo is not faced with noisy input signals and readout mechanisms; rather the system exerts precise control over absolute concentrations and responds reliably to small concentration differences, approaching the limits set by basic physical principles. PMID:17632062
Meltzer, Hagar; Milrad, Moran; Brenner, Ori; Atkins, Ayelet; Shahar, Ron
2014-01-01
Chronic kidney disease (CKD) is a growing public health concern worldwide, and is associated with marked increase of bone fragility. Previous studies assessing the effect of CKD on bone quality were based on biopsies from human patients or on laboratory animal models. Such studies provide information of limited relevance due to the small size of the samples (biopsies) or the non-physiologic CKD syndrome studied (rodent models with artificially induced CKD). Furthermore, the type, architecture, structure and biology of the bone of rodents are remarkably different from human bones; therefore similar clinicopathologic circumstances may affect their bones differently. We describe the effects of naturally occurring CKD with features resembling human CKD on the skeleton of cats, whose bone biology, structure and composition are remarkably similar to those of humans. We show that CKD causes significant increase of resorption cavity density compared with healthy controls, as well as significantly lower cortical mineral density, cortical cross-sectional area and cortical cross-sectional thickness. Young's modulus, yield stress, and ultimate stress of the cortical bone material were all significantly decreased in the skeleton of CKD cats. Cancellous bone was also affected, having significantly lower trabecular thickness and bone volume over total volume in CKD cats compared with controls. This study shows that naturally occurring CKD has deleterious effects on bone quality and strength. Since many similarities exist between human and feline CKD patients, including the clinicopathologic features of the syndrome and bone microarchitecture and biology, these results contribute to better understanding of bone abnormalities associated with CKD. PMID:25333360
Nakajima, Kengo; Kunimatsu, Ryo; Ando, Kazuyo; Ando, Toshinori; Hayashi, Yoko; Kihara, Takuya; Hiraki, Tomoka; Tsuka, Yuji; Abe, Takaharu; Kaku, Masato; Nikawa, Hiroki; Takata, Takashi; Tanne, Kazuo; Tanimoto, Kotaro
2018-03-11
Cleft lip and palate is the most common congenital anomaly in the orofacial region. Autogenous iliac bone graft, in general, has been employed for closing the bone defect at the alveolar cleft. However, such iliac bone graft provides patients with substantial surgical and psychological invasions. Consequently, development of a less invasive method has been highly anticipated. Stem cells from human exfoliated deciduous teeth (SHED) are a major candidate for playing a significant role in tissue engineering and regenerative medicine. The aim of this study was to elucidate the nature of bone regeneration by SHED as compared to that of human dental pulp stem cells (hDPSCs) and bone marrow mesenchymal stem cells (hBMSCs). The stems cells derived from pulp tissues and bone marrow were transplanted with a polylactic-coglycolic acid barrier membrane as a scaffold, for use in bone regeneration in an artificial bone defect of 4 mm in diameter in the calvaria of immunodeficient mice. Three-dimensional analysis using micro CT and histological evaluation were performed. Degree of bone regeneration with SHED relative to the bone defect was almost equivalent to that with hDPSCs and hBMSCs 12 weeks after transplantation. The ratio of new bone formation relative to the pre-created bone defect was not significantly different among groups with SHED, hDPSCs and hBMSCs. In addition, as a result of histological evaluation, SHED produced the largest osteoid and widely distributed collagen fibers compared to hDPSCs and hBMSCs groups. Thus, SHED transplantation exerted bone regeneration ability sufficient for the repair of bone defect. The present study has demonstrated that SHED is one of the best candidate as a cell source for the reconstruction of alveolar cleft due to the bone regeneration ability with less surgical invasion. Copyright © 2018 Elsevier Inc. All rights reserved.
Ramsay, Joshua P.; Williamson, Neil R.; Spring, David R.; Salmond, George P. C.
2011-01-01
Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air–liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen. PMID:21873216
Ramsay, Joshua P; Williamson, Neil R; Spring, David R; Salmond, George P C
2011-09-06
Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air-liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.
Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C
2013-11-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.
Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang
2017-12-01
Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.
A Method for Whole Protein Isolation from Human Cranial Bone
Lyon, Sarah M.; Mayampurath, Anoop; Rogers, M. Rose; Wolfgeher, Donald J.; Fisher, Sean M.; Volchenboum, Samuel L.; He, Tong-Chuan; Reid, Russell R.
2016-01-01
The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4-629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions. PMID:27677936
Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Maryka H.
Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure,more » within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.« less
Vallabhaneni, Krishna C; Hassler, Meeves-Yoni; Abraham, Anu; Whitt, Jason; Mo, Yin-Yuan; Atfi, Azeddine; Pochampally, Radhika
2016-01-01
Studies have shown that mesenchymal stem/stromal cells (MSCs) from bone marrow are involved in the growth and metastasis of solid tumors but the mechanism remains unclear in osteosarcoma (OS). Previous studies have raised the possibility that OS cells may receive support from associated MSCs in the nutrient deprived core of the tumors through the release of supportive macromolecules and growth factors either in vesicular or non-vesicular forms. In the present study, we used stressed mesenchymal stem cells (SD-MSCs), control MSCs and OS cells to examine the hypothesis that tumor-associated MSCs in nutrient deprived core provide pro-proliferative, anti-apoptotic, and metastatic support to nearby tumor cells. Assays to study of the effects of SD-MSC conditioned media revealed that OS cells maintained proliferation when compared to OS cells grown under serum-starved conditions alone. Furthermore, OS cells in MSCs and SD-MSC conditioned media were significantly resistant to apoptosis and an increased wound healing rate was observed in cells exposed to either conditioned media or EVs from MSCs and SD-MSCs. RT-PCR assays of OS cells incubated with extracellular vesicles (EVs) from SD-MSCs revealed microRNAs that could potentially target metabolism and metastasis associated genes as predicted by in silico algorithms, including monocarboxylate transporters, bone morphogenic receptor type 2, fibroblast growth factor 7, matrix metalloproteinase-1, and focal adhesion kinase-1. Changes in the expression levels of focal adhesion kinase, STK11 were confirmed by quantitative PCR assays. Together, these data indicate a tumor supportive role of MSCs in osteosarcoma growth that is strongly associated with the miRNA content of the EVs released from MSCs under conditions that mimic the nutrient deprived core of solid tumors.
Ghaly, Ramsis F.; Lissounov, Alexei; Tverdohleb, Tatiana; Kohanchi, David; Candido, Kenneth D.; Knezevic, Nebojsa Nick
2016-01-01
Background: Bone morphogenic protein (BMP) for instrumented lumbar fusion was approved in 2002, and since then has led to an increasing incidence of BMP-related neuropathic pain. These patients are usually resistant to conventional medical therapy and frequently undergo multiple surgical revisions without any pain relief. Case Description: A 58-year-old male was referred to the author's outpatient clinic after four lumbar surgeries did not provide satisfactory pain relief. During his 10 years of suffering from low back pain after an injury, the patient was resistant to conventional and interventional treatment options. He was experiencing severe back pain rated 10/10, as well as right lower extremity pain, numbness, tingling, and motor deficits. Outside spine specialists had performed revision surgeries for BMP-related exuberant bone formation at L5–S1, which included the removal of the ipsilateral hardware and debridement of intradiscal and intraforamina heterotrophic exuberant bony formation. The author implanted the patient with a permanent continuous spinal cord stimulator, after which he achieved complete pain relief (0/10) and restoration of motor, sensory, autonomic, and sphincter functions. Conclusion: This is the first reported case of restorative function with neuromodulation therapy in a BMP-induced postoperative complication, which is considered as a primarily inflammatory process, rather than nerve root compression due to exuberant bony formation. We hypothesize that neuromodulation may enhance blood flow and interfere with inflammatory processes, in addition to functioning by the accepted gate control theory mechanism. The neuromodulation therapy should be strongly considered as a therapeutic approach, even with confirmed BMP-induced postoperative radiculitis, rather than proposing multiple surgical revisions. PMID:27843683
Regulatory issues relating to therapies for periodontal regeneration.
Singleton, D G; Torres-Cabassa, A
1997-03-01
The Food and Drug Administration (FDA) has regulated medical devices since May 1976, when the Medical Device Amendments were enacted. The clinical trial requirements for the marketing of periodontal regeneration devices have been dependent, in part, on the degree of their similarity to devices marketed prior to the legislative enactment date in terms of materials, indication statements, and labeling claims. Nonresorbable barriers were allowed to be marketed based on their equivalence to devices marketed prior to the enactment date based on biocompatability and clinical trial data under the premarket notification requirements section of the law. Bone filling materials such as hydroxyapatite were first marketed based on the finding of equivalence to predicate devices. Newer technologies such as bioabsorbable barriers have also been reviewed under the premarket notification provisions of the law, but manufacturers have been required to provide more extensive safety and effectiveness data to establish equivalence to pre-Amendments devices. Data to answer questions related to the potential toxicity of breakdown products, period of absorption, and ultimate clinical effectiveness needed to be answered prior to marketing. New devices that incorporate technologies that are not substantially equivalent to predicate devices must proceed through the premarket approval route to marketing. For new devices considered a potential significant risk to the patient population, clinical trials are conducted via the investigational device exemption (IDE) requirements that specify the means by which trials will proceed in order to protect the rights of patients. New devices of organic origin, such as bone morphogenic protein, have followed the premarket approval route with IDE requirements instituted as a condition for their path to the marketplace. Issues associated with immediate and long-term contact including potential toxicity, tumorigenicity, and sensitization need to be addressed with appropriate animal models.
Evaluation of Late Effects of Heavy-Ion Radiation on Mesenchymal Stem Cells
NASA Technical Reports Server (NTRS)
Gonda, S.R.; Behravesh, E.; Huff, J.L.; Johnson, F.
2005-01-01
The overall objective of this recently funded study is to utilize well-characterized model test systems to assess the impact of pluripotent stem cell differentiation on biological effects associated with high-energy charged particle radiation. These stem cells, specifically mesenchymal stem cells (MSCs), have the potential for differentiation into bone, cartilage, fat, tendons, and other tissue types. The characterization of the regulation mechanisms of MSC differentiation to the osteoblastic lineage by transcription factors, such as Runx2/Cbfa1 and Osterix, and osteoinductive proteins such as members of the bone morphogenic protein family are well established. More importantly, for late biological effects, MSCs have been shown to contribute to tissue restructuring and repair after tissue injury. The complex regulation of and interactions between inflammation and repair determine the eventual outcome of the responses to tissue injury, for which MSCs play a crucial role. Additionally, MSCs have been shown to respond to reactive oxygen species, a secondary effector of radiation, by differentiating. With this, we hypothesized that differentiation of MSCs can alter or exacerbate the damage initiated by radiation, which can ultimately lead to late biological effects of misrepair/fibrosis which may ultimately lead to carcinogenesis. Currently, studies are underway to examine high-energy X-ray radiation at low and high doses, approximately 20 and 200 Rad, respectively, on cytogenetic damage and gene modulation of isolated MSCs. These cells, positive for MSC surface markers, were obtained from three persons. In vitro cell samples were harvested during cellular proliferation and after both cellular recovery and differentiation. Future work will use established in vitro models of increasing complexity to examine the value of traditional 2D tissue-culture techniques, and utilize 3D in vitro tissue culture techniques that can better assess late effects associated with radiation.
A review of hedgehog signaling in cranial bone development
Pan, Angel; Chang, Le; Nguyen, Alan; James, Aaron W.
2013-01-01
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development. PMID:23565096
Swartz, Elliot W; Baek, Jaeyun; Pribadi, Mochtar; Wojta, Kevin J; Almeida, Sandra; Karydas, Anna; Gao, Fen-Biao; Miller, Bruce L; Coppola, Giovanni
2016-11-01
: Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease, therapeutic drug screening, and transplant-based regenerative medicine. However, methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here, we present a novel, small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2), we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG + cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC), sporadic FTD, and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid, efficient, and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy, terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved. Myotubes derived from patients carrying the C9orf72 repeat expansion show no change in differentiation efficiency and normal TDP-43 localization after as many as 120 days in vitro when compared to unaffected controls. This study provides an efficient, novel protocol for the generation of skeletal myotubes from human induced pluripotent stem cells that may serve as a valuable tool in drug discovery and modeling of musculoskeletal and neuromuscular diseases. ©AlphaMed Press.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... search through the survey collection led to the discovery of human bone fragments representing, at... survey collection led to the discovery of three human bone fragments representing, at minimum, one... discovery of one human bone fragment representing, at minimum, one individual. No associated funerary...
NASA Astrophysics Data System (ADS)
Izzawati, B.; Daud, R.; Afendi, M.; Majid, M. S. Abdul; Zain, N. A. M.
2017-09-01
Finite element models have been widely used to quantify the stress analysis and to predict the bone fractures of the human body. The present study highlights on the stress analysis of the homogeneous structure of human femur bone during standing up condition. The main objective of this study is to evaluate and understand the biomechanics for human femur bone and to prepare orthotropic homogeneous material models used for FE analysis of the global proximal femur. Thus, it is necessary to investigate critical stress on the human femur bone for future study on implantation of internal fixator and external fixator. The implication possibility to create a valid FE model by simply comparing the FE results with the actual biomechanics structures. Thus, a convergence test was performed by FE model of the femur and the stress analysis based on the actual biomechanics of the human femur bone. An increment of critical stress shows in the femur shaft as the increasing of load on the femoral head and decreasing the pulling force at greater trochanter.
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
2009-03-14
H, Sodek J, Zhau HE, Chung LW. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent...with mesenchymal phenotype b2-m b2-Microglobulin BSP Bone sialoprotein C4-2 Lineage derivative cells from LNCaP C4-2B C4-2 cells metastasized to bone...OPN) and bone sialoprotein (BSP), and RANKL, collectively allow- ing cancer cells to survive and thrive in the bone microenvironment [7–9]. Previous
Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone
Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland
2013-01-01
Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465
Histomorphometry and cortical robusticity of the adult human femur.
Miszkiewicz, Justyna Jolanta; Mahoney, Patrick
2018-01-13
Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.
Mesenchymal Stem Cells for Osteochondral Tissue Engineering
Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana
2017-01-01
Summary Mesenchymal stem cells (MSC) are of major interest to regenerative medicine, because of the ease of harvesting from a variety of sources (including bone marrow and fat aspirates) and ability to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of the natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, the current advances enable engineering physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease. PMID:27236665
Bone morphogenetic protein (BMP)1-3 enhances bone repair.
Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan
2011-04-29
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.
Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss
NASA Technical Reports Server (NTRS)
Halloran, B.; Weider, T.; Morey-Holton, E.
1999-01-01
The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.
morphogen: Translation into Morphologically Rich Languages with Synthetic Phrases
2013-10-01
specific trans - lation phrases. These “synthetic phrases” augment the standard translation grammars and decoding proceeds normally with a standard...Genitive case grandparent(poss) Hebrew Suffix ים ( masculine plural) parent=NNS after=NNS Prefix א (first person sing. + future) child(nsubj)=I child(aux
Osteoinductive effect of bone bank allografts on human osteoblasts in culture.
de la Piedra, Concepción; Vicario, Carlos; de Acuña, Lucrecia Rodríguez; García-Moreno, Carmen; Traba, Maria Luisa; Arlandis, Santiago; Marco, Fernando; López-Durán, Luis
2008-02-01
Incorporation of a human bone allograft requires osteoclast activity and growth of recipient osteoblasts. The aim of this work was to study the effects produced by autoclavated and -80 degrees C frozen bone allografts on osteoblast proliferation and synthesis of interleukin 6 (IL6), activator of bone resorption, aminoterminal propeptide of procollagen I (PINP), marker of bone matrix formation, and osteoprotegerin (OPG), inhibitor of osteoclast activity and differentiation. Allografts were obtained from human femoral heads. Human osteoblasts were cultured in the presence (problem group) or in the absence (control group) of allografts during 15 days. Allografts produced a decrease in osteoblast proliferation in the first week of the experiment, and an increase in IL6 mRNA, both at 3 h and 2 days, and an increase in the IL6 released to the culture medium the second day of the experiment. We found a decrease in OPG released to the culture on the 2nd and fourth days. These results suggest an increase in bone resorption and a decrease in bone formation in the first week of the experiment. In the second week, allografts produced an increase in osteoblast proliferation and PINP release to the culture medium, indicating an increase in bone formation; an increase in OPG released to the culture medium, which would indicate a decrease in bone resorption; and a decrease in IL6, indicating a decrease in bone resorption stimulation. These results demonstrate that autoclavated and -80 degrees C frozen bone allografts produce in bone environment changes that regulate their own incorporation to the recipient bone.
Ethanol inhibits human bone cell proliferation and function in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, K.E.; Howard, G.A.
1991-06-01
The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, A.B.
1995-08-14
Vitamin A (retinoid), an essential nutrient for fetal and subsequent mammalian development, is involved in gene expression, cell differentiation, proliferation, migration, and death. Retinoic acid (RA) the morphogenic derivative of vitamin A is highly teratogenic. In humans retinoid excess or deficit can result in brain anomalies and psychosis. This review discusses chromosomal loci of genes that control the retinoid cascade in relation to some candidate genes in schizophrenia. The paper relates the knowledge about the transport, delivery, and action of retinoids to what is presently known about the pathology of schizophrenia, with particular reference to the dopamine hypothesis, neurotransmitters, themore » glutamate hypothesis, neurotransmitters, the glutamate hypothesis, retinitis pigmentosa, dermatologic disorders, and craniofacial anomalies. 201 refs., 1 tab.« less
Allodi, Ilary; Hedlund, Eva
2014-01-01
Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish. PMID:24904255
Allodi, Ilary; Hedlund, Eva
2014-01-01
Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.
Surprising origin of two carved bones donated to the Buchenwald Memorial Museum.
Gapert, René
2018-03-28
Unidentified bones were donated to the Buchenwald Memorial Museum in Weimar, Germany. The donor thought the bones may have belonged to internees of the concentration camp and had been decoratively carved by camp personnel. Non-destructive forensic anthropological examination was carried out on the bones to identify their possible origin. Comparative human and non-human bones samples were used to determine the provenance of the bones and the anatomical region they may have come from. Literature and internet searches were conducted to trace the origin of the carved motifs on the bones. The bones were determined to belong to the lower limb region of bovids. The carvings were found to correspond with those of existing bone examples found in some museums in the UK. They were traced to German prisoners of war dating to the First World War. An in-depth examination of the donated bones revealed their non-human provenance. It further showed that no link existed between the bones, internees of the concentration camp, and the time of the camp's existence. It was discovered that they belonged to the period 1914-1918 and form an important part of German prisoner of war history in the UK.
Kim, In Sook; Lee, Eui Nam; Cho, Tae Hyung; Song, Yun Mi; Hwang, Soon Jung; Oh, Ji Hye; Park, Eun Kyung; Koo, Tai Young; Seo, Young-Kwon
2011-02-01
Nonglycosylated recombinant human bone morphogenetic protein (rhBMP)-2 prepared in Escherichia coli (E. coli rhBMP-2) has recently been considered as an alternative to mammalian cell rhBMP-2. However, its clinical use is still limited owing to lack of evidence for osteogenic activity comparable with that of mammalian cell rhBMP-2 via microcomputed tomography-based analysis. Therefore, this study aimed to evaluate the ability of E. coli rhBMP-2 in absorbable collagen sponge to form ectopic and orthotopic bone and to compare it to that of mammalian rhBMP-2. In vitro investigation was performed to study osteoblast differentiation of human mesenchymal stromal cells. Both types of rhBMP-2 enhanced proliferation, alkaline phosphatase activity, and matrix mineralization of human mesenchymal stromal cells at similar levels. Similar tendencies were observed in microcomputed tomography analysis, which determined bone volume, fractional bone volume, trabecular thickness, trabecular separation, bone mineral density, and other characteristics. Histology from an in vivo osteoinductivity test and from a rat calvarial defect model demonstrated a dose-dependent increase in local bone formation. The E. coli rhBMP-2 group (5 μg) not only induced complete regeneration of an 8-mm critical-sized defect at 4 weeks, but also led to new bone with the same bone mineral density as normal bone at 8 weeks, with the same efficiency as that of mammalian cell rhBMP-2 (5 μg). These uniformly favorable results provide evidence that the osteogenic activity of E. coli rhBMP-2 is not inferior to that of mammalian cell rhBMP-2 despite its low solubility and lack of gylcosylation. These results suggest that the application of E. coli rhBMP-2 in absorbable collagen sponge may be a promising equivalent to mammalian cell rhBMP-2 in bone tissue engineering.
Tissue engineering skeletal muscle for orthopaedic applications
NASA Technical Reports Server (NTRS)
Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.
2002-01-01
With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.
Banjar, Arwa Ahmed; Mealey, Brian L
2013-01-01
The goal of this study was to evaluate the effectiveness of demineralized bone matrix (DBM) putty, consisting of demineralized human bone allograft matrix in a carrier of bovine collagen and alginate, for the treatment of periodontal defects in humans. Twenty subjects with at least one site having a probing depth ≥ 6 mm and radiographic evidence of bony defect depth > 3 mm were included. The infrabony defects were grafted with DBM putty bone graft. The following clinical parameters were assessed at baseline and 6 months posttreatment: probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). Bone fill was evaluated using transgingival probing and standardized radiographs taken at baseline and 6 months posttreatment. The 6-month evaluation showed a significant PD reduction of 3.27 ± 1.67 mm and clinical attachment gain of 2.27 ± 1.74 mm. Bone sounding measurements showed a mean clinical bone defect fill of 2.93 ± 1.87 mm and a mean radiographic bone fill of 2.55 ± 2.31 mm. The use of DBM putty was effective for treatment of periodontal bony defects in humans. Significant improvement in CAL, PD, and bone fill was observed at 6 months compared to baseline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less
Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min
2017-08-01
Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption. Copyright © 2017 Endocrine Society
Mesenchymal stem cells for bone repair and metabolic bone diseases.
Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep
2009-10-01
Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2014-01-01
Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. PMID:24975579
Coen, Enrico; Rolland-Lagan, Anne-Gaëlle; Matthews, Mark; Bangham, J. Andrew; Prusinkiewicz, Przemyslaw
2004-01-01
Although much progress has been made in understanding how gene expression patterns are established during development, much less is known about how these patterns are related to the growth of biological shapes. Here we describe conceptual and experimental approaches to bridging this gap, with particular reference to plant development where lack of cell movement simplifies matters. Growth and shape change in plants can be fully described with four types of regional parameter: growth rate, anisotropy, direction, and rotation. A key requirement is to understand how these parameters both influence and respond to the action of genes. This can be addressed by using mechanistic models that capture interactions among three components: regional identities, regionalizing morphogens, and polarizing morphogens. By incorporating these interactions within a growing framework, it is possible to generate shape changes and associated gene expression patterns according to particular hypotheses. The results can be compared with experimental observations of growth of normal and mutant forms, allowing further hypotheses and experiments to be formulated. We illustrate these principles with a study of snapdragon petal growth. PMID:14960734
Encoding of temporal signals by the TGF-β pathway and implications for embryonic patterning
Sorre, Benoit; Warmflash, Aryeh; Brivanlou, Ali H.; Siggia, Eric D.
2014-01-01
Summary Genetics and biochemistry have defined the components and wiring of the signaling pathways that pattern the embryo. Among them, the TGF-β pathway has the potential to behave as a morphogen: invitro experiments have clearly established that it can dictate cell fate in a concentration dependent manner. How morphogens convey positional information in a developing embryo, where signal levels are changing with time, is less understood. Using integrated microfluidic cell culture and time-lapse microscopy, we demonstrate here that the speed of ligand presentation has a key and previously unexpected influence on TGF-β signaling outcomes. The response to a TGF-β concentration step is transient and adaptive, slowly increasing the ligand concentration diminishes the response and well-spaced pulses of ligand combine additively resulting in greater pathway output than with constant stimulation. Our results suggest that in an embryonic context, the speed of change of ligand concentration is an instructive signal for patterning. PMID:25065773
Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Safran, Sam A.
2018-05-01
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Context clues: the importance of stem cell-material interactions
Murphy, William L.
2014-01-01
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691
Liégeois, Samuel; Benedetto, Alexandre; Garnier, Jean-Marie; Schwab, Yannick; Labouesse, Michel
2006-01-01
Polarized intracellular trafficking in epithelia is critical in development, immunity, and physiology to deliver morphogens, defensins, or ion pumps to the appropriate membrane domain. The mechanisms that control apical trafficking remain poorly defined. Using Caenorhabditis elegans, we characterize a novel apical secretion pathway involving multivesicularbodies and the release of exosomes at the apical plasma membrane. By means of two different genetic approaches, we show that the membrane-bound V0 sector of the vacuolar H+-ATPase (V-ATPase) acts in this pathway, independent of its contribution to the V-ATPase proton pump activity. Specifically, we identified mutations in the V0 “a” subunit VHA-5 that affect either the V0-specific function or the V0+V1 function of the V-ATPase. These mutations allowed us to establish that the V0 sector mediates secretion of Hedgehog-related proteins. Our data raise the possibility that the V0 sector mediates exosome and morphogen release in mammals. PMID:16785323
Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning
Simon, Eléanor; Aguirre-Tamaral, Adrián; Aguilar, Gustavo; Guerrero, Isabel
2016-01-01
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation. PMID:29615597
Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning.
Simon, Eléanor; Aguirre-Tamaral, Adrián; Aguilar, Gustavo; Guerrero, Isabel
2016-12-02
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.
A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation.
Choe, Youngshik; Siegenthaler, Julie A; Pleasure, Samuel J
2012-02-23
The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development. Copyright © 2012 Elsevier Inc. All rights reserved.
A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation
Choe, Youngshik; Siegenthaler, Julie A.; Pleasure, Samuel J.
2012-01-01
Summary The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. Using mice with either meningeal overgrowth or selective loss of meninges, we’ve identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonizes the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development. PMID:22365545
Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities.
Harfe, Brian D; Scherz, Paul J; Nissim, Sahar; Tian, Hua; McMahon, Andrew P; Tabin, Clifford J
2004-08-20
The zone of polarizing activity (ZPA) in the posterior limb bud produces Sonic Hedgehog (Shh) protein, which plays a critical role in establishing distinct fates along the anterior-posterior axis. This activity has been modeled as a concentration-dependent response to a diffusible morphogen. Using recombinase base mapping in the mouse, we determine the ultimate fate of the Shh-producing cells. Strikingly, the descendants of the Shh-producing cells encompass all cells in the two most posterior digits and also contribute to the middle digit. Our analysis suggests that, while specification of the anterior digits depends upon differential concentrations of Shh, the length of time of exposure to Shh is critical in the specification of the differences between the most posterior digits. Genetic studies of the effects of limiting accessibility of Shh within the limb support this model, in which the effect of the Shh morphogen is dictated by a temporal as well as a spatial gradient.
Ohshima, Hiroshi
2010-04-01
The assembly of the Japanese Experiment Module "Kibo" to international space station was completed in 2009 and Koichi Wakata became the first Japanese station astronaut who spent more than 4 months in the station. Bone and muscle losses are significant medical concerns for long duration human space flight. Effective countermeasure program for bone loss and muscle atrophy is necessary to avoid post flight bone fracture and joint sprain after landing. The musculoskeletal response to human space flight and current physical countermeasure program for station astronauts are described.
TGF-β signaling regulates resistance to parasitic nematode infection in Drosophila melanogaster.
Eleftherianos, Ioannis; Castillo, Julio Cesar; Patrnogic, Jelena
2016-12-01
Over the past decade important advances have been made in the field of innate immunity; however, our appreciation of the signaling pathways and molecules that participate in host immune responses to parasitic nematode infections lags behind that of responses to microbial challenges. Here we have examined the regulation and immune activity of Transforming Growth Factor-beta (TGF-β) signaling in the model host Drosophila melanogaster upon infection with the nematode parasites Heterorhabditis gerrardi and H. bacteriophora containing their mutualistic bacteria Photorhabdus. We have found that the genes encoding the Activin and Bone Morphogenic Protein (BMP) ligands Dawdle (Daw) and Decapentaplegic (Dpp) are transcriptionally induced in flies responding to infection with the nematode parasites, containing or lacking their associated bacteria. We also show that deficient Daw or Dpp regulates the survival of D. melanogaster adults to the pathogens, whereas inactivation of Daw reduces the persistence of the nematodes in the mutant flies. These findings demonstrate a novel role for the TGF-β signaling pathways in the host anti-nematode immune response. Understanding the molecular mechanisms of host anti-nematode processes will potentially lead to the development of novel means for the efficient control of parasitic nematodes. Copyright © 2016 Elsevier GmbH. All rights reserved.
Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?
Agarwal, Puneet; Agarwal, Renu
2018-06-14
Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.
Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa
2016-09-01
Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability. Copyright © 2016 Elsevier Inc. All rights reserved.
Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Calderon, Mario R.; Kauwe, Grant
2018-01-01
Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons. PMID:29373576
Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets.
Kubitschek-Barreira, Paula H; Curty, Nathalia; Neves, Gabriela W P; Gil, Concha; Lopes-Bezerra, Leila M
2013-01-14
Aspergillus fumigatus is the main etiological agent of invasive aspergillosis, an important opportunistic infection for neutropenic patients. The main risk groups are patients with acute leukemia and bone marrow transplantation recipients. The lack of an early diagnostic test together with the limited spectrum of antifungal drugs remains a setback to the successful treatment of this disease. During invasive infection the inhaled fungal conidia enter the morphogenic cycle leading to angioinvasive hyphae. This work aimed to study differentially expressed proteins of A. fumigatus during morphogenesis. To achieve this goal, a 2D-DIGE approach was applied to study surface proteins extractable by reducing agents of two A. fumigatus morphotypes: germlings and hyphae. Sixty-three differentially expressed proteins were identified by MALDI-ToF/MS. We observed that proteins associated with biosynthetic pathways and proteins with multiple functions (miscellaneous) were over-expressed in the early stages of germination, while in hyphae, the most abundant proteins detected were related to metabolic processes or have unknown functions. Among the most interesting proteins regulated during morphogenesis, two putative drug targets were identified, the translational factor, eEF3 and the CipC-like protein. Neither of these proteins are present in mammalian cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D
2016-01-01
This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. © 2015 Anatomical Society.
Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.
Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd
2018-05-14
The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.
Kohata, Kazuhiro; Itoh, Soichiro; Horiuchi, Naohiro; Yoshioka, Taro; Yamashita, Kimihiro
2016-08-12
The electrical potential, which is generated in bone by collagen displacement, has been well documented. However, the role of mineral crystals in bone piezoelectricity has not yet been elucidated. We examined the mechanism that the composite structure of organic and inorganic constituents and their collaborative functions play an important role in the electrical properties of human bone. The electrical potential and bone structure were evaluated using thermally stimulated depolarized current (TSDC) and micro computed tomography, respectively. After electrical polarization of bone specimens, the stored electrical charge was calculated using TSDC measurements. The CO3/PO4 peak ratio was calculated using attenuated total reflection to compare the content of carbonate ion in the bone specimens. The TSDC curve contained 3 peaks at 100, 300 and 500°C, which were classified into 4 patterns. The CO3/PO4 peak ratio positively correlated with the stored charges at approximately 300°C in the polarized bone. There was a positive correlation between the stored bone charge and the bone mineral density only. It is suggested that the peak at 300°C is attributed to carbonate apatite and the total bone mass of human bone, not the three-dimensional structure, affects the stored charge.
A tissue engineering solution for segmental defect regeneration in load-bearing long bones.
Reichert, Johannes C; Cipitria, Amaia; Epari, Devakara R; Saifzadeh, Siamak; Krishnakanth, Pushpanjali; Berner, Arne; Woodruff, Maria A; Schell, Hanna; Mehta, Manav; Schuetz, Michael A; Duda, Georg N; Hutmacher, Dietmar W
2012-07-04
The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep--a model closely resembling human bone formation and structure--were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.
Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun
2015-06-24
Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.
Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.
Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K
2017-04-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2010-01-01
This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.
Morphological Characterization of the Frontal and Parietal Bones of the Human Skull
2017-03-01
ARL-TR- 7962 ● MAR 2017 US Army Research Laboratory Morphological Characterization of the Frontal and Parietal Bones of the...Army Research Laboratory Morphological Characterization of the Frontal and Parietal Bones of the Human Skull by Stephen L Alexander SURVICE...
Goldstein, Robert H; Reagan, Michaela R; Anderson, Kristen; Kaplan, David L; Rosenblatt, Michael
2010-01-01
American women have a nearly 25% lifetime risk of developing breast cancer, with 20–40% of these patients developing life-threatening metastases. Over 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied hBMSCs (human bone-marrow derived stem cells) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Further, hBMSCs alter tumor growth and bone metastasis frequency. hBMSCs may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor IL-17B/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells (BCCs). PMID:21159629
A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.
Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul
2015-09-01
An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.
Bone formation in vitro and in nude mice by human osteosarcoma cells.
Ogose, A; Motoyama, T; Hotta, T; Watanabe, H; Takahashi, H E
1995-01-01
Osteosarcomas contain variable amounts of bony tissue, but the mechanism of bone formation by osteosarcoma is not well understood. While a number of cultured human osteosarcoma cell lines have been established, they are maintained by different media and differ qualitatively with regard to bone formation. We examined different media for their ability to support bone formation in vitro and found the alpha-modification of Eagle's minimal essential medium supplemented with beta glycerophosphate was best for this purpose, because it contained the proper calcium and phosphate concentrations. Subsequently, we compared seven human osteosarcoma cell lines under the same experimental conditions to clarify their ability to induce bone formation. NOS-1 cells most frequently exhibited features of bone formation in vitro and in nude mice. Collagen synthesis by tumour cells themselves seemed to be the most important factor for bone volume. However, even HuO9 cells, which lacked collagen synthesis and failed to form bone in vitro, successfully formed tumours containing bone in nude mice. Histological analysis of HuO9 cells in diffusion chambers implanted in nude mice and the findings of polymerase chain reaction indicated that the phenomenon was probably due to bone morphogenetic protein.
Bukong, Terence N; Lo, Tracie; Szabo, Gyongyi; Dolganiuc, Angela
2012-05-01
Liver diseases are common in the United States and often require liver transplantation; however, donated organs are limited and thus alternative sources for liver cells are in high demand. Embryonic stem cells (ESC) can provide a continuous and readily available source of liver cells. ESC differentiation to liver cells is yet to be fully understood and comprehensive differentiation protocols are yet to be defined. Here, we aimed to achieve human (h)ESC differentiation into mature hepatocytes using defined recombinant differentiation factors and metabolites. Embryonic stem cell H1 line was sub-cultured on feeder layer. We induced hESCs into endodermal differentiation succeeded by early/late hepatic specification and finally into hepatocyte maturation using step combinations of Activin A and fibroblast growth factor (FGF)-2 for 7 days; followed by FGF-4 and bone morphogenic protein 2 (BMP2) for 7 days, succeeded by FGF-10 + hepatocyte growth factor 4 + epidermal growth factor for 14 days. Specific inhibitors/stimulators were added sequentially throughout differentiation. Cells were analysed by PCR, flow cytometry, microscopy or functional assays. Our hESC differentiation protocol resulted in viable cells with hepatocyte shape and morphology. We observed gradual changes in cell transcriptome, including up-regulation of differentiation-promoting GATA4, GATA6, POU5F1 and HNF4 transcription factors, steady levels of stemness-promoting SOX-2 and low levels of Nanog, as defined by PCR. The hESC-derived hepatocytes expressed alpha-antitrypsin, CD81, cytokeratin 8 and low density lipoprotein (LDL) receptor. The levels of alpha-fetoprotein and proliferation marker Ki-67 in hESC-derived hepatocytes remained elevated. Unlike stem cells, the hESC-derived hepatocytes performed LDL uptake, produced albumin and alanine aminotransferase and had functional alcohol dehydrogenase. We report a novel protocol for hESC differentiation into morphological and functional yet immature hepatocytes as an alternative method for hepatocyte generation. © 2012 John Wiley & Sons A/S.
Liu, Yurong; Buckley, Conor Timothy; Almeida, Henrique V; Mulhall, Kevin J; Kelly, Daniel John
2014-11-01
A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs derived from OA patients could potentially be used to resurface large areas of joint surfaces damaged by trauma or disease.
Liu, Yurong; Buckley, Conor Timothy; Almeida, Henrique V.; Mulhall, Kevin J.
2014-01-01
A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs derived from OA patients could potentially be used to resurface large areas of joint surfaces damaged by trauma or disease. PMID:24785365
Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.
2010-01-01
Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492
Accumulation of carboxymethyl-lysine (CML) in human cortical bone.
Thomas, Corinne J; Cleland, Timothy P; Sroga, Grazyna E; Vashishth, Deepak
2018-05-01
Advanced glycation end-products (AGEs) are a category of post translational modification associated with the degradation of the structural properties of multiple different types of tissues. Typically, AGEs are the result of a series of post-translational modification reactions between sugars and proteins through a process known as non-enzymatic glycation (NEG). Increases in the rate of NEG of bone tissue are associated with type 2 diabetes and skeletal fragility. Current methods of assessing NEG and its impact on bone fracture risk involve measurement of pentosidine or total fluorescent AGEs (fAGEs). However, pentosidine represents only a small fraction of possible fAGEs present in bone, and neither pentosidine nor total fAGE measurement accounts for non-fluorescent AGEs, which are known to form in significant amounts in skin and other collagenous tissues. Carboxymethyl-lysine (CML) is a non-fluorescent AGE that is often measured and has been shown to accumulate in tissues such as skin, heart, arteries, and intervertebral disks, but is currently not assessed in bone. Here we show the localization of CML to collagen I using mass spectrometry for the first time in human bone. We then present a new method using demineralization followed by heating and trypsin digestion to measure CML content in human bone and demonstrate that CML in bone is 40-100 times greater than pentosidine (the current most commonly used marker of AGEs in bone). We then establish the viability of CML as a measurable AGE in bone by showing that levels of CML, obtained from bone using this technique, increase with age (p<0.05) and are correlated with previously reported measures of bone toughness. Thus, CML is a viable non-fluorescent AGE target to assess AGE accumulation and fragility in bone. The method developed here to extract and measure CML from human bone could facilitate the development of a new diagnostic assay to evaluate fracture risk and potentially lead to new therapeutic approaches to address bone fragility. Copyright © 2018 Elsevier Inc. All rights reserved.
Schwarz, Frank; Herten, Monika; Sager, Martin; Bieling, Katrin; Sculean, Anton; Becker, Jürgen
2007-04-01
The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to advanced peri-implant infections were included in this study (n=40 implants). Furthermore, peri-implantitis was induced by ligature placement and plaque accumulation in five beagle dogs for three months following implant insertion (n=15 implants). The ligatures were removed when about 30% of the initial bone was lost. During open flap surgery, configuration and defect characteristics of the peri-implant bone loss were recorded in both humans and dogs. Open flap surgery generally revealed two different classes of peri-implant bone defects. While Class I defects featured well-defined intrabony components, Class II defects were characterized by consistent horizontal bone loss. The allocation of intrabony components of Class I defects regarding the implant body allowed a subdivision of five different configurations (Classes Ia-e). In particular, human defects were most frequently Class Ie (55.3%), followed by Ib (15.8%), Ic (13.3%), Id (10.2%), and Ia (5.4%). Similarly, bone defects in dogs were also most frequently Class Ie (86.6%), while merely two out of 15 defects were Classes Ia and Ic (6.7%, respectively). Within the limits of the present study, it might be concluded that configurations and sizes of ligature-induced peri-implantitis bone defects in dogs seemed to resemble naturally occurring lesions in humans.
The Identification of Proteoglycans and Glycosaminoglycans in Archaeological Human Bones and Teeth
Coulson-Thomas, Yvette M.; Coulson-Thomas, Vivien J.; Norton, Andrew L.; Gesteira, Tarsis F.; Cavalheiro, Renan P.; Meneghetti, Maria Cecília Z.; Martins, João R.; Dixon, Ronald A.; Nader, Helena B.
2015-01-01
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology. PMID:26107959
[Fluorides in the human bones – selected issues].
Palczewska-Komsa, Mirona; Kalisińska, Elżbieta; Stogiera, Anna; Szmidt, Monika
Long -term intake of luoride leads to skeletal luorosis. The toxicity of luoride, not only for the human body, but also the entire ecosystem makes it necessary to constantly monitor their content in the environment. Accordingly, there is a need to control the level of luorides (F⁻) in humans, particularly in bone tissue, which relects long -term accumulation of these compounds. The aim of the study was to determine the concentration of luoride in the human bones depending on biological factors and environmental conditions on the basis of the published literature. Given the importance of bone tissue as the main reservoir of luoride ions is an important issue to continue to monitor the concentration of F⁻ in this tissue, particularly for people living in the polluted environment luorine compounds. There are numerous works on concentrations of this element in human bones in world literature which proves the great interest in the subject. It should be underlined the need for further study of this issue for people living in different regions of Poland.
Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle
2015-03-01
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2014-09-01
Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... shaft smoother, 2 shaft smoother fragments, 1 antler awl fragment, 3 bone awl fragments, 1 bone shaft wrench, 1 bone tube, 17 worked antlers, 10 burned antlers, 1 deer jaw, 19 worked bones, 1 cut bone, 1 burned bone fragment, 1 notched bone, 2 decorated bones, 3 bone strips, 52 miscellaneous non-human bones...
[CONDITIONS OF SYNOVIAL MESENCHYMAL STEM CELLS DIFFERENTIATING INTO FIBROCARTILAGE CELLS].
Fu, Peiliang; Cong, Ruijun; Chen, Song; Zhang, Lei; Ding, Zheru; Zhou, Qi; Li, Lintao; Xu, Zhenyu; Wu, Yuli; Wu, Haishan
2015-01-01
To explore the conditions of synovial derived mesenchymal stem cells (SMSCs) differentiating into the fibrocartilage cells by using the orthogonal experiment. The synovium was harvested from 5 adult New Zealand white rabbits, and SMSCs were separated by adherence method. The flow cytometry and multi-directional differentiation method were used to identify the SMSCs. The conditions were found from the preliminary experiment and literature review. The missing test was carried out to screen the conditions and then 12 conditions were used for the orthogonal experiment, including transforming growth factor β1 (TGF-β1), bone morphogenic protein 2 (BMP-2), dexamethasone (DEX), proline, ascorbic acid (ASA), pyruvic acid, insulin + transferrin + selenious acid pre-mixed solution (ITS), bovin serum albumin (BSA), basic fibroblast growth factor (bFGF), intermittent hydraulic pressure (IHP), bone morphogenic protein 7 (BMP-7), and insulin-like growth factor (IGF). The L60 (212) orthogonal experiment was designed using the SPSS 18.0 with 2 level conditions and the cells were induced to differentiate on the small intestinal submucosa (SIS)-3D scaffold. The CD151+/CD44+ cells were detected with the flow cytometry and then the differentiation rate was recorded. The immumohistochemical staining, cellular morphology, toluidine blue staining, and semi-quantitative RT-PCR examination for the gene expressions of sex determining region Y (SRY)-box 9 gene (Sox9), aggrecan gene (AGN), collagen type I gene (Col I), collagen type II gene (Col II), collagen type IX gene (Col IX) were used for result confirmation. The differentiation rate was calculated as the product of CD151/CD44+ cells and cells with Col I high expression. The grow curve was detected with the DNA abundance using the PicoGreen Assay. The visual observation and the variances analysis among the variable were used to evaluate the result of the orthogonal experiment, 1 level interaction was considered. The q-test and the least significant difference (LDS) were used for the variance analysis with a type III calibration model. The test criteria (a) was 0.05. The cells were certified as SMSCs, the double-time of the cells was 28 hours. During the differentiation into the fibrocartilage, the volume of the SIS-3D scaffold enlarged double every 5 days. The scaffolds were positively stained by toluidine blue at 14 days. The visual observation showed that high levels of TGF-β1 and BMP-7 were optimum for the differentiation, and BMP-7 showed the interaction with BMP-2. The conditions of DEX, ASA, ITS, transferrin, bFGF showed decreasing promotional function by degrees, and the model showed the perfect relevance. P value was 0.000 according to the variance analysis. The intercept analysis showed different independent variables brought about variant contribution; the TGF-β1, ASA, bFGF, IGF, and BMP-7 were more remarkable, which were similar to the visual observation. In the process of the SMSCs differentiation into the fibrocartilage, the concentrations of TGF-β1, ASA, bFGF, and IGF reasonably can improve the conversion rate of the fibrocartilage cells. The accurate conditions of the reaulatory factor should be explored further.
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... device that transmits ultrasound energy into the human body to measure acoustic properties of bone that... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... device that transmits ultrasound energy into the human body to measure acoustic properties of bone that... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...
Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich
2014-01-01
Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425
The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells
Zhang, Xinli; Péault, Bruno; Chen, Weiwei; Li, Weiming; Corselli, Mirko; James, Aaron W.; Lee, Min; Siu, Ronald K.; Shen, Pang; Zheng, Zhong; Shen, Jia; Kwak, Jinny; Zara, Janette N.; Chen, Feng; Zhang, Hong; Yin, Zack; Wu, Ben; Ting, Kang
2011-01-01
The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation. PMID:21615216
Anatomical study of the pigs temporal bone by microdissection.
Garcia, Leandro de Borborema; Andrade, José Santos Cruz de; Testa, José Ricardo Gurgel
2014-01-01
Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP - Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases.
Ke, Hua Zhu; Richards, William G; Li, Xiaodong; Ominsky, Michael S
2012-10-01
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
[Encounter of cancer cells with bone. Histological examination of bone metastasis].
Kanda, Hiroaki
2011-03-01
Management of the cancer bone metastasis is important clinical problem. The mechanism (s) of bone metastasis has been studied mainly by animal models and in vitro system. There might be discrepancy between model systems and in vivo human clinical materials. But there is surprisingly rare study of histological examination of human skeletal metastasis, since it is hard to obtain human materials without modification by chemotherapy or irradiation. There are many surgical materials suitable for this examination in our hospital and we have been examined histological features of them. Stromal cells between metastatic cancer cells and OCs (osteoclasts) and÷or OBs (osteoblasts) might play a role in bone metastasis, since these cells are frequently accompanied with OCs÷OBs. We called these stromal cells as "fibroblast-like cells" and examined their nature and roles in bone metastasis. We hope these fibroblast-like cells might become the target of anti bone metastasis therapy, same as osteoclasts targeted by bisphosphonates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim
Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulatedmore » with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice.« less
Fewtrell, Mary S; Williams, Jane E; Singhal, Atul; Murgatroyd, Peter R; Fuller, Nigel; Lucas, Alan
2009-07-01
Preterm infants are at risk of metabolic bone disease due to inadequate mineral intake with unknown consequences for later bone health. To test the hypotheses that (1) early diet programs peak bone mass and bone turnover; (2) human milk has a beneficial effect on these outcomes; (3) preterm subjects have reduced peak bone mass compared to population reference data. 20 year follow-up of 202 subjects (43% male; 24% of survivors) who were born preterm and randomized to: (i) preterm formula versus banked breast milk or (ii) preterm versus term formula; as sole diet or supplement to maternal milk. Outcome measures were (i) anthropometry; (ii) hip, lumbar spine (LS) and whole body (WB) bone mineral content (BMC) and bone area (BA) measured using DXA; (iii) bone turnover markers. Infant dietary randomization group did not influence peak bone mass or turnover. The proportion of human milk in the diet was significantly positively associated with WBBA and BMC. Subjects receiving >90% human milk had significantly higher WBBA (by 3.5%, p=0.01) and BMC (by 4.8%, p=0.03) than those receiving <10%. Compared to population data, subjects had significantly lower height SDS (-0.41 (SD 1.05)), higher BMI SDS (0.31 (1.33)) and lower LSBMD SDS (-0.29 (1.16)); height and bone mass deficits were greatest in those born SGA with birthweight <1250 g (height SDS -0.81 (0.95), LSBMD SDS -0.61 (1.3)). Infant dietary randomization group did not affect peak bone mass or turnover suggesting the observed reduced final height and LS bone mass, most marked in growth restricted subjects with the lowest birthweight, may not be related to sub-optimal early nutrition. The higher WB bone mass associated with human milk intake, despite its low nutrient content, may reflect non-nutritive factors in breast milk. These findings may have implications for later osteoporosis risk and require further investigation.
Bello, Silvia M; Saladié, Palmira; Cáceres, Isabel; Rodríguez-Hidalgo, Antonio; Parfitt, Simon A
2015-05-01
A recurring theme of late Upper Palaeolithic Magdalenian human bone assemblages is the remarkable rarity of primary burials and the common occurrence of highly-fragmentary human remains mixed with occupation waste at many sites. One of the most extensive Magdalenian human bone assemblages comes from Gough's Cave, a sizeable limestone cave set in Cheddar Gorge (Somerset), UK. After its discovery in the 1880s, the site was developed as a show cave and largely emptied of sediment, at times with minimal archaeological supervision. Some of the last surviving remnants of sediment within the cave were excavated between 1986 and 1992. The excavations uncovered intensively-processed human bones intermingled with abundant butchered large mammal remains and a diverse range of flint, bone, antler, and ivory artefacts. New ultrafiltrated radiocarbon determinations demonstrate that the Upper Palaeolithic human remains were deposited over a very short period of time, possibly during a series of seasonal occupations, about 14,700 years BP (before present). The human remains have been the subject of several taphonomic studies, culminating in a detailed reanalysis of the cranial remains that showed they had been carefully modified to make skull-cups. Our present analysis of the postcrania has identified a far greater degree of human modification than recorded in earlier studies. We identify extensive evidence for defleshing, disarticulation, chewing, crushing of spongy bone, and the cracking of bones to extract marrow. The presence of human tooth marks on many of the postcranial bones provides incontrovertible evidence for cannibalism. In a wider context, the treatment of the human corpses and the manufacture and use of skull-cups at Gough Cave have parallels with other Magdalenian sites in central and western Europe. This suggests that cannibalism during the Magdalenian was part of a customary mortuary practice that combined intensive processing and consumption of the bodies with ritual use of skull-cups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Batey, Michael A.; Almeida, Gilberto S.; Wilson, Ian; Dildey, Petra; Sharma, Abhishek; Blair, Helen; Hide, I. Geoff; Heidenreich, Olaf; Vormoor, Josef; Maxwell, Ross J.; Bacon, Chris M.
2014-01-01
Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing. PMID:24409320
Osteonic organization of limb bones in mammals, including humans, and birds: a preliminary study.
Castrogiovanni, Paola; Imbesi, Rosa; Fisichella, Marco; Mazzone, Venera
2011-01-01
As it is well known, bone tissue is characterized by a calcified extracellular matrix which makes this tissue suitable to support the body and protect the inner organs. Lamellar bone tissue is organized in lamellae, 3-7 microm in thickness, and arranged concentrically around vascular channels: the basic structure in this type of organization is called Haversian system or osteon and the diameter of osteons depends on the number of lamellae. Shape and regional density of osteons are related to the bone segment and the specific functional requirements to meet. Aim of this study is to correlate the compact bone tissue microstructure in various classes of mammals, including humans, and birds in order to find an adequate identification key. The results of our study show that in bone tissue samples from various classes of mammals, including humans, and birds the osteonic structure shows peculiar features, often depending on the rate of bone remodelling, different in different animal species. We conclude that a careful microscopic analysis of bone tissue and the characterization of distinctive osteonic features could give a major contribution to forensic medicine to obtain a more reliable recognition of bone findings.
Reznikov, Natalie; Shahar, Ron; Weiner, Steve
2014-02-01
Lamellar bone is the most common bone type in humans. The predominant components of individual lamellae are plywood-like arrays of mineralized collagen fibrils aligned in different directions. Using a dual-beam electron microscope and the Serial Surface View (SSV) method we previously identified a small, but significantly different layer in rat lamellar bone, namely a disordered layer with collagen fibrils showing little or no preferred orientation. Here we present a 3D structural analysis of 12 SSV volumes (25 complete lamellae) from femora of 3 differently aged human individuals. We identify the ordered and disordered motifs in human bone as in the rat, with several significant differences. The ordered motif shows two major preferred orientations, perpendicular to the long axis of the bone, and aligned within 10-20° of the long axis, as well as fanning arrays. At a higher organizational level, arrays of ordered collagen fibrils are organized into 'rods' around 2 to 3μm in diameter, and the long axes of these 'rods' are parallel to the lamellar boundaries. Human bone also contains a disordered component that envelopes the rods and fills in the spaces between them. The disordered motif is especially well-defined between adjacent layers of rods. The disordered motif and its interfibrillar substance stain heavily with osmium tetroxide and Alcian blue indicating the presence of another organic component in addition to collagen. The canalicular network is confined to the disordered material, along with voids and individual collagen fibrils, some of which are also aligned more or less perpendicular to the lamellar boundaries. The organization of the ordered fibril arrays into rods enveloped in the continuous disordered structure was not observed in rat lamellar bone. We thus conclude that human lamellar bone is comprised of two distinct materials, an ordered material and a disordered material, and contains an additional hierarchical level of organization composed of arrays of ordered collagen fibrils, referred to as rods. This new structural information on human lamellar bone will improve our understanding of structure-mechanical function relations, mechanisms of mechano-sensing and the characterizations of bone pathologies. Copyright © 2013 Elsevier Inc. All rights reserved.
Bone Factors Regulating the Osteotropism of Metastatic Breast Cancer
1998-10-01
growth factors and rapid angiogenesis occurs in the immediate vicinity of an active osteoclast. 4,5 Osteoblast-derived bone sialoprotein (BSP...Cells Antigenic Marker Cells Cultured Alone Cells Co-Cultured (2d) MCF-7 MC3T3 MCF-7 MC3T3 human cytokeratin-+ -1 bone sialoprotein (BSP...proteins. Osteonectin, osteopontin and bone sialoprotein have been studied in a series of human breast cancers. 3,15-3 0 Immunohistochemical evaluation
Schwalbe, H J; Bamfaste, G; Franke, R P
1999-01-01
Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.
Gauthier, Rémy; Follet, Hélène; Langer, Max; Gineyts, Evelyne; Rongiéras, Frédéric; Peyrin, Françoise; Mitton, David
2018-07-01
Human cortical bone fracture processes depend on the internal porosity network down to the lacunar length scale. Recent results show that at the collagen scale, the maturation of collagen cross-links may have a negative influence on bone mechanical behavior. While the effect of pentosidine on human cortical bone toughness has been studied, the influence of mature and immature enzymatic cross-links has only been studied in relation to strength and work of fracture. Moreover, these relationships have not been studied on different paired anatomical locations. Thus, the aim of the current study was to assess the relationships between both enzymatic and non-enzymatic collagen cross-links and human cortical bone toughness, on four human paired anatomical locations. Single Edge Notched Bending toughness tests were performed for two loading conditions: a quasi-static standard condition, and a condition representative of a fall. These tests were done with 32 paired femoral diaphyses, femoral necks and radial diaphyses (18 women, age 81 ± 12 y.o.; 14 men, age 79 ± 8 y.o.). Collagen enzymatic and non-enzymatic crosslinks were measured on the same bones. Maturation of collagen was defined as the ratio between immature and mature cross-links (CX). The results show that there was a significant correlation between collagen cross-link maturation and bone toughness when gathering femoral and radial diaphyses, but not when considering each anatomical location individually. These results show that the influence of collagen enzymatic and non-enzymatic cross-links is minor when considering human cortical bone crack propagation mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Micro-CT characterization of human trabecular bone in osteogenesis imperfecta
NASA Astrophysics Data System (ADS)
Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald
2011-03-01
Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.
Rao, Reeta Prusty; Hunter, Ally; Kashpur, Olga; Normanly, Jennifer
2010-01-01
Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp. PMID:20233857
T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.
Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F
2016-09-01
TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.
Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans
NASA Technical Reports Server (NTRS)
Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.
2004-01-01
Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.
Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting.
Huang, J S; Wilkie, S J; Sullivan, M P; Grinspoon, S
2001-08-01
Women with acquired immune deficiency syndrome wasting are at an increased risk of osteopenia because of low weight, changes in body composition, and hormonal alterations. Although women comprise an increasing proportion of human immunodeficiency virus-infected patients, prior studies have not investigated bone loss in this expanding population of patients. In this study we investigated bone density, bone turnover, and hormonal parameters in 28 women with acquired immune deficiency syndrome wasting and relative androgen deficiency (defined as free testosterone < or =3.0 pg/ml, weight < or =90% ideal body weight, weight loss > or =10% from preillness maximum weight, or weight <100% ideal body weight with weight loss > or =5% from preillness maximum weight). Total body (1.04 +/- 0.08 vs. 1.10 +/- 0.07 g/cm2, human immunodeficiency virus-infected vs. control respectively; P < 0.01), anteroposterior lumbar spine (0.94 +/- 0.12 vs. 1.03 +/- 0.09 g/cm2; P = 0.005), lateral lumbar spine (0.71 +/- 0.14 vs. 0.79 +/- 0.09 g/cm2; P = 0.02), and hip (Ward's triangle; 0.68 +/- 0.14 vs. 0.76 +/- 0.12 g/cm2; P = 0.05) bone density were reduced in the human immunodeficiency virus-infected compared with control subjects. Serum N-telopeptide, a measure of bone resorption, was increased in human immunodeficiency virus-infected patients, compared with control subjects (14.6 +/- 5.8 vs. 11.3 +/- 3.8 nmol/liter bone collagen equivalents, human immunodeficiency virus-infected vs. control respectively; P = 0.03). Although body mass index was similar between the groups, muscle mass was significantly reduced in the human immunodeficiency virus-infected vs. control subjects (16 +/- 4 vs. 21 +/- 4 kg, human immunodeficiency virus-infected vs. control, respectively; P < 0.0001). In univariate regression analysis, muscle mass (r = 0.53; P = 0.004) and estrogen (r = 0.51; P = 0.008), but not free testosterone (r = -0.05, P = 0.81), were strongly associated with lumbar spine bone density in the human immunodeficiency virus-infected patients. The association between muscle mass and bone density remained significant, controlling for body mass index, hormonal status, and age (P = 0.048) in multivariate regression analysis. These data indicate that both hormonal and body composition factors contribute to reduced bone density in women with acquired immune deficiency syndrome wasting. Anabolic strategies to increase muscle mass may be useful to increase bone density among osteopenic women with acquired immune deficiency syndrome wasting.
Amiable, Nathalie; Tat, Steeve Kwan; Lajeunesse, Daniel; Duval, Nicolas; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Boileau, Christelle
2009-06-01
In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.
Lu, Hongbin; Chen, Can; Xie, Shanshan; Tang, Yifu; Qu, Jin
2018-05-21
Most studies concerning to tendon healing and incorporation into bone are mainly based on animal studies due to the invasive nature of the biopsy procedure. The evidence considering tendon graft healing to bone in humans is limited in several case series or case reports, and therefore, it is difficult to understand the healing process. A computerized search using relevant search terms was performed in the PubMed, EMBASE, Scopus, and Cochrane Library databases, as well as a manual search of reference lists. Searches were limited to studies that investigated tendon graft healing to bone by histologic examination after anterior cruciate ligament (ACL) reconstruction with hamstring. Ten studies were determined to be eligible for this systematic review. Thirty-seven cases were extracted from the included studies. Most studies showed that a fibrovascular interface would form at the tendon-bone interface at the early stage and a fibrous indirect interface with Sharpey-like fibers would be expected at the later stage. Cartilage-like tissue at tendon graft-bone interface was reported in three studies. Tendon graft failed to integrate with the surrounding bone in 10 of the 37 cases. Unexpectedly, suspensory type of fixation was used for the above failure cases. An indirect type of insertion with Sharpey-like fibers at tendon-bone interface could be expected after ACL reconstruction with hamstring. Regional cartilage-like tissue may form at tendon-bone interface occasionally. The underlying tendon-to-bone healing process is far from understood in the human hamstring ACL reconstruction. Further human studies are highly needed to understand tendon graft healing in bone tunnel after hamstring ACL reconstruction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki
2014-01-01
Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300
QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER
Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.
2010-01-01
The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087
Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen
2016-01-01
Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects. PMID:27118977
Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M
2008-08-01
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.
Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W.; Zurita, Amado J.; Liu, Jie; Sikes, Charles; Multani, Asha S.; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V.; Prieto, Victor G.; Kundra, Vikas; Vazquez, Elba S.; Troncoso, Patricia; Raymond, Austin K.; Logothetis, Christopher J.; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M.
2008-01-01
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor–negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer–induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor–null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells. PMID:18618013
Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L
2016-05-01
Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.
Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.
2016-01-01
Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353
Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen
2014-03-01
Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A forensic application of the model is explained in which impacts to the arm have been reconstructed using the finite element model of THUMS. The advantage of the numerical method is that a wide range of impact conditions can be easily reconstructed. Impact velocity has been changed as a parameter to find the tolerance levels of injuries to the lower arm. The method can be further developed to study the assaults and the injury mechanism which can lead to severe traumatic injuries in forensic cases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The impact of microgravity on bone in humans.
Grimm, Daniela; Grosse, Jirka; Wehland, Markus; Mann, Vivek; Reseland, Janne Elin; Sundaresan, Alamelu; Corydon, Thomas Juhl
2016-06-01
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.
Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.
Prisby, Rhonda D
2014-07-01
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.
Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone
Prisby, Rhonda D.
2014-01-01
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p <0.05) in old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p <0.05) 262%, 375% and 263%, respectively, in old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in “microvascular dead space” in regards to loss of patency and vasomotor function as opposed to necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721
Andrade, Nicholas S; Flynn, John P; Bartanusz, Viktor
2013-11-01
After decades of clinical research, the role of surgery for chronic nonspecific low back pain (CNLBP) remains equivocal. Despite significant intellectual, human, and economic investments into randomized controlled trials (RCTs) in the past two decades, the role of surgery in the treatment for CNLBP has not been clarified. To delineate the historical research agenda of surgical RCTs for CNLBP performed between 1993 and 2012 investigating whether conclusions from earlier published trials influenced the choice of research questions of subsequent RCTs on elucidating the role of surgery in the management of CNLBP. Literature review. We searched the literature for all RCTs involving surgery for CNLBP. We reviewed relevant studies to identify the study question, comparator arms, and sample size. Randomized controlled trials were classified as "indication" trials if they evaluated the effectiveness of surgical therapy versus nonoperative care or as "technical" if they compared different surgical techniques, adjuncts, or procedures. We used citation analysis to determine the impact of trials on subsequent research in the field. Altogether 33 technical RCTs (3,790 patients) and 6 indication RCTs (981 patients) have been performed. Since 2007, despite the unclear benefits of surgery reported by the first four indication trials published in 2001 to 2006, technical trials have continued to predominate (16 vs. 2). Of the technical trials, types of instrumentation (13 trials, 1,332 patients), bone graft materials and substitutes (11 trials, 833 patients), and disc arthroplasty versus fusion (5 trials, 1,337 patients) were the most common comparisons made. Surgeon authors have predominantly cited one of the indication trials that reported more favorable results for surgery, despite a lack of superior methodology or sample size. Trials evaluating bone morphogenic protein, instrumentation, and disc arthroplasty were all cited more frequently than the largest trial of surgical versus nonsurgical therapy. The research agenda of RCTs for surgery of CNLBP has not changed substantially in the last 20 years. Technical trials evaluating nuances of surgical techniques significantly predominate. Despite the publication of four RCTs reporting equivocal benefits of surgery for CNLBP between 2001 and 2006, there was no change in the research agenda of subsequent RCTs, and technical trials continued to outnumber indication trials. Rather than clarifying what, if any, indications for surgery exist, investigators in the field continue to analyze variations in surgical technique, which will probably have relatively little impact on patient outcomes. As a result, clinicians unfortunately have little evidence to advise patients regarding surgical intervention for CNLBP. Copyright © 2013 Elsevier Inc. All rights reserved.
Surface modifications of the Sima de los Huesos fossil humans.
Andrews, P; Fernandez Jalvo, Y
1997-01-01
The sample of fossil human bones from the Sima de los Huesos, Atapuerca, has been analysed to trace parts of its taphonomic history. The work reported here is restricted to analysis of the skeletal elements preserved and their surface modifications. Preliminary plans of specimen distribution published 6 years ago indicate that the skeletal elements are dispersed within the cave, but more recent data are not yet available. Most of the fossils are broken, with some breakage when the bone was fresh and some when already partly mineralized, both types showing some rounding. There are few longitudinal breaks on shafts of long bones and so very few bone splinters. All skeletal elements are preserved but in unequal proportions, with elements like femora, humeri and mandibles and teeth with greater structural density being best represented. There is no evidence of weathering or of human damage such as cut marks on any of the human assemblage, but trampling damage is present on most bones. Carnivore damage is also common, with some present on more than half the sample, but it is mostly superficial, either on the surfaces of shafts and articular ends or on the edges of spiral breaks. The sizes and distribution of the carnivore pits indicate extensive canid activity, and this is interpreted as scavenging of the bones in place in the cave. Indications of tooth marks from a larger carnivore indicate the activity possibly of a large felid: the marks are too large to be produced by small canids, with the larger marks concentrated on spiral breaks on the more robust bones, and there is no evidence of bone crushing and splintering in the manner of hyaenas. The nature of the SH human assemblage is also consistent with accumulation by humans, the evidence for this being the lack of other animals, especially the lack of herbivorous animals, associated with the humans, and the high number of individuals preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitz, H.; Jenkins, M.; Lodwick, J.
2000-02-01
A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometricmore » phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.« less
Smith, Martin J; James, Stephen; Pover, Tim; Ball, Nina; Barnetson, Victoria; Foster, Bethany; Guy, Carl; Rickman, John; Walton, Virginia
2015-09-01
Recent years have seen steady improvements in the recognition and interpretation of violence related injuries in human skeletal remains. Such work has at times benefited from the involvement of biological anthropologists in forensic casework and has often relied upon comparison of documented examples with trauma observed in skeletal remains. In cases where no such example exists investigators must turn to experimentation. The selection of experimental samples is problematic as animal proxies may be too dissimilar to humans and human cadavers may be undesirable for a raft of reasons. The current article examines a third alternative in the form of polyurethane plates and spheres marketed as viable proxies for human bone in ballistic experiments. Through subjecting these samples to a range of impacts from both modern and archaic missile weapons it was established that such material generally responds similarly to bone on a broad, macroscopic scale but when examined in closer detail exhibits a range of dissimilarities that call for caution in extrapolating such results to real bone. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan
2015-12-01
To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.
Jeffery, Justin J; Lux, Katie; Vogel, John S; Herrera, Wynetta D; Greco, Stephen; Woo, Ho-Hyung; AbuShahin, Nisreen; Pagel, Mark D; Chambers, Setsuko K
2014-04-01
Breast cancer cells preferentially home to the bone microenvironment, which provides a unique niche with a network of multiple bidirectional communications between host and tumor, promoting survival and growth of bone metastases. In the bone microenvironment, the c-fms proto-oncogene that encodes for the CSF-1 receptor, along with CSF-1, serves as one critical cytokine/receptor pair, functioning in paracrine and autocrine fashion. Previous studies concentrated on the effect of inhibition of host (mouse) c-fms on bone metastasis, with resulting decrease in osteolysis and bone metastases as a paracrine effect. In this report, we assessed the role of c-fms inhibition within the tumor cells (autocrine effect) in the early establishment of breast cancer cells in bone and the effects of this early c-fms inhibition on subsequent bone metastases and destruction. This study exploited a multidisciplinary approach by employing two non-invasive, in vivo imaging methods to assess the progression of bone metastases and bone destruction, in addition to ex vivo analyses using RT-PCR and histopathology. Using a mouse model of bone homing human breast cancer cells, we showed that an early one-time application of anti-human c-fms antibody delayed growth of bone metastases and bone destruction for at least 31 days as quantitatively measured by bioluminescence imaging and computed tomography, compared to controls. Thus, neutralizing human c-fms in the breast cancer cell alone decreases extent of subsequent bone metastasis formation and osteolysis. Furthermore, we are the first to show that anti-c-fms antibodies can impact early establishment of breast cancer cells in bone.
Two-wave propagation in in vitro swine distal ulna
NASA Astrophysics Data System (ADS)
Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko
2015-07-01
Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.
Cell Culturing of Cytoskeleton
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Cell Culturing of Cytoskeleton
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom
ERIC Educational Resources Information Center
McPherson, Jane; Cheatham, Leah P.
2015-01-01
This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…
Saito, H; Hatake, K; Dvorak, A M; Leiferman, K M; Donnenberg, A D; Arai, N; Ishizaka, K; Ishizaka, T
1988-01-01
Effects of recombinant human interleukins on hematopoiesis were explored by using suspension cultures of mononuclear cells of human umbilical-cord blood and bone marrow. The results showed that interleukin 5 induced the selective differentiation and proliferation of eosinophils. After 3 weeks in culture with interleukin 5, essentially all nonadherent cells in both bone marrow and cord blood cell cultures became eosinophilic myelocytes. Culture of the same cells with interleukin 4 resulted in the selective growth of OKT3+ lymphocytes. However, OKT3+ cells did not develop if the bone marrow cells were depleted of OKT3+/OKT11+ cells prior to the culture, indicating that interleukin 4 induced the proliferation of a subpopulation of resting T cells present in cord blood and bone marrow cell preparations. In suspension cultures of bone marrow cells and cord blood cells grown in the presence of interleukin 3, basophilic, eosinophilic, and neutrophilic myelocytes and macrophages developed within 2 weeks. By 3 weeks, however, the majority of nonadherent cells became eosinophilic myelocytes. In contrast to mouse bone marrow cell cultures, neither interleukin 3 nor a combination of interleukins 3 and 4 induced the differentiation of mast cells in human bone marrow or cord blood cell cultures. Images PMID:3258425
Numerical simulation of stress amplification induced by crack interaction in human femur bone
NASA Astrophysics Data System (ADS)
Alia, Noor; Daud, Ruslizam; Ramli, Mohammad Fadzli; Azman, Wan Zuki; Faizal, Ahmad; Aisyah, Siti
2015-05-01
This research is about numerical simulation using a computational method which study on stress amplification induced by crack interaction in human femur bone. Cracks in human femur bone usually occur because of large load or stress applied on it. Usually, the fracture takes longer time to heal itself. At present, the crack interaction is still not well understood due to bone complexity. Thus, brittle fracture behavior of bone may be underestimated and inaccurate. This study aims to investigate the geometrical effect of double co-planar edge cracks on stress intensity factor (K) in femur bone. This research focuses to analyze the amplification effect on the fracture behavior of double co-planar edge cracks, where numerical model is developed using computational method. The concept of fracture mechanics and finite element method (FEM) are used to solve the interacting cracks problems using linear elastic fracture mechanics (LEFM) theory. As a result, this study has shown the identification of the crack interaction limit (CIL) and crack unification limit (CUL) exist in the human femur bone model developed. In future research, several improvements will be made such as varying the load, applying thickness on the model and also use different theory or method in calculating the stress intensity factor (K).
Hambli, Ridha
2014-01-01
Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.
A concise review of testosterone and bone health
Mohamad, Nur-Vaizura; Soelaiman, Ima-Nirwana; Chin, Kok-Yong
2016-01-01
Osteoporosis is a condition causing significant morbidity and mortality in the elderly population worldwide. Age-related testosterone deficiency is the most important factor of bone loss in elderly men. Androgen can influence bone health by binding to androgen receptors directly or to estrogen receptors (ERs) indirectly via aromatization to estrogen. This review summarized the direct and indirect effects of androgens on bone derived from in vitro, in vivo, and human studies. Cellular studies showed that androgen stimulated the proliferation of preosteoblasts and differentiation of osteoblasts. The converted estrogen suppressed osteoclast formation and resorption activity by blocking the receptor activator of nuclear factor k-B ligand pathway. In animal studies, activation of androgen and ERα, but not ERβ, was shown to be important in acquisition and maintenance of bone mass. Human epidemiological studies demonstrated a significant relationship between estrogen and testosterone in bone mineral density and fracture risk, but the relative significance between the two remained debatable. Human experimental studies showed that estrogen was needed in suppressing bone resorption, but both androgen and estrogen were indispensable for bone formation. As a conclusion, maintaining optimal level of androgen is essential in preventing osteoporosis and its complications in elderly men. PMID:27703340
Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina
2013-09-01
As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. © 2013 American Academy of Forensic Sciences.
Different osteochondral potential of clonal cell lines derived from adult human trabecular bone.
Osyczka, Anna M; Nöth, Ulrich; Danielson, Keith G; Tuan, Rocky S
2002-06-01
Cells derived from human trabecular bones have been shown to have multipotential differentiation ability along osteogenic, chondrogenic, and adipogenic lineages. In this study, we have derived two clonal sublines of human trabecular bone cells by means of stable transduction with human papilloma virus E6/E7 genes. Our results showed that these clonal sublines differ in their osteochondral potential, but are equally adipogenic, indicative of the heterogeneous nature of the parental cell population. The availability of these cell lines should be useful for the analysis of the mechanisms regulating the differentiation of adult mesenchymal progenitor cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijngaard, A. van den; Boersma, C.J.C.; Olijve, W.
Bone morphogenetic protein-4 (BMP-4) is a member of the transforming growth factor-{beta} (TGF-{beta}) superfamily and is involved in morphogenesis and bone cell differentiation. Recombinant BMP-4 can induce ectopic cartilage and bone formation when implanted subcutaneously or intramuscularly in rodents. This ectopic bone formation process resembles the process of bone formation during embryogenesis and fracture healing. A cosmid clone containing the complete human bone morphogenetic protein-4 gene (BMP4) was isolated (details to be published elsewhere) and used as a probe to determine the precise chromosomal localization of the human BMP4 gene. This cosmid clone was labeled with biotin-14-dATP and hybridized inmore » situ to chromosomal preparations of metaphase cells as described previously. In 20 metaphase preparations, an intense and specific fluorescence signal (FITC) was detected on the q arm of chromosome 14. The DAPI-counterstained chromosomes were computer-converted into GTG-like banding patterns, allowing the regional localization of BMP4 within 14q22-q23. 10 refs., 1 fig.« less
Barbanti Brodano, G; Mazzoni, E; Tognon, M; Griffoni, C; Manfrini, M
2012-05-01
Spine fusion is the gold standard treatment in degenerative and traumatic spine diseases. The bone regenerative medicine needs (i) in vitro functionally active osteoblasts, and/or (ii) the in vivo induction of the tissue. The bone tissue engineering seems to be a very promising approach for the effectiveness of orthopedic surgical procedures, clinical applications are often hampered by the limited availability of bone allograft or substitutes. New biomaterials have been recently developed for the orthopedic applications. The main characteristics of these scaffolds are the ability to induce the bone tissue formation by generating an appropriate environment for (i) the cell growth and (ii) recruiting precursor bone cells for the proliferation and differentiation. A new prototype of biomaterials known as "bioceramics" may own these features. Bioceramics are bone substitutes mainly composed of calcium and phosphate complex salt derivatives. In this study, the characteristics bioceramics bone substitutes have been tested with human mesenchymal stem cells obtained from the bone marrow of adult orthopedic patients. These cellular models can be employed to characterize in vitro the behavior of different biomaterials, which are used as bone void fillers or three-dimensional scaffolds. Human mesenchymal stem cells in combination with biomaterials seem to be good alternative to the autologous or allogenic bone fusion in spine surgery. The cellular model used in our study is a useful tool for investigating cytocompatibility and biological features of HA-derived scaffolds.
Kusaba, Kiseki; Otaki, Joji M
2009-02-01
Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
Li, Shihong; Chang, Eric Y.; Bae, Won C.; Chung, Christine B.; Hua, Yanqing; Zhou, Yi; Du, Jiang
2014-01-01
Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2*s and/or relative fractions of short and long T2*s. Results: For all bone samples UTE T2* signal decay showed bicomponent behavior. A higher short T2* fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2* fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2* fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2* components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2*s and relative fractions can be assessed using UTE bicomponent analysis. Long T2* components are affected more by long T2 saturation and IR pulses, and short T2* components are affected more by fat saturation pulses. PMID:24506644
Roforth, Matthew M.; Fujita, Koji; McGregor, Ulrike I.; Kirmani, Salman; McCready, Louise K.; Peterson, James M.; Drake, Matthew T.; Monroe, David G.; Khosla, Sundeep
2013-01-01
Although aging is associated with a decline in bone formation in humans, the molecular pathways contributing to this decline remain unclear. Several previous clinical studies have shown that circulating sclerostin levels increase with age, raising the possibility that increased production of sclerostin by osteocytes leads to the age-related impairment in bone formation. Thus, in the present study, we examined circulating sclerostin levels as well as bone mRNA levels of sclerostin using quantitative polymerase chain reaction (QPCR) analyses in needle bone biopsies from young (mean age, 30.0 years) versus old (mean age, 72.9 years) women. In addition, we analyzed the expression of genes in a number of pathways known to be altered with skeletal aging, based largely on studies in mice. While serum sclerostin levels were 46% higher (p < 0.01) in the old as compared to the young women, bone sclerostin mRNA levels were no different between the two groups (p = 0.845). However, genes related to notch signaling were significantly upregulated (p = 0.003 when analyzed as a group) in the biopsies from the old women. In an additional analysis of 118 genes including those from genome-wide association studies related to bone density and/or fracture, BMP/TGFβ family genes, selected growth factors and nuclear receptors, and Wnt/Wnt-related genes, we found that mRNA levels of the Wnt inhibitor, SFRP1, were significantly increased (by 1.6-fold, p = 0.0004, false discovery rate [q] = 0.04) in the biopsies from the old as compared to the young women. Our findings thus indicate that despite increases in circulating sclerostin levels, bone sclerostin mRNA levels do not increase in elderly women. However, aging is associated with alterations in several key pathways and genes in humans that may contribute to the observed impairment in bone formation. These include notch signaling, which represents a potential therapeutic target for increasing bone formation in humans. Our studies further identified mRNA levels of SFRP1 as being increased in aging bone in humans, suggesting that this may also represent a viable target for the development of anabolic therapies for age-related bone loss and osteoporosis. PMID:24184314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shihong; Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040; Yancheng Medical College, Jiangsu
Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal modelsmore » were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can be assessed using UTE bicomponent analysis. Long T2{sup *} components are affected more by long T2 saturation and IR pulses, and short T2{sup *} components are affected more by fat saturation pulses.« less
Bartsiokas, Antonis
2002-05-01
The microstructure of a hominid cranial vault has not previously been studied to determine its tissue histology, and differences in comparison with that of modern humans. We selected the parietals of Omo-Kibish 1, regarded as one of the oldest (about 130,000 years old) anatomically modern humans, and Omo 1 (Howell), which is a very recent human (about 2,000 years old)-both from the same area of Ethiopia. A combination of macrophotography, polarizing microscopy in the incident and transmission illumination mode, and confocal laser scanning microscopy (CLSM) was employed to examine thin sections, as well as polished and unpolished block faces of unembedded bone fragments, to minimize specimen destruction as much as possible. The methods enabled remarkably detailed information on bone microstructure and remodeling to be gleaned from tiny fragments of bone. The best method for examining fossilized human bones was shown to be that of incident light microscopy, which was the least destructive while producing the most amount of information. Unless the above methods are used, bone-filling minerals, such as calcite, can cause erroneous estimations of bone thickness, as observations with the naked eye or even a magnifying glass cannot determine the limit between the cortex and the diploe. This is particularly important for sciences such as paleoanthropology, in which, for instance, a thick cranial bone of Homo erectus may be confused with a pathological one of H. sapiens and vice versa. Cross sections of parietal bones revealed differences between Omo-Kibish 1 and Omo 1 (Howell) in diploic histology and in the relative thickness between the cortex and diploe, with the former specimen having an H. erectus ratio despite its H. sapiens gross anatomy. Omo-Kibish 1 may still retain some affinities with H. erectus despite its being classified as H. sapiens. Newly described histological structures, such as the reverse type II osteons, the multicanalled osteons, and the osteocytomata are presented here. A modern human skeletal anatomy does not necessarily imply a modern human cranial bone histology. The outer circumferential lamellae of cranial bones are in essence growth lines. Cranial histology of hominids may provide useful information concerning their taxonomy and life history, including such factors as growth rate, developmental stress, and diet. Copyright 2002 Wiley-Liss, Inc.
Bones, Muscles, and Joints: The Musculoskeletal System
... Staying Safe Videos for Educators Search English Español Bones, Muscles, and Joints KidsHealth / For Teens / Bones, Muscles, ... to do everyday physical activities. What Are the Bones and What Do They Do? The human skeleton ...
Synchrotron Study of Strontium in Modern and Ancient Human Bones
NASA Astrophysics Data System (ADS)
Pingitore, N. E.; Cruz-Jimenez, G.
2001-05-01
Archaeologists use the strontium in human bone to reconstruct diet and migration in ancient populations. Because mammals discriminate against strontium relative to calcium, carnivores show lower bone Sr/Ca ratios than herbivores. Thus, in a single population, bone Sr/Ca ratios can discriminate a meat-rich from a vegetarian diet. Also, the ratio of 87-Sr to 86-Sr in soils varies with the underlying geology; incorporated into the food chain, this local signature becomes embedded in our bones. The Sr isotopic ratio in the bones of individuals or populations which migrate to a different geologic terrane will gradually change as bone remodels. In contrast, the isotopic ratio of tooth enamel is fixed at an early age and is not altered later in life. Addition of Sr to bone during post-mortem residence in moist soil or sediment compromises application of the Sr/Ca or Sr-isotope techniques. If this post-mortem Sr resides in a different atomic environment than the Sr deposited in vivo, x-ray absorption spectroscopy could allow us to distinguish pristine from contaminated, and thus unreliable, samples. Initial examination of a suite of modern and ancient human and animal bones by extended x-ray absorption fine structure (EXAFS) showed no obvious differences between the fresh and buried materials. We note, with obvious concern, that the actual location of Sr in modern bone is controversial: there is evidence both that Sr substitutes for Ca and that Sr is sorbed on the surfaces of bone crystallites. Additional material is being studied.
Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe
2015-12-01
To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.
Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh
2014-06-01
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
.... At an unknown date in the 1970s, a cremated human bone representing, at minimum, one individual was... 1970s, a cremated human bone representing, at minimum, one individual was removed from site CA-SDI- 1116... seed; 1 green fused shale biface tip; 1 burnt wonderstone flake; 2 burned worked faunal bone fragments...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... hematopoietic stem cells (HSCs) within peripheral blood in the definition of ``bone marrow.'' This would clarify... of whether they were recovered directly from bone marrow (by aspiration) or from peripheral blood (by... consideration.'' ``Human organ'' is defined to include ``bone marrow * * * or any subpart thereof'' or any organ...
Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei
2015-01-01
Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects.
Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud
2017-11-01
Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This construct revitalized and generated new bone tissue. This successful approach proposes a novel paradigm in the treatment of AVN, in which an engineered, vascularized osteogenic graft would be used as a germ to revitalize large volumes of necrotic bone. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Neandertals made the first specialized bone tools in Europe
Soressi, Marie; McPherron, Shannon P.; Lenoir, Michel; Dogandžić, Tamara; Goldberg, Paul; Jacobs, Zenobia; Maigrot, Yolaine; Martisius, Naomi L.; Miller, Christopher E.; Rendu, William; Richards, Michael; Skinner, Matthew M.; Steele, Teresa E.; Talamo, Sahra; Texier, Jean-Pierre
2013-01-01
Modern humans replaced Neandertals ∼40,000 y ago. Close to the time of replacement, Neandertals show behaviors similar to those of the modern humans arriving into Europe, including the use of specialized bone tools, body ornaments, and small blades. It is highly debated whether these modern behaviors developed before or as a result of contact with modern humans. Here we report the identification of a type of specialized bone tool, lissoir, previously only associated with modern humans. The microwear preserved on one of these lissoir is consistent with the use of lissoir in modern times to obtain supple, lustrous, and more impermeable hides. These tools are from a Neandertal context proceeding the replacement period and are the oldest specialized bone tools in Europe. As such, they are either a demonstration of independent invention by Neandertals or an indication that modern humans started influencing European Neandertals much earlier than previously believed. Because these finds clearly predate the oldest known age for the use of similar objects in Europe by anatomically modern humans, they could also be evidence for cultural diffusion from Neandertals to modern humans. PMID:23940333
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and... RADIOLOGY DEVICES Diagnostic Devices § 892.1180 Bone sonometer. (a) Identification. A bone sonometer is a device that transmits ultrasound energy into the human body to measure acoustic properties of bone that...
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and... RADIOLOGY DEVICES Diagnostic Devices § 892.1180 Bone sonometer. (a) Identification. A bone sonometer is a device that transmits ultrasound energy into the human body to measure acoustic properties of bone that...
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and... RADIOLOGY DEVICES Diagnostic Devices § 892.1180 Bone sonometer. (a) Identification. A bone sonometer is a device that transmits ultrasound energy into the human body to measure acoustic properties of bone that...
Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
Ramaswamy, Yogambha; Wu, Chengtie; Dunstan, Colin R; Hewson, Benjamin; Eindorf, Tanja; Anderson, Gail I; Zreiqat, Hala
2009-10-01
The host response to titanium alloy (Ti-6Al-4V) is not always favorable as a fibrous layer may form at the skeletal tissue-device interface, causing aseptic loosening. Recently, sphene (CaTiSiO(5)) ceramics were developed by incorporating Ti in the Ca-Si system, and found to exhibit improved chemical stability. The aim of this study is to evaluate the in vitro response of human osteoblast-like cells, human osteoclasts and human microvascular endothelial cells to sphene ceramics and determine whether coating Ti-6Al-4V implants with sphene enhances anchorage to surrounding bone. The study showed that sphene ceramics support human osteoblast-like cell attachment with organized cytoskeleton structure and express increased mRNA levels of osteoblast-related genes. Sphene ceramics were able to induce the differentiation of monocytes to form functional osteoclasts with the characteristic features of f-actin and alpha(v)beta(3) integrin, and express osteoclast-related genes. Human endothelial cells were also able to attach and express the endothelial cell markers ZO-1 and VE-Cadherin when cultured on sphene ceramics. Histological staining, enzyme histochemistry and immunolabelling were used for identification of mineralized bone and bone remodelling around the coated implants. Ti-6Al-4V implants coated with sphene showed new bone formation and filled the gap between the implants and existing bone in a manner comparable to that of the hydroxyapatite coatings used as control. The new bone was in direct contact with the implants, whereas fibrous tissue formed between the bone and implant with uncoated Ti-6Al-4V. The in vivo assessment of sphene-coated implants supports our in vitro observation and suggests that they have the ability to recruit osteogenic cells, and thus support bone formation around the implants and enhance osseointegration.
Steroid and xenobiotic receptor-mediated effects of bisphenol A on human osteoblasts.
Miki, Yasuhiro; Hata, Shuko; Nagasaki, Shuji; Suzuki, Takashi; Ito, Kiyoshi; Kumamoto, Hiroyuki; Sasano, Hironobu
2016-06-15
Bisphenol A, one of the industrial chemicals used in plastics and in the coating of dishes and medical equipment, behaves as an endocrine disruptor in the human body. Bisphenol A can bind directly to several types of nuclear receptors, including steroid and xenobiotic receptor (SXR). SXR plays an important role in bone metabolism through the activation of osteoblasts in vitro, but SXR protein localization has not been reported in bone tissues. Additionally, it is not known whether bisphenol A acts on osteoblasts through SXR activation. Therefore, in this study, we first examined the immunolocalization of the SXR protein in human adult and fetal bone tissues. We then examined the effects of bisphenol A on human osteoblasts in vitro. SXR immunoreactivity was detected in osteoblasts, but not in osteoclasts, of both adult and fetal bone tissues. In fetal bone tissues, the mesenchymal cells or fetal connective tissue were also positive for SXR immunoreactivity. Expression of SXR target genes (tsukushi, matrilin-2, and CYP3A4) and SXR response element-luciferase activity were increased by bisphenol A treatment in normal osteoblasts transfected with SXR (hFOB/SXR) and in osteoblast-like cells (MG-63). Bisphenol A also stimulated cell proliferation and collagen accumulation in hFOB/SXR cells. These results suggest that, as in other tissues, SXR plays important roles in bone metabolism and fetal bone development and that bisphenol A may disturb bone homeostasis in both adult and fetus through SXR. Copyright © 2016 Elsevier Inc. All rights reserved.
de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita
2012-08-01
The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.
The Use of Recombinant Human Platelet-Derived Growth Factor for Maxillary Sinus Augmentation.
Kubota, Atsushi; Sarmiento, Hector; Alqahtani, Mohammed Saad; Llobell, Arturo; Fiorellini, Joseph P
The maxillary sinus augmentation procedure has become a predictable treatment to regenerate bone for implant placement. The purpose of this study was to evaluate the effect of recombinant human platelet-derived growth factor BB (rhPDGF-BB) combined with a deproteinized cancellous bovine bone graft for sinus augmentation. The lateral window approach was used for maxillary sinuses with minimal residual bone. After a healing period of 4 months, dental implants were placed and then restored following a 2-month osseointegration period. The result demonstrated increased bone height and ISQ values and a 100% survival rate. This study indicates that the addition of rhPDGF-BB to deproteinized cancellous bovine bone accelerated the healing period in maxillary sinuses with minimal native bone.
Kan, C-Y; Wen, V W; Pasquier, E; Jankowski, K; Chang, M; Richards, L A; Kavallaris, M; MacKenzie, K L
2012-01-01
The immortalization process is a fundamental step in the development of most (if not all) human cancers, including the aggressive endothelial cell (EC)-derived malignancy angiosarcoma. Inactivation of the tumor suppressor p16INK4a and the development of multiple chromosomal abnormalities are features of angiosarcoma that are recapitulated during telomerase-mediated immortalization of human ECs in vitro. The present study used a panel of telomerase-immortalized bone marrow EC (BMEC) lines to define the consequences of inactivation of p16INK4a on EC function and to identify molecular changes associated with repression of p16INK4a. In a comparison of two immortalized BMEC mass cultures and six clones, the cell lines that repressed p16INK4a showed a higher rate of proliferation and an impaired ability to undergo morphogenic differentiation and form vessel-like structures in vitro. Proteomic comparison of a p16INK4a-negative and a p16INK4a-positive BMEC mass culture at early- and late-passage time points following transduction with telomerase reverse transcriptase (hTERT) revealed altered expression of cytoskeletal proteins, including vimentin and α-tropomyosin (αTm), in the immortal cells. Immunoblot analyses of a panel of 11 immortal clones showed that cells that lacked p16INK4a expression tended to accumulate more dramatic changes in these cytoskeletal proteins than cells that retained p16INK4a expression. This corresponded with aberrant cytoskeletal architectures among p16INK4a-negative clones, which featured thicker actin stress fibers and less fluid membrane ruffles than p16INK4a-positive cells. A direct link between p16INK4a repression and defective EC function was confirmed by analysis of normal cells transfected with small interfering RNA (siRNA) targeting p16INK4a. siRNA-mediated repression of p16INK4a significantly impaired random motility and vessel formation in vitro. This report is the first to demonstrate that ECs that repress the expression of p16INK4a are prone to defects in motility, morphogenesis and cytoskeletal organization. These defects are likely to reflect alterations that occur during the development of EC-derived malignancies. PMID:22310292
Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds
NASA Astrophysics Data System (ADS)
Lan, Sheeny K.
Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (< 10 microm) as well as the most extensive bone growth into micropores to date with bone penetration throughout rods 394 microm in diameter. The result is the first truly osteointegrated bone scaffolds with integration occurring at both the macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The presence of osteocytes within scaffold micropores is an indication of scaffold osteoinductivity because a chemotactic factor must be present to induce cell migration into pores on the order of the cell diameter. It is likely that the scaffold undergoes in vivo modifications involving formation of a biological apatite layer within scaffold micropores and possibly co-precipitation of endogenous osteoinductive proteins. To further investigate the effects of scaffold osteoinductivity, BCP scaffolds were implanted in porcine mandibular defects with rhBMP-2, which was partially sequestered in the micropores. Cell migration into osteoinductive scaffold micropores can be enhanced through the delivery of exogenous rhBMP-2 further promoting multi-scale osteointegration. Finally, endothelial colony forming cells (ECFCs) isolated from human umbilical cord blood (UCB) were evaluated in terms of their in vivo vasculogenic potential in the context of bone formation. This work was completed to determine if ECFCs could be utilized in a bone tissue engineering construct to promote neovascularization. ECFCs were combined with a BCP scaffold and rhBMP-2 and implanted subcutaneously on the abdominal wall of NOD/SCID mice. The result was formation of perfused human vessels within BCP scaffold macropores that were present at 4 weeks. The high density and persistence of human vessels at four weeks indicates that human UCB ECFCs exceed their reported in vivo vasculogenic potential when combined with rhBMP-2 and a BCP scaffold. This shows a dual role for BMP-2 in the context of bone regeneration. Collectively, the thesis demonstrates that (1) the design of synthetic bone scaffolds should include controlled multi-scale porosity to promote multi-scale osteointegration, which may significantly improve scaffold mechanical properties and (2) human umbilical cord blood-derived endothelial colony forming cells have potential for promoting neovascularization in a bone defect when combined with rhBMP-2.
Zinka, Bettina; Kandlbinder, Robert; Schupfner, Robert; Haas, Gerald; Wolfbeis, Otto S; Graw, Matthias
2012-01-01
Reliable determination of time since death in human skeletons or single bones often is limited by methodically difficulties. Determination of the specific activity ratio of natural radionuclides, in particular of 232Th (Thorium), 228Th and 228Ra (Radium) seems to be a new appropriate method to calculate the post mortem interval. These radionuclides are incorporated by any human being, mainly from food. So with an individual's death the uptake of radionuclides ends. But the decay of 232Th produces 228Ra and 228Th due to its decay series, whereas 228Th is continuously built up in the human's bones. Thus, it can be concluded that in all deceased humans at different times after death different activity ratios of 228Th to 228Ra will develop in bone. According to this fact it should be possible to calculate time since death of an individual by first analysing the specific activities of 228Th and 228Ra in bones of deceased and then determining the 228Th/228Ra activity ratio, which can be assigned to a certain post-mortem interval.
Doostmohammadi, A; Monshi, A; Fathi, M H; Karbasi, S; Braissant, O; Daniels, A U
2011-10-01
In this study, the cytotoxicity evaluation of prepared 63S bioactive glass and bone-derived hydroxyapatite particles with yeast and human chondrocyte cells was carried out using isothermal micro-nano calorimetry (IMNC), which is a new method for studying cell/biomaterial interactions. Bioactive glass particles were made via sol-gel method and hydroxyapatite was obtained from bovine bone. Elemental analysis was carried out by XRF and EDXRF. Amorphous structure of the glass and completely crystalline structure of HA were detected by XRD analysis. Finally, the cytotoxicity of bioactive glass and bone-derived HA particles with yeast and cultured human chondrocyte cells was evaluated using IMNC. The results confirmed the viability, growth and proliferation of human chondrocyte cells in contact with 63S bioactive glass, and bone-derived HA particles. Also the results indicated that yeast model which is much easier to handle, can be considered as a good proxy and can provide a rapid primary estimate of the ranges to be used in assays involving human cells. All of these results confirmed that IMNC is a convenient method which caters to measuring the cell-biomaterial interactions alongside the current methods.
Dependence of Long Bone Flexural Properties on Bone Mineral Distribution
NASA Technical Reports Server (NTRS)
Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)
1995-01-01
The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.
Pau, H; Fagan, P; Oleskevich, S
2006-11-01
To investigate the location of the scala media in relation to the round window niche in human temporal bones. Ten human temporal bones were investigated by radical mastoidectomy and promontory drill-out. Temporal bone laboratory. The distance from the scala media to the anterior edge of the round window niche, measured by Fisch's stapedectomy measuring cylinders. The scala media was identified at the transection point of a vertical line 1.6 to 2.2 mm (mean=1.8 mm; standard deviation=0.2) anterior to the anterior edge of the round window niche and a horizontal line 0.2 mm inferior to the lower border of the oval window. This report demonstrates the point of entry into the scala media via the promontory in fixed temporal bone models, which may provide a site of entry for stem cells and gene therapy insertion.
Age and sex bias in the reconstruction of past population structures.
Bello, Silvia M; Thomann, Aminte; Signoli, Michel; Dutour, Olivier; Andrews, Peter
2006-01-01
Palaeodemographical studies are founded on the assumption that the sex and age distribution of the skeletal sample reflects the constitution of the original population. It is becoming increasingly clear, however, that the type and amount of information that may be derived from osteoarchaeological collections are related to the state of preservation of remains. This work proposes a new method to evaluate bone preservation, to identify age and sex biases in the preservation of human skeletal remains, and to assess whether differences in preservation patterns are more dependent on factors intrinsic or extrinsic to anatomical features of human bones. Three osteological collections and over 600 skeletons were observed. The state of preservation of human bones was assessed using three preservation indexes: the anatomical preservation index (API), the bone representation index (BRI), and the qualitative bone index (QBI). The results suggest that subadult skeletons are generally more poorly preserved and with bones less well-represented than adult skeletons. Among subadults, female and male skeletons have different patterns of preservation according to their age. This pattern of preservation depends on intrinsic anatomical properties of bones themselves, while external factors can only increase these differences in the state of preservation and representation of osseous remains. It is concluded from this that failure to recognize these differences may lead to misleading interpretations of paleodemography of past human populations.
NASA Astrophysics Data System (ADS)
Carvalho, M. L.; Marques, A. F.; Brito, J.
2003-01-01
This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.
Automatic and hierarchical segmentation of the human skeleton in CT images.
Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan
2017-04-07
Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.
Automatic and hierarchical segmentation of the human skeleton in CT images
NASA Astrophysics Data System (ADS)
Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan
2017-04-01
Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.
Asshoff, Malte; Petzer, Verena; Warr, Matthew R.; Haschka, David; Tymoszuk, Piotr; Demetz, Egon; Seifert, Markus; Posch, Wilfried; Nairz, Manfred; Maciejewski, Pat; Fowles, Peter; Burns, Christopher J.; Smith, Gregg; Wagner, Kay-Uwe; Weiss, Guenter; Whitney, J. Andrew
2017-01-01
Patients with myelofibrosis (MF) often develop anemia and frequently become dependent on red blood cell transfusions. Results from a phase 2 study for the treatment of MF with the Janus kinase 1/2 (JAK1/2) inhibitor momelotinib (MMB) demonstrated that MMB treatment ameliorated anemia, which was unexpected for a JAK1/2 inhibitor, because erythropoietin-mediated JAK2 signaling is essential for erythropoiesis. Using a rat model of anemia of chronic disease, we demonstrated that MMB treatment can normalize hemoglobin and red blood cell numbers. We found that this positive effect is driven by direct inhibition of the bone morphogenic protein receptor kinase activin A receptor, type I (ACVR1), and the subsequent reduction of hepatocyte hepcidin production. Of note, ruxolitinib, a JAK1/2 inhibitor approved for the treatment of MF, had no inhibitory activity on this pathway. Further, we demonstrated the effect of MMB is not mediated by direct inhibition of JAK2-mediated ferroportin (FPN1) degradation, because neither MMB treatment nor myeloid-specific deletion of JAK2 affected FPN1 expression. Our data support the hypothesis that the improvement of inflammatory anemia by MMB results from inhibition of ACVR1-mediated hepcidin expression in the liver, which leads to increased mobilization of sequestered iron from cellular stores and subsequent stimulation of erythropoiesis. PMID:28188131
Saad, Kawakeb; Theis, Susanne; Otto, Anthony; Luke, Graham; Patel, Ketan
2017-04-30
The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages. Copyright © 2017 Elsevier B.V. All rights reserved.
Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Park, So Yun; Lee, Sukchan; Lee, Taek-Kyun
2017-02-01
Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017. © 2016 Wiley Periodicals, Inc.
Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L
2017-01-01
Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.
Zhao, Liangliang; Li, Yafeng; Song, Delu; Song, Ying; Theurl, Milan; Wang, Chenguang; Cwanger, Alyssa; Su, Guanfang; Dunaief, Joshua L.
2015-01-01
The retina can be shielded by the blood-retinal barrier. Because photoreceptors are damaged by excess iron, it is important to understand whether the blood-retinal barrier protects against high serum iron levels. Bone morphogenic protein 6 (Bmp6) knockout mice have serum iron overload. Herein, we tested whether the previously documented retinal iron accumulation in Bmp6 knockout mice might result from the high serum iron levels or, alternatively, low levels of retinal hepcidin, an iron regulatory hormone whose transcription can be up-regulated by Bmp6. Furthermore, to determine whether increases in serum iron can elevate retinal iron levels, we i.v. injected iron into wild-type mice. Retinas were analyzed by real-time quantitative PCR and immunofluorescence to assess the levels of iron-regulated genes/proteins and oxidative stress. Retinal hepcidin mRNA levels in Bmp6 knockout retinas were the same as, or greater than, those in age-matched wild-type retinas, indicating that Bmp6 knockout does not cause retinal hepcidin deficiency. Changes in mRNA levels of L ferritin and transferrin receptor indicated increased retinal iron levels in i.v. iron-injected wild-type mice. Oxidative stress markers were elevated in photoreceptors of mice receiving i.v. iron. These findings suggest that elevated serum iron levels can overwhelm local retinal iron regulatory mechanisms. PMID:25174877
Applications of Microscale Technologies for Regenerative Dentistry
Hacking, S.A.; Khademhosseini, A.
2009-01-01
While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration. Abbreviations: AS, adult stem cell; BMP, bone morphogenic protein; ECM, extracellular matrix; ES, embryonic stem cell; HA, hydroxyapatite; FGF-2, fibroblast growth factor; iPS, inducible pleuripotent stem cell; IGF-1, insulin-like growth factor; PDGF, platelet-derived growth factor; PDMS, poly(dimethylsiloxane); PGA, polyglycolate; PGS, polyglycerol sebacate; PLGA, poly-L-lactate-co-glycolate; PLL, poly-L-lactate; RGD, Arg-Gly-Asp attachment site; TCP, tricalcium phosphate; TGF-β, transforming growth factor beta; and VEGF, vascular endothelial growth factor. PMID:19493883
Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas
Naye, François; Voz, Marianne L.; Detry, Nathalie; Hammerschmidt, Matthias; Peers, Bernard; Manfroid, Isabelle
2012-01-01
In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10−/−; fgf24−/− embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region. PMID:22219376
Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells
2017-12-01
using isogenic (mutant/complemented) human cell line pairs from patients with Fanconi anemia (FA), a heritable human bone marrow failure (BMF) syndrome ...small molecules could be therapeutically useful in reducing the risk of BMF in diseases such as Fanconi anemia, and perhaps after radiation exposure...damage-repair, DNA damage response, Fanconi anemia and associated bone marrow failure syndromes and environmental and molecular toxicology will all be
A 7-day continuous infusion of PTH or PTHrP suppresses bone formation and uncouples bone turnover.
Horwitz, Mara J; Tedesco, Mary Beth; Sereika, Susan M; Prebehala, Linda; Gundberg, Caren M; Hollis, Bruce W; Bisello, Alessandro; Garcia-Ocaña, Adolfo; Carneiro, Raquel M; Stewart, Andrew F
2011-09-01
Human in vivo models of primary hyperparathyroidism (HPT), humoral hypercalcemia of malignancy (HHM), or lactational bone mobilization for more than 48 hours have not been described previously. We therefore developed 7-day continuous-infusion models using human parathyroid hormone(1-34) [hPTH(1-34)] and human parathyroid hormone-related protein(1-36) [hPTHrP(1-36)] in healthy human adult volunteers. Study subjects developed sustained mild increases in serum calcium (10.0 mg/dL), with marked suppression of endogenous PTH(1-84). The maximal tolerated infused doses over a 7-day period (2 and 4 pmol/kg/h for PTH and PTHrP, respectively) were far lower than in prior, briefer human studies (8 to 28 pmol/kg/h). In contrast to prior reports using higher PTH and PTHrP doses, both 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] and tubular maximum for phosphorus (TmP/GFR) remained unaltered with these low doses despite achievement of hypercalcemia and hypercalciuria. As expected, bone resorption increased rapidly and reversed promptly with cessation of the infusion. However, in contrast to events in primary HPT, bone formation was suppressed by 30% to 40% for the 7 days of the infusions. With cessation of PTH and PTHrP infusion, bone-formation markers abruptly rebounded upward, confirming that bone formation is suppressed by continuous PTH or PTHrP infusion. These studies demonstrate that continuous exposure of the human skeleton to PTH or PTHrP in vivo recruits and activates the bone-resorption program but causes sustained arrest in the osteoblast maturation program. These events would most closely mimic and model events in HHM. Although not a perfect model for lactation, the increase in resorption and the rebound increase in formation with cessation of the infusions are reminiscent of the maternal skeletal calcium mobilization and reversal that occur following lactation. The findings also highlight similarities and differences between the model and HPT. Copyright © 2011 American Society for Bone and Mineral Research.
2013-04-29
transduction of human mesenchymal stem cells (MSCs), BMP2 was not detectable by Western blotting, whereas high levels of the protein were produced by A549 (human... mesenchymal stem cells , generating high levels of BMP2. When Ad5BMP2 or Ad5F35BMP2 were compared in vitro for their ability to induce BMP2 synthesis...in human mesenchymal stem cells and in vivo for their ability to stimulate formation of heterotopic bone, mineralized bone was radiologically
Chunxiao, Wang; Yu, Zhang; Wentao, Liu; Jingjing, Liu; Jiahui, Ye; Qingmei, Chen
2012-12-18
Osteoporosis is a skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, and it is a serious threat to human lives. We previously showed that the N-terminal peptide analog of human parathyroid hormone (Pro-Pro-PTH(1-34)) enhanced plasma calcium concentration. In this paper, we study the impact of PTH N-terminal fragment analog on the structure, component, and mechanical properties of the rat bones. Daily subcutaneous injections of Pro-Pro-hPTH (1-34) induces 26.5-32.8% increase in femur bone mineral density (BMD), 23.0-34.2% decrease the marrow cavity or increase in trabecular bone area. The peptide also increases 16.0-59.5%, 28.8-48.2% and 14.0-17.8% of bone components of calcium, phosphorus and collagen, respectively. In terms of mechanic properties, administration of the peptide elevates the bone rigidity by 45.4-76.6%, decreases the flexibility by 23.0-31.6%, and improves modulus of elasticity by 32.8-63.4%. The results suggest that Pro-Pro-hPTH (1-34) has a positive effect on bone growth and strength, and possesses anti-fracture capability, thus a potential candidate for the application for the treatment of osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng
2017-06-08
A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental epithelium by temporally controlling the function of BMP4. A novel tooth-periodontium complex structure was generated using the epithelium.
Schaeren, Stefan; Jaquiéry, Claude; Wolf, Francine; Papadimitropoulos, Adam; Barbero, Andrea; Schultz-Thater, Elke; Heberer, Michael; Martin, Ivan
2010-03-15
In this study, we addressed whether Bone Sialoprotein (BSP) coating of various substrates could enhance the in vitro osteogenic differentiation and in vivo bone formation capacity of human Bone Marrow Stromal Cells (BMSC). Moreover, we tested whether synthetic polymer-based porous scaffolds, despite the absence of a mineral component, could support ectopic bone formation by human BMSC if coated with BSP. Adsorption of recombinant human BSP on tissue culture-treated polystyrene (TCTP), beta-tricalcium phosphate (Osteologic) or synthetic polymer (Polyactive) substrates was dose dependent, but did not consistently accelerate or enhance in vitro BMSC osteogenic differentiation, as assessed by the mRNA expression of osteoblast-related genes. Similarly, BSP coating of porous beta-tricalcium phosphate scaffolds (Skelite) did not improve the efficiency of bone tissue formation following loading with BMSC and ectopic implantation in nude mice. Finally, Polyactive foams seeded with BMSC did not form bone tissue in the same ectopic assay, even if coated with BSP. We conclude that BSP coating of a variety of substrates is not directly associated with an enhancement of osteoprogenitor cell differentiation in vitro or in vivo, and that presentation of BSP on polymeric materials is not sufficient to prime BMSC functional osteoblastic differentiation in vivo. (c) 2009 Wiley Periodicals, Inc.
A Direct Role of Collagen Glycation in Bone Fracture
Poundarik, Atharva A.; Wu, Ping-Cheng; Evis, Zafer; Sroga, Grazyna E.; Ural, Ani; Rubin, Mishaela; Vashishth, Deepak
2015-01-01
Non-enzymatic glycation (NEG) is an age-related process accelerated by diseases like diabetes, and causes the accumulation of advanced glycation end-products (AGEs). NEG-mediated modification of bone’s organic matrix, principally collagen type-I, has been implicated in impairing skeletal physiology and mechanics. Here, we present evidence, from in vitro and in vivo models, and establish a causal relationship between collagen glycation and alterations in bone fracture at multiple length scales. Through atomic force spectroscopy, we established that NEG impairs collagen’s ability to dissipate energy. Mechanical testing of in vitro glycated human bone specimen revealed that AGE accumulation due to NEG dramatically reduces the capacity of organic and mineralized matrix to creep and caused bone to fracture under impact at low levels of strain (3000–5000 μstrain) typically associated with fall. Fracture mechanics tests of NEG modified human cortical bone of varying ages, and their age-matched controls revealed that NEG disrupted microcracking based toughening mechanisms and reduced bone propagation and initiation fracture toughness across all age groups. A comprehensive mechanistic model, based on experimental and modeling data, was developed to explain how NEG and AGEs are causal to, and predictive of bone fragility. Furthermore, fracture mechanics and indentation testing on diabetic mice bones revealed that diabetes mediated NEG severely disrupts bone matrix quality in vivo. Finally, we show that AGEs are predictive of bone quality in aging humans and have diagnostic applications in fracture risk. PMID:26530231
Svet-Moldavskaya, I A; Zinzar, S N; Svet-Moldavsky, G J; Arlin, Z; Vergara, C; Koziner, B; Clarkson, B D; Holland, J F
1983-08-01
Normal human sera induce the formation of fat-containing cells (FCC) in human bone marrow cultures. A nearly complete monolayer of FCC is formed after 7-14 days of cultivation with 20% human sera in the medium. FCC-inducing activity (FCCIA) is nondialyzable through 14,900-dalton cutoff membrane and is stable at 56 degrees C for 30 min. Abundant FCCIA was found in 83% of normal human sera but in only 20% of sera from untreated patients with different hemopoietic disorders and in 32% of treated leukemic patients. It is suggested that FCCIA may be involved in regulation of the bone marrow microenvironment an that it varies in normal individuals and in patients with different diseases.
Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A
2004-08-27
The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.
The character of gene expression of human periosteum used to form new tissue in allograft bone.
Kemppainen, Jessica; Yu, Qing; Alexander, John; Jacquet, Robin; Scharschmidt, Thomas; Landis, William
2014-08-01
Of more than 2 million segmental bone defects repaired annually with bone autografts and allografts, 15-40% fail. Improving healing rates may be approached with tissue engineering and use of periosteum overlying an allograft. The present study documents gene expression in human periosteum-allograft constructs compared to allografts alone. Strips of human cadaveric periosteum (26 years, f, distal femur) were sutured about sterilized human femoral cortical strut bone allograft (54 years, m) segments. After construct incubation (M199 supplemented medium) for 8 d, constructs and allografts alone were implanted in nude mice. At 10 and 20 weeks, constructs (N = 4, each group) and allografts (N = 2, each group) were retrieved and placed in RNAlater for quantitative PCR to determine expression of human- and murine-specific genes relevant to remodeling. Specimens were frozen-ground to powders and RNA was extracted, purified, reverse-transcribed, and amplified. Ribosomal protein (P0) was used to normalize sample quantities. Fold change plots were generated following statistical analyses comparing 20- to 10-week gene expression data. Allografts alone yielded no human-specific gene expression. Notable fold changes of human-specific alkaline phosphatase, bone sialoprotein, type I collagen, decorin, RANKL, RANK, cathepsin K, and osteocalcin in 20-week compared to 10-week specimens were found. Murine-specific expression of genes indicative of host mouse vascularization (RANK, type I collagen) was detected in both allograft alone and periosteum-allograft samples. Gene data confirm viable periosteum in constructs after 20 weeks. Relatively higher fold-change values of RANK, RANKL and cathepsin K indicate activities of osteoclast precursors, osteoclasts and osteoblasts involved in allograft remodeling during implantation. All additional genes of interest indicate osteoblast activity in new bone matrix formation. Gene data are directly correlated with previous and present histology work. The results of this study suggest that further investigations could help to establish whether autologous periosteum-allograft constructs could be used for the repair of bone defects.
Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.
Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L
2015-12-01
Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Microarchitecture and Bone Quality in the Human Calcaneus; Local Variations of Fabric Anisotropy
Souzanchi, M F; Palacio-Mancheno, P E; Borisov, Y; Cardoso, L; Cowin, SC
2012-01-01
The local variability of microarchitecture of human trabecular calcaneus bone is investigated using high resolution microCT scanning. The fabric tensor is employed as the measure of the microarchitecture of the pore structure of a porous medium. It is hypothesized that a fabric tensor-dependent poroelastic ultrasound approach will more effectively predict the data variance than will porosity alone. The specific aims of the present study are i) to quantify the morphology and local anisotropy of the calcaneus microarchitecture with respect to anatomical directions, ii) to determine the interdependence, or lack thereof, of microarchitecture parameters, fabric, and volumetric bone mineral density (vBMD), and iii) to determine the relative ability of vBMD and fabric measurements in evaluating the variance in ultrasound wave velocity measurements along orthogonal directions in the human calcaneus. Our results show that the microarchitecture in the analyzed regions of human calcanei is anisotropic, with a preferred alignment along the posterior-anterior direction. Strong correlation was found between most scalar architectural parameters and vBMD. However, no statistical correlation was found between vBMD and the fabric components, the measures of the pore microstructure orientation. Therefore, among the parameters usually considered for cancellous bone (i.e., classic histomorphometric parameters such as porosity, trabecular thickness, number and separation), only fabric components explain the data variance that cannot be explained by vBMD, a global mass measurement, which lacks the sensitivity and selectivity to distinguish osteoporotic from healthy subjects because it is insensitive to directional changes in bone architecture. This study demonstrates that a multi-directional, fabric-dependent poroelastic ultrasound approach has the capability of characterizing anisotropic bone properties (bone quality) beyond bone mass, and could help to better understand anisotropic changes in bone architecture using ultrasound. PMID:22807141
Wu, Tao; Shu, Tao; Kang, Le; Wu, Jinhui; Xing, Jianzhou; Lu, Zhiqin; Chen, Shuxiang; Lv, Jun
2017-04-01
For the treatment of diseases affecting bones using bone regenerative medicine, there is an urgent need to develop safe, inexpensive drugs that can strongly induce bone formation. In the present study, we systematically investigated the effects of icaritin, a metabolic product of icariin, on the osteogenic differentiation of human bone marrow‑derived mesenchymal stem cells (hBMSCs) and human adipose tissue‑derived stem cells (hADSCs) in vitro. After treatment with icaritin at concentrations of 10‑8-10‑5 M, hBMSCs and hADSCs were examined for alkaline phosphatase activity, osteocalcin (OC) secretion, matrix mineralization and expression levels of bone‑related mRNA and proteins. Data showed that icaritin at concentrations 10‑7-10‑5 M significantly increased alkaline phosphatase activity, OC secretion at different time points, and calcium deposition at day 21. In addition, icaritin upregulated the mRNA expression of genes for bone morphogenetic proteins (BMP‑2, ‑4 and ‑7), bone transcription factors (Runx2 and Dlx5) and bone matrix proteins (ALP, OC and Col‑1). Moreover, icaritin increased the protein levels of BMPs, Runx2 and OC, as detected by western blot analysis. These findings suggest that icaritin enhances the osteogenic differentiation of hBMSCS and hADSCs. Icaritin exerts its potent osteogenic effect possibly by directly stimulating the production of BMPs. Although the osteogenic activity of icaritin in vitro was inferior to that of rhBMP‑2, icaritin displayed better results than icariin. Moreover, the low cost, simple extraction procedure, and an abundance of icaritin make it appealing as a bone regenerative medicine.
Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih
2017-01-01
Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279
USDA-ARS?s Scientific Manuscript database
Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...
Martínez, I; Arsuaga, J L; Quam, R; Carretero, J M; Gracia, A; Rodríguez, L
2008-01-01
This study describes and compares two hyoid bones from the middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca (Spain). The Atapuerca SH hyoids are humanlike in both their morphology and dimensions, and they clearly differ from the hyoid bones of chimpanzees and Australopithecus afarensis. Their comparison with the Neandertal specimens Kebara 2 and SDR-034 makes it possible to begin to approach the question of temporal variation and sexual dimorphism in this bone in fossil humans. The results presented here show that the degree of metric and anatomical variation in the fossil sample was similar in magnitude and kind to living humans. Modern hyoid morphology was present by at least 530 kya and appears to represent a shared derived feature of the modern human and Neandertal evolutionary lineages inherited from their last common ancestor.
Wilhelmi, Verena; Seiler, Anja; Lampp, Katrin; Neff, Andreas; Guthe, Michael; Lobachev, Oleg
2016-01-01
The arrangement of microvessels in human bone marrow is so far unknown. We combined monoclonal antibodies against CD34 and against CD141 to visualise all microvessel endothelia in 21 serial sections of about 1 cm2 size derived from a human iliac crest. The specimen was not decalcified and embedded in Technovit® 9100. In different regions of interest, the microvasculature was reconstructed in three dimensions using automatic methods. The three-dimensional models were subject to a rigid semiautomatic and manual quality control. In iliac crest bone marrow, the adipose tissue harbours irregularly distributed haematopoietic areas. These are fed by networks of large sinuses, which are loosely connected to networks of small capillaries prevailing in areas of pure adipose tissue. Our findings are compatible with the hypothesis that capillaries and sinuses in human iliac crest bone marrow are partially arranged in parallel. PMID:27997569
Generation of clinical grade human bone marrow stromal cells for use in bone regeneration
Robey, Pamela G.; Kuznetsov, Sergei A.; Ren, Jiaqiang; Klein, Harvey G.; Sabatino, Marianna; Stroncek, David F.
2014-01-01
In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. PMID:25064527
Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.
Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela
2014-01-01
To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.
On the rat model of human osteopenias and osteoporoses
NASA Technical Reports Server (NTRS)
Frost, Harold M.; Jee, Webster S. S.
1992-01-01
The idea that rats cannot model human osteopenias errs. The same mechanisms control gains in bone mass (longitudinal bone growth and modeling drifts) and losses (BMU-based remodeling), in young and aged rats and humans. Furthermore, they respond similarly in rats and man to mechanical influences, hormones, drugs and other agents.
ADRA2A is involved in neuro-endocrine regulation of bone resorption
Mlakar, Vid; Jurkovic Mlakar, Simona; Zupan, Janja; Komadina, Radko; Prezelj, Janez; Marc, Janja
2015-01-01
Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2-adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A-AR in bone. The aim of this study was to investigate the presence of α2A-AR and its involvement in neuro-endocrine signalling of bone remodelling in humans. Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A-AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A-AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real-time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A-AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A-AR mRNA level in human bone samples through the stability of mRNA. α2A-AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A-AR is involved in neuro-endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A-AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis. PMID:25818344
Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta.
Jacobsen, Christina M; Barber, Lauren A; Ayturk, Ugur M; Roberts, Heather J; Deal, Lauren E; Schwartz, Marissa A; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G; Warman, Matthew L
2014-10-01
The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5(p.A214V) ) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5(+/p.A214V) mice to Col1a2(+/p.G610C) mice, which model human type IV OI. We found that Col1a2(+/p.G610C) ;Lrp5(+/p.A214V) offspring had significantly increased bone mass and strength compared to Col1a2(+/p.G610C) ;Lrp5(+/+) littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2(+/p.G610C) mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody-treated mice had significantly increased bone mass and strength compared to vehicle-treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.
Smith, Matthew J; Cook, James L; Kuroki, Keiichi; Jayabalan, Prakash S; Cook, Cristi R; Pfeiffer, Ferris M; Waters, Nicole P
2012-02-01
This study tested a bone-tendon allograft versus human dermis patch for reconstructing chronic rotator cuff repair by use of a canine model. Mature research dogs (N = 15) were used. Radiopaque wire was placed in the infraspinatus tendon (IST) before its transection. Three weeks later, radiographs showed IST retraction. Each dog then underwent 1 IST treatment: debridement (D), direct repair of IST to bone with a suture bridge and human dermis patch augmentation (GJ), or bone-tendon allograft (BT) reconstruction. Outcome measures included lameness grading, radiographs, and ultrasonographic assessment. Dogs were killed 6 months after surgery and both shoulders assessed biomechanically and histologically. BT dogs were significantly (P = .01) less lame than the other groups. BT dogs had superior bone-tendon, tendon, and tendon-muscle integrity compared with D and GJ dogs. Biomechanical testing showed that the D group had significantly (P = .05) more elongation than the other groups whereas BT had stiffness and elongation characteristics that most closely matched normal controls. Radiographically, D and GJ dogs showed significantly more retraction than BT dogs (P = .003 and P = .045, respectively) Histologically, GJ dogs had lymphoplasmacytic infiltrates, tendon degeneration and hypocellularity, and poor tendon-bone integration. BT dogs showed complete incorporation of allograft bone into host bone, normal bone-tendon junctions, and well-integrated allograft tendon. The bone-tendon allograft technique re-establishes a functional IST bone-tendon-muscle unit and maintains integrity of repair in this model. Clinical trials using this bone-tendon allograft technique are warranted. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts
Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.
2015-01-01
In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312
Animal Models of Bone Metastasis
Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.
2015-01-01
Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553
Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Olozak, I.; Chattopadhyay, N.; Butters, R. R.; Kifor, O.; Scadden, D. T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor playing key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone turnover and may play a role in the "reversal" phase of skeletal remodeling that follows osteoclastic resorption and precedes osteoblastic bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for such mononuclear cells present locally within the bone marrow microenvironment. Indeed, previous studies by other investigators have shown that raising Ca2+o either in vivo or in vitro stimulated the release of interleukin-6 (IL-6) from human peripheral blood monocytes, suggesting that these cells express a Ca2+o-sensing mechanism. In these earlier studies, however, the use of reverse transcription-polymerase chain reaction (RT-PCR) failed to detect transcripts for the CaR previously cloned from parathyroid and kidney in peripheral blood monocytes. Since we recently found that non-specific esterase-positive, putative monocytes isolated from murine bone marrow express the CaR, we reevaluated the expression of this receptor in human peripheral blood monocytes. Immunocytochemistry, flow cytometry, and Western blot analysis, performed using a polyclonal antiserum specific for the CaR, detected CaR protein in human monocytes. In addition, the use of RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products, identified CaR transcripts in the cells. Therefore, taken together, our data show that human peripheral blood monocytes possess both CaR protein and mRNA very similar if not identical to those expressed in parathyroid and kidney that could mediate the previously described, direct effects of Ca2+o on these cells. Furthermore, since mononuclear cells isolated from bone marrow also express the CaR, the latter might play some role in the "reversal" phase of bone remodeling, sensing local changes in Ca2+o resulting from osteoclastic bone resorption and secreting osteotropic cytokines or performing other Ca2+o-regulated functions that contribute to the control of bone turnover.
Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.
Hart, N H; Nimphius, S; Rantalainen, T; Ireland, A; Siafarikas, A; Newton, R U
2017-09-01
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.
Journey into Bone Models: A Review
Scheinpflug, Julia; Pfeiffenberger, Moritz; Damerau, Alexandra; Schwarz, Franziska; Textor, Martin; Lang, Annemarie
2018-01-01
Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed. PMID:29748516
Journey into Bone Models: A Review.
Scheinpflug, Julia; Pfeiffenberger, Moritz; Damerau, Alexandra; Schwarz, Franziska; Textor, Martin; Lang, Annemarie; Schulze, Frank
2018-05-10
Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed.
Worm, Paulo Valdeci; Ferreira, Nelson Pires; Ferreira, Marcelo Paglioli; Kraemer, Jorge Luiz; Lenhardt, Rene; Alves, Ronnie Peterson Marcondes; Wunderlich, Ricardo Castilho; Collares, Marcus Vinicius Martins
2012-05-01
Current methods to evaluate the biologic development of bone grafts in human beings do not quantify results accurately. Cranial burr holes are standardized critical bone defects, and the differences between bone powder and bone grafts have been determined in numerous experimental studies. This study evaluated quantitative computed tomography (QCT) as a method to objectively measure cranial bone density after cranial reconstruction with autografts. In each of 8 patients, 2 of 4 surgical burr holes were reconstructed with autogenous wet bone powder collected during skull trephination, and the other 2 holes, with a circular cortical bone fragment removed from the inner table of the cranial bone flap. After 12 months, the reconstructed areas and a sample of normal bone were studied using three-dimensional QCT; bone density was measured in Hounsfield units (HU). Mean (SD) bone density was 1535.89 (141) HU for normal bone (P < 0.0001), 964 (176) HU for bone fragments, and 453 (241) HU for bone powder (P < 0.001). As expected, the density of the bone fragment graft was consistently greater than that of bone powder. Results confirm the accuracy and reproducibility of QCT, already demonstrated for bone in other locations, and suggest that it is an adequate tool to evaluate cranial reconstructions. The combination of QCT and cranial burr holes is an excellent model to accurately measure the quality of new bone in cranial reconstructions and also seems to be an appropriate choice of experimental model to clinically test any cranial bone or bone substitute reconstruction.
Barber, F Alan
2013-09-01
To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Blockade of CD26 signaling inhibits human osteoclast development.
Nishida, Hiroko; Suzuki, Hiroshi; Madokoro, Hiroko; Hayashi, Mutsumi; Morimoto, Chikao; Sakamoto, Michiie; Yamada, Taketo
2014-11-01
Bone remodeling is maintained by the delicate balance between osteoblasts (OBs) and osteoclasts (OCs). However, the role of CD26 in regulating bone remodeling has not yet been characterized. We herein show that CD26 is preferentially expressed on normal human OCs and is intensely expressed on activated human OCs in osteolytic bone alterations. Macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (sRANKL) induced human OC differentiation, in association with CD26 expression on monocyte-macrophage lineage cells. CD26 expression was accompanied by increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which is crucial for early human OC differentiation. The humanized anti-CD26 monoclonal antibody, huCD26mAb, impaired the formation and function of tartrate-resistant acid phosphatase (TRAP)/CD26 positive multi-nucleated (nuclei > 3) OCs with maturation in the manner of dose-dependency. It was revealed that huCD26mAb inhibits early OC differentiation via the inactivation of MKK3/6, p38 MAPK and subsequent dephosphorylation of microphthalmia-associated transcription factor (mi/Mitf). These inhibitions occur immediately after RANKL binds to RANK on the human OC precursor cells and were demonstrated using the OC functional assays. huCD26mAb subsequently impaired OC maturation and bone resorption by suppressing the expression of TRAP and OC fusion proteins. In addition, p38 MAPK inhibitor also strongly inhibited OC formation and function. Our results suggest that the blockade of CD26 signaling impairs the development of human functional OCs by inhibiting p38 MAPK-mi/Mitf phosphorylation pathway and that targeting human OCs with huCD26mAb may have therapeutic potential for the treatment of osteolytic lesions following metastasis to alleviate bone destruction and reduce total skeletal-related events (SREs). © 2014 American Society for Bone and Mineral Research.
Mechanistic aspects of fracture and R-curve behavior in elk antler bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna
Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combinationmore » of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.« less
Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha
2017-02-14
Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The hedgehog/Gli signaling paradigm in prostate cancer
Chen, Mengqian; Carkner, Richard; Buttyan, Ralph
2011-01-01
Hedgehog is a ligand-activated signaling pathway that regulates Gli-mediated transcription. Although most noted for its role as an embryonic morphogen, hyperactive hedgehog also causes human skin and brain malignancies. The hedgehog-related gene anomalies found in these tumors are rarely found in prostate cancer. Yet surveys of human prostate tumors show concordance of high expression of hedgehog ligands and Gli2 that correlate with the potential for metastasis and therapy-resistant behavior. Likewise, prostate cancer cell lines express hedgehog target genes, and their growth and survival is affected by hedgehog/Gli inhibitors. To date, the preponderance of data supports the idea that prostate tumors benefit from a paracrine hedgehog microenvironment similar to the developing prostate. Uncertainty remains as to whether hedgehog’s influence in prostate cancer also includes aspects of tumor cell autocrine-like signaling. The recent findings that Gli proteins interact with the androgen receptor and affect its transcriptional output have helped to identify a novel pathway through which hedgehog/Gli might affect prostate tumor behavior and raises questions as to whether hedgehog signaling in prostate cancer cells is suitably measured by the expression of Gli target genes alone. PMID:21776292
Palczewska-Komsa, Mirona
2015-01-01
Since the beginning of the XXth there has been a constant increase in fluoride (F-) emissions into the environment, mainly due to the development of industry, the fluoridation of drinking water, and the widespread use of toothpaste containing fluoride. All these factors have resulted in an intensive accumulation of F- in the bodies of vertebrates, mainly in their bones. It is therefore reasonable to estimate the F- concentration in humans and other long-lived mammals. Accordingly, ecotoxicologists worldwide have looked for mammalian species that may serve as good bioindicators of environmental fluoride pollution. In contrast to ungulates, long-lived domestic mammals and wild carnivores have rarely been used for this purpose (including the dog, fox and raccoon dog). The main aims of this study were to: 1) investigate F- concentrations in bones obtained from humans, dog, fox and raccoon dog from northwestern Poland, 2) perform intra- and inter-specific comparisons of F- concentrations in the studied mammalian bones against the background of environmental and living conditions, 3) examine the relationship between concentrations of F- in bones and the age or age category of the studied mammals. The study material comprised bones of the hip joint obtained from 36 patients who underwent hip replacement in Szczecin, 43 dogs from Szczecin veterinary clinics, 32 foxes and 18 raccoon dogs provided by hunters, with the whole test material consisting of 129 samples. The indications of F- (using potentiometry with Thermo Orion ion-selective electrodes) were performed in triplicate. The F- concentration was expressed on a dry weight basis. Interspecific analysis showed that the largest number of differences in the concentrations of F- were between the fox and raccoon, and then between the dog and fox, and then between the dog and the wild canids (foxes and raccoon dogs together). Close statistically significant differences were also found between the samples from humans and the fox, and also between human and dog bones. There were no statistically significant differences in the concentrations of F- between humans and raccoons, humans and canids (dog, fox, raccoon dog together), and between dogs and raccoon dogs. Domesticated and wild canids are good bioindicators of environmental levels of fluoride, because they reflect the concentration of fluoride in bones observed in humans who lived in a similar area.
Hamilton Jr, David A; Reilly, Danielle; Wipf, Felix; Kamineni, Srinath
2015-01-01
AIM: To determine whether use of a precontoured olecranon plate provides adequate fixation to withstand supraphysiologic force in a comminuted olecranon fracture model. METHODS: Five samples of fourth generation composite bones and five samples of fresh frozen human cadaveric left ulnae were utilized for this study. The cadaveric specimens underwent dual-energy X-ray absorptiometry (DEXA) scanning to quantify the bone quality. The composite and cadaveric bones were prepared by creating a comminuted olecranon fracture and fixed with a pre-contoured olecranon plate with locking screws. Construct stiffness and failure load were measured by subjecting specimens to cantilever bending moments until failure. Fracture site motion was measured with differential variable resistance transducer spanning the fracture. Statistical analysis was performed with two-tailed Mann-Whitney-U test with Monte Carlo Exact test. RESULTS: There was a significant difference in fixation stiffness and strength between the composite bones and human cadaver bones. Failure modes differed in cadaveric and composite specimens. The load to failure for the composite bones (n = 5) and human cadaver bones (n = 5) specimens were 10.67 nm (range 9.40-11.91 nm) and 13.05 nm (range 12.59-15.38 nm) respectively. This difference was statistically significant (P ˂ 0.007, 97% power). Median stiffness for composite bones and human cadaver bones specimens were 5.69 nm/mm (range 4.69-6.80 nm/mm) and 7.55 nm/mm (range 6.31-7.72 nm/mm). There was a significant difference for stiffness (P ˂ 0.033, 79% power) between composite bones and cadaveric bones. No correlation was found between the DEXA results and stiffness. All cadaveric specimens withstood the physiologic load anticipated postoperatively. Catastrophic failure occurred in all composite specimens. All failures resulted from composite bone failure at the distal screw site and not hardware failure. There were no catastrophic fracture failures in the cadaveric specimens. Failure of 4/5 cadaveric specimens was defined when a fracture gap of 2 mm was observed, but 1/5 cadaveric specimens failed due to a failure of the triceps mechanism. All failures occurred at forces greater than that expected in postoperative period prior to healing. CONCLUSION: The pre-contoured olecranon plate provides adequate fixation to withstand physiologic force in a composite bone and cadaveric comminuted olecranon fracture model. PMID:26495247
Bone sialoprotein and its transcriptional regulatory mechanism.
Ogata, Y
2008-04-01
Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.
Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J; Waldt, Simone; Bauer, Jan S
2015-06-26
Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n=12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0-5.6% and 1.3-6.1%, respectively, and were not statistically significant (p>0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r=0.89-0.99; p<0.05). The correlation coefficients r were not significantly different for the two preservation methods (p>0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure and FEM-based ACM in human vertebrae and may both be used in corresponding in-vitro experiments in the context of osteoporosis.
Os incae: variation in frequency in major human population groups
HANIHARA, TSUNEHIKO; ISHIDA, HAJIME
2001-01-01
The variation in frequency of the Inca bone was examined in major human populations around the world. The New World populations have generally high frequencies of the Inca bone, whereas lower frequencies occur in northeast Asians and Australians. Tibetan/Nepalese and Assam/Sikkim populations in northeast India have more Inca bones than do neighbouring populations. Among modern populations originally derived from eastern Asian population stock, the frequencies are highest in some of the marginal isolated groups. In Central and West Asia as well as in Europe, frequency of the Inca bone is relatively low. The incidence of the complete Inca bone is, moreover, very low in the western hemisphere of the Old World except for Subsaharan Africa. Subsaharan Africans show as a whole a second peak in the occurrence of the Inca bone. Geographical and ethnographical patterns of the frequency variation of the Inca bone found in this study indicate that the possible genetic background for the occurrence of this bone cannot be completely excluded. Relatively high frequencies of the Inca bone in Subsaharan Africans indicate that this trait is not a uniquely eastern Asian regional character. PMID:11273039
Xue, Deting; Chen, Erman; Zhang, Wei; Gao, Xiang; Wang, Shengdong; Zheng, Qiang; Pan, Zhijun; Li, Hang; Liu, Ling
2017-03-28
Hesperetin has been suggested to be involved in bone strength. We aimed to investigate the effects of hesperetin on the osteogenic differentiation of human mesenchymal stem cells and its related mechanisms. We showed that hesperetin promoted osteogenic differentiation of human mesenchymal stem cells in vitro. It potentially exerts its effects via the ERK and Smad signaling pathways. Using a rat osteotomy model, we showed that human mesenchymal stem cells combined with a hesperetin/gelatin sponge scaffold resulted in accelerated fracture healing in vivo. Due to the low cost of hesperetin, it could be used as a growth factor for bone tissue engineering or surgical fracture treatment.
Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A
2013-12-01
In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.
Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling
2018-04-16
This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.
Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B
2014-11-07
Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. Copyright © 2014 Elsevier Ltd. All rights reserved.
DNA and bone structure preservation in medieval human skeletons.
Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B
2015-06-01
Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.
Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H
2011-11-01
Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.
Zigdon-Giladi, Hadar; Elimelech, Rina; Michaeli-Geller, Gal; Rudich, Utai; Machtei, Eli E
2017-07-01
Endothelial progenitor cells (EPCs) participate in angiogenesis and induce favorable micro-environments for tissue regeneration. The efficacy of EPCs in regenerative medicine is extensively studied; however, their safety profile remains unknown. Therefore, our aims were to evaluate the safety profile of human peripheral blood-derived EPCs (hEPCs) and to assess the long-term efficacy of hEPCs in bone tissue engineering. hEPCs were isolated from peripheral blood, cultured and characterized. β tricalcium phosphate scaffold (βTCP, control) or 10 6 hEPCs loaded onto βTCP were transplanted in a nude rat calvaria model. New bone formation and blood vessel density were analyzed using histomorphometry and micro-computed tomography (CT). Safety of hEPCs using karyotype analysis, tumorigenecity and biodistribution to target organs was evaluated. On the cellular level, hEPCs retained their karyotype during cell expansion (seven passages). Five months following local hEPC transplantation, on the tissue and organ level, no inflammatory reaction or dysplastic change was evident at the transplanted site or in distant organs. Direct engraftment was evident as CD31 human antigens were detected lining vessel walls in the transplanted site. In distant organs human antigens were absent, negating biodistribution. Bone area fraction and bone height were doubled by hEPC transplantation without affecting mineral density and bone architecture. Additionally, local transplantation of hEPCs increased blood vessel density by nine-fold. Local transplantation of hEPCs showed a positive safety profile. Furthermore, enhanced angiogenesis and osteogenesis without mineral density change was found. These results bring us one step closer to first-in-human trials using hEPCs for bone regeneration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Guichelaar, Teun; Emmelot, Maarten E; Rozemuller, Henk; Martini, Bianka; Groen, Richard W J; Storm, Gert; Lokhorst, Henk M; Martens, Anton C; Mutis, Tuna
2013-03-15
Regulatory T cells (Tregs) are potent tools to prevent graft-versus-host disease (GVHD) induced after allogeneic stem cell transplantation or donor lymphocyte infusions. Toward clinical application of Tregs for GVHD treatment, we investigated the impact of Tregs on the therapeutic graft-versus-tumor (GVT) effect against human multiple myeloma tumors with various immunogenicities, progression rates, and localizations in a humanized murine model. Immunodeficient Rag2(-/-)γc(-/-) mice, bearing various human multiple myeloma tumors, were treated with human peripheral blood mononuclear cell (PBMC) alone or together with autologous ex vivo cultured Tregs. Mice were analyzed for the in vivo engraftment, homing of T-cell subsets, development of GVHD and GVT. In additional in vitro assays, Tregs that were cultured together with bone marrow stromal cells were analyzed for phenotype and functions. Treatment with PBMC alone induced variable degrees of antitumor response, depending on the immunogenicity and the growth rate of the tumor. Coinfusion of Tregs did not impair the antitumor response against tumors residing within the bone marrow, irrespective of their immunogenicity or growth rates. In contrast, Tregs readily inhibited the antitumor effect against tumors growing outside the bone marrow. Exploring this remarkable phenomenon, we discovered that bone marrow stroma neutralizes the suppressive activity of Tregs in part via production of interleukin (IL)-1β/IL-6. We furthermore found in vitro and in vivo evidence of conversion of Tregs into IL-17-producing T cells in the bone marrow environment. These results provide new insights into the Treg immunobiology and indicate the conditional benefits of future Treg-based therapies.
Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle
Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.
2015-01-01
The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634
A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach.
Lei, Shuangyan; Frank, Matthew C; Anderson, Donald D; Brown, Thomas D
The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones. Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are "stacked" inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone. The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing. This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate.
Targeting the LRP5 pathway improves bone properties in a mouse model of Osteogenesis Imperfecta
Jacobsen, Christina M.; Barber, Lauren A.; Ayturk, Ugur M.; Roberts, Heather J.; Deal, Lauren E.; Schwartz, Marissa A.; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G.; Warman, Matthew L.
2014-01-01
The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis Imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not due to altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody treated mice had significantly increased bone mass and strength compared to vehicle treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. PMID:24677211