Sample records for human brain dynamics

  1. Dynamic Multi-Coil Shimming of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 Tesla and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite. PMID:21824794

  2. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    PubMed

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  3. Anatomical connectivity influences both intra- and inter-brain synchronizations.

    PubMed

    Dumas, Guillaume; Chavez, Mario; Nadel, Jacqueline; Martinerie, Jacques

    2012-01-01

    Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.

  4. Microglial Dynamics During Human Brain Development

    PubMed Central

    Menassa, David A.; Gomez-Nicola, Diego

    2018-01-01

    Microglial cells are thought to colonize the human cerebrum between the 4th and 24th gestational weeks. Rodent studies have demonstrated that these cells originate from yolk sac progenitors though it is not clear whether this directly pertains to human development. Our understanding of microglial cell dynamics in the developing human brain comes mostly from postmortem studies demonstrating that the beginning of microglial colonization precedes the appearance of the vasculature, the blood–brain barrier, astrogliogenesis, oligodendrogenesis, neurogenesis, migration, and myelination of the various brain areas. Furthermore, migrating microglial populations cluster by morphology and express differential markers within the developing brain and according to developmental age. With the advent of novel technologies such as RNA-sequencing in fresh human tissue, we are beginning to identify the molecular features of the adult microglial signature. However, this is may not extend to the much more dynamic and rapidly changing antenatal microglial population and this is further complicated by the scarcity of tissue resources. In this brief review, we first describe the various historic schools of thought that had debated the origin of microglial cells while examining the evidence supporting the various theories. We then proceed to examine the evidence we have accumulated on microglial dynamics in the developing human brain, present evidence from rodent studies on the functional role of microglia during development and finally identify limitations for the used approaches in human studies and highlight under investigated questions. PMID:29881376

  5. Linking brain, mind and behavior.

    PubMed

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  6. Brain Dynamics: Methodological Issues and Applications in Psychiatric and Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Pezard, Laurent

    The human brain is a complex dynamical system generating the EEG signal. Numerical methods developed to study complex physical dynamics have been used to characterize EEG since the mid-eighties. This endeavor raised several issues related to the specificity of EEG. Firstly, theoretical and methodological studies should address the major differences between the dynamics of the human brain and physical systems. Secondly, this approach of EEG signal should prove to be relevant for dealing with physiological or clinical problems. A set of studies performed in our group is presented here within the context of these two problematic aspects. After the discussion of methodological drawbacks, we review numerical simulations related to the high dimension and spatial extension of brain dynamics. Experimental studies in neurologic and psychiatric disease are then presented. We conclude that if it is now clear that brain dynamics changes in relation with clinical situations, methodological problems remain largely unsolved.

  7. The emergence of mind and emotion in the evolution of neocortex.

    PubMed

    Freeman, Walter J

    2011-01-01

    The most deeply transformative concept for the growth of 21st Century psychiatry is the constellation of the chaotic dynamics of the brain. Brains are no longer seen as rational systems that are plagued with emotional disorders reflecting primitives inherited from our animal ancestors. Brains are dynamical systems that continually create patterns by acting intentionally into the environment and shaping themselves in accord with the sensory consequences of their intended actions. Emotions are now seen not as reversions to animal behaviors but as the sources of force and energy that brains require for the actions they take to understand the world and themselves. Humans are unique in experiencing consciousness of their own actions, which they experience as conscience: guilt, shame, pride and joy. Chaotic brain dynamics strives always for unity and harmony, but as a necessary condition for adaptation to a changing world, it repeatedly lapses into disorder. The successes are seen in the normal unity of consciousness; the failures are seen in the disorders that we rightly label the schizophrenias and the less severe character disorders. The foundation for healthy unity is revealed by studies in the evolution of brains, in particular the way in which neocortex of mammals emerged from the primitive allocortex of reptiles. The amazing facts of brain dynamics are now falling into several places. The power-law connectivity of cortex supports the scale-free dynamics of the global workspace in brains ranging from mouse to whale. That dynamics in humans holds the secrets of speech and symbol utilization. By recursive interactions in vast areas of human neocortex the scale-free connectivity supports our unified consciousness. Here in this dynamics are to be sought the keys to understanding and treating the disorders that uniquely plague the human mind.

  8. A Culture-Behavior-Brain Loop Model of Human Development.

    PubMed

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dynamic reconfiguration of frontal brain networks during executive cognition in humans

    PubMed Central

    Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.

    2015-01-01

    The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898

  10. Long-term neural and physiological phenotyping of a single human

    PubMed Central

    Poldrack, Russell A.; Laumann, Timothy O.; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J.; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L.; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M.; Gordon, Evan; Snyder, Abraham Z.; Adeyemo, Babatunde; Petersen, Steven E.; Glahn, David C.; Reese Mckay, D.; Curran, Joanne E.; Göring, Harald H. H.; Carless, Melanie A.; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A.; Frick, Laurie; Marcotte, Edward M.; Mumford, Jeanette A.

    2015-01-01

    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders. PMID:26648521

  11. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.

    PubMed

    Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong

    2018-02-01

    The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.

  12. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    PubMed

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Brain and Cognitive Reserve: Translation via Network Control Theory

    PubMed Central

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2017-01-01

    Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411

  14. Cognition in action: imaging brain/body dynamics in mobile humans.

    PubMed

    Gramann, Klaus; Gwin, Joseph T; Ferris, Daniel P; Oie, Kelvin; Jung, Tzyy-Ping; Lin, Chin-Teng; Liao, Lun-De; Makeig, Scott

    2011-01-01

    We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method.

  15. Detrended fluctuation analysis of human brain electroencephalogram

    NASA Astrophysics Data System (ADS)

    Pan, C. P.; Zheng, B.; Wu, Y. Z.; Wang, Y.; Tang, X. W.

    2004-08-01

    With the detrended fluctuation analysis, we investigate dynamics of human brain electroencephalogram. Long-range temporal correlation and scaling behavior are observed, and certain characteristic of the Alzheimer's disease is revealed.

  16. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks

    PubMed Central

    Vanvinckenroye, Amaury; Vandewalle, Gilles; Chellappa, Sarah L.

    2016-01-01

    Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states. PMID:26885400

  17. Dynamics of the EEG of human brain in the gradient magnetic fields of geological faults in different geographical and climatic zones

    NASA Astrophysics Data System (ADS)

    Pobachenko, S. V.; Sokolov, M. V.; Grigoriev, P. E.; Vasilieva, I. V.

    2017-11-01

    There are presented the results of experimental studies of the dynamics of indices of the functional state of a person located within the zones characterized by anomalous parameters of spatial distribution of magnetic field vector values. It is shown that these geophysical modifications have a pronounced effect on the dynamics of electrical activity indices of the human brain, regardless of geographic and climatic conditions.

  18. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    NASA Astrophysics Data System (ADS)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  19. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain.

    PubMed

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-02-22

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.

  20. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain

    PubMed Central

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-01-01

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194

  1. Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.

    PubMed

    Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele

    2018-01-01

    Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.

  2. Age-related changes in the ease of dynamical transitions in human brain activity.

    PubMed

    Ezaki, Takahiro; Sakaki, Michiko; Watanabe, Takamitsu; Masuda, Naoki

    2018-06-01

    Executive functions, a set of cognitive processes that enable flexible behavioral control, are known to decay with aging. Because such complex mental functions are considered to rely on the dynamic coordination of functionally different neural systems, the age-related decline in executive functions should be underpinned by alteration of large-scale neural dynamics. However, the effects of age on brain dynamics have not been firmly formulated. Here, we investigate such age-related changes in brain dynamics by applying "energy landscape analysis" to publicly available functional magnetic resonance imaging data from healthy younger and older human adults. We quantified the ease of dynamical transitions between different major patterns of brain activity, and estimated it for the default mode network (DMN) and the cingulo-opercular network (CON) separately. We found that the two age groups shared qualitatively the same trajectories of brain dynamics in both the DMN and CON. However, in both of networks, the ease of transitions was significantly smaller in the older than the younger group. Moreover, the ease of transitions was associated with the performance in executive function tasks in a doubly dissociated manner: for the younger adults, the ability of executive functions was mainly correlated with the ease of transitions in the CON, whereas that for the older adults was specifically associated with the ease of transitions in the DMN. These results provide direct biological evidence for age-related changes in macroscopic brain dynamics and suggest that such neural dynamics play key roles when individuals carry out cognitively demanding tasks. © 2018 Wiley Periodicals, Inc.

  3. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    PubMed

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  4. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    PubMed Central

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  5. The evolutionary dynamics of language.

    PubMed

    Steels, Luc; Szathmáry, Eörs

    2018-02-01

    The well-established framework of evolutionary dynamics can be applied to the fascinating open problems how human brains are able to acquire and adapt language and how languages change in a population. Schemas for handling grammatical constructions are the replicating unit. They emerge and multiply with variation in the brains of individuals and undergo selection based on their contribution to needed expressive power, communicative success and the reduction of cognitive effort. Adopting this perspective has two major benefits. (i) It makes a bridge to neurobiological models of the brain that have also adopted an evolutionary dynamics point of view, thus opening a new horizon for studying how human brains achieve the remarkably complex competence for language. And (ii) it suggests a new foundation for studying cultural language change as an evolutionary dynamics process. The paper sketches this novel perspective, provides references to empirical data and computational experiments, and points to open problems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Complexity of EEG-signal in Time Domain - Possible Biomedical Application

    NASA Astrophysics Data System (ADS)

    Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert

    2002-07-01

    Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.

  7. Mechanistic Insights into Human Brain Impact Dynamics through Modal Analysis

    NASA Astrophysics Data System (ADS)

    Laksari, Kaveh; Kurt, Mehmet; Babaee, Hessam; Kleiven, Svein; Camarillo, David

    2018-03-01

    Although concussion is one of the greatest health challenges today, our physical understanding of the cause of injury is limited. In this Letter, we simulated football head impacts in a finite element model and extracted the most dominant modal behavior of the brain's deformation. We showed that the brain's deformation is most sensitive in low frequency regimes close to 30 Hz, and discovered that for most subconcussive head impacts, the dynamics of brain deformation is dominated by a single global mode. In this Letter, we show the existence of localized modes and multimodal behavior in the brain as a hyperviscoelastic medium. This dynamical phenomenon leads to strain concentration patterns, particularly in deep brain regions, which is consistent with reported concussion pathology.

  8. Understanding How Cognitive Psychology Can Inform and Improve Spanish Vocabulary Acquisition in High School Classrooms

    ERIC Educational Resources Information Center

    Erbes, Stella; Folkerts, Michael; Gergis, Christina; Pederson, Sarah; Stivers, Holly

    2010-01-01

    Educators deal with the many dynamic functions and applications of the human brain on a daily basis. The theoretical research of the biology and functionality of the human brain is on the rise, and educational publishers continue to support books and scholarly articles that promote the notion that "brain research" can and should be applied to…

  9. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  10. Consequences of Traumatic Brain Injury for Human Vergence Dynamics

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.; Mineff, Kristyo N.; Elsaid, Anas M.; Nicholas, Spero C.

    2015-01-01

    Purpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Methods: Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. Results: The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. Conclusion: The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI. PMID:25691880

  11. Brain Activity and Human Unilateral Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  12. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    PubMed

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  13. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms

    NASA Astrophysics Data System (ADS)

    Ahn, Sungwoo; Rubchinsky, Leonid L.

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  14. Instantaneous brain dynamics mapped to a continuous state space.

    PubMed

    Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D

    2017-11-15

    Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Neural dynamics in Parkinsonian brain: The boundary between synchronized and nonsynchronized dynamics

    NASA Astrophysics Data System (ADS)

    Park, Choongseok; Worth, Robert M.; Rubchinsky, Leonid L.

    2011-04-01

    Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from Parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies.

  16. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  17. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  18. A Novel Method for Quantifying Human In Situ Whole Brain Deformation under Rotational Loading Using Sonomicrometry.

    PubMed

    Alshareef, Ahmed; Giudice, J Sebastian; Forman, Jason; Salzar, Robert S; Panzer, Matthew B

    2018-03-01

    Traumatic brain injuries (TBI) are one of the least understood injuries to the body. Finite element (FE) models of the brain have been crucial for understanding concussion and for developing injury mitigation systems; however, the experimental brain deformation data currently used to validate these models are limited. The objective of this study was to develop a methodology for the investigation of in situ three-dimensional brain deformation during pure rotational loading of the head, using sonomicrometry. Sonomicrometry uses ultrasonic pulses to measure the dynamic distances between piezoelectric crystals implanted in any sound-transmitting media. A human cadaveric head-neck specimen was acquired 14 h postmortem and was instrumented with an array of 32 small sonomicrometry crystals embedded in the head: 24 crystals were implanted in the brain, and 8 were fixed to the inner skull. A dynamic rotation was then applied to the head using a closed-loop controlled test device. Four pulses with different severity levels were applied around three orthogonal anatomical axes of rotation. A repeated test of the highest severity rotation was conducted in each axis to assess repeatability. All tests were completed within 56 h postmortem. Overall, the combined experimental and sonomicrometry methods were demonstrated to reliably and repeatedly capture three-dimensional dynamic deformation of an intact human brain. These methods provide a framework for using sonomicrometry to acquire multidimensional experimental data required for FE model development and validation, and will lend insight into the deformations sustained by the brain during impact.

  19. Prediction of human errors by maladaptive changes in event-related brain networks.

    PubMed

    Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus

    2008-04-22

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.

  20. Prediction of human errors by maladaptive changes in event-related brain networks

    PubMed Central

    Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123

  1. Low-Dimensional Chaos in an Instance of Epilepsy

    NASA Astrophysics Data System (ADS)

    Babloyantz, A.; Destexhe, A.

    1986-05-01

    Using a time series obtained from the electroencephalogram recording of a human epileptic seizure, we show the existence of a chaotic attractor, the latter being the direct consequence of the deterministic nature of brain activity. This result is compared with other attractors seen in normal human brain dynamics. A sudden jump is observed between the dimensionalities of these brain attractors 4.05 ± 0.05 for deep sleep) and the very low dimensionality of the epileptic state (2.05 ± 0.09). The evaluation of the autocorrelation function and of the largest Lyapunov exponent allows us to sharpen further the main features of underlying dynamics. Possible implications in biological and medical research are briefly discussed.

  2. Identification of the Upward Movement of Human CSF In Vivo and its Relation to the Brain Venous System.

    PubMed

    Dreha-Kulaczewski, Steffi; Joseph, Arun A; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2017-03-01

    CSF flux is involved in the pathophysiology of neurodegenerative diseases and cognitive impairment after traumatic brain injury, all hallmarked by the accumulation of cellular metabolic waste. Its effective disposal via various CSF routes has been demonstrated in animal models. In contrast, the CSF dynamics in humans are still poorly understood. Using novel real-time MRI, forced inspiration has been identified recently as a main driving force of CSF flow in the human brain. Exploiting technical advances toward real-time phase-contrast MRI, the current work analyzed directions, velocities, and volumes of human CSF flow within the brain aqueduct as part of the internal ventricular system and in the spinal canal during respiratory cycles. A consistent upward CSF movement toward the brain in response to forced inspiration was seen in all subjects at the aqueduct, in 11/12 subjects at thoracic level 2, and in 4/12 subjects at thoracic level 5. Concomitant analyses of CSF dynamics and cerebral venous blood flow, that is, in epidural veins at cervical level 3, uniquely demonstrated CSF and venous flow to be closely communicating cerebral fluid systems in which inspiration-induced downward flow of venous blood due to reduced intrathoracic pressure is counterbalanced by an upward movement of CSF. The results extend our understanding of human CSF flux and open important clinical implications, including concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and idiopathic intracranial hypertension. SIGNIFICANCE STATEMENT Effective disposal of brain cellular waste products via CSF has been demonstrated repeatedly in animal models. However, CSF dynamics in humans are still poorly understood. A novel quantitative real-time MRI technique yielded in vivo CSF flow directions, velocities, and volumes in the human brain and upper spinal canal. CSF moved upward toward the head in response to forced inspiration. Concomitant analysis of brain venous blood flow indicated that CSF and venous flux act as closely communicating systems. The finding of a human CSF-venous network with upward CSF net movement opens new clinical concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and ideopathic intracranial hypertension. Copyright © 2017 the authors 0270-6474/17/372395-08$15.00/0.

  3. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  4. How Language Learners Can Improve Their Emotional Functioning: Important Psychological and Psychospiritual Theories

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    Emotion is "the primary human motive" (MacIntyre, 2002, p. 61). The human brain is an emotional brain, creating relationships among thought, emotion, and motivation in a complex dynamic system (Dörnyei, 2009). Emotion "functions as an amplifier, providing the intensity, urgency, and energy to propel our behavior" in…

  5. Neuronal Correlation Parameter and the Idea of Thermodynamic Entropy of an N-Body Gravitationally Bounded System.

    PubMed

    Haranas, Ioannis; Gkigkitzis, Ioannis; Kotsireas, Ilias; Austerlitz, Carlos

    2017-01-01

    Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human brain and cognition.

  6. Cell diversity and network dynamics in photosensitive human brain organoids

    PubMed Central

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola

    2017-01-01

    In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462

  7. Cell diversity and network dynamics in photosensitive human brain organoids.

    PubMed

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z; Sherwood, John L; Min Yang, Sung; Berger, Daniel R; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin P; Boyden, Edward S; Lichtman, Jeff W; Williams, Ziv M; McCarroll, Steven A; Arlotta, Paola

    2017-05-04

    In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.

  8. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    NASA Astrophysics Data System (ADS)

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-12-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.

  9. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    PubMed Central

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-01-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks. PMID:27917958

  10. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    PubMed

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.

  11. Rethinking International Migration of Human Capital and Brain Circulation: The Case of Chinese-Canadian Academics

    ERIC Educational Resources Information Center

    Blachford, Dongyan Ru; Zhang, Bailing

    2014-01-01

    This article examines the dynamics of brain circulation through a historical review of the debates over international migration of human capital and a case study on Chinese-Canadian academics. Interviews with 22 Chinese-Canadian professors who originally came from China provide rich data regarding the possibilities and problems of the contemporary…

  12. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    ERIC Educational Resources Information Center

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  13. Task-Related Edge Density (TED)—A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain

    PubMed Central

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204

  14. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    PubMed

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  15. Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development

    PubMed Central

    Ayaz, Hasan; Onaral, Banu; Izzetoglu, Kurtulus; Shewokis, Patricia A.; McKendrick, Ryan; Parasuraman, Raja

    2013-01-01

    Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles. These studies used conventional fNIRS devices in which the participants were tethered to the device while seated at a workstation. Consistent with the aims of mobile brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS system that performs with similar accuracy as other established fNIRS devices. Our results indicate that both wired and wireless fNIRS systems allow for the examination of brain function in naturalistic settings, and thus are suitable for reliable human performance monitoring and training assessment. PMID:24385959

  16. Critical dynamics on a large human Open Connectome network

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  17. The role of symmetry in the regulation of brain dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Evelyn; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    Synchronous neural processes regulate a wide range of behaviors from attention to learning. Yet structural constraints on these processes are far from understood. We draw on new theoretical links between structural symmetries and the control of synchronous function, to offer a reconceptualization of the relationships between brain structure and function in human and non-human primates. By classifying 3-node motifs in macaque connectivity data, we find the most prevalent motifs can theoretically ensure a diversity of function including strict synchrony as well as control to arbitrary states. The least prevalent motifs are theoretically controllable to arbitrary states, which may not be desirable in a biological system. In humans, regions with high topological similarity of connections (a continuous notion related to symmetry) are most commonly found in fronto-parietal systems, which may account for their critical role in cognitive control. Collectively, our work underscores the role of symmetry and topological similarity in regulating dynamics of brain function.

  18. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions.

    PubMed

    Contini, Erika W; Wardle, Susan G; Carlson, Thomas A

    2017-10-01

    Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain.

    PubMed

    Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2018-06-07

    Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.

  20. Amyloid-β Plaques in Clinical Alzheimer’s Disease Brain Incorporate Stable Isotope Tracer In Vivo and Exhibit Nanoscale Heterogeneity

    PubMed Central

    Wildburger, Norelle C.; Gyngard, Frank; Guillermier, Christelle; Patterson, Bruce W.; Elbert, Donald; Mawuenyega, Kwasi G.; Schneider, Theresa; Green, Karen; Roth, Robyn; Schmidt, Robert E.; Cairns, Nigel J.; Benzinger, Tammie L. S.; Steinhauser, Matthew L.; Bateman, Randall J.

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population—those 65 years of age or older. AD is characterized by accumulation of aggregated amyloid-beta (Aβ) in the brain, which leads to one of the pathological hallmarks of AD—Aβ plaques. As a result, Aβ plaques have been extensively studied after being first described over a century ago. Advances in brain imaging and quantitative measures of Aβ in biological fluids have yielded insight into the time course of plaque development decades before and after AD symptom onset. However, despite the fundamental role of Aβ plaques in AD, in vivo measures of individual plaque growth, growth distribution, and dynamics are still lacking. To address this question, we combined stable isotope labeling kinetics (SILK) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging in an approach termed SILK–SIMS to resolve plaque dynamics in three human AD brains. In human AD brain, plaques exhibit incorporation of a stable isotope tracer. Tracer enrichment was highly variable between plaques and the spatial distribution asymmetric with both quiescent and active nanometer sub-regions of tracer incorporation. These data reveal that Aβ plaques are dynamic structures with deposition rates over days indicating a highly active process. Here, we report the first, direct quantitative measures of in vivo deposition into plaques in human AD brain. Our SILK–SIMS studies will provide invaluable information on plaque dynamics in the normal and diseased brain and offer many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development. PMID:29623063

  1. Amyloid-β Plaques in Clinical Alzheimer's Disease Brain Incorporate Stable Isotope Tracer In Vivo and Exhibit Nanoscale Heterogeneity.

    PubMed

    Wildburger, Norelle C; Gyngard, Frank; Guillermier, Christelle; Patterson, Bruce W; Elbert, Donald; Mawuenyega, Kwasi G; Schneider, Theresa; Green, Karen; Roth, Robyn; Schmidt, Robert E; Cairns, Nigel J; Benzinger, Tammie L S; Steinhauser, Matthew L; Bateman, Randall J

    2018-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population-those 65 years of age or older. AD is characterized by accumulation of aggregated amyloid-beta (Aβ) in the brain, which leads to one of the pathological hallmarks of AD-Aβ plaques. As a result, Aβ plaques have been extensively studied after being first described over a century ago. Advances in brain imaging and quantitative measures of Aβ in biological fluids have yielded insight into the time course of plaque development decades before and after AD symptom onset. However, despite the fundamental role of Aβ plaques in AD, in vivo measures of individual plaque growth, growth distribution, and dynamics are still lacking. To address this question, we combined stable isotope labeling kinetics (SILK) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging in an approach termed SILK-SIMS to resolve plaque dynamics in three human AD brains. In human AD brain, plaques exhibit incorporation of a stable isotope tracer. Tracer enrichment was highly variable between plaques and the spatial distribution asymmetric with both quiescent and active nanometer sub-regions of tracer incorporation. These data reveal that Aβ plaques are dynamic structures with deposition rates over days indicating a highly active process. Here, we report the first, direct quantitative measures of in vivo deposition into plaques in human AD brain. Our SILK-SIMS studies will provide invaluable information on plaque dynamics in the normal and diseased brain and offer many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development.

  2. Simultaneous measurement of glucose transport and utilization in the human brain

    PubMed Central

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  3. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Bardakjian, Berj L; Valiante, Taufik A; Carlen, Peter L

    2012-10-01

    Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/f(γ) noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders.

  4. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.

    PubMed

    Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo

    2016-12-01

    Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.

  5. Enriching the Brain: How to Maximize Every Learner's Potential

    ERIC Educational Resources Information Center

    Jensen, Eric

    2006-01-01

    Eric Jensen, a leading expert in the translation of brain research into education, argues that students' achievement capacity is greatly underappreciated. Drawing from a wide range of neuroscience research as well as related studies, the author reveals that the human brain is far more dynamic and malleable than earlier believed. He offers a…

  6. Decoding Spontaneous Emotional States in the Human Brain

    PubMed Central

    Kragel, Philip A.; Knodt, Annchen R.; Hariri, Ahmad R.; LaBar, Kevin S.

    2016-01-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  7. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

    PubMed

    Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik

    2011-08-01

    The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge. © 2011 John Wiley & Sons A/S.

  8. Statistical quantifiers of memory for an analysis of human brain and neuro-system diseases

    NASA Astrophysics Data System (ADS)

    Demin, S. A.; Yulmetyev, R. M.; Panischev, O. Yu.; Hänggi, Peter

    2008-03-01

    On the basis of a memory function formalism for correlation functions of time series we investigate statistical memory effects by the use of appropriate spectral and relaxation parameters of measured stochastic data for neuro-system diseases. In particular, we study the dynamics of the walk of a patient who suffers from Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and compare against the data of healthy people (CO - control group). We employ an analytical method which is able to characterize the stochastic properties of stride-to-stride variations of gait cycle timing. Our results allow us to estimate quantitatively a few human locomotion function abnormalities occurring in the human brain and in the central nervous system (CNS). Particularly, the patient's gait dynamics are characterized by an increased memory behavior together with sizable fluctuations as compared with the locomotion dynamics of healthy patients. Moreover, we complement our findings with peculiar features as detected in phase-space portraits and spectral characteristics for the different data sets (PD, HD, ALS and healthy people). The evaluation of statistical quantifiers of the memory function is shown to provide a useful toolkit which can be put to work to identify various abnormalities of locomotion dynamics. Moreover, it allows one to diagnose qualitatively and quantitatively serious brain and central nervous system diseases.

  9. Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy.

    PubMed

    Myllylä, Teemu; Harju, Markus; Korhonen, Vesa; Bykov, Alexander; Kiviniemi, Vesa; Meglinski, Igor

    2017-08-12

    Fluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS). We demonstrate the possibility to sense dynamic variations of water content between the skull and grey matter, for instance, in the subarachnoid space. Measured fluctuations in water content, especially in the cerebrospinal fluid (CSF), are assumed to be correlated with the dynamics of glymphatic circulation. The sampling volume for the NIRS optode was estimated by Monte Carlo modelling for the wavelengths of 660, 740, 830 and 980 nm. In addition, using combinations of these wavelengths, this article presents the calculation models for quantifying water and haemodynamics. The presented NIRS technique allows long-term functional brain monitoring, including sleeping time. Furthermore, it is used in combination with different magnetic neuroimaging techniques, particularly magnetic resonance encephalography. Using the combined setup, we report the preliminary results on the interaction between CSF and blood oxygen level-dependent fluctuations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Motif-Synchronization: A new method for analysis of dynamic brain networks with EEG

    NASA Astrophysics Data System (ADS)

    Rosário, R. S.; Cardoso, P. T.; Muñoz, M. A.; Montoya, P.; Miranda, J. G. V.

    2015-12-01

    The major aim of this work was to propose a new association method known as Motif-Synchronization. This method was developed to provide information about the synchronization degree and direction between two nodes of a network by counting the number of occurrences of some patterns between any two time series. The second objective of this work was to present a new methodology for the analysis of dynamic brain networks, by combining the Time-Varying Graph (TVG) method with a directional association method. We further applied the new algorithms to a set of human electroencephalogram (EEG) signals to perform a dynamic analysis of the brain functional networks (BFN).

  11. Information flow between interacting human brains: Identification, validation, and relationship to social expertise

    PubMed Central

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D.; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-01-01

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender’s and receiver’s temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. PMID:25848050

  12. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  13. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    PubMed

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  14. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation.

    PubMed

    Pesaran, Bijan; Vinck, Martin; Einevoll, Gaute T; Sirota, Anton; Fries, Pascal; Siegel, Markus; Truccolo, Wilson; Schroeder, Charles E; Srinivasan, Ramesh

    2018-06-25

    New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.

  15. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  16. Simultaneous measurement of glucose transport and utilization in the human brain.

    PubMed

    Shestov, Alexander A; Emir, Uzay E; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R; Öz, Gülin

    2011-11-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.

  17. Correspondence of the brain's functional architecture during activation and rest.

    PubMed

    Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F

    2009-08-04

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."

  18. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain.

    PubMed

    Modarres, Hassan Pezeshgi; Janmaleki, Mohsen; Novin, Mana; Saliba, John; El-Hajj, Fatima; RezayatiCharan, Mahdi; Seyfoori, Amir; Sadabadi, Hamid; Vandal, Milène; Nguyen, Minh Dang; Hasan, Anwarul; Sanati-Nezhad, Amir

    2018-03-10

    The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin.

    PubMed

    Tonello, Lucio; Gashi, Bekim; Scuotto, Alessandro; Cappello, Glenda; Cocchi, Massimo; Gabrielli, Fabio; Tuszynski, Jack A

    2018-01-01

    Living organisms tend to find viable strategies under ambient conditions that optimize their search for, and utilization of, life-sustaining resources. For plants, a leading role in this process is performed by auxin, a plant hormone that drives morphological development, dynamics, and movement to optimize the absorption of light (through branches and leaves) and chemical "food" (through roots). Similarly to auxin in plants, serotonin seems to play an important role in higher animals, especially humans. Here, it is proposed that morphological and functional similarities between (i) plant leaves and the animal/human brain and (ii) plant roots and the animal/human gastro-intestinal tract have general features in common. Plants interact with light and use it for biological energy, whereas, neurons in the central nervous system seem to interact with bio-photons and use them for proper brain function. Further, as auxin drives roots "arborescence" within the soil, similarly serotonin seems to facilitate enteric nervous system connectivity within the human gastro-intestinal tract. This auxin/serotonin parallel suggests the root-branches axis in plants may be an evolutionary precursor to the gastro-intestinal-brain axis in humans. Finally, we hypothesize that light might be an important factor, both in gastro-intestinal dynamics and brain function. Such a comparison may indicate a key role for the interaction of light and serotonin in neuronal physiology (possibly in both the central nervous system and the enteric nervous system), and according to recent work, mind and consciousness.

  20. Common mechanisms of human perceptual and motor learning

    PubMed Central

    Censor, Nitzan; Sagi, Dov; Cohen, Leonardo G.

    2016-01-01

    The adult mammalian brain has a remarkable capacity to learn in both the perceptual and motor domains through the formation and consolidation of memories. Such practice-enabled procedural learning results in perceptual and motor skill improvements. Here, we examine evidence supporting the notion that perceptual and motor learning in humans exhibit analogous properties, including similarities in temporal dynamics and the interactions between primary cortical and higher-order brain areas. These similarities may point to the existence of a common general mechanism for learning in humans. PMID:22903222

  1. Hierarchical nonlinear dynamics of human attention.

    PubMed

    Rabinovich, Mikhail I; Tristan, Irma; Varona, Pablo

    2015-08-01

    Attention is the process of focusing mental resources on a specific cognitive/behavioral task. Such brain dynamics involves different partially overlapping brain functional networks whose interconnections change in time according to the performance stage, and can be stimulus-driven or induced by an intrinsically generated goal. The corresponding activity can be described by different families of spatiotemporal discrete patterns or sequential dynamic modes. Since mental resources are finite, attention modalities compete with each other at all levels of the hierarchy, from perception to decision making and behavior. Cognitive activity is a dynamical process and attention possesses some universal dynamical characteristics. Thus, it is time to apply nonlinear dynamical theory for the description and prediction of hierarchical attentional tasks. Such theory has to include the analyses of attentional control stability, the time cost of attention switching, the finite capacity of informational resources in the brain, and the normal and pathological bifurcations of attention sequential dynamics. In this paper we have integrated today's knowledge, models and results in these directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Methodological aspects of EEG and body dynamics measurements during motion

    PubMed Central

    Reis, Pedro M. R.; Hebenstreit, Felix; Gabsteiger, Florian; von Tscharner, Vinzenz; Lochmann, Matthias

    2014-01-01

    EEG involves the recording, analysis, and interpretation of voltages recorded on the human scalp which originate from brain gray matter. EEG is one of the most popular methods of studying and understanding the processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements that are performed in response to the environment. However, there are methodological difficulties which can occur when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions on how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics, and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determinating real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks. PMID:24715858

  3. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    NASA Astrophysics Data System (ADS)

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-04-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.

  4. Allostasis and the Human Brain: Integrating Models of Stress from the Social and Life Sciences

    ERIC Educational Resources Information Center

    Ganzel, Barbara L.; Morris, Pamela A.; Wethington, Elaine

    2010-01-01

    We draw on the theory of allostasis to develop an integrative model of the current stress process that highlights the brain as a dynamically adapting interface between the changing environment and the biological self. We review evidence that the core emotional regions of the brain constitute the primary mediator of the well-established association…

  5. Alcohol’s Effects on the Brain: Neuroimaging Results in Humans and Animal Models

    PubMed Central

    Zahr, Natalie M.; Pfefferbaum, Adolf

    2017-01-01

    Brain imaging technology has allowed researchers to conduct rigorous studies of the dynamic course of alcoholism through periods of drinking, sobriety, and relapse and to gain insights into the effects of chronic alcoholism on the human brain. Magnetic resonance imaging (MRI) studies have distinguished alcohol-related brain effects that are permanent from those that are reversible with abstinence. In support of postmortem neuropathological studies showing degeneration of white matter, MRI studies have shown a specific vulnerability of white matter to chronic alcohol exposure. Such studies have demonstrated white-matter volume deficits as well as damage to selective gray-matter structures. Diffusion tensor imaging (DTI), by permitting microstructural characterization of white matter, has extended MRI findings in alcoholics. MR spectroscopy (MRS) allows quantification of several metabolites that shed light on brain biochemical alterations caused by alcoholism. This article focuses on MRI, DTI, and MRS findings in neurological disorders that commonly co-occur with alcoholism, including Wernicke’s encephalopathy, Korsakoff’s syndrome, and hepatic encephalopathy. Also reviewed are neuroimaging findings in animal models of alcoholism and related neurological disorders. This report also suggests that the dynamic course of alcoholism presents a unique opportunity to examine brain structural and functional repair and recovery. PMID:28988573

  6. Quantitative complexity analysis in multi-channel intracranial EEG recordings form epilepsy brains

    PubMed Central

    Liu, Chang-Chia; Pardalos, Panos M.; Chaovalitwongse, W. Art; Shiau, Deng-Shan; Ghacibeh, Georges; Suharitdamrong, Wichai; Sackellares, J. Chris

    2008-01-01

    Epilepsy is a brain disorder characterized clinically by temporary but recurrent disturbances of brain function that may or may not be associated with destruction or loss of consciousness and abnormal behavior. Human brain is composed of more than 10 to the power 10 neurons, each of which receives electrical impulses known as action potentials from others neurons via synapses and sends electrical impulses via a sing output line to a similar (the axon) number of neurons. When neuronal networks are active, they produced a change in voltage potential, which can be captured by an electroencephalogram (EEG). The EEG recordings represent the time series that match up to neurological activity as a function of time. By analyzing the EEG recordings, we sought to evaluate the degree of underlining dynamical complexity prior to progression of seizure onset. Through the utilization of the dynamical measurements, it is possible to classify the state of the brain according to the underlying dynamical properties of EEG recordings. The results from two patients with temporal lobe epilepsy (TLE), the degree of complexity start converging to lower value prior to the epileptic seizures was observed from epileptic regions as well as non-epileptic regions. The dynamical measurements appear to reflect the changes of EEG’s dynamical structure. We suggest that the nonlinear dynamical analysis can provide a useful information for detecting relative changes in brain dynamics, which cannot be detected by conventional linear analysis. PMID:19079790

  7. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  8. Analysis of Brain Recurrence

    NASA Astrophysics Data System (ADS)

    Frilot, Clifton; Kim, Paul Y.; Carrubba, Simona; McCarty, David E.; Chesson, Andrew L.; Marino, Andrew A.

    Analysis of Brain Recurrence (ABR) is a method for extracting physiologically significant information from the electroencephalogram (EEG), a non-stationary electrical output of the brain, the ultimate complex dynamical system. ABR permits quantification of temporal patterns in the EEG produced by the non-autonomous differential laws that govern brain metabolism. In the context of appropriate experimental and statistical designs, ABR is ideally suited to the task of interpreting the EEG. Present applications of ABR include discovery of a human magnetic sense, increased mechanistic understanding of neuronal membrane processes, diagnosis of degenerative neurological disease, detection of changes in brain metabolism caused by weak environmental electromagnetic fields, objective characterization of the quality of human sleep, and evaluation of sleep disorders. ABR has important beneficial implications for the development of clinical and experimental neuroscience.

  9. Symmetry and asymmetry in the human brain

    NASA Astrophysics Data System (ADS)

    Hugdahl, Kenneth

    2005-10-01

    Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or "bottom-up" asymmetry and cognitively, or "top-down" modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.

  10. Spectral properties of the temporal evolution of brain network structure.

    PubMed

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  11. Spectral properties of the temporal evolution of brain network structure

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  12. Changing Workplace.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on the changing workplace and its relationship to human resource development (HRD). In "Globalization, Immigration and Quality of Life Dynamics for Reverse Brain Drains" (Ben-Chieh Liu, Maw Lin Lee, Hau-Lien), the factors responsible for the brain drain from Taiwan to the United States…

  13. The temporal structures and functional significance of scale-free brain activity

    PubMed Central

    He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

    2010-01-01

    SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  14. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    PubMed

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.

  15. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates

    PubMed Central

    Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.

    2017-01-01

    The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320

  17. Neuroimaging of Human Balance Control: A Systematic Review

    PubMed Central

    Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.

    2017-01-01

    This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007

  18. Nativism versus Neuroconstructivism: Rethinking the Study of Developmental Disorders

    ERIC Educational Resources Information Center

    Karmiloff-Smith, Annette

    2009-01-01

    This article argues that one dominant position in psychology, linguistics, neuroscience, and philosophy about how genetic disorders point to the innate specification of dissociated modules in the human brain should be replaced by a dynamic, neuroconstructivist approach in which genes, brain, cognition, and environment interact multidirectionally.…

  19. On the Time Course of Synchronization Patterns of Neuronal Discharges in the Human Brain during Cognitive Tasks

    PubMed Central

    Brázdil, Milan; Janeček, Jiří; Klimeš, Petr; Mareček, Radek; Roman, Robert; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Rektor, Ivan; Halámek, Josef; Plešinger, Filip; Jirsa, Viktor

    2013-01-01

    Using intracerebral EEG recordings in a large cohort of human subjects, we investigate the time course of neural cross-talk during a simple cognitive task. Our results show that human brain dynamics undergo a characteristic sequence of synchronization patterns across different frequency bands following a visual oddball stimulus. In particular, an initial global reorganization in the delta and theta bands (2–8 Hz) is followed by gamma (20–95 Hz) and then beta band (12–20 Hz) synchrony. PMID:23696809

  20. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    PubMed Central

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  1. Development of Human Brain Structural Networks Through Infancy and Childhood

    PubMed Central

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  2. Correspondence of the brain's functional architecture during activation and rest

    PubMed Central

    Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.

    2009-01-01

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724

  3. Logical Interactions in AN Expanded Space

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    Understanding the emergent behavior in many complex systems in the physical world and society requires a detailed study of dynamical phenomena occurring and mutually coupled at different scales. The brain processes underlying the social conduct of each, and the emergent social behavior of interacting individuals on a larger scale, represent striking examples of the multiscale complexity. Studies of the human brain, a paradigm of a complex functional system, are enabled by a wealth of brain imaging data that provide clues of how we comprehend space, time, languages, numbers, and differentiate normal from diseased individuals, for example. The social brain, a neural basis for social cognition, represents a dynamically organized part of the brain which is involved in the inference of thoughts, feelings, and intentions going on in the brains of others. Research in this currently unexplored area opens a new perspective on the genesis of the societal organization at different levels and the associated social values...

  4. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.

    PubMed

    Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David

    2017-05-08

    The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Dynamic Bayesian network modeling for longitudinal brain morphometry

    PubMed Central

    Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H

    2011-01-01

    Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916

  6. Dynamic XML-based exchange of relational data: application to the Human Brain Project.

    PubMed

    Tang, Zhengming; Kadiyska, Yana; Li, Hao; Suciu, Dan; Brinkley, James F

    2003-01-01

    This paper discusses an approach to exporting relational data in XML format for data exchange over the web. We describe the first real-world application of SilkRoute, a middleware program that dynamically converts existing relational data to a user-defined XML DTD. The application, called XBrain, wraps SilkRoute in a Java Server Pages framework, thus permitting a web-based XQuery interface to a legacy relational database. The application is demonstrated as a query interface to the University of Washington Brain Project's Language Map Experiment Management System, which is used to manage data about language organization in the brain.

  7. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia.

    PubMed

    Fu, Zening; Tu, Yiheng; Di, Xin; Du, Yuhui; Pearlson, G D; Turner, J A; Biswal, Bharat B; Zhang, Zhiguo; Calhoun, V D

    2017-09-20

    The human brain is a highly dynamic system with non-stationary neural activity and rapidly-changing neural interaction. Resting-state dynamic functional connectivity (dFC) has been widely studied during recent years, and the emerging aberrant dFC patterns have been identified as important features of many mental disorders such as schizophrenia (SZ). However, only focusing on the time-varying patterns in FC is not enough, since the local neural activity itself (in contrast to the inter-connectivity) is also found to be highly fluctuating from research using high-temporal-resolution imaging techniques. Exploring the time-varying patterns in brain activity and their relationships with time-varying brain connectivity is important for advancing our understanding of the co-evolutionary property of brain network and the underlying mechanism of brain dynamics. In this study, we introduced a framework for characterizing time-varying brain activity and exploring its associations with time-varying brain connectivity, and applied this framework to a resting-state fMRI dataset including 151 SZ patients and 163 age- and gender matched healthy controls (HCs). In this framework, 48 brain regions were first identified as intrinsic connectivity networks (ICNs) using group independent component analysis (GICA). A sliding window approach was then adopted for the estimation of dynamic amplitude of low-frequency fluctuation (dALFF) and dFC, which were used to measure time-varying brain activity and time-varying brain connectivity respectively. The dALFF was further clustered into six reoccurring states by the k-means clustering method and the group difference in occurrences of dALFF states was explored. Lastly, correlation coefficients between dALFF and dFC were calculated and the group difference in these dALFF-dFC correlations was explored. Our results suggested that 1) ALFF of brain regions was highly fluctuating during the resting-state and such dynamic patterns are altered in SZ, 2) dALFF and dFC were correlated in time and their correlations are altered in SZ. The overall results support and expand prior work on abnormalities of brain activity, static FC (sFC) and dFC in SZ, and provide new evidence on aberrant time-varying brain activity and its associations with brain connectivity in SZ, which might underscore the disrupted brain cognitive functions in this mental disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics

    NASA Astrophysics Data System (ADS)

    Serletis, Demitre; Bardakjian, Berj L.; Valiante, Taufik A.; Carlen, Peter L.

    2012-10-01

    Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/fγ noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders. This paper is based on chapter 5 of Serletis (2010 PhD Dissertation Department of Physiology, Institute of Biomaterials and Biomedical Engineering, University of Toronto).

  9. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  10. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan.

    PubMed

    Davison, Elizabeth N; Turner, Benjamin O; Schlesinger, Kimberly J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Carlson, Jean M

    2016-11-01

    Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.

  11. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  12. Neuromodulation: Selected approaches and challenges

    PubMed Central

    Parpura, Vladimir; Silva, Gabriel A.; Tass, Peter A.; Bennet, Kevin E.; Meyyappan, Meyya; Koehne, Jessica; Lee, Kendall H.; Andrews, Russell J.

    2012-01-01

    The brain operates through complex interactions in the flow of information and signal processing within neural networks. The “wiring” of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromoduation are discussed. The use of water-dispersible carbon nanotubes have proven effective in modulation of neurite outgrowth in culture as well as in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing “misfiring” neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us. PMID:23190025

  13. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass.

    PubMed

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.

  14. Theta synchronization networks emerge during human object-place memory encoding.

    PubMed

    Sato, Naoyuki; Yamaguchi, Yoko

    2007-03-26

    Recent rodent hippocampus studies have suggested that theta rhythm-dependent neural dynamics ('theta phase precession') is essential for an on-line memory formation. A computational study indicated that the phase precession enables a human object-place association memory with voluntary eye movements, although it is still an open question whether the human brain uses the dynamics. Here we elucidated subsequent memory-correlated activities in human scalp electroencephalography in an object-place association memory designed according the former computational study. Our results successfully demonstrated that subsequent memory recall is characterized by an increase in theta power and coherence, and further, that multiple theta synchronization networks emerge. These findings suggest the human theta dynamics in common with rodents in episodic memory formation.

  15. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem

    PubMed Central

    Liu, Xunying; Zhang, Chao; Woodland, Phil; Fonteneau, Elisabeth

    2017-01-01

    There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR) systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental ‘machine states’, generated as the ASR analysis progresses over time, to the incremental ‘brain states’, measured using combined electro- and magneto-encephalography (EMEG), generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain. PMID:28945744

  16. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. Copyright © 2015. Published by Elsevier Inc.

  17. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions.

    PubMed

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk

    2008-07-15

    The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.

  18. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions

    PubMed Central

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H.; Öğmen, Haluk

    2008-01-01

    The 1990s, the “decade of the brain,” witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this “steady-state approach,” more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness. PMID:20517493

  19. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  20. Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain.

    PubMed

    Betti, Viviana; Corbetta, Maurizio; de Pasquale, Francesco; Wens, Vincent; Della Penna, Stefania

    2018-04-11

    Networks hubs represent points of convergence for the integration of information across many different nodes and systems. Although a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α- and β-band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). Compared with rest, we observed in both movie conditions a robust decrement of α-BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between networks. In contrast, β-BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow-varying fluctuations of integration occurring in higher-order regions in the β band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment. SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. Here, we tested the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar during rest and movie in the β band, but not in the α band. These results support the hypothesis that the intrinsic β-rhythm integration occurs with a similar temporal structure during natural vision, possibly providing advanced information about incoming stimuli. Copyright © 2018 the authors 0270-6474/18/383858-14$15.00/0.

  1. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution

    PubMed Central

    Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.

    2018-01-01

    Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831

  2. Brain dynamics during natural viewing conditions--a new guide for mapping connectivity in vivo.

    PubMed

    Bartels, Andreas; Zeki, Semir

    2005-01-15

    We describe here a new way of obtaining maps of connectivity in the human brain based on interregional correlations of blood oxygen level-dependent (BOLD) signal during natural viewing conditions. We propose that anatomical connections are reflected in BOLD signal correlations during natural brain dynamics. This may provide a powerful approach to chart connectivity, more so than that based on the 'resting state' of the human brain, and it may complement diffusion tensor imaging. Our approach relies on natural brain dynamics and is therefore experimentally unbiased and independent of hypothesis-driven, specialized stimuli. It has the advantage that natural viewing leads to considerably stronger cortical activity than rest, thus facilitating detection of weaker connections. To validate our technique, we used functional magnetic resonance imaging (fMRI) to record BOLD signal while volunteers freely viewed a movie that was interrupted by resting periods. We used independent component analysis (ICA) to segregate cortical areas before characterizing the dynamics of their BOLD signal during free viewing and rest. Natural viewing and rest each revealed highly specific correlation maps, which reflected known anatomical connections. Examples are homologous regions in visual and auditory cortices in the two hemispheres and the language network consisting of Wernicke's area, Broca's area, and a premotor region. Correlations between regions known to be directly connected were always substantially higher than between nonconnected regions. Furthermore, compared to rest, natural viewing specifically increased correlations between anatomically connected regions while it decreased correlations between nonconnected regions. Our findings therefore demonstrate that natural viewing conditions lead to particularly specific interregional correlations and thus provide a powerful environment to reveal anatomical connectivity in vivo.

  3. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    PubMed

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    NASA Astrophysics Data System (ADS)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  5. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  6. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    PubMed Central

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  8. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  9. Design and prototyping of a chip-based multi-micro-organoid culture system for substance testing, predictive to human (substance) exposure.

    PubMed

    Sonntag, Frank; Schilling, Niels; Mader, Katja; Gruchow, Mathias; Klotzbach, Udo; Lindner, Gerd; Horland, Reyk; Wagner, Ilka; Lauster, Roland; Howitz, Steffen; Hoffmann, Silke; Marx, Uwe

    2010-07-01

    Dynamic miniaturized human multi-micro-organ bioreactor systems are envisaged as a possible solution for the embarrassing gap of predictive substance testing prior to human exposure. A rational approach was applied to simulate and design dynamic long-term cultures of the smallest possible functional human organ units, human "micro-organoids", on a chip the shape of a microscope slide. Each chip contains six identical dynamic micro-bioreactors with three different micro-organoid culture segments each, a feed supply and waste reservoirs. A liver, a brain cortex and a bone marrow micro-organoid segment were designed into each bioreactor. This design was translated into a multi-layer chip prototype and a routine manufacturing procedure was established. The first series of microscopable, chemically resistant and sterilizable chip prototypes was tested for matrix compatibility and primary cell culture suitability. Sterility and long-term human cell survival could be shown. Optimizing the applied design approach and prototyping tools resulted in a time period of only 3 months for a single design and prototyping cycle. This rapid prototyping scheme now allows for fast adjustment or redesign of inaccurate architectures. The designed chip platform is thus ready to be evaluated for the establishment and maintenance of the human liver, brain cortex and bone marrow micro-organoids in a systemic microenvironment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Event-Related Oscillations in Alcoholism Research: A Review

    PubMed Central

    Pandey, Ashwini K; Kamarajan, Chella; Rangaswamy, Madhavi; Porjesz, Bernice

    2013-01-01

    Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism. PMID:24273686

  11. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  12. Multistability and metastability: understanding dynamic coordination in the brain

    PubMed Central

    Kelso, J. A. Scott

    2012-01-01

    Multistable coordination dynamics exists at many levels, from multifunctional neural circuits in vertebrates and invertebrates to large-scale neural circuitry in humans. Moreover, multistability spans (at least) the domains of action and perception, and has been found to place constraints upon, even dictating the nature of, intentional change and the skill-learning process. This paper reviews some of the key evidence for multistability in the aforementioned areas, and illustrates how it has been measured, modelled and theoretically understood. It then suggests how multistability—when combined with essential aspects of coordination dynamics such as instability, transitions and (especially) metastability—provides a platform for understanding coupling and the creative dynamics of complex goal-directed systems, including the brain and the brain–behaviour relation. PMID:22371613

  13. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  14. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. Copyright © 2015 the authors 0270-6474/15/359050-14$15.00/0.

  15. Manipulating the content of dynamic natural scenes to characterize response in human MT/MST.

    PubMed

    Durant, Szonya; Wall, Matthew B; Zanker, Johannes M

    2011-09-09

    Optic flow is one of the most important sources of information for enabling human navigation through the world. A striking finding from single-cell studies in monkeys is the rapid saturation of response of MT/MST areas with the density of optic flow type motion information. These results are reflected psychophysically in human perception in the saturation of motion aftereffects. We began by comparing responses to natural optic flow scenes in human visual brain areas to responses to the same scenes with inverted contrast (photo negative). This changes scene familiarity while preserving local motion signals. This manipulation had no effect; however, the response was only correlated with the density of local motion (calculated by a motion correlation model) in V1, not in MT/MST. To further investigate this, we manipulated the visible proportion of natural dynamic scenes and found that areas MT and MST did not increase in response over a 16-fold increase in the amount of information presented, i.e., response had saturated. This makes sense in light of the sparseness of motion information in natural scenes, suggesting that the human brain is well adapted to exploit a small amount of dynamic signal and extract information important for survival.

  16. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan

    PubMed Central

    Davison, Elizabeth N.; Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2016-01-01

    Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism—hypergraph cardinality—we investigate individual variations in two separate, complementary data sets. The first data set (“multi-task”) consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set (“age-memory”), in which 95 individuals, aged 18–75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain. PMID:27880785

  17. A Functional Cartography of Cognitive Systems

    PubMed Central

    Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2015-01-01

    One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual variation in cognitive performance, and fatigue. PMID:26629847

  18. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

    PubMed

    Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  19. Role of graph architecture in controlling dynamical networks with applications to neural systems

    NASA Astrophysics Data System (ADS)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  20. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    PubMed

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  1. Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models

    NASA Astrophysics Data System (ADS)

    Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.

    2014-12-01

    The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.

  2. Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System

    PubMed Central

    Farrelly, L.A.; Dill, B.D.; Molina, H.; Birtwistle, M.R.; Maze, I.

    2016-01-01

    Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover—the complete loss of old, and replacement by new, nucleosomal histones—is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human “bomb pulse labeling”) for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of “neuroepigenetic” plasticity. PMID:27423867

  3. Multifractal analysis of real and imaginary movements: EEG study

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  4. Task-Based Core-Periphery Organization of Human Brain Dynamics

    PubMed Central

    Bassett, Danielle S.; Wymbs, Nicholas F.; Rombach, M. Puck; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2013-01-01

    As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior. PMID:24086116

  5. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    PubMed

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance elastography as a whole. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Towards child versus adult brain mechanical properties.

    PubMed

    Chatelin, S; Vappou, J; Roth, S; Raul, J S; Willinger, R

    2012-02-01

    The characterization of brain tissue mechanical properties is of crucial importance in the development of realistic numerical models of the human head. While the mechanical behavior of the adult brain has been extensively investigated in several studies, there is a considerable paucity of data concerning the influence of age on mechanical properties of the brain. Therefore, the implementation of child and infant head models often involves restrictive assumptions like properties scaling from adult or animal data. The present study presents a step towards the investigation of the effects of age on viscoelastic properties of human brain tissue from a first set of dynamic oscillatory shear experiments. Tests were also performed on three different locations of brain (corona radiata, thalamus and brainstem) in order to investigate regional differences. Despite the limited number of child brain samples a significant increase in both storage and loss moduli occurring between the age of 5 months and the age of 22 months was found, confirmed by statistical Student's t-tests (p=0.104,0.038 and 0.054 for respectively corona radiata, thalamus and brain stem samples locations respectively). The adult brain appears to be 3-4 times stiffer than the young child one. Moreover, the brainstem was found to be approximately 2-3 times stiffer than both gray and white matter from corona radiata and thalamus. As a tentative conclusion, this study provides the first rheological data on the human brain at different ages and brain regions. This data could be implemented in numerical models of the human head, especially in models concerning pediatric population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations

    PubMed Central

    Deco, Gustavo; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio

    2013-01-01

    Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure–function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure–function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications. PMID:23825427

  8. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations.

    PubMed

    Deco, Gustavo; Ponce-Alvarez, Adrián; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio

    2013-07-03

    Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.

  9. Is a Universal Science of Complexity Conceivable?

    NASA Astrophysics Data System (ADS)

    West, Geoffrey B.

    Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...

  10. A Novel Perspective on Dopaminergic Processing of Human Addiction.

    PubMed

    Badgaiyan, Rajendra D

    2013-01-01

    Converging evidence from clinical, animal, and neuroimaging experiments suggests that the addictive behavior is associated with dysregulated dopamine neurotransmission. The precise role of dopamine in establishment and maintenance of addiction however is unclear. In this context animal studies on the brain reward system and the associative memory processing provide a novel insight. It was shown that both processing involve dopamine neurotransmission and both are disrupted in addiction. These findings indicate that dysregulated dopamine neurotransmission alters the brain processing of not only the reward system but also that of the memory of association between an addictive substance and reward. These alterations lead to maladaptive motivational behavior leading to chemical dependency. This concept however is based mostly on the data obtained in laboratory animals because of the paucity of human data. Due to lack of a reliable technique to study neurotransmission in the live human brain, it has been a problem to study the role of dopamine in human volunteers. A recently developed dynamic molecular imaging technique however, provides an opportunity to study these concepts in human volunteers because the technique allows detection, mapping and measurement of dopamine released in the live human brain during task performance.

  11. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics

    PubMed Central

    Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus

    2017-01-01

    Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants’ emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers’ affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types (rs (14) = 0.525, p = 0.037) and geometry (rs (14) = −0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces. PMID:29033807

  12. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics.

    PubMed

    Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus

    2017-01-01

    Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants' emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers' affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types ( r s (14) = 0.525, p = 0.037) and geometry ( r s (14) = -0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

  13. The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

    PubMed

    Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio

    2018-06-01

    Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Brain dynamics in ASD during movie-watching show idiosyncratic functional integration and segregation.

    PubMed

    Bolton, Thomas A W; Jochaut, Delphine; Giraud, Anne-Lise; Van De Ville, Dimitri

    2018-06-01

    To refine our understanding of autism spectrum disorders (ASD), studies of the brain in dynamic, multimodal and ecological experimental settings are required. One way to achieve this is to compare the neural responses of ASD and typically developing (TD) individuals when viewing a naturalistic movie, but the temporal complexity of the stimulus hampers this task, and the presence of intrinsic functional connectivity (FC) may overshadow movie-driven fluctuations. Here, we detected inter-subject functional correlation (ISFC) transients to disentangle movie-induced functional changes from underlying resting-state activity while probing FC dynamically. When considering the number of significant ISFC excursions triggered by the movie across the brain, connections between remote functional modules were more heterogeneously engaged in the ASD population. Dynamically tracking the temporal profiles of those ISFC changes and tying them to specific movie subparts, this idiosyncrasy in ASD responses was then shown to involve functional integration and segregation mechanisms such as response inhibition, background suppression, or multisensory integration, while low-level visual processing was spared. Through the application of a new framework for the study of dynamic experimental paradigms, our results reveal a temporally localized idiosyncrasy in ASD responses, specific to short-lived episodes of long-range functional interplays. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. Data-driven analysis of functional brain interactions during free listening to music and speech.

    PubMed

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.

  16. Regional Homogeneity

    PubMed Central

    Jiang, Lili; Zuo, Xi-Nian

    2015-01-01

    Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004

  17. Near-instant automatic access to visually presented words in the human neocortex: neuromagnetic evidence.

    PubMed

    Shtyrov, Yury; MacGregor, Lucy J

    2016-05-24

    Rapid and efficient processing of external information by the brain is vital to survival in a highly dynamic environment. The key channel humans use to exchange information is language, but the neural underpinnings of its processing are still not fully understood. We investigated the spatio-temporal dynamics of neural access to word representations in the brain by scrutinising the brain's activity elicited in response to psycholinguistically, visually and phonologically matched groups of familiar words and meaningless pseudowords. Stimuli were briefly presented on the visual-field periphery to experimental participants whose attention was occupied with a non-linguistic visual feature-detection task. The neural activation elicited by these unattended orthographic stimuli was recorded using multi-channel whole-head magnetoencephalography, and the timecourse of lexically-specific neuromagnetic responses was assessed in sensor space as well as at the level of cortical sources, estimated using individual MR-based distributed source reconstruction. Our results demonstrate a neocortical signature of automatic near-instant access to word representations in the brain: activity in the perisylvian language network characterised by specific activation enhancement for familiar words, starting as early as ~70 ms after the onset of unattended word stimuli and underpinned by temporal and inferior-frontal cortices.

  18. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Consequences of the dynamic triple peak impact factor in Traumatic Brain Injury as Measured with Numerical Simulation.

    PubMed

    von Holst, Hans; Li, Xiaogai

    2013-01-01

    There is a lack of knowledge about the direct neuromechanical consequences in traumatic brain injury (TBI) at the scene of accident. In this study we use a finite element model of the human head to study the dynamic response of the brain during the first milliseconds after the impact with velocities of 10, 6, and 2 meters/second (m/s), respectively. The numerical simulation was focused on the external kinetic energy transfer, intracranial pressure (ICP), strain energy density and first principal strain level, and their respective impacts to the brain tissue. We show that the oblique impacts of 10 and 6 m/s resulted in substantial high peaks for the ICP, strain energy density, and first principal strain levels, however, with different patterns and time frames. Also, the 2 m/s impact showed almost no increase in the above mentioned investigated parameters. More importantly, we show that there clearly exists a dynamic triple peak impact factor to the brain tissue immediately after the impact regardless of injury severity associated with different impact velocities. The dynamic triple peak impacts occurred in a sequential manner first showing strain energy density and ICP and then followed by first principal strain. This should open up a new dimension to better understand the complex mechanisms underlying TBI. Thus, it is suggested that the combination of the dynamic triple peak impacts to the brain tissue may interfere with the cerebral metabolism relative to the impact severity thereby having the potential to differentiate between severe and moderate TBI from mild TBI.

  20. Dynamic brain connectivity is a better predictor of PTSD than static connectivity.

    PubMed

    Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna

    2017-09-01

    Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    NASA Astrophysics Data System (ADS)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  2. Abnormal rich club organization and functional brain dynamics in schizophrenia.

    PubMed

    van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S

    2013-08-01

    The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brain's integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. Our findings provide novel biological evidence that schizophrenia is characterized by a selective disruption of brain connectivity among central hub regions of the brain, potentially leading to reduced communication capacity and altered functional brain dynamics.

  3. Dynamical aspects of behavior generation under constraints

    PubMed Central

    Harter, Derek; Achunala, Srinivas

    2007-01-01

    Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514

  4. Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI

    PubMed Central

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990

  5. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    PubMed

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  6. Using chaotic artificial neural networks to model memory in the brain

    NASA Astrophysics Data System (ADS)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  7. Individual Functional ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles

    PubMed Central

    Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming

    2013-01-01

    Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931

  8. Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder.

    PubMed

    Rashid, Barnaly; Blanken, Laura M E; Muetzel, Ryan L; Miller, Robyn; Damaraju, Eswar; Arbabshirani, Mohammad R; Erhardt, Erik B; Verhulst, Frank C; van der Lugt, Aad; Jaddoe, Vincent W V; Tiemeier, Henning; White, Tonya; Calhoun, Vince

    2018-03-30

    Recent advances in neuroimaging techniques have provided significant insights into developmental trajectories of human brain function. Characterizations of typical neurodevelopment provide a framework for understanding altered neurodevelopment, including differences in brain function related to developmental disorders and psychopathology. Historically, most functional connectivity studies of typical and atypical development operate under the assumption that connectivity remains static over time. We hypothesized that relaxing stationarity assumptions would reveal novel features of both typical brain development related to children on the autism spectrum. We employed a "chronnectomic" (recurring, time-varying patterns of connectivity) approach to evaluate transient states of connectivity using resting-state functional MRI in a population-based sample of 774 6- to 10-year-old children. Dynamic connectivity was evaluated using a sliding-window approach, and revealed four transient states. Internetwork connectivity increased with age in modularized dynamic states, illustrating an important pattern of connectivity in the developing brain. Furthermore, we demonstrated that higher levels of autistic traits and ASD diagnosis were associated with longer dwell times in a globally disconnected state. These results provide a roadmap to the chronnectomic organization of the developing brain and suggest that characteristics of functional brain connectivity are related to children on the autism spectrum. © 2018 Wiley Periodicals, Inc.

  9. Brain connectivity dynamics during social interaction reflect social network structure

    PubMed Central

    Schmälzle, Ralf; Brook O’Donnell, Matthew; Garcia, Javier O.; Cascio, Christopher N.; Bayer, Joseph; Vettel, Jean M.

    2017-01-01

    Social ties are crucial for humans. Disruption of ties through social exclusion has a marked effect on our thoughts and feelings; however, such effects can be tempered by broader social network resources. Here, we use fMRI data acquired from 80 male adolescents to investigate how social exclusion modulates functional connectivity within and across brain networks involved in social pain and understanding the mental states of others (i.e., mentalizing). Furthermore, using objectively logged friendship network data, we examine how individual variability in brain reactivity to social exclusion relates to the density of participants’ friendship networks, an important aspect of social network structure. We find increased connectivity within a set of regions previously identified as a mentalizing system during exclusion relative to inclusion. These results are consistent across the regions of interest as well as a whole-brain analysis. Next, examining how social network characteristics are associated with task-based connectivity dynamics, we find that participants who showed greater changes in connectivity within the mentalizing system when socially excluded by peers had less dense friendship networks. This work provides insight to understand how distributed brain systems respond to social and emotional challenges and how such brain dynamics might vary based on broader social network characteristics. PMID:28465434

  10. Study of the neural dynamics for understanding communication in terms of complex hetero systems.

    PubMed

    Tsuda, Ichiro; Yamaguchi, Yoko; Hashimoto, Takashi; Okuda, Jiro; Kawasaki, Masahiro; Nagasaka, Yasuo

    2015-01-01

    The purpose of the research project was to establish a new research area named "neural information science for communication" by elucidating its neural mechanism. The research was performed in collaboration with applied mathematicians in complex-systems science and experimental researchers in neuroscience. The project included measurements of brain activity during communication with or without languages and analyses performed with the help of extended theories for dynamical systems and stochastic systems. The communication paradigm was extended to the interactions between human and human, human and animal, human and robot, human and materials, and even animal and animal. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance.

    PubMed

    Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi

    2018-06-18

    Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.

  12. Improving resolution of dynamic communities in human brain networks through targeted node removal

    PubMed Central

    Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2017-01-01

    Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662

  13. Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2018-06-01

    Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.

  14. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  15. Joint penalized-likelihood reconstruction of time-activity curves and regions-of-interest from projection data in brain PET

    NASA Astrophysics Data System (ADS)

    Krestyannikov, E.; Tohka, J.; Ruotsalainen, U.

    2008-06-01

    This paper presents a novel statistical approach for joint estimation of regions-of-interest (ROIs) and the corresponding time-activity curves (TACs) from dynamic positron emission tomography (PET) brain projection data. It is based on optimizing the joint objective function that consists of a data log-likelihood term and two penalty terms reflecting the available a priori information about the human brain anatomy. The developed local optimization strategy iteratively updates both the ROI and TAC parameters and is guaranteed to monotonically increase the objective function. The quantitative evaluation of the algorithm is performed with numerically and Monte Carlo-simulated dynamic PET brain data of the 11C-Raclopride and 18F-FDG tracers. The results demonstrate that the method outperforms the existing sequential ROI quantification approaches in terms of accuracy, and can noticeably reduce the errors in TACs arising due to the finite spatial resolution and ROI delineation.

  16. Investigating dynamical information transfer in the brain following a TMS pulse: Insights from structural architecture.

    PubMed

    Amico, Enrico; Van Mierlo, Pieter; Marinazzo, Daniele; Laureys, Steven

    2015-01-01

    Transcranial magnetic stimulation (TMS) has been used for more than 20 years to investigate connectivity and plasticity in the human cortex. By combining TMS with high-density electroencephalography (hd-EEG), one can stimulate any cortical area and measure the effects produced by this perturbation in the rest of the cerebral cortex. The purpose of this paper is to investigate changes of information flow in the brain after TMS from a functional and structural perspective, using multimodal modeling of source reconstructed TMS/hd-EEG recordings and DTI tractography. We prove how brain dynamics induced by TMS is constrained and driven by its structure, at different spatial and temporal scales, especially when considering cross-frequency interactions. These results shed light on the function-structure organization of the brain network at the global level, and on the huge variety of information contained in it.

  17. Critical perspectives on causality and inference in brain networks: Allusions, illusions, solutions?. Comment on: "Foundational perspectives on causality in large-scale brain networks" by M. Mannino and S.L. Bressler

    NASA Astrophysics Data System (ADS)

    Diwadkar, Vaibhav A.

    2015-12-01

    The human brain is an impossibly difficult cartographic landscape to map out. Within it's convoluted and labyrinthine structure is folded a million years of phylogeny, somehow expressed in the ontogeny of the specific organism; an ontogeny that conceals idiosyncratic effects of countless genes, and then the (perhaps) countably infinite effects of processes of the organism's lifespan subsequently resulting in remarkable heterogeneity [1,2]. The physical brain itself is therefore a nearly un-decodable ;time machine; motivating more questions than frameworks for answering those questions: Why has evolution endowed it with the general structure that is possesses [3]; Is there regularity in macroscopic metrics of structure across species [4]; What are the most meaningful structural units in the brain: molecules, neurons, cortical columns or cortical maps [5]? Remarkably, understanding the intricacies of structure is perhaps not even the most difficult aspect of understanding the human brain. In fact, and as recently argued, a central issue lies in resolving the dialectic between structure and function: how does dynamic function arises from static (at least at the time scales at which human brain function is experimentally studied) brain structures [6]? In other words, if the mind is the brain ;in action;, how does it arise?

  18. Convergent models of handedness and brain lateralization

    PubMed Central

    Sainburg, Robert L.

    2014-01-01

    The pervasive nature of handedness across human history and cultures is a salient consequence of brain lateralization. This paper presents evidence that provides a structure for understanding the motor control processes that give rise to handedness. According to the Dynamic Dominance Model, the left hemisphere (in right handers) is proficient for processes that predict the effects of body and environmental dynamics, while the right hemisphere is proficient at impedance control processes that can minimize potential errors when faced with unexpected mechanical conditions, and can achieve accurate steady-state positions. This model can be viewed as a motor component for the paradigm of brain lateralization that has been proposed by Rogers et al. (MacNeilage et al., 2009) that is based upon evidence from a wide range of behaviors across many vertebrate species. Rogers proposed a left-hemisphere specialization for well-established patterns of behavior performed in familiar environmental conditions, and a right hemisphere specialization for responding to unforeseen environmental events. The dynamic dominance hypothesis provides a framework for understanding the biology of motor lateralization that is consistent with Roger's paradigm of brain lateralization. PMID:25339923

  19. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    PubMed

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  20. Network-dependent modulation of brain activity during sleep.

    PubMed

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A centric/non-centric impact protocol and finite element model methodology for the evaluation of American football helmets to evaluate risk of concussion.

    PubMed

    Post, Andrew; Oeur, Anna; Walsh, Evan; Hoshizaki, Blaine; Gilchrist, Michael D

    2014-01-01

    American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.

  2. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    PubMed Central

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  3. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    PubMed

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  4. Functional Network Dynamics of the Language System.

    PubMed

    Chai, Lucy R; Mattar, Marcelo G; Blank, Idan Asher; Fedorenko, Evelina; Bassett, Danielle S

    2016-10-17

    During linguistic processing, a set of brain regions on the lateral surfaces of the left frontal, temporal, and parietal cortices exhibit robust responses. These areas display highly correlated activity while a subject rests or performs a naturalistic language comprehension task, suggesting that they form an integrated functional system. Evidence suggests that this system is spatially and functionally distinct from other systems that support high-level cognition in humans. Yet, how different regions within this system might be recruited dynamically during task performance is not well understood. Here we use network methods, applied to fMRI data collected from 22 human subjects performing a language comprehension task, to reveal the dynamic nature of the language system. We observe the presence of a stable core of brain regions, predominantly located in the left hemisphere, that consistently coactivate with one another. We also observe the presence of a more flexible periphery of brain regions, predominantly located in the right hemisphere, that coactivate with different regions at different times. However, the language functional ROIs in the angular gyrus and the anterior temporal lobe were notable exceptions to this trend. By highlighting the temporal dimension of language processing, these results suggest a trade-off between a region's specialization and its capacity for flexible network reconfiguration. © The Author 2016. Published by Oxford University Press.

  5. Functional Network Dynamics of the Language System

    PubMed Central

    Chai, Lucy R.; Mattar, Marcelo G.; Blank, Idan Asher; Fedorenko, Evelina; Bassett, Danielle S.

    2016-01-01

    During linguistic processing, a set of brain regions on the lateral surfaces of the left frontal, temporal, and parietal cortices exhibit robust responses. These areas display highly correlated activity while a subject rests or performs a naturalistic language comprehension task, suggesting that they form an integrated functional system. Evidence suggests that this system is spatially and functionally distinct from other systems that support high-level cognition in humans. Yet, how different regions within this system might be recruited dynamically during task performance is not well understood. Here we use network methods, applied to fMRI data collected from 22 human subjects performing a language comprehension task, to reveal the dynamic nature of the language system. We observe the presence of a stable core of brain regions, predominantly located in the left hemisphere, that consistently coactivate with one another. We also observe the presence of a more flexible periphery of brain regions, predominantly located in the right hemisphere, that coactivate with different regions at different times. However, the language functional ROIs in the angular gyrus and the anterior temporal lobe were notable exceptions to this trend. By highlighting the temporal dimension of language processing, these results suggest a trade-off between a region's specialization and its capacity for flexible network reconfiguration. PMID:27550868

  6. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions.

    PubMed

    Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham

    2017-04-01

    It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  8. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  9. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia

    NASA Astrophysics Data System (ADS)

    Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.

    2017-04-01

    Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.

  10. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology.

    PubMed

    Weisz, Nathan; Obleser, Jonas

    2014-01-01

    Human magneto- and electroencephalography (M/EEG) are capable of tracking brain activity at millisecond temporal resolution in an entirely non-invasive manner, a feature that offers unique opportunities to uncover the spatiotemporal dynamics of the hearing brain. In general, precise synchronisation of neural activity within as well as across distributed regions is likely to subserve any cognitive process, with auditory cognition being no exception. Brain oscillations, in a range of frequencies, are a putative hallmark of this synchronisation process. Embedded in a larger effort to relate human cognition to brain oscillations, a field of research is emerging on how synchronisation within, as well as between, brain regions may shape auditory cognition. Combined with much improved source localisation and connectivity techniques, it has become possible to study directly the neural activity of auditory cortex with unprecedented spatio-temporal fidelity and to uncover frequency-specific long-range connectivities across the human cerebral cortex. In the present review, we will summarise recent contributions mainly of our laboratories to this emerging domain. We present (1) a more general introduction on how to study local as well as interareal synchronisation in human M/EEG; (2) how these networks may subserve and influence illusory auditory perception (clinical and non-clinical) and (3) auditory selective attention; and (4) how oscillatory networks further reflect and impact on speech comprehension. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. PMID:25462795

  13. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    PubMed

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  14. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

    PubMed Central

    Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-01-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain. PMID:23434588

  15. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  16. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  17. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

    PubMed Central

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf

    2017-01-01

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. PMID:29165241

  18. Attentional Switching in Humans and Flies: Rivalry in Large and Miniature Brains

    PubMed Central

    Miller, Steven Mark; Ngo, Trung Thanh; van Swinderen, Bruno

    2012-01-01

    Human perception, and consequently behavior, is driven by attention dynamics. In the special case of rivalry, where attention alternates between competing percepts, such dynamics can be measured and their determinants investigated. A recent study in the fruit fly, Drosophila melanogaster, now shows that the origins of attentional rivalry may be quite ancient. Furthermore, individual variation exists in the rate of attentional rivalry in both humans and flies, and in humans this is under substantial genetic influence. In the pathophysiological realm, slowing of rivalry rate is associated with the heritable psychiatric condition, bipolar disorder. Fly rivalry may therefore prove a powerful model to examine genetic and molecular influences on rivalry rate, and may even shed light on human cognitive and behavioral dysfunction. PMID:22279432

  19. Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain.

    PubMed

    Arbib, Michael A

    2016-03-01

    We make the case for developing a Computational Comparative Neuroprimatology to inform the analysis of the function and evolution of the human brain. First, we update the mirror system hypothesis on the evolution of the language-ready brain by (i) modeling action and action recognition and opportunistic scheduling of macaque brains to hypothesize the nature of the last common ancestor of macaque and human (LCA-m); and then we (ii) introduce dynamic brain modeling to show how apes could acquire gesture through ontogenetic ritualization, hypothesizing the nature of evolution from LCA-m to the last common ancestor of chimpanzee and human (LCA-c). We then (iii) hypothesize the role of imitation, pantomime, protosign and protospeech in biological and cultural evolution from LCA-c to Homo sapiens with a language-ready brain. Second, we suggest how cultural evolution in Homo sapiens led from protolanguages to full languages with grammar and compositional semantics. Third, we assess the similarities and differences between the dorsal and ventral streams in audition and vision as the basis for presenting and comparing two models of language processing in the human brain: A model of (i) the auditory dorsal and ventral streams in sentence comprehension; and (ii) the visual dorsal and ventral streams in defining "what language is about" in both production and perception of utterances related to visual scenes provide the basis for (iii) a first step towards a synthesis and a look at challenges for further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain

    NASA Astrophysics Data System (ADS)

    Arbib, Michael A.

    2016-03-01

    We make the case for developing a Computational Comparative Neuroprimatology to inform the analysis of the function and evolution of the human brain. First, we update the mirror system hypothesis on the evolution of the language-ready brain by (i) modeling action and action recognition and opportunistic scheduling of macaque brains to hypothesize the nature of the last common ancestor of macaque and human (LCA-m); and then we (ii) introduce dynamic brain modeling to show how apes could acquire gesture through ontogenetic ritualization, hypothesizing the nature of evolution from LCA-m to the last common ancestor of chimpanzee and human (LCA-c). We then (iii) hypothesize the role of imitation, pantomime, protosign and protospeech in biological and cultural evolution from LCA-c to Homo sapiens with a language-ready brain. Second, we suggest how cultural evolution in Homo sapiens led from protolanguages to full languages with grammar and compositional semantics. Third, we assess the similarities and differences between the dorsal and ventral streams in audition and vision as the basis for presenting and comparing two models of language processing in the human brain: A model of (i) the auditory dorsal and ventral streams in sentence comprehension; and (ii) the visual dorsal and ventral streams in defining ;what language is about; in both production and perception of utterances related to visual scenes provide the basis for (iii) a first step towards a synthesis and a look at challenges for further research.

  1. Scale-Free Neural and Physiological Dynamics in Naturalistic Stimuli Processing

    PubMed Central

    Lin, Amy

    2016-01-01

    Abstract Neural activity recorded at multiple spatiotemporal scales is dominated by arrhythmic fluctuations without a characteristic temporal periodicity. Such activity often exhibits a 1/f-type power spectrum, in which power falls off with increasing frequency following a power-law function: P(f)∝1/fβ, which is indicative of scale-free dynamics. Two extensively studied forms of scale-free neural dynamics in the human brain are slow cortical potentials (SCPs)—the low-frequency (<5 Hz) component of brain field potentials—and the amplitude fluctuations of α oscillations, both of which have been shown to carry important functional roles. In addition, scale-free dynamics characterize normal human physiology such as heartbeat dynamics. However, the exact relationships among these scale-free neural and physiological dynamics remain unclear. We recorded simultaneous magnetoencephalography and electrocardiography in healthy subjects in the resting state and while performing a discrimination task on scale-free dynamical auditory stimuli that followed different scale-free statistics. We observed that long-range temporal correlation (captured by the power-law exponent β) in SCPs positively correlated with that of heartbeat dynamics across time within an individual and negatively correlated with that of α-amplitude fluctuations across individuals. In addition, across individuals, long-range temporal correlation of both SCP and α-oscillation amplitude predicted subjects’ discrimination performance in the auditory task, albeit through antagonistic relationships. These findings reveal interrelations among different scale-free neural and physiological dynamics and initial evidence for the involvement of scale-free neural dynamics in the processing of natural stimuli, which often exhibit scale-free dynamics. PMID:27822495

  2. Power law scaling in synchronization of brain signals depends on cognitive load.

    PubMed

    Tinker, Jesse; Velazquez, Jose Luis Perez

    2014-01-01

    As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task). There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa), which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviors.

  3. On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Petersson, Karl Magnus

    2008-11-01

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.

  4. Network Analysis: Applications for the Developing Brain

    PubMed Central

    Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.

    2011-01-01

    Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762

  5. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach

    PubMed Central

    Teng, Santani

    2017-01-01

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019

  6. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach.

    PubMed

    Cichy, Radoslaw Martin; Teng, Santani

    2017-02-19

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  7. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep

    PubMed Central

    Tagliazucchi, Enzo; Sanjuán, Ana

    2017-01-01

    Abstract A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states. PMID:28966977

  8. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep.

    PubMed

    Deco, Gustavo; Tagliazucchi, Enzo; Laufs, Helmut; Sanjuán, Ana; Kringelbach, Morten L

    2017-01-01

    A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.

  9. Empirical and Theoretical Aspects of Generation and Transfer of Information in a Neuromagnetic Source Network

    PubMed Central

    Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal

    2011-01-01

    Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968

  10. A Combination of Ontogeny and CNS Environment Establishes Microglial Identity.

    PubMed

    Bennett, F Chris; Bennett, Mariko L; Yaqoob, Fazeela; Mulinyawe, Sara B; Grant, Gerald A; Hayden Gephart, Melanie; Plowey, Edward D; Barres, Ben A

    2018-05-22

    Microglia, the brain's resident macrophages, are dynamic CNS custodians with surprising origins in the extra-embryonic yolk sac. The consequences of their distinct ontogeny are unknown but critical to understanding and treating brain diseases. We created a brain macrophage transplantation system to disentangle how environment and ontogeny specify microglial identity. We find that donor cells extensively engraft in the CNS of microglia-deficient mice, and even after exposure to a cell culture environment, microglia fully regain their identity when returned to the CNS. Though transplanted macrophages from multiple tissues can express microglial genes in the brain, only those of yolk-sac origin fully attain microglial identity. Transplanted macrophages of inappropriate origin, including primary human cells in a humanized host, express disease-associated genes and specific ontogeny markers. Through brain macrophage transplantation, we discover new principles of microglial identity that have broad applications to the study of disease and development of myeloid cell therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  12. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies

    PubMed Central

    Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.

    2017-01-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188

  13. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-05-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  14. Human seizures couple across spatial scales through travelling wave dynamics

    NASA Astrophysics Data System (ADS)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  15. From embodied mind to embodied robotics: humanities and system theoretical aspects.

    PubMed

    Mainzer, Klaus

    2009-01-01

    After an introduction (1) the article analyzes the evolution of the embodied mind (2), the innovation of embodied robotics (3), and finally discusses conclusions of embodied robotics for human responsibility (4). Considering the evolution of the embodied mind (2), we start with an introduction of complex systems and nonlinear dynamics (2.1), apply this approach to neural self-organization (2.2), distinguish degrees of complexity of the brain (2.3), explain the emergence of cognitive states by complex systems dynamics (2.4), and discuss criteria for modeling the brain as complex nonlinear system (2.5). The innovation of embodied robotics (3) is a challenge of future technology. We start with the distinction of symbolic and embodied AI (3.1) and explain embodied robots as dynamical systems (3.2). Self-organization needs self-control of technical systems (3.3). Cellular neural networks (CNN) are an example of self-organizing technical systems offering new avenues for neurobionics (3.4). In general, technical neural networks support different kinds of learning robots (3.5). Finally, embodied robotics aim at the development of cognitive and conscious robots (3.6).

  16. A Novel Experimental and Analytical Approach to the Multimodal Neural Decoding of Intent During Social Interaction in Freely-behaving Human Infants.

    PubMed

    Cruz-Garza, Jesus G; Hernandez, Zachery R; Tse, Teresa; Caducoy, Eunice; Abibullaev, Berdakh; Contreras-Vidal, Jose L

    2015-10-04

    Understanding typical and atypical development remains one of the fundamental questions in developmental human neuroscience. Traditionally, experimental paradigms and analysis tools have been limited to constrained laboratory tasks and contexts due to technical limitations imposed by the available set of measuring and analysis techniques and the age of the subjects. These limitations severely limit the study of developmental neural dynamics and associated neural networks engaged in cognition, perception and action in infants performing "in action and in context". This protocol presents a novel approach to study infants and young children as they freely organize their own behavior, and its consequences in a complex, partly unpredictable and highly dynamic environment. The proposed methodology integrates synchronized high-density active scalp electroencephalography (EEG), inertial measurement units (IMUs), video recording and behavioral analysis to capture brain activity and movement non-invasively in freely-behaving infants. This setup allows for the study of neural network dynamics in the developing brain, in action and context, as these networks are recruited during goal-oriented, exploration and social interaction tasks.

  17. Chunking dynamics: heteroclinics in mind

    PubMed Central

    Rabinovich, Mikhail I.; Varona, Pablo; Tristan, Irma; Afraimovich, Valentin S.

    2014-01-01

    Recent results of imaging technologies and non-linear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are non-linear dynamical descriptions of the interaction of the core components—brain modes—participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain of saddles—metastable states—connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences, and finally words). Chunking is important in many processes of perception, learning, and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we propose a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics. PMID:24672469

  18. Chunking dynamics: heteroclinics in mind.

    PubMed

    Rabinovich, Mikhail I; Varona, Pablo; Tristan, Irma; Afraimovich, Valentin S

    2014-01-01

    Recent results of imaging technologies and non-linear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are non-linear dynamical descriptions of the interaction of the core components-brain modes-participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain of saddles-metastable states-connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences, and finally words). Chunking is important in many processes of perception, learning, and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we propose a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics.

  19. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

    PubMed Central

    Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.

    2017-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  20. The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    PubMed Central

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano

    2010-01-01

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869

  1. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

    PubMed

    Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Zhan, Jie; Grossman, Murray; Wang, Ze

    2016-01-01

    Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.

  2. Monitoring intracranial pressure based on F-P

    NASA Astrophysics Data System (ADS)

    Cai, Ting; Tong, Xinglin; Chen, Guangxi

    2013-09-01

    Intracranial pressure is an important monitoring indicator of neurosurgery. In this paper we adopt all-fiber FP fiber optic sensor, using a minimally invasive operation to realize real-time dynamic monitoring intracranial pressure of the hemorrhage rats, and observe their intracranial pressure regularity of dynamic changes. Preliminary results verify the effectiveness of applications and feasibility, providing some basis for human brain minimally invasive intracranial pressure measurement.

  3. Human biodistribution and dosimetry of 18F-JNJ42259152, a radioligand for phosphodiesterase 10A imaging.

    PubMed

    Van Laere, Koen; Ahmad, Rawaha U; Hudyana, Hendra; Celen, Sofie; Dubois, Kristof; Schmidt, Mark E; Bormans, Guy; Koole, Michel

    2013-01-01

    Phosphodiesterase 10A (PDE10A) is a cAMP/cGMP-hydrolysing enzyme with a central role in striatal signalling and implicated in neuropsychiatric disorders such as Huntington's disease, Parkinson's disease, schizophrenia and addiction. We have developed a novel PDE10A PET ligand, (18)F-JNJ42259152, and describe here its human dynamic biodistribution, safety and dosimetry. Six male subjects (age range 23-67 years) underwent ten dynamic whole-body PET/CT scans over 6 h after bolus injection of 175.5 ± 9.4 MBq (18)F-JNJ42259152. Source organs were delineated on PET/CT and individual organ doses and effective dose were determined using the OLINDA software. F-JNJ42259152 was readily taken up by the brain and showed exclusive retention in the brain, especially in the striatum with good washout starting after 20 min. The tracer was cleared through both the hepatobiliary and the urinary routes. No defluorination was observed. Organ absorbed doses were largest for the gallbladder (239 μSv/MBq) and upper large intestine (138 μSv/MBq). The mean effective dose was 24.9 ± 4.1 μSv/MBq. No adverse events were encountered. In humans, (18)F-JNJ42259152 has an appropriate distribution, brain kinetics and safety. The estimated effective dose was within WHO class IIb with low interindividual variability. Therefore, the tracer is suitable for further kinetic evaluation in humans.

  4. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    PubMed

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However, it remains unclear whether this flexibly functional reconfiguration is intrinsic and occurs in the absence of an overt task. In this study, we propose a probabilistic framework to quantify the functional flexibility of each brain region using resting-state fMRI. We identify regions showing high flexibility mainly in the higher-order association cortex. In contrast, primary and unimodal visual and sensory areas show low flexibility. On the other hand, our findings reveal dissociable changes of frontal and parietal cortices in terms of inherent functional flexibility over the life span. Copyright © 2016 the authors 0270-6474/16/3610060-15$15.00/0.

  5. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  6. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading

    NASA Astrophysics Data System (ADS)

    Iwaskiw, A. S.; Ott, K. A.; Armiger, R. S.; Wickwire, A. C.; Alphonse, V. D.; Voo, L. M.; Carneal, C. M.; Merkle, A. C.

    2018-01-01

    The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2-6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.

  7. Ad cerebrum per scientia: Ira Hirsh, psychoacoustics, and new approaches to understanding the human brain

    NASA Astrophysics Data System (ADS)

    Lauter, Judith

    2002-05-01

    As Research Director of CID, Ira emphasized the importance of combining information from biology with rigorous studies of behavior, such as psychophysics, to better understand how the brain and body accomplish the goals of everyday life. In line with this philosophy, my doctoral dissertation sought to explain brain functional asymmetries (studied with dichotic listening) in terms of the physical dimensions of a library of test sounds designed to represent a speech-music continuum. Results highlighted individual differences plus similarities in terms of patterns of relative ear advantages, suggesting an organizational basis for brain asymmetries depending on physical dimensions of stimulus and gesture with analogs in auditory, visual, somatosensory, and motor systems. My subsequent work has employed a number of noninvasive methods (OAEs, EPs, qEEG, PET, MRI) to explore the neurobiological bases of individual differences in general and functional asymmetries in particular. This research has led to (1) the AXS test battery for assessing the neurobiology of human sensory-motor function; (2) the handshaking model of brain function, describing dynamic relations along all three body/brain axes; (3) the four-domain EPIC model of functional asymmetries; and (4) the trimodal brain, a new model of individual differences based on psychoimmunoneuroendocrinology.

  8. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Gaining Insight of Fetal Brain Development with Diffusion MRI and Histology

    PubMed Central

    Huang, Hao; Vasung, Lana

    2013-01-01

    Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic level. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. PMID:23796901

  10. Human development XIII: the connection between the structure of the overtone system and the tone language of music. Some implications for our understanding of the human brain.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Kandel, Isack; Merrick, Joav

    2008-07-13

    The functioning brain behaves like one highly-structured, coherent, informational field. It can be popularly described as a "coherent ball of energy", making the idea of a local highly-structured quantum field that carries the consciousness very appealing. If that is so, the structure of the experience of music might be a quite unique window into a hidden quantum reality of the brain, and even of life itself. The structure of music is then a mirror of a much more complex, but similar, structure of the energetic field of the working brain. This paper discusses how the perception of music is organized in the human brain with respect to the known tone scales of major and minor. The patterns used by the brain seem to be similar to the overtones of vibrating matter, giving a positive experience of harmonies in major. However, we also like the minor scale, which can explain brain patterns as fractal-like, giving a symmetric "downward reflection" of the major scale into the minor scale. We analyze the implication of beautiful and ugly tones and harmonies for the model. We conclude that when it comes to simple perception of harmonies, the most simple is the most beautiful and the most complex is the most ugly, but in music, even the most disharmonic harmony can be beautiful, if experienced as a part of a dynamic release of musical tension. This can be taken as a general metaphor of painful, yet meaningful, and developing experiences in human life.

  11. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

    PubMed

    Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod

    2017-07-15

    There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dynamics of Intersubject Brain Networks during Anxious Anticipation

    PubMed Central

    Najafi, Mahshid; Kinnison, Joshua; Pessoa, Luiz

    2017-01-01

    How do large-scale brain networks reorganize during the waxing and waning of anxious anticipation? Here, threat was dynamically modulated during human functional MRI as two circles slowly meandered on the screen; if they touched, an unpleasant shock was delivered. We employed intersubject correlation analysis, which allowed the investigation of network-level functional connectivity across brains, and sought to determine how network connectivity changed during periods of approach (circles moving closer) and periods of retreat (circles moving apart). Analysis of positive connection weights revealed that dynamic threat altered connectivity within and between the salience, executive, and task-negative networks. For example, dynamic functional connectivity increased within the salience network during approach and decreased during retreat. The opposite pattern was found for the functional connectivity between the salience and task-negative networks: decreases during approach and increases during approach. Functional connections between subcortical regions and the salience network also changed dynamically during approach and retreat periods. Subcortical regions exhibiting such changes included the putative periaqueductal gray, putative habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative functional connections revealed dynamic changes, too. For example, negative weights within the salience network decreased during approach and increased during retreat, opposite what was found for positive weights. Together, our findings unraveled dynamic features of functional connectivity of large-scale networks and subcortical regions across participants while threat levels varied continuously, and demonstrate the potential of characterizing emotional processing at the level of dynamic networks. PMID:29209184

  13. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Tan, X. G.; Przekwas, A. J.; Gupta, R. K.

    2017-11-01

    The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

  14. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.

    PubMed

    Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni

    2015-10-01

    Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age. © 2015 Wiley Periodicals, Inc.

  15. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    PubMed Central

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  16. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats.

    PubMed

    Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q

    2017-08-01

    Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.

  17. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    PubMed

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus. Copyright © 2016, American Association for the Advancement of Science.

  18. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks.

    PubMed

    Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-06-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Information properties of morphologically complex words modulate brain activity during word reading.

    PubMed

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  1. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    PubMed

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  2. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  3. How does a surgeon’s brain buzz? An EEG coherence study on the interaction between humans and robot

    PubMed Central

    2013-01-01

    Introduction In humans, both primary and non-primary motor areas are involved in the control of voluntary movements. However, the dynamics of functional coupling among different motor areas have not been fully clarified yet. There is to date no research looking to the functional dynamics in the brain of surgeons working in laparoscopy compared with those trained and working in robotic surgery. Experimental procedures We enrolled 16 right-handed trained surgeons and assessed changes in intra- and inter-hemispheric EEG coherence with a 32-channels device during the same motor task with either a robotic or a laparoscopic approach. Estimates of auto and coherence spectra were calculated by a fast Fourier transform algorithm implemented on Matlab 5.3. Results We found increase of coherence in surgeons performing laparoscopy, especially in theta and lower alpha activity, in all experimental conditions (M1 vs. SMA, S1 vs. SMA, S1 vs. pre-SMA and M1 vs. S1; p < 0.001). Conversely, an increase in inter-hemispheric coherence in upper alpha and beta band was found in surgeons using the robotic procedure (right vs. left M1, right vs. left S1, right pre-SMA vs. left M1, left pre-SMA vs. right M1; p < 0.001). Discussion Our data provide a semi-quantitative evaluation of dynamics in functional coupling among different cortical areas in skilled surgeons performing laparoscopy or robotic surgery. These results suggest that motor and non-motor areas are differently activated and coordinated in surgeons performing the same task with different approaches. To the best of our knowledge, this is the first study that tried to assess semi-quantitative differences during the interaction between normal human brain and robotic devices. PMID:23607324

  4. How does a surgeon's brain buzz? An EEG coherence study on the interaction between humans and robot.

    PubMed

    Bocci, Tommaso; Moretto, Carlo; Tognazzi, Silvia; Briscese, Lucia; Naraci, Megi; Leocani, Letizia; Mosca, Franco; Ferrari, Mauro; Sartucci, Ferdinando

    2013-04-22

    In humans, both primary and non-primary motor areas are involved in the control of voluntary movements. However, the dynamics of functional coupling among different motor areas have not been fully clarified yet. There is to date no research looking to the functional dynamics in the brain of surgeons working in laparoscopy compared with those trained and working in robotic surgery. We enrolled 16 right-handed trained surgeons and assessed changes in intra- and inter-hemispheric EEG coherence with a 32-channels device during the same motor task with either a robotic or a laparoscopic approach. Estimates of auto and coherence spectra were calculated by a fast Fourier transform algorithm implemented on Matlab 5.3. We found increase of coherence in surgeons performing laparoscopy, especially in theta and lower alpha activity, in all experimental conditions (M1 vs. SMA, S1 vs. SMA, S1 vs. pre-SMA and M1 vs. S1; p < 0.001). Conversely, an increase in inter-hemispheric coherence in upper alpha and beta band was found in surgeons using the robotic procedure (right vs. left M1, right vs. left S1, right pre-SMA vs. left M1, left pre-SMA vs. right M1; p < 0.001). Our data provide a semi-quantitative evaluation of dynamics in functional coupling among different cortical areas in skilled surgeons performing laparoscopy or robotic surgery. These results suggest that motor and non-motor areas are differently activated and coordinated in surgeons performing the same task with different approaches. To the best of our knowledge, this is the first study that tried to assess semi-quantitative differences during the interaction between normal human brain and robotic devices.

  5. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  6. Variability of human brain and muscle optical pathlength in different experimental conditions

    NASA Astrophysics Data System (ADS)

    Ferrari, Marco; Wei, Qingnong; De Blasi, Roberto A.; Quaresima, Valentina; Zaccanti, Giovanni

    1993-09-01

    Pathlength can be evaluated by measuring the time taken from a picosecond (psec) near infrared (IR) laser pulse to cross tissue. Differential pathlength factor (DPF) is calculated by dividing the mean pathlength by the inter-fiber distance. Data on DPF variability on humans are scarce. We investigated the forehead and forearm DPF in resting conditions and dynamically during brain hypoxic hypoxia, muscle ischemia and voluntary isometric exercise. At 3 cm inter optode spacing DPF at 800 nm was 4.3 +/- 0.2 (n equals 14, mean +/- SD) on the forearm, and 6.5 +/- 0.5 (n equals 8) on the forehead. Brain, muscle, and breast DPF values were almost constant over the inter optode spacing 2.5 - 4 cm. DPF was roughly constant in the central region of forehead. DPF drastically decreased under the fronto- temporal junction for the presence of muscle in the optical field. DPF decreased 5 - 10% during forearm ischemia with and without maximal voluntary contraction and during brain hypoxic hypoxia.

  7. Enhanced functional connectivity properties of human brains during in-situ nature experience

    PubMed Central

    2016-01-01

    In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a 20 min in-situ sitting exposure in either a nature (n = 16) or urban environment (n = 16) and measured their Electroencephalography (EEG) signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with “coherent” experience measured by Perceived Restorativeness Scale (PRS). Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being. PMID:27547533

  8. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  9. The MNESIS model: Memory systems and processes, identity and future thinking.

    PubMed

    Eustache, Francis; Viard, Armelle; Desgranges, Béatrice

    2016-07-01

    The Memory NEo-Structural Inter-Systemic model (MNESIS; Eustache and Desgranges, Neuropsychology Review, 2008) is a macromodel based on neuropsychological data which presents an interactive construction of memory systems and processes. Largely inspired by Tulving's SPI model, MNESIS puts the emphasis on the existence of different memory systems in humans and their reciprocal relations, adding new aspects, such as the episodic buffer proposed by Baddeley. The more integrative comprehension of brain dynamics offered by neuroimaging has contributed to rethinking the existence of memory systems. In the present article, we will argue that understanding the concept of memory by dividing it into systems at the functional level is still valid, but needs to be considered in the light of brain imaging. Here, we reinstate the importance of this division in different memory systems and illustrate, with neuroimaging findings, the links that operate between memory systems in response to task demands that constrain the brain dynamics. During a cognitive task, these memory systems interact transiently to rapidly assemble representations and mobilize functions to propose a flexible and adaptative response. We will concentrate on two memory systems, episodic and semantic memory, and their links with autobiographical memory. More precisely, we will focus on interactions between episodic and semantic memory systems in support of 1) self-identity in healthy aging and in brain pathologies and 2) the concept of the prospective brain during future projection. In conclusion, this MNESIS global framework may help to get a general representation of human memory and its brain implementation with its specific components which are in constant interaction during cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Neuromechanics: an integrative approach for understanding motor control.

    PubMed

    Nishikawa, Kiisa; Biewener, Andrew A; Aerts, Peter; Ahn, Anna N; Chiel, Hillel J; Daley, Monica A; Daniel, Thomas L; Full, Robert J; Hale, Melina E; Hedrick, Tyson L; Lappin, A Kristopher; Nichols, T Richard; Quinn, Roger D; Satterlie, Richard A; Szymik, Brett

    2007-07-01

    Neuromechanics seeks to understand how muscles, sense organs, motor pattern generators, and brain interact to produce coordinated movement, not only in complex terrain but also when confronted with unexpected perturbations. Applications of neuromechanics include ameliorating human health problems (including prosthesis design and restoration of movement following brain or spinal cord injury), as well as the design, actuation and control of mobile robots. In animals, coordinated movement emerges from the interplay among descending output from the central nervous system, sensory input from body and environment, muscle dynamics, and the emergent dynamics of the whole animal. The inevitable coupling between neural information processing and the emergent mechanical behavior of animals is a central theme of neuromechanics. Fundamentally, motor control involves a series of transformations of information, from brain and spinal cord to muscles to body, and back to brain. The control problem revolves around the specific transfer functions that describe each transformation. The transfer functions depend on the rules of organization and operation that determine the dynamic behavior of each subsystem (i.e., central processing, force generation, emergent dynamics, and sensory processing). In this review, we (1) consider the contributions of muscles, (2) sensory processing, and (3) central networks to motor control, (4) provide examples to illustrate the interplay among brain, muscles, sense organs and the environment in the control of movement, and (5) describe advances in both robotics and neuromechanics that have emerged from application of biological principles in robotic design. Taken together, these studies demonstrate that (1) intrinsic properties of muscle contribute to dynamic stability and control of movement, particularly immediately after perturbations; (2) proprioceptive feedback reinforces these intrinsic self-stabilizing properties of muscle; (3) control systems must contend with inevitable time delays that can simplify or complicate control; and (4) like most animals under a variety of circumstances, some robots use a trial and error process to tune central feedforward control to emergent body dynamics.

  11. Respiration and the watershed of spinal CSF flow in humans.

    PubMed

    Dreha-Kulaczewski, Steffi; Konopka, Mareen; Joseph, Arun A; Kollmeier, Jost; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2018-04-04

    The dynamics of human CSF in brain and upper spinal canal are regulated by inspiration and connected to the venous system through associated pressure changes. Upward CSF flow into the head during inspiration counterbalances venous flow out of the brain. Here, we investigated CSF motion along the spinal canal by real-time phase-contrast flow MRI at high spatial and temporal resolution. Results reveal a watershed of spinal CSF dynamics which divides flow behavior at about the level of the heart. While forced inspiration prompts upward surge of CSF flow volumes in the entire spinal canal, ensuing expiration leads to pronounced downward CSF flow, but only in the lower canal. The resulting pattern of net flow volumes during forced respiration yields upward CSF motion in the upper and downward flow in the lower spinal canal. These observations most likely reflect closely coupled CSF and venous systems as both large caval veins and their anastomosing vertebral plexus react to respiration-induced pressure changes.

  12. Gaining insight of fetal brain development with diffusion MRI and histology.

    PubMed

    Huang, Hao; Vasung, Lana

    2014-02-01

    Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic levels. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Human Development XIII: The Connection Between the Structure of the Overtone System and the Tone Language of Music. Some Implications for Our Understanding of the Human Brain

    PubMed Central

    Ventegodt, Søren; Hermansen, Tyge Dahl; Kandel, Isack; Merrick, Joav

    2008-01-01

    The functioning brain behaves like one highly-structured, coherent, informational field. It can be popularly described as a “coherent ball of energy”, making the idea of a local highly-structured quantum field that carries the consciousness very appealing. If that is so, the structure of the experience of music might be a quite unique window into a hidden quantum reality of the brain, and even of life itself. The structure of music is then a mirror of a much more complex, but similar, structure of the energetic field of the working brain. This paper discusses how the perception of music is organized in the human brain with respect to the known tone scales of major and minor. The patterns used by the brain seem to be similar to the overtones of vibrating matter, giving a positive experience of harmonies in major. However, we also like the minor scale, which can explain brain patterns as fractal-like, giving a symmetric “downward reflection” of the major scale into the minor scale. We analyze the implication of beautiful and ugly tones and harmonies for the model. We conclude that when it comes to simple perception of harmonies, the most simple is the most beautiful and the most complex is the most ugly, but in music, even the most disharmonic harmony can be beautiful, if experienced as a part of a dynamic release of musical tension. This can be taken as a general metaphor of painful, yet meaningful, and developing experiences in human life. PMID:18661052

  14. Human seizures self-terminate across spatial scales via a critical transition.

    PubMed

    Kramer, Mark A; Truccolo, Wilson; Eden, Uri T; Lepage, Kyle Q; Hochberg, Leigh R; Eskandar, Emad N; Madsen, Joseph R; Lee, Jong W; Maheshwari, Atul; Halgren, Eric; Chu, Catherine J; Cash, Sydney S

    2012-12-18

    Why seizures spontaneously terminate remains an unanswered fundamental question of epileptology. Here we present evidence that seizures self-terminate via a discontinuous critical transition or bifurcation. We show that human brain electrical activity at various spatial scales exhibits common dynamical signatures of an impending critical transition--slowing, increased correlation, and flickering--in the approach to seizure termination. In contrast, prolonged seizures (status epilepticus) repeatedly approach, but do not cross, the critical transition. To support these results, we implement a computational model that demonstrates that alternative stable attractors, representing the ictal and postictal states, emulate the observed dynamics. These results suggest that self-terminating seizures end through a common dynamical mechanism. This description constrains the specific biophysical mechanisms underlying seizure termination, suggests a dynamical understanding of status epilepticus, and demonstrates an accessible system for studying critical transitions in nature.

  15. Dynamic encoding of face information in the human fusiform gyrus.

    PubMed

    Ghuman, Avniel Singh; Brunet, Nicolas M; Li, Yuanning; Konecky, Roma O; Pyles, John A; Walls, Shawn A; Destefino, Vincent; Wang, Wei; Richardson, R Mark

    2014-12-08

    Humans' ability to rapidly and accurately detect, identify and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing; however, temporal dynamics of face information processing in FFA remains unclear. Here we use multivariate pattern classification to decode the temporal dynamics of expression-invariant face information processing using electrodes placed directly on FFA in humans. Early FFA activity (50-75 ms) contained information regarding whether participants were viewing a face. Activity between 200 and 500 ms contained expression-invariant information about which of 70 faces participants were viewing along with the individual differences in facial features and their configurations. Long-lasting (500+ms) broadband gamma frequency activity predicted task performance. These results elucidate the dynamic computational role FFA plays in multiple face processing stages and indicate what information is used in performing these visual analyses.

  16. Detection of chaotic dynamics in human gait signals from mobile devices

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  17. Specialization in the Human Brain: The Case of Numbers

    PubMed Central

    Kadosh, Roi Cohen; Bahrami, Bahador; Walsh, Vincent; Butterworth, Brian; Popescu, Tudor; Price, Cathy J.

    2011-01-01

    How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education, and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g., symbolic digits or non-symbolic dot arrays). This has led to claims that there is a single format-independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits), in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions. PMID:21808615

  18. Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain.

    PubMed

    Tauste Campo, Adrià; Principe, Alessandro; Ley, Miguel; Rocamora, Rodrigo; Deco, Gustavo

    2018-04-01

    Epileptic seizures are known to follow specific changes in brain dynamics. While some algorithms can nowadays robustly detect these changes, a clear understanding of the mechanism by which these alterations occur and generate seizures is still lacking. Here, we provide crossvalidated evidence that such changes are initiated by an alteration of physiological network state dynamics. Specifically, our analysis of long intracranial electroencephalography (iEEG) recordings from a group of 10 patients identifies a critical phase of a few hours in which time-dependent network states become less variable ("degenerate"), and this phase is followed by a global functional connectivity reduction before seizure onset. This critical phase is characterized by an abnormal occurrence of highly correlated network instances and is shown to be particularly associated with the activity of the resected regions in patients with validated postsurgical outcome. Our approach characterizes preseizure network dynamics as a cascade of 2 sequential events providing new insights into seizure prediction and control.

  19. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  20. Magnetic Resonance Imaging Profile of Blood–Brain Barrier Injury in Patients With Acute Intracerebral Hemorrhage

    PubMed Central

    Aksoy, Didem; Bammer, Roland; Mlynash, Michael; Venkatasubramanian, Chitra; Eyngorn, Irina; Snider, Ryan W.; Gupta, Sandeep N.; Narayana, Rashmi; Fischbein, Nancy; Wijman, Christine A. C.

    2013-01-01

    Background Spontaneous intracerebral hemorrhage (ICH) is associated with blood–brain barrier (BBB) injury, which is a poorly understood factor in ICH pathogenesis, potentially contributing to edema formation and perihematomal tissue injury. We aimed to assess and quantify BBB permeability following human spontaneous ICH using dynamic contrast‐enhanced magnetic resonance imaging (DCE MRI). We also investigated whether hematoma size or location affected the amount of BBB leakage. Methods and Results Twenty‐five prospectively enrolled patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were examined using DCE MRI at 1 week after symptom onset. Contrast agent dynamics in the brain tissue and general tracer kinetic modeling were used to estimate the forward leakage rate (Ktrans) in regions of interest (ROI) in and surrounding the hematoma and in contralateral mirror–image locations (control ROI). In all patients BBB permeability was significantly increased in the brain tissue immediately adjacent to the hematoma, that is, the hematoma rim, compared to the contralateral mirror ROI (P<0.0001). Large hematomas (>30 mL) had higher Ktrans values than small hematomas (P<0.005). Ktrans values of lobar hemorrhages were significantly higher than the Ktrans values of deep hemorrhages (P<0.005), independent of hematoma volume. Higher Ktrans values were associated with larger edema volumes. Conclusions BBB leakage in the brain tissue immediately bordering the hematoma can be measured and quantified by DCE MRI in human ICH. BBB leakage at 1 week is greater in larger hematomas as well as in hematomas in lobar locations and is associated with larger edema volumes. PMID:23709564

  1. Modulation of the brain's functional network architecture in the transition from wake to sleep

    PubMed Central

    Larson-Prior, Linda J.; Power, Jonathan D.; Vincent, Justin L.; Nolan, Tracy S.; Coalson, Rebecca S.; Zempel, John; Snyder, Abraham Z.; Schlaggar, Bradley L.; Raichle, Marcus E.; Petersen, Steven E.

    2013-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes. PMID:21854969

  2. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    PubMed

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2017-11-27

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  3. Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood.

    PubMed

    Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela

    2011-02-04

    p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Dynamics of EEG functional connectivity during statistical learning.

    PubMed

    Tóth, Brigitta; Janacsek, Karolina; Takács, Ádám; Kóbor, Andrea; Zavecz, Zsófia; Nemeth, Dezso

    2017-10-01

    Statistical learning is a fundamental mechanism of the brain, which extracts and represents regularities of our environment. Statistical learning is crucial in predictive processing, and in the acquisition of perceptual, motor, cognitive, and social skills. Although previous studies have revealed competitive neurocognitive processes underlying statistical learning, the neural communication of the related brain regions (functional connectivity, FC) has not yet been investigated. The present study aimed to fill this gap by investigating FC networks that promote statistical learning in humans. Young adults (N=28) performed a statistical learning task while 128-channels EEG was acquired. The task involved probabilistic sequences, which enabled to measure incidental/implicit learning of conditional probabilities. Phase synchronization in seven frequency bands was used to quantify FC between cortical regions during the first, second, and third periods of the learning task, respectively. Here we show that statistical learning is negatively correlated with FC of the anterior brain regions in slow (theta) and fast (beta) oscillations. These negative correlations increased as the learning progressed. Our findings provide evidence that dynamic antagonist brain networks serve a hallmark of statistical learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The dynamics of human cognition: Increasing global integration coupled with decreasing segregation found using iEEG.

    PubMed

    Cruzat, Josephine; Deco, Gustavo; Tauste-Campo, Adrià; Principe, Alessandro; Costa, Albert; Kringelbach, Morten L; Rocamora, Rodrigo

    2018-05-15

    Cognitive processing requires the ability to flexibly integrate and process information across large brain networks. How do brain networks dynamically reorganize to allow broad communication between many different brain regions in order to integrate information? We record neural activity from 12 epileptic patients using intracranial EEG while performing three cognitive tasks. We assess how the functional connectivity between different brain areas changes to facilitate communication across them. At the topological level, this facilitation is characterized by measures of integration and segregation. Across all patients, we found significant increases in integration and decreases in segregation during cognitive processing, especially in the gamma band (50-90 Hz). We also found higher levels of global synchronization and functional connectivity during task execution, again particularly in the gamma band. More importantly, functional connectivity modulations were not caused by changes in the level of the underlying oscillations. Instead, these modulations were caused by a rearrangement of the mutual synchronization between the different nodes as proposed by the "Communication Through Coherence" Theory. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Allostasis and the human brain: Integrating models of stress from the social and life sciences

    PubMed Central

    Ganzel, Barbara L.; Morris, Pamela A.; Wethington, Elaine

    2009-01-01

    We draw on the theory of allostasis to develop an integrative model of the current stress process that highlights the brain as a dynamically adapting interface between the changing environment and the biological self. We review evidence that the core emotional regions of the brain constitute the primary mediator of the well-established association between stress and health, as well as the neural focus of “wear and tear” due to ongoing adaptation. This mediation, in turn, allows us to model the interplay over time between context, current stressor exposure, internal regulation of bodily processes, and health outcomes. We illustrate how this approach facilitates the integration of current findings in human neuroscience and genetics with key constructs from stress models from the social and life sciences, with implications for future research and the design of interventions targeting individuals at risk. PMID:20063966

  7. Power changes how the brain responds to others.

    PubMed

    Hogeveen, Jeremy; Inzlicht, Michael; Obhi, Sukhvinder S

    2014-04-01

    Power dynamics are a ubiquitous feature of human social life, yet little is known about how power is implemented in the brain. Motor resonance is the activation of similar brain networks when acting and when watching someone else act, and is thought to be implemented, in part, by the human mirror system. We investigated the effects of power on motor resonance during an action observation task. Separate groups of participants underwent a high-, neutral, or low-power induction priming procedure, prior to observing the actions of another person. During observation, motor resonance was determined with transcranial magnetic stimulation (TMS) via measures of motor cortical output. High-power participants demonstrated lower levels of resonance than low-power participants, suggesting reduced mirroring of other people in those with power. These differences suggest that decreased motor resonance to others' actions might be one of the neural mechanisms underlying power-induced asymmetries in processing our social interaction partners.

  8. Human Maternal Brain Plasticity: Adaptation to Parenting

    ERIC Educational Resources Information Center

    Kim, Pilyoung

    2016-01-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…

  9. Risk patterns and correlated brain activities. Multidimensional statistical analysis of FMRI data in economic decision making study.

    PubMed

    van Bömmel, Alena; Song, Song; Majer, Piotr; Mohr, Peter N C; Heekeren, Hauke R; Härdle, Wolfgang K

    2014-07-01

    Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556-2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284-298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects' decision behavior.

  10. Structure Shapes Dynamics and Directionality in Diverse Brain Networks: Mathematical Principles and Empirical Confirmation in Three Species

    NASA Astrophysics Data System (ADS)

    Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol

    2017-04-01

    Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.

  11. Quantification of brain macrostates using dynamical nonstationarity of physiological time series.

    PubMed

    Latchoumane, Charles-Francois Vincent; Jeong, Jaeseung

    2011-04-01

    The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.

  12. Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males.

    PubMed

    Deza Araujo, Yacila I; Nebe, Stephan; Neukam, Philipp T; Pooseh, Shakoor; Sebold, Miriam; Garbusow, Maria; Heinz, Andreas; Smolka, Michael N

    2018-06-01

    Value-based decision making (VBDM) is a principle that states that humans and other species adapt their behavior according to the dynamic subjective values of the chosen or unchosen options. The neural bases of this process have been extensively investigated using task-based fMRI and lesion studies. However, the growing field of resting-state functional connectivity (RSFC) may shed light on the organization and function of brain connections across different decision-making domains. With this aim, we used independent component analysis to study the brain network dynamics in a large cohort of young males (N = 145) and the relationship of these dynamics with VBDM. Participants completed a battery of behavioral tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks and conducted our analysis only on the default mode network (DMN) and networks comprising cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for losses was associated with increased connectivity between medial temporal regions, frontal regions, and the DMN. Higher risk seeking for losses was also associated with increased coupling between the left frontoparietal network and occipital cortices. These associations illustrate the participation of brain regions involved in prospective thinking, affective decision making, and visual processing in participants who are greater risk-seekers, and they demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with distinct VBDM parameters.

  13. Understanding face perception by means of human electrophysiology.

    PubMed

    Rossion, Bruno

    2014-06-01

    Electrophysiological recordings on the human scalp provide a wealth of information about the temporal dynamics and nature of face perception at a global level of brain organization. The time window between 100 and 200 ms witnesses the transition between low-level and high-level vision, an N170 component correlating with conscious interpretation of a visual stimulus as a face. This face representation is rapidly refined as information accumulates during this time window, allowing the individualization of faces. To improve the sensitivity and objectivity of face perception measures, it is increasingly important to go beyond transient visual stimulation by recording electrophysiological responses at periodic frequency rates. This approach has recently provided face perception thresholds and the first objective signature of integration of facial parts in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dynamic neurotransmitter interactions measured with PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight intomore » an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding biologically distinct neurochemical systems that interact to produce a variety of behaviors and disorders. Neurotransmitters are neither static nor isolated in their distribution. In fact, it is through interactions with other neurochemically distinct systems that the central nervous system (CNS) performs its vital role in sustaining life. Exclusive quantitative capabilities intrinsic to PET make this technology a suitable experimental tool to measure not only the regional distribution of specific receptors and their subtypes, but also the dynamic properties of neuroreceptors and their inherent influence on related neurotransmitter pathways. The ability to investigate dynamic properties in a non-invasive and reproducible manner provides a powerful tool that can extend our current knowledge of these interactions. Coupled with innovative paradigms including pharmacologic manipulations, physiologic models and reconstruction theories, knowledge derived from PET studies can greatly advance our understanding of normal and abnormal brain function.« less

  15. Application of State-Space Smoothing to fMRI Data for Calculation of Lagged Transinformation between Human Brain Activations

    NASA Astrophysics Data System (ADS)

    Watanabe, Jobu

    2009-09-01

    Mutual information can be given a directional sense by introducing a time lag in one of the variables. In an author's previous study, to investigate the network dynamics of human brain regions, lagged transinformation (LTI) was introduced using time delayed mutual information. The LTI makes it possible to quantify the time course of dynamic information transfer between regions in the temporal domain. The LTI was applied to functional magnetic resonance imaging (fMRI) data involved in neural processing of the transformation and comparison from three-dimensional (3D) visual information to a two-dimensional (2D) location to calculate directed information flows between the activated brain regions. In the present study, for more precise estimation of LTI, Kalman filter smoothing was applied to the same fMRI data. Because the smoothing method exploits the full length of the time series data for the estimation, its application increases the precision. Large information flows were found from the bilateral prefrontal cortices to the parietal cortices. The results suggest that information of the 3D images stored as working memory was retrieved and transferred from the prefrontal cortices to the parietal cortices for comparison with information of the 2D images.

  16. [Neuroethics: Ethical Endowments of Human Brain].

    PubMed

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind.

  17. Culturally Appropriate Education: Insights from Educational Neuroscience

    ERIC Educational Resources Information Center

    Zhou, Jiaxian; Fischer, Kurt W.

    2013-01-01

    Culturally appropriate education focuses on educational competence needed in a global world and respect for different world views of learners and teachers from different cultural contexts. The relationship between gene, brain, and culture is complex and dynamical. Cultural experience and learning sculpts the anatomy and function of the human brain…

  18. Automatic cortical thickness analysis on rodent brain

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek

    2011-03-01

    Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.

  19. Dynamical foundations of the neural circuit for bayesian decision making.

    PubMed

    Morita, Kenji

    2009-07-01

    On the basis of accumulating behavioral and neural evidences, it has recently been proposed that the brain neural circuits of humans and animals are equipped with several specific properties, which ensure that perceptual decision making implemented by the circuits can be nearly optimal in terms of Bayesian inference. Here, I introduce the basic ideas of such a proposal and discuss its implications from the standpoint of biophysical modeling developed in the framework of dynamical systems.

  20. Brain-resident memory CD8+ T cells induced by congenital CMV infection prevent brain pathology and virus reactivation.

    PubMed

    Brizić, Ilija; Šušak, Božo; Arapović, Maja; Huszthy, Peter C; Hiršl, Lea; Kveštak, Daria; Juranić Lisnić, Vanda; Golemac, Mijo; Pernjak Pugel, Ester; Tomac, Jelena; Oxenius, Annette; Britt, William J; Arapović, Jurica; Krmpotić, Astrid; Jonjić, Stipan

    2018-06-01

    Congenital HCMV infection is a leading infectious cause of long-term neurodevelopmental sequelae. Infection of newborn mice with mouse cytomegalovirus (MCMV) intraperitoneally is a well-established model of congenital human cytomegalovirus infection, which best recapitulates the hematogenous route of virus spread to brain and subsequent pathology. Here, we used this model to investigate the role, dynamics, and phenotype of CD8 + T cells in the brain following infection of newborn mice. We show that CD8 + T cells infiltrate the brain and form a pool of tissue-resident memory T cells (T RM cells) that persist for lifetime. Adoptively transferred virus-specific CD8 + T cells provide protection against primary MCMV infection in newborn mice, reduce brain pathology, and remain in the brain as T RM cells. Brain CD8 + T RM cells were long-lived, slowly proliferating cells able to respond to local challenge infection. Importantly, brain CD8 + T RM cells controlled latent MCMV and their depletion resulted in virus reactivation and enhanced inflammation in brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multiscale neural connectivity during human sensory processing in the brain

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  2. Down syndrome's brain dynamics: analysis of fractality in resting state.

    PubMed

    Hemmati, Sahel; Ahmadlou, Mehran; Gharib, Masoud; Vameghi, Roshanak; Sajedi, Firoozeh

    2013-08-01

    To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.

  3. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    PubMed

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.

  4. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    PubMed Central

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432

  5. The Programming of the Social Brain by Stress During Childhood and Adolescence: From Rodents to Humans.

    PubMed

    Tzanoulinou, Stamatina; Sandi, Carmen

    2017-01-01

    The quality and quantity of social experience is fundamental to an individual's health and well-being. Early life stress is known to be an important factor in the programming of the social brain that exerts detrimental effects on social behaviors. The peri-adolescent period, comprising late childhood and adolescence, represents a critical developmental window with regard to the programming effects of stress on the social brain. Here, we discuss social behavior and the physiological and neurobiological consequences of stress during peri-adolescence in the context of rodent paradigms that model human adversity, including social neglect and isolation, social abuse, and exposure to fearful experiences. Furthermore, we discuss peri-adolescent stress as a potent component that influences the social behaviors of individuals in close contact with stressed individuals and that can also influence future generations. We also discuss the temporal dynamics programmed by stress on the social brain and debate whether social behavior alterations are adaptive or maladaptive. By revising the existing literature and defining open questions, we aim to expand the framework in which interactions among peri-adolescent stress, the social brain, and behavior can be better conceptualized.

  6. Cerebral cartography and connectomics.

    PubMed

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. The integration processing of the visual and auditory information in videos of real-world events: an ERP study.

    PubMed

    Liu, Baolin; Wang, Zhongning; Jin, Zhixing

    2009-09-11

    In real life, the human brain usually receives information through visual and auditory channels and processes the multisensory information, but studies on the integration processing of the dynamic visual and auditory information are relatively few. In this paper, we have designed an experiment, where through the presentation of common scenario, real-world videos, with matched and mismatched actions (images) and sounds as stimuli, we aimed to study the integration processing of synchronized visual and auditory information in videos of real-world events in the human brain, through the use event-related potentials (ERPs) methods. Experimental results showed that videos of mismatched actions (images) and sounds would elicit a larger P400 as compared to videos of matched actions (images) and sounds. We believe that the P400 waveform might be related to the cognitive integration processing of mismatched multisensory information in the human brain. The results also indicated that synchronized multisensory information would interfere with each other, which would influence the results of the cognitive integration processing.

  8. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    PubMed Central

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  9. Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing.

    PubMed

    Tu, Tao; Schneck, Noam; Muraskin, Jordan; Sajda, Paul

    2017-12-13

    Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain-network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal "late" regions on perceptual processes occurring in "early" perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious-e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. Copyright © 2017 the authors 0270-6474/17/3712226-12$15.00/0.

  10. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  11. Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.

    PubMed

    Siegelmann, Hava T; Holzman, Lars E

    2010-09-01

    One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.

  12. EEG classification of emotions using emotion-specific brain functional network.

    PubMed

    Gonuguntla, V; Shafiq, G; Wang, Y; Veluvolu, K C

    2015-08-01

    The brain functional network perspective forms the basis to relate mechanisms of brain functions. This work analyzes the network mechanisms related to human emotion based on synchronization measure - phase-locking value in EEG to formulate the emotion specific brain functional network. Based on network dissimilarities between emotion and rest tasks, most reactive channel pairs and the reactive band corresponding to emotions are identified. With the identified most reactive pairs, the subject-specific functional network is formed. The identified subject-specific and emotion-specific dynamic network pattern show significant synchrony variation in line with the experiment protocol. The same network pattern are then employed for classification of emotions. With the study conducted on the 4 subjects, an average classification accuracy of 62 % was obtained with the proposed technique.

  13. The hearing ear is always found close to the speaking tongue: Review of the role of the motor system in speech perception.

    PubMed

    Skipper, Jeremy I; Devlin, Joseph T; Lametti, Daniel R

    2017-01-01

    Does "the motor system" play "a role" in speech perception? If so, where, how, and when? We conducted a systematic review that addresses these questions using both qualitative and quantitative methods. The qualitative review of behavioural, computational modelling, non-human animal, brain damage/disorder, electrical stimulation/recording, and neuroimaging research suggests that distributed brain regions involved in producing speech play specific, dynamic, and contextually determined roles in speech perception. The quantitative review employed region and network based neuroimaging meta-analyses and a novel text mining method to describe relative contributions of nodes in distributed brain networks. Supporting the qualitative review, results show a specific functional correspondence between regions involved in non-linguistic movement of the articulators, covertly and overtly producing speech, and the perception of both nonword and word sounds. This distributed set of cortical and subcortical speech production regions are ubiquitously active and form multiple networks whose topologies dynamically change with listening context. Results are inconsistent with motor and acoustic only models of speech perception and classical and contemporary dual-stream models of the organization of language and the brain. Instead, results are more consistent with complex network models in which multiple speech production related networks and subnetworks dynamically self-organize to constrain interpretation of indeterminant acoustic patterns as listening context requires. Copyright © 2016. Published by Elsevier Inc.

  14. Material translations in the Cartesian brain.

    PubMed

    Bassiri, Nima

    2012-03-01

    This article reexamines the controversial doctrine of the pineal gland in Cartesian psychophysiology. It argues initially that Descartes' combined metaphysics and natural philosophy yield a distinctly human subject who is rational, willful, but also a living and embodied being in the world, formed in the union and through the dynamics of the interaction between the soul and the body. However, Descartes only identified one site at which this union was staged: the brain, and more precisely, the pineal gland, the small bulb of nervous tissue at the brain's center. The pineal gland was charged with the incredible task of ensuring the interactive mutuality between the soul and body, while also maintaining the necessary ontological incommensurability between them. This article reconsiders the theoretical obligations placed on the pineal gland as the site of the soul-body union, and looks at how the gland was consequently forced to adopt a very precarious ontological status. The article ultimately questions how successfully the Cartesian human could be localized in the pineal gland, while briefly considering the broader historical consequences of the ensuing equivalence of the self and brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. No-carrier-added (18F)-N-methylspiroperidol

    DOEpatents

    Shiue, Chyng-Yann; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    There is disclosed a radioligand labeled with a positron emitting radionuclide suitable for dynamic study in living humans with positron emission transaxial tomography. [.sup.18 F]-N-methylspiroperidol, exhibiting extremely high affinity for the dopamine receptors, provides enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to provide [.sup.18 F]-N-methylspiroperidol as a radioligand superior to known radioligands for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for this material is disclosed.

  16. No-carrier-added (18F)-N-methylspiroperidol

    DOEpatents

    Shiue, Chyng-Yann; Fowler, Joanna S.; Wolf, Alfred P.

    1993-07-06

    There is disclosed a radioligand labeled with a positron emitting radionuclide suitable for dynamic study in living humans with positron emission transaxial tomography. [.sup.18 F]-N-methylspiroperidol, exhibiting extremely high affinity for the dopamine receptors, provides enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to provide [.sup.18 F]-N-methylspiroperidol as a radioligand superior to known radioligands for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for this material is disclosed.

  17. Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation.

    PubMed

    Santarnecchi, Emiliano; Rossi, Simone

    2016-12-06

    Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of "system level brain plasticity": tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic "lesions" of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alternating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relationship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence.

  18. Investigating Neuromagnetic Brain Responses against Chromatic Flickering Stimuli by Wavelet Entropies

    PubMed Central

    Bhagat, Mayank; Bhushan, Chitresh; Saha, Goutam; Shimjo, Shinsuke; Watanabe, Katsumi; Bhattacharya, Joydeep

    2009-01-01

    Background Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. Methodology/Principal Findings Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. Conclusions/Significance Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations. PMID:19779630

  19. Investigating neuromagnetic brain responses against chromatic flickering stimuli by wavelet entropies.

    PubMed

    Bhagat, Mayank; Bhushan, Chitresh; Saha, Goutam; Shimjo, Shinsuke; Watanabe, Katsumi; Bhattacharya, Joydeep

    2009-09-25

    Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations.

  20. A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects.

    PubMed

    Doborjeh, Maryam Gholami; Wang, Grace Y; Kasabov, Nikola K; Kydd, Robert; Russell, Bruce

    2016-09-01

    This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects.

  1. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    PubMed

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-07-01

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  2. Emotional Prosody Processing in Epilepsy: Some Insights on Brain Reorganization.

    PubMed

    Alba-Ferrara, Lucy; Kochen, Silvia; Hausmann, Markus

    2018-01-01

    Drug resistant epilepsy is one of the most complex, multifactorial and polygenic neurological syndrome. Besides its dynamicity and variability, it still provides us with a model to study brain-behavior relationship, giving cues on the anatomy and functional representation of brain function. Given that onset zone of focal epileptic seizures often affects different anatomical areas, cortical but limited to one hemisphere, this condition also let us study the functional differences of the left and right cerebral hemispheres. One lateralized function in the human brain is emotional prosody, and it can be a useful ictal sign offering hints on the location of the epileptogenic zone. Besides its importance for effective communication, prosody is not considered an eloquent domain, making resective surgery on its neural correlates feasible. We performed an Electronic databases search (Medline and PsychINFO) from inception to July 2017 for studies about prosody in epilepsy. The search terms included "epilepsy," "seizure," "emotional prosody," and "vocal affect." This review focus on emotional prosody processing in epilepsy as it can give hints regarding plastic functional changes following seizures (preoperatively), resection (post operatively), and also as an ictal sign enabling the assessment of dynamic brain networks. Moreover, it is argued that such reorganization can help to preserve the expression and reception of emotional prosody as a central skill to develop appropriate social interactions.

  3. The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation

    NASA Technical Reports Server (NTRS)

    Narici, L.; Belli, F.; Bidoli, V.; Casolino, M.; De Pascale, M. P.; Di Fino, L.; Furano, G.; Modena, I.; Morselli, A.; Picozza, P.; hide

    2004-01-01

    The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation.

    PubMed

    Narici, L; Belli, F; Bidoli, V; Casolino, M; De Pascale, M P; Di Fino, L; Furano, G; Modena, I; Morselli, A; Picozza, P; Reali, E; Rinaldi, A; Ruggieri, D; Sparvoli, R; Zaconte, V; Sannita, W G; Carozzo, S; Licoccia, S; Romagnoli, P; Traversa, E; Cotronei, V; Vazquez, M; Miller, J; Salnitskii, V P; Shevchenko, O I; Petrov, V P; Trukhanov, K A; Galper, A; Khodarovich, A; Korotkov, M G; Popov, A; Vavilov, N; Avdeev, S; Boezio, M; Bonvicini, W; Vacchi, A; Zampa, N; Mazzenga, G; Ricci, M; Spillantini, P; Castellini, G; Vittori, R; Carlson, P; Fuglesang, C; Schardt, D

    2004-01-01

    The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Emergence of Rich-Club Topology and Coordinated Dynamics in Development of Hippocampal Functional Networks In Vitro

    PubMed Central

    Charlesworth, Paul; Kitzbichler, Manfred G.; Paulsen, Ole

    2015-01-01

    Recent studies demonstrated that the anatomical network of the human brain shows a “rich-club” organization. This complex topological feature implies that highly connected regions, hubs of the large-scale brain network, are more densely interconnected with each other than expected by chance. Rich-club nodes were traversed by a majority of short paths between peripheral regions, underlining their potential importance for efficient global exchange of information between functionally specialized areas of the brain. Network hubs have also been described at the microscale of brain connectivity (so-called “hub neurons”). Their role in shaping synchronous dynamics and forming microcircuit wiring during development, however, is not yet fully understood. The present study aimed to investigate the role of hubs during network development, using multi-electrode arrays and functional connectivity analysis during spontaneous multi-unit activity (MUA) of dissociated primary mouse hippocampal neurons. Over the first 4 weeks in vitro, functional connectivity significantly increased in strength, density, and size, with mature networks demonstrating a robust modular and small-world topology. As expected by a “rich-get-richer” growth rule of network evolution, MUA graphs were found to form rich-clubs at an early stage in development (14 DIV). Later on, rich-club nodes were a consistent topological feature of MUA graphs, demonstrating high nodal strength, efficiency, and centrality. Rich-club nodes were also found to be crucial for MUA dynamics. They often served as broker of spontaneous activity flow, confirming that hub nodes and rich-clubs may play an important role in coordinating functional dynamics at the microcircuit level. PMID:25855164

  6. Neuroelectrical Decomposition of Spontaneous Brain Activity Measured with Functional Magnetic Resonance Imaging

    PubMed Central

    Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.

    2014-01-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947

  7. The NSW Brain Tissue Resource Centre: Banking for Alcohol and Major Neuropsychiatric Disorders Research

    PubMed Central

    Sutherland, G.T.; Sheedy, D.; Stevens, J.; McCrossin, T.; Smith, C.C.; van Roijen, M.; Kril, J.J.

    2016-01-01

    The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections. PMID:27139235

  8. Dynamic magnetic resonance imaging assessment of vascular targeting agent effects in rat intracerebral tumor models

    PubMed Central

    Muldoon, Leslie L.; Gahramanov, Seymur; Li, Xin; Marshall, Deborah J.; Kraemer, Dale F.; Neuwelt, Edward A.

    2011-01-01

    We used dynamic MRI to evaluate the effects of monoclonal antibodies targeting brain tumor vasculature. Female athymic rats with intracerebral human tumor xenografts were untreated or treated with intetumumab, targeting αV-integrins, or bevacizumab, targeting vascular endothelial growth factor (n = 4–6 per group). Prior to treatment and at 1, 3, and 7 days after treatment, we performed standard MRI to assess tumor volume, dynamic susceptibility-contrast MRI with the blood-pool iron oxide nanoparticle ferumoxytol to evaluate relative cerebral blood volume (rCBV), and dynamic contrast-enhanced MRI to assess tumor vascular permeability. Tumor rCBV increased by 27 ± 13% over 7 days in untreated rats; intetumumab increased tumor rCBV by 65 ± 10%, whereas bevacizumab reduced tumor rCBV by 31 ± 10% at 7 days (P < .001 for group and day). Similarly, intetumumab increased brain tumor vascular permeability compared with controls at 3 and 7 days after treatment, whereas bevacizumab decreased tumor permeability within 24 hours (P = .0004 for group, P = .0081 for day). All tumors grew over the 7-day assessment period, but bevacizumab slowed the increase in tumor volume on MRI. We conclude that the vascular targeting agents intetumumab and bevacizumab had diametrically opposite effects on dynamic MRI of tumor vasculature in rat brain tumor models. Targeting αV-integrins increased tumor vascular permeability and blood volume, whereas bevacizumab decreased both measures. These findings have implications for chemotherapy delivery and antitumor efficacy. PMID:21123368

  9. Dynamic Brain Network Correlates of Spontaneous Fluctuations in Attention.

    PubMed

    Kucyi, Aaron; Hove, Michael J; Esterman, Michael; Hutchison, R Matthew; Valera, Eve M

    2017-03-01

    Human attention is intrinsically dynamic, with focus continuously shifting between elements of the external world and internal, self-generated thoughts. Communication within and between large-scale brain networks also fluctuates spontaneously from moment to moment. However, the behavioral relevance of dynamic functional connectivity and possible link with attentional state shifts is unknown. We used a unique approach to examine whether brain network dynamics reflect spontaneous fluctuations in moment-to-moment behavioral variability, a sensitive marker of attentional state. Nineteen healthy adults were instructed to tap their finger every 600 ms while undergoing fMRI. This novel, but simple, approach allowed us to isolate moment-to-moment fluctuations in behavioral variability related to attention, independent of common confounds in cognitive tasks (e.g., stimulus changes, response inhibition). Spontaneously increasing tap variance ("out-of-the-zone" attention) was associated with increasing activation in dorsal-attention and salience network regions, whereas decreasing tap variance ("in-the-zone" attention) was marked by increasing activation of default mode network (DMN) regions. Independent of activation, tap variance representing out-of-the-zone attention was also time-locked to connectivity both within DMN and between DMN and salience network regions. These results provide novel mechanistic data on the understudied neural dynamics of everyday, moment-to-moment attentional fluctuations, elucidating the behavioral importance of spontaneous, transient coupling within and between attention-relevant networks. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The dynamics of Machiavellian intelligence.

    PubMed

    Gavrilets, Sergey; Vose, Aaron

    2006-11-07

    The "Machiavellian intelligence" hypothesis (or the "social brain" hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated "Machiavellian" strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the "Machiavellian intelligence" hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies.

  11. The Effects of Malnutrition on Brain Development.

    ERIC Educational Resources Information Center

    Speller, J. Finton

    1978-01-01

    The waste of human intellectual resources resulting from the dynamics of early nutritional deprivation is a serious social and public health problem. An undernourished child develops more slowly, demanding and receiving less attention than a well-nourished child, and is thus less able to compete in school and in society in general. (Author/GC)

  12. Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Price, Larry R.; Laird, Angela R.; Fox, Peter T.; Ingham, Roger J.

    2009-01-01

    The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a "true" or population path model was then…

  13. Dynamics of Electrocorticographic (ECoG) Activity in Human Temporal and Frontal Cortical Areas During Music Listening

    DTIC Science & Technology

    2012-04-14

    flow or electrical activity in the primary auditory cortex and sound intensity level. Other studies (Brechmann et al., 2002; Hart et al., 2003; Tanji et...duration. Decoding of per- ceived loudness from brain signals may have important applications for the calibration of stimulation levels of cochlear implants

  14. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion.

    PubMed

    Wang, Zhiwei; Zeljic, Kristina; Jiang, Qinying; Gu, Yong; Wang, Wei; Wang, Zheng

    2018-01-01

    Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility

    PubMed Central

    Qiao, Lei; Zhang, Lijie

    2017-01-01

    Cognitive flexibility forms the core of the extraordinary ability of humans to adapt, but the precise neural mechanisms underlying our ability to nimbly shift between task sets remain poorly understood. Recent functional magnetic resonance imaging (fMRI) studies employing multivoxel pattern analysis (MVPA) have shown that a currently relevant task set can be decoded from activity patterns in the frontoparietal cortex, but whether these regions support the dynamic transformation of task sets from trial to trial is not clear. Here, we combined a cued task-switching protocol with human (both sexes) fMRI, and harnessed representational similarity analysis (RSA) to facilitate a novel assessment of trial-by-trial changes in neural task-set representations. We first used MVPA to define task-sensitive frontoparietal and visual regions and found that neural task-set representations on switch trials are less stably encoded than on repeat trials. We then exploited RSA to show that the neural representational pattern dissimilarity across consecutive trials is greater for switch trials than for repeat trials, and that the degree of this pattern dissimilarity predicts behavior. Moreover, the overall neural pattern of representational dissimilarities followed from the assumption that repeating sets, compared with switching sets, results in stronger neural task representations. Finally, when moving from cue to target phase within a trial, pattern dissimilarities tracked the transformation from previous-trial task representations to the currently relevant set. These results provide neural evidence for the longstanding assumptions of an effortful task-set reconfiguration process hampered by task-set inertia, and they demonstrate that frontoparietal and stimulus processing regions support “dynamic adaptive coding,” flexibly representing changing task sets in a trial-by-trial fashion. SIGNIFICANCE STATEMENT Humans can fluently switch between different tasks, reflecting an ability to dynamically configure “task sets,” rule representations that link stimuli to appropriate responses. Recent studies show that neural signals in frontal and parietal brain regions can tell us which of two tasks a person is currently performing. However, it is not known whether these regions are also involved in dynamically reconfiguring task-set representations when switching between tasks. Here we measured human brain activity during task switching and tracked the similarity of neural task-set representations from trial to trial. We show that frontal and parietal brain regions flexibly recode changing task sets in a trial-by-trial fashion, and that task-set similarity over consecutive trials predicts behavior. PMID:28972126

  16. Flexible and stretchable electronics for biointegrated devices.

    PubMed

    Kim, Dae-Hyeong; Ghaffari, Roozbeh; Lu, Nanshu; Rogers, John A

    2012-01-01

    Advances in materials, mechanics, and manufacturing now allow construction of high-quality electronics and optoelectronics in forms that can readily integrate with the soft, curvilinear, and time-dynamic surfaces of the human body. The resulting capabilities create new opportunities for studying disease states, improving surgical procedures, monitoring health/wellness, establishing human-machine interfaces, and performing other functions. This review summarizes these technologies and illustrates their use in forms integrated with the brain, the heart, and the skin.

  17. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT.

    PubMed

    Dakic, Vanja; Minardi Nascimento, Juliana; Costa Sartore, Rafaela; Maciel, Renata de Moraes; de Araujo, Draulio B; Ribeiro, Sidarta; Martins-de-Souza, Daniel; Rehen, Stevens K

    2017-10-09

    Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.

  18. EEG functional connectivity is partially predicted by underlying white matter connectivity

    PubMed Central

    Chu, CJ; Tanaka, N; Diaz, J; Edlow, BL; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, SS; Kramer, MA.

    2015-01-01

    Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales. PMID:25534110

  19. Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex.

    PubMed

    Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika

    2016-11-01

    Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever-changing stimuli in the environment. One practical approach to study the neural underpinnings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single-trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in concordance with the participants' average moment-by-moment ratings of own engagement in the haptic content of the movie (correlation r = 0.49; ratings collected after the MEG session). The results, obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061-4068, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Serotonergic Psychedelics Temporarily Modify Information Transfer in Humans

    PubMed Central

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miquel Àngel

    2015-01-01

    Background: Psychedelics induce intense modifications in the sensorium, the sense of “self,” and the experience of reality. Despite advances in our understanding of the molecular and cellular level mechanisms of these drugs, knowledge of their actions on global brain dynamics is still incomplete. Recent imaging studies have found changes in functional coupling between frontal and parietal brain structures, suggesting a modification in information flow between brain regions during acute effects. Methods: Here we assessed the psychedelic-induced changes in directionality of information flow during the acute effects of a psychedelic in humans. We measured modifications in connectivity of brain oscillations using transfer entropy, a nonlinear measure of directed functional connectivity based on information theory. Ten healthy male volunteers with prior experience with psychedelics participated in 2 experimental sessions. They received a placebo or a dose of ayahuasca, a psychedelic preparation containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine. Results: The analysis showed significant changes in the coupling of brain oscillations between anterior and posterior recording sites. Transfer entropy analysis showed that frontal sources decreased their influence over central, parietal, and occipital sites. Conversely, sources in posterior locations increased their influence over signals measured at anterior locations. Exploratory correlations found that anterior-to-posterior transfer entropy decreases were correlated with the intensity of subjective effects, while the imbalance between anterior-to-posterior and posterior-to-anterior transfer entropy correlated with the degree of incapacitation experienced. Conclusions: These results suggest that psychedelics induce a temporary disruption of neural hierarchies by reducing top-down control and increasing bottom-up information transfer in the human brain. PMID:25820842

  1. Habituation based synaptic plasticity and organismic learning in a quantum perovskite

    DOE PAGES

    Zuo, Fan; Panda, Priyadarshini; Kotiuga, Michele; ...

    2017-08-14

    A central characteristic of living beings is the ability to learn from and respond to their environment leading to habit formation and decision making. This behavior, known as habituation, is universal among all forms of life with a central nervous system, and is also observed in single-cell organisms that do not possess a brain. Here, we report the discovery of habituation-based plasticity utilizing a perovskite quantum system by dynamical modulation of electron localization. Microscopic mechanisms and pathways that enable this organismic collective charge-lattice interaction are elucidated by first-principles theory, synchrotron investigations, ab initio molecular dynamics simulations, and in situ environmentalmore » breathing studies. In conclusion, we implement a learning algorithm inspired by the conductance relaxation behavior of perovskites that naturally incorporates habituation, and demonstrate learning to forget: a key feature of animal and human brains. Incorporating this elementary skill in learning boosts the capability of neural computing in a sequential, dynamic environment.« less

  2. Nonlinear Dynamics, Artificial Cognition and Galactic Export

    NASA Astrophysics Data System (ADS)

    Rössler, Otto E.

    2004-08-01

    The field of nonlinear dynamics focuses on function rather than structure. Evolution and brain function are examples. An equation for a brain, described in 1973, is explained. Then, a principle of interactional function change between two coupled equations of this type is described. However, all of this is not done in an abstract manner but in close contact with the meaning of these equations in a biological context. Ethological motivation theory and Batesonian interaction theory are reencountered. So is a fairly unknown finding by van Hooff on the indistinguishability of smile and laughter in a single primate species. Personhood and evil, two human characteristics, are described abstractly. Therapies and the question of whether it is ethically allowed to export benevolence are discussed. The whole dynamic approach is couched in terms of the Cartesian narrative, invented in the 17th century and later called Enlightenment. Whether or not it is true that a "second Enlightenment" is around the corner is the main question raised in the present paper.

  3. Habituation based synaptic plasticity and organismic learning in a quantum perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Fan; Panda, Priyadarshini; Kotiuga, Michele

    A central characteristic of living beings is the ability to learn from and respond to their environment leading to habit formation and decision making. This behavior, known as habituation, is universal among all forms of life with a central nervous system, and is also observed in single-cell organisms that do not possess a brain. Here, we report the discovery of habituation-based plasticity utilizing a perovskite quantum system by dynamical modulation of electron localization. Microscopic mechanisms and pathways that enable this organismic collective charge-lattice interaction are elucidated by first-principles theory, synchrotron investigations, ab initio molecular dynamics simulations, and in situ environmentalmore » breathing studies. In conclusion, we implement a learning algorithm inspired by the conductance relaxation behavior of perovskites that naturally incorporates habituation, and demonstrate learning to forget: a key feature of animal and human brains. Incorporating this elementary skill in learning boosts the capability of neural computing in a sequential, dynamic environment.« less

  4. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    PubMed

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis

    PubMed Central

    2013-01-01

    Background The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer’s disease. The link between apolipoprotein E (apoE) and Alzheimer’s disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer’s disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes. Results We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4. Conclusions We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse. Our technique enables assessment of brain apoE dynamics under physiological and pathophysiological conditions and in response to therapeutic interventions designed to affect apoE levels and lipidation within the brain. PMID:23601557

  6. Dynamic patterns of cortical expansion during folding of the preterm human brain.

    PubMed

    Garcia, Kara E; Robinson, Emma C; Alexopoulos, Dimitrios; Dierker, Donna L; Glasser, Matthew F; Coalson, Timothy S; Ortinau, Cynthia M; Rueckert, Daniel; Taber, Larry A; Van Essen, David C; Rogers, Cynthia E; Smyser, Christopher D; Bayly, Philip V

    2018-03-20

    During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.

  7. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    PubMed

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  8. Neurocomputational account of how the human brain decides when to have a break

    PubMed Central

    Meyniel, Florent; Sergent, Claire; Rigoux, Lionel; Daunizeau, Jean; Pessiglione, Mathias

    2013-01-01

    No pain, no gain: cost–benefit trade-off has been formalized in classical decision theory to account for how we choose whether to engage effort. However, how the brain decides when to have breaks in the course of effort production remains poorly understood. We propose that decisions to cease and resume work are triggered by a cost evidence accumulation signal reaching upper and lower bounds, respectively. We developed a task in which participants are free to exert a physical effort knowing that their payoff would be proportional to their effort duration. Functional MRI and magnetoencephalography recordings conjointly revealed that the theoretical cost evidence accumulation signal was expressed in proprioceptive regions (bilateral posterior insula). Furthermore, the slopes and bounds of the accumulation process were adapted to the difficulty of the task and the money at stake. Cost evidence accumulation might therefore provide a dynamical mechanistic account of how the human brain maximizes benefits while preventing exhaustion. PMID:23341598

  9. Decoding flexion of individual fingers using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Kubánek, J.; Miller, K. J.; Ojemann, J. G.; Wolpaw, J. R.; Schalk, G.

    2009-12-01

    Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.

  10. Neurocomputational account of how the human brain decides when to have a break.

    PubMed

    Meyniel, Florent; Sergent, Claire; Rigoux, Lionel; Daunizeau, Jean; Pessiglione, Mathias

    2013-02-12

    No pain, no gain: cost-benefit trade-off has been formalized in classical decision theory to account for how we choose whether to engage effort. However, how the brain decides when to have breaks in the course of effort production remains poorly understood. We propose that decisions to cease and resume work are triggered by a cost evidence accumulation signal reaching upper and lower bounds, respectively. We developed a task in which participants are free to exert a physical effort knowing that their payoff would be proportional to their effort duration. Functional MRI and magnetoencephalography recordings conjointly revealed that the theoretical cost evidence accumulation signal was expressed in proprioceptive regions (bilateral posterior insula). Furthermore, the slopes and bounds of the accumulation process were adapted to the difficulty of the task and the money at stake. Cost evidence accumulation might therefore provide a dynamical mechanistic account of how the human brain maximizes benefits while preventing exhaustion.

  11. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.

    PubMed

    Kerepesi, Csaba; Varga, Bálint; Szalkai, Balázs; Grolmusz, Vince

    2018-04-23

    In the applications of the graph theory, it is unusual that one considers numerous, pairwise different graphs on the very same set of vertices. In the case of human braingraphs or connectomes, however, this is the standard situation: the nodes correspond to anatomically identified cerebral regions, and two vertices are connected by an edge if a diffusion MRI-based workflow identifies a fiber of axons, running between the two regions, corresponding to the two vertices. Therefore, if we examine the braingraphs of n subjects, then we have n graphs on the very same, anatomically identified vertex set. It is a natural idea to describe the k-frequently appearing edges in these graphs: the edges that are present between the same two vertices in at least k out of the n graphs. Based on the NIH-funded large Human Connectome Project's public data release, we have reported the construction of the Budapest Reference Connectome Server http://www.connectome.pitgroup.org that generates and visualizes these k-frequently appearing edges. We call the graphs of the k-frequently appearing edges "k-consensus connectomes" since an edge could be included only if it is present in at least k graphs out of n. Considering the whole human brain, we have reported a surprising property of these consensus connectomes earlier. In the present work we are focusing on the frontal lobe of the brain, and we report here a similarly surprising dynamical property of the consensus connectomes when k is gradually changed from k = n to k = 1: the connections between the nodes of the frontal lobe are seemingly emanating from those nodes that were connected to sub-cortical structures of the dorsal striatum: the caudate nucleus, and the putamen. We hypothesize that this dynamic behavior copies the axonal fiber development of the frontal lobe. An animation of the phenomenon is presented at https://youtu.be/wBciB2eW6_8. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Interaction vs. observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    PubMed

    Tylén, Kristian; Allen, Micah; Hunter, Bjørk K; Roepstorff, Andreas

    2012-01-01

    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an "understanding of the other," or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone "privately" manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.

  13. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality

    PubMed Central

    Montiel-Castro, Augusto J.; González-Cervantes, Rina M.; Bravo-Ruiseco, Gabriela; Pacheco-López, Gustavo

    2013-01-01

    Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called “microbiota–gut–vagus–brain axis,” is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile. PMID:24109440

  14. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality.

    PubMed

    Montiel-Castro, Augusto J; González-Cervantes, Rina M; Bravo-Ruiseco, Gabriela; Pacheco-López, Gustavo

    2013-10-07

    Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called "microbiota-gut-vagus-brain axis," is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  15. Modulations of 'late' event-related brain potentials in humans by dynamic audiovisual speech stimuli.

    PubMed

    Lebib, Riadh; Papo, David; Douiri, Abdel; de Bode, Stella; Gillon Dowens, Margaret; Baudonnière, Pierre-Marie

    2004-11-30

    Lipreading reliably improve speech perception during face-to-face conversation. Within the range of good dubbing, however, adults tolerate some audiovisual (AV) discrepancies and lipreading, then, can give rise to confusion. We used event-related brain potentials (ERPs) to study the perceptual strategies governing the intermodal processing of dynamic and bimodal speech stimuli, either congruently dubbed or not. Electrophysiological analyses revealed that non-coherent audiovisual dubbings modulated in amplitude an endogenous ERP component, the N300, we compared to a 'N400-like effect' reflecting the difficulty to integrate these conflicting pieces of information. This result adds further support for the existence of a cerebral system underlying 'integrative processes' lato sensu. Further studies should take advantage of this 'N400-like effect' with AV speech stimuli to open new perspectives in the domain of psycholinguistics.

  16. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.

    PubMed

    Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw

    2017-11-01

    The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.

  17. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.

    PubMed

    Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan

    2017-10-25

    Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.

  18. Steady-state visually evoked potential correlates of human body perception.

    PubMed

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  19. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    NASA Astrophysics Data System (ADS)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  20. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    PubMed

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging

    PubMed Central

    Sbarbati, Andrea; Pizzini, Francesca; Fabene, Paolo F; Nicolato, Elena; Marzola, Pasquina; Calderan, Laura; Simonati, Alessandro; Longo, Laura; Osculati, Antonio; Beltramello, Alberto

    2004-01-01

    Seven human fetuses of crown/rump length corresponding to gestational ages ranging from the 12th to the 16th week were studied using a paradigm based on three-dimensional reconstruction of the brain obtained by magnetic resonance imaging (MRI). The aim of the study was to evaluate brain morphology in situ and to describe developmental dynamics during an important period of fetal morphogenesis. Three-dimensional MRI showed the increasing degree of maturation of the brains; fronto-occipital distance, bitemporal distance and occipital angle were examined in all the fetuses. The data were interpreted by correlation with the internal structure as visualized using high-spatial-resolution MRI, acquired using a 4.7-T field intensity magnet with a gradient power of 20 G cm−1. The spatial resolution was sufficient for a detailed detection of five layers, and the contrast was optimized using sequences with different degrees of T1 and T2 weighting. Using the latter, it was possible to visualize the subplate and marginal zones. The cortical thickness was mapped on to the hemispheric surface, describing the thickness gradient from the insular cortex to the periphery of the hemispheres. The study demonstrates the utility of MRI for studying brain development. The method provides a quantitative profiling of the brain, which allows the calculation of important morphological parameters, and it provides informative regarding transient features of the developing brain. PMID:15198688

  2. Functional neuroimaging: technical, logical, and social perspectives.

    PubMed

    Aguirre, Geoffrey K

    2014-01-01

    Neuroscientists have long sought to study the dynamic activity of the human brain-what's happening in the brain, that is, while people are thinking, feeling, and acting. Ideally, an inside look at brain function would simultaneously and continuously measure the biochemical state of every cell in the central nervous system. While such a miraculous method is science fiction, a century of progress in neuroimaging technologies has made such simultaneous and continuous measurement a plausible fiction. Despite this progress, practitioners of modern neuroimaging struggle with two kinds of limitations: those that attend the particular neuroimaging methods we have today and those that would limit any method of imaging neural activity, no matter how powerful. In this essay, I consider the liabilities and potential of techniques that measure human brain activity. I am concerned here only with methods that measure relevant physiologic states of the central nervous system and relate those measures to particular mental states. I will consider in particular the preeminent method of functional neuroimaging: BOLD fMRI. While there are several practical limits on the biological information that current technologies can measure, these limits-as important as they are-are minor in comparison to the fundamental logical restraints on the conclusions that can be drawn from brain imaging studies. © 2014 by The Hastings Center.

  3. The human dynamic clamp as a paradigm for social interaction.

    PubMed

    Dumas, Guillaume; de Guzman, Gonzalo C; Tognoli, Emmanuelle; Kelso, J A Scott

    2014-09-02

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject's own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual "teacher." We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof.

  4. Bayesian integration of position and orientation cues in perception of biological and non-biological forms.

    PubMed

    Thurman, Steven M; Lu, Hongjing

    2014-01-01

    Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis.

  5. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.

    PubMed

    Popov, Tzvetan; Westner, Britta U; Silton, Rebecca L; Sass, Sarah M; Spielberg, Jeffrey M; Rockstroh, Brigitte; Heller, Wendy; Miller, Gregory A

    2018-05-02

    Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color-word Stroop task. Time-frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal-parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation. SIGNIFICANCE STATEMENT Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control. However, due to inherent methodological constraints, much of this research has been unable to characterize the temporal dynamics of such networks (e.g., direction of information flow between nodes). Guided by fMRI research identifying the structure of brain networks supporting inhibitory control, results of EEG source analysis in a test sample ( n = 96) and replication sample ( n = 237) using effective connectivity and predictive analytics strategies advance a model of inhibitory control by characterizing the precise temporal dynamics by which this network operates and exemplify an approach by which mechanistic models can be developed for other key psychological processes. Copyright © 2018 the authors 0270-6474/18/384348-09$15.00/0.

  6. Brain correlates of autonomic modulation: combining heart rate variability with fMRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Conti, Giulia; Makris, Nikos; Brown, Emery N; Barbieri, Riccardo

    2008-08-01

    The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method [Guimaraes, A.R., Melcher, J.R., et al., 1998. Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33-41]. The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the resample HF timeseries as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological states.

  7. Analysis of brain patterns using temporal measures

    DOEpatents

    Georgopoulos, Apostolos

    2015-08-11

    A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.

  8. Human brain structure predicts individual differences in preconscious evaluation of facial dominance and trustworthiness

    PubMed Central

    Kanai, Ryota; Bahrami, Bahador; Rees, Geraint

    2015-01-01

    Social cues conveyed by the human face, such as eye gaze direction, are evaluated even before they are consciously perceived. While there is substantial individual variability in such evaluation, its neural basis is unknown. Here we asked whether individual differences in preconscious evaluation of social face traits were associated with local variability in brain structure. Adult human participants (n = 36) monocularly viewed faces varying in dominance and trustworthiness, which were suppressed from awareness by a dynamic noise pattern shown to the other eye. The time taken for faces to emerge from suppression and become visible (t2e) was used as a measure of potency in competing for visual awareness. Both dominant and untrustworthy faces resulted in slower t2e than neutral faces, with substantial individual variability in these effects. Individual differences in t2e were correlated with gray matter volume in right insula for dominant faces, and with gray matter volume in medial prefrontal cortex, right temporoparietal junction and bilateral fusiform face area for untrustworthy faces. Thus, individual differences in preconscious social processing can be predicted from local brain structure, and separable correlates for facial dominance and untrustworthiness suggest distinct mechanisms of preconscious processing. PMID:25193945

  9. Cortical representations of communication sounds.

    PubMed

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  10. Detecting large-scale networks in the human brain using high-density electroencephalography.

    PubMed

    Liu, Quanying; Farahibozorg, Seyedehrezvan; Porcaro, Camillo; Wenderoth, Nicole; Mantini, Dante

    2017-09-01

    High-density electroencephalography (hdEEG) is an emerging brain imaging technique that can be used to investigate fast dynamics of electrical activity in the healthy and the diseased human brain. Its applications are however currently limited by a number of methodological issues, among which the difficulty in obtaining accurate source localizations. In particular, these issues have so far prevented EEG studies from reporting brain networks similar to those previously detected by functional magnetic resonance imaging (fMRI). Here, we report for the first time a robust detection of brain networks from resting state (256-channel) hdEEG recordings. Specifically, we obtained 14 networks previously described in fMRI studies by means of realistic 12-layer head models and exact low-resolution brain electromagnetic tomography (eLORETA) source localization, together with independent component analysis (ICA) for functional connectivity analysis. Our analyses revealed three important methodological aspects. First, brain network reconstruction can be improved by performing source localization using the gray matter as source space, instead of the whole brain. Second, conducting EEG connectivity analyses in individual space rather than on concatenated datasets may be preferable, as it permits to incorporate realistic information on head modeling and electrode positioning. Third, the use of a wide frequency band leads to an unbiased and generally accurate reconstruction of several network maps, whereas filtering data in a narrow frequency band may enhance the detection of specific networks and penalize that of others. We hope that our methodological work will contribute to rise of hdEEG as a powerful tool for brain research. Hum Brain Mapp 38:4631-4643, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Dynamic Encoding of Face Information in the Human Fusiform Gyrus

    PubMed Central

    Ghuman, Avniel Singh; Brunet, Nicolas M.; Li, Yuanning; Konecky, Roma O.; Pyles, John A.; Walls, Shawn A.; Destefino, Vincent; Wang, Wei; Richardson, R. Mark

    2014-01-01

    Humans’ ability to rapidly and accurately detect, identify, and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing, however temporal dynamics of face information processing in FFA remains unclear. Here we use multivariate pattern classification to decode the temporal dynamics of expression-invariant face information processing using electrodes placed directly upon FFA in humans. Early FFA activity (50-75 ms) contained information regarding whether participants were viewing a face. Activity between 200-500 ms contained expression-invariant information about which of 70 faces participants were viewing along with the individual differences in facial features and their configurations. Long-lasting (500+ ms) broadband gamma frequency activity predicted task performance. These results elucidate the dynamic computational role FFA plays in multiple face processing stages and indicate what information is used in performing these visual analyses. PMID:25482825

  12. The dynamics of Machiavellian intelligence

    PubMed Central

    Gavrilets, Sergey; Vose, Aaron

    2006-01-01

    The “Machiavellian intelligence” hypothesis (or the “social brain” hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated “Machiavellian” strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the “Machiavellian intelligence” hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies. PMID:17075072

  13. The Neurodynamics of Affect in the Laboratory Predicts Persistence of Real-World Emotional Responses.

    PubMed

    Heller, Aaron S; Fox, Andrew S; Wing, Erik K; McQuisition, Kaitlyn M; Vack, Nathan J; Davidson, Richard J

    2015-07-22

    Failure to sustain positive affect over time is a hallmark of depression and other psychopathologies, but the mechanisms supporting the ability to sustain positive emotional responses are poorly understood. Here, we investigated the neural correlates associated with the persistence of positive affect in the real world by conducting two experiments in humans: an fMRI task of reward responses and an experience-sampling task measuring emotional responses to a reward obtained in the field. The magnitude of DLPFC engagement to rewards administered in the laboratory predicted reactivity of real-world positive emotion following a reward administered in the field. Sustained ventral striatum engagement in the laboratory positively predicted the duration of real-world positive emotional responses. These results suggest that common pathways are associated with the unfolding of neural processes over seconds and with the dynamics of emotions experienced over minutes. Examining such dynamics may facilitate a better understanding of the brain-behavior associations underlying emotion. Significance statement: How real-world emotion, experienced over seconds, minutes, and hours, is instantiated in the brain over the course of milliseconds and seconds is unknown. We combined a novel, real-world experience-sampling task with fMRI to examine how individual differences in real-world emotion, experienced over minutes and hours, is subserved by affective neurodynamics of brain activity over the course of seconds. When winning money in the real world, individuals sustaining positive emotion the longest were those with the most prolonged ventral striatal activity. These results suggest that common pathways are associated with the unfolding of neural processes over seconds and with the dynamics of emotions experienced over minutes. Examining such dynamics may facilitate a better understanding of the brain-behavior associations underlying emotion. Copyright © 2015 the authors 0270-6474/15/3510503-07$15.00/0.

  14. Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro.

    PubMed

    Schroeter, Manuel S; Charlesworth, Paul; Kitzbichler, Manfred G; Paulsen, Ole; Bullmore, Edward T

    2015-04-08

    Recent studies demonstrated that the anatomical network of the human brain shows a "rich-club" organization. This complex topological feature implies that highly connected regions, hubs of the large-scale brain network, are more densely interconnected with each other than expected by chance. Rich-club nodes were traversed by a majority of short paths between peripheral regions, underlining their potential importance for efficient global exchange of information between functionally specialized areas of the brain. Network hubs have also been described at the microscale of brain connectivity (so-called "hub neurons"). Their role in shaping synchronous dynamics and forming microcircuit wiring during development, however, is not yet fully understood. The present study aimed to investigate the role of hubs during network development, using multi-electrode arrays and functional connectivity analysis during spontaneous multi-unit activity (MUA) of dissociated primary mouse hippocampal neurons. Over the first 4 weeks in vitro, functional connectivity significantly increased in strength, density, and size, with mature networks demonstrating a robust modular and small-world topology. As expected by a "rich-get-richer" growth rule of network evolution, MUA graphs were found to form rich-clubs at an early stage in development (14 DIV). Later on, rich-club nodes were a consistent topological feature of MUA graphs, demonstrating high nodal strength, efficiency, and centrality. Rich-club nodes were also found to be crucial for MUA dynamics. They often served as broker of spontaneous activity flow, confirming that hub nodes and rich-clubs may play an important role in coordinating functional dynamics at the microcircuit level. Copyright © 2015 the authors 0270-6474/15/355459-12$15.00/0.

  15. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    PubMed

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  16. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Myelination, oligodendrocytes, and serious mental illness.

    PubMed

    Haroutunian, V; Katsel, P; Roussos, P; Davis, K L; Altshuler, L L; Bartzokis, G

    2014-11-01

    Historically, the human brain has been conceptually segregated from the periphery and further dichotomized into gray matter (GM) and white matter (WM) based on the whitish appearance of the exceptionally high lipid content of the myelin sheaths encasing neuronal axons. These simplistic dichotomies were unfortunately extended to conceptually segregate neurons from glia, cognition from behavior, and have been codified in the separation of clinical and scientific fields into medicine, psychiatry, neurology, pathology, etc. The discrete classifications have helped obscure the importance of continual dynamic communication between all brain cell types (neurons, astrocytes, microglia, oligodendrocytes, and precursor (NG2) cells) as well as between brain and periphery through multiple signaling systems. The signaling systems range from neurotransmitters to insulin, angiotensin, and multiple kinases such a glycogen synthase kinase 3 (GSK-3) that together help integrate metabolism, inflammation, and myelination processes and orchestrate the development, plasticity, maintenance, and repair that continually optimize function of neural networks. A more comprehensive, evolution-based, systems biology approach that integrates brain, body, and environmental interactions may ultimately prove more fruitful in elucidating the complexities of human brain function. The historic focus on neurons/GM is rebalanced herein by highlighting the importance of a systems-level understanding of the interdependent age-related shifts in both central and peripheral homeostatic mechanisms that can lead to remarkably prevalent and devastating neuropsychiatric diseases. Herein we highlight the role of glia, especially the most recently evolved oligodendrocytes and the myelin they produce, in achieving and maintaining optimal brain function. The human brain undergoes exceptionally protracted and pervasive myelination (even throughout its GM) and can thus achieve and maintain the rapid conduction and synchronous timing of neural networks on which optimal function depends. The continuum of increasing myelin vulnerability resulting from the human brain's protracted myelination underlies underappreciated communalities between different disease phenotypes ranging from developmental ones such as schizophrenia (SZ) and bipolar disorder (BD) to degenerative ones such as Alzheimer's disease (AD). These shared vulnerabilities also expose significant yet underexplored opportunities for novel treatment and prevention approaches that have the potential to considerably reduce the tremendous burden of neuropsychiatric disease. © 2014 Wiley Periodicals, Inc.

  18. Patients with Chronic Visceral Pain Show Sex-Related Alterations in Intrinsic Oscillations of the Resting Brain

    PubMed Central

    Hong, Jui-Yang; Kilpatrick, Lisa A.; Labus, Jennifer; Gupta, Arpana; Jiang, Zhiguo; Ashe-McNalley, Cody; Stains, Jean; Heendeniya, Nuwanthi; Ebrat, Bahar; Smith, Suzanne; Tillisch, Kirsten; Naliboff, Bruce

    2013-01-01

    Abnormal responses of the brain to delivered and expected aversive gut stimuli have been implicated in the pathophysiology of irritable bowel syndrome (IBS), a visceral pain syndrome occurring more commonly in women. Task-free resting-state functional magnetic resonance imaging (fMRI) can provide information about the dynamics of brain activity that may be involved in altered processing and/or modulation of visceral afferent signals. Fractional amplitude of low-frequency fluctuation is a measure of the power spectrum intensity of spontaneous brain oscillations. This approach was used here to identify differences in the resting-state activity of the human brain in IBS subjects compared with healthy controls (HCs) and to identify the role of sex-related differences. We found that both the female HCs and female IBS subjects had a frequency power distribution skewed toward high frequency to a greater extent in the amygdala and hippocampus compared with male subjects. In addition, female IBS subjects had a frequency power distribution skewed toward high frequency in the insula and toward low frequency in the sensorimotor cortex to a greater extent than male IBS subjects. Correlations were observed between resting-state blood oxygen level-dependent signal dynamics and some clinical symptom measures (e.g., abdominal discomfort). These findings provide the first insight into sex-related differences in IBS subjects compared with HCs using resting-state fMRI. PMID:23864686

  19. Dynamic functional connectivity of the default mode network tracks daydreaming.

    PubMed

    Kucyi, Aaron; Davis, Karen D

    2014-10-15

    Humans spend much of their time engaged in stimulus-independent thoughts, colloquially known as "daydreaming" or "mind-wandering." A fundamental question concerns how awake, spontaneous brain activity represents the ongoing cognition of daydreaming versus unconscious processes characterized as "intrinsic." Since daydreaming involves brief cognitive events that spontaneously fluctuate, we tested the hypothesis that the dynamics of brain network functional connectivity (FC) are linked with daydreaming. We determined the general tendency to daydream in healthy adults based on a daydreaming frequency scale (DDF). Subjects then underwent both resting state functional magnetic resonance imaging (rs-fMRI) and fMRI during sensory stimulation with intermittent thought probes to determine the occurrences of mind-wandering events. Brain regions within the default mode network (DMN), purported to be involved in daydreaming, were assessed for 1) static FC across the entire fMRI scans, and 2) dynamic FC based on FC variability (FCV) across 30s progressively sliding windows of 2s increments within each scan. We found that during both resting and sensory stimulation states, individual differences in DDF were negatively correlated with static FC between the posterior cingulate cortex and a ventral DMN subsystem involved in future-oriented thought. Dynamic FC analysis revealed that DDF was positively correlated with FCV within the same DMN subsystem in the resting state but not during stimulation. However, dynamic but not static FC, in this subsystem, was positively correlated with an individual's degree of self-reported mind-wandering during sensory stimulation. These findings identify temporal aspects of spontaneous DMN activity that reflect conscious and unconscious processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  1. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  2. PET Quantification of the Norepinephrine Transporter in Human Brain with (S,S)-18F-FMeNER-D2.

    PubMed

    Moriguchi, Sho; Kimura, Yasuyuki; Ichise, Masanori; Arakawa, Ryosuke; Takano, Harumasa; Seki, Chie; Ikoma, Yoko; Takahata, Keisuke; Nagashima, Tomohisa; Yamada, Makiko; Mimura, Masaru; Suhara, Tetsuya

    2017-07-01

    Norepinephrine transporter (NET) in the brain plays important roles in human cognition and the pathophysiology of psychiatric disorders. Two radioligands, ( S , S )- 11 C-MRB and ( S , S )- 18 F-FMeNER-D 2 , have been used for imaging NETs in the thalamus and midbrain (including locus coeruleus) using PET in humans. However, NET density in the equally important cerebral cortex has not been well quantified because of unfavorable kinetics with ( S , S )- 11 C-MRB and defluorination with ( S , S )- 18 F-FMeNER-D 2 , which can complicate NET quantification in the cerebral cortex adjacent to the skull containing defluorinated 18 F radioactivity. In this study, we have established analysis methods of quantification of NET density in the brain including the cerebral cortex using ( S , S )- 18 F-FMeNER-D 2 PET. Methods: We analyzed our previous ( S , S )- 18 F-FMeNER-D 2 PET data of 10 healthy volunteers dynamically acquired for 240 min with arterial blood sampling. The effects of defluorination on the NET quantification in the superficial cerebral cortex was evaluated by establishing a time stability of NET density estimations with an arterial input 2-tissue-compartment model, which guided the less-invasive reference tissue model and area under the time-activity curve methods to accurately quantify NET density in all brain regions including the cerebral cortex. Results: Defluorination of ( S , S )- 18 F-FMeNER-D 2 became prominent toward the latter half of the 240-min scan. Total distribution volumes in the superficial cerebral cortex increased with the scan duration beyond 120 min. We verified that 90-min dynamic scans provided a sufficient amount of data for quantification of NET density unaffected by defluorination. Reference tissue model binding potential values from the 90-min scan data and area under the time-activity curve ratios of 70- to 90-min data allowed for the accurate quantification of NET density in the cerebral cortex. Conclusion: We have established methods of quantification of NET densities in the brain including the cerebral cortex unaffected by defluorination using ( S , S )- 18 F-FMeNER-D 2 These results suggest that we can accurately quantify NET density with a 90-min ( S , S )- 18 F-FMeNER-D 2 scan in broad brain areas. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Nonlinear Dynamics on Interconnected Networks

    NASA Astrophysics Data System (ADS)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  4. High-cost, high-capacity backbone for global brain communication.

    PubMed

    van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf

    2012-07-10

    Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.

  5. Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity.

    PubMed

    Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong

    2018-01-01

    Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.

  6. Serotonergic psychedelics temporarily modify information transfer in humans.

    PubMed

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miquel Àngel; Riba, Jordi

    2015-03-28

    Psychedelics induce intense modifications in the sensorium, the sense of "self," and the experience of reality. Despite advances in our understanding of the molecular and cellular level mechanisms of these drugs, knowledge of their actions on global brain dynamics is still incomplete. Recent imaging studies have found changes in functional coupling between frontal and parietal brain structures, suggesting a modification in information flow between brain regions during acute effects. Here we assessed the psychedelic-induced changes in directionality of information flow during the acute effects of a psychedelic in humans. We measured modifications in connectivity of brain oscillations using transfer entropy, a nonlinear measure of directed functional connectivity based on information theory. Ten healthy male volunteers with prior experience with psychedelics participated in 2 experimental sessions. They received a placebo or a dose of ayahuasca, a psychedelic preparation containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine. The analysis showed significant changes in the coupling of brain oscillations between anterior and posterior recording sites. Transfer entropy analysis showed that frontal sources decreased their influence over central, parietal, and occipital sites. Conversely, sources in posterior locations increased their influence over signals measured at anterior locations. Exploratory correlations found that anterior-to-posterior transfer entropy decreases were correlated with the intensity of subjective effects, while the imbalance between anterior-to-posterior and posterior-to-anterior transfer entropy correlated with the degree of incapacitation experienced. These results suggest that psychedelics induce a temporary disruption of neural hierarchies by reducing top-down control and increasing bottom-up information transfer in the human brain. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  7. Renewal Processes in the Critical Brain

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Gemignani, Angelo

    We describe herein a multidisciplinary research, as it developes and applies concepts of the theory of complexity, in turn stemming from recent advancements of statistical physics, onto cognitive neuroscience. We discuss (define) complexity, and how the human brain is a paradigm of it. We discuss how the hypothesis of brain activity dynamically behaving as a critical system is taking momentum in literature, then we focus on a feature of critical systems (hence of the brain), which is the intermittent passage between metastable states, marked by events, locally resetting the memory, but giving rise to correlation functions with infinite correlation times. The events, extracted from multi-channel ElectroEncephaloGrams, mark (are interpreted as) a birth/death process of cooperation, namely of system elements being recruited into collective states. Finally we discuss a recently discovered form of control (in the form of a new Linear Response Theory), that allows an optimized information transmission between complex systems, named Complexity Matching.

  8. Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance.

    PubMed

    Ho, Joseph D; Yeh, Ronald; Sandstrom, Andrew; Chorny, Ilya; Harries, William E C; Robbins, Rebecca A; Miercke, Larry J W; Stroud, Robert M

    2009-05-05

    Aquaporin (AQP) 4 is the predominant water channel in the mammalian brain, abundantly expressed in the blood-brain and brain-cerebrospinal fluid interfaces of glial cells. Its function in cerebral water balance has implications in neuropathological disorders, including brain edema, stroke, and head injuries. The 1.8-A crystal structure reveals the molecular basis for the water selectivity of the channel. Unlike the case in the structures of water-selective AQPs AqpZ and AQP1, the asparagines of the 2 Asn-Pro-Ala motifs do not hydrogen bond to the same water molecule; instead, they bond to 2 different water molecules in the center of the channel. Molecular dynamics simulations were performed to ask how this observation bears on the proposed mechanisms for how AQPs remain totally insulating to any proton conductance while maintaining a single file of hydrogen bonded water molecules throughout the channel.

  9. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    PubMed

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  10. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep

    PubMed Central

    Dehghani, Nima; Hatsopoulos, Nicholas G.; Haga, Zach D.; Parker, Rebecca A.; Greger, Bradley; Halgren, Eric; Cash, Sydney S.; Destexhe, Alain

    2012-01-01

    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man. PMID:22934053

  11. Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging

    PubMed Central

    Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic

    2016-01-01

    Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519

  12. Dynamic Amygdala Influences on the Fronto-Striatal Brain Mechanisms Involved in Self-Control of Impulsive Desires.

    PubMed

    Krämer, Bernd; Gruber, Oliver

    2015-01-01

    Human decisions are guided by a variety of motivational factors, such as immediate rewards, long-term goals, and emotions. We used functional magnetic resonance imaging to investigate the dynamic functional interactions between the amygdala, the nucleus accumbens, and the prefrontal cortex that underlie the influences of emotions, desires, and rationality on human decisions. We found that increased functional connectivity between the amygdala and the nucleus accumbens facilitated the approach of an immediate reward in the presence of emotional information. Further, increased functional interactions of the anteroventral prefrontal cortex with the amygdala and the nucleus accumbens were associated with rational decisions in dilemma situations. These findings support previous animal studies by demonstrating that emotional signals from the amygdala and goal-oriented information from prefrontal cortices interface in the nucleus accumbens to guide human decisions and reward-directed actions. © 2015 S. Karger AG, Basel.

  13. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    PubMed Central

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2014-01-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For OSEM, image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-fluorodeoxyglucose dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation GTM PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in CMRGlc estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters. PMID:24052021

  14. Bayesian estimation inherent in a Mexican-hat-type neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  15. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  16. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research.

    PubMed

    Sutherland, G T; Sheedy, D; Stevens, J; McCrossin, T; Smith, C C; van Roijen, M; Kril, J J

    2016-05-01

    The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Habituation based synaptic plasticity and organismic learning in a quantum perovskite.

    PubMed

    Zuo, Fan; Panda, Priyadarshini; Kotiuga, Michele; Li, Jiarui; Kang, Mingu; Mazzoli, Claudio; Zhou, Hua; Barbour, Andi; Wilkins, Stuart; Narayanan, Badri; Cherukara, Mathew; Zhang, Zhen; Sankaranarayanan, Subramanian K R S; Comin, Riccardo; Rabe, Karin M; Roy, Kaushik; Ramanathan, Shriram

    2017-08-14

    A central characteristic of living beings is the ability to learn from and respond to their environment leading to habit formation and decision making. This behavior, known as habituation, is universal among all forms of life with a central nervous system, and is also observed in single-cell organisms that do not possess a brain. Here, we report the discovery of habituation-based plasticity utilizing a perovskite quantum system by dynamical modulation of electron localization. Microscopic mechanisms and pathways that enable this organismic collective charge-lattice interaction are elucidated by first-principles theory, synchrotron investigations, ab initio molecular dynamics simulations, and in situ environmental breathing studies. We implement a learning algorithm inspired by the conductance relaxation behavior of perovskites that naturally incorporates habituation, and demonstrate learning to forget: a key feature of animal and human brains. Incorporating this elementary skill in learning boosts the capability of neural computing in a sequential, dynamic environment.Habituation is a learning mechanism that enables control over forgetting and learning. Zuo, Panda et al., demonstrate adaptive synaptic plasticity in SmNiO 3 perovskites to address catastrophic forgetting in a dynamic learning environment via hydrogen-induced electron localization.

  18. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.

    PubMed

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  19. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  20. Gene Expression in the Human Brain: The Current State of the Study of Specificity and Spatiotemporal Dynamics

    ERIC Educational Resources Information Center

    Naumova, Oksana Yu.; Lee, Maria; Rychkov, Sergei Yu.; Vlasova, Natalia V.; Grigorenko, Elena L.

    2013-01-01

    Gene expression is one of the main molecular processes regulating the differentiation, development, and functioning of cells and tissues. In this review a handful of relevant terms and concepts are introduced and the most common techniques used in studies of gene expression/expression profiling (also referred to as studies of the transcriptome or…

  1. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  2. Education Abroad, Human Capital Development, and National Competitiveness: China's Brain Gain Strategies

    ERIC Educational Resources Information Center

    Pan, Su-Yan

    2011-01-01

    This is a documentary study of education abroad policy in the People's Republic of China (PRC) between 1978 and 2009. By examining the dynamics underpinning the PRC state's efforts to shape the flow of Chinese students and scholars from and into China, this article reveals the major strategies that have enabled education abroad to become a source…

  3. Laminar Cortical Dynamics of Cognitive and Motor Working Memory, Sequence Learning and Performance: Toward a Unified Theory of How the Cerebral Cortex Works

    ERIC Educational Resources Information Center

    Grossberg, Stephen; Pearson, Lance R.

    2008-01-01

    How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer that unifies the explanation of cognitive, neurophysiological, and anatomical data. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and…

  4. Evaluation of the potential toxicity of unmodified and modified cyclodextrins on murine blood-brain barrier endothelial cells.

    PubMed

    Shityakov, Sergey; Salmas, Ramin Ekhteiari; Salvador, Ellaine; Roewer, Norbert; Broscheit, Jens; Förster, Carola

    2016-04-01

    In this study, we investigated the cytotoxic effects of unmodified α-cyclodextrin (α-CD) and modified cyclodextrins, including trimethyl-β-cyclodextrin (TRIMEB) and hydroxypropyl-β-cyclodextrin (HPβCD), on immortalized murine microvascular endothelial (cEND) cells of the blood-brain barrier (BBB). A CellTiter-Glo viability test, performed on the cEND cells showed significant differences among the different cyclodextrins. After 24 hr of incubation, TRIMEB was the most cytotoxic, and HPβCD was non-toxic. α-CD and TRIMEB exhibited greater cytotoxicity in the Dulbecco's modified Eagle's medium than in heat-inactivated human serum indicating protective properties of the human serum. The predicted dynamic toxicity profiles (Td) for α-CD and TRIMEB indicated higher cytotoxicity for these cyclodextrins compared to the reference compound (dimethylsulfoxide). Molecular dynamics simulation of cholesterol binding to the CDs suggested that not just cholesterol but phospholipids extraction might be involved in the cytotoxicity. Overall, the results demonstrate that HPβCD has the potential to be used as a candidate for drug delivery vector development and signify a correlation between the in vitro cytotoxic effect and cholesterol binding of cyclodextrins.

  5. Dynamic Connectivity Patterns in Conscious and Unconscious Brain

    PubMed Central

    Ma, Yuncong; Hamilton, Christina

    2017-01-01

    Abstract Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level. PMID:27846731

  6. Dynamics of Viral and Proviral Loads of Feline Immunodeficiency Virus within the Feline Central Nervous System during the Acute Phase following Intravenous Infection

    PubMed Central

    Ryan, G.; Klein, D.; Knapp, E.; Hosie, M. J.; Grimes, T.; Mabruk, M. J. E. M. F.; Jarrett, O.; Callanan, J. J.

    2003-01-01

    Animal models of human immunodeficiency virus 1, such as feline immunodeficiency virus (FIV), provide the opportunities to dissect the mechanisms of early interactions of the virus with the central nervous system (CNS). The aims of the present study were to evaluate viral loads within CNS, cerebrospinal fluid (CSF), ocular fluid, and the plasma of cats in the first 23 weeks after intravenous inoculation with FIVGL8. Proviral loads were also determined within peripheral blood mononuclear cells (PBMCs) and brain tissue. In this acute phase of infection, virus entered the brain in the majority of animals. Virus distribution was initially in a random fashion, with more diffuse brain involvement as infection progressed. Virus in the CSF was predictive of brain parenchymal infection. While the peak of virus production in blood coincided with proliferation within brain, more sustained production appeared to continue in brain tissue. In contrast, proviral loads in the brain decreased to undetectable levels in the presence of a strengthening PBMC load. A final observation in this study was that there was no direct correlation between viral loads in regions of brain or ocular tissue and the presence of histopathology. PMID:12805447

  7. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    NASA Astrophysics Data System (ADS)

    O'Neill, George C.; Barratt, Eleanor L.; Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Brookes, Matthew J.

    2015-11-01

    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5 mm) spatial resolution and excellent (~1 ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including (i) projection of MEG data into source space, (ii) removing confounds introduced by the MEG inverse problem and (iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease.

  8. Two spatiotemporally distinct value systems shape reward-based learning in the human brain.

    PubMed

    Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G

    2015-09-08

    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.

  9. Enhanced emotional responses during social coordination with a virtual partner

    PubMed Central

    Dumas, Guillaume; Kelso, J.A. Scott; Tognoli, Emmanuelle

    2016-01-01

    Emotion and motion, though seldom studied in tandem, are complementary aspects of social experience. This study investigates variations in emotional responses during movement coordination between a human and a Virtual Partner (VP), an agent whose virtual finger movements are driven by the Haken-Kelso-Bunz (HKB) equations of Coordination Dynamics. Twenty-one subjects were instructed to coordinate finger movements with the VP in either inphase or antiphase patterns. By adjusting model parameters, we manipulated the ‘intention’ of VP as cooperative or competitive with the human's instructed goal. Skin potential responses (SPR) were recorded to quantify the intensity of emotional response. At the end of each trial, subjects rated the VP's intention and whether they thought their partner was another human being or a machine. We found greater emotional responses when subjects reported that their partner was human and when coordination was stable. That emotional responses are strongly influenced by dynamic features of the VP's behavior, has implications for mental health, brain disorders and the design of socially cooperative machines. PMID:27094374

  10. Functional brain networks related to individual differences in human intelligence at rest.

    PubMed

    Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca

    2016-08-26

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.

  11. Brain-to-Brain Synchrony and Learning Outcomes Vary by Student-Teacher Dynamics: Evidence from a Real-world Classroom Electroencephalography Study.

    PubMed

    Bevilacqua, Dana; Davidesco, Ido; Wan, Lu; Oostrik, Matthias; Chaloner, Kim; Rowland, Jess; Ding, Mingzhou; Poeppel, David; Dikker, Suzanne

    2018-04-30

    How does the human brain support real-world learning? We used wireless electroencephalography to collect neurophysiological data from a group of 12 senior high school students and their teacher during regular biology lessons. Six scheduled classes over the course of the semester were organized such that class materials were presented using different teaching styles (videos and lectures), and students completed a multiple-choice quiz after each class to measure their retention of that lesson's content. Both students' brain-to-brain synchrony and their content retention were higher for videos than lectures across the six classes. Brain-to-brain synchrony between the teacher and students varied as a function of student engagement as well as teacher likeability: Students who reported greater social closeness to the teacher showed higher brain-to-brain synchrony with the teacher, but this was only the case for lectures, that is, when the teacher is an integral part of the content presentation. Furthermore, students' retention of the class content correlated with student-teacher closeness, but not with brain-to-brain synchrony. These findings expand on existing social neuroscience research by showing that social factors such as perceived closeness are reflected in brain-to-brain synchrony in real-world group settings and can predict cognitive outcomes such as students' academic performance.

  12. State-dependencies of learning across brain scales

    PubMed Central

    Ritter, Petra; Born, Jan; Brecht, Michael; Dinse, Hubert R.; Heinemann, Uwe; Pleger, Burkhard; Schmitz, Dietmar; Schreiber, Susanne; Villringer, Arno; Kempter, Richard

    2015-01-01

    Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous “spontaneous” shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, particularly during sleep, are essential for learning and memory consolidation. Oscillatory activity plays a crucial role on several spatial scales, for example in plasticity at a synaptic level or in communication across brain areas. However, the underlying mechanisms and computational rules linking brain states and rhythms to learning, though relevant for our understanding of brain function and therapeutic approaches in brain disease, have not yet been elucidated. Here we review known mechanisms of how brain states mediate and modulate learning by their characteristic rhythmic signatures. To understand the critical interplay between brain states, brain rhythms, and learning processes, a wide range of experimental and theoretical work in animal models and human subjects from the single synapse to the large-scale cortical level needs to be integrated. By discussing results from experiments and theoretical approaches, we illuminate new avenues for utilizing neuronal learning mechanisms in developing tools and therapies, e.g., for stroke patients and to devise memory enhancement strategies for the elderly. PMID:25767445

  13. A transition in brain state during propofol-induced unconsciousness.

    PubMed

    Mukamel, Eran A; Pirondini, Elvira; Babadi, Behtash; Wong, Kin Foon Kevin; Pierce, Eric T; Harrell, P Grace; Walsh, John L; Salazar-Gomez, Andres F; Cash, Sydney S; Eskandar, Emad N; Weiner, Veronica S; Brown, Emery N; Purdon, Patrick L

    2014-01-15

    Rhythmic oscillations shape cortical dynamics during active behavior, sleep, and general anesthesia. Cross-frequency phase-amplitude coupling is a prominent feature of cortical oscillations, but its role in organizing conscious and unconscious brain states is poorly understood. Using high-density EEG and intracranial electrocorticography during gradual induction of propofol general anesthesia in humans, we discovered a rapid drug-induced transition between distinct states with opposite phase-amplitude coupling and different cortical source distributions. One state occurs during unconsciousness and may be similar to sleep slow oscillations. A second state occurs at the loss or recovery of consciousness and resembles an enhanced slow cortical potential. These results provide objective electrophysiological landmarks of distinct unconscious brain states, and could be used to help improve EEG-based monitoring for general anesthesia.

  14. Interaction vs. observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study

    PubMed Central

    Tylén, Kristian; Allen, Micah; Hunter, Bjørk K.; Roepstorff, Andreas

    2012-01-01

    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an “understanding of the other,” or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone “privately” manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions. PMID:23267322

  15. Nonequilibrium landscape theory of neural networks.

    PubMed

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  16. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.

    PubMed

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus

    2017-01-01

    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  17. Nonequilibrium landscape theory of neural networks

    PubMed Central

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  18. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

    PubMed Central

    Kwee, Ingrid L.

    2017-01-01

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467

  19. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    PubMed

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  20. Neural Correlates of Visual–Spatial Attention in Electrocorticographic Signals in Humans

    PubMed Central

    Gunduz, Aysegul; Brunner, Peter; Daitch, Amy; Leuthardt, Eric C.; Ritaccio, Anthony L.; Pesaran, Bijan; Schalk, Gerwin

    2011-01-01

    Attention is a cognitive selection mechanism that allocates the limited processing resources of the brain to the sensory streams most relevant to our immediate goals, thereby enhancing responsiveness and behavioral performance. The underlying neural mechanisms of orienting attention are distributed across a widespread cortical network. While aspects of this network have been extensively studied, details about the electrophysiological dynamics of this network are scarce. In this study, we investigated attentional networks using electrocorticographic (ECoG) recordings from the surface of the brain, which combine broad spatial coverage with high temporal resolution, in five human subjects. ECoG was recorded when subjects covertly attended to a spatial location and responded to contrast changes in the presence of distractors in a modified Posner cueing task. ECoG amplitudes in the alpha, beta, and gamma bands identified neural changes associated with covert attention and motor preparation/execution in the different stages of the task. The results show that attentional engagement was primarily associated with ECoG activity in the visual, prefrontal, premotor, and parietal cortices. Motor preparation/execution was associated with ECoG activity in premotor/sensorimotor cortices. In summary, our results illustrate rich and distributed cortical dynamics that are associated with orienting attention and the subsequent motor preparation and execution. These findings are largely consistent with and expand on primate studies using intracortical recordings and human functional neuroimaging studies. PMID:22046153

  1. The human dynamic clamp as a paradigm for social interaction

    PubMed Central

    Dumas, Guillaume; de Guzman, Gonzalo C.; Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject’s own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual “teacher.” We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof. PMID:25114256

  2. From naturalistic neuroscience to modeling radical embodiment with narrative enactive systems

    PubMed Central

    Tikka, Pia; Kaipainen, Mauri Ylermi

    2014-01-01

    Mainstream cognitive neuroscience has begun to accept the idea of embodied mind, which assumes that the human mind is fundamentally constituted by the dynamical interactions of the brain, body, and the environment. In today’s paradigm of naturalistic neurosciences, subjects are exposed to rich contexts, such as video sequences or entire films, under relatively controlled conditions, against which researchers can interpret changes in neural responses within a time window. However, from the point of view of radical embodied cognitive neuroscience, the increasing complexity alone will not suffice as the explanatory apparatus for dynamical embodiment and situatedness of the mind. We suggest that narrative enactive systems with dynamically adaptive content as stimuli, may serve better to account for the embodied mind engaged with the surrounding world. Among the ensuing challenges for neuroimaging studies is how to interpret brain data against broad temporal contexts of previous experiences that condition the unfolding experience of nowness. We propose means to tackle this issue, as well as ways to limit the exponentially growing combinatoria of narrative paths to a controllable number. PMID:25339890

  3. Coordination dynamics in a socially situated nervous system

    PubMed Central

    Coey, Charles A.; Varlet, Manuel; Richardson, Michael J.

    2012-01-01

    Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing requisite computational/representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via concepts such as “common-coding” and “co-representation” and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization and control of human social interactions, there is good reason to question whether they should be accorded explanatory primacy. Alternatively, we propose that a full appreciation of the role of neural processes in social interactions requires appropriately situating them in their context of embodied-embedded constraints. To this end, we introduce concepts from dynamical systems theory and review research demonstrating that the organization of human behavior, including social behavior, can be accounted for in terms of self-organizing processes and lawful dynamics of animal-environment systems. Ultimately, we hope that these alternative concepts can complement the recent advances in cognitive neuroscience and thereby provide opportunities to develop a complete and coherent account of human social interaction. PMID:22701413

  4. Ready…, Set, Go!. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Iriki, Atsushi

    2016-03-01

    ;Language-READY brain; in the title of this article [1] seems to be the expression that the author prefers to use to illustrate his theoretical framework. The usage of the term ;READY; appears to be of extremely deep connotation, for three reasons. Firstly, of course it needs a ;principle; - the depth and the width of the computational theory depicted here is as expected from the author's reputation. However, ;readiness; implies that it is much more than just ;a theory;. That is, such a principle is not static, but it rather has dynamic properties, which are ready to gradually proceed to flourish once brains are put in adequate conditions to make time progressions - namely, evolution and development. So the second major connotation is that this article brought in the perspectives of the comparative primatology as a tool to relativise the language-realizing human brains among other animal species, primates in particular, in the context of evolutionary time scale. The tertiary connotation lies in the context of the developmental time scale. The author claims that it is the interaction of the newborn with its care takers, namely its mother and other family or social members in its ecological conditions, that brings the brain mechanism subserving language faculty to really mature to its final completion. Taken together, this article proposes computational theories and mechanisms of Evo-Devo-Eco interactions for language acquisition in the human brains.

  5. Resting state networks in empirical and simulated dynamic functional connectivity.

    PubMed

    Glomb, Katharina; Ponce-Alvarez, Adrián; Gilson, Matthieu; Ritter, Petra; Deco, Gustavo

    2017-10-01

    It is well-established that patterns of functional connectivity (FC) - measures of correlated activity between pairs of voxels or regions observed in the human brain using neuroimaging - are robustly expressed in spontaneous activity during rest. These patterns are not static, but exhibit complex spatio-temporal dynamics. Over the last years, a multitude of methods have been proposed to reveal these dynamics on the level of the whole brain. One finding is that the brain transitions through different FC configurations over time, and substantial effort has been put into characterizing these configurations. However, the dynamics governing these transitions are more elusive, specifically, the contribution of stationary vs. non-stationary dynamics is an active field of inquiry. In this study, we use a whole-brain approach, considering FC dynamics between 66 ROIs covering the entire cortex. We combine an innovative dimensionality reduction technique, tensor decomposition, with a mean field model which possesses stationary dynamics. It has been shown to explain resting state FC averaged over time and multiple subjects, however, this average FC summarizes the spatial distribution of correlations while hiding their temporal dynamics. First, we apply tensor decomposition to resting state scans from 24 healthy controls in order to characterize spatio-temporal dynamics present in the data. We simultaneously utilize temporal and spatial information by creating tensors that are subsequently decomposed into sets of brain regions ("communities") that share similar temporal dynamics, and their associated time courses. The tensors contain pairwise FC computed inside of overlapping sliding windows. Communities are discovered by clustering features pooled from all subjects, thereby ensuring that they generalize. We find that, on the group level, the data give rise to four distinct communities that resemble known resting state networks (RSNs): default mode network, visual network, control networks, and somatomotor network. Second, we simulate data with our stationary mean field model whose nodes are connected according to results from DTI and fiber tracking. In this model, all spatio-temporal structure is due to noisy fluctuations around the average FC. We analyze the simulated data in the same way as the empirical data in order to determine whether stationary dynamics can explain the emergence of distinct FC patterns (RSNs) which have their own time courses. We find that this is the case for all four networks using the spatio-temporal information revealed by tensor decomposition if nodes in the simulation are connected according to model-based effective connectivity. Furthermore, we find that these results require only a small part of the FC values, namely the highest values that occur across time and ROI pair. Our findings show that stationary dynamics can account for the emergence of RSNs. We provide an innovative method that does not make strong assumptions about the underlying data and is generally applicable to resting state or task data from different subject populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dynamic Neuroplasticity after Human Prefrontal Cortex Damage

    PubMed Central

    Voytek, Bradley; Davis, Matar; Yago, Elena; Barceló, Francisco; Vogel, Edward K.; Knight, Robert T.

    2010-01-01

    Summary Memory and attention deficits are common after prefrontal cortex (PFC) damage, yet people generally recover some function over time. Recovery is thought to be dependent upon undamaged brain regions but the temporal dynamics underlying cognitive recovery are poorly understood. Here we provide evidence that the intact PFC compensates for damage in the lesioned PFC on a trial-by-trial basis dependent on cognitive load. The extent of this rapid functional compensation is indexed by transient increases in electrophysiological measures of attention and memory in the intact PFC, detectable within a second after stimulus presentation and only when the lesioned hemisphere is challenged. These observations provide evidence supporting a dynamic and flexible model of compensatory neural plasticity. PMID:21040843

  7. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  8. Oxytocin and Social Motivation

    PubMed Central

    Gordon, Ilanit; Martin, Carina; Feldman, Ruth; Leckman, James F.

    2011-01-01

    Humans are fundamentally social creatures who are ‘motivated’ to be with others. In this review we examine the role of oxytocin (OT) as it relates to social motivation. OT is synthesized in the brain and throughout the body, including in the heart, thymus, gastrointestinal tract, as well as reproductive organs. The distribution of the OT receptor (OTR) system in both the brain and periphery is even more far-reaching and its expression is subject to changes over the course of development. OTR expression is also sensitive to changes in the external environment and the internal somatic world. The OT system functions as an important element within a complex, developmentally sensitive biobehavioral system. Other elements include sensory inputs, the salience, reward, and threat detection pathways, the hypothalamic-pituitary-gonadal axis, and the hypothalamic-pituitary-adrenal stress response axis. Despite an ever expanding scientific literature, key unresolved questions remain concerning the interplay of the central and peripheral components of this complex biobehavioral system that dynamically engages the brain and the body as humans interact with social partners over the course of development. PMID:21984889

  9. Contempt - Where the modularity of the mind meets the modularity of the brain?

    PubMed

    Bzdok, Danilo; Schilbach, Leonhard

    2017-01-01

    "Contempt" is proposed to be a unique aspect of human nature, yet a non-natural kind. Its psychological construct is framed as a sentiment emerging from a stratification of diverse basic emotions and dispositional attitudes. Accordingly, "contempt" might transcend traditional conceptual levels in social psychology, including experience and recognition of emotion, dyadic and group dynamics, context-conditioned attitudes, time-enduring personality structure, and morality. This strikes us as a modern psychological account of a high-level, social-affective cognitive facet that joins forces with recent developments in the social neuroscience by drawing psychological conclusions from brain biology.

  10. Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding

    PubMed Central

    Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro

    2015-01-01

    Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045

  11. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED)

  12. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans.

    PubMed

    Spector, Reynold; Robert Snodgrass, S; Johanson, Conrad E

    2015-11-01

    In this review, a companion piece to our recent examination of choroid plexus (CP), the organ that secretes the cerebrospinal fluid (CSF), we focus on recent information in the context of reliable older data concerning the composition and functions of adult human CSF. To accomplish this, we define CSF, examine the methodology employed in studying the CSF focusing on ideal or near ideal experiments and discuss the pros and cons of several widely used analogical descriptions of the CSF including: the CSF as the "third circulation," the CSF as a "nourishing liquor," the similarities of the CSF/choroid plexus to the glomerular filtrate/kidney and finally the CSF circulation as part of the "glymphatic system." We also consider the close interrelationship between the CSF and extracellular space of brain through gap junctions and the paucity of data suggesting that the cerebral capillaries secrete a CSF-like fluid. Recently human CSF has been shown to be in dynamic flux with heart-beat, posture and especially respiration. Functionally, the CSF provides buoyancy, nourishment (e.g., vitamins) and endogenous waste product removal for the brain by bulk flow into the venous (arachnoid villi and nerve roots) and lymphatic (nasal) systems, and by carrier-mediated reabsorptive transport systems in CP. The CSF also presents many exogenous compounds to CP for metabolism or removal, indirectly cleansing the extracellular space of brain (e.g., of xenobiotics like penicillin). The CSF also carries hormones (e.g., leptin) from blood via CP or synthesized in CP (e.g., IGF-2) to the brain. In summary the CP/CSF, the third circulation, performs many functions comparable to the kidney including nourishing the brain and contributing to a stable internal milieu for the brain. These tasks are essential to normal adult brain functioning. Copyright © 2015. Published by Elsevier Inc.

  13. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain

    NASA Astrophysics Data System (ADS)

    Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.

    2017-04-01

    Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.

  14. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia

    PubMed Central

    Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.

    2014-01-01

    Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514

  15. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    PubMed

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  16. Brain plasticity and rehabilitation in stroke patients.

    PubMed

    Hara, Yukihiro

    2015-01-01

    In recent years, our understanding of motor learning, neuroplasticity and functional recovery after the occurrence of brain lesion has grown significantly. Novel findings in basic neuroscience have provided an impetus for research in motor rehabilitation. The brain reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its neural circuits. This brain plasticity can lead to an extreme degree of spontaneous recovery and rehabilitative training may modify and boost the neuronal plasticity processes. Animal studies have extended these findings, providing insight into a broad range of underlying molecular and physiological events. Neuroimaging studies in human patients have provided observations at the systems level that often parallel findings in animals. In general, the best recoveries are associated with the greatest return toward the normal state of brain functional organization. Reorganization of surviving central nervous system elements supports behavioral recovery, for example, through changes in interhemispheric lateralization, activity of association cortices linked to injured zones, and organization of cortical representational maps. Evidence from animal models suggests that both motor learning and cortical stimulation alter intracortical inhibitory circuits and can facilitate long-term potentiation and cortical remodeling. Current researches on the physiology and use of cortical stimulation animal models and in humans with stroke related hemiplegia are reviewed in this article. In particular, electromyography (EMG) -controlled electrical muscle stimulation improves the motor function of the hemiparetic arm and hand. A multi-channel near-infrared spectroscopy (NIRS) studies in which the hemoglobin levels in the brain were non-invasively and dynamically measured during functional activity found that the cerebral blood flow in the injured sensory-motor cortex area is greatest during an EMG-controlled FES session. Only a few idea is, however, known for the optimal timing of the different processes and therapeutic interventions and for their interactions in detail. Finding optimal rehabilitation paradigms requires an optimal organization of the internal processes of neural plasticity and the therapeutic interventions in accordance with defined plastic time windows. In this review the mechanisms of spontaneous plasticity after stroke and experimental interventions to enhance plasticity are summarized, with an emphasis on functional electrical stimulation therapy.

  17. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish

    PubMed Central

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126

  18. The Kantian brain: brain dynamics from a neurophenomenological perspective.

    PubMed

    Fazelpour, Sina; Thompson, Evan

    2015-04-01

    Current research on spontaneous, self-generated brain rhythms and dynamic neural network coordination cast new light on Immanuel Kant's idea of the 'spontaneity' of cognition, that is, the mind's capacity to organize and synthesize sensory stimuli in novel, unprecedented ways. Nevertheless, determining the precise nature of the brain-cognition mapping remains an outstanding challenge. Neurophenomenology, which uses phenomenological information about the variability of subjective experience in order to illuminate the variability of brain dynamics, offers a promising method for addressing this challenge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging

    NASA Astrophysics Data System (ADS)

    Reisman, Matthew David

    As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.

  20. Driving working memory with frequency-tuned noninvasive brain stimulation.

    PubMed

    Albouy, Philippe; Baillet, Sylvain; Zatorre, Robert J

    2018-04-29

    Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches. © 2018 New York Academy of Sciences.

  1. Pharmacologic approaches to cerebral aging and neuroplasticity: insights from the stroke model.

    PubMed

    Chollet, François

    2013-03-01

    Brain plasticity is an intrinsic characteristic of the nervous system that allows continuous remodeling of brain functions in pathophysiological conditions. Although normal aging is associated with morphological modifications and decline of cerebral functions, brain plasticity is at least partially preserved in elderly individuals. A growing body of evidence supports the notion that cognitive enrichment and aerobic training induce a dynamic reorganization of higher cerebral functions, thereby helping to maintain operational skills in the elderly and reducing the incidence of dementia. The stroke model clearly shows that spontaneous brain plasticity exists after a lesion, even in old patients, and that it can be modulated through external factors like rehabilitation and drugs. Whether drugs can be used with the aim of modulating the effects of physical training or cognitive stimulation in healthy aged people has not been addressed until now. The risk:benefit ratio will be the key question with regard to the ethical aspect of this challenge. We review in this article the main aspects of human brain plasticity as shown in patients with stroke, the drug modulation of brain plasticity and its consequences on recovery, and finally we address the question of the influence of aging on brain plasticity.

  2. Long-range memory and non-Markov statistical effects in human sensorimotor coordination

    NASA Astrophysics Data System (ADS)

    M. Yulmetyev, Renat; Emelyanova, Natalya; Hänggi, Peter; Gafarov, Fail; Prokhorov, Alexander

    2002-12-01

    In this paper, the non-Markov statistical processes and long-range memory effects in human sensorimotor coordination are investigated. The theoretical basis of this study is the statistical theory of non-stationary discrete non-Markov processes in complex systems (Phys. Rev. E 62, 6178 (2000)). The human sensorimotor coordination was experimentally studied by means of standard dynamical tapping test on the group of 32 young peoples with tap numbers up to 400. This test was carried out separately for the right and the left hand according to the degree of domination of each brain hemisphere. The numerical analysis of the experimental results was made with the help of power spectra of the initial time correlation function, the memory functions of low orders and the first three points of the statistical spectrum of non-Markovity parameter. Our observations demonstrate, that with the regard to results of the standard dynamic tapping-test it is possible to divide all examinees into five different dynamic types. We have introduced the conflict coefficient to estimate quantitatively the order-disorder effects underlying life systems. The last one reflects the existence of disbalance between the nervous and the motor human coordination. The suggested classification of the neurophysiological activity represents the dynamic generalization of the well-known neuropsychological types and provides the new approach in a modern neuropsychology.

  3. Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing

    PubMed Central

    Schneck, Noam

    2017-01-01

    Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain–network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal “late” regions on perceptual processes occurring in “early” perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious—e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. PMID:29118108

  4. Defects in Mitochondrial Dynamics and Metabolomic Signatures of Evolving Energetic Stress in Mouse Models of Familial Alzheimer's Disease

    PubMed Central

    Trushina, Eugenia; Nemutlu, Emirhan; Zhang, Song; Christensen, Trace; Camp, Jon; Mesa, Janny; Siddiqui, Ammar; Tamura, Yasushi; Sesaki, Hiromi; Wengenack, Thomas M.; Dzeja, Petras P.; Poduslo, Joseph F.

    2012-01-01

    Background The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. Methods and Findings We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. Conclusions Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer, carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in AD. PMID:22393443

  5. In vivo detection of 13C isotopomer turnover in the human brain by sequential infusion of 13C labeled substrates

    NASA Astrophysics Data System (ADS)

    Li, Shizhe; Zhang, Yan; Ferraris Araneta, Maria; Xiang, Yun; Johnson, Christopher; Innis, Robert B.; Shen, Jun

    2012-05-01

    This study demonstrates the feasibility of simultaneously detecting human brain metabolites labeled by two substrates infused in a sequential order. In vivo 13C spectra of carboxylic/amide carbons were acquired only during the infusion of the second substrate. This approach allowed dynamic detection of 13C labeling from two substrates with considerably different labeling patterns. [2-13C]glucose and [U-13C6]glucose were used to generate singlet and doublet signals of the same carboxylic/amide carbon atom, respectively. Because of the large one-bond 13C-13C homonuclear J coupling between a carboxylic/amide carbon and an aliphatic carbon (˜50 Hz), the singlet and doublet signals of the same carboxylic/amide carbon were well distinguished. The results demonstrated that different 13C isotopomer patterns could be simultaneously and distinctly measured in vivo in a clinical setting at 3 T.

  6. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  7. G6PC3, ALDOA and CS induction accompanies mir-122 down-regulation in the mechanical asphyxia and can serve as hypoxia biomarkers.

    PubMed

    Zeng, Yan; Lv, Yehui; Tao, Li; Ma, Jianlong; Zhang, Heng; Xu, Hongmei; Xiao, Bi; Shi, Qun; Ma, Kaijun; Chen, Long

    2016-10-26

    Hypoxia influences different cellular biological processes. To reveal the dynamics of hypoxia's effects on miRNA regulation in vivo, we examined the expression levels of all miRNAs in human brain and heart specimens from cases of mechanical asphyxia compared with those from cases of craniocerebral injury and hemorrhagic shock. We further validated differently expressed miRNAs in another 84 human specimens and rat models. We found that mir-122 was significantly down-regulated and that its putative targets G6PC3, ALDOA and CS were increased in the brain and cardiac tissues in cases of mechanical asphyxia compared with craniocerebral injury and hemorrhagic shock. Our data indicate that mir-122 and its targets G6PC3, ALDOA and CS play roles in the hypoxia responses that regulate glucose and energy metabolism and can serve as hypoxia biomarkers.

  8. G6PC3, ALDOA and CS induction accompanies mir-122 down-regulation in the mechanical asphyxia and can serve as hypoxia biomarkers

    PubMed Central

    Zeng, Yan; Lv, Yehui; Tao, Li; Ma, Jianlong; Zhang, Heng; Xu, Hongmei; Xiao, Bi; Shi, Qun; Ma, Kaijun; Chen, Long

    2016-01-01

    Hypoxia influences different cellular biological processes. To reveal the dynamics of hypoxia's effects on miRNA regulation in vivo, we examined the expression levels of all miRNAs in human brain and heart specimens from cases of mechanical asphyxia compared with those from cases of craniocerebral injury and hemorrhagic shock. We further validated differently expressed miRNAs in another 84 human specimens and rat models. We found that mir-122 was significantly down-regulated and that its putative targets G6PC3, ALDOA and CS were increased in the brain and cardiac tissues in cases of mechanical asphyxia compared with craniocerebral injury and hemorrhagic shock. Our data indicate that mir-122 and its targets G6PC3, ALDOA and CS play roles in the hypoxia responses that regulate glucose and energy metabolism and can serve as hypoxia biomarkers. PMID:27793029

  9. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the individual brain development. An animation on the phenomenon is available at https://youtu.be/yxlyudPaVUE. Based on this observation and the related hypothesis, we can assign directions to some of the edges of the connectome as follows: Let Gk + 1 denote the consensus connectome where each edge is present in at least k+1 graphs, and let Gk denote the consensus connectome where each edge is present in at least k graphs. Suppose that vertex v is not connected to any other vertices in Gk+1, and becomes connected to a vertex u in Gk, where u was connected to other vertices already in Gk+1. Then we direct this (v, u) edge from v to u.

  10. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.

    PubMed

    Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola

    2018-01-01

    The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.

  11. Brain synchronization during perception of facial emotional expressions with natural and unnatural dynamics

    PubMed Central

    Volhard, Jakob; Müller, Viktor; Kaulard, Kathrin; Brick, Timothy R.; Wallraven, Christian; Lindenberger, Ulman

    2017-01-01

    Research on the perception of facial emotional expressions (FEEs) often uses static images that do not capture the dynamic character of social coordination in natural settings. Recent behavioral and neuroimaging studies suggest that dynamic FEEs (videos or morphs) enhance emotion perception. To identify mechanisms associated with the perception of FEEs with natural dynamics, the present EEG (Electroencephalography)study compared (i) ecologically valid stimuli of angry and happy FEEs with natural dynamics to (ii) FEEs with unnatural dynamics, and to (iii) static FEEs. FEEs with unnatural dynamics showed faces moving in a biologically possible but unpredictable and atypical manner, generally resulting in ambivalent emotional content. Participants were asked to explicitly recognize FEEs. Using whole power (WP) and phase synchrony (Phase Locking Index, PLI), we found that brain responses discriminated between natural and unnatural FEEs (both static and dynamic). Differences were primarily observed in the timing and brain topographies of delta and theta PLI and WP, and in alpha and beta WP. Our results support the view that biologically plausible, albeit atypical, FEEs are processed by the brain by different mechanisms than natural FEEs. We conclude that natural movement dynamics are essential for the perception of FEEs and the associated brain processes. PMID:28723957

  12. Brain synchronization during perception of facial emotional expressions with natural and unnatural dynamics.

    PubMed

    Perdikis, Dionysios; Volhard, Jakob; Müller, Viktor; Kaulard, Kathrin; Brick, Timothy R; Wallraven, Christian; Lindenberger, Ulman

    2017-01-01

    Research on the perception of facial emotional expressions (FEEs) often uses static images that do not capture the dynamic character of social coordination in natural settings. Recent behavioral and neuroimaging studies suggest that dynamic FEEs (videos or morphs) enhance emotion perception. To identify mechanisms associated with the perception of FEEs with natural dynamics, the present EEG (Electroencephalography)study compared (i) ecologically valid stimuli of angry and happy FEEs with natural dynamics to (ii) FEEs with unnatural dynamics, and to (iii) static FEEs. FEEs with unnatural dynamics showed faces moving in a biologically possible but unpredictable and atypical manner, generally resulting in ambivalent emotional content. Participants were asked to explicitly recognize FEEs. Using whole power (WP) and phase synchrony (Phase Locking Index, PLI), we found that brain responses discriminated between natural and unnatural FEEs (both static and dynamic). Differences were primarily observed in the timing and brain topographies of delta and theta PLI and WP, and in alpha and beta WP. Our results support the view that biologically plausible, albeit atypical, FEEs are processed by the brain by different mechanisms than natural FEEs. We conclude that natural movement dynamics are essential for the perception of FEEs and the associated brain processes.

  13. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study

    PubMed Central

    Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions (n = 6) and a group of healthy adolescent athletes (n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort. PMID:29357675

  14. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study.

    PubMed

    Muller, Angela M; Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.

  15. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  16. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    PubMed

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become exceedingly difficult, and this difficulty, known as the "obstetrical dilemma", is likely to constrain the future evolution of brain size and, thus, privilege ongoing evolution in neurological reorganization. In modern babies, the brain spurt is accompanied by formation and tuning (pruning) of neurological connections, and development of dynamic higher-order networks that facilitate acquisition of grammatical language and, later in development, other advanced computational abilities such as musical or mathematical perception and performance. The cumulative evidence suggests that the emergence and refinement of grammatical language was a prime mover of hominin brain evolution.

  17. Dynamic Changes in Phase-Amplitude Coupling Facilitate Spatial Attention Control in Fronto-Parietal Cortex

    PubMed Central

    Szczepanski, Sara M.; Crone, Nathan E.; Kuperman, Rachel A.; Auguste, Kurtis I.; Parvizi, Josef; Knight, Robert T.

    2014-01-01

    Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands. PMID:25157678

  18. Relating Structure and Function in the Human Brain: Relative Contributions of Anatomy, Stationary Dynamics, and Non-stationarities

    PubMed Central

    Messé, Arnaud; Rudrauf, David; Benali, Habib; Marrelec, Guillaume

    2014-01-01

    Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks. PMID:24651524

  19. Hyper-resting brain entropy within chronic smokers and its moderation by Sex.

    PubMed

    Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze

    2016-07-05

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers' brains, however less is known about the temporal dynamics within smokers' brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking.

  20. Optimizing Experimental Design for Comparing Models of Brain Function

    PubMed Central

    Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas

    2011-01-01

    This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485

  1. Multivariate Pattern Classification of Facial Expressions Based on Large-Scale Functional Connectivity.

    PubMed

    Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan

    2018-01-01

    It is an important question how human beings achieve efficient recognition of others' facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition.

  2. Multivariate Pattern Classification of Facial Expressions Based on Large-Scale Functional Connectivity

    PubMed Central

    Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan

    2018-01-01

    It is an important question how human beings achieve efficient recognition of others’ facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition. PMID:29615882

  3. Improved recovery of the hemodynamic response in Diffuse Optical Imaging using short optode separations and state-space modeling

    PubMed Central

    Gagnon, Louis; Perdue, Katherine; Greve, Douglas N.; Goldenholz, Daniel; Kaskhedikar, Gayatri; Boas, David A.

    2011-01-01

    Diffuse Optical Imaging (DOI) allows the recovery of the hemodynamic response associated with evoked brain activity. The signal is contaminated with systemic physiological interference which occurs in the superficial layers of the head as well as in the brain tissue. The back-reflection geometry of the measurement makes the DOI signal strongly contaminated by systemic interference occurring in the superficial layers. A recent development has been the use of signals from small source-detector separation (1 cm) optodes as regressors. Since those additional measurements are mainly sensitive to superficial layers in adult humans, they help in removing the systemic interference present in longer separation measurements (3 cm). Encouraged by those findings, we developed a dynamic estimation procedure to remove global interference using small optode separations and to estimate simultaneously the hemodynamic response. The algorithm was tested by recovering a simulated synthetic hemodynamic response added over baseline DOI data acquired from 6 human subjects at rest. The performance of the algorithm was quantified by the Pearson R2 coefficient and the mean square error (MSE) between the recovered and the simulated hemodynamic responses. Our dynamic estimator was also compared with a static estimator and the traditional adaptive filtering method. We observed a significant improvement (two-tailed paired t-test, p < 0.05) in both HbO and HbR recovery using our Kalman filter dynamic estimator compared to the traditional adaptive filter, the static estimator and the standard GLM technique. PMID:21385616

  4. The Affective Core of the Self: A Neuro-Archetypical Perspective on the Foundations of Human (and Animal) Subjectivity.

    PubMed

    Alcaro, Antonio; Carta, Stefano; Panksepp, Jaak

    2017-01-01

    Psychologists usually considered the "Self" as an object of experience appearing when the individual perceives its existence within the conscious field. In accordance with such a view, the self-representing capacity of the human mind has been related to corticolimbic learning processes taking place within individual development. On the other hand, Carl Gustav Jung considered the Self as the core of our personality, in its conscious and unconscious aspects, as well as in its actual and potential forms. According to Jung, the Self originates from an inborn dynamic structure integrating the essential drives of our "brain-mind," and leading both to instinctual behavioral actions and to archetypal psychological experiences. Interestingly, recent neuroethological studies indicate that our subjective identity rests on ancient neuropsychic processes that humans share with other animals as part of their inborn constitutional repertoire. Indeed, brain activity within subcortical midline structures (SCMSs) is intrinsically related to the emergence of prototypical affective states, that not only influence our behavior in a flexible way, but alter our conscious field, giving rise to specific feelings or moods, which constitute the first form of self-orientation in the world. Moreover, such affective dynamics play a central role in the organization of individual personality and in the evolution of all other (more sophisticated) psychological functions. Therefore, on the base of the convergence between contemporary cutting-edge scientific research and some psychological intuitions of Jung, we intend here to explore the first neuroevolutional layer of human mind, that we call the affective core of the Self.

  5. Dynamics of the human brain network revealed by time-frequency effective connectivity in fNIRS

    PubMed Central

    Vergotte, Grégoire; Torre, Kjerstin; Chirumamilla, Venkata Chaitanya; Anwar, Abdul Rauf; Groppa, Sergiu; Perrey, Stéphane; Muthuraman, Muthuraman

    2017-01-01

    Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging method for investigating networks of cortical regions over time. We propose a directed effective connectivity method (TPDC) allowing the capture of both time and frequency evolution of the brain’s networks using fNIRS data acquired from healthy subjects performing a continuous finger-tapping task. Using this method we show the directed connectivity patterns among cortical motor regions involved in the task and their significant variations in the strength of information flow exchanges. Intra and inter-hemispheric connections during the motor task with their temporal evolution are also provided. Characterisation of the fluctuations in brain connectivity opens up a new way to assess the organisation of the brain to adapt to changing task constraints, or under pathological conditions. PMID:29188123

  6. Causal network in a deafferented non-human primate brain.

    PubMed

    Balasubramanian, Karthikeyan; Takahashi, Kazutaka; Hatsopoulos, Nicholas G

    2015-01-01

    De-afferented/efferented neural ensembles can undergo causal changes when interfaced to neuroprosthetic devices. These changes occur via recruitment or isolation of neurons, alterations in functional connectivity within the ensemble and/or changes in the role of neurons, i.e., excitatory/inhibitory. In this work, emergence of a causal network and changes in the dynamics are demonstrated for a deafferented brain region exposed to BMI (brain-machine interface) learning. The BMI was controlling a robot for reach-and-grasp behavior. And, the motor cortical regions used for the BMI were deafferented due to chronic amputation, and ensembles of neurons were decoded for velocity control of the multi-DOF robot. A generalized linear model-framework based Granger causality (GLM-GC) technique was used in estimating the ensemble connectivity. Model selection was based on the AIC (Akaike Information Criterion).

  7. Ballistic delivery of dyes for structural and functional studies of the nervous system

    PubMed Central

    Gan, Wen-Biao; Grutzendler, Jaime; Wong, Rachel O.; Lichtman, Jeff W.

    2010-01-01

    This chapter describes a detail protocol for rapid labeling of cells in a variety of preparations by means of particle-mediated ballistic (gene gun) delivery of fluorescent dyes. This method has been used for rapid labeling of cells with either lipid or water-soluble dyes in a variety of preparations. In particular, carbocyanine lipophilic dyes such as DiI have been used to obtain Golgi-like labeling of neurons and glia in fixed and live cell cultures, brain slices, as well as fixed post-mortem human brain. Water-soluble calcium indicators such as calcium green-1 dextran have been used to image calcium dynamics in living brain slices and retinal explants. This ballistic labeling technique is thus useful for studying the structure and function of neurons and glia in both living and fixed specimens. PMID:20147144

  8. Interactive Social Neuroscience to Study Autism Spectrum Disorder

    PubMed Central

    Rolison, Max J.; Naples, Adam J.; McPartland, James C.

    2015-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative “interactive social neuroscience” methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD. PMID:25745371

  9. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    PubMed

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  10. Interactive social neuroscience to study autism spectrum disorder.

    PubMed

    Rolison, Max J; Naples, Adam J; McPartland, James C

    2015-03-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.

  11. Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario

    Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrectmore » for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.« less

  12. Energy harvesting from arterial blood pressure for powering embedded micro sensors in human brain

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2017-03-01

    This manuscript investigates energy harvesting from arterial blood pressure via the piezoelectric effect for the purpose of powering embedded micro-sensors in the human brain. One of the major hurdles in recording and measuring electrical data in the human nervous system is the lack of implantable and long term interfaces that record neural activity for extended periods of time. Recently, some authors have proposed micro sensors implanted deep in the brain that measure local electrical and physiological data which are then communicated to an external interrogator. This paper proposes a way of powering such interfaces. The geometry of the proposed harvester consists of a piezoelectric, circular, curved bimorph that fits into the blood vessel (specifically, the Carotid artery) and undergoes bending motion because of blood pressure variation. In addition, the harvester thickness is constrained such that it does not modify arterial wall dynamics. This transforms the problem into a known strain problem and the integral form of Gauss's law is used to obtain an equation relating arterial wall motion to the induced voltage. The theoretical model is validated by means of a Multiphysics 3D-FEA simulation comparing the harvested power at different load resistances. The peak harvested power achieved for the Carotid artery (proximal to Brain), with PZT-5H, was 11.7 μW. The peak power for the Aorta was 203.4 μW. Further, the variation of harvested power with variation in the harvester width and thickness, arterial contractility, and pulse rate is investigated. Moreover, potential application of the harvester as a chronic, implantable and real-time Blood pressure sensor is considered. Energy harvested via this mechanism will also have applications in long-term, implantable Brain Micro-stimulation.

  13. High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503.

    PubMed

    Ishikawa, Masatomo; Ishiwata, Kiichi; Ishii, Kenji; Kimura, Yuichi; Sakata, Muneyuki; Naganawa, Mika; Oda, Keiichi; Miyatake, Ryousuke; Fujisaki, Mihisa; Shimizu, Eiji; Shirayama, Yukihiko; Iyo, Masaomi; Hashimoto, Kenji

    2007-10-15

    Sigma-1 receptors might be implicated in the pathophysiology of psychiatric diseases, as well as in the mechanisms of action of some selective serotonin reuptake inhibitors (SSRIs). Among the several SSRIs, fluvoxamine has the highest affinity for sigma-1 receptors (Ki = 36 nM), whereas paroxetine shows low affinity (Ki = 1893 nM). The present study was undertaken to examine whether fluvoxamine binds to sigma-1 receptors in living human brain. A dynamic positron emission tomography (PET) data acquisition using the selective sigma-1 receptor ligand [(11)C]SA4503 was performed with arterial blood sampling to evaluate quantitatively the binding of [(11)C]SA4503 to sigma-1 receptors in 15 healthy male volunteers. Each subject had two PET scans before and after randomly receiving a single dose of either fluvoxamine (50, 100, 150, or 200 mg) or paroxetine (20 mg). The binding potential of [(11)C]SA4503 in 9 regions of the brain was calculated by a 2-tissue 3-compartment model. In addition, we examined the effects of functional polymorphisms of the sigma-1 receptor (SIGMAR1) gene on the binding potential of [(11)C]SA4503. Fluvoxamine bound to sigma-1 receptors in all brain regions in a dose-dependent manner, whereas paroxetine did not bind to sigma-1 receptors. However, there was no association between the SIGMAR1 gene polymorphism GC-241-240TT and binding potential. The study demonstrated that fluvoxamine bound to sigma-1 receptors in living human brain at therapeutic doses. These findings suggest that sigma-1 receptors may play an important role in the mechanism of action of fluvoxamine.

  14. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction

    PubMed Central

    Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario

    2005-01-01

    Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524

  15. Building the Ferretome

    PubMed Central

    Sukhinin, Dmitrii I.; Engel, Andreas K.; Manger, Paul; Hilgetag, Claus C.

    2016-01-01

    Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity. PMID:27242503

  16. Building the Ferretome.

    PubMed

    Sukhinin, Dmitrii I; Engel, Andreas K; Manger, Paul; Hilgetag, Claus C

    2016-01-01

    Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity.

  17. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    PubMed

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  18. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    NASA Astrophysics Data System (ADS)

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-05-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.

  19. Complex function in the dynamic brain. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Anderson, Michael L.

    2014-09-01

    There is much to commend in this excellent overview of the progress we've made toward-and the challenges that remain for-developing an empirical framework for neuroscience that is adequate to the dynamic complexity of the brain [17]. Here I will limit myself first to highlighting the concept of dynamic affiliation, which I take to be the central feature of the functional architecture of the brain, and second to clarifying Pessoa's brief discussion of the ontology of cognition, to be sure readers appreciate this crucial issue.

  20. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease

    PubMed Central

    Lukiw, Walter J.

    2016-01-01

    The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer’s disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This ‘Perspectives communication’ will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain. PMID:27725817

  1. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961

  2. Detecting event-related changes of multivariate phase coupling in dynamic brain networks.

    PubMed

    Canolty, Ryan T; Cadieu, Charles F; Koepsell, Kilian; Ganguly, Karunesh; Knight, Robert T; Carmena, Jose M

    2012-04-01

    Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.

  3. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Consciousness, brain, neuroplasticity

    PubMed Central

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training. PMID:23847580

  5. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V

    2018-05-17

    The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms?

    PubMed Central

    Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2015-01-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001–0.023 Hz) and low frequency (LF 0.023–0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. PMID:26690495

  7. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    PubMed

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  8. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a patient with peripheral vascular disease (PVD) were found.

  9. Clinical study and numerical simulation of brain cancer dynamics under radiotherapy

    NASA Astrophysics Data System (ADS)

    Nawrocki, S.; Zubik-Kowal, B.

    2015-05-01

    We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.

  10. Role of local network oscillations in resting-state functional connectivity.

    PubMed

    Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo

    2011-07-01

    Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Cross-entropy optimization for neuromodulation.

    PubMed

    Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A

    2016-08-01

    This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.

  12. Scaling behavior of sleep-wake transitions across species

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan; Chou, Thomas; Ivanov, Plamen Ch.; Penzel, Thomas; Mochizuki, Takatoshi; Scammell, Thomas; Saper, Clifford B.; Stanley, H. Eugene

    2003-03-01

    Uncovering the mechanisms controlling sleep is a fascinating scientific challenge. It can be viewed as transitions of states of a very complex system, the brain. We study the time dynamics of short awakenings during sleep for three species: humans, rats and mice. We find, for all three species, that wake durations follow a power-law distribution, and sleep durations follow exponential distributions. Surprisingly, all three species have the same power-law exponent for the distribution of wake durations, but the exponential time scale of the distributions of sleep durations varies across species. We suggest that the dynamics of short awakenings are related to species-independent fluctuations of the system, while the dynamics of sleep is related to system-dependent mechanisms which change with species.

  13. Information flow dynamics in the brain

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  14. Macromolecular networks and intelligence in microorganisms

    PubMed Central

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  15. Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.

    PubMed

    Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard; Chakrabarti, Lisa

    2016-07-01

    Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (p<0.05). We quantified ratios of human mitochondrial haemoglobin in 30 Parkinson's and matched control human post-mortem brains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    PubMed

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  17. Future Directions for Examination of Brain Networks in Neurodevelopmental Disorders.

    PubMed

    Uddin, Lucina Q; Karlsgodt, Katherine H

    2018-01-01

    Neurodevelopmental disorders are associated with atypical development and maturation of brain networks. A recent focus on human connectomics research and the growing popularity of open science initiatives has created the ideal climate in which to make real progress toward understanding the neurobiology of disorders affecting youth. Here we outline future directions for neuroscience researchers examining brain networks in neurodevelopmental disorders, highlighting gaps in the current literature. We emphasize the importance of leveraging large neuroimaging and phenotypic data sets recently made available to the research community, and we suggest specific novel methodological approaches, including analysis of brain dynamics and structural connectivity, that have the potential to produce the greatest clinical insight. Transdiagnostic approaches will also become increasingly necessary as the Research Domain Criteria framework put forth by the National Institute of Mental Health permeates scientific discourse. During this exciting era of big data and increased computational sophistication of analytic tools, the possibilities for significant advancement in understanding neurodevelopmental disorders are limitless.

  18. The elephant brain in numbers

    PubMed Central

    Herculano-Houzel, Suzana; Avelino-de-Souza, Kamilla; Neves, Kleber; Porfírio, Jairo; Messeder, Débora; Mattos Feijó, Larissa; Maldonado, José; Manger, Paul R.

    2014-01-01

    What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (109) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals. PMID:24971054

  19. Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging.

    PubMed

    Declercq, Lieven; Rombouts, Frederik; Koole, Michel; Fierens, Katleen; Mariën, Jonas; Langlois, Xavier; Andrés, José Ignacio; Schmidt, Mark; Macdonald, Gregor; Moechars, Diederik; Vanduffel, Wim; Tousseyn, Thomas; Vandenberghe, Rik; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy

    2017-06-01

    In this study, we have synthesized and evaluated 18 F-JNJ64349311, a tracer with high affinity for aggregated tau (inhibition constant value, 8 nM) and high (≥500×) in vitro selectivity for tau over β-amyloid, in comparison with the benchmark compound 18 F-AV1451 ( 18 F-T807) in mice, rats, and a rhesus monkey. Methods: In vitro binding characteristics were determined for Alzheimer's disease, progressive supranuclear palsy, and corticobasal degeneration patient brain tissue slices using autoradiography studies. Ex vivo biodistribution studies were performed in mice. Radiometabolites were quantified in the brain and plasma of mice and in the plasma of a rhesus monkey using high-performance liquid chromatography. Dynamic small-animal PET studies were performed in rats and a rhesus monkey to evaluate tracer pharmacokinetics in the brain. Results: Mouse biodistribution studies showed moderate initial brain uptake and rapid brain washout. Radiometabolite analyses after injection of 18 F-JNJ64349311 in mice showed the presence of a polar radiometabolite in plasma, but not in the brain. Semiquantitative autoradiography studies on postmortem tissue sections of human Alzheimer's disease brains showed highly displaceable binding to tau-rich regions. No specific binding was, however, found on human progressive supranuclear palsy and corticobasal degeneration brain slices. Small-animal PET scans of Wistar rats revealed moderate initial brain uptake (SUV, ∼1.5 at 1 min after injection) and rapid brain washout. Gradual bone uptake was, however, also observed. Blocking and displacement did not affect brain time-activity curves, suggesting no off-target specific binding of the tracer in the healthy rat brain. A small-animal PET scan of a rhesus monkey revealed moderate initial brain uptake (SUV, 1.9 at 1 min after injection) with a rapid washout. In the monkey, no bone uptake was detected during the 120-min scan. Conclusion: This biologic evaluation suggests that 18 F-JNJ64349311 is a promising tau PET tracer candidate, with a favorable pharmacokinetic profile, as compared with 18 F-AV1451. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Temporal dynamics of lactate concentration in the human brain during acute inspiratory hypoxia

    PubMed Central

    Harris, Ashley D; Roberton, Victoria H; Huckle, Danielle L; Saxena, Neeraj; Evans, C John; Murphy, Kevin; Hall, Judith E; Bailey, Damian M; Mitsis, Georgios; Edden, Richard A E; Wise, Richard G

    2012-01-01

    Purpose To demonstrate the feasibility of measuring the temporal dynamics of cerebral lactate concentration and examine these dynamics in human subjects using MRS during hypoxia. Methods A respiratory protocol consisting of 10 min baseline normoxia, 20 min inspiratory hypoxia and ending with 10 min normoxic recovery was used, throughout which lactate-edited MRS was performed. This was repeated four times in three subjects. A separate session was performed to measure blood lactate. Impulse response functions using end-tidal oxygen and blood lactate as system inputs and cerebral lactate as the system output were examined to describe the dynamics of the cerebral lactate response to a hypoxic challenge. Results The average lactate increase was 20%±15% during the last half of the hypoxic challenge. Significant changes in cerebral lactate concentration were observed after 400s. The average relative increase in blood lactate was 188%±95%. The temporal dynamics of cerebral lactate concentration was reproducibly demonstrated with 200s time bins of MRS data (coefficient of variation 0.063±0.035 between time bins in normoxia). The across subject coefficient of variation was 0.333. Conclusions The methods for measuring the dynamics of the cerebral lactate response developed here would be useful to further investigate the brain’s response to hypoxia. PMID:23197421

  1. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions.

    PubMed

    Schneider, Michael L; Donnelly, Christine A; Russek, Stephen E; Baek, Burm; Pufall, Matthew R; Hopkins, Peter F; Dresselhaus, Paul D; Benz, Samuel P; Rippard, William H

    2018-01-01

    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies.

  2. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

    PubMed Central

    Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.

    2018-01-01

    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787

  3. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources.

    PubMed

    Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems.

  4. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources

    PubMed Central

    Liu, Yu-Ting; Pal, Nikhil R.; Marathe, Amar R.; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems. PMID:28676734

  5. Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.

    PubMed

    Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C

    2012-01-01

    The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.

  6. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    PubMed

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.

    PubMed

    Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek

    2015-06-01

    The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.

  8. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  9. Human-brain ferritin studied by muon spin rotation: a pilot study

    NASA Astrophysics Data System (ADS)

    Bossoni, Lucia; Grand Moursel, Laure; Bulk, Marjolein; Simon, Brecht G.; Webb, Andrew; van der Weerd, Louise; Huber, Martina; Carretta, Pietro; Lascialfari, Alessandro; Oosterkamp, Tjerk H.

    2017-10-01

    Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer’s disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.

  10. No-carrier-added [.sup.18 F]-N-fluoroalkylspiroperidols

    DOEpatents

    Shiue, Chyng-Yann; Wolf, Alfred P.; Bai, Lan-Qin; Teng, Ren-Tui

    1989-01-01

    There is disclosed radioligands labeled with the position emitting radionuclide [.sup.18 F] suitable for dynamic study in living humans with position emission transaxial tomography. These new [.sup.18 F]-N-fluoroalkylspiroperidols, wherein the alkyl group contains from 2-6 carbon atoms, exhibit extremely high affinity for the dopamine receptors and provide enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to make these new radioligands useful for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for these radioligands as well as a new procedure for preparing the radiolabeled alkyl halide alkylating reagents are also disclosed.

  11. Diminished neural network dynamics after moderate and severe traumatic brain injury.

    PubMed

    Gilbert, Nicholas; Bernier, Rachel A; Calhoun, Vincent D; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M; Hillary, Frank G

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.

  12. Amphetamine modulates brain signal variability and working memory in younger and older adults.

    PubMed

    Garrett, Douglas D; Nagel, Irene E; Preuschhof, Claudia; Burzynska, Agnieszka Z; Marchner, Janina; Wiegert, Steffen; Jungehülsing, Gerhard J; Nyberg, Lars; Villringer, Arno; Li, Shu-Chen; Heekeren, Hauke R; Bäckman, Lars; Lindenberger, Ulman

    2015-06-16

    Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI-based blood oxygen level-dependent (BOLD) signal variability (SD(BOLD)) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SD(BOLD) levels in the presence of AMPH. Drug session order greatly moderated change-change relations between AMPH-driven SD(BOLD) and reaction time means (RT(mean)) and SDs (RT(SD)). Older adults who received AMPH in the first session tended to improve in RT(mean) and RT(SD) when SD(BOLD) was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SD(BOLD) decreased (for RT(mean)) or no effect at all (for RT(SD)). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.

  13. Amphetamine modulates brain signal variability and working memory in younger and older adults

    PubMed Central

    Garrett, Douglas D.; Nagel, Irene E.; Preuschhof, Claudia; Burzynska, Agnieszka Z.; Marchner, Janina; Wiegert, Steffen; Jungehülsing, Gerhard J.; Nyberg, Lars; Villringer, Arno; Li, Shu-Chen; Heekeren, Hauke R.; Bäckman, Lars; Lindenberger, Ulman

    2015-01-01

    Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics. PMID:26034283

  14. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  15. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.

    PubMed

    Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia

    2014-11-01

    Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  17. Transcranial amelioration of inflammation and cell death after brain injury

    NASA Astrophysics Data System (ADS)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  18. Linguistic embodiment and verbal constraints: human cognition and the scales of time

    PubMed Central

    Cowley, Stephen J.

    2014-01-01

    Using radical embodied cognitive science, the paper offers the hypothesis that language is symbiotic: its agent-environment dynamics arise as linguistic embodiment is managed under verbal constraints. As a result, co-action grants human agents the ability to use a unique form of phenomenal experience. In defense of the hypothesis, I stress how linguistic embodiment enacts thinking: accordingly, I present auditory and acoustic evidence from 750 ms of mother-daughter talk, first, in fine detail and, then, in narrative mode. As the parties attune, they use a dynamic field to co-embody speech with experience of wordings. The latter arise in making and tracking phonetic gestures that, crucially, mesh use of artifice, cultural products and impersonal experience. As observers, living human beings gain dispositions to display and use social subjectivity. Far from using brains to “process” verbal content, linguistic symbiosis grants access to diachronic resources. On this distributed-ecological view, language can thus be redefined as: “activity in which wordings play a part.” PMID:25324799

  19. Functional brain networks related to individual differences in human intelligence at rest

    PubMed Central

    Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca

    2016-01-01

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736

  20. Hyper-resting brain entropy within chronic smokers and its moderation by Sex

    PubMed Central

    Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze

    2016-01-01

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking. PMID:27377552

Top