Sample records for human brain post

  1. Transcriptional landscape of the prenatal human brain.

    PubMed

    Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L; Royall, Joshua J; Aiona, Kaylynn; Arnold, James M; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Dolbeare, Tim A; Facer, Benjamin A C; Feng, David; Fliss, Tim P; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Howard, Robert E; Jochim, Jayson M; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana E; Stevens, Allison; Pletikos, Mihovil; Reding, Melissa; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V; Shen, Elaine H; Sjoquist, Nathan; Slaughterbeck, Clifford R; Smith, Michael; Sodt, Andy J; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B; Geschwind, Daniel H; Glass, Ian A; Hawrylycz, Michael J; Hevner, Robert F; Huang, Hao; Jones, Allan R; Knowles, James A; Levitt, Pat; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G; Lein, Ed S

    2014-04-10

    The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.

  2. Parallel workflow tools to facilitate human brain MRI post-processing

    PubMed Central

    Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang

    2015-01-01

    Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043

  3. Acute Neuroimmune Modulation Attenuates the Development of Anxiety-Like Freezing Behavior in an Animal Model of Traumatic Brain Injury

    PubMed Central

    Rodgers, Krista M.; Bercum, Florencia M.; McCallum, Danielle L.; Rudy, Jerry W.; Frey, Lauren C.; Johnson, Kirk W.; Watkins, Linda R.

    2012-01-01

    Abstract Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans. PMID:22435644

  4. Oligophrenin-1 (OPHN1), a Gene Involved in X-Linked Intellectual Disability, Undergoes RNA Editing and Alternative Splicing during Human Brain Development

    PubMed Central

    Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela

    2014-01-01

    Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development. PMID:24637888

  5. Oligophrenin-1 (OPHN1), a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development.

    PubMed

    Barresi, Sabina; Tomaselli, Sara; Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela

    2014-01-01

    Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.

  6. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  7. Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors

    PubMed Central

    Palm, Christoph; Axer, Markus; Gräßel, David; Dammers, Jürgen; Lindemeyer, Johannes; Zilles, Karl; Pietrzyk, Uwe; Amunts, Katrin

    2009-01-01

    Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography. PMID:20461231

  8. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation

    PubMed Central

    Xu, Yi; Hou, Qing-hua; Russell, Shawn D.; Bennett, Bradford C.; Sellers, Andrew J.; Lin, Qiang; Huang, Dong-feng

    2015-01-01

    Gait disorders drastically affect the quality of life of stroke survivors, making post-stroke rehabilitation an important research focus. Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment. However, a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized. We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery, and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery. While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity, it evolves over time, is idiosyncratic, and may develop maladaptive elements. Furthermore, noninvasive brain stimulation has limited reach capability and is facilitative-only in nature. Therefore, we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques. Additionally, when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors, stimulation montages should be customized according to the specific types of neuroplasticity found in each individual. This could be done using multiple mapping techniques. PMID:26889202

  9. Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review

    PubMed Central

    Frasca, Diana; Tomaszczyk, Jennifer; McFadyen, Bradford J.; Green, Robin E.

    2013-01-01

    Objectives: While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. Methods: We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. Results: One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. Conclusion: There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society. PMID:23616755

  10. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    PubMed

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  11. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    PubMed

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  12. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  13. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  14. Brain donation in psychiatry: results of a Dutch prospective donor program among psychiatric cohort participants.

    PubMed

    de Lange, Geertje M; Rademaker, Marleen; Boks, Marco P; Palmen, Saskia J M C

    2017-10-20

    Human brain tissue is crucial to study the molecular and cellular basis of psychiatric disorders. However, the current availability of human brain tissue is inadequate. Therefore, the Netherlands Brain Bank initiated a program in which almost 4.000 participants of 15 large Dutch psychiatric research cohorts were asked to register as prospective brain donors. We approached patients with schizophrenia, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, post-traumatic stress disorder, families with a child with autism or Attention Deficit Hyperactivity Disorder, healthy relatives and healthy unrelated controls, either face-to-face or by post. We investigated whether diagnosis, method of approach, age, and gender were related to the likelihood of brain-donor registration. We found a striking difference in registration efficiency between the diagnosis groups. Patients with bipolar disorder and healthy relatives registered most often (25% respectively 17%), followed by unrelated controls (8%) and patients with major depressive disorder, post-traumatic stress disorder, and obsessive-compulsive disorder (9%, 6% resp. 5%). A face-to-face approach was 1.3 times more effective than a postal approach and the likelihood of registering as brain donor significantly increased with age. Gender did not make a difference. Between 2013 and 2016, our prospective brain-donor program for psychiatry resulted in an almost eightfold increase (from 149 to 1149) in the number of registered psychiatric patients at the Netherlands Brain Bank. Based on our results we recommend, when starting a prospective brain donor program in psychiatric patients, to focus on face to face recruitment of people in their sixties or older.

  15. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    PubMed

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  16. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry.

    PubMed

    Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D

    2014-07-23

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).

  17. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans.

    PubMed

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R; Öz, Gülin

    2015-02-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.

  18. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans

    PubMed Central

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin

    2015-01-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563

  19. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder.

    PubMed

    Malki, Karim; Tosto, Maria Grazia; Jumabhoy, Irfan; Lourdusamy, Anbarasu; Sluyter, Frans; Craig, Ian; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C

    2013-12-01

    This study aims to identify novel genes associated with major depressive disorder and pharmacological treatment response using animal and human mRNA studies. Weighted gene coexpression network analysis was used to uncover genes associated with stress factors in mice and to inform mRNA probe set selection in a post-mortem study of depression. A total of 171 genes were found to be differentially regulated in response to both early and late stress protocols in a mouse study. Ten human genes, orthologous to mouse genes differentially expressed by stress, were also found to be dysregulated in depressed cases in a human post-mortem brain study from the Stanley Foundation Brain Collection. Several novel genes associated with depression were uncovered, including NOVA1 and USP9X. Moreover, we found further evidence in support of hippocampal neurogenesis and peripheral inflammation in major depressive disorder.

  20. Donor Brain Death Exacerbates Complement-Dependent Ischemia Reperfusion Injury in Transplanted Hearts

    PubMed Central

    Atkinson, Carl; Floerchinger, Bernhard; Qiao, Fei; Casey, Sarah; Williamson, Tucker; Moseley, Ellen; Stoica, Serban; Goddard, Martin; Ge, Xupeng; Tullius, Stefan G.; Tomlinson, Stephen

    2013-01-01

    Background Brain death (BD) can immunologically prime the donor organ and is thought to lead to exacerbated ischemia reperfusion injury (IRI) post-transplantation. Using a newly developed mouse model of BD, we investigated the effect of donor BD on post transplant cardiac IRI. We further investigated the therapeutic effect of a targeted complement inhibitor in recipients of BD donor hearts, and addressed the clinical relevance of these studies by analysis of human heart biopsies from BD and domino (living) donors. Methods and Results Hearts from living or brain dead donor C57BL/6 mice were transplanted into C57BL/6 or BALB/c recipients. Recipient mice were treated with the complement inhibitor CR2-Crry or vehicle control (n=6). Isografts were analyzed 48 hours post-transplant for injury, inflammation and complement deposition, and allografts monitored for graft survival. Human cardiac biopsies were analyzed for complement deposition and inflammatory cell infiltration. In the murine model, donor BD exacerbated IRI and graft rejection as demonstrated by increased myocardial injury, serum cardiac troponin, cellular infiltration, inflammatory chemokine and cytokine levels, complement deposition, and decreased graft survival. CR2-Crry treatment of recipients significantly reduced all measured outcomes in grafts from both BD and living donors compared to controls. Analysis of human samples documented the relevance of our experimental findings and revealed exacerbated complement deposition and inflammation in grafts from BD donors compared to grafts from living donors. Conclusions BD exacerbates post-transplant cardiac IRI in mice and humans, and decreases survival of mouse allografts. Further, targeted complement inhibition in recipient mice ameliorates BD-exacerbated IRI. PMID:23443736

  1. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    PubMed Central

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  2. brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets.

    PubMed

    Freytag, Saskia; Burgess, Rosemary; Oliver, Karen L; Bahlo, Melanie

    2017-06-08

    The pathogenesis of neurological and mental health disorders often involves multiple genes, complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics make identification of disease genes for such disorders challenging, as conventional prioritisation tools are not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-application-brain-coX-that offers gene prioritisation with accompanying visualisations based on seven gene expression datasets in the post-mortem human brain, the largest such resource ever assembled. We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity of approximately 75%. We also compared brain-coX's performance to that of its main competitors, Endeavour and ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene collection we show that brain-coX's prioritisations are most similar to SFARI's own curated gene classifications. brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/ .

  3. Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology.

    PubMed

    Morawski, Markus; Kirilina, Evgeniya; Scherf, Nico; Jäger, Carsten; Reimann, Katja; Trampel, Robert; Gavriilidis, Filippos; Geyer, Stefan; Biedermann, Bernd; Arendt, Thomas; Weiskopf, Nikolaus

    2017-11-28

    Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Effects of Cannabis Use on Human Brain Structure in Psychosis: A Systematic Review Combining In Vivo Structural Neuroimaging and Post Mortem Studies

    PubMed Central

    Rapp, Charlotte; Bugra, Hilal; Riecher-Rössler, Anita; Tamagni, Corinne; Borgwardt, Stefan

    2012-01-01

    It is unclear yet whether cannabis use is a moderating or causal factor contributing to grey matter alterations in schizophrenia and the development of psychotic symptoms. We therefore systematically reviewed structural brain imaging and post mortem studies addressing the effects of cannabis use on brain structure in psychosis. Studies with schizophrenia (SCZ) and first episode psychosis (FEP) patients as well as individuals at genetic (GHR) or clinical high risk for psychosis (ARMS) were included. We identified 15 structural magnetic resonance imaging (MRI) (12 cross sectional / 3 longitudinal) and 4 post mortem studies. The total number of subjects encompassed 601 schizophrenia or first episode psychosis patients, 255 individuals at clinical or genetic high risk for psychosis and 397 healthy controls. We found evidence for consistent brain structural abnormalities in cannabinoid 1 (CB1) receptor enhanced brain areas as the cingulate and prefrontal cortices and the cerebellum. As these effects have not consistently been reported in studies examining non-psychotic and healthy samples, psychosis patients and subjects at risk for psychosis might be particularly vulnerable to brain volume loss due to cannabis exposure PMID:22716152

  5. Tissue and organ donation for research in forensic pathology: the MRC Sudden Death Brain and Tissue Bank.

    PubMed

    Millar, T; Walker, R; Arango, J-C; Ironside, J W; Harrison, D J; MacIntyre, D J; Blackwood, D; Smith, C; Bell, J E

    2007-12-01

    Novel methodological approaches to the investigation of brain and non-central nervous system disorders have led to increased demand for well-characterized, high quality human tissue samples, particularly from control cases. In the setting of the new Human Tissue legislation, we sought to determine whether relatives who have been suddenly bereaved are willing to grant authorization for research use of post mortem tissue samples and organs in sufficient numbers to support the establishment of a brain and tissue bank based in the forensic service. Research authorization was sought from families on the day prior to forensic post mortem examination followed up by written confirmation. We have to date selected individuals who have died suddenly (age range 1-89 years) and who were likely to have normal brains or who had displayed symptoms of a CNS disorder of interest to researchers, including psychiatric disorders. One hundred and eleven families have been approached during the first 2 years of this project. Research use of tissue samples was authorized by 96% of families and 17% agreed to whole brain donation. Audit of families' experience does not suggest that they are further distressed by being approached. Respondents expressed a clear view that the opportunity for research donation should be open to all bereaved families. Despite the sometimes long post mortem intervals, the quality of tissue samples is good, as assessed by a range of markers including Agilent BioAnalyzer quantification of RNA integrity (mean value 6.4). We conclude that the vast majority of families are willing to support research use of post mortem tissues even in the context of sudden bereavement and despite previous adverse publicity. The potential for acquisition of normal CNS and non-CNS tissues and of various hard-to-get CNS disorders suggests that efforts to access the forensic post mortem service for research material are eminently worthwhile. (c) 2007 Pathological Society of Great Britain and Ireland

  6. Sleeping brain, learning brain. The role of sleep for memory systems.

    PubMed

    Peigneux, P; Laureys, S; Delbeuck, X; Maquet, P

    2001-12-21

    The hypothesis that sleep participates in the consolidation of recent memory traces has been investigated using four main paradigms: (1) effects of post-training sleep deprivation on memory consolidation, (2) effects of learning on post-training sleep, (3) effects of within sleep stimulation on the sleep pattern and on overnight memories, and (4) re-expression of behavior-specific neural patterns during post-training sleep. These studies convincingly support the idea that sleep is deeply involved in memory functions in humans and animals. However, the available data still remain too scarce to confirm or reject unequivocally the recently upheld hypothesis that consolidations of non-declarative and declarative memories are respectively dependent upon REM and NREM sleep processes.

  7. Effect of alcohol use disorder on oxytocin peptide and receptor mRNA expression in human brain: A post-mortem case-control study.

    PubMed

    Lee, Mary R; Schwandt, Melanie L; Sankar, Vignesh; Suchankova, Petra; Sun, Hui; Leggio, Lorenzo

    2017-11-01

    Animal and human evidence supports a role for oxytocin in alcohol-seeking behaviors. There is interest, therefore, in targeting the oxytocin pathway as a new pharmacologic approach to treat alcohol use disorder. To this end, it is important to understand the effect of alcohol use disorder on endogenous oxytocin in brain regions that are relevant for the initiation and maintenance of alcohol use disorder. We examined human post-mortem brain tissue from males with alcohol use disorder (n=11) compared to nonalcohol dependent male controls (n=16). We a priori targeted five brain regions that in rodent studies, are projection areas for oxytocin neurons: nucleus accumbens, amygdala, hippocampus, ventral tegmental area and prefrontal cortex. Fold change in mRNA levels of oxytocin peptide and receptor were measured in each of the brain regions studied. Fold change for oxytocin peptide mRNA was significantly elevated in the prefrontal cortex of subjects with alcohol use disorder compared to controls (uncorrected p=0.0001; FDR-corrected p=0.001). For the entire sample of 27 subjects, there was a significant positive correlation between the fold change in oxytocin peptide mRNA in the prefrontal cortex and both daily alcohol intake (r 2 =0.38; p=0.002) and drinks per week (r 2 =0.24; p=0.02). Results are discussed in light of the previous animal and human literature on changes in the endogenous oxytocin system as an effect of chronic alcohol exposure. Copyright © 2017. Published by Elsevier Ltd.

  8. Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus.

    PubMed

    Gonzalez-Riano, Carolina; Tapia-González, Silvia; García, Antonia; Muñoz, Alberto; DeFelipe, Javier; Barbas, Coral

    2017-08-01

    Understanding the human brain is the ultimate goal in neuroscience, but this is extremely challenging in part due to the fact that brain tissue obtained from autopsy is practically the only source of normal brain tissue and also since changes at different levels of biological organization (genetic, molecular, biochemical, anatomical) occur after death due to multiple mechanisms. Here we used metabolomic and anatomical techniques to study the possible relationship between post-mortem time (PT)-induced changes that may occur at both the metabolomics and anatomical levels in the same brains. Our experiments have mainly focused on the hippocampus of the mouse. We found significant metabolomic changes at 2 h PT, whereas the integrity of neurons and glia, at the anatomical/ neurochemical level, was not significantly altered during the first 5 h PT for the majority of histological markers.

  9. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.

    PubMed

    Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J

    2016-07-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. Additionally, human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Efficacy of Urtoxazumab (TMA-15 Humanized Monoclonal Antibody Specific for Shiga Toxin 2) Against Post-Diarrheal Neurological Sequelae Caused by Escherichia coli O157:H7 Infection in the Neonatal Gnotobiotic Piglet Model.

    PubMed

    Moxley, Rodney A; Francis, David H; Tamura, Mizuho; Marx, David B; Santiago-Mateo, Kristina; Zhao, Mojun

    2017-01-26

    Enterohemorrhagic Escherichia coli (EHEC) is the most common cause of hemorrhagic colitis and hemolytic uremic syndrome in human patients, with brain damage and dysfunction the main cause of acute death. We evaluated the efficacy of urtoxazumab (TMA-15, Teijin Pharma Limited), a humanized monoclonal antibody against Shiga toxin (Stx) 2 for the prevention of brain damage, dysfunction, and death in a piglet EHEC infection model. Forty-five neonatal gnotobiotic piglets were inoculated orally with 3 × 10⁸ colony-forming units of EHEC O157:H7 strain EDL933 (Stx1⁺, Stx2⁺) when 22-24 h old. At 24 h post-inoculation, piglets were intraperitoneally administered placebo or TMA-15 (0.3, 1.0 or 3.0 mg/kg body weight). Compared to placebo ( n = 10), TMA-15 ( n = 35) yielded a significantly greater probability of survival, length of survival, and weight gain ( p <0.05). The efficacy of TMA-15 against brain lesions and death was 62.9% ( p = 0.0004) and 71.4% ( p = 0.0004), respectively. These results suggest that TMA-15 may potentially prevent or reduce vascular necrosis and infarction of the brain attributable to Stx2 in human patients acutely infected with EHEC. However, we do not infer that TMA-15 treatment will completely protect human patients infected with EHEC O157:H7 strains that produce both Stx1 and Stx2.

  11. Neurotechnology and society (2010-2060).

    PubMed

    Lynch, Zack

    2004-05-01

    To illuminate the societal implications of NBIC (nano-bio-info-cogno) technologies it is critical to place them within a broad historical context. By viewing recent human history as a series of techno-economic waves with accompanying socio-political responses, a framework emerges that can be used to understand how business, politics, and human culture will be affected by NBIC technologies. One important development that the NBIC convergence is making possible is neurotechnology, the set of tools that can influence the human central nervous system, especially the brain. The diffusion of neurotechnology will give rise to a new type of human society-a post-industrial, post-informational neurosociety.

  12. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer's disease brain, serum and cerebrospinal fluid towards potential biomarker discovery.

    PubMed

    Gizaw, Solomon T; Ohashi, Tetsu; Tanaka, Masakazu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-08-01

    Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal control sera can facilitate the discovery research of highly sensitive and reliable serum biomarkers for an early diagnosis of AD. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Trace elements during primordial plexiform network formation in human cerebral organoids

    PubMed Central

    Sartore, Rafaela C.; Cardoso, Simone C.; Lages, Yury V.M.; Paraguassu, Julia M.; Stelling, Mariana P.; Madeiro da Costa, Rodrigo F.; Guimaraes, Marilia Z.; Pérez, Carlos A.

    2017-01-01

    Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood. PMID:28194309

  14. On Expression Patterns and Developmental Origin of Human Brain Regions.

    PubMed

    Kirsch, Lior; Chechik, Gal

    2016-08-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  15. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  16. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    PubMed

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Tau Processing by Mural Cells in Traumatic Brain Injury and Alzheimer’s Disease

    DTIC Science & Technology

    2017-10-01

    Cerebrovessels were treated with recombinant human tau (5ng/ml) for 1 hour at 37oC and total tau uptake was assessed in the lysates via ELISA . We observed a...to 5ng/ml recombinant human tau (rhtau-441) for 1 hour at 37oC. Lysates were analyzed for total tau content by ELISA and normalized to total protein...and 6 months post-last injury). Brain vessels were analyzed for PDGFRβ and α-SMC-actin content by ELISA and normalized to total protein using the

  18. Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.

    PubMed

    Takagi, Toshinori; Yoshimura, Shinichi; Sakuma, Rika; Nakano-Doi, Akiko; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-12-01

    Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.

  19. Joint explorative analysis of neuroreceptor subsystems in the human brain: application to receptor-transporter correlation using PET data.

    PubMed

    Cselényi, Zsolt; Lundberg, Johan; Halldin, Christer; Farde, Lars; Gulyás, Balázs

    2004-10-01

    Positron emission tomography (PET) has proved to be a highly successful technique in the qualitative and quantitative exploration of the human brain's neurotransmitter-receptor systems. In recent years, the number of PET radioligands, targeted to different neuroreceptor systems of the human brain, has increased considerably. This development paves the way for a simultaneous analysis of different receptor systems and subsystems in the same individual. The detailed exploration of the versatility of neuroreceptor systems requires novel technical approaches, capable of operating on huge parametric image datasets. An initial step of such explorative data processing and analysis should be the development of novel exploratory data-mining tools to gain insight into the "structure" of complex multi-individual, multi-receptor data sets. For practical reasons, a possible and feasible starting point of multi-receptor research can be the analysis of the pre- and post-synaptic binding sites of the same neurotransmitter. In the present study, we propose an unsupervised, unbiased data-mining tool for this task and demonstrate its usefulness by using quantitative receptor maps, obtained with positron emission tomography, from five healthy subjects on (pre-synaptic) serotonin transporters (5-HTT or SERT) and (post-synaptic) 5-HT(1A) receptors. Major components of the proposed technique include the projection of the input receptor maps to a feature space, the quasi-clustering and classification of projected data (neighbourhood formation), trans-individual analysis of neighbourhood properties (trajectory analysis), and the back-projection of the results of trajectory analysis to normal space (creation of multi-receptor maps). The resulting multi-receptor maps suggest that complex relationships and tendencies in the relationship between pre- and post-synaptic transporter-receptor systems can be revealed and classified by using this method. As an example, we demonstrate the regional correlation of the serotonin transporter-receptor systems. These parameter-specific multi-receptor maps can usefully guide the researchers in their endeavour to formulate models of multi-receptor interactions and changes in the human brain.

  20. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series.

    PubMed

    Shively, Sharon Baughman; Horkayne-Szakaly, Iren; Jones, Robert V; Kelly, James P; Armstrong, Regina C; Perl, Daniel P

    2016-08-01

    No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. Defense Health Program of the United States Department of Defense. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors.

    PubMed

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A

    2015-11-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  2. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    PubMed Central

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  3. The human sexual response cycle: brain imaging evidence linking sex to other pleasures.

    PubMed

    Georgiadis, J R; Kringelbach, M L

    2012-07-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable to that involved in processing other rewarding stimuli. Sexual behavior clearly follows the established principles and phases for wanting, liking and satiety involved in the pleasure cycle of other rewards. The studies have uncovered the brain networks involved in sexual wanting or motivation/anticipation, as well as sexual liking or arousal/consummation, while there is very little data on sexual satiety or post-orgasmic refractory period. Human sexual behavior also interacts with other pleasures, most notably social interaction and high arousal states. We discuss the changes in the underlying brain networks supporting sexual behavior in the context of the pleasure cycle, the changes to this cycle over the individual's life-time and the interactions between them. Overall, it is clear from the data that the functional neuroanatomy of sex is very similar to that of other pleasures and that it is unlikely that there is anything special about the brain mechanisms and networks underlying sex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Insights in spatio-temporal characterization of human fetal neural stem cells.

    PubMed

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    PubMed

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age corresponding to full-term human newborns, a systemic pre-exposure to a pathogen component amplified HI-induced mortality and morbidities that are relevant to human pathology. Neuronal cells were the first cells to produce IL-1β in LPS + HI-exposed full-term brains. Such IL-1β production might be responsible for neuronal self-injuries via well-described neurotoxic mechanisms such as IL-1β-induced nitric oxide production, or IL-1β-dependent exacerbation of excitotoxic damage.

  6. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    PubMed

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance elastography as a whole. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Tomographic brain imaging with nucleolar detail and automatic cell counting

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  8. Does the cycad genotoxin MAM implicated in Guam ALS-PDC induce disease-relevant changes in mouse brain that includes olfaction?

    PubMed

    Kisby, Glen; Palmer, Valerie; Lasarev, Mike; Fry, Rebecca; Iordanov, Mihail; Magun, Eli; Samson, Leona; Spencer, Peter

    2011-11-01

    Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC), a prototypical neurodegenerative disease (tauopathy) affecting distinct genetic groups with common exposure to neurotoxic chemicals in cycad seed, has many features of Parkinson's and Alzheimer's diseases (AD), including early olfactory dysfunction. Guam ALS-PDC incidence correlates with cycad flour content of cycasin and its aglycone methylazoxymethanol (MAM), which produces persistent DNA damage (O(6)-methylguanine) in the brains of mice lacking O(6)-methylguanine methyltransferase (Mgmt(-/-)). We described in Mgmt(-/-)mice up to 7 days post-MAM treatment that brain DNA damage was linked to brain gene expression changes found in human neurological disease, cancer, and skin and hair development. This addendum reports 6 months post-MAM treatment- related brain transcriptional changes as well as elevated mitogen activated protein kinases and increased caspase-3 activity, both of which are involved in tau aggregation and neurofibrillary tangle formation typical of ALS-PDC and AD, plus transcriptional changes in olfactory receptors. Does cycasin act as a "slow (geno)toxin" in ALS-PDC?

  9. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited.

    PubMed

    Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues

    2014-10-01

    The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    PubMed

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  11. Post-adolescent developmental changes in cortical complexity.

    PubMed

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  12. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  13. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  14. Effective Treatment of Traumatic Brain Injury in Rowett Nude Rats with Stromal Vascular Fraction Transplantation.

    PubMed

    Berman, Sean; Uhlendorf, Toni L; Berman, Mark; Lander, Elliot B

    2018-06-18

    Traumatic brain injury (TBI) affects 1.9 million Americans, including blast TBI that is the signature injury of the Iraq and Afghanistan wars. Our project investigated whether stromal vascular fraction (SVF) can assist in post-TBI recovery. We utilized strong acoustic waves (5.0 bar) to induce TBI in the cortex of adult Rowett Nude (RNU) rats. One hour post-TBI, harvested human SVF (500,000 cells suspended in 0.5 mL lactated Ringers) was incubated with Q-Tracker cell label and administered into tail veins of RNU rats. For comparison, we utilized rats that received SVF 72 h post-TBI, and a control group that received lactated Ringers solution. Rotarod and water maze assays were used to monitor motor coordination and spatial memories. Rats treated immediately after TBI showed no signs of motor skills and memory regression. SVF treatment 72 h post-TBI enabled the rats maintain their motor skills, while controls treated with lactated Ringers were 25% worse statistically in both assays. Histological analysis showed the presence of Q-dot labeled human cells near the infarct in both SVF treatment groups; however, labeled cells were twice as numerous in the one hour group. Our study suggests that immediate treatment with SVF would serve as potential therapeutic agents in TBI.

  15. Biochemical Fractionation and Stable Isotope Dilution Liquid Chromatography-mass Spectrometry for Targeted and Microdomain-specific Protein Quantification in Human Postmortem Brain Tissue*

    PubMed Central

    MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu

    2012-01-01

    Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359

  16. Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

    PubMed Central

    Mondello, Stefania; Newsom, Kimberly J.; Yang, Zhihui; Yang, Boxuan; Kobeissy, Firas; Guingab, Joy; Glushakova, Olena; Robicsek, Steven; Heaton, Shelley; Buki, Andras; Hannay, Julia; Gold, Mark S.; Rubenstein, Richard; Lu, Xi-chun May; Dave, Jitendra R.; Schmid, Kara; Tortella, Frank; Robertson, Claudia S.; Wang, Kevin K. W.

    2014-01-01

    The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients. PMID:24667434

  17. Cystatin C takes part in melanoma-microglia cross-talk: possible implications for brain metastasis.

    PubMed

    Moshe, Adi; Izraely, Sivan; Sagi-Assif, Orit; Prakash, Roshini; Telerman, Alona; Meshel, Tsipi; Carmichael, Thomas; Witz, Isaac P

    2018-05-02

    The development of melanoma brain metastasis is largely dependent on mutual interactions between the melanoma cells and cells in the brain microenvironment. Here, we report that the extracellular cysteine protease inhibitor cystatin C (CysC) is involved in these interactions. Microglia-derived factors upregulated CysC secretion by melanoma. Similarly, melanoma-derived factors upregulated CysC secretion by microglia. Whereas CysC enhanced melanoma cell migration through a layer of brain endothelial cells, it inhibited the migration of microglia cells toward melanoma cells. CysC was also found to promote the formation of melanoma three-dimensional structures in matrigel. IHC analysis revealed increased expression levels of CysC in the brain of immune-deficient mice bearing xenografted human melanoma brain metastasis compared to the brain of control mice. Based on these in vitro and in vivo experiments we hypothesize that CysC promotes melanoma brain metastasis. Increased expression levels of CysC were detected in the regenerating brain of mice after stroke. Post-stroke brain with melanoma brain metastasis showed an even stronger expression of CysC. The in vitro induction of stroke-like conditions in brain microenvironmental cells increased the levels of CysC in the secretome of microglia cells, but not in the secretome of brain endothelial cells. The similarities between melanoma brain metastasis and stroke with respect to CysC expression by and secretion from microglia cells suggest that CysC may be involved in shared pathways between brain metastasis and post-stroke regeneration. This manifests the tendency of tumor cells to highjack physiological molecular pathways in their progression.

  18. COB231 targets amyloid plaques in post-mortem human brain tissue and in an Alzheimer mouse model.

    PubMed

    Garin, Dominique; Virgone-Carlotta, Angélique; Gözel, Bülent; Oukhatar, Fatima; Perret, Pascale; Marti-Battle, Danièle; Touret, Monique; Millet, Philippe; Dubois-Dauphin, Michel; Meyronet, David; Streichenberger, Nathalie; Laferla, Frank M; Demeunynck, Martine; Chierici, Sabine; Sallanon Moulin, Marcelle; Ghezzi, Catherine

    2015-03-01

    Previous works have shown the interest of naturally fluorescent proflavine derivatives to label Abeta deposits in vitro. This study aimed to further characterize the properties of the proflavine 3-acetylamino-6-[3-(propargylamino)propanoyl]aminoacridine (COB231) derivative as a probe. This compound was therefore evaluated on human post-mortem and mice brain slices and in vivo in 18-month-old triple transgenic mice APPswe, PS1M146V and tauP301L (3xTgAD) mice presenting the main characteristics of Alzheimer's disease (AD). COB231 labelled amyloid plaques on brain slices of AD patients, and 3xTgAD mice at 10 and 0.1 μM respectively. However, no labelling of the neurofibrillary tangle-rich areas was observed either at high concentration or in the brain of fronto-temporal dementia patients. The specificity of this mapping was attested in mice using Thioflavin S and IMPY as positive controls of amyloid deposits. After intravenous injection of COB231 in old 3xTgAD mice, fluorescent amyloid plaques were detected in the cortex and hippocampus, demonstrating COB231 blood–brain barrier permeability. We also controlled the cellular localization of COB231 on primary neuronal cultures and showed that COB231 accumulates into the cytoplasm and not into the nucleus. Finally, using a viability assay, we only detected a slight cytotoxic effect of COB231 (< 10%) for the highest concentration (100 μM).

  19. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  20. Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads.

    PubMed

    Salzar, Robert S; Treichler, Derrick; Wardlaw, Andrew; Weiss, Greg; Goeller, Jacques

    2017-04-15

    The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.

  1. Transgenic Mice Carrying GLUD2 as a Tool for Studying the Expressional and the Functional Adaptation of this Positive Selected Gene in Human Brain Evolution.

    PubMed

    Plaitakis, Andreas; Kotzamani, Dimitra; Petraki, Zoe; Delidaki, Maria; Rinotas, Vagelis; Zaganas, Ioannis; Douni, Eleni; Sidiropoulou, Kyriaki; Spanaki, Cleanthe

    2018-05-18

    Human evolution is characterized by brain expansion and up-regulation of genes involved in energy metabolism and synaptic transmission, including the glutamate signaling pathway. Glutamate is the excitatory transmitter of neural circuits sub-serving cognitive functions, with glutamate-modulation of synaptic plasticity being central to learning and memory. GLUD2 is a novel positively-selected human gene involved in glutamatergic transmission and energy metabolism that underwent rapid evolutionary adaptation concomitantly with prefrontal cortex enlargement. Two evolutionary replacements (Gly456Ala and Arg443Ser) made hGDH2 resistant to GTP inhibition and allowed distinct regulation, enabling enhanced enzyme function under high glutamatergic system demands. GLUD2 adaptation may have contributed to unique human traits, but evidence for this is lacking. GLUD2 arose through retro-positioning of a processed GLUD1 mRNA to the X chromosome, a DNA replication mechanism that typically generates pseudogenes. However, by finding a suitable promoter, GLUD2 is thought to have gained expression in nerve and other tissues, where it adapted to their particular needs. Here we generated GLUD2 transgenic (Tg) mice by inserting in their genome a segment of the human X chromosome, containing the GLUD2 gene and its putative promoter. Double IF studies of Tg mouse brain revealed that the human gene is expressed in the host mouse brain in a pattern similar to that observed in human brain, thus providing credence to the above hypothesis. This expressional adaptation may have conferred novel role(s) on GLUD2 in human brain. Previous observations, also in GLUD2 Tg mice, generated and studied independently, showed that the non-redundant function of hGDH2 is markedly activated during early post-natal brain development, contributing to developmental changes in prefrontal cortex similar to those attributed to human divergence. Hence, GLUD2 adaptation may have influenced the evolutionary course taken by the human brain, but understanding the mechanism(s) involved remains challenging.

  2. Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report

    PubMed Central

    2010-01-01

    Background Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. Case presentation A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. Conclusions The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans. PMID:20064229

  3. Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain.

    PubMed

    Scheurer, Eva; Ith, Michael; Dietrich, Daniel; Kreis, Roland; Hüsler, Jürg; Dirnhofer, Richard; Boesch, Chris

    2005-05-01

    Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs. Copyright 2004 John Wiley & Sons, Ltd.

  4. Mechanical disruption of the blood-brain barrier following experimental concussion.

    PubMed

    Johnson, Victoria E; Weber, Maura T; Xiao, Rui; Cullen, D Kacy; Meaney, David F; Stewart, William; Smith, Douglas H

    2018-05-01

    Although concussion is now recognized as a major health issue, its non-lethal nature has limited characterization of the underlying pathophysiology. In particular, potential neuropathological changes have typically been inferred from non-invasive techniques or post-mortem examinations of severe traumatic brain injury (TBI). Here, we used a swine model of head rotational acceleration based on human concussion to examine blood-brain barrier (BBB) integrity after injury in association with diffuse axonal injury and glial responses. We then determined the potential clinical relevance of the swine concussion findings through comparisons with pathological changes in human severe TBI, where post-mortem examinations are possible. At 6-72 h post-injury in swine, we observed multifocal disruption of the BBB, demonstrated by extravasation of serum proteins, fibrinogen and immunoglobulin-G, in the absence of hemorrhage or other focal pathology. BBB disruption was observed in a stereotyped distribution consistent with biomechanical insult. Specifically, extravasated serum proteins were frequently observed at interfaces between regions of tissue with differing material properties, including the gray-white boundary, periventricular and subpial regions. In addition, there was substantial overlap of BBB disruption with regions of axonal pathology in the white matter. Acute perivascular cellular uptake of blood-borne proteins was observed to be prominent in astrocytes (GFAP-positive) and neurons (MAP-2-positive), but not microglia (IBA1-positive). Parallel examination of human severe TBI revealed similar patterns of serum extravasation and glial uptake of serum proteins, but to a much greater extent than in the swine model, attributed to the higher injury severity. These data suggest that BBB disruption represents a new and important pathological feature of concussion.

  5. Dissecting the Roles of Brain Injury and Combat-Related Stress in Post-Traumatic Headache

    DTIC Science & Technology

    2015-10-01

    were the major goals of the project? Post-traumatic headache (PTH) is an epidemic in our military personnel. It is a chronic, migraine -like...and affective processing that lead to PTH. Cortical spreading depression (CSD) is the physiological correlate of the migraine aura, but it also...paradigm. NTG infusion triggers migraine without aura in human migraineurs and reduced mechanical allodynia threshold in rodents. This enables 11

  6. Association between polychlorinated biphenyls and Parkinson's disease neuropathology.

    PubMed

    Hatcher-Martin, Jaime M; Gearing, Marla; Steenland, Kyle; Levey, Allan I; Miller, Gary W; Pennell, Kurt D

    2012-10-01

    Polychlorinated biphenyls (PCBs) are synthetic chemicals primarily used as coolants and insulators in electrical equipment. Although banned for several decades, PCBs continue to exist in the environment because of their long half-life, continued presence in items produced before the ban, and poor disposal practices. Epidemiological and experimental studies have identified exposure to PCBs as a potential risk factor for Parkinson's disease, perhaps more so in females. The objective of this work was to examine the association between PCB levels in post-mortem human brain tissue and the diagnosis of Parkinson's disease, as well as the degree of nigral depigmentation. We also sought to determine if this association was more significant when patients were stratified by sex. Post-mortem brain samples from control patients and those diagnosed with Parkinson's disease were obtained from the Emory University Brain Bank and from the Nun Study. Concentrations of eight prevalent PCB congeners were extracted from post-mortem brain tissue and analyzed using gas chromatography-mass spectrometry. PCB congeners 153 and 180 were significantly elevated in the brains of Parkinson's disease patients. When stratified by sex, the female Parkinson's disease group demonstrated significantly elevated concentrations of total PCBs and specifically congeners 138, 153, and 180 compared to controls, whereas PCB concentrations in males were not significantly different between control and Parkinson's disease groups. In a separate population of women (Nun Study) who had no clinical signs or symptoms of PD, elevated concentrations total PCB and congeners 138, 153 and 180 were also observed in post-mortem brain tissue exhibiting moderate nigral depigmentation compared to subjects with mild or no depigmentation. These quantitative data demonstrate an association between brain PCB levels and Parkinson's disease-related pathology. Furthermore, these data support epidemiological and laboratory studies reporting a link between PCB exposure and an increased risk for Parkinson's disease, including greater susceptibility of females. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Association between polychlorinated biphenyls and Parkinson’s disease neuropathology

    PubMed Central

    Hatcher-Martin, Jaime M.; Gearing, Marla; Steenland, Kyle; Levey, Allan I.; Miller, Gary W.; Pennell, Kurt D.

    2012-01-01

    Polychlorinated biphenyls (PCBs) are synthetic chemicals primarily used as coolants and insulators in electrical equipment. Although banned for several decades, PCBs continue to exist in the environment because of their long half-life, continued presence in items produced before the ban, and poor disposal practices. Epidemiological and experimental studies have identified exposure to PCBs as a potential risk factor for Parkinson’s disease, perhaps more so in females. The objective of this work was to examine the association between PCB levels in post-mortem human brain tissue and the diagnosis of Parkinson’s disease, as well as the degree of nigral depigmentation. We also sought to determine if this association was more significant when patients were stratified by sex. Post-mortem brain samples from control patients and those diagnosed with Parkinson’s disease were obtained from the Emory University Brain Bank and from the Nun Study. Concentrations of eight prevalent PCB congeners were extracted from post-mortem brain tissue and analyzed using gas chromatography-mass spectrometry. PCB congeners 153 and 180 were significantly elevated in the brains of Parkinson’s disease patients. When stratified by sex, the female Parkinson’s disease group demonstrated significantly elevated concentrations of total PCBs and specifically congeners 138, 153, and 180 compared to controls, whereas PCB concentrations in males were not significantly different between control and Parkinson’s disease groups. In a separate population of women (Nun Study) who had no clinical signs or symptoms of PD, elevated concentrations total PCB and congeners 138, 153 and 180 were also observed in post-mortem brain tissue exhibiting moderate nigral depigmentation compared to subjects with mild or no depigmentation. These quantitative data demonstrate an association between brain PCB levels and Parkinson’s disease-related pathology. Furthermore, these data support epidemiological and laboratory studies reporting a link between PCB exposure and an increased risk for Parkinson’s disease, including greater susceptibility of females. PMID:22906799

  8. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    PubMed Central

    Kim, Jiae; Peachman, Kristina K.; Jobe, Ousman; Morrison, Elaine B.; Allam, Atef; Jagodzinski, Linda; Casares, Sofia A.; Rao, Mangala

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the trafficking of HIV-1 to the various tissues, identification of cells harboring the virus, and thus could serve as a model system for HIV-1 pathogenesis and reservoir studies. PMID:29163484

  11. Zika virus crosses an in vitro human blood brain barrier model.

    PubMed

    Alimonti, Judie B; Ribecco-Lutkiewicz, Maria; Sodja, Caroline; Jezierski, Anna; Stanimirovic, Danica B; Liu, Qing; Haqqani, Arsalan S; Conlan, Wayne; Bani-Yaghoub, Mahmud

    2018-05-15

    Zika virus (ZIKV) is a flavivirus that is highly neurotropic causing congenital abnormalities and neurological damage to the central nervous systems (CNS). In this study, we used a human induced pluripotent stem cell (iPSC)-derived blood brain barrier (BBB) model to demonstrate that ZIKV can infect brain endothelial cells (i-BECs) without compromising the BBB barrier integrity or permeability. Although no disruption to the BBB was observed post-infection, ZIKV particles were released on the abluminal side of the BBB model and infected underlying iPSC-derived neural progenitor cells (i-NPs). AXL, a putative ZIKV cellular entry receptor, was also highly expressed in ZIKV-susceptible i-BEC and i-NPs. This iPSC-derived BBB model can help elucidate the mechanism by which ZIKV can infect BECs, cross the BBB and gain access to the CNS.

  12. Alteration of the endocannabinoid system in mouse brain during prion disease.

    PubMed

    Petrosino, S; Ménard, B; Zsürger, N; Di Marzo, V; Chabry, J

    2011-03-17

    Prion diseases are neurodegenerative disorders characterized by deposition of the pathological prion protein (PrPsc) within the brain of affected humans and animals. Microglial cell activation is a common feature of prion diseases; alterations of various neurotransmitter systems and neurotransmission have been also reported. Owing to its ability to modulate both neuroimmune responses and neurotransmission, it was of interest to study the brain endocannabinoid system in a prion-infected mouse model. The production of the endocannabinoid, 2-arachidonoyglycerol (2-AG), was enhanced 10 weeks post-infection, without alteration of the other endocannabinoid, anandamide. The CB2 receptor expression was up-regulated in brains of prion-infected mice as early as 10 weeks and up to 32 weeks post-infection whereas the mRNAs of other cannabinoid receptors (CBRs) remain unchanged. The observed alterations of the endocannabinoid system were specific for prion infection since no significant changes were observed in the brain of prion-resistant mice, that is, mice devoid of the Prnp gene. Our study highlights important alterations of the endocannabinoid system during early stages of the disease long before the clinical signs of the disease. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration.

    PubMed

    Schulze-Krebs, Anja; Canneva, Fabio; Schnepf, Rebecca; Dobner, Julia; Dieterich, Walburga; von Hörsten, Stephan

    2016-01-15

    Mammalian transglutaminases (TGs) catalyze the irreversible post-translational modifications of proteins, the most prominent of which is the calcium-dependent formation of covalent acyl transfers between the γ-carboxamide group of glutamine and the ε-amino-group of lysine (GGEL-linkage). In the central nervous system, at least four TG isoforms are present and some of them are differentially expressed under pathological conditions in human patients. However, the precise TG-isoform-dependent enzymatic activities in the brain as well as their anatomical distribution are unknown. Specificity of the used biotinylated peptides was analyzed using an in vitro assay. Isoform-specific TG activity was evaluated in in vitro and in situ studies, using brain extracts and native brain tissue obtained from rodents. Our method allowed us to reveal in vitro and in situ TG-isoform-dependent enzymatic activity in brain extracts and tissue of rats and mice, with a specific focus on TG6. In situ activity of this isoform varied between BACHD mice in comparison to their wt controls. TG isozyme-specific activity can be detected by isoform-specific biotinylated peptides in brain tissue sections of rodents to reveal differences in the anatomical and/or subcellular distribution of TG activity. Our findings yield the basis for a broader application of this method for the screening of pathological expression and activity of TGs in a variety of animal models of human diseases, as in the case of neurodegenerative conditions such as Huntington׳s, Parkinson׳s and Alzheimer׳s, where protein modification is involved as a key mechanism of disease progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

    PubMed

    Roebroeck, Alard; Miller, Karla L; Aggarwal, Manisha

    2018-06-04

    This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  15. Effect of x-radiation to brain on cerebral glucose utilization in the rat.

    PubMed

    D'Aquino, S; Cicciarello, R; D'Avella, D; Mesiti, M; Albiero, F; Princi, P; Gagliardi, M E; Russi, E; D'Aquino, A

    1990-01-01

    We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- cGy/day given 5 days a week) to a total dose of 4000 cGy. Metabolic experiments were made 2 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, brain areas with the highest basal metabolic rates showed the greatest percentage drop of glucose utilization. Post-irradiation metabolic alterations possibly provide an explanation for the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy.

  16. Altered transition metal homeostasis in Niemann-Pick disease, Type C1

    PubMed Central

    Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.

    2014-01-01

    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124

  17. Association of Protein Distribution and Gene Expression Revealed by PET and Post-Mortem Quantification in the Serotonergic System of the Human Brain

    PubMed Central

    Komorowski, A.; James, G. M.; Philippe, C.; Gryglewski, G.; Bauer, A.; Hienert, M.; Spies, M.; Kautzky, A.; Vanicek, T.; Hahn, A.; Traub-Weidinger, T.; Winkler, D.; Wadsak, W.; Mitterhauser, M.; Hacker, M.; Kasper, S.; Lanzenberger, R.

    2017-01-01

    Abstract Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = −0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins. PMID:27909009

  18. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    PubMed

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  19. Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson's disease.

    PubMed

    Ravid, Rivka; Ferrer, Isidro

    2012-04-01

    Exciting developments in basic and clinical neuroscience and recent progress in the field of Parkinson's disease (PD) are partly a result of the availability of human specimens obtained through brain banks. These banks have optimized the methodological, managerial and organizational procedures; standard operating procedures; and ethical, legal and social issues, including the code of conduct for 21st Century brain banking and novel protocols. The present minireview focuses on current brain banking organization and management, as well as the likely future direction of the brain banking field. We emphasize the potentials and pitfalls when using high-quality specimens of the human central nervous system for advancing PD research. PD is a generalized disease in which α-synuclein is not a unique component but, instead, is only one of the players accounting for the complex impairment of biochemical/molecular processes involved in metabolic pathways. This is particularly important in the cerebral cortex, where altered cognition has a complex neurochemical substrate. Mitochondria and energy metabolism impairment, abnormal RNA, microRNA, protein synthesis, post-translational protein modifications and alterations in the lipid composition of membranes and lipid rafts are part of these complementary factors. We have to be alert to the possible pitfalls of each specimen and its suitability for a particular study. Not all samples qualify for the study of DNA, RNA, proteins, post-translational modifications, lipids and metabolomes, although the use of carefully selected samples and appropriate methods minimizes pitfalls and errors and guarantees high-quality reserach. © 2012 The Authors Journal compilation © 2012 FEBS.

  20. Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe.

    PubMed

    He, Sizhi; Wang, Qingsong; He, Jintang; Pu, Hai; Yang, Wei; Ji, Jianguo

    2006-09-01

    The proteomic study on human temporal lobe can help us to understand the physiological function of CNS in normal as well as in pathological state. Proteomic tools are potent for the assessment of protein stability post mortem. In this pilot study, the human temporal lobe biopsy specimen with chronic pharmacoresistant temporal lobe epilepsy (TLE) and autopsy specimen in control were separated by 2-DE. Using MALDI-TOF-MS and MS/MS, 375 protein spots were identified which were the products of 267 genes. Six down-regulated and 23 up-regulated protein spots in the autopsy specimen were ascertained after the gel image analysis with the ImageMaster software. A number of proteins that include neurotransmitter metabolic and glycolytic enzymes, cytoprotective proteins and cytoskeleton were found decreased while the precursor of apolipoprotein A-I increased in the TLE brain. We tried several methods to prepare the protein samples and found that DNase and RNase treatment, ultracentrifugation and Amersham clean-up kit purification can improve gel separation quality. This work optimized the sample preparation method and constructed a primary protein database of human temporal lobe and found some proteins with remarkable level change probably involved in the post-mortem process and chronic pharmacoresistant TLE pathogenesis.

  1. Mapping population-based structural connectomes.

    PubMed

    Zhang, Zhengwu; Descoteaux, Maxime; Zhang, Jingwen; Girard, Gabriel; Chamberland, Maxime; Dunson, David; Srivastava, Anuj; Zhu, Hongtu

    2018-05-15

    Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status

    PubMed Central

    Branton, William G.; Ellestad, Kristofor K.; Maingat, Ferdinand; Wheatley, B. Matt; Rud, Erling; Warren, René L.; Holt, Robert A.; Surette, Michael G.; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain’s microbiome regardless of underlying immune status, which could be transferred into naïve hosts leading to microbial persistence in the brain. PMID:23355888

  3. Inflammation and white matter degeneration persist for years after a single traumatic brain injury.

    PubMed

    Johnson, Victoria E; Stewart, Janice E; Begbie, Finn D; Trojanowski, John Q; Smith, Douglas H; Stewart, William

    2013-01-01

    A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease, with traumatic brain injury patients serving as a model for longitudinal investigations, in particular with a view to identifying potential therapeutic interventions.

  4. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes

    PubMed Central

    Malki, K; Pain, O; Tosto, M G; Du Rietz, E; Carboni, L; Schalkwyk, L C

    2015-01-01

    Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case–control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat–human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis. PMID:25734512

  5. Levels of select PCB and PBDE congeners in human post-mortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder

    PubMed Central

    Mitchell, Michelle M.; Woods, Rima; Chi, Lai-Har; Schmidt, Rebecca J.; Pessah, Isaac N.; Kostyniak, Paul J.; LaSalle, Janine M.

    2013-01-01

    Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) that bioaccumulate in lipid-rich tissues are of concern as developmental neurotoxicants. Epigenetic mechanisms such as DNA methylation act at the interface of genetic and environmental factors implicated in autism-spectrum disorders. The relationship between POP levels and DNA methylation patterns in individuals with and without neurodevelopmental disorders has not been previously investigated. In this study, a total of 107 human frozen post-mortem brain samples were analyzed for 8 PCBs and 7 PBDEs by GC-micro electron capture detector and GC/MS using negative chemical ionization. Human brain samples were grouped as neurotypical controls (n=43), neurodevelopmental disorders with known genetic basis (n=32, including Down, Rett, Prader-Willi, Angelman, and 15q11-q13 duplication syndromes), and autism of unknown etiology (n=32). Unexpectedly, PCB 95 was significantly higher in the genetic neurodevelopmental group, but not idiopathic autism, as compared to neurotypical controls. Interestingly, samples with detectable PCB 95 levels were almost exclusively those with maternal 15q11-q13 duplication (Dup15q) or deletion in Prader-Willi syndrome. When sorted by birth year, Dup15q samples represented five out of six of genetic neurodevelopmental samples born after the 1976 PCB ban exhibiting detectable PCB 95 levels. Dup15q was the strongest predictor of PCB 95 exposure over age, gender, or year of birth. Dup15q brain showed lower levels of repetitive DNA methylation measured by LINE-1 pyrosequencing, but methylation levels were confounded by year of birth. These results demonstrate a novel paradigm by which specific POPs may predispose to genetic copy number variation of 15q11-q13. PMID:22930557

  6. A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI.

    PubMed

    Dinse, J; Härtwich, N; Waehnert, M D; Tardif, C L; Schäfer, A; Geyer, S; Preim, B; Turner, R; Bazin, P-L

    2015-07-01

    This work presents a novel approach for modelling laminar myelin patterns in the human cortex in brain MR images on the basis of known cytoarchitecture. For the first time, it is possible to estimate intracortical contrast visible in quantitative ultra-high resolution MR images in specific primary and secondary cytoarchitectonic areas. The presented technique reveals different area-specific signatures which may help to study the spatial distribution of cortical T1 values and the distribution of cortical myelin in general. It may lead to a new discussion on the concordance of cyto- and myeloarchitectonic boundaries, given the absence of such concordance atlases. The modelled myelin patterns are quantitatively compared with data from human ultra-high resolution in-vivo 7T brain MR images (9 subjects). In the validation, the results are compared to one post-mortem brain sample and its ex-vivo MRI and histological data. Details of the analysis pipeline are provided. In the context of the increasing interest in advanced methods in brain segmentation and cortical architectural studies, the presented model helps to bridge the gap between the microanatomy revealed by classical histology and the macroanatomy visible in MRI. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Between destiny and disease: genetics and molecular pathways of human central nervous system aging.

    PubMed

    Glorioso, Christin; Sibille, Etienne

    2011-02-01

    Aging of the human brain is associated with "normal" functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human post-mortem brain microarray studies, which we hypothesize, point to a potential genetically controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    PubMed

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A brain-controlled lower-limb exoskeleton for human gait training.

    PubMed

    Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua

    2017-10-01

    Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

  10. A brain-controlled lower-limb exoskeleton for human gait training

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua

    2017-10-01

    Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

  11. Primary cortical folding in the human newborn: an early marker of later functional development.

    PubMed

    Dubois, J; Benders, M; Borradori-Tolsa, C; Cachia, A; Lazeyras, F; Ha-Vinh Leuchter, R; Sizonenko, S V; Warfield, S K; Mangin, J F; Hüppi, P S

    2008-08-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26-36 weeks of gestational age), and defined early 'endophenotypes' of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants' outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB).

  12. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  13. How environment and genes shape the adolescent brain.

    PubMed

    Paus, Tomáš

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". This review provides a conceptual framework for the study of factors--in our genes and environment--that shape the adolescent brain. I start by pointing out that brain phenotypes obtained with magnetic resonance imaging are complex traits reflecting the interplay of genes and the environment. In some cases, variations in the structural phenotypes observed during adolescence have their origin in the pre-natal or early post-natal periods. I then emphasize the bidirectional nature of brain-behavior relationships observed during this period of human development, where function may be more likely to influence structure rather than vice versa. In the main part of this article, I review our ongoing work on the influence of gonadal hormones on the adolescent brain. I also discuss the importance of social context and brain plasticity on shaping the relevant neural circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Cognitive impairments accompanying rodent mild traumatic brain injury involve p53-dependent neuronal cell death and are ameliorated by the tetrahydrobenzothiazole PFT-α.

    PubMed

    Rachmany, Lital; Tweedie, David; Rubovitch, Vardit; Yu, Qian-Sheng; Li, Yazhou; Wang, Jia-Yi; Pick, Chaim G; Greig, Nigel H

    2013-01-01

    With parallels to concussive mild traumatic brain injury (mTBI) occurring in humans, anesthetized mice subjected to a single 30 g weight drop mTBI event to the right parietal cortex exhibited significant diffuse neuronal degeneration that was accompanied by delayed impairments in recognition and spatial memory. To elucidate the involvement of reversible p53-dependent apoptosis in this neuronal loss and associated cognitive deficits, mice were subjected to experimental mTBI followed by the systemic administration of the tetrahydrobenzothiazole p53 inactivator, PFT-α, or vehicle. Neuronal loss was quantified immunohistochemically at 72 hr. post-injury by the use of fluoro-Jade B and NeuN within the dentate gyrus on both sides of the brain, and recognition and spatial memory were assessed by novel object recognition and Y-maze paradigms at 7 and 30 days post injury. Systemic administration of a single dose of PFT-α 1 hr. post-injury significantly ameliorated both neuronal cell death and cognitive impairments, which were no different from sham control animals. Cellular studies on human SH-SY5Y cells and rat primary neurons challenged with glutamate excitotoxicity and H2O2 induced oxidative stress, confirmed the ability of PFT-α and a close analog to protect against these TBI associated mechanisms mediating neuronal loss. These studies suggest that p53-dependent apoptotic mechanisms underpin the neuronal and cognitive losses accompanying mTBI, and that these are potentially reversible by p53 inactivation.

  15. Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors.

    PubMed

    Barret, Olivier; Hannestad, Jonas; Vala, Christine; Alagille, David; Tavares, Adriana; Laruelle, Marc; Jennings, Danna; Marek, Ken; Russell, David; Seibyl, John; Tamagnan, Gilles

    2015-04-01

    PET with selective adenosine 2A receptor (A2A) radiotracers can be used to study a variety of neurodegenerative and neuropsychiatric disorders in vivo and to support drug-discovery studies targeting A2A. The aim of this study was to describe the first in vivo evaluation of (18)F-MNI-444, a novel PET radiotracer for imaging A2A, in healthy human subjects. Ten healthy human volunteers were enrolled in this study; 6 completed the brain PET studies and 4 participated in the whole-body PET studies. Arterial blood was collected for invasive kinetic modeling of the brain PET data. Noninvasive methods of data quantification were also explored. Test-retest reproducibility was evaluated in 5 subjects. Radiotracer distribution and dosimetry was determined using serial whole-body PET images acquired over 6 h post-radiotracer injection. Urine samples were collected to calculate urinary excretion. After intravenous bolus injection, (18)F-MNI-444 rapidly entered the brain and displayed a distribution consistent with known A2A densities in the brain. Binding potentials ranging from 2.6 to 4.9 were measured in A2A-rich regions, with an average test-retest variability of less than 10%. The estimated whole-body radiation effective dose was approximately 0.023 mSv/MBq. (18)F-MNI-444 is a useful PET radiotracer for imaging A2A in the human brain. The superior in vivo brain kinetic properties of (18)F-MNI-444, compared with previously developed A2A radiotracers, provide the opportunity to foster global use of in vivo A2A PET imaging in neuroscience research. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  17. Analysis and asynchronous detection of gradually unfolding errors during monitoring tasks

    NASA Astrophysics Data System (ADS)

    Omedes, Jason; Iturrate, Iñaki; Minguez, Javier; Montesano, Luis

    2015-10-01

    Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous processes where evidence accumulates until reaching a boundary. Surpassing the boundary leads to a decision where measured brain responses are associated to an internal, unknown onset. The lack of this onset for gradual stimuli hinders both the analyses of brain activity and the training of detectors. This paper studies electroencephalographic (EEG)-measurable signatures of human processing for sudden and gradual cognitive processes represented as a trajectory mismatch under a monitoring task. Time-locked potentials and brain-source analysis of the EEG of sudden mismatches revealed the typical components of event-related potentials and the involvement of brain structures related to cognitive control processing. For gradual mismatch events, time-locked analyses did not show any discernible EEG scalp pattern, despite related brain areas being, to a lesser extent, activated. However, and thanks to the use of non-linear pattern recognition algorithms, it is possible to train an asynchronous detector on sudden events and use it to detect gradual mismatches, as well as obtaining an estimate of their unknown onset. Post-hoc time-locked scalp and brain-source analyses revealed that the EEG patterns of detected gradual mismatches originated in brain areas related to cognitive control processing. This indicates that gradual events induce latency in the evaluation process but that similar brain mechanisms are present in sudden and gradual mismatch events. Furthermore, the proposed asynchronous detection model widens the scope of applications of brain-machine interfaces to other gradual processes.

  18. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy

    PubMed Central

    Rabiller, Gratianne; He, Ji-Wei; Nishijima, Yasuo; Wong, Aaron; Liu, Jialing

    2015-01-01

    Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG) in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1–4 Hz, 20–200 μV), θ (4–8 Hz, 10 μV), α (8–12 Hz, 20–200 μV), β (12–30 Hz, 5–10 μV), and γ (30–80 Hz, low amplitude). Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy. PMID:26516838

  19. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  20. Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke.

    PubMed

    Abeysinghe, Hima C S; Bokhari, Laita; Quigley, Anita; Choolani, Mahesh; Chan, Jerry; Dusting, Gregory J; Crook, Jeremy M; Kobayashi, Nao R; Roulston, Carli L

    2015-09-29

    Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit scores and the cylinder test. Transplanted cell survival, cellular phenotype and maturation were assessed using immunohistochemistry and confocal microscopy. Behavioral assessments revealed accelerated improvements in motor function 7 days post-transplant in rats treated with pre-differentiated GABAergic cells in comparison to media alone and undifferentiated hNSC treated groups. Histopathology 28 days-post transplant indicated that pre-differentiated cells maintained their GABAergic neuronal phenotype, showed evidence of synaptogenesis and up-regulated expression of both GABA and calcium signaling proteins associated with neurotransmission. Rats treated with pre-differentiated cells also showed increased neurogenic activity within the SVZ at 28 days, suggesting an additional trophic role of these GABAergic cells. In contrast, undifferentiated SVZ-hNSCs predominantly differentiated into GFAP-positive astrocytes and appeared to be incorporated into the glial scar. Our study is the first to show enhanced exogenous repopulation of a neuronal phenotype after stroke using techniques aimed at GABAergic cell induction prior to delivery that resulted in accelerated and improved functional recovery.

  1. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    PubMed

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  2. The role of microglia and myeloid immune cells in acute cerebral ischemia

    PubMed Central

    Benakis, Corinne; Garcia-Bonilla, Lidia; Iadecola, Costantino; Anrather, Josef

    2015-01-01

    The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke. PMID:25642168

  3. Enhanced cortical thickness measurements for rodent brains via Lagrangian-based RK4 streamline computation

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Oguz, Ipek; Styner, Martin

    2016-03-01

    The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline.

  4. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome

    PubMed Central

    Sakurai, Masayuki; Ueda, Hiroki; Yano, Takanori; Okada, Shunpei; Terajima, Hideki; Mitsuyama, Toutai; Toyoda, Atsushi; Fujiyama, Asao; Kawabata, Hitomi; Suzuki, Tsutomu

    2014-01-01

    Inosine is an abundant RNA modification in the human transcriptome and is essential for many biological processes in modulating gene expression at the post-transcriptional level. Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosines to inosines (A-to-I editing) in double-stranded regions. We previously established a biochemical method called “inosine chemical erasing” (ICE) to directly identify inosines on RNA strands with high reliability. Here, we have applied the ICE method combined with deep sequencing (ICE-seq) to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome of human adult brain. Taken together with the sites identified by the conventional ICE method, we mapped 19,791 novel sites and newly found 1258 edited mRNAs, including 66 novel sites in coding regions, 41 of which cause altered amino acid assignment. ICE-seq detected novel editing sites in various repeat elements as well as in short hairpins. Gene ontology analysis revealed that these edited mRNAs are associated with transcription, energy metabolism, and neurological disorders, providing new insights into various aspects of human brain functions. PMID:24407955

  5. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    PubMed

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  6. The von Economo neurons in fronto-insular and anterior cingulate cortex

    PubMed Central

    Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  7. Post-treatment Vascular Leakage and Inflammatory Responses around Brain Cysts in Porcine Neurocysticercosis

    PubMed Central

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E.; Guerra-Giraldez, Cristina; García, Hector H.; Nash, Theodore E.

    2015-01-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to investigate mechanisms involved in host damaging inflammatory responses and agents or modalities that may control damaging post treatment inflammation. PMID:25774662

  8. Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes

    NASA Astrophysics Data System (ADS)

    He, Yinke; Sun, Jia; Qian, Chuan; Kong, Ling-An; Gou, Guangyang; Li, Hongjian

    2017-04-01

    In human brain, a large number of neurons are connected via synapses. Simulation of the synaptic behaviors using electronic devices is the most important step for neuromorphic systems. In this paper, proton conducting gelatin electrolyte-gated oxide field-effect transistors (FETs) were used for emulating synaptic functions, in which the gate electrode is regarded as pre-synaptic neuron and the channel layer as the post-synaptic neuron. In analogy to the biological synapse, a potential spike can be applied at the gate electrode and trigger ionic motion in the gelatin electrolyte, which in turn generates excitatory post-synaptic current (EPSC) in the channel layer. Basic synaptic behaviors including spike time-dependent EPSC, paired-pulse facilitation (PPF), self-adaptation, and frequency-dependent synaptic transmission were successfully mimicked. Such ionic/electronic hybrid devices are beneficial for synaptic electronics and brain-inspired neuromorphic systems.

  9. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sheng; Yang, Feng; Petyuk, Vladislav A.

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could bemore » attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.« less

  10. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  11. Markers for human brain pericytes and smooth muscle cells.

    PubMed

    Smyth, Leon C D; Rustenhoven, Justin; Scotter, Emma L; Schweder, Patrick; Faull, Richard L M; Park, Thomas I H; Dragunow, Mike

    2018-06-07

    Brain pericytes and vascular smooth muscle cells (vSMCs) are a critical component of the neurovascular unit and are important in regulating cerebral blood flow and blood-brain barrier integrity. Identification of subtypes of mural cells in tissue and in vitro is important to any study of their function, therefore we identified distinct mural cell morphologies in neurologically normal post-mortem human brain. Further, the distribution of mural cell markers platelet-derived growth factor receptor-β (PDGFRβ), α-smooth muscle actin (αSMA), CD13, neural/glial antigen-2 (NG2), CD146 and desmin was examined. We determined that PDGFRβ, NG2, CD13, and CD146 were expressed in capillary-associated pericytes. NG2, and CD13 were also present on vSMCs in large vessels, however abundant CD146 and desmin staining was also detected in vSMCs on large vessels, co-labelling with αSMA. To determine whether cultures recapitulated observations from tissue, primary human brain pericytes derived from neurologically normal autopsies were analysed for the presence of pericyte markers by immunocytochemistry, western blotting and qPCR. The proteins observed in brain pericytes in tissue (PDGFRβ, αSMA, desmin, CD146, CD13, and NG2) were present in vitro, validating a panel of proteins that can be used to label brain pericytes and vSMCs in tissue and in vitro. Finally, we showed that the proteins CD146 and desmin that are expressed on large vessels in situ, are also selective markers of a smooth muscle cell phenotype in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Expression of cholinesterase gene(s) in human brain tissues: translational evidence for multiple mRNA species.

    PubMed Central

    Soreq, H; Zevin-Sonkin, D; Razon, N

    1984-01-01

    To resolve the origin(s) of the molecular heterogeneity of human nervous system cholinesterases (ChEs), we used Xenopus oocytes, which produce biologically active ChE when microinjected with unfractionated brain mRNA. The RNA was prepared from primary gliomas, meningiomas and embryonic brain, each of which expresses ChE activity with distinct substrate specificities and molecular forms. Sucrose gradient fractionation of DMSO-denatured mRNA from these sources revealed three size classes of ChE-inducing mRNAs, sedimenting at approximately 32S, 20S and 9S. The amounts of these different classes of ChE-inducing mRNAs varied between the three tissue sources examined. To distinguish between ChEs produced in oocytes and having different substrate specificities, their activity was determined in the presence of selective inhibitors. Both 'true' (acetylcholine hydrolase, EC 3.1.1.7) and 'pseudo' (acylcholine acylhydrolase, EC 3.1.1.8) multimeric cholinesterase activities were found in the mRNA-injected oocytes. Moreover, human brain mRNAs inducing 'true' and 'pseudo' ChE activities had different size distribution, indicating that different mRNAs might be translated into various types of ChEs. These findings imply that the heterogeneity of ChEs in the human nervous system is not limited to the post-translational level, but extends to the level of mRNA. PMID:6745236

  13. Volumetric analysis of the diagonal band of Broca in patients with schizophrenia and affective disorders: A post-mortem study.

    PubMed

    Brisch, Ralf; Bernstein, Hans-Gert; Dobrowolny, Henrik; Krzyżanowska, Marta; Jankowski, Zbigniew; Bogerts, Bernhard; Gos, Tomasz

    2016-05-01

    The human diagonal band of Broca is connected to other parts of the limbic system, such as the hippocampus, that are involved in the pathology of schizophrenia. This study aimed to characterize the volume and anterior-to-posterior distance of the human diagonal band of Broca (vertical limb) from post-mortem brains obtained from three groups: healthy control subjects (N = 17), patients with schizophrenia (N = 26), and patients with affective disorders (N = 12). There were no significant differences in the volume or anterior-to-posterior distance in the patients with schizophrenia or affective disorders compared with the healthy control subjects. To date, this is the first post-mortem investigation measuring the volume and the anterior-to-posterior distance of the diagonal band of Broca (vertical limb) in patients with schizophrenia or affective disorders compared with healthy control subjects. © 2015 Wiley Periodicals, Inc.

  14. Immunohistochemical and in situ mRNA hybridisation techniques to determine the distribution of ion channels in human brain: a study of neuronal voltage-dependent calcium channels.

    PubMed

    McCormack, A L; Day, N C; Craig, P J; Smith, W; Beattie, R E; Volsen, S G

    1997-08-01

    The molecular, structural and functional characterisation of ion channels in the CNS forms an area of intense investigation in current brain research. For strategic and logistical reasons, rodents have historically been the species of choice for these studies. The examination of human CNS tissues generally presents the investigator with specific challenges that are often less problematic in animal studies, e.g. post-mortem delay/agonal status, and thus both the experimental design and techniques must be manipulated accordingly. Since much pharmaceutical interest is currently focused on neuronal ion channels, the examination of their expression in human brain material is of particular importance. We describe here the details of methods that we have developed and used successfully in the study of the expression of voltage-dependent calcium channels (VDCCs) in human CNS tissues. Presynaptic neuronal VDCCs control neurotransmitter release and are important new drug targets. They are composed of three subunits, alpha 1, beta and alpha 2/delta and multiple gene classes of each protein have been identified. Little is known, however, about the distribution of neuronal VDCCs in the human central nervous system, although initial studies have been performed in rat and rabbit.

  15. A novel approach to quantify different iron forms in ex-vivo human brain tissue

    NASA Astrophysics Data System (ADS)

    Kumar, Pravin; Bulk, Marjolein; Webb, Andrew; van der Weerd, Louise; Oosterkamp, Tjerk H.; Huber, Martina; Bossoni, Lucia

    2016-12-01

    We propose a novel combination of methods to study the physical properties of ferric ions and iron-oxide nanoparticles in post-mortem human brain, based on the combination of Electron Paramagnetic Resonance (EPR) and SQUID magnetometry. By means of EPR, we derive the concentration of the low molecular weight iron pool, as well as the product of its electron spin relaxation times. Additionally, by SQUID magnetometry we identify iron mineralization products ascribable to a magnetite/maghemite phase and a ferrihydrite (ferritin) phase. We further derive the concentration of magnetite/maghemite and of ferritin nanoparticles. To test out the new combined methodology, we studied brain tissue of an Alzheimer’s patient and a healthy control. Finally, we estimate that the size of the magnetite/maghemite nanoparticles, whose magnetic moments are blocked at room temperature, exceeds 40-50 nm, which is not compatible with the ferritin protein, the core of which is typically 6-8 nm. We believe that this methodology could be beneficial in the study of neurodegenerative diseases such as Alzheimer’s Disease which are characterized by abnormal iron accumulation in the brain.

  16. Planum Temporale Asymmetries Correlate with Corpus Callosum Axon Fiber Density in Chimpanzees (Pan troglodytes)

    PubMed Central

    Hopkins, William D.; Pilger, John F.; Storz, Rachel; Ambrose, Alex; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    The corpus callosum (CC) is the major white matter tract that connects the two cerebral hemispheres. Some have theorized that individual differences in behavioral and brain asymmetries are linked to variation in the density of axon fibers that traverse different sections of the CC. In this study, we examined whether variation in axon fiber density in the CC was associated with variation in asymmetries in the planum temporale (PT) in a sample of 20 post-mortem chimpanzee brains. We further tested for sex differences in small and large CC fiber proportions and density in the chimpanzees. We found that the distribution of small and large fibers within the CC of chimpanzees follows a similar pattern to those reported in humans. We also found that chimpanzees with larger asymmetries in the PT had fewer large fibers in the posterior portion of the CC, particularly among females. As has been reported in human brains, the findings reported here indicate that individual differences in brain asymmetries are associated with variation in interhemispheric connectivity as manifest in axon fiber density and size. PMID:22766214

  17. Rhenium and technetium complexes that bind to amyloid-β plaques.

    PubMed

    Hayne, David J; North, Andrea J; Fodero-Tavoletti, Michelle; White, Jonathan M; Hung, Lin W; Rigopoulos, Angela; McLean, Catriona A; Adlard, Paul A; Ackermann, Uwe; Tochon-Danguy, Henri; Villemagne, Victor L; Barnham, Kevin J; Donnelly, Paul S

    2015-03-21

    Alzheimer's disease is associated with the presence of insoluble protein deposits in the brain called amyloid plaques. The major constituent of these deposits is aggregated amyloid-β peptide. Technetium-99m complexes that bind to amyloid-β plaques could provide important diagnostic information on amyloid-β plaque burden using Single Photon Emission Computed Tomography (SPECT). Tridentate ligands with a stilbene functional group were used to form complexes with the fac-[M(I)(CO)3](+) (M = Re or (99m)Tc) core. The rhenium carbonyl complexes with tridentate co-ligands that included a stilbene functional group and a dimethylamino substituent bound to amyloid-β present in human frontal cortex brain tissue from subjects with Alzheimer's disease. This chemistry was extended to make the analogous [(99m)Tc(I)(CO)3](+) complexes and the complexes were sufficiently stable in human serum. Whilst the lipophilicity (log D7.4) of the technetium complexes appeared ideally suited for penetration of the blood-brain barrier, preliminary biodistribution studies in an AD mouse model (APP/PS1) revealed relatively low brain uptake (0.24% ID g(-1) at 2 min post injection).

  18. Pre-stimulus thalamic theta power predicts human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.

    PubMed

    Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H

    2010-08-01

    Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning.

  20. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    PubMed

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effects of One Year of Spaceflight on Neurocognitive Function

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan , P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.; hide

    2017-01-01

    It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA's One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre- to post-spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad-ranging battery of sensory, motor, and cognitive assessments that are conducted pre-flight, during flight, and post-flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. With the one year mission we had one crewmember participate in all of the same measures pre-, per- and post-flight as in our ongoing study. During this presentation we will provide an overview of the magnitude of changes observed with our brain and behavioral assessments for the one year crewmember in comparison to participants that have completed our six month study to date.

  2. The "highs and lows" of the human brain on dopaminergics: Evidence from neuropharmacology.

    PubMed

    Martins, Daniel; Mehta, Mitul A; Prata, Diana

    2017-09-01

    Rewards are appetitive events that elicit approach. Ground-breaking findings from neurophysiological experiments in animals, alongside neuropharmacology and neuroimaging research in human samples have identified dopamine as the main neurochemical messenger of global reward processing in the brain. However, dopamine's contribution to the different components of reward processing remains to be precisely defined. To facilitate the informed design and interpretation of reward studies in humans, we have systematically reviewed all existing human pharmacological studies investigating how drug manipulation of the dopamine system affects reward-related behaviour and its neural correlates. Pharmacological experiments in humans face methodological challenges in terms of the: 1) specificity and safety of the available drugs for administration in humans, 2) uncertainties about pre- or post-synaptic modes of action, and 3) possible interactions with inter-individual neuropsychological or genotypic variables. In order to circumvent some of these limitations, future research should rely on the combination of different levels of observation, in integrative pharmaco-genetics-neurobehavioral approaches, to more completely characterize dopamine's role in both general and modality-specific processing of reward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neural correlates of reduced depressive symptoms following cognitive training for chronic traumatic brain injury.

    PubMed

    Han, Kihwan; Martinez, David; Chapman, Sandra B; Krawczyk, Daniel C

    2018-03-23

    Depression is the most frequent comorbid psychiatric condition among individuals with traumatic brain injury (TBI). Yet, little is known about changes in the brain associated with reduced depressive symptoms following rehabilitation for TBI. We identified whether cognitive training alleviates comorbid depressive symptoms in chronic TBI (>6 months post-injury) as a secondary effect. Further, we elucidated neural correlates of alleviated depressive symptoms following cognitive training. A total of seventy-nine individuals with chronic TBI (53 depressed and 26 non-depressed individuals, measured using the Beck Depressive Inventory [BDI]), underwent either strategy- or information-based cognitive training in a small group for 8 weeks. We measured psychological functioning scores, cortical thickness, and resting-state functional connectivity (rsFC) for these individuals before training, immediately post-training, and 3 months post-training. After confirming that changes in BDI scores were independent of training group affiliation, we identified that the depressive-symptoms group showed reductions in BDI scores over time relative to the non-depressed TBI controls (p < .01). Within the depressive-symptoms group, reduced BDI scores was associated with improvements in scores for post-traumatic stress disorder, TBI symptom awareness, and functional status (p < .00625), increases in cortical thickness in four regions within the right prefrontal cortex (p vertex  < .01, p cluster <.05), and decreases in rsFC with each of these four prefrontal regions (p vertex  < .01, p cluster  < .0125). Overall, these findings suggest that cognitive training can reduce depressive symptoms in TBI even when the training does not directly target psychiatric symptoms. Importantly, cortical thickness and brain connectivity may offer promising neuroimaging markers of training-induced improvement in mental health status in TBI. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Synthesis of three novel fluorine-18 labeled analogues of L-deprenyl for positron emission tomography (PET) studies of monoamine oxidase B (MAO-B).

    PubMed

    Nag, Sangram; Lehmann, Lutz; Heinrich, Tobias; Thiele, Andrea; Kettschau, Georg; Nakao, Ryuji; Gulyás, Balázs; Halldin, Christer

    2011-10-27

    The aim in this project was to synthesize and to study fluorine-18 labeled analogues of l-deprenyl which bind selectively to the enzyme monoamine oxidase B (MAO-B). Three fluorinated l-deprenyl analogues have been generated in multistep organic syntheses. The most promising fluorine-18 compound N-[(2S)-1-[(18)F]fluoro-3-phenylpropan-2-yl]-N-methylprop-2-yn-1-amine (4c) was synthesized by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography on human brain tissue sections demonstrated specific binding for compound 4c to brain regions known to have a high content of MAO-B. In addition, the corresponding nonradioactive fluorine-19 compound (13) inhibited recombinant human MAO-B with an IC(50) of 170.5 ± 29 nM but did not inhibit recombinant human MAO-A (IC(50) > 2000 nM), demonstrating its specificity. Biodistribution of 4c in mice showed high initial brain uptake leveling at 5.2 ± 0.04%ID/g after 2 min post injection. In conclusion, compound 4c is a specific inhibitor of MAO-B with high initial brain uptake in mice and is, therefore, a candidate for further investigation in PET.

  5. The Influence of Academic Migration on the Intellectual Potential of Russia

    ERIC Educational Resources Information Center

    Latova, Natalia V.; Savinkov, Vladimir I.

    2012-01-01

    The emigration of highly-qualified academics ("brain drain") is considered an essential factor in the decline of the human capital of post-Soviet Russia. However, statistics show that the scale of this phenomenon since 2000 was minor. The Russian scientists who went abroad for permanent residence or for a contract job abroad represented…

  6. Donor brain death predisposes human kidney grafts to a proinflammatory reaction after transplantation.

    PubMed

    de Vries, D K; Lindeman, J H N; Ringers, J; Reinders, M E J; Rabelink, T J; Schaapherder, A F M

    2011-05-01

    Donor brain death has profound effects on post-transplantation graft function and survival. We hypothesized that changes initiated in the donor influence the graft's response to ischemia and reperfusion. In this study, human brain dead donor kidney grafts were compared to living and cardiac dead donor kidney grafts. Pretransplant biopsies of brain dead donor kidneys contained notably more infiltrating T lymphocytes and macrophages. To assess whether the different donor conditions result in a different response to reperfusion, local cytokine release from the reperfused kidney was studied by measurement of paired arterial and renal venous blood samples. Reperfusion of kidneys from brain dead donors was associated with the instantaneous release of inflammatory cytokines, such as G-CSF, IL-6, IL-9, IL-16 and MCP-1. In contrast, kidneys from living and cardiac dead donors showed a more modest cytokine response with release of IL-6 and small amounts of MCP-1. In conclusion, this study shows that donor brain death initiates an inflammatory state of the graft with T lymphocyte and macrophage infiltration and massive inflammatory cytokine release upon reperfusion. These observations suggest that brain dead donors require a novel approach for donor pretreatment aimed at preventing this inflammatory response to increase graft survival. ©2011 The Authors Journal compilation©2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse.

    PubMed

    Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna; Seyfried, Thomas N

    2010-07-23

    GBM (glioblastoma multiforme) is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction) for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.

  8. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain

    PubMed Central

    van der Meer, Thomas P.; Artacho-Cordón, Francisco; Swaab, Dick F.; Struik, Dicky; Makris, Konstantinos C.; Wolffenbuttel, Bruce H. R.; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V.

    2017-01-01

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m2, respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood–brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated. PMID:28902174

  9. 75 FR 81242 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of... personnel, with a special focus on the effects of traumatic brain injury (TBI) and Post-traumatic Stress... BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG-TERM QUALITY OF LIFE OUTCOMES IN INJURED TRI...

  10. Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report

    PubMed Central

    2009-01-01

    A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822

  11. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    PubMed Central

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  12. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome.

    PubMed

    Bouchat, Joanna; Couturier, Bruno; Marneffe, Catherine; Gankam-Kengne, Fabrice; Balau, Benoît; De Swert, Kathleen; Brion, Jean-Pierre; Poncelet, Luc; Gilloteaux, Jacques; Nicaise, Charles

    2018-03-01

    The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS. © 2017 Wiley Periodicals, Inc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallant,M.; Rak, M.; Szeghalmi, A.

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine depositsmore » were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.« less

  14. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain.

    PubMed

    Hartwigsen, Gesa

    2015-09-01

    With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  15. The pharmacokinetics of commonly used antiepileptic drugs in immature CD1 mice

    PubMed Central

    Markowitz, Geoffrey J.; Kadam, Shilpa D.; Boothe, Dawn M.; Irving, Natasha D.; Comi, Anne M.

    2010-01-01

    Rodents eliminate antiepileptic drugs (AEDs) faster than humans, creating challenges for designing clinically-relevant protocols. Half-lives of AEDs in immature mice are unknown. The pharmacokinetics of commonly-used AEDs were examined in CD1 mice using a single-dose protocol at post-natal day 19. Following intraperitoneal therapeutic dosing, blood serum concentrations spanning 1–48 hours post-administration and corresponding brain tissue concentrations at 4 hours were analyzed. Half-lives of valproate, phenobarbital, diazepam (and metabolites), phenytoin, and levetiracetam were 2.6, 15.8, 22.3, 16.3, and 3.2 hours respectively, compared to 0.8, 7.5, 7.7, 16.0, and 1.5 hours reported for adult mice. Brain-to-blood ratios were comparable to adult ratios. AEDs tested had longer half-lives and maintained therapeutic plasma concentrations longer than reported in mature mice, making clinically-relevant protocols feasible. PMID:20848732

  16. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-sil

    2013-03-01

    Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness. However, there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI. This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI. We consecutively enrolled 17 patients with VS after HIBI, who experienced cardiopulmonary resuscitation. Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from 17 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis. Additionally, we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis. Compared with normal controls, the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus, bilateral posterior cingulate gyrus, bilateral middle frontal gyri, bilateral superior parietal gyri, bilateral middle occipital gyri, bilateral precentral gyri (PFEW correctecd < 0.0001), and increased brain metabolism in bilateral insula, bilateral cerebella, and the brainstem (PFEW correctecd < 0.0001). In covariance analysis, the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (Puncorrected < 0.005). Our study demonstrated that the precuneus, the posterior cingulate area and the frontoparietal cortex, which is a component of neural correlate for consciousness, may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI. In post-resuscitated HIBI, measurement of brain metabolism using PET images may be helpful for investigating the brain function that cannot be obtained by morphological imaging and can be used to assess the brain area responsible for consciousness.

  17. The structure of the perivascular compartment in the old canine brain: a case study.

    PubMed

    Criswell, Theodore P; Sharp, Matthew MacGregor; Dobson, Howard; Finucane, Ciara; Weller, Roy O; Verma, Ajay; Carare, Roxana O

    2017-11-15

    Dilatation of periarteriolar spaces in MRI of the ageing human brains occurs in white matter (WM), basal ganglia and midbrain but not in cerebral cortex. Perivenous collagenous occurs in periventricular but not in subcortical WM.Here we test the hypotheses that (a) the capacity for dilatation of periarteriolar spaces correlates with the anatomical distribution of leptomeningeal cells coating intracerebral arteries and (b) the regional development of perivenous collagenous in the WM correlates with the population of intramural cells in the walls of veins.The anatomical distribution of leptomeningeal and intramural cells related to cerebral blood vessels is best documented by electron microscopy, requiring perfusion-fixed tissue not available in human material. We therefore analysed perfusion-fixed brain from a 12-year-old Beagle dog as the canine brain represents the anatomical arrangement in the human brain. Results showed regional variation in the arrangement of leptomeningeal cells around blood vessels. Arterioles are enveloped by one complete layer of leptomeninges often with a second incomplete layer in the WM. Venules showed incomplete layers of leptomeningeal cells. Intramural cell expression was higher in the post-capillary venules of the subcortical WM when compared with periventricular WM, suggesting that periventricular collagenosis around venules may be due to a lower resistance in the venular walls. It appears that the regional variation in the capacity for dilatation of arteriolar perivascular spaces in the white WM may be related to the number of perivascular leptomeningeal cells surrounding vessels in different areas of the brain. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    PubMed

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: A proteomic systems approach.

    PubMed

    Cox, David Alan; Gottschalk, Michael Gerd; Stelzhammer, Viktoria; Wesseling, Hendrik; Cooper, Jason David; Bahn, Sabine

    2016-11-25

    Rodent models of major depressive disorder (MDD) are indispensable when screening for novel treatments, but assessing their translational relevance with human brain pathology has proved difficult. Using a novel systems approach, proteomics data obtained from post-mortem MDD anterior prefrontal cortex tissue (n = 12) and matched controls (n = 23) were compared with equivalent data from three commonly used preclinical models exposed to environmental stressors (chronic mild stress, prenatal stress and social defeat). Functional pathophysiological features associated with depression-like behaviour were identified in these models through enrichment of protein-protein interaction networks. A cross-species comparison evaluated which model(s) represent human MDD pathology most closely. Seven functional domains associated with MDD and represented across at least two models such as "carbohydrate metabolism and cellular respiration" were identified. Through statistical evaluation using kernel-based machine learning techniques, the social defeat model was found to represent MDD brain changes most closely for four of the seven domains. This is the first study to apply a method for directly evaluating the relevance of the molecular pathology of multiple animal models to human MDD on the functional level. The methodology and findings outlined here could help to overcome translational obstacles of preclinical psychiatric research.

  20. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain.

    PubMed

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B; Labhasetwar, Vinod

    2016-03-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells from undergoing apoptosis, and inhibited edema formation by protecting the blood-brain barrier from ROS-mediated reperfusion injury. A longer-term study would enable us to determine if our approach would assist progenitor cells to undergo neurogenesis and to facilitate neurological and functional recovery following stroke and reperfusion injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?

    PubMed

    Sandu, Raluca Elena; Balseanu, Adrian Tudor; Bogdan, Catalin; Slevin, Mark; Petcu, Eugen; Popa-Wagner, Aurel

    2017-08-01

    Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. Copyright © 2017. Published by Elsevier Inc.

  2. Post-traumatic stress disorder: a right temporal lobe syndrome?

    NASA Astrophysics Data System (ADS)

    Engdahl, B.; Leuthold, A. C.; Tan, H.-R. M.; Lewis, S. M.; Winskowski, A. M.; Dikel, T. N.; Georgopoulos, A. P.

    2010-12-01

    In a recent paper (Georgopoulos et al 2010 J. Neural Eng. 7 016011) we reported on the power of the magnetoencephalography (MEG)-based synchronous neural interactions (SNI) test to differentiate post-traumatic stress disorder (PTSD) subjects from healthy control subjects and to classify them with a high degree of accuracy. Here we show that the main differences in cortical communication circuitry between these two groups lie in the miscommunication of temporal and parietal and/or parieto-occipital right hemispheric areas with other brain areas. This lateralized temporal-posterior pattern of miscommunication was very similar but was attenuated in patients with PTSD in remission. These findings are consistent with observations (Penfield 1958 Proc. Natl Acad. Sci. USA 44 51-66, Penfield and Perot 1963 Brain 86 595-696, Gloor 1990 Brain 113 1673-94, Banceaud et al 1994 Brain 117 71-90, Fried 1997 J. Neuropsychiatry Clin. Neurosci. 9 420-8) that electrical stimulation of the temporal cortex in awake human subjects, mostly in the right hemisphere, can elicit the re-enactment and re-living of past experiences. Based on these facts, we attribute our findings to the re-experiencing component of PTSD and hypothesize that it reflects an involuntarily persistent activation of interacting neural networks involved in experiential consolidation.

  3. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  4. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.

  5. Erythropoietin Ameliorates Neonatal Hypoxia-Ischemia-Induced Neurobehavioral Deficits, Neuroinflammation, and Hippocampal Injury in the Juvenile Rat

    PubMed Central

    Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G.; Bhatt, Abhay J.; Savich, Renate D.; Fan, Lir-Wan

    2016-01-01

    The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)–P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081

  6. I-123 - FP-CIT pharmacokinetics and dosimetry show great potential for the evaluation of dopamine transporter system in clinical routine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, D.C.; Walker, S.; Waddington, W.

    1996-05-01

    FP-CIT is a N-fluoropropyl analogue of the [2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane] which has been labelled with I-123 and developed as a new marker of the pre-synaptic dopamine transporter system. Its selective uptake in the striatum of non-human primates and human volunteers has been reported with advantageous faster brain kinetics than {beta}-CIT. In this pilot work we studied the whole body imaging kinetics of FP-CIT in one normal volunteer - NV (5, 60, 100, 360 minutes and 24 hours post-injection for 20 minutes each) and a drug-free patient with well established Parkinson`s disease - PD (100 minutes) after intravenous injection of 111 MBq. Bothmore » subjects had high resolution brain SPECT at 35 minutes and 3.5 hours post-injection. Percent of whole body uptake (geometric mean of anterior and posterior projections) in different organs, including total brain and basal ganglia shows rapid clearance from blood during the first hour with no significant change from 100 minutes to 24 hours. The basal ganglia uptake is approximately 0.4% of total body from 100 minutes onwards. Striatal uptake (ratio to frontal cortex) is different between subjects, mainly at 3.5 hours and more marked in the putamen: Calculated dosimetry (mSv/MBq) showed E.D.E.-0.034, and total doses to whole body - 0.01, total brain - 0.017, basal ganglia - 0.155, small intestine - 0.06, urinary bladder - 0.05 and liver - 0.03. These data confirm that FP-CIT has acceptable dosimetry with good pharmacokinetics enabling the study of pre-synaptic dopamine transport system in nigrostriatal degeneration with clinical SPECT at 3-4 hrs p.i.« less

  7. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain.

    PubMed

    Janson, Christopher; McPhee, Scott; Bilaniuk, Larissa; Haselgrove, John; Testaiuti, Mark; Freese, Andrew; Wang, Dah-Jyuu; Shera, David; Hurh, Peter; Rupin, Joan; Saslow, Elizabeth; Goldfarb, Olga; Goldberg, Michael; Larijani, Ghassem; Sharrar, William; Liouterman, Larisa; Camp, Angelique; Kolodny, Edwin; Samulski, Jude; Leone, Paola

    2002-07-20

    This clinical protocol describes virus-based gene transfer for Canavan disease, a childhood leukodystrophy. Canavan disease, also known as Van Bogaert-Bertrand disease, is a monogeneic, autosomal recessive disease in which the gene coding for the enzyme aspartoacylase (ASPA) is defective. The lack of functional enzyme leads to an increase in the central nervous system of the substrate molecule, N-acetyl-aspartate (NAA), which impairs normal myelination and results in spongiform degeneration of the brain. No effective treatment currently exists; however, virus-based gene transfer has the potential to arrest or reverse the course of this otherwise fatal condition. This procedure involves neurosurgical administration of approximately 900 billion genomic particles (approximately 10 billion infectious particles) of recombinant adeno-associated virus (AAV) containing the aspartoacylase gene (ASPA) directly to affected regions of the brain in each of 21 patients with Canavan disease. Pre- and post-delivery assessments include a battery of noninvasive biochemical, radiological, and neurological tests. This gene transfer study represents the first clinical use of AAV in the human brain and the first instance of viral gene transfer for a neurodegenerative disease.

  8. Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata.

    PubMed

    Lee, Kwan Ho; Huh, Jae-Wan; Choi, Myung-Min; Yoon, Seung Yong; Yang, Seung-Ju; Hong, Hea Nam; Cho, Sung-Woo

    2005-08-31

    When treated with protopine and alkalized extracts of the tuber of Corydalis ternata for one year, significant decrease in glutamate level and increase in glutamate dehydrogenase (GDH) activity was observed in rat brains. The expression of GDH between the two groups remained unchanged as determined by Western and Northern blot analysis, suggesting a post-translational regulation of GDH activity in alkalized extracts treated rat brains. The stimulatory effects of alkalized extracts and protopine on the GDH activity was further examined in vitro with two types of human GDH isozymes, hGDH1 (house-keeping GDH) and hGDH2 (nerve-specific GDH). Alkalized extracts and protopine activated the human GDH isozymes up to 4.8-fold. hGDH2 (nerve- specific GDH) was more sensitively affected by 1 mM ADP than hGDH1 (house-keeping GDH) on the activation by alkalized extracts. Studies with cassette mutagenesis at ADP-binding site showed that hGDH2 was more sensitively regulated by ADP than hGDH1 on the activation by Corydalis ternata. Our results suggest that prolonged exposure to Corydalis ternata may be one of the ways to regulate glutamate concentration in brain through the activation of GDH.

  9. A novel approach to quantify different iron forms in ex-vivo human brain tissue

    PubMed Central

    Kumar, Pravin; Bulk, Marjolein; Webb, Andrew; van der Weerd, Louise; Oosterkamp, Tjerk H.; Huber, Martina; Bossoni, Lucia

    2016-01-01

    We propose a novel combination of methods to study the physical properties of ferric ions and iron-oxide nanoparticles in post-mortem human brain, based on the combination of Electron Paramagnetic Resonance (EPR) and SQUID magnetometry. By means of EPR, we derive the concentration of the low molecular weight iron pool, as well as the product of its electron spin relaxation times. Additionally, by SQUID magnetometry we identify iron mineralization products ascribable to a magnetite/maghemite phase and a ferrihydrite (ferritin) phase. We further derive the concentration of magnetite/maghemite and of ferritin nanoparticles. To test out the new combined methodology, we studied brain tissue of an Alzheimer’s patient and a healthy control. Finally, we estimate that the size of the magnetite/maghemite nanoparticles, whose magnetic moments are blocked at room temperature, exceeds 40–50 nm, which is not compatible with the ferritin protein, the core of which is typically 6–8 nm. We believe that this methodology could be beneficial in the study of neurodegenerative diseases such as Alzheimer’s Disease which are characterized by abnormal iron accumulation in the brain. PMID:27941952

  10. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  12. Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition.

    PubMed

    Wilson, Hannah K; Faubion, Madeline G; Hjortness, Michael K; Palecek, Sean P; Shusta, Eric V

    2016-12-01

    The blood-brain barrier (BBB) maintains brain homeostasis but also presents a major obstacle to brain drug delivery. Brain microvascular endothelial cells (BMECs) form the principal barrier and therefore represent the major cellular component of in vitro BBB models. Such models are often used for mechanistic studies of the BBB in health and disease and for drug screening. Recently, human induced pluripotent stem cells (iPSCs) have emerged as a new source for generating BMEC-like cells for use in in vitro human BBB studies. However, the inability to cryopreserve iPSC-BMECs has impeded implementation of this model by requiring a fresh differentiation to generate cells for each experiment. Cryopreservation of differentiated iPSC-BMECs would have a number of distinct advantages, including enabling production of larger scale lots, decreasing lead time to generate purified iPSC-BMEC cultures, and facilitating use of iPSC-BMECs in large-scale screening. In this study, we demonstrate that iPSC-BMECs can be successfully cryopreserved at multiple differentiation stages. Cryopreserved iPSC-BMECs retain high viability, express standard endothelial and BBB markers, and reach a high transendothelial electrical resistance (TEER) of ∼3000 Ω·cm 2 , equivalent to nonfrozen controls. Rho-associated coiled coil-containing kinase (ROCK) inhibitor Y-27632 substantially increased survival and attachment of cryopreserved iPSC-BMECs, as well as stabilized TEER above 800 Ω·cm 2 out to 7 days post-thaw. Overall, cryopreservation will ease handling and storage of high-quality iPSC-BMECs, reducing a key barrier to greater implementation of these cells in modeling the human BBB.

  13. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein.

    PubMed

    Gillard, Michel; Chatelain, Pierre; Fuks, Bruno

    2006-04-24

    A specific binding site for the antiepileptic drug levetiracetam (2S-(oxo-1-pyrrolidinyl)butanamide, Keppra) in rat brain, referred to as the levetiracetam binding site, was discovered several years ago. More recently, this binding site has been identified as the synaptic vesicle protein 2A (SV2A), a protein present in synaptic vesicles [Lynch, B., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjalieh, S.M., Matagne, A., Fuks, B., 2004. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA, 101, 9861-9866.]. In this study, we characterized the binding properties of levetiracetam in post-mortem human brain and compared them to human SV2A expressed in Chinese hamster ovary (CHO) cells. The results showed that the binding properties of levetiracetam and [3H]ucb 30889, an analogue that was previously characterized as a suitable ligand for levetiracetam binding site/SV2A in rat brain [Gillard, M., Fuks, B., Michel, P., Vertongen, P., Massingham, R. Chatelain, P., 2003. Binding characteristics of [3H]ucb 30889 to levetiracetam binding sites in rat brain. Eur. J. Pharmacol. 478, 1-9.], are almost identical in human brain samples (cerebral cortex, hippocampus and cerebellum) and in CHO cell membranes expressing the human SV2A protein. Moreover, the results are also similar to those previously obtained in rat brain. [3H]ucb 30889 binding in human brain and to SV2A was saturable and reversible. At 4 degrees C, its binding kinetics were best fitted assuming a two-phase model in all tissues. The half-times of association for the fast component ranged between 1 to 2 min and represent 30% to 36% of the sites whereas the half-times for the slow component ranged from 20 to 29 min. In dissociation experiments, the half-times were from 2 to 4 min for the fast component (33% to 49% of the sites) and 20 to 41 min for the slow component. Saturation binding curves led to Kd values for [3H]ucb 30889 of 53+/-7, 55+/-9, 70+/-11 and 75+/-33 nM in human cerebral cortex, hippocampus, cerebellum and CHO cells expressing SV2A respectively. Bmax values around 3-4 pmol/mg protein were calculated in all brain regions. Some of the saturation curves displayed curvilinear Scatchard plots indicating the presence of high and low affinity binding sites. When this was the case, Kd values from 25 to 30 nM for the high affinity sites (24% to 34% of total sites) and from 200 to 275 nM for the low affinity sites were calculated. This was observed in all brain regions and in CHO cell membranes expressing the SV2A protein. It cannot be explained by putative binding of [3H]ucb 30889 to SV2B or C isoforms but may reflect different patterns of SV2A glycosylation or the formation of SV2A oligomers. Competition experiments were performed to determine the affinities for SV2A of a variety of compounds including levetiracetam, some of its analogues and other molecules known to interact with levetiracetam binding sites in rat brain such as bemegride, pentylenetetrazol and chlordiazepoxide. We found an excellent correlation between the affinities of these compounds measured in human brain, rat brain and CHO cells expressing human SV2A. In conclusion, we report for the first time that the binding characteristics of native levetiracetam binding sites/SV2A in human brain and rat brain share very similar properties with human recombinant SV2A expressed in CHO cells.

  14. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.

    PubMed

    Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel

    2018-06-01

    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  16. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  17. The Exosome Secretory Pathway Transports Amyloid Precursor Protein Carboxyl-terminal Fragments from the Cell into the Brain Extracellular Space*

    PubMed Central

    Perez-Gonzalez, Rocio; Gauthier, Sebastien A.; Kumar, Asok; Levy, Efrat

    2012-01-01

    In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain. PMID:23129776

  18. Characterization and pathogenesis of aerosolized eastern equine encephalitis in the common marmoset (Callithrix jacchus).

    PubMed

    Porter, Aimee I; Erwin-Cohen, Rebecca A; Twenhafel, Nancy; Chance, Taylor; Yee, Steven B; Kern, Steven J; Norwood, David; Hartman, Laurie J; Parker, Michael D; Glass, Pamela J; DaSilva, Luis

    2017-02-07

    Licensed antiviral therapeutics and vaccines to protect against eastern equine encephalitis virus (EEEV) in humans currently do not exist. Animal models that faithfully recapitulate the clinical characteristics of human EEEV encephalitic disease, including fever, drowsiness, anorexia, and neurological signs such as seizures, are needed to satisfy requirements of the Food and Drug Administration (FDA) for clinical product licensing under the Animal Rule. In an effort to meet this requirement, we estimated the median lethal dose and described the pathogenesis of aerosolized EEEV in the common marmoset (Callithrix jacchus). Five marmosets were exposed to aerosolized EEEV FL93-939 in doses ranging from 2.4 × 10 1 PFU to 7.95 × 10 5 PFU. The median lethal dose was estimated to be 2.05 × 10 2 PFU. Lethality was observed as early as day 4 post-exposure in the highest-dosed marmoset but animals at lower inhaled doses had a protracted disease course where humane study endpoint was not met until as late as day 19 post-exposure. Clinical signs were observed as early as 3 to 4 days post-exposure, including fever, ruffled fur, decreased grooming, and leukocytosis. Clinical signs increased in severity as disease progressed to include decreased body weight, subdued behavior, tremors, and lack of balance. Fever was observed as early as day 2-3 post-exposure in the highest dose groups and hypothermia was observed in several cases as animals became moribund. Infectious virus was found in several key tissues, including brain, liver, kidney, and several lymph nodes. Clinical hematology results included early neutrophilia, lymphopenia, and thrombocytopenia. Key pathological changes included meningoencephalitis and retinitis. Immunohistochemical staining for viral antigen was positive in the brain, retina, and lymph nodes. More intense and widespread IHC labeling occurred with increased aerosol dose. We have estimated the medial lethal dose of aerosolized EEEV and described the pathology of clinical disease in the marmoset model. The results demonstrate that the marmoset is an animal model suitable for emulation of human EEEV disease in the development of medical countermeasures.

  19. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb.

    PubMed

    Omais, Saad; Jaafar, Carine; Ghanem, Noël

    2018-01-01

    Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.

  20. Identification of Putative Metastasis Suppressor MicroRNA in Human Breast Cancer

    DTIC Science & Technology

    2009-11-01

    receptor a-positive human breast cancer. Cancer Res. 68, 5004–5008. Krek, A., Grün, D., Poy, M.N., Wolf , R., Rosenberg, L., Epstein, E.J., MacMe- namin...Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459:1005-9. 49. Friedl P, Wolf K...Simultaneous reintroduction of ITGA5 and RhoA in miR-31-expressing cells sufficed to completely override miR-31-imposed obstruction of early post

  1. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer

    PubMed Central

    Bagó, Juli R.; Pegna, Guillaume J.; Okolie, Onyi; Hingtgen, Shawn D.

    2016-01-01

    Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types. PMID:26803410

  2. Neocortical glial cell numbers in human brains.

    PubMed

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  3. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury

    PubMed Central

    Shannon, Richard J.; Carter, Eleanor L.; Jalloh, Ibrahim; Menon, David K.; Hutchinson, Peter J.; Carpenter, Keri L.H.

    2016-01-01

    Abstract N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically “normal” areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism. PMID:26159566

  4. Neuroprotective Effects of the Glutamate Transporter Activator (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153) following Traumatic Brain Injury in the Adult Rat

    PubMed Central

    Fox, Douglas P.; Zoubroulis, Argie; Valente Mortensen, Ole; Raghupathi, Ramesh

    2016-01-01

    Abstract Traumatic brain injury (TBI) in humans and in animals leads to an acute and sustained increase in tissue glutamate concentrations within the brain, triggering glutamate-mediated excitotoxicity. Excitatory amino acid transporters (EAATs) are responsible for maintaining extracellular central nervous system glutamate concentrations below neurotoxic levels. Our results demonstrate that as early as 5 min and up to 2 h following brain trauma in brain-injured rats, the activity (Vmax) of EAAT2 in the cortex and the hippocampus was significantly decreased, compared with sham-injured animals. The affinity for glutamate (KM) and the expression of glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) were not altered by the injury. Administration of (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), a GLT-1 activator, beginning immediately after injury and continuing for 24 h, significantly decreased neurodegeneration, loss of microtubule-associated protein 2 and NeuN (+) immunoreactivities, and attenuated calpain activation in both the cortex and the hippocampus at 24 h after the injury; the reduction in neurodegeneration remained evident up to 14 days post-injury. In synaptosomal uptake assays, MS-153 up-regulated GLT-1 activity in the naïve rat brain but did not reverse the reduced activity of GLT-1 in traumatically-injured brains. This study demonstrates that administration of MS-153 in the acute post-traumatic period provides acute and long-term neuroprotection for TBI and suggests that the neuroprotective effects of MS-153 are related to mechanisms other than GLT-1 activation, such as the inhibition of voltage-gated calcium channels. PMID:26200170

  5. [Human positron emission tomography with oral 11C-vinpocetine].

    PubMed

    Vas, Adám; Christer, Halldin; Sóvágó, Judit; Johan, Sandell; Cselényi, Zsolt; Kiss, Béla; Kárpáti, Egon; Lars, Farde; Gulyás, Balázs

    2003-11-16

    Positron emission tomography (PET) is a useful tool for the investigation of certain physiological changes and for the evaluation of the distribution, and receptor binding of drugs labelled with positron emitting isotopes. Vinpocetine (ethyl-apovincaminate) is a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases. In the clinical practice vinpocetine is usually administered to the patients in intravenous infusion followed by long-term oral treatment. Until presently human data describing vinpocetine's kinetics and brain distribution came from ex vivo (blood, plasma, liquor) and post mortem (brain autoradiography) measurements. The authors wished to investigate the kinetics and distribution of vinpocetine in the brain and body after oral administration with PET in order to prove, that PET is useful in the non-invasive in vivo determination of these parameters. Vinpocetine was labelled with carbon-11 and the radioactivity was measured by PET in the stomach, liver, brain, colon and kidneys in healthy male volunteers. The radioactivity in the blood and urine was also determined. After oral administration, [11C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the oral administration of the labelled drug (average maximum uptake: 0.7% of the administered total dose). Brain distribution was heterogeneous (with preferences in the thalamus, basal ganglia and occipital cortex), similar to the distribution previously reported by the authors after intravenous administration. Vinpocetine, administered orally to human volunteers, readily entered the bloodstream from the stomach and the gastrointestinal tract and thereafter passed the blood-brain barrier and entered the brain. Radioactivity from [11C]vinpocetine was also demonstrated in the kidneys and in urine. The study demonstrates that PET might be a useful, direct and non-invasive tool to study the distribution and pharmacokinetics of orally administered labelled drugs active in the central nervous system in the living human body.

  6. Derivation of Functional Human Astrocytes from Cerebral Organoids

    PubMed Central

    Dezonne, Rômulo Sperduto; Sartore, Rafaela Costa; Nascimento, Juliana Minardi; Saia-Cereda, Verônica M.; Romão, Luciana Ferreira; Alves-Leon, Soniza Vieira; de Souza, Jorge Marcondes; Martins-de-Souza, Daniel; Rehen, Stevens Kastrup; Gomes, Flávia Carvalho Alcantara

    2017-01-01

    Astrocytes play a critical role in the development and homeostasis of the central nervous system (CNS). Astrocyte dysfunction results in several neurological and degenerative diseases. However, a major challenge to our understanding of astrocyte physiology and pathology is the restriction of studies to animal models, human post-mortem brain tissues, or samples obtained from invasive surgical procedures. Here, we report a protocol to generate human functional astrocytes from cerebral organoids derived from human pluripotent stem cells. The cellular isolation of cerebral organoids yielded cells that were morphologically and functionally like astrocytes. Immunolabelling and proteomic assays revealed that human organoid-derived astrocytes express the main astrocytic molecular markers, including glutamate transporters, specific enzymes and cytoskeletal proteins. We found that organoid-derived astrocytes strongly supported neuronal survival and neurite outgrowth and responded to ATP through transient calcium wave elevations, which are hallmarks of astrocyte physiology. Additionally, these astrocytes presented similar functional pathways to those isolated from adult human cortex by surgical procedures. This is the first study to provide proteomic and functional analyses of astrocytes isolated from human cerebral organoids. The isolation of these astrocytes holds great potential for the investigation of developmental and evolutionary features of the human brain and provides a useful approach to drug screening and neurodegenerative disease modelling. PMID:28345587

  7. Pharmacological profile of opicapone, a third-generation nitrocatechol catechol-O-methyl transferase inhibitor, in the rat.

    PubMed

    Bonifácio, M J; Torrão, L; Loureiro, A I; Palma, P N; Wright, L C; Soares-da-Silva, P

    2015-04-01

    Catechol-O-methyltransferase (COMT) is an important target in the levodopa treatment of Parkinson's disease; however, the inhibitors available have problems, and not all patients benefit from their efficacy. Opicapone was developed to overcome those limitations. In this study, opicapone's pharmacological properties were evaluated as well as its potential cytotoxic effects. The pharmacodynamic effects of opicapone were explored by evaluating rat COMT activity and levodopa pharmacokinetics, in the periphery through microdialysis and in whole brain. The potential cytotoxicity risk of opicapone was explored in human hepatocytes by assessing cellular ATP content and mitochondrial membrane potential. Opicapone inhibited rat peripheral COMT with ED50 values below 1.4 mg⋅kg(-1) up to 6 h post-administration. The effect was sustained over the first 8 h and by 24 h COMT had not returned to control values. A single administration of opicapone resulted in increased and sustained plasma levodopa levels with a concomitant reduction in 3-O-methyldopa from 2 h up to 24 h post-administration, while tolcapone produced significant effects only at 2 h post-administration. The effects of opicapone on brain catecholamines after levodopa administration were sustained up to 24 h post-administration. Opicapone was also the least potent compound in decreasing both the mitochondrial membrane potential and the ATP content in human primary hepatocytes after a 24 h incubation period. Opicapone has a prolonged inhibitory effect on peripheral COMT, which extends the bioavailability of levodopa, without inducing toxicity. Thus, it exhibits some improved properties compared to the currently available COMT inhibitors. © 2014 The British Pharmacological Society.

  8. Distribution of cholecystokinin mRNA and peptides in the human brain.

    PubMed

    Lindefors, N; Brené, S; Kopp, J; Lindén, A; Brodin, E; Sedvall, G; Persson, H

    1991-01-01

    Expression of preprocholecystokinin mRNA was studied in regions of post mortem human brain using RNA blot analysis (Northern blot) and in situ hybridization. Northern blot analysis using a cDNA probe showed high levels of an approximately 0.8 kb preprocholecystokinin mRNA in all regions of neocortex examined. Lower levels of preprocholecystokinin mRNA were detected in amygdaloid body and thalamus. In situ hybridization analysis using the same cDNA probe revealed numerous weakly labelled neurons in different areas of human neocortex and less numerous neurons in hippocampus and amygdaloid body. High-performance liquid-chromatography and gel-chromatography combined with radioimmunoassay of cholecystokinin-like immunoreactivity from human cerebral cortex and caudate nucleus revealed two major forms, one coeluting with sulphated cholecystokinin-8 and the other coeluting with sulphated cholecystokinin-58. Two minor components coeluting with cholecystokinin-4 and cholecystokinin-5 were also detected. The finding of cholecystokinin-like immunoreactivity corresponding to cholecystokinin-8 and cholecystokinin-58 in caudate nucleus where no preprocholecystokinin mRNA was found, indicates the presence of these peptides in afferent nerve terminals.

  9. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice.

    PubMed

    Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn; Tsang, Stephen H; Ferguson, Polly J; Mahoney, Jolonda; Hue, Christopher D; Vogel, Edward W; Morrison, Barclay; Arancio, Ottavio; Nichols, Russell; Bassuk, Alexander G; Mahajan, Vinit B

    2018-03-01

    Limited attention has been given to ocular injuries associated with traumatic brain injury (TBI). The retina is an extension of the central nervous system and evaluation of ocular damage may offer a less-invasive approach to gauge TBI severity and response to treatment. We aim to characterize acute changes in the mouse eye after exposure to two different models of TBI to assess the utility of eye damage as a surrogate to brain injury. A model of blast TBI (bTBI) using a shock tube was compared to a lateral fluid percussion injury model (LFPI) using fluid pressure applied directly to the brain. Whole eyes were collected from mice 3 days post LFPI and 24 days post bTBI and were evaluated histologically using a hematoxylin and eosin stain. bTBI mice showed evidence of vitreous detachment in the posterior chamber in addition to vitreous hemorrhage with inflammatory cells. Subretinal hemorrhage, photoreceptor degeneration, and decreased cellularity in the retinal ganglion cell layer was also seen in bTBI mice. In contrast, eyes of LFPI mice showed evidence of anterior uveitis and subcapsular cataracts. We demonstrated that variations in the type of TBI can result in drastically different phenotypic changes within the eye. As such, molecular and phenotypic changes in the eye following TBI may provide valuable information regarding the mechanism, severity, and ongoing pathophysiology of brain injury. Because vitreous samples are easily obtained, molecular changes within the eye could be utilized as biomarkers of TBI in human patients.

  10. [Post mortem temperature equilibration of the structures of the head. I. Thermometric techniques and principal investigations (author's transl)].

    PubMed

    Brinkmann, B; May, D; Riemann, U

    1976-06-30

    Special thin and flexible thermometric probes showing a diameter of 1 mm and a sharp end were used for post mortem (p.m.) thermometric studies in several tissues. Brain temperatures were measured by inserting a double probe through the superior orbital fissura thus allowing to record the central and the peripheral brain regions separately. Another probe was inserted into the galea and a fourth into the liver. Temperature changes were recorded simultaneously. Many variables of the human head were measured. Sixteen corpses were investigated. The results were as follows: 1. Of all temperature curves registered those of the central brain regions showed the smallest variance. 2. The p.m. temperature curve of the brain shows a sigmoid shape with a rather short "plateau" in the beginning. 3. In the early p.m. phase there is an increasing difference of temperatures between central and peripheral brain regions amounting to 2-4, 6 degrees C in the time period between 78th and 128th minute. 4. The insertion of the thin probes does not cause visible damages. Thus it should be considered for use in forensic practice. 5. Some artificial "head models" were constructed and temperature decrease recorded after warming. The curves showed the same type of sigmoid shape as those obtained from the corpses. 6. Of the possible variables measured that could influence the temperature decrease only the density of the hair seems to be of interest.

  11. Functional Neuroimaging Insights into the Physiology of Human Sleep

    PubMed Central

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-01-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep. Citation: Dang-Vu TT; Schabus M; Desseilles M; Sterpenich V; Bonjean M; Maquet P. Functional neuroimaging insights into the physiology of human sleep. SLEEP 2010;33(12):1589-1603. PMID:21120121

  12. Single Cell Immuno-Laser Microdissection Coupled to Label-Free Proteomics to Reveal the Proteotypes of Human Brain Cells After Ischemia.

    PubMed

    García-Berrocoso, Teresa; Llombart, Víctor; Colàs-Campàs, Laura; Hainard, Alexandre; Licker, Virginie; Penalba, Anna; Ramiro, Laura; Simats, Alba; Bustamante, Alejandro; Martínez-Saez, Elena; Canals, Francesc; Sanchez, Jean-Charles; Montaner, Joan

    2018-01-01

    Cerebral ischemia entails rapid tissue damage in the affected brain area causing devastating neurological dysfunction. How each component of the neurovascular unit contributes or responds to the ischemic insult in the context of the human brain has not been solved yet. Thus, the analysis of the proteome is a straightforward approach to unraveling these cell proteotypes. In this study, post-mortem brain slices from ischemic stroke patients were obtained corresponding to infarcted (IC) and contralateral (CL) areas. By means of laser microdissection, neurons and blood brain barrier structures (BBB) were isolated and analyzed using label-free quantification. MS data are available via ProteomeXchange with identifier PXD003519. Ninety proteins were identified only in neurons, 260 proteins only in the BBB and 261 proteins in both cell types. Bioinformatics analyses revealed that repair processes, mainly related to synaptic plasticity, are outlined in microdissected neurons, with nonexclusive important functions found in the BBB. A total of 30 proteins showing p < 0.05 and fold-change> 2 between IC and CL areas were considered meaningful in this study: 13 in neurons, 14 in the BBB and 3 in both cell types. Twelve of these proteins were selected as candidates and analyzed by immunohistofluorescence in independent brains. The MS findings were completely verified for neuronal SAHH2 and SRSF1 whereas the presence in both cell types of GABT and EAA2 was only validated in neurons. In addition, SAHH2 showed its potential as a prognostic biomarker of neurological improvement when analyzed early in the plasma of ischemic stroke patients. Therefore, the quantitative proteomes of neurons and the BBB (or proteotypes) after human brain ischemia presented here contribute to increasing the knowledge regarding the molecular mechanisms of ischemic stroke pathology and highlight new proteins that might represent putative biomarkers of brain ischemia or therapeutic targets. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Shanahan on symbolization.

    PubMed

    Lassègue, Jean

    2008-03-01

    In his article 'A New View of Language, Emotion and the Brain,' Dan Shanahan claims that the post-war Cognitive Turn focused mainly on information processing and that little attention was paid to the dramatic role played by emotion in human cognition. One key argument in his defence of a more comprehensive view of human cognition rests upon the idea that the process of symbolization--a unique capacity only developed by humans--combines, right from the start, information processing and feelings. The author argues that any theory ignoring this fact would miss the whole point, just as mainstream cognitive science has done since Noam Chomsky published Syntactic Structures, exactly 50 years ago.

  14. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    PubMed

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  15. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling.

    PubMed

    Soriano, Jaymar; Kubo, Takatomi; Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu; Ikeda, Kazushi

    2017-10-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored.

  16. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    PubMed

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Early cannabinoid exposure influences neuroendocrine and reproductive functions in male mice: I. Prenatal exposure.

    PubMed

    Dalterio, S; Steger, R; Mayfield, D; Bartke, A

    1984-01-01

    Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.

  18. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis

    PubMed Central

    Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.

    2015-01-01

    The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908

  19. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice

    PubMed Central

    Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.

    2013-01-01

    Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking. PMID:21223304

  20. Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains

    PubMed Central

    Brinkmeyer-Langford, Candice L.; Guan, Jinting; Ji, Guoli; Cai, James J.

    2016-01-01

    Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases. PMID:27536236

  1. Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation.

    PubMed

    Alho, A T D L; Hamani, C; Alho, E J L; da Silva, R E; Santos, G A B; Neves, R C; Carreira, L L; Araújo, C M M; Magalhães, G; Coelho, D B; Alegro, M C; Martin, M G M; Grinberg, L T; Pasqualucci, C A; Heinsen, H; Fonoff, E T; Amaro, E

    2017-08-01

    The pedunculopontine nucleus (PPN) has been proposed as target for deep brain stimulation (DBS) in patients with postural instability and gait disorders due to its involvement in muscle tonus adjustments and control of locomotion. However, it is a deep-seated brainstem nucleus without clear imaging or electrophysiological markers. Some studies suggested that diffusion tensor imaging (DTI) may help guiding electrode placement in the PPN by showing the surrounding fiber bundles, but none have provided a direct histological correlation. We investigated DTI fractional anisotropy (FA) maps from in vivo and in situ post-mortem magnetic resonance images (MRI) compared to histological evaluations for improving PPN targeting in humans. A post-mortem brain was scanned in a clinical 3T MR system in situ. Thereafter, the brain was processed with a special method ideally suited for cytoarchitectonic analyses. Also, nine volunteers had in vivo brain scanning using the same MRI protocol. Images from volunteers were compared to those obtained in the post-mortem study. FA values of the volunteers were obtained from PPN, inferior colliculus, cerebellar crossing fibers and medial lemniscus using histological data and atlas information. FA values in the PPN were significantly lower than in the surrounding white matter region and higher than in areas with predominantly gray matter. In Nissl-stained histologic sections, the PPN extended for more than 10 mm in the rostro-caudal axis being closely attached to the lateral parabrachial nucleus. Our DTI analyses and the spatial correlation with histological findings proposed a location for PPN that matched the position assigned to this nucleus in the literature. Coregistration of neuroimaging and cytoarchitectonic features can add value to help establishing functional architectonics of the PPN and facilitate neurosurgical targeting of this extended nucleus.

  2. An anatomical and functional topography of human auditory cortical areas

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  3. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  4. Turbo-SMT: Parallel Coupled Sparse Matrix-Tensor Factorizations and Applications

    PubMed Central

    Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian

    2016-01-01

    How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ’edible’, ’fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we enhance any CMTF solver, so that it can operate on potentially very large datasets that may not fit in main memory? We introduce Turbo-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, produces sparse and interpretable solutions, and parallelizes any CMTF algorithm, producing sparse and interpretable solutions (up to 65 fold). Additionally, we improve upon ALS, the work-horse algorithm for CMTF, with respect to efficiency and robustness to missing values. We apply Turbo-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Turbo-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. Finally, we demonstrate the generality of Turbo-SMT, by applying it on a Facebook dataset (users, ’friends’, wall-postings); there, Turbo-SMT spots spammer-like anomalies. PMID:27672406

  5. Brain stiffens post mortem.

    PubMed

    Weickenmeier, J; Kurt, M; Ozkaya, E; de Rooij, R; Ovaert, T C; Ehman, R L; Butts Pauly, K; Kuhl, E

    2018-04-22

    Alterations in brain rheology are increasingly recognized as a diagnostic marker for various neurological conditions. Magnetic resonance elastography now allows us to assess brain rheology repeatably, reproducibly, and non-invasively in vivo. Recent elastography studies suggest that brain stiffness decreases one percent per year during normal aging, and is significantly reduced in Alzheimer's disease and multiple sclerosis. While existing studies successfully compare brain stiffnesses across different populations, they fail to provide insight into changes within the same brain. Here we characterize rheological alterations in one and the same brain under extreme metabolic changes: alive and dead. Strikingly, the storage and loss moduli of the cerebrum increased by 26% and 60% within only three minutes post mortem and continued to increase by 40% and 103% within 45 minutes. Immediate post mortem stiffening displayed pronounced regional variations; it was largest in the corpus callosum and smallest in the brainstem. We postulate that post mortem stiffening is a manifestation of alterations in polarization, oxidation, perfusion, and metabolism immediately after death. Our results suggest that the stiffness of our brain-unlike any other organ-is a dynamic property that is highly sensitive to the metabolic environment. Our findings emphasize the importance of characterizing brain tissue in vivo and question the relevance of ex vivo brain tissue testing as a whole. Knowing the true stiffness of the living brain has important consequences in diagnosing neurological conditions, planning neurosurgical procedures, and modeling the brain's response to high impact loading. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury.

    PubMed

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper

    2013-09-01

    To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.

  7. 78 FR 63452 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...). SUPPLEMENTARY INFORMATION: Title; Associated Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress...-service U.S. military personnel, with a special focus on the effects of traumatic brain injury (TBI) and...) to carry out the research study ``TRAUMATIC BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG...

  8. Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes

    PubMed Central

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2011-01-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743

  9. A nap to recap or how reward regulates hippocampal-prefrontal memory networks during daytime sleep in humans

    PubMed Central

    Igloi, Kinga; Gaggioni, Giulia; Sterpenich, Virginie; Schwartz, Sophie

    2015-01-01

    Sleep plays a crucial role in the consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information that will be consolidated during sleep remains largely unknown. Here we show that post-learning sleep favors the selectivity of long-term consolidation: when tested three months after initial encoding, the most important (i.e., rewarded, strongly encoded) memories are better retained, and also remembered with higher subjective confidence. Our brain imaging data reveals that the functional interplay between dopaminergic reward regions, the prefrontal cortex and the hippocampus contributes to the integration of rewarded associative memories. We further show that sleep spindles strengthen memory representations based on reward values, suggesting a privileged replay of information yielding positive outcomes. These findings demonstrate that post-learning sleep determines the neural fate of motivationally-relevant memories and promotes a value-based stratification of long-term memory stores. DOI: http://dx.doi.org/10.7554/eLife.07903.001 PMID:26473618

  10. Differing Oxygen Concentrations and the Effect on Post-Hypoxia Recovery

    DTIC Science & Technology

    Given the consistent rise in hypoxia-like in-flight emergencies and the negative effects of hypoxia on human performance , it is important to garner a...tracking task and regional oxygen saturation of the frontal lobes of the brain during a hypoxic event and to document differences in performance recovery...measures analysis of variance revealed no significant differences between the speeds at which participants recovered from hypoxic exposure, regardless of

  11. Gyration of the feline brain: localization, terminology and variability.

    PubMed

    Pakozdy, A; Angerer, C; Klang, A; König, E H; Probst, A

    2015-12-01

    The terminology of feline brain gyration is not consistent and individual variability has not been systematically examined. The aim of the study was to identify the gyri and sulci of cat brains and describe them using the current terminology. The brains of 15 cats including 10 European shorthairs, 2 Siamese, 2 Maine coons and one Norvegian forest cat without clinical evidence of brain disease were examined post-mortem and photographed for documentation. For description, the terms of the most recent Nomina Anatomica Veterinaria (NAV, 2012) were used, and comparisons with previous anatomical texts were also performed. In addition to the lack of comparative morphology in the NAV, veterinary and human nomenclature are used interchangeably and inconsistently in the literature. This presents a challenge for neurologists and anatomists in localizing gyri and sulci. A comparative analysis of brain gyration showed only minor individual variability among the cats. High-quality labelled figures are provided to facilitate the identification of cat brain gyration. Our work consolidates the current and more consistent gyration terminology for reporting the localization of a cortical lesion based on magnetic resonance imaging or histopathology. This will facilitate not only morphological but also functional research using accurate anatomical reporting. © 2014 Blackwell Verlag GmbH.

  12. Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain

    PubMed Central

    Pilaz, Louis-Jan; Silver, Debra L.

    2015-01-01

    The cerebral cortex, the brain structure responsible for our higher cognitive functions, is built during embryonic development in a process called corticogenesis. During corticogenesis, neural stem cells generate distinct populations of progenitors and excitatory neurons. These new neurons migrate radially in the cortex, eventually forming neuronal layers and establishing synaptic connections with other neurons both within and outside the cortex. Perturbations to corticogenesis can result in severe neurodevelopmental disorders, thus emphasizing the need to better understand molecular regulation of brain development. Recent studies in both model organisms and humans have collectively highlighted roles for post-transcriptional regulation in virtually all steps of corticogenesis. Genomic approaches have revealed global RNA changes associated with spatial and temporal regulation of cortical development. Additionally, genetic studies have uncovered RNA-binding proteins (RBPs) critical for cell proliferation, differentiation, and migration within the developing neocortex. Many of these same RBPs play causal roles in neurodevelopmental pathologies. In the developing neocortex, RBPs influence diverse steps of mRNA metabolism, including splicing, stability, translation, and localization. With the advent of new technologies, researchers have begun to uncover key transcripts regulated by these RBPs. Given the complexity of the developing mammalian cortex, a major challenge for the future will be to understand how dynamic RNA regulation occurs within heterogeneous cell populations, across space and time. In sum, post-transcriptional regulation has emerged as a critical mechanism for driving corticogenesis and exciting direction of future research. PMID:26088328

  13. Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats

    PubMed Central

    2010-01-01

    Background Adenosine to inosine (A-to-I) RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms. PMID:21029430

  14. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains

    PubMed Central

    Boluda, Susana; Iba, Michiyo; Zhang, Bin; Raible, Kevin M.; Lee, Virginia M-Y.; Trojanowski, John Q.

    2015-01-01

    Filamentous tau pathologies are hallmark lesions of several neurodegenerative tauopathies including Alzheimer’s disease (AD) and corticobasal degeneration (CBD) which show cell type-specific and topographically distinct tau inclusions. Growing evidence supports templated transmission of tauopathies through functionally interconnected neuroanatomical pathways suggesting that different self-propagating strains of pathological tau could account for the diverse manifestations of neurodegenerative tauopathies. Here, we describe the rapid and distinct cell type-specific spread of pathological tau following intracerebral injections of CBD or AD brain extracts enriched in pathological tau (designated CBD-Tau and AD-Tau, respectively) in young human mutant P301S tau transgenic (Tg) mice (line PS19) ~6–9 months before they show onset of mutant tau transgene-induced tau pathology. At 1 month post-injection of CBD-Tau, tau inclusions developed predominantly in oligodendrocytes of the fimbria and white matter near the injection sites with infrequent intraneuronal tau aggregates. In contrast, injections of AD-Tau in young PS19 mice induced tau pathology predominantly in neuronal perikarya with little or no oligodendrocyte involvement 1 month post-injection. With longer post-injection survival intervals of up to 6 months, CBD-Tau- and AD-Tau-induced tau pathology spread to different brain regions distant from the injection sites while maintaining the cell type-specific pattern noted above. Finally, CA3 neuron loss was detected 3 months post-injection of AD-Tau but not CBD-Tau. Thus, AD-Tau and CBD-Tau represent specific pathological tau strains that spread differentially and may underlie distinct clinical and pathological features of these two tauopathies. Hence, these strains could become targets to develop disease-modifying therapies for CBD and AD. PMID:25534024

  15. A Simple Noise Correction Scheme for Diffusional Kurtosis Imaging

    PubMed Central

    Glenn, G. Russell; Tabesh, Ali; Jensen, Jens H.

    2014-01-01

    Purpose Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is proposed to remove the majority of the noise bias in the estimated diffusional kurtosis. Methods Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived parameter estimates. Results As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise correction is also shown to improve diffusional kurtosis estimates derived from measurements made with low SNR. Conclusion The proposed correction technique removes the majority of noise bias from diffusional kurtosis estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms. PMID:25172990

  16. Ballistic delivery of dyes for structural and functional studies of the nervous system

    PubMed Central

    Gan, Wen-Biao; Grutzendler, Jaime; Wong, Rachel O.; Lichtman, Jeff W.

    2010-01-01

    This chapter describes a detail protocol for rapid labeling of cells in a variety of preparations by means of particle-mediated ballistic (gene gun) delivery of fluorescent dyes. This method has been used for rapid labeling of cells with either lipid or water-soluble dyes in a variety of preparations. In particular, carbocyanine lipophilic dyes such as DiI have been used to obtain Golgi-like labeling of neurons and glia in fixed and live cell cultures, brain slices, as well as fixed post-mortem human brain. Water-soluble calcium indicators such as calcium green-1 dextran have been used to image calcium dynamics in living brain slices and retinal explants. This ballistic labeling technique is thus useful for studying the structure and function of neurons and glia in both living and fixed specimens. PMID:20147144

  17. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    PubMed

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  18. Artificial Intelligence and Semantics through the Prism of Structural, Post-Structural and Transcendental Approaches.

    PubMed

    Gasparyan, Diana

    2016-12-01

    There is a problem associated with contemporary studies of philosophy of mind, which focuses on the identification and convergence of human and machine intelligence. This is the problem of machine emulation of sense. In the present study, analysis of this problem is carried out based on concepts from structural and post-structural approaches that have been almost entirely overlooked by contemporary philosophy of mind. If we refer to the basic definitions of "sign" and "meaning" found in structuralism and post-structuralism, we see a fundamental difference between the capabilities of a machine and the human brain engaged in the processing of a sign. This research will exemplify and provide additional evidence to support distinctions between syntactic and semantic aspects of intelligence, an issue widely discussed by adepts of contemporary philosophy of mind. The research will demonstrate that some aspect of a number of ideas proposed in relation to semantics and semiosis in structuralism and post-structuralism are similar to those we find in contemporary analytical studies related to the theory and philosophy of artificial intelligence. The concluding part of the paper offers an interpretation of the problem of formalization of sense, connected to its metaphysical (transcendental) properties.

  19. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases.

    PubMed

    Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S

    2012-02-01

    HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  20. Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.

    PubMed

    Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard; Chakrabarti, Lisa

    2016-07-01

    Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (p<0.05). We quantified ratios of human mitochondrial haemoglobin in 30 Parkinson's and matched control human post-mortem brains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Neuroprotective effects of placenta-derived mesenchymal stromal cells in a rat model of experimental autoimmune encephalomyelitis.

    PubMed

    Selim, Assmaa O; Selim, Sally A; Shalaby, Sally M; Mosaad, Hala; Saber, Taisir

    2016-09-01

    Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stromal cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS. A preparation of MSCs derived from full-term human placenta (PDMSCs) is a new approach in the treatment of patients with MS. This study aimed to rule out the possible therapy by PDMSCs in experimental autoimmune encephalomyelitis (EAE), a rat model of MS. Thirty-five female Wistar rats were classified into the following groups: I, control; II, EAE untreated; III and IV, EAE treated with phosphate-buffered saline (PBS) at 9 and 16 days post-immunization (dpi), respectively; V and VI, EAE treated with PDMSCs at 9 and 16 dpi, respectively. Intravenous administration of PDMSCs at 9 or 16 dpi significantly ameliorated the disease course, decreasing brain inflammation and degenerating neurons. A reduction of axonal damage as well as an increase of oligodendrocyte precursors were recorded. Moreover, there was an engraftment of the PDMSCs into the brain tissue. Human brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin 3 (NTF3) were significantly expressed in brains of rats treated by PDMSCs. Human PDMSCs have demonstrated striking therapeutic effects when delivered at the onset or at the peak of the disease. PDMSCs have direct neurotrophic support after their engraftment within the lesion through expression of the neurotrophins. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Functional neuroimaging insights into the physiology of human sleep.

    PubMed

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-12-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.

  3. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  4. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    PubMed

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Post-Streptococcal Auto-Antibodies Inhibit Protein Disulfide Isomerase and Are Associated with Insulin Resistance

    PubMed Central

    Aran, Adi; Weiner, Karin; Lin, Ling; Finn, Laurel Ann; Greco, Mary Ann; Peppard, Paul; Young, Terry; Ofran, Yanay; Mignot, Emmanuel

    2010-01-01

    Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33%) and without (67%) markers of recent streptococcal infections [anti-Streptolysin O (ASLO) or anti-DNAse B (ADB)]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI), an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61) and PDI (P328-338). The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001). Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001), and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039) and insulin resistance (Homeostatic Model Assessment (HOMA) 4.1 vs. 3.1, n = 1215, p = 0.004), in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances. PMID:20886095

  6. Inhibition of angiogenesis by β-galactosylceramidase deficiency in globoid cell leukodystrophy

    PubMed Central

    Belleri, Mirella; Ronca, Roberto; Coltrini, Daniela; Nico, Beatrice; Ribatti, Domenico; Poliani, Pietro L.; Giacomini, Arianna; Alessi, Patrizia; Marchesini, Sergio; Santos, Marta B.; Bongarzone, Ernesto R.

    2013-01-01

    Globoid cell leukodystrophy (Krabbe disease) is a neurological disorder of infants caused by genetic deficiency of the lysosomal enzyme β-galactosylceramidase leading to accumulation of the neurotoxic metabolite 1-β-d-galactosylsphingosine (psychosine) in the central nervous system. Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Here, we demonstrate that psychosine has anti-angiogenic properties by causing the disassembling of endothelial cell actin structures at micromolar concentrations as found in the brain of patients with globoid cell leukodystrophy. Accordingly, significant alterations of microvascular endothelium were observed in the post-natal brain of twitcher mice, an authentic model of globoid cell leukodystrophy. Also, twitcher endothelium showed a progressively reduced capacity to respond to pro-angiogenic factors, defect that was corrected after transduction with a lentiviral vector harbouring the murine β-galactosylceramidase complementary DNA. Finally, RNA interference-mediated β-galactosylceramidase gene silencing causes psychosine accumulation in human endothelial cells and hampers their mitogenic and motogenic response to vascular endothelial growth factor. Accordingly, significant alterations were observed in human microvasculature from brain biopsy of a globoid cell leukodystrophy case. Together these data demonstrate that β-galactosylceramidase deficiency induces significant alterations in endothelial neovascular responses that may contribute to central nervous system and systemic damages that occur in globoid cell leukodystrophy. PMID:23983033

  7. Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: implications for neuroinflammation.

    PubMed

    Rom, Slava; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Erickson, Michelle A; Winfield, Malika; Gajghate, Sachin; Christofidou-Solomidou, Melpo; Jordan-Sciutto, Kelly L; Persidsky, Yuri

    2018-01-27

    Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.

  8. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function

    PubMed Central

    Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.

    2008-01-01

    Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710

  9. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  10. Ivermectin treatment of Loa loa hyper-microfilaraemic baboons (Papio anubis): Assessment of microfilarial load reduction, haematological and biochemical parameters and histopathological changes following treatment.

    PubMed

    Wanji, Samuel; Eyong, Ebanga-Echi J; Tendongfor, Nicholas; Ngwa, Che J; Esuka, Elive N; Kengne-Ouafo, Arnaud J; Datchoua-Poutcheu, Fabrice R; Enyong, Peter; Agnew, Dalen; Eversole, Rob R; Hopkins, Adrian; Mackenzie, Charles D

    2017-07-01

    Individuals with high intensity of Loa loa are at risk of developing serious adverse events (SAEs) post treatment with ivermectin. These SAEs have remained unclear and a programmatic impediment to the advancement of community directed treatment with ivermectin. The pathogenesis of these SAEs following ivermectin has never been investigated experimentally. The Loa/baboon (Papio anubis) model can be used to investigate the pathogenesis of Loa-associated encephalopathy following ivermectin treatment in humans. 12 baboons with microfilarial loads > 8,000mf/mL of blood were randomised into four groups: Group 1 (control group receiving no drug), Group 2 receiving ivermectin (IVM) alone, Group 3 receiving ivermectin plus aspirin (IVM + ASA), and Group 4 receiving ivermectin plus prednisone (IVM + PSE). Blood samples collected before treatment and at Day 5, 7 or 10 post treatment, were analysed for parasitological, hematological and biochemical parameters using standard techniques. Clinical monitoring of animals for side effects took place every 6 hours post treatment until autopsy. At autopsy free fluids and a large number of standard organs were collected, examined and tissues fixed in 10% buffered formalin and processed for standard haematoxylin-eosin staining and specific immunocytochemical staining. Mf counts dropped significantly (p<0.05) in all animals following ivermectin treatment with reductions as high as (89.9%) recorded; while no significant drop was observed in the control animals. Apart from haemoglobin (Hb) levels which recorded a significant (p = 0.028) drop post treatment, all other haematological and biochemical parameters did not show any significant changes (p>0.05). All animals became withdrawn 48 hours after IVM administration. All treated animals recorded clinical manifestations including rashes, itching, diarrhoea, conjunctival haemorrhages, lymph node enlargement, pinkish ears, swollen face and restlessness; one animal died 5 hours after IVM administration. Macroscopic changes in post-mortem tissues observed comprised haemorrhages in the brain, lungs, heart, which seen in all groups given ivermectin but not in the untreated animals. Microscopically, the major cellular changes seen, which were present in all the ivermectin treated animals included microfilariae in varying degrees of degeneration in small vessels. These were frequently associated with fibrin deposition, endothelial changes including damage to the integrity of the blood vessel and the presence of extravascular erythrocytes (haemorrhages). There was an increased presence of eosinophils and other chronic inflammatory types in certain tissues and organs, often in large numbers and associated with microfilarial destruction. Highly vascularized organs like the brain, heart, lungs and kidneys were observed to have more microfilariae in tissue sections. The number of mf seen in the brain and kidneys of animals administered IVM alone tripled that of control animals. Co-administration of IVM + PSE caused a greater increase in mf in the brain and kidneys while the reverse was noticed with the co-administration of IVM + ASA. The treatment of Loa hyper-microfilaraemic individuals with ivermectin produces a clinical spectrum that parallels that seen in Loa hyper-microfilaraemic humans treated with ivermectin. The utilization of this experimental model can contribute to the improved management of the adverse responses in humans.

  11. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?

    PubMed Central

    Rattray, Ben; Argus, Christos; Martin, Kristy; Northey, Joseph; Driller, Matthew

    2015-01-01

    Key Points Central fatigue is accepted as a contributor to overall athletic performance, yet little research directly investigates post-exercise recovery strategies targeting the brainCurrent post-exercise recovery strategies likely impact on the brain through a range of mechanisms, but improvements to these strategies is neededResearch is required to optimize post-exercise recovery with a focus on the brain Post-exercise recovery has largely focused on peripheral mechanisms of fatigue, but there is growing acceptance that fatigue is also contributed to through central mechanisms which demands that attention should be paid to optimizing recovery of the brain. In this narrative review we assemble evidence for the role that many currently utilized recovery strategies may have on the brain, as well as potential mechanisms for their action. The review provides discussion of how common nutritional strategies as well as physical modalities and methods to reduce mental fatigue are likely to interact with the brain, and offer an opportunity for subsequent improved performance. We aim to highlight the fact that many recovery strategies have been designed with the periphery in mind, and that refinement of current methods are likely to provide improvements in minimizing brain fatigue. Whilst we offer a number of recommendations, it is evident that there are many opportunities for improving the research, and practical guidelines in this area. PMID:25852568

  12. Alterations of brain grey matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury.

    PubMed

    Han, Pengfei; Winkler, Nicole; Hummel, Cornelia; Hähner, Antje; Gerber, Johannes; Hummel, Thomas

    2018-04-27

    Olfactory loss and traumatic brain injury (TBI) both lead to anatomical brain alterations in humans. Little research has been done on the structural brain changes for TBI patients with olfactory loss. Using voxel-based morphometry, the grey matter (GM) density was examined for twenty-two TBI patients with hyposmia, twenty-four TBI patients with anosmia, and twenty-two age-matched controls. Olfactory bulb (OB) volumes were measured by manual segmentation of acquired T2 weighted coronal slices using a standardized protocol. Brain lesions in the olfactory relevant areas were also examined for TBI patients. Results showed that patients with anosmia have more frequent lesions in the OB, orbitofrontal cortex (OFC) and the temporal lobe pole, as compared to patients with hyposmia. GM density in the primary olfactory area was decreased in both groups of patients. In addition, compared to controls, patients with anosmia showed GM density reduction in several secondary olfactory eloquent regions, including the gyrus rectus, medial OFC, anterior cingulate cortex, insula, and cerebellum. However, patients with hyposmia showed a lesser degree of GM reduction compared to healthy controls. Smaller OB volumes were found for patients with olfactory loss as compared to controls. TBI patients with anosmia had the smallest OB volumes which were caused by the lesions for OB. In addition, post-TBI duration was negatively correlated with GM density in the secondary olfactory areas in patients with hyposmia, but was positively correlated with GM density in the frontal and temporal gyrus in patients with anosmia. The GM density and OB volume reduction among TBI patients with olfactory loss was largely depend on the location and severity of brain lesions in olfactory relevant regions. Longer post-TBI duration had an impact on brain GM density changes, which indicate a decreased olfactory function in patients with hyposmia and possible compensatory mechanisms in patients with anosmia.

  13. T156. IN VIVO CHARACTERIZATION OF THE FIRST AGONIST DOPAMINE D1 RECEPTORS PET IMAGING TRACER [18F]MNI-968 IN HUMAN

    PubMed Central

    Tamagnan, Gilles; Barret, Olivier; Alagille, David; Carroll, Vincent; Madonia, Jennifer; Constantinescu, Cristian; SanDiego, Christine; Papin, Caroline; Morley, Thomas; Russell, David; McCarthy, Timothy; Zhang, Lei; Gray, David; Villalobos, Anna; Lee, Chewah; Chen, Jianqing; Seibyl, John; Marek, Kenneth

    2018-01-01

    Abstract Background D1 receptors, which couple to inhibitory G-proteins, have been shown to regulate neuronal growth and development, mediate some behavioral responses. Its function has been shown to be altered in both neurologic and psychiatric disorders. To date, there is a lack of agonist PET tracers for the D1 receptors labeled with 18F with relevance in clinical studies. We report the evaluation in non-human primates of [18F]MNI-968 (PF-06730110), a novel PET radiotracer of the D1 receptors Methods Four brain PET studies, 2 baselines and 2 blockade studies using PF-2562, a D1 partial agonist compound, were conducted for 90 min in two rhesus monkeys with [18F]MNI-968 (169 ± 31 MBq). [18F]PF-06730110 was administered at the same dose level for both monkeys as a bolus followed by a 2-hour infusion, with [18F]MNI-968 administered 30 min into the infusion. Additionally, six brain PET studies were conducted over 180 min (317 ± 49 MBq) in 6 healthy human volunteers (3 test/retest and 3 test). PET data were modeled with 2-tissue compartmental model (2T), Logan graphical analysis (LGA), and non-invasive Logan graphical analysis (NI-LGA) with cerebellar cortex as reference region to estimate total distribution volume VT, and binding potential BPND. For the blockade studies in rhesus monkeys, occupancy was estimated from BPND at baseline and post blockade. Results In rhesus monkeys, [18F]MNI-968 (PF-06730110), penetrated the brain with a peak whole-brain uptake up to ~3% of the injected dose at ~ 6 min post injection and showed a fast washout. The highest signal was found in the caudate, putamen, with moderate extrastriatal uptake. The lowest signal was in the cerebellum. BPND values were up to ~1.4 in the putamen. All three quantification methods (2T, LGA and NI-LGA) were in excellent agreement, with a similar estimated D1 receptors occupancy of PF-06730110 of ~40% for both monkeys in the caudate and putamen. In human, [18F]MNI-968 kinetics appeared to be faster compared to non-human primates, with a BPND in the putamen of ~0.8. Initial measurement of test-retest reproducibility was ≤ 7% for BPND in the striatal regions. Discussion Our work showed that [18F]MNI-968 ([18F]PF-06730110), is a promising agonist PET radiotracer for imaging D1agnist receptors that can be quantified non-invasively. Studies are currently ongoing both in non-human and human primates to further characterize the tracer.

  14. Early-life risperidone administration alters maternal-offspring interactions and juvenile play fighting.

    PubMed

    Gannon, Matthew A; Brown, Clifford J; Stevens, Rachel M; Griffith, Molly S; Marczinski, Cecile A; Bardgett, Mark E

    2015-03-01

    Risperidone is an antipsychotic drug that is approved for use in childhood psychiatric disorders such as autism. One concern regarding the use of this drug in pediatric populations is that it may interfere with social interactions that serve to nurture brain development. This study used rats to assess the impact of risperidone administration on maternal-offspring interactions and juvenile play fighting between cage mates. Mixed-sex litters received daily subcutaneous injections of vehicle or 1.0 or 3.0mg/kg of risperidone between postnatal days (PNDs) 14-42. Rats were weaned and housed three per cage on PND 21. In observations made between PNDs 14-17, risperidone significantly suppressed several aspects of maternal-offspring interactions at 1-hour post-injection. At 23 h post-injection, pups administered risperidone had lower activity scores and made fewer non-nursing contacts with their moms. In observations of play-fighting behavior made once a week between PNDs 22-42, risperidone profoundly decreased many forms of social interaction at 1h post-injection. At 23h post-injection, rats administered risperidone made more non-social contacts with their cage mates, but engaged in less social grooming. Risperidone administration to rats at ages analogous to early childhood through adolescence in humans produces a pattern of abnormal social interactions across the day that could impact how such interactions influence brain development. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Early-Life Risperidone Administration Alters Maternal-Offspring Interactions and Juvenile Play Fighting

    PubMed Central

    Gannon, Matthew A.; Brown, Clifford J.; Stevens, Rachel M.; Griffith, Molly S.; Marczinski, Cecile A.; Bardgett, Mark E.

    2015-01-01

    Risperidone is an antipsychotic drug that is approved for use in childhood psychiatric disorders such as autism. One concern regarding the use of this drug in pediatric populations is that it may interfere with social interactions that serve to nurture brain development. This study used rats to assess the impact of risperidone administration on maternal-offspring interactions and juvenile play fighting between cage mates. Mixed-sex litters received daily subcutaneous injections of vehicle or 1.0 or 3.0 mg/kg of risperidone between postnatal days (PNDs) 14-42. Rats were weaned and housed three per cage on PND 21. In observations made between PNDs 14-17, risperidone significantly suppressed several aspects of maternal-offspring interactions at one-hour post-injection. At 23 hours post-injection, pups administered risperidone had lower activity scores and made fewer non-nursing contacts with their moms. In observations of play-fighting behavior made once a week between PNDs 22-42, risperidone profoundly decreased many forms of social interaction at one hour post-injection. At 23 hours post-injection, rats administered risperidone made more non-social contacts with their cage mates, but engaged in less social grooming. Risperidone administration to rats at ages analogous to early childhood through adolescence in humans produces a pattern of abnormal social interactions across the day that could impact how such interactions influence brain development. PMID:25600754

  16. Post interaural neural net-based vowel recognition

    NASA Astrophysics Data System (ADS)

    Jouny, Ismail I.

    2001-10-01

    Interaural head related transfer functions are used to process speech signatures prior to neural net based recognition. Data representing the head related transfer function of a dummy has been collected at MIT and made available on the Internet. This data is used to pre-process vowel signatures to mimic the effects of human ear on speech perception. Signatures representing various vowels of the English language are then presented to a multi-layer perceptron trained using the back propagation algorithm for recognition purposes. The focus in this paper is to assess the effects of human interaural system on vowel recognition performance particularly when using a classification system that mimics the human brain such as a neural net.

  17. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma

    PubMed Central

    Bagó, Juli R.; Pegna, Guillaume J.; Okolie, Onyi; Mohiti-Asli, Mahsa; Loboa, Elizabeth G.; Hingtgen, Shawn D.

    2017-01-01

    Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENSsTR) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENSsTR implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer. PMID:27016620

  18. Purification and characterization of tripeptidylpeptidase-II from post-mortem human brain.

    PubMed

    Wilson, C; Gibson, A M; McDermott, J R

    1993-07-01

    A soluble tripeptidylaminopeptidase has been isolated from human post-mortem cerebral cortex by anion exchange, hydrophobic interaction and size-exclusion chromatography. From gel filtration studies the active enzyme can exist in both high molecular weight (M(r) > 10(6) and smaller forms. The enzyme hydrolyses Ala-Ala-Phe-7-amido-4-methylcoumarin with a pH optimum of around 7.5 and Km of 148 microM. It did not hydrolyse N-succinyl-Ala-Ala-Phe-7-amido-4-methylcoumarin, aminoacyl- or dipeptidyl-7-amido-methylcoumarins and was not inhibited by bestatin. The enzyme was inhibited by phenylmethylsulphonyl-fluoride, 3,4-dichloroisocoumarin, N-hydroxymercuriphenyl-sulphonic acid and N-ethylmaleimide showing that its activity is serine and cysteine dependent. The purified enzyme released tripeptides from several naturally occurring neuropeptides with quite broad specificity. Cholecystokinin octapeptide, angiotensin III and neurokinin A were the most rapidly hydrolysed. Peptides with Pro residues around the point of cleavage were not hydrolysed.

  19. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Gideon; Zhang Chunyan; Zhuo Lang

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acutemore » gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.« less

  20. Chimeric brain: theoretical and clinical aspects.

    PubMed

    Saveliev, S V; Lebedev, V V; Evgeniev, M B; Korochkin, L I

    1997-12-01

    Using xeno-transplantation, interactions of neural tissues of vertebrates and insects were studied. Ventral neurogenic primordium of Notch Drosophila melanogaster embryos was transplanted into neural tube of amphibian and mammalian embryos with the aid of microhydrofeeding. Embryos of four different amphibian species, random bred mice and rats were used as graft recipients. It was concluded that there is a possibility to incorporate nerve cells of insects into the brain of vertebrates. Morphological and functional contacts can be established between the transplanted cells and host brain tissues. Transplanted Drosophila cells preserve their viability for a long time, so that a prolonged influence of the transplant upon the recipient can be predicted, which may be used in medical practice. A mixture of human fetal brain and Notch Drosophila melanogaster neural embryonic tissues were transplanted into the ventro-lateral nucleus of the thalamus of the patients of Parkinson' disease. As a result, tremor and constrained movements disappeared. Post-operation patients have been observed within 13-38 months. No side effects were noted during this time.

  1. Post-traumatic stress symptoms and psychological functioning in children of parents with acquired brain injury.

    PubMed

    Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels

    2011-01-01

    The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.

  2. Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3β in human neuron-like cells.

    PubMed

    Lin, D; Li, G; Zuo, Z

    2011-04-14

    Application of the volatile anesthetic isoflurane during the early phase of reperfusion reduces ischemic heart and brain injury (anesthetic post-conditioning). We hypothesize that inhibition of glycogen synthase kinase 3β (GSK3β), a protein whose activation can lead to cell death, participates in anesthetic post-conditioning-induced neuroprotection. SH-SY5Y cells, a human neuroblastoma cell line, were induced by retinoic acid to differentiate into terminal neuron-like cells. The cells were then subjected to a 1-h oxygen-glucose deprivation (OGD), a condition to simulate ischemia in vitro, and a 20-h simulated reperfusion. Isoflurane, sevoflurane or desflurane, three commonly used volatile anesthetics, were applied for 1 h during the early phase of simulated reperfusion. Cell injury was quantified by lactate dehydrogenase (LDH) release. Phospho-GSK3β at Ser9 and total GSK3β were quantified at 1 or 3 h after the OGD. OGD increased LDH release, suggesting that OGD induced cell injury. Post-treatment with isoflurane, sevoflurane or desflurane reduced this cell injury. This protection was apparent when 2% isoflurane was applied within 1 h after the onset of reperfusion. Isoflurane post-treatment also significantly increased the phosphorylation of GSK3β at Ser9 at 1 h after the OGD. GSK3β inhibitors reduced OGD and simulated reperfusion-induced LDH release. The combination of GSK3β inhibitors and isoflurane post-conditioning did not cause a greater protection than isoflurane post-conditioning alone. These results suggest that volatile anesthetic post-conditioning reduces OGD and simulated reperfusion-induced cell injury. Since phospho-GSK3β at Ser9 decreases GSK3β activity, our results suggest that volatile anesthetic post-conditioning in human neuron-like cells may be mediated by GSK3β inhibition. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  4. Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.

    PubMed

    Nelson, David V; Esty, Mary Lee

    2015-10-01

    Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  5. 77 FR 25708 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of Life... effects of traumatic brain injury (TBI) and Post-traumatic Stress Disorder (PTSD). Information collected...

  6. Validation of [(11) C]ORM-13070 as a PET tracer for alpha2c -adrenoceptors in the human brain.

    PubMed

    Lehto, Jussi; Hirvonen, Mika M; Johansson, Jarkko; Kemppainen, Jukka; Luoto, Pauliina; Naukkarinen, Tarja; Oikonen, Vesa; Arponen, Eveliina; Rouru, Juha; Sallinen, Jukka; Scheinin, Harry; Vuorilehto, Lauri; Finnema, Sjoerd J; Halldin, Christer; Rinne, Juha O; Scheinin, Mika

    2015-03-01

    This study explored the use of the α2C -adrenoceptor PET tracer [(11) C]ORM-13070 to monitor α2C -AR occupancy in the human brain. The subtype-nonselective α2 -AR antagonist atipamezole was administered to eight healthy volunteer subjects to determine its efficacy and potency (Emax and EC50 ) at inhibiting tracer uptake. We also explored whether the tracer could reveal changes in the synaptic concentrations of endogenous noradrenaline in the brain, in response to several pharmacological and sensory challenge conditions. We assessed occupancy from the bound-to-free ratio measured during 5-30 min post injection. Based on extrapolation of one-site binding, the maximal extent of inhibition of striatal [(11) C]ORM-13070 uptake (Emax ) achievable by atipamezole was 78% (95% CI 69-87%) in the caudate nucleus and 65% (53-77%) in the putamen. The EC50 estimates of atipamezole (1.6 and 2.5 ng/ml, respectively) were in agreement with the drug's affinity to α2C -ARs. These findings represent clear support for the use of [(11) C]ORM-13070 for monitoring drug occupancy of α2C -ARs in the living human brain. Three of the employed noradrenaline challenges were associated with small, approximately 10-16% average reductions in tracer uptake in the dorsal striatum (atomoxetine, ketamine, and the cold pressor test; P < 0.05 for all), but insulin-induced hypoglycemia did not affect tracer uptake. The tracer is suitable for studying central nervous system receptor occupancy by α2C -AR ligands in human subjects. [(11) C]ORM-13070 also holds potential as a tool for in vivo monitoring of synaptic concentrations of noradrenaline, but this remains to be further evaluated in future studies. © 2014 Wiley Periodicals, Inc.

  7. Cold Blooded: Evaluating Brain Temperature by MRI During Surface Cooling of Human Subjects.

    PubMed

    Curran, Eric J; Wolfson, Daniel L; Watts, Richard; Freeman, Kalev

    2017-10-01

    Targeted temperature management (TTM) confers neurological and survival benefits for post-cardiac arrest patients with return of spontaneous circulation (ROSC) who remain comatose. Specialized equipment for induction of hypothermia is not available in the prehospital setting, and there are no reliable methods for emergency medical services personnel to initiate TTM. We hypothesized that the application of surface cooling elements to the neck will decrease brain temperature and act as initiators of TTM. Magnetic resonance (MR) spectroscopy was used to evaluate the effect of a carotid surface cooling element on brain temperature in healthy adults. Six individuals completed this study. We measured a temperature drop of 0.69 ± 0.38 °C (95% CI) in the cortex of the brain following the application of the cooling element. Application of a room temperature element also caused a measurable decrease in brain temperature of 0.66 ± 0.41 °C (95% CI) which may be attributable to baroreceptor activation. The application of surface cooling elements to the neck decreased brain temperature and may serve as a method to initiate TTM in the prehospital setting.

  8. miR-137, a new target for post-stroke depression?

    PubMed Central

    Zhao, Lixia; Li, Huazi; Guo, Ruiyou; Ma, Teng; Hou, Rongyao; Ma, Xiaowei; Du, Yifeng

    2013-01-01

    Expression of miR-137 is downregulated in brain tissue from patients with depression and suicidal behavior, and is also downregulated in peripheral blood from stroke patients. However, it is not yet known if miR-137 acts as a bridge between stroke and depression. To test this, we used middle cerebral artery occlusion and chronic mild stress to establish a post-stroke depression model in rats. Compared with controls, we found significantly lower miR-137 levels in the brain and peripheral blood from post-stroke depression rats. Injection of a miR-137 antagonist into the brain ventricles upregulated miR-137 levels, and improved behavioral changes in post-stroke depression rats. Luciferase assays showed miR-137 bound to the 3’UTR of Grin2A, regulating Grin2A expression in a neuronal cell line. Grin2A gene overexpression in the brain of post-stroke depression rats, noticeably suppressed the inhibitory effect of miR-137 on post-stroke depression. Overall, our results show that miR-137 suppresses Grin2A protein expression through binding to Grin2A mRNA, thereby exerting an inhibitory effect on post-stroke depression. Our results offer a new therapeutic direction for post-stroke depression. PMID:25206554

  9. Post-Translational Incorporation of L-Phenylalanine into the C-Terminus of α-Tubulin as a Possible Cause of Neuronal Dysfunction.

    PubMed

    Ditamo, Yanina; Dentesano, Yanela M; Purro, Silvia A; Arce, Carlos A; Bisig, C Gastón

    2016-12-01

    α-Tubulin C-terminus undergoes post-translational, cyclic tyrosination/detyrosination, and L-Phenylalanine (Phe) can be incorporated in place of tyrosine. Using cultured mouse brain-derived cells and an antibody specific to Phe-tubulin, we showed that: (i) Phe incorporation into tubulin is reversible; (ii) such incorporation is not due to de novo synthesis; (iii) the proportion of modified tubulin is significant; (iv) Phe incorporation reduces cell proliferation without affecting cell viability; (v) the rate of neurite retraction declines as level of C-terminal Phe incorporation increases; (vi) this inhibitory effect of Phe on neurite retraction is blocked by the co-presence of tyrosine; (vii) microtubule dynamics is reduced when Phe-tubulin level in cells is high as a result of exogenous Phe addition and returns to normal values when Phe is removed; moreover, microtubule dynamics is also reduced when Phe-tubulin is expressed (plasmid transfection). It is known that Phe levels are greatly elevated in blood of phenylketonuria (PKU) patients. The molecular mechanism underlying the brain dysfunction characteristic of PKU is unknown. Beyond the differences between human and mouse cells, it is conceivable the possibility that Phe incorporation into tubulin is the first event (or among the initial events) in the molecular pathways leading to brain dysfunctions that characterize PKU.

  10. MicroRNA-125b is a novel negative regulator of p53.

    PubMed

    Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing

    2009-04-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.

  11. MicroRNA-125b is a novel negative regulator of p53

    PubMed Central

    Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing

    2009-01-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287

  12. γ-secretase binding sites in aged and Alzheimer's disease human cerebrum: the choroid plexus as a putative origin of CSF Aβ.

    PubMed

    Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R; Rose, Gregory M; Cai, Huaibin; Struble, Robert G; Cai, Yan; Yan, Xiao-Xin

    2013-05-01

    Deposition of β -amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aβ peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored the possibility of Aβ production and secretion by the choroid plexus (CP). The specific binding density of [(3) H]-L-685,458, a radiolabeled high-affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post-mortem delays. The CP in post-mortem samples exhibited exceptionally high [(3) H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aβ40 and Aβ42 into the medium. Overall, our results suggest that γ-secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non-neuronal contributor to CSF Aβ, probably at reduced levels in AD. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    PubMed Central

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease. PMID:24143186

  14. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    PubMed

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  15. Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors

    NASA Astrophysics Data System (ADS)

    Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.

    2006-02-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.

  16. Fetal Cortical Transplants in Adult Rats Subjected to Experimental Brain Injury

    PubMed Central

    Soares, Holly; McIntosh, Tracy K.

    1991-01-01

    Fetal cortical tissue was injected into injured adult rat brains following concussive fluid percussion (FP) brain injury. Rats subjected to moderate FP injury received E16 cortex transplant injections into lesioned motor cortex 2 days, 1 week, 2 weeks, and 4 weeks post injury. Histological assessment of transplant survival and integration was based upon Nissl staining, glial fibrillary acidic protein (GFAP) immunocytochemistry, and staining for acetylcholinesterase. In addition to histological analysis, the ability of the transplants to attenuate neurological motor deficits associated with concussive FP brain injury was also tested. Three subgroups of rats receiving transplant 1 week, 2 weeks, and 4 weeks post injury Were chosen for evaluation of neurological motor function. Fetal cortical tissue injected into the injury site 4 weeks post injury failed to incorporate with injured host brain, did not affect glial scar formation, and exhibited extensive GFAP immunoreactivity. No improvement in neurological motor function was observed in animals receiving transplants 4 weeks post injury. Conversely, transplants injected 2 days, 1 week, or 2 weeks post injury survived, incorporated with host brain, exhibited little GFAP immunoreactivity, and successfully attenuated glial scarring. However, no significant improvement in motor function was observed at the one week or two week time points. The inability of the transplants to attenuate motor function may indicate inappropriate host/transplant interaction. Our results demonstrate that there exists a temporal window in which fetal cortical transplants can attenuate glial scarring as well as be successfully incorporated into host brains following FP injury. PMID:1782253

  17. Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model.

    PubMed

    Uchida, Hiroki; Niizuma, Kuniyasu; Kushida, Yoshihiro; Wakao, Shohei; Tominaga, Teiji; Borlongan, Cesario V; Dezawa, Mari

    2017-02-01

    Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 + cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke. © 2016 The Authors.

  18. Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models

    PubMed Central

    Ostrowski, Robert P.; Stępień, Katarzyna; Pucko, Emanuela; Matyja, Ewa

    2016-01-01

    The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering. PMID:27826422

  19. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.

    PubMed

    Shcherbinin, Sergey; Doyle, Orla; Zelaya, Fernando O; de Simoni, Sara; Mehta, Mitul A; Schwarz, Adam J

    2015-11-01

    Resting brain perfusion, measured using the MRI-based arterial spin labelling (ASL) technique, is sensitive to detect central effects of single, clinically effective, doses of pharmacological compounds. However, pharmacological interaction experiments, such as the modulation of one drug response in the presence of another, have not been widely investigated using a task-free ASL approach. We assessed the effects of three psychoactive compounds (ketamine, risperidone and lamotrigine), and their interaction, on resting brain perfusion in healthy human volunteers. A multivariate Gaussian process classification (GPC) and more conventional univariate analyses were applied. The four pre-infusion conditions for each subject comprised risperidone, lamotrigine and two placebo sessions. The two placebo conditions enabled us to evaluate the classification performance in a test-retest setting, in addition to its performance in distinguishing the active oral drugs from placebo (direct effect on brain perfusion). The post ketamine- or saline-infusion scans allowed the effect of ketamine, and its interaction with risperidone and lamotrigine, on brain perfusion to be characterised. The pseudo-continuous ASL measurements of perfusion were sensitive to the effects of ketamine infusion and risperidone. The GPC captured consistent changes in perfusion across the group and contextualised the univariate changes with a larger pattern of regions contributing to accurate discrimination of ketamine from placebo. The findings argue against perfusion changes confounding in the previously described evoked BOLD response to ketamine and emphasise the blockade of the NMDA receptor over neuronal glutamate release in determining the perfusion changes induced by ketamine.

  20. Redox proteomics and the dynamic molecular landscape of the aging brain.

    PubMed

    Perluigi, Marzia; Swomley, Aaron M; Butterfield, D Allan

    2014-01-01

    It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia. Copyright © 2014. Published by Elsevier B.V.

  1. Modulation of ABCA1 by an LXR Agonist Reduces Beta-Amyloid Levels and Improves Outcome after Traumatic Brain Injury

    PubMed Central

    Loane, David J.; Washington, Patricia M.; Vardanian, Lilit; Pocivavsek, Ana; Hoe, Hyang-Sook; Duff, Karen E.; Cernak, Ibolja; Rebeck, G. William; Faden, Alan I.

    2011-01-01

    Abstract Traumatic brain injury (TBI) increases brain beta-amyloid (Aβ) in humans and animals. Although the role of Aβ in the injury cascade is unknown, multiple preclinical studies have demonstrated a correlation between reduced Aβ and improved outcome. Therefore, therapeutic strategies that enhance Aβ clearance may be beneficial after TBI. Increased levels of ATP-binding cassette A1 (ABCA1) transporters can enhance Aβ clearance through an apolipoprotein E (apoE)-mediated pathway. By measuring Aβ and ABCA1 after experimental TBI in C57BL/6J mice, we found that Aβ peaked early after injury (1–3 days), whereas ABCA1 had a delayed response (beginning at 3 days). As ABCA1 levels increased, Aβ levels returned to baseline levels—consistent with the known role of ABCA1 in Aβ clearance. To test if enhancing ABCA1 levels could block TBI-induced Aβ, we treated TBI mice with the liver X-receptor (LXR) agonist T0901317. Pre- and post-injury treatment increased ABCA1 levels at 24 h post-injury, and reduced the TBI-induced increase in Aβ. This reduction in Aβ was not due to decreased amyloid precursor protein processing, or a shift in the solubility of Aβ, indicating enhanced clearance. T0901317 also limited motor coordination deficits in injured mice and reduced brain lesion volume. These data indicate that activation of LXR can reduce Aβ accumulation after TBI, and is accompanied by improved functional recovery. PMID:21175399

  2. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study.

    PubMed

    Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol

    2018-02-28

    Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  3. Alterations in Error-Related Brain Activity and Post-Error Behavior over Time

    ERIC Educational Resources Information Center

    Themanson, Jason R.; Rosen, Peter J.; Pontifex, Matthew B.; Hillman, Charles H.; McAuley, Edward

    2012-01-01

    This study examines the relation between the error-related negativity (ERN) and post-error behavior over time in healthy young adults (N = 61). Event-related brain potentials were collected during two sessions of an identical flanker task. Results indicated changes in ERN and post-error accuracy were related across task sessions, with more…

  4. Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases

    PubMed Central

    Wild, Heather M.; Heckemann, Rolf A.; Studholme, Colin

    2017-01-01

    Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG), angular gyrus (AG), superior parietal lobe (supPL) and postcentral gyrus (postCG). There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ) separating SMG and AG was identified in nearly all (59/60) hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2%) larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled) T1-weighted brain images, we applied multi-atlas label propagation software (MAPER) in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%). Stereotaxic probabilistic atlases of each subregion were obtained. They illustrate the physiological brain torque, with structures in the right hemisphere positioned more anteriorly than in the left, and right/left positional differences of up to 10 mm. They also allow an assessment of sulcal variability, e.g. low variability for parietooccipital fissure and cingulate sulcus. Illustrated protocols, individual label sets, probabilistic atlases, and a maximum-probability atlas which takes into account surrounding structures are available for free download under academic licences. PMID:28846692

  5. “Till Death Do Us Part”: A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb

    PubMed Central

    Omais, Saad; Jaafar, Carine; Ghanem, Noël

    2018-01-01

    Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well. PMID:29593485

  6. Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development.

    PubMed

    Johansson, Martin M; Lundin, Elin; Qian, Xiaoyan; Mirzazadeh, Mohammadreza; Halvardson, Jonatan; Darj, Elisabeth; Feuk, Lars; Nilsson, Mats; Jazin, Elena

    2016-01-01

    Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.

  7. Molecular and functional definition of the developing human striatum.

    PubMed

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  8. Flex Sensor Based Biofeedback Monitoring for Post-Stroke Fingers Myopathy Patients

    NASA Astrophysics Data System (ADS)

    Garda, Y. R.; Caesarendra, W.; Tjahjowidodo, T.; Turnip, A.; Wahyudati, S.; Nurhasanah, L.; Sutopo, D.

    2018-04-01

    Hands are one of the crucial parts of the human body in carrying out daily activities. Accidents on the hands decreasing in motor skills of the hand so that therapy is necessary to restore motor function of the hand. In addition to accidents, hand disabilities can be caused by certain diseases, e.g. stroke. Stroke is a partial destruction of the brain. It occurs if the arteries that drain blood to the brain are blocked, or if torn or leak. The purpose of this study to make biofeedback monitoring equipment for post-stroke hands myopathy patients. Biofeedback is an alternative method of treatment that involves measuring body functions measured subjects such as skin temperature, sweat activity, blood pressure, heart rate and hand paralysis due to stroke. In this study, the sensor used for biofeedback monitoring tool is flex sensor. Flex sensor is a passive resistive device that changes its resistance as the sensor is bent. Flex sensor converts the magnitude of the bend into electrical resistance, the greater the bend the greater the resistance value. The monitoring used in this biofeedback monitoring tool uses Graphical User Interface (GUI) in C# programming language. The motivation of the study is to monitor and record the progressive improvement of the hand therapy. Patients who experienced post-stroke can see the therapy progress quantitatively.

  9. Average is optimal: an inverted-U relationship between trial-to-trial brain activity and behavioral performance.

    PubMed

    He, Biyu J; Zempel, John M

    2013-01-01

    It is well known that even under identical task conditions, there is a tremendous amount of trial-to-trial variability in both brain activity and behavioral output. Thus far the vast majority of event-related potential (ERP) studies investigating the relationship between trial-to-trial fluctuations in brain activity and behavioral performance have only tested a monotonic relationship between them. However, it was recently found that across-trial variability can correlate with behavioral performance independent of trial-averaged activity. This finding predicts a U- or inverted-U- shaped relationship between trial-to-trial brain activity and behavioral output, depending on whether larger brain variability is associated with better or worse behavior, respectively. Using a visual stimulus detection task, we provide evidence from human electrocorticography (ECoG) for an inverted-U brain-behavior relationship: When the raw fluctuation in broadband ECoG activity is closer to the across-trial mean, hit rate is higher and reaction times faster. Importantly, we show that this relationship is present not only in the post-stimulus task-evoked brain activity, but also in the pre-stimulus spontaneous brain activity, suggesting anticipatory brain dynamics. Our findings are consistent with the presence of stochastic noise in the brain. They further support attractor network theories, which postulate that the brain settles into a more confined state space under task performance, and proximity to the targeted trajectory is associated with better performance.

  10. Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity.

    PubMed

    Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl

    2015-07-15

    Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    PubMed Central

    Yang, Shan; Yang, Zhengyi; Fischer, Karin; Zhong, Kai; Stadler, Jörg; Godenschweger, Frank; Steiner, Johann; Heinze, Hans-Jochen; Bernstein, Hans-Gert; Bogerts, Bernhard; Mawrin, Christian; Reutens, David C.; Speck, Oliver; Walter, Martin

    2013-01-01

    Ultra-high field magnetic resonance imaging (MRI) became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods can be effectively combined at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time) the feasibility and quality of ultra-high spatial resolution (150 μm isotopic) imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information. PMID:24098272

  12. Monitoring of human brain functions in risk decision-making task by diffuse optical tomography using voxel-wise general linear model

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.

  13. Prolonged survival after diagnosis of brain metastasis from breast cancer: contributing factors and treatment implications.

    PubMed

    Honda, Yayoi; Aruga, Tomoyuki; Yamashita, Toshinari; Miyamoto, Hiromi; Horiguchi, Kazumi; Kitagawa, Dai; Idera, Nami; Goto, Risa; Kuroi, Katsumasa

    2015-08-01

    The prognosis of breast cancer-derived brain metastasis is poor, but new drugs and recent therapeutic strategies have helped extend survival in patients. Prediction of therapeutic responses and outcomes is not yet possible, however. In a retrospective study, we examined prognostic factors in patients with breast cancer-derived brain metastasis, and we tested the prognostic utility of a breast cancer-specific Graded Prognostic Assessment in these patients. Sixty-three patients diagnosed with brain metastasis from breast cancer treated surgically and adjuvantly were included. We examined clinical variables per primary tumor subtype: ER+/HER2- (luminal), HER2+ (human epidermal growth factor receptor type 2-enriched) or ER-/PR-/HER2- (triple negative). We also categorized patients' breast cancer-specific Graded Prognostic Assessment scores and analyzed post-brain metastasis survival time in relation to these categories. The breast cancers comprised the following subtypes: luminal, n = 18; human epidermal growth factor receptor type 2-enriched, n = 27 and triple-negative, n = 18; median survival per subtype was 11, 37 and 3 months, respectively. Survival of human epidermal growth factor receptor type 2-enriched patients was longer, though not significantly (P = 0.188), than that of luminal patients. Survival of triple-negative patients was significantly short (vs. human epidermal growth factor receptor type 2-enriched patients, P < 0.001). Karnofsky performance status, HER2 status and the disease-free interval (from initial treatment to first recurrence) were shown to be significant prognostic factors (Karnofsky performance status < 70: relative risk 2.08, P = 0.028; HER2+: relative risk 2.911, P = 0.004; disease-free interval < 24 months: relative risk 1.933, P = 0.011). Breast cancer-specific Graded Prognostic Assessment scores reflected disease-free intervals and survival times. Our data indicate that breast cancer-specific Graded Prognostic Assessment-based prediction will be helpful in determining appropriate therapeutic strategies for patients with brain metastasis from breast cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    PubMed

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot

    PubMed Central

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B.; Turkheimer, Federico E.

    2016-01-01

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression. PMID:26850512

  16. Detection of anti-streptococcal, antienolase, and anti-neural antibodies in subjects with early-onset psychiatric disorders.

    PubMed

    Nicolini, Humberto; López, Yaumara; Genis-Mendoza, Alma D; Manrique, Viana; Lopez-Canovas, Lilia; Niubo, Esperanza; Hernández, Lázaro; Bobes, María A; Riverón, Ana M; López-Casamichana, Mavil; Flores, Julio; Lanzagorta, Nuria; De la Fuente-Sandoval, Camilo; Santana, Daniel

    2015-01-01

    Infection with group A Streptococcus (StrepA) can cause post-infectious sequelae, including a spectrum of childhood-onset obsessive-compulsive (OCD) and tic disorders with autoimmune origin (PANDAS, Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections). Until now, no single immunological test has been designed that unequivocally diagnoses these disorders. In this study, we assessed the detection of serum antibodies against human brain enolase (AE), neural tissue (AN) and Streptococcus (AS) as a laboratory tool for the diagnosis of early-onset psychiatric disorders. Serum antibodies against human brain enolase, total brain proteins, and total proteins from StrepA were detected by ELISA in 37 patients with a presumptive diagnosis of PANDAS and in 12 healthy subjects from Mexico and Cuba. The antibody titers against human brain enolase (AE) and Streptococcal proteins (AS) were higher in patients than in control subjects (t-student, tAE=-2.17, P=0.035; tAS=-2.68, P=0.01, n=12 and 37/group, df=47, significance level 0.05), while the neural antibody titers did not differ between the two groups (P(t)=0.05). The number of subjects (titers> meancontrol + CI95) with simultaneous seropositivity to all three antibodies was higher in the patient group (51.4%) than in the control group (8.3%) group (X2=5.27, P=0.022, df=1, n=49). The simultaneous detection of all three of these antibodies could provide valuable information for the etiologic diagnosis of individuals with early-onset obsessive-compulsive disorders associated with streptococcal infection and, consequently, for prescribing suitable therapy.

  17. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs

    PubMed Central

    Nitsche, Michael A; Müller-Dahlhaus, Florian; Paulus, Walter; Ziemann, Ulf

    2012-01-01

    The term neuroplasticity encompasses structural and functional modifications of neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric diseases, such as dystonia, epilepsy, migraine, Alzheimer's disease, fronto-temporal degeneration, schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers recently to induce and study similar processes in the intact human brain. Plasticity induced by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neurotransmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of neuroplasticity, as explored in animal experimentation, and relate these to our knowledge about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS with pharmacological intervention may improve our understanding of the pathophysiology of abnormal plasticity in these diseases and their purposeful pharmacological treatment. PMID:22869014

  18. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease.

    PubMed

    D'Souza, Gary X; Waldvogel, Henry J

    2016-12-15

    In this review, we outline the role of the cholinergic system in Huntington's disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington's disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington's disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.

  19. Memory, Sleep and Dreaming: Experiencing Consolidation

    PubMed Central

    Wamsley, Erin J.; Stickgold, Robert

    2010-01-01

    Synopsis It is now well established that post-learning sleep is beneficial for human memory performance. At the same time, it has long been known that learning experiences influence the content of subsequent sleep mentation (i.e., “dreaming”). Here, we review evidence that newly encoded memories are reactivated and consolidated in the sleeping brain, and that this process is directly reflected in the content of concomitant sleep mentation, providing a valuable window into the mnemonic functions of sleep. PMID:21516215

  20. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be detected well before the histological detection of NFTs. Therapeutic treatment targeting tau should therefore aim to reduce all tau species associated with the pathological tau pool rather than reduce specific post-translational modifications. There is still much to learn about CSF tau in physiological and pathological processes in order to use it as a translational biomarker in drug discovery.

  1. NADPH Oxidase Inhibition Improves Neurological Outcomes in Surgically-Induced Brain Injury

    PubMed Central

    Lo, Wendy; Bravo, Thomas; Jadhav, Vikram; Zhang, John H.; Tang, Jiping

    2007-01-01

    Neurosurgical procedures can result in brain injury by various means including direct trauma, hemorrhage, retractor stretch, and electrocautery. This surgically-induced brain injury (SBI) can cause post-operative complications such as brain edema. By creating a mouse model of SBI, we tested whether NADPH oxidase, an important reactive oxygen species producing enzyme, is involved in SBI using transgenic mice lacking gp91phox subunit of NADPH oxidase (gp91phox KO) and apocynin, a specific inhibitor of NADPH oxidase. Neurological function and brain edema were evaluated at 24 hours post-SBI in gp91phox KO and wild-type littermates grouped into SBI and sham-surgery groups. Alternatively, mice were grouped into vehicle- and apocynin-treated (5mg/kg, i.p. 30 minutes before SBI) groups. Oxidative stress indicated by lipid peroxidation (LPO) was measured at 3 and 24 hours post SBI. The gp91phox KO mice, but not the apocynin-treated mice showed significantly improved neurological scores. Brain edema was observed in both gp91phox KO and wild-type groups after SBI; however, there was no significant difference between these two groups. Brain edema was also not affected by apocynin-pretreatment. LPO levels were significantly higher in SBI group in both gp91phox KO and wild-type groups as compared to sham group. A trend, although without statistical significance, was noted towards attenuation of LPO in the gp91phox KO animals as compared to wild-type group. LPO levels were significantly attenuated at 3 hours post-SBI by apocynin pretreatment but not at 24 hours post-SBI. These results suggest that chronic and acute inhibition of NADPH oxidase activity does not reduce brain edema after SBI. Long-term inhibition of NADPH oxidase, however improves neurological functions after SBI. PMID:17317004

  2. Suicide and the Polyamine System

    PubMed Central

    Gross, Jeffrey A.; Turecki, Gustavo

    2017-01-01

    Suicide is a significant worldwide public health problem. Understanding the neurobiology is important as it can help us to better elucidate underlying etiological factors and provide opportunities for intervention. In recent years, many lines of research have suggested that the polyamine system may be dysregulated in suicidal behaviors. Initial research in animals provided evidence of a dysfunctional polyamine stress response system, while later work using post-mortem human brain tissue has suggested that molecular mechanisms may be at play in the suicide brain. In this review, we will describe the research that suggests the presence of alterations in the polyamine system in mental disorders and behavioral phenotypes, with particular attention to work on suicide. In addition, we will also describe potential avenues for future work. PMID:24040803

  3. Brain CYP2B induction can decrease nicotine levels in the brain.

    PubMed

    Garcia, Kristine L P; Lê, Anh Dzung; Tyndale, Rachel F

    2017-09-01

    Nicotine can be metabolized by the enzyme CYP2B; brain CYP2B is higher in rats and monkeys treated with nicotine, and in human smokers. A 7-day nicotine treatment increased CYP2B expression in rat brain but not liver, and decreased the behavioral response and brain levels (ex vivo) to the CYP2B substrate propofol. However, the effect of CYP2B induction on the time course and levels of circulating brain nicotine in vivo has not been demonstrated. Using brain microdialysis, nicotine levels following a subcutaneous nicotine injection were measured on day one and after a 7-day nicotine treatment. There was a significant time x treatment interaction (p = 0.01); peak nicotine levels (15-45 minutes post-injection) were lower after treatment (p = 0.04) consistent with CYP2B induction. Following a two-week washout period, brain nicotine levels increased to day one levels (p = 0.02), consistent with brain CYP2B levels returning to baseline. Brain pretreatment of the CYP2B inhibitor, C8-xanthate, increased brain nicotine levels acutely and after 7-day nicotine treatment, indicating the alterations in brain nicotine levels were due to changes in brain CYP2B activity. Plasma nicotine levels were not altered for any time or treatment sampled, confirming no effect on peripheral nicotine metabolism. These results demonstrate that chronic nicotine, by increasing brain CYP2B activity, reduces brain nicotine levels, which could alter nicotine's reinforcing effects. Higher brain CYP2B levels in smokers could lower brain nicotine levels; as this induction would occur following continued nicotine exposure it could increase withdrawal symptoms and contribute to sustaining smoking behavior. © 2016 Society for the Study of Addiction.

  4. Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into their Communities: Understanding the Scope and Timeline of Post-Deployment Driving Problems

    DTIC Science & Technology

    2015-10-01

    behaviors and anxieties among post- deployed SMs with and without traumatic brain injury (TBI), post-traumatic stress syndrome (PTSD) or TBI with...post- traumatic stress syndrome (TBI/PTSD). The goal was to compare SMs who were post-deployment to SMs who had not served in OEF/OIF/OND, however all...in situations when SM would typically drive (p=.02) with TBI/PTSD reporting this more common than TBI and 0Dx. • Move to middle of road or onto

  5. Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells.

    PubMed

    Liang, Chang-Min; Weng, Shao-Ju; Tsai, Tung-Han; Li, I-Hsun; Lu, Pin-Hui; Ma, Kuo-Hsing; Tai, Ming-Cheng; Chen, Jiann-Torng; Cheng, Cheng-Yi; Huang, Yuahn-Sieh

    2014-10-01

    The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. L-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Intracranial EEG fluctuates over months after implanting electrodes in human brain

    NASA Astrophysics Data System (ADS)

    Ung, Hoameng; Baldassano, Steven N.; Bink, Hank; Krieger, Abba M.; Williams, Shawniqua; Vitale, Flavia; Wu, Chengyuan; Freestone, Dean; Nurse, Ewan; Leyde, Kent; Davis, Kathryn A.; Cook, Mark; Litt, Brian

    2017-10-01

    Objective. Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings. Approach. Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient’s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability. Main results. A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant. Significance. These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring.

  7. The spiritual brain: selective cortical lesions modulate human self-transcendence.

    PubMed

    Urgesi, Cosimo; Aglioti, Salvatore M; Skrap, Miran; Fabbro, Franco

    2010-02-11

    The predisposition of human beings toward spiritual feeling, thinking, and behaviors is measured by a supposedly stable personality trait called self-transcendence. Although a few neuroimaging studies suggest that neural activation of a large fronto-parieto-temporal network may underpin a variety of spiritual experiences, information on the causative link between such a network and spirituality is lacking. Combining pre- and post-neurosurgery personality assessment with advanced brain-lesion mapping techniques, we found that selective damage to left and right inferior posterior parietal regions induced a specific increase of self-transcendence. Therefore, modifications of neural activity in temporoparietal areas may induce unusually fast modulations of a stable personality trait related to transcendental self-referential awareness. These results hint at the active, crucial role of left and right parietal systems in determining self-transcendence and cast new light on the neurobiological bases of altered spiritual and religious attitudes and behaviors in neurological and mental disorders. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme.

    PubMed

    Baumann, Brian C; Dorsey, Jay F; Benci, Joseph L; Joh, Daniel Y; Kao, Gary D

    2012-09-25

    Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments. This method is also well-tolerated by the animals with low perioperative morbidity and mortality.

  9. Localisation of epileptic foci using novel imaging modalities

    PubMed Central

    De Ciantis, Alessio; Lemieux, Louis

    2013-01-01

    Purpose of review This review examines recent reports on the use of advanced techniques to map the regions and networks involved during focal epileptic seizure generation in humans. Recent findings A number of imaging techniques are capable of providing new localizing information on the ictal processes and epileptogenic zone. Evaluating the clinical utility of these findings has been mainly performed through post-hoc comparison with the findings of invasive EEG and ictal single-photon emission computed tomography, using postsurgical seizure reduction as the main outcome measure. Added value has been demonstrated in MRI-negative cases. Improved understanding of the human ictiogenic processes and the focus vs. network hypothesis is likely to result from the application of multimodal techniques that combine electrophysiological, semiological, and whole-brain coverage of brain activity changes. Summary On the basis of recent research in the field of neuroimaging, several novel imaging modalities have been improved and developed to provide information about the localization of epileptic foci. PMID:23823464

  10. Efficient post-exposure prophylaxis against rabies by applying a four-dose DNA vaccine intranasally.

    PubMed

    Tesoro Cruz, Emiliano; Feria Romero, Iris Angélica; López Mendoza, Juan Gabriel; Orozco Suárez, Sandra; Hernández González, Rafael; Favela, Francisco Blanco; Pérez Torres, Armando; José Alvaro Aguilar Setién

    2008-12-09

    We tested two post-exposure prophylaxes (PEPs) for rabies in laboratory animals; one was a traditional antirabies vaccine for humans via intramuscular route (IM), and the other was a DNA vaccine administered by intranasal route (IN). In contrast to The World Health Organization's recommended five-dose PEP, we gave only four doses without hyper-immune antirabies sera, making the PEP more rigorous. All animals were challenged with challenge virus strain (CVS); 16h later, PEP was applied. All animals that received the PEP with DNA/IN survived, and 87% of the rabbits and 80% of the mice that received the PEP with traditional antirabies vaccine/IM survived. Negative controls succumbed to infection. The expression of G protein was detected in the NALT, cerebellum, cerebral cortex (neocortex), cerebellum and hippocampus, mainly in the glial cells (microglia) and microvessels. On the other hand, plasmid construct was detected in brain and its mRNA expression in medium and posterior encephalon. The efficiency of this DNA/IN PEP is probably due to the early expression of the antigen in the brain stimulating the immune system locally.

  11. Multi-modal imaging of long-term recovery post-stroke by positron emission tomography and matrix-assisted laser desorption/ionisation mass spectrometry.

    PubMed

    Henderson, Fiona; Hart, Philippa J; Pradillo, Jesus M; Kassiou, Michael; Christie, Lidan; Williams, Kaye J; Boutin, Herve; McMahon, Adam

    2018-05-15

    Stroke is a leading cause of disability worldwide. Understanding the recovery process post-stroke is essential; however, longer-term recovery studies are lacking. In vivo positron emission tomography (PET) can image biological recovery processes, but is limited by spatial resolution and its targeted nature. Untargeted mass spectrometry imaging offers high spatial resolution, providing an ideal ex vivo tool for brain recovery imaging. Magnetic resonance imaging (MRI) was used to image a rat brain 48 h after ischaemic stroke to locate the infarcted regions of the brain. PET was carried out 3 months post-stroke using the tracers [ 18 F]DPA-714 for TSPO and [ 18 F]IAM6067 for sigma-1 receptors to image neuroinflammation and neurodegeneration, respectively. The rat brain was flash-frozen immediately after PET scanning, and sectioned for matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) imaging. Three months post-stroke, PET imaging shows minimal detection of neurodegeneration and neuroinflammation, indicating that the brain has stabilised. However, MALDI-MS images reveal distinct differences in lipid distributions (e.g. phosphatidylcholine and sphingomyelin) between the scar and the healthy brain, suggesting that recovery processes are still in play. It is currently not known if the altered lipids in the scar will change on a longer time scale, or if they are stabilised products of the brain post-stroke. The data demonstrates the ability to combine MALD-MS with in vivo PET to image different aspects of stroke recovery. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex.

    PubMed

    Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob

    2016-02-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex

    PubMed Central

    Kugelman, Tara; Zuloaga, Damian G.; Weber, Sydney; Raber, Jacob

    2015-01-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24 hours after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24 hours later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840

  14. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    PubMed

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  15. Determining Optimal Post-Stroke Exercise (DOSE)

    ClinicalTrials.gov

    2018-02-13

    Cerebrovascular Accident; Stroke; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases

  16. Acute post-traumatic stress symptoms and age predict outcome in military blast concussion.

    PubMed

    Mac Donald, Christine L; Adam, Octavian R; Johnson, Ann M; Nelson, Elliot C; Werner, Nicole J; Rivet, Dennis J; Brody, David L

    2015-05-01

    High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Post-learning hippocampal dynamics promote preferential retention of rewarding events

    PubMed Central

    Gruber, Matthias J.; Ritchey, Maureen; Wang, Shao-Fang; Doss, Manoj K.; Ranganath, Charan

    2016-01-01

    Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here, we used functional magnetic resonance imaging (fMRI) to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- or low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation. PMID:26875624

  18. Molecular, Cellular and Functional Events in Axonal Sprouting after Stroke

    PubMed Central

    Kathirvelu, Balachander; Schweppe, Catherine A; Nie, Esther H

    2016-01-01

    Stroke is the leading cause of adult disability. Yet there is a limited degree of recovery in this disease. One of the mechanisms of recovery is the formation of new connections in the brain and spinal cord after stroke: post-stroke axonal sprouting. Studies indicate that post-stroke axonal sprouting occurs in mice, rats, primates and humans. Inducing post-stroke axonal sprouting in specific connections enhances recovery; blocking axonal sprouting impairs recovery. Behavioral activity patterns after stroke modify the axonal sprouting response. A unique regenerative molecular program mediates this aspect of tissue repair in the CNS. The types of connections that are formed after stroke indicate three patterns of axonal sprouting after stroke: Reactive, Reparative and Unbounded Axonal Sprouting. These differ in mechanism, location, relationship to behavioral recovery and, importantly, in their prospect for therapeutic manipulation to enhance tissue repair. PMID:26874223

  19. Plasticity-Based Adaptive Cognitive Remediation (PACR) for OIF/OEF Veterans: A Randomized Controlled Trial

    DTIC Science & Technology

    2015-10-01

    TERMS traumatic brain injury, tbi, concussion , persistent post- concussive symptoms, cognition, cognitive function, cognitive rehabilitation...veterans and active duty military personnel suffering from persistent post- concussive symptoms (PPCS) following mild traumatic brain injury (mTBI) at

  20. Positive effects of neurofeedback on autism symptoms correlate with brain activation during imitation and observation.

    PubMed

    Datko, Michael; Pineda, Jaime A; Müller, Ralph-Axel

    2018-03-01

    Autism has been characterized by atypical task-related brain activation and functional connections, coinciding with deficits in sociocommunicative abilities. However, evidence of the brain's experience-dependent plasticity suggests that abnormal activity patterns may be reversed with treatment. In particular, neurofeedback training (NFT), an intervention based on operant conditioning resulting in self-regulation of brain electrical oscillations, has shown increasing promise in addressing abnormalities in brain function and behavior. We examined the effects of ≥ 20 h of sensorimotor mu-rhythm-based NFT in children with high-functioning autism spectrum disorders (ASD) and a matched control group of typically developing children (ages 8-17). During a functional magnetic resonance imaging imitation and observation task, the ASD group showed increased activation in regions of the human mirror neuron system following the NFT, as part of a significant interaction between group (ASD vs. controls) and training (pre- vs. post-training). These changes were positively correlated with behavioral improvements in the ASD participants, indicating that mu-rhythm NFT may be beneficial to individuals with ASD. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Comparison of Coil Designs for Transcranial Magnetic Stimulation on Mice

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive treatment for neurological disorders using time varying magnetic field. The electric field generated by the time varying magnetic field is used to depolarize the brain neurons which can lead to measurable effects. TMS provides a surgical free method for the treatment of neurological brain disorders like depression, post-traumatic stress disorder, traumatic brain injury and Parkinson's disease. Before using TMS on human subjects, it is appropriate that its effects are verified on animals such as mice. The magnetic field intensity and stimulated region of the brain can be controlled by the shape, position and current in the coils. There are few reports on the designs of the coils for mice. In this paper, different types of coils are developed and compared using an anatomically realistic mouse model derived from MRI images. Parameters such as focality, depth of the stimulation, electric field strength on the scalp and in the deep brain regions, are taken into account. These parameters will help researchers to determine the most suitable coil design according to their need. This should result in improvements in treatment of specific disorders. Carver Charitable Trust.

  2. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity.

    PubMed

    Pedretti, G; Milo, V; Ambrogio, S; Carboni, R; Bianchi, S; Calderoni, A; Ramaswamy, N; Spinelli, A S; Ielmini, D

    2017-07-13

    Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~10 4 ) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.

  3. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.

    PubMed

    Prins, Mayumi L; Matsumoto, Joyce H

    2014-12-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    PubMed

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina

    2016-12-01

    The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  5. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes

    PubMed Central

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F.; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Bentivoglio, Marina

    2016-01-01

    Background The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Methodology Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Principal findings Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. Conclusion These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging. PMID:28002454

  6. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down’s syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer’s disease and Down’s syndrome. PMID:24519975

  7. "In my before life": relationships, coping and post-traumatic growth in adolescent survivors of a traumatic brain injury.

    PubMed

    Di Battista, Ashley; Godfrey, Celia; Soo, Cheryl; Catroppa, Cathy; Anderson, Vicki

    2014-11-01

    Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury. Adolescent survivors of traumatic brain injury. Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach. Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview. The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.

  8. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    PubMed

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  9. MicroRNA-146b-5p Identified in Porcine Liver Donation Model is Associated with Early Allograft Dysfunction in Human Liver Transplantation

    PubMed Central

    Li, Cheukfai; Zhao, Qiang; Zhang, Wei; Chen, Maogen; Ju, Weiqiang; Wu, Linwei; Han, Ming; Ma, Yi; Zhu, Xiaofeng; Wang, Dongping; Guo, Zhiyong; He, Xiaoshun

    2017-01-01

    Background Poor transplant outcome was observed in donation after brain death followed by circulatory death (DBCD), since the donor organs suffered both cytokine storm of brain death and warm ischemia injury. MicroRNAs (miRNAs) have emerged as promising disease biomarkers, so we sought to establish a miRNA signature of porcine DBCD and verify the findings in human liver transplantation. Material/Methods MiRNA expression was determined with miRNA sequencing in 3 types of the porcine model of organ donation, including donation after brain death (DBD) group, donation after circulatory death (DCD) group, and DBCD group. Bioinformatics analysis was performed to reveal the potential regulatory behavior of target miRNA. Human liver graft biopsy samples after reperfusion detected by fluorescence in situ hybridization were used to verify the expression of target miRNA. Results We compared miRNA expression profiles of the 3 donation types. The porcine liver graft miR-146b was significantly increased and selected in the DBCD group versus in the DBD and DCD groups. The donor liver expression of human miR-146b-5p, which is homologous to porcine miR-146b, was further examined in 42 cases of human liver transplantations. High expression of miR-146b-5p successfully predicted the post-transplant early allograft dysfunction (EAD) with the area under the ROC curve (AUC) 0.759 (P=0.004). Conclusions Our results revealed the miRNA signature of DBCD liver grafts for the first time. The miR-146b-5p may have important clinical implications for monitoring liver graft function and predicating transplant outcomes. PMID:29227984

  10. Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS

    PubMed Central

    Gagliano, Sarah A.; Ptak, Carolyn; Mak, Denise Y.F.; Shamsi, Mehrdad; Oh, Gabriel; Knight, Joanne; Boutros, Paul C.; Petronis, Arturas

    2016-01-01

    Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%–7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs. PMID:27087318

  11. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling

    PubMed Central

    Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu

    2017-01-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain’s normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored. PMID:28981509

  12. Quantitative Analysis of Focused A-To-I RNA Editing Sites by Ultra-High-Throughput Sequencing in Psychiatric Disorders

    PubMed Central

    Zhu, Hu; Urban, Daniel J.; Blashka, Jared; McPheeters, Matthew T.; Kroeze, Wesley K.; Mieczkowski, Piotr; Overholser, James C.; Jurjus, George J.; Dieter, Lesa; Mahajan, Gouri J.; Rajkowska, Grazyna; Wang, Zefeng; Sullivan, Patrick F.; Stockmeier, Craig A.; Roth, Bryan L.

    2012-01-01

    A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain. PMID:22912834

  13. Processing of voices in deafness rehabilitation by auditory brainstem implant.

    PubMed

    Coez, Arnaud; Zilbovicius, Monica; Ferrary, Evelyne; Bouccara, Didier; Mosnier, Isabelle; Ambert-Dahan, Emmanuèle; Kalamarides, Michel; Bizaguet, Eric; Syrota, André; Samson, Yves; Sterkers, Olivier

    2009-10-01

    The superior temporal sulcus (STS) is specifically involved in processing the human voice. Profound acquired deafness by post-meningitis ossified cochlea and by bilateral vestibular schwannoma in neurofibromatosis type 2 patients are two indications for auditory brainstem implantation (ABI). In order to objectively measure the cortical voice processing of a group of ABI patients, we studied the activation of the human temporal voice areas (TVA) by PET H(2)(15)O, performed in a group of implanted deaf adults (n=7) with more than two years of auditory brainstem implant experience, with an intelligibility score average of 17%+/-17 [mean+/-SD]. Relative cerebral blood flow (rCBF) was measured in the three following conditions: during silence, while passive listening to human voice, and to non-voice stimuli. Compared to silence, the activations induced by voice and non-voice stimuli were bilaterally located in the superior temporal regions. However, compared to non-voice stimuli, the voice stimuli did not induce specific supplementary activation of the TVA along the STS. The comparison of ABI group with a normal-hearing controls group (n=7) showed that TVA activations were significantly enhanced among controls group. ABI allowed the transmission of sound stimuli to temporal brain regions but lacked transmitting the specific cues of the human voice to the TVA. Moreover, among groups, during silent condition, brain visual regions showed higher rCBF in ABI group, although temporal brain regions had higher rCBF in the controls group. ABI patients had consequently developed enhanced visual strategies to keep interacting with their environment.

  14. Predictors of longitudinal outcome and recovery of pragmatic language and its relation to externalizing behaviour after pediatric traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Coleman, Lee; Ditchfield, Michael; Crossley, Louise; Beauchamp, Miriam H; Anderson, Vicki A

    2015-03-01

    The purpose of the present investigation was to evaluate the contribution of age-at-insult and brain pathology on longitudinal outcome and recovery of pragmatic language in a sample of children and adolescents with traumatic brain injury (TBI). Children and adolescents with mild to severe TBI (n=112) were categorized according to timing of brain insult: (i) Middle Childhood (5-9 years; n=41); (ii) Late Childhood (10-11 years; n=39); and (iii) Adolescence (12-15 years; n=32) and group-matched for age, gender and socio-economic status (SES) to a typically developing (TD) control group (n=43). Participants underwent magnetic resonance imaging (MRI) including a susceptibility weighted imaging (SWI) sequence 2-8 weeks after injury and were assessed on measures of pragmatic language and behavioural functioning at 6- and 24-months after injury. Children and adolescents with TBI of all severity levels demonstrated impairments in these domains at 6-months injury before returning to age-expected levels at 2-years post-TBI. However, while adolescent TBI was associated with post-acute disruption to skills that preceded recovery to age-expected levels by 2-years post injury, the middle childhood TBI group demonstrated impairments at 6-months post-injury that were maintained at 2-year follow up. Reduced pragmatic communication was associated with frontal, temporal and corpus callosum lesions, as well as more frequent externalizing behaviour at 24-months post injury. Findings show that persisting pragmatic language impairment after pediatric TBI is related to younger age at brain insult, as well as microhemorrhagic pathology in brain regions that contribute to the anatomically distributed social brain network. Relationships between reduced pragmatic communication and more frequent externalizing behavior underscore the need for context-sensitive rehabilitation programs that aim to increase interpersonal effectiveness and reduce risk for maladaptive behavior trajectories into the long-term post injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla

    PubMed Central

    Liu, Feng; Garland, Marianne; Duan, Yunsuo; Stark, Raymond I.; Xu, Dongrong; Dong, Zhengchao; Bansal, Ravi; Peterson, Bradley S.; Kangarlu, Alayar

    2008-01-01

    Direct observational data on the development of the brains of human and nonhuman primates is on remarkably scant, and most of our understanding of primate brain development is extrapolated from findings in rodent models. Magnetic resonance imaging (MRI) is a promising tool for the noninvasive, longitudinal study of the developing primate brain. We devised a protocol to scan pregnant baboons serially at 3 T for up to 3 h per session. Seven baboons were scanned 1–6 times, beginning as early as 56 days post-conceptional age, and as late as 185 days (term ~185 days). Successful scanning of the fetal baboon required careful animal preparation and anesthesia, in addition to optimization of the scanning protocol. We successfully acquired maps of relaxation times (T1 and T2) and high-resolution anatomical images of the brains of fetal baboons at multiple time points during the course of gestation. These images demonstrated the convergence of gray and white matter contrast near term, and furthermore demonstrated that the loss of contrast at that age is a consequence of the continuous change in relaxation times during fetal brain development. These data furthermore demonstrate that maps of relaxation times have clear advantages over the relaxation time weighted images for the tracking of the changes in brain structure during fetal development. This protocol for in utero MRI of fetal baboon brains will help to advance the use of nonhuman primate models to study fetal brain development longitudinally. PMID:18155925

  16. Evaluation of Disease Lesions in the Developing Canine MPS IIIA Brain.

    PubMed

    Winner, Leanne K; Marshall, Neil R; Jolly, Robert D; Trim, Paul J; Duplock, Stephen K; Snel, Marten F; Hemsley, Kim M

    2018-06-20

    Mucopolysaccharidosis IIIA (MPS IIIA) is an inherited neurodegenerative disease of childhood that results in early death. Post-mortem studies have been carried out on human MPS IIIA brain, but little is known about early disease development. Here, we utilised the Huntaway dog model of MPS IIIA to evaluate disease lesion development from 2 to 24 weeks of age. A significant elevation in primarily stored heparan sulphate was observed in all brain regions assessed in MPS IIIA pups ≤9.5 weeks of age. There was a significant elevation in secondarily stored ganglioside (GM3 36:1) in ≤9.5-week-old MPS IIIA pup cerebellum, and other brain regions also exhibited accumulation of this lipid with time. The number of neural stem cells and neuronal precursor cells was essentially unchanged in MPS IIIA dog brain (c.f. unaffected) over the time course assessed, a finding corroborated by neuron cell counts. We observed early neuroinflammatory changes in young MPS IIIA pup brain, with significantly increased numbers of activated microglia recorded in all but one brain region in MPS IIIA pups ≤9.5 weeks of age (c.f. age-matched unaffected pups). In conclusion, infant-paediatric-stage MPS IIIA canine brain exhibits substantial and progressive primary and secondary substrate accumulation, coupled with early and robust microgliosis. Whilst early initiation of treatment is likely to be required to maintain optimal neurological function, the brain's neurodevelopmental potential appears largely unaffected by the disease process; further investigations confirming this are warranted.

  17. Combat-related headache and traumatic brain injury.

    PubMed

    Waung, Maggie W; Abrams, Gary M

    2012-12-01

    Post-traumatic headache is a commonly described complication of traumatic brain injury. Recent studies highlight differences between headache features of combat veterans who suffered traumatic brain injury compared to civilians. Not surprisingly, there is a higher rate of associated PTSD and sleep disturbances among veterans. Factors of lower socioeconomic status, rank, and multiple head injuries appear to have a similar effect on post-traumatic headache in combat-related traumatic brain injury. Areas of discordance in the literature include the effect of prolonged loss of consciousness and the prevalence of specific headache phenotypes following head trauma. To date, there have been no randomized trials of treatment for post-traumatic headache. This may be related to the variability of headache features and uncertainty of pathophysiologic mechanisms. Given this lack of data, many practitioners follow treatment guidelines for primary headaches. Additionally, because of mounting data linking PTSD to post-traumatic headache in combat veterans, it may be crucial to choose multimodal agents and take a multidisciplinary approach to combat-related headache.

  18. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke.

    PubMed

    Shichita, Takashi; Ago, Tetsuro; Kamouchi, Masahiro; Kitazono, Takanari; Yoshimura, Akihiko; Ooboshi, Hiroaki

    2012-11-01

    Post-ischemic inflammation is an essential step in the progression of ischemic stroke. This review focuses on the function of infiltrating immune cells, macrophages, and T cells, in ischemic brain injury. The brain is a sterile organ; however, the activation of Toll-like receptor (TLR) 2 and TLR4 is pivotal in the beginning of post-ischemic inflammation. Some endogenous TLR ligands are released from injured brain cells, including high mobility group box 1 and peroxiredoxin family proteins, and activate the infiltrating macrophages and induce the expression of inflammatory cytokines. Following this step, T cells also infiltrate into the ischemic brain and mediate post-ischemic inflammation in the delayed phase. Various cytokines from helper T cells and γδT cells function as neurotoxic (IL-23/IL-17, IFN-γ) or neuroprotective (IL-10, IL-4) mediators. Novel neuroprotective strategies should therefore be developed through more detailed understanding of this process and the regulation of post-ischemic inflammation. © 2012 The Authors Journal of Neurochemistry © International Society for Neurochemistry.

  19. Challenges associated with post-deployment screening for mild traumatic brain injury in military personnel.

    PubMed

    Iverson, Grant L; Langlois, Jean A; McCrea, Michael A; Kelly, James P

    2009-11-01

    There is ongoing debate regarding the epidemiology of mild traumatic brain injury (MTBI) in military personnel. Accurate and timely estimates of the incidence of brain injury and the prevalence of long-term problems associated with brain injuries among active duty service members and veterans are essential for (a) operational planning, and (b) to allocate sufficient resources for rehabilitation and ongoing services and supports. The purpose of this article is to discuss challenges associated with post-deployment screening for MTBI. Multiple screening methods have been used in military, Veterans Affairs, and independent studies, which complicate cross-study comparisons of the resulting epidemiological data. We believe that post-deployment screening is important and necessary--but no screening methodology will be flawless, and false positives and false negatives are inevitable. Additional research is necessary to refine the sequential screening methodology, with the goal of minimizing false negatives during initial post-deployment screening and minimizing false positives during follow-up evaluations.

  20. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.

    PubMed

    Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola

    2018-01-01

    The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.

  1. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways

    PubMed Central

    Krasnova, Irina N.; Justinova, Zuzana; Cadet, Jean Lud

    2017-01-01

    Rationale and objectives Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcriptional and immune responses in the brain. Methods We used the rat model of METH self-administration with extended access (15 hours/day for 8 consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 hours – 1 month after cessation of drug exposure. Results Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and post-mortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in CREB signaling pathway and in the activation of neuroinflammatory response in the brain. Conclusion These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients. PMID:26873080

  2. Brain Levels of the Neurotoxic Pyridinium Metabolite HPP+ and Extrapyramidal Symptoms in Haloperidol-Treated Mice

    PubMed Central

    Crowley, James J.; Ashraf-Khorassani, Mehdi; Castagnoli, Neal; Sullivan, Patrick F.

    2013-01-01

    The typical antipsychotic haloperidol is a highly effective treatment for schizophrenia but its use is limited by a number of serious, and often irreversible, motor side effects. These adverse drug reactions, termed extrapyramidal syndromes (EPS), result from an unknown pathophysiological mechanism. One theory relates to the observation that the haloperidol metabolite HPP+ (4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-pyridinium) is structurally similar to MPP+ (1-methyl-4-phenylpyridinium), a neurotoxin responsible for an irreversible neurodegenerative condition similar to Parkinson's disease. To determine whether HPP+ contributes to haloperidol-induced EPS, we measured brain HPP+ and haloperidol levels in strains of mice at high (C57BL/6J and NZO/HILtJ) and low (BALB/cByJ and PWK/PhJ) liability to haloperidol-induced EPS following chronic treatment (7–10 adult male mice per strain). Brain levels of HPP+ and the ratio of HPP+ to haloperidol were not significantly different between the haloperidol-sensitive and haloperidol-resistant strain groups (P = 0.50). Within each group, however, strain differences were seen (P < 0.01), indicating that genetic variation regulating steady-state HPP+ levels exists. Since the HPP+ levels that we observed in mouse brain overlap the range of those detected in post-mortem human brains following chronic haloperidol treatment, the findings from this study are physiologically relevant to humans. The results suggest that strain differences in steady-state HPP+ levels do not explain sensitivity to haloperidol-induced EPS in the mice we studied. PMID:24107597

  3. Post-Translational Incorporation of L-Phenylalanine into the C-Terminus of α-Tubulin as a Possible Cause of Neuronal Dysfunction

    PubMed Central

    Ditamo, Yanina; Dentesano, Yanela M.; Purro, Silvia A.; Arce, Carlos A.; Bisig, C. Gastón

    2016-01-01

    α-Tubulin C-terminus undergoes post-translational, cyclic tyrosination/detyrosination, and L-Phenylalanine (Phe) can be incorporated in place of tyrosine. Using cultured mouse brain-derived cells and an antibody specific to Phe-tubulin, we showed that: (i) Phe incorporation into tubulin is reversible; (ii) such incorporation is not due to de novo synthesis; (iii) the proportion of modified tubulin is significant; (iv) Phe incorporation reduces cell proliferation without affecting cell viability; (v) the rate of neurite retraction declines as level of C-terminal Phe incorporation increases; (vi) this inhibitory effect of Phe on neurite retraction is blocked by the co-presence of tyrosine; (vii) microtubule dynamics is reduced when Phe-tubulin level in cells is high as a result of exogenous Phe addition and returns to normal values when Phe is removed; moreover, microtubule dynamics is also reduced when Phe-tubulin is expressed (plasmid transfection). It is known that Phe levels are greatly elevated in blood of phenylketonuria (PKU) patients. The molecular mechanism underlying the brain dysfunction characteristic of PKU is unknown. Beyond the differences between human and mouse cells, it is conceivable the possibility that Phe incorporation into tubulin is the first event (or among the initial events) in the molecular pathways leading to brain dysfunctions that characterize PKU. PMID:27905536

  4. Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L

    2014-09-01

    Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.

  5. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms.

    PubMed

    Carhart-Harris, Robin L; Roseman, Leor; Bolstridge, Mark; Demetriou, Lysia; Pannekoek, J Nienke; Wall, Matthew B; Tanner, Mark; Kaelen, Mendel; McGonigle, John; Murphy, Kevin; Leech, Robert; Curran, H Valerie; Nutt, David J

    2017-10-13

    Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other 'psychedelics' yet were related to clinical outcomes. A 'reset' therapeutic mechanism is proposed.

  6. Visual perceptual training reconfigures post-task resting-state functional connectivity with a feature-representation region.

    PubMed

    Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi

    2018-01-01

    The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.

  7. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?

    PubMed

    Washington, Patricia M; Villapol, Sonia; Burns, Mark P

    2016-01-01

    Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson's disease. Further, human post-mortem studies on both single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a 'polypathology'. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Rethinking schizophrenia in the context of normal neurodevelopment

    PubMed Central

    Catts, Vibeke S.; Fung, Samantha J.; Long, Leonora E.; Joshi, Dipesh; Vercammen, Ans; Allen, Katherine M.; Fillman, Stu G.; Rothmond, Debora A.; Sinclair, Duncan; Tiwari, Yash; Tsai, Shan-Yuan; Weickert, Thomas W.; Shannon Weickert, Cynthia

    2013-01-01

    The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis. PMID:23720610

  9. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should it be classified together as traumatic encephalopathy?

    PubMed Central

    Washington, Patricia M.; Villapol, Sonia; Burns, Mark P.

    2015-01-01

    Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer’s disease (AD), while mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position—examining epidemiological and case-control human studies, neuropathological evidence, and preclinical studies. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson’s disease. Further, human post-mortem studies on either single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a ‘polypathology’. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI are viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI. PMID:26091850

  10. Integrative Review: Post-Craniotomy Pain in the Brain Tumor Patient

    PubMed Central

    Guilkey, Rebecca Elizabeth; Von Ah, Diane; Carpenter, Janet S.; Stone, Cynthia; Draucker, Claire B.

    2015-01-01

    Aim To conduct an integrative review to examine evidence of pain and associated symptoms in adult (≥ 21 years of age), post-craniotomy, brain tumor patients hospitalized on intensive care units. Background Healthcare providers believe craniotomies are less painful than other surgical procedures. Understanding how post-craniotomy pain unfolds over time will help inform patient care and aid in future research and policy development. Design Systematic literature search to identify relevant literature. Information abstracted using the Theory of Unpleasant Symptoms’ concepts of influencing factors, symptom clusters and patient performance. Inclusion criteria were indexed, peer-reviewed, full-length, English-language articles. Keywords were ‘traumatic brain injury,’ ‘pain, post-operative,’ ‘brain injuries,’ ‘postoperative pain,’ ‘craniotomy,’ ‘decompressive craniectomy,’ and ‘trephining.’ Data sources Medline, OVID, PubMed and CINAHL databases from 2000 – 2014. Review Method Cooper’s five-stage integrative review method was used to assess and synthesize literature. Results The search yielded 115 manuscripts, with 26 meeting inclusion criteria. Most studies were randomized, controlled trials conducted outside of the United States. All tested pharmacological pain interventions. Post-craniotomy brain tumor pain was well-documented and associated with nausea, vomiting and changes in blood pressure and impacted patient length of hospital stay, but there was no consensus for how best to treat such pain. Conclusion The Theory of Unpleasant Symptoms provided structure to the search. Post-craniotomy pain is experienced by patients, but associated symptoms and impact on patient performance remain poorly understood. Further research is needed to improve understanding and management of post-craniotomy pain in this population. PMID:26734710

  11. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects.

    PubMed

    Lintas, Carla; Sacco, Roberto; Persico, Antonio M

    2016-01-01

    Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.

  12. The battle within: understanding the physiology of war-zone stress exposure.

    PubMed

    Bruner, Victoria E; Woll, Pamela

    2011-01-01

    Faced with pervasive loss, life threat, and moral conflict in the field of battle, the human body and brain adapt to extraordinary circumstances in extraordinary ways. These adaptations come at a high price, and many men and women returning from Iraq and Afghanistan are paying that price every day. For the clinician who seeks to help, an understanding of the physiology of war-zone stress and resilience is an essential foundation, both for recovery from post-traumatic stress disorder and other conditions, and for addressing the stigma and shame that keep many service members and veterans from seeking and accepting the help and support they need. This article explores ways in which the body and brain adapt to war-zone stress, resulting challenges, and implications for clinical services and ongoing recovery.

  13. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  14. Post-traumatic seizure susceptibility is attenuated by hypothermia therapy

    PubMed Central

    Atkins, Coleen M.; Truettner, Jessie S.; Lotocki, George; Sanchez-Molano, Juliana; Kang, Yuan; Alonso, Ofelia F.; Sick, Thomas J.; Dietrich, W. Dalton; Bramlett, Helen M.

    2010-01-01

    Traumatic brain injury (TBI) is a major risk factor for the subsequent development of epilepsy. Currently, chronic seizures after brain injury are often poorly controlled by available anti-epileptic drugs. Hypothermia treatment, a modest reduction in brain temperature, reduces inflammation, activates pro-survival signaling pathways, and improves cognitive outcome after TBI. Given the well-known effect of therapeutic hypothermia to ameliorate pathological changes in the brain after TBI, we hypothesized that hypothermia therapy may attenuate the development of post-traumatic epilepsy and some of the pathomechanisms that underlie seizure formation. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury, and then were maintained at normothermic or moderate hypothermic temperatures for 4 hr. At 12 weeks after recovery, seizure susceptibility was assessed by challenging the animals with pentylenetetrazole (PTZ), a GABAA receptor antagonist. PTZ elicited a significant increase in seizure frequency in TBI normothermic animals as compared to sham surgery animals and this was significantly reduced in TBI hypothermic animals. Early hypothermia treatment did not rescue chronic dentate hilar neuronal loss, nor did it improve loss of doublecortin-labeled cells in the dentate gyrus post-seizure. However, mossy fiber sprouting was significantly attenuated by hypothermia therapy. These findings demonstrate that reductions in seizure susceptibility after TBI are improved with post-traumatic hypothermia and provide a new therapeutic avenue for the treatment of post-traumatic epilepsy. PMID:21044182

  15. Caspase inhibitors increase the rate of recovery of neural stem/progenitor cells from post-mortem rat brains stored at room temperature.

    PubMed

    Hasegawa, Atsuko; Yamada, Chikako; Tani, Miho; Hirano, Shun-ichiro; Tokumoto, Yasuhito; Miyake, Jun

    2009-06-01

    To match the demand of regenerative medicine for nerve system, collection of stem cells from the post-mortem body is one of the most practical ways. In this study, the storage condition of the post-mortem body was examined. We prepared neural stem/progenitor cells (NSPCs) from post-mortem rat brains stored at different temperatures. When brains were stored at 4 degrees C, for one week, we were able to obtain neurospheres (a spheroid body containing NSPCs) by stimulation of cells with epidermal growth factor (EGF). Incremental increases in storage temperature decreased the rate of appearance of neurospheres. Within 48 h at 15 degrees C, 24 h at 25 degrees C, in both condition, we were able to recover NSPCs from post-mortem rat brains. At 15 degrees C, 90% of neurosphere-forming activity was lost within 24 h. However, even after 24 h at 25 degrees C, 2% neurosphere-forming activity remained. After 6 h of death, there was very little difference between the rates of NSPC recovery at 4 degrees C and 25 degrees C. Addition of caspase inhibitors to both the rat brain storage solution and the NSPC culture medium increased the rate of neurosphere-forming activity. In particular, an inhibitor of caspase-8 activity increased the NSPC recovery rate approximately three-fold, with no accompanying detrimental effects on neural differentiation in vitro.

  16. Novel Biomarkers of Human GM1 Gangliosidosis Reflect the Clinical Efficacy of Gene Therapy in a Feline Model.

    PubMed

    Gray-Edwards, Heather L; Regier, Debra S; Shirley, Jamie L; Randle, Ashley N; Salibi, Nouha; Thomas, Sarah E; Latour, Yvonne L; Johnston, Jean; Golas, Gretchen; Maguire, Annie S; Taylor, Amanda R; Sorjonen, Donald C; McCurdy, Victoria J; Christopherson, Peter W; Bradbury, Allison M; Beyers, Ronald J; Johnson, Aime K; Brunson, Brandon L; Cox, Nancy R; Baker, Henry J; Denney, Thomas S; Sena-Esteves, Miguel; Tifft, Cynthia J; Martin, Douglas R

    2017-04-05

    GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  17. The multisensory function of the human primary visual cortex.

    PubMed

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The pathophysiology of post-stroke aphasia: A network approach.

    PubMed

    Thiel, Alexander; Zumbansen, Anna

    2016-06-13

    Post-stroke aphasia syndromes as a clinical entity arise from the disruption of brain networks specialized in language production and comprehension due to permanent focal ischemia. This approach to post-stroke aphasia is based on two pathophysiological concepts: 1) Understanding language processing in terms of distributed networks rather than language centers and 2) understanding the molecular pathophysiology of ischemic brain injury as a dynamic process beyond the direct destruction of network centers and their connections. While considerable progress has been made in the past 10 years to develop such models on a systems as well as a molecular level, the influence of these approaches on understanding and treating clinical aphasia syndromes has been limited. In this article, we review current pathophysiological concepts of ischemic brain injury, their relationship to altered information processing in language networks after ischemic stroke and how these mechanisms may be influenced therapeutically to improve treatment of post-stroke aphasia. Understanding the pathophysiological mechanism of post-stroke aphasia on a neurophysiological systems level as well as on the molecular level becomes more and more important for aphasia treatment, as the field moves from standardized therapies towards more targeted individualized treatment strategies comprising behavioural therapies as well as non-invasive brain stimulation (NIBS).

  19. Intranasal Inhalations of Bioactive Factors Produced by M2 Macrophages in Patients With Organic Brain Syndrome

    ClinicalTrials.gov

    2017-11-06

    Organic Brain Syndrome, Nonpsychotic; Neurocognitive Disorders; Mental Disorder, Organic; Delirium, Dementia, Amnestic, Cognitive Disorders; Nonpsychotic Organic Brain Syndrome; Organic Mental Disorder; Encephalopathy, Post-Traumatic, Chronic; Encephalopathy, Ischemic; Brain Ischemia

  20. Whole Brain Magnetic Resonance Spectroscopic Determinants of Functional Outcomes in Pediatric Moderate/Severe Traumatic Brain Injury.

    PubMed

    Babikian, Talin; Alger, Jeffry R; Ellis-Blied, Monica U; Giza, Christopher C; Dennis, Emily; Olsen, Alexander; Mink, Richard; Babbitt, Christopher; Johnson, Jeff; Thompson, Paul M; Asarnow, Robert F

    2018-05-18

    Diffuse axonal injury contributes to the long-term functional morbidity observed after pediatric moderate/severe traumatic brain injury (msTBI). Whole-brain proton magnetic resonance echo-planar spectroscopic imaging was used to measure the neurometabolite levels in the brain to delineate the course of disruption/repair during the first year post-msTBI. The association between metabolite biomarkers and functional measures (cognitive functioning and corpus callosum [CC] function assessed by interhemispheric transfer time [IHTT] using an event related potential paradigm) was also explored. Pediatric patients with msTBI underwent assessments at two times (post-acutely at a mean of three months post-injury, n = 31, and chronically at a mean of 16 months post-injury, n = 24). Healthy controls also underwent two evaluations, approximately 12 months apart. Post-acutely, in patients with msTBI, there were elevations in choline (Cho; marker for inflammation and/or altered membrane metabolism) in all four brain lobes and the CC and decreases in N-acetylaspartate (NAA; marker for neuronal and axonal integrity) in the CC compared with controls, all of which normalized by the chronic time point. Subgroups of TBI showed variable patterns chronically. Patients with slow IHTT had lower lobar Cho chronically than those with normal IHTT; they also did not show normalization in CC NAA whereas those with normal IHTT showed significantly higher levels of CC NAA relative to controls. In the normal IHTT group only, chronic CC Cho and NAA together explained 70% of the variance in long-term cognitive functioning. MR based whole brain metabolic evaluations show different patterns of neurochemistry after msTBI in two subgroups with different outcomes. There is a dynamic relationship between prolonged inflammatory responses to brain damage, reparative processes/remyelination, and subsequent neurobehavioral outcomes. Multimodal studies allow us to test hypotheses about degenerative and reparative processes in patient groups that have divergent functional outcome, with the ultimate goal of developing targeted therapeutic agents.

  1. Emerging Trends in the Management of Brain Metastases from Non-small Cell Lung Cancer.

    PubMed

    Churilla, Thomas M; Weiss, Stephanie E

    2018-05-07

    To summarize current approaches in the management of brain metastases from non-small cell lung cancer (NSCLC). Local treatment has evolved from whole-brain radiotherapy (WBRT) to increasing use of stereotactic radiosurgery (SRS) alone for patients with limited (1-4) brain metastases. Trials have established post-operative SRS as an alternative to adjuvant WBRT following resection of brain metastases. Second-generation TKIs for ALK rearranged NSCLC have demonstrated improved CNS penetration and activity. Current brain metastasis trials are focused on reducing cognitive toxicity: hippocampal sparing WBRT, SRS for 5-15 metastases, pre-operative SRS, and use of systemic targeted agents or immunotherapy. The role for radiotherapy in the management of brain metastases is becoming better defined with local treatment shifting from WBRT to SRS alone for limited brain metastases and post-operative SRS for resected metastases. Further trials are warranted to define the optimal integration of newer systemic agents with local therapies.

  2. Increased Brain Activation for Foot Movement During 70-Day 6 Deg Head-Down Bed Rest (HDBR): Evidence from Functional Magnetic Resonance Imaging (fMRI)

    NASA Technical Reports Server (NTRS)

    Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.; hide

    2015-01-01

    Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12 days after HDBR. The observed effect of bed rest on brain activation during a foot tapping task could be linked to HDBR related changes in brain structure that we have recently reported. The relationship between pre- and post- HDBR changes in brain activation and performance in a functional mobility test will also be presented.

  3. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain

    PubMed Central

    Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal

    2014-01-01

    A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism. PMID:25692240

  4. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain.

    PubMed

    Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal

    2014-01-01

    A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.

  5. Safety and diagnostic value of brain biopsy in HIV patients: a case series and meta-analysis of 1209 patients.

    PubMed

    Lee, Ashley M; Bai, Harrison X; Zou, Yingjie; Qiu, Dongxu; Zhou, Jianhua; Martinez-Lage Alvarez, Maria; Zhang, Paul; Tao, Yongguang; Tang, Xiangqi; Xiao, Bo; Yang, Li

    2016-07-01

    Early brain biopsy may be indicated in HIV patients with focal brain lesion. This study aimed to evaluate and compare the safety and diagnostic value of brain biopsy in HIV patients in the pre-highly active antiretroviral therapy (HAART) versus post-HAART era via meta-analysis. Appropriate studies were identified per search criteria. The local database was retrospectively reviewed to select a similar patient cohort. Patient demographics, brain biopsy technique, histopathology and patient outcomes were extracted from each study. Study-specific outcomes were combined per random-effects model. Outcomes were compared between the pre-HAART and post-HAART era. Correlations between outcomes and baseline characteristics were assessed via meta-regression analysis. The proportions of histopathological diagnosis were tabulated and compared between the pre- and post-HAART era. Survival analysis was performed for patients in the post-HAART era. A total of 26 studies (including the local database) with 1209 patients were included in this meta-analysis. The most common indications for brain biopsy were diagnosis unlikely to be toxoplasmosis (n=8, 42.1%), focal brain lesion (n=5, 26.3%) or both (n=3, 15.8%). The weighted proportions for diagnostic success were 92% (95% CI 90.0% to 93.8%), change in management 57.7% (45.9% to 69.1%) and clinical improvement 36.6% (26.3% to 47.5%). Morbidity and mortality were 5.7% (3.6% to 8.3%) and 0.9% (0.3% to 1.9%), respectively. Diagnostic success rate was significantly higher in the post-HAART than the pre-HAART era (97.5% vs 91.9%, p=0.047). The odds ratio (OR) for diagnostic success in patients with contrast-enhanced lesions was 2.54 ((1.25 to 5.15), p<0.01). The median survival for HIV patients who underwent biopsy in the post-HAART era was 225 days (90-2446). Brain biopsy in HIV patients is safe with high diagnostic yield. Early brain biopsy should be considered in patients without classic presentation of toxoplasmosis encephalitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis

    DTIC Science & Technology

    2017-10-01

    subacute and chronic post -injury periods as a potential prognostic marker for PTE. The SNTF blood test is an electrochemiluminescence-based sandwich...contribution of each of these types of injury to epileptogenic brain activity and ultimately post traumatic epilepsy (PTE) is unclear, as are the mechanisms...nine months post injury, and blood biomarkers are being analyzed throughout in order to evaluate them as potential prognostic measures for the

  7. ELUCIDATING BRAIN CONNECTIVITY NETWORKS IN MAJOR DEPRESSIVE DISORDER USING CLASSIFICATION-BASED SCORING.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2014-04-01

    Graph theory is increasingly used in the field of neuroscience to understand the large-scale network structure of the human brain. There is also considerable interest in applying machine learning techniques in clinical settings, for example, to make diagnoses or predict treatment outcomes. Here we used support-vector machines (SVMs), in conjunction with whole-brain tractography, to identify graph metrics that best differentiate individuals with Major Depressive Disorder (MDD) from nondepressed controls. To do this, we applied a novel feature-scoring procedure that incorporates iterative classifier performance to assess feature robustness. We found that small-worldness , a measure of the balance between global integration and local specialization, most reliably differentiated MDD from nondepressed individuals. Post-hoc regional analyses suggested that heightened connectivity of the subcallosal cingulate gyrus (SCG) in MDDs contributes to these differences. The current study provides a novel way to assess the robustness of classification features and reveals anomalies in large-scale neural networks in MDD.

  8. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity

    PubMed Central

    Pohodich, Amy E; Yalamanchili, Hari; Raman, Ayush T; Wan, Ying-Wooi; Gundry, Michael; Hao, Shuang; Jin, Haijing; Tang, Jianrong; Liu, Zhandong

    2018-01-01

    Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer’s patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17–24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders. PMID:29570050

  9. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.

    PubMed

    Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A

    2006-04-01

    Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.

  10. Engraftment of Human Mesenchymal Stem Cells in a Rat Photothrombotic Cerebral Infarction Model : Comparison of Intra-Arterial and Intravenous Infusion Using MRI and Histological Analysis

    PubMed Central

    Byun, Jun Soo; Kim, Jae Kyun; Jung, Jisung; Ha, Bon Chul; Park, Serah

    2013-01-01

    Objective This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2* weighted image (T2*WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2*WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain. PMID:24527188

  11. A brain imaging repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS).

    PubMed

    Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Robson, Andrew; Danso, Sammy; Pernet, Cyril; Bastin, Mark E; Boardman, James P; Murray, Alison D; Ahearn, Trevor; Waiter, Gordon D; Staff, Roger T; Deary, Ian J; Shenkin, Susan D; Wardlaw, Joanna M

    2017-01-01

    The Brain Images of Normal Subjects (BRAINS) Imagebank (http://www.brainsimagebank.ac.uk) is an integrated repository project hosted by the University of Edinburgh and sponsored by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaborators. BRAINS provide sharing and archiving of detailed normal human brain imaging and relevant phenotypic data already collected in studies of healthy volunteers across the life-course. It particularly focusses on the extremes of age (currently older age, and in future perinatal) where variability is largest, and which are under-represented in existing databanks. BRAINS is a living imagebank where new data will be added when available. Currently BRAINS contains data from 808 healthy volunteers, from 15 to 81years of age, from 7 projects in 3 centres. Additional completed and ongoing studies of normal individuals from 1st to 10th decades are in preparation and will be included as they become available. BRAINS holds several MRI structural sequences, including T1, T2, T2* and fluid attenuated inversion recovery (FLAIR), available in DICOM (http://dicom.nema.org/); in future Diffusion Tensor Imaging (DTI) will be added where available. Images are linked to a wide range of 'textual data', such as age, medical history, physiological measures (e.g. blood pressure), medication use, cognitive ability, and perinatal information for pre/post-natal subjects. The imagebank can be searched to include or exclude ranges of these variables to create better estimates of 'what is normal' at different ages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice

    PubMed Central

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-01-01

    Background Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor β1 (TGF-β1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), β-amyloid precursor proteins (AβPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. Methods BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-β1, S100B, NF-L, tTG, AβPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Conclusion Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AβPP and phosphorylated tau emerged in the brain. PMID:18573219

  13. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice.

    PubMed

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-06-24

    Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AbetaPP and phosphorylated tau emerged in the brain.

  14. Acquired hearing loss and brain plasticity.

    PubMed

    Eggermont, Jos J

    2017-01-01

    Acquired hearing loss results in an imbalance of the cochlear output across frequency. Central auditory system homeostatic processes responding to this result in frequency specific gain changes consequent to the emerging imbalance between excitation and inhibition. Several consequences thereof are increased spontaneous firing rates, increased neural synchrony, and (in adults) potentially restricted to the auditory thalamus and cortex a reorganization of tonotopic areas. It does not seem to matter much whether the hearing loss is acquired neonatally or in adulthood. In humans, no clear evidence of tonotopic map changes with hearing loss has so far been provided, but frequency specific gain changes are well documented. Unilateral hearing loss in addition makes brain activity across hemispheres more symmetrical and more synchronous. Molecular studies indicate that in the brainstem, after 2-5 days post trauma, the glutamatergic activity is reduced, whereas glycinergic and GABAergic activity is largely unchanged. At 2 months post trauma, excitatory activity remains decreased but the inhibitory one is significantly increased. In contrast protein assays related to inhibitory transmission are all decreased or unchanged in the brainstem, midbrain and auditory cortex. Comparison of neurophysiological data with the molecular findings during a time-line of changes following noise trauma suggests that increases in spontaneous firing rates are related to decreases in inhibition, and not to increases in excitation. Because noise-induced hearing loss in cats resulted in a loss of cortical temporal processing capabilities, this may also underlie speech understanding in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice.

    PubMed

    Tseng, Ling-Shu; Chen, Sheng-Hsien; Lin, Mao-Tsun; Lin, Ying-Chu

    2015-01-01

    Stem cells from human exfoliated deciduous tooth pulp (SHED) is a promising approach for the treatment of stroke and spinal cord injury. In this study, we investigated the therapeutic effects of SHED for the treatment of multiple organ (including brain, particularly hypothalamus) injury in heatstroke mice. ICR male mice were exposed to whole body heating (WBH; 41.2°C, relative humidity 50-55%, for 1 h) and then returned to normal room temperature (26°C). We observed that intravenous administration of SHED immediately post-WBH exhibited the following therapeutic benefits for recovery after heatstroke: (a) inhibition of WBH-induced neurologic and thermoregulatory deficits; (b) reduction of WBH-induced ischemia, hypoxia, and oxidative damage to the brain (particularly the hypothalamus); (c) attenuation of WBH-induced increased plasma levels of systemic inflammatory response molecules, such as tumor necrosis factor-α and intercellular adhesion molecule-1; (d) improvement of WBH-induced hypothalamo-pituitary-adrenocortical (HPA) axis activity (as reflected by enhanced plasma levels of both adrenocorticotrophic hormone and corticosterone); and (e) attenuation of WBH-induced multiple organ apoptosis as well as lethality. In conclusion, post-WBH treatment with SHED reduced induction of proinflammatory cytokines and oxidative radicals, enhanced plasma induction of both adrenocorticotrophic hormone and corticosterone, and improved lethality in mouse heatstroke. The protective effect of SHED may be related to a decreased inflammatory response, decreased oxidative stress, and an increased HPA axis activity following the WBH injury.

  16. Post traumatic Headache and Psychological Health: Mindfulness Training for Mild TraumaticBrain Injury

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-10-1-1021 TITLE: Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury...traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...health, and quality of life of our soldiers. This project addresses multiple FY09 TBI/PH topic areas by validating an evidence-based, mind -body approach

  17. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia.

    PubMed

    Chen, Aiqing; Akinyemi, Rufus O; Hase, Yoshiki; Firbank, Michael J; Ndung'u, Michael N; Foster, Vincent; Craggs, Lucy J L; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J; Polvikoski, Tuomo M; Allan, Louise M; Oakley, Arthur E; O'Brien, John T; Horsburgh, Karen; Ihara, Masafumi; Kalaria, Raj N

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with disrupted end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or blood-brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post-mortem brains from adult baboons with cerebral hypoperfusive injury, induced by occlusion of three major vessels supplying blood to the brain. Analysis of the frontal white matter in perfused brains from the animals surviving 1-28 days after occlusion revealed that the highest intensity of fibrinogen immunoreactivity was at 14 days. At this survival time point, we also noted strikingly similar redistribution of AQP4 and GFAP+ astrocytes transformed into clasmatodendrocytes. Our findings suggest novel associations between irreversible astrocyte injury and disruption of gliovascular interactions at the blood-brain barrier in the frontal white matter and cognitive impairment in elderly post-stroke survivors. We propose that clasmatodendrosis is another pathological substrate, linked to white matter hyperintensities and frontal white matter changes, which may contribute to post-stroke or small vessel disease dementia. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. [Alterations of brain network efficiency in patients with post-concussion syndrome].

    PubMed

    Peng, Nan; Qian, Ruobing; Fu, Xianming; Li, Shunli; Kang, Zhiqiang; Lin, Bin; Ji, Xuebing; Wei, Xiangpin; Niu, Chaoshi; Wang, Yehan

    2015-07-07

    To discuss the alterations of brain network efficiency in patients with post-concussion syndrome. A total of 23 patients from Anhui Provincial Hospital in the period from 2013/6 to 2014/3 who have had the concussion for 3 months were enrolled and 23 volunteers paired in sex, age and education were also enrolled as healthy controls. Comparisons of selective attention of both groups were conducted using Stroop Word-Color Test. The data of resting-state functional magnetic resonance imaging (fMRI) in both groups were collected and the data were dealt with Network Construction which is a part of GRETNA software to obtain the Matrix of brain network. Network analysis was used to obtain Global and Nodal efficiency, then independent t-test was used for statistical analyses of the value of Global and Nodal efficiency. The difference in Global efficiency of two groups in every threshold value had no statistical significance. Compared with healthy controls, the Nodal efficiencies in patients with post-concussion syndrome were significantly different in the brain regions as below: left orbital middle frontal gyrus, left posterior cingulate, left lingual, left thalamus, left superior temporal gyrus, right anterior cingulate, right posterior cingulate, right supramarginalgyrus. Compared with healthy controls, there is no significant changes of Globe efficiency in patients with post-concussion syndrome, and the brain function deficits in these patients may be caused by changes of Nodal efficiency in their brain network.

  19. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease.

    PubMed

    Wang, Sheng; Yang, Feng; Petyuk, Vladislav A; Shukla, Anil K; Monroe, Matthew E; Gritsenko, Marina A; Rodland, Karin D; Smith, Richard D; Qian, Wei-Jun; Gong, Cheng-Xin; Liu, Tao

    2017-09-01

    Protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer's disease (AD); however, detailed molecular characterization of this important protein post-translational modification at the proteome level has been highly challenging, owing to its low stoichiometry and labile nature. Herein, we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in postmortem human brain tissues with and without AD by the use of isobaric tandem mass tag labelling, chemoenzymatic photocleavage enrichment, and liquid chromatography coupled to mass spectrometry. A total of 1850 O-GlcNAc peptides covering 1094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. One hundred and thirty-one O-GlcNAc peptides covering 81 proteins were altered in AD brains as compared with controls (q < 0.05). Moreover, alteration of O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic AD. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. The elephant brain in numbers

    PubMed Central

    Herculano-Houzel, Suzana; Avelino-de-Souza, Kamilla; Neves, Kleber; Porfírio, Jairo; Messeder, Débora; Mattos Feijó, Larissa; Maldonado, José; Manger, Paul R.

    2014-01-01

    What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (109) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals. PMID:24971054

  1. Iron assessment to protect the developing brain.

    PubMed

    Georgieff, Michael K

    2017-12-01

    Iron deficiency (ID) before the age of 3 y can lead to long-term neurological deficits despite prompt diagnosis of ID anemia (IDA) by screening of hemoglobin concentrations followed by iron treatment. Furthermore, pre- or nonanemic ID alters neurobehavioral function and is 3 times more common than IDA in toddlers. Given the global prevalence of ID and the enormous societal cost of developmental disabilities across the life span, better methods are needed to detect the risk of inadequate concentrations of iron for brain development (i.e., brain tissue ID) before dysfunction occurs and to monitor its amelioration after diagnosis and treatment. The current screening and treatment strategy for IDA fails to achieve this goal for 3 reasons. First, anemia is the final state in iron depletion. Thus, the developing brain is already iron deficient when IDA is diagnosed owing to the prioritization of available iron to red blood cells over all other tissues during negative iron balance in development. Second, brain ID, independently of IDA, is responsible for long-term neurological deficits. Thus, starting iron treatment after the onset of IDA is less effective than prevention. Multiple studies in humans and animal models show that post hoc treatment strategies do not reliably prevent ID-induced neurological deficits. Third, most currently used indexes of ID are population statistical cutoffs for either hematologic or iron status but are not bioindicators of brain ID and brain dysfunction in children. Furthermore, their relation to brain iron status is not known. To protect the developing brain, there is a need to generate serum measures that index brain dysfunction in the preanemic stage of ID, assess the ability of standard iron indicators to detect ID-induced brain dysfunction, and evaluate the efficacy of early iron treatment in preventing ID-induced brain dysfunction. © 2017 American Society for Nutrition.

  2. Metformin Preconditioning of Human induced Pluripotent Stem Cell-derived Neural Stem Cells Promotes Their Engraftment and Improves Post-Stroke Regeneration and Recovery.

    PubMed

    Ould-Brahim, Fares; Sarma, Sailendra Nath; Syal, Charvi; Lu, Kevin Jiaqi; Seegobin, Matthew; Carter, Anthony; Jeffers, Matthew S; Doré, Carole; Stanford, William; Corbett, Dale; Wang, Jing

    2018-06-12

    While transplantation of hiPSC-derived neural stem cells (hiPSC-NSCs) shows therapeutic potential in animal stroke models, major concerns for translating hiPSC therapy to the clinic are efficacy and safety. Therefore, there is a demand to develop an optimal strategy to enhance the engraftment and regenerative capacity of transplanted hiPSC-NSCs in order to produce fully differentiated neural cells to replace lost brain tissues. Metformin, an FDA approved drug, is an optimal neuroregenerative agent that not only promotes NSC proliferation but also drives NSC towards differentiation. In this regard, we hypothesize that preconditioning of hiPSC-NSCs with metformin before transplantation into the stroke-damaged brain will improve engraftment and regenerative capabilities of hiPSC-NSCs, ultimately enhancing functional recovery. Here we show that pretreatment of hiPSC-NSCs with metformin enhances the proliferation and differentiation of hiPSC-NSCs in culture. Furthermore, metformin-preconditioned hiPSC-NSCs show increased engraftment 1-week post-transplant in a rat endothelin-1 focal ischemic stroke model. In addition, metformin preconditioned cell grafts exhibit increased survival compared to naïve cell grafts at 7-week post-transplant. Analysis of the grafts demonstrates that metformin preconditioning enhances the differentiation of hiPSC-NSCs. As an outcome, rats receiving metformin preconditioned cells display accelerated gross motor recovery and reduced infarct volume. These studies represent a vital step forward in the optimization of hiPSC-NSC based transplantation to promote post-stroke recovery.

  3. A review of the neuro- and systemic inflammatory responses in post concussion symptoms: Introduction of the "post-inflammatory brain syndrome" PIBS.

    PubMed

    Rathbone, Alasdair Timothy Llewelyn; Tharmaradinam, Surejini; Jiang, Shucui; Rathbone, Michel P; Kumbhare, Dinesh A

    2015-05-01

    Post-concussion syndrome is an aggregate of symptoms that commonly present together after head injury. These symptoms, depending on definition, include headaches, dizziness, neuropsychiatric symptoms, and cognitive impairment. However, these symptoms are common, occurring frequently in non-head injured controls, leading some to question the existence of post-concussion syndrome as a unique syndrome. Therefore, some have attempted to explain post-concussion symptoms as post-traumatic stress disorder, as they share many similar symptoms and post-traumatic stress disorder does not require head injury. This explanation falls short as patients with post-concussion syndrome do not necessarily experience many key symptoms of post-traumatic stress disorder. Therefore, other explanations must be sought to explain the prevalence of post-concussion like symptoms in non-head injury patients. Many of the situations in which post-concussion syndrome like symptoms may be experienced such as infection and post-surgery are associated with systemic inflammatory responses, and even neuroinflammation. Post-concussion syndrome itself has a significant neuroinflammatory component. In this review we examine the evidence of neuroinflammation in post-concussion syndrome and the potential role systemic inflammation plays in post-concussion syndrome like symptoms. We conclude that given the overlap between these conditions and the role of inflammation in their etiologies, a new term, post-inflammatory brain syndromes (PIBS), is necessary to describe the common outcomes of many different inflammatory insults. The concept of post-concussion syndrome is in its evolution therefore, the new term post-inflammatory brain syndromes provides a better understanding of etiology of its wide-array of symptoms and the wide array of conditions they can be seen in. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

  5. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury PCS and PTSD

    DTIC Science & Technology

    2015-10-01

    hyperbaric oxygen therapy; TBI: traumatic brain injury; PPCS: persistent post- concussion syndrome 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...persistent post- concussion syndrome (PPCS). Evidence-based medicine exists for PTSD, but there is no effective treatment for the persistent post... concussion syndrome (PPCS) of mild-moderate TBI nor the combined diagnoses of PPCS and PTSD. Between the Fall of 2008 and end of 2010, the P.I

  6. Animal models of post-traumatic epilepsy.

    PubMed

    Ostergard, Thomas; Sweet, Jennifer; Kusyk, Dorian; Herring, Eric; Miller, Jonathan

    2016-10-15

    Post-traumatic epilepsy (PTE) is defined as the development of unprovoked seizures in a delayed fashion after traumatic brain injury (TBI). PTE lies at the intersection of two distinct fields of study, epilepsy and neurotrauma. TBI is associated with a myriad of both focal and diffuse anatomic injuries, and an ideal animal model of epilepsy after TBI must mimic the characteristics of human PTE. The three most commonly used models of TBI are lateral fluid percussion, controlled cortical injury, and weight drop. Much of what is known about PTE has resulted from use of these models. In this review, we describe the most commonly used animal models of TBI with special attention to their advantages and disadvantages with respect to their use as a model of PTE. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Banking brain tissue for research.

    PubMed

    Klioueva, Natasja; Bovenberg, Jasper; Huitinga, Inge

    2017-01-01

    Well-characterized human brain tissue is crucial for scientific breakthroughs in research of the human brain and brain diseases. However, the collection, characterization, management, and accessibility of brain human tissue are rather complex. Well-characterized human brain tissue is often provided from private, sometimes small, brain tissue collections by (neuro)pathologic experts. However, to meet the increasing demand for human brain tissue from the scientific community, many professional brain-banking activities aiming at both neurologic and psychiatric diseases as well as healthy controls are currently being initiated worldwide. Professional biobanks are open-access and in many cases run donor programs. They are therefore costly and need effective business plans to guarantee long-term sustainability. Here we discuss the ethical, legal, managerial, and financial aspects of professional brain banks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery

    NASA Astrophysics Data System (ADS)

    Goodfellow, M.; Rummel, C.; Abela, E.; Richardson, M. P.; Schindler, K.; Terry, J. R.

    2016-07-01

    Surgery is a valuable option for pharmacologically intractable epilepsy. However, significant post-operative improvements are not always attained. This is due in part to our incomplete understanding of the seizure generating (ictogenic) capabilities of brain networks. Here we introduce an in silico, model-based framework to study the effects of surgery within ictogenic brain networks. We find that factors conventionally determining the region of tissue to resect, such as the location of focal brain lesions or the presence of epileptiform rhythms, do not necessarily predict the best resection strategy. We validate our framework by analysing electrocorticogram (ECoG) recordings from patients who have undergone epilepsy surgery. We find that when post-operative outcome is good, model predictions for optimal strategies align better with the actual surgery undertaken than when post-operative outcome is poor. Crucially, this allows the prediction of optimal surgical strategies and the provision of quantitative prognoses for patients undergoing epilepsy surgery.

  9. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia.

    PubMed

    Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi

    2009-01-01

    Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.

  10. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia

    PubMed Central

    Chen, Aiqing; Akinyemi, Rufus O.; Hase, Yoshiki; Firbank, Michael J.; Ndung’u, Michael N.; Foster, Vincent; Craggs, Lucy J. L.; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J.; Polvikoski, Tuomo M.; Allan, Louise M.; Oakley, Arthur E.; O’Brien, John T.; Horsburgh, Karen; Ihara, Masafumi

    2016-01-01

    Abstract White matter hyperintensities as seen on brain T 2 -weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects ( P = 0.026) and by 11-fold in older controls versus young controls ( P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with disrupted end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or blood–brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post-mortem brains from adult baboons with cerebral hypoperfusive injury, induced by occlusion of three major vessels supplying blood to the brain. Analysis of the frontal white matter in perfused brains from the animals surviving 1–28 days after occlusion revealed that the highest intensity of fibrinogen immunoreactivity was at 14 days. At this survival time point, we also noted strikingly similar redistribution of AQP4 and GFAP+ astrocytes transformed into clasmatodendrocytes. Our findings suggest novel associations between irreversible astrocyte injury and disruption of gliovascular interactions at the blood–brain barrier in the frontal white matter and cognitive impairment in elderly post-stroke survivors. We propose that clasmatodendrosis is another pathological substrate, linked to white matter hyperintensities and frontal white matter changes, which may contribute to post-stroke or small vessel disease dementia. PMID:26667280

  11. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  12. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Human rabies in India: an audit from a rabies diagnostic laboratory.

    PubMed

    Mani, Reeta Subramaniam; Anand, Ashwini Manoor; Madhusudana, Shampur Narayan

    2016-04-01

    Rabies, an acute progressive encephalomyelitis, continues to be a serious public health problem in India and many other countries in Asia and Africa. The low level of commitment to rabies control is partly attributable to challenges in laboratory diagnosis and lack of adequate surveillance to indicate the disease burden. A laboratory audit of human rabies cases was undertaken to disseminate information on the clinical, demographic, prophylactic and most importantly the laboratory diagnostic aspects of rabies. A retrospective analysis of all clinically suspected human rabies cases, whose samples were received at a rabies diagnostic laboratory in South India in the last 3 years, was performed. Clinical and demographic details of patients were obtained. The clinical samples included cerebrospinal fluid (CSF), serum, saliva and nuchal skin biopsy collected antemortem, and brain tissue obtained post-mortem. Various laboratory tests were performed for diagnosis. Clinical samples from 128 patients with suspected rabies, from 11 states in India, were received for diagnostic confirmation. About 94% of the victims reported dog-bites, more than a third of them were children and most of the victims did not receive adequate post-exposure prophylaxis. Antemortem confirmation of rabies by a combination of laboratory diagnostic assays (detection of viral RNA in CSF, skin and saliva, and neutralising antibodies in CSF) could be achieved in 40.6% cases. Increasing awareness about adequate post-exposure prophylaxis, additional rabies diagnostic facilities, and enhanced human and animal rabies surveillance to indicate the true disease burden are essential to control this fatal disease. © 2016 John Wiley & Sons Ltd.

  14. Therapeutic approaches for HER2-positive brain metastases: Circumventing the blood–brain barrier

    PubMed Central

    Mehta, Ankit I.; Brufsky, Adam M.; Sampson, John H.

    2015-01-01

    We aim to summarize data from studies of trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)–positive metastatic breast cancer (MBC) and brain metastasis and to describe novel methods being developed to circumvent the blood–brain barrier (BBB). A literature search was conducted to obtain data on the clinical efficacy of trastuzumab and lapatinib in patients with HER2-positive MBC and brain metastasis, as well as the transport of therapeutic molecules across the BBB. Trastuzumab-based therapy is the standard of care for patients with HER2-positive MBC. Post hoc and retrospective analyses show that trastuzumab significantly prolongs overall survival when given after the diagnosis of central nervous system (CNS) metastasis; this is probably attributable to its control of extracranial disease, although trastuzumab may have a direct effect on CNS disease in patients with local or general perturbation of the BBB. In patients without a compromised BBB, trastuzumab is thought to have limited access to the brain, because of its relatively large molecular size. Several approaches are being developed to enhance the delivery of therapeutic agents to the brain. These include physical or pharmacologic disruption of the BBB, direct intracerebral drug delivery, drug manipulation, and coupling drugs to transport vectors. Available data suggest that trastuzumab extends survival in patients with HER2-positive MBC and brain metastasis. Novel methods for delivery of therapeutic agents into the brain could be used in the future to enhance access to the CNS by trastuzumab, thereby improving its efficacy in this setting. PMID:22727691

  15. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data.

    PubMed

    Roldan-Valadez, Ernesto; Rios, Camilo; Suarez-May, Marcela A; Favila, Rafel; Aguilar-Castañeda, Erika

    2013-12-01

    Macroanatomical right-left hemispheric differences in the brain are termed asymmetries, although there is no clear information on the global influence of gender and brain-regions. The aim of this study was to evaluate the main effects and interactions of these variables on the measurement of volumetric asymmetry indices (VAIs). Forty-seven healthy young-adult volunteers (23 males, 24 females) agreed to undergo brain magnetic resonance imaging in a 3T scanner. Image post processing using voxel-based volumetry allowed the calculation of 54 VAIs from the frontal, temporal, parietal and occipital lobes, limbic system, basal ganglia, and cerebellum for each cerebral hemisphere. Multivariate ANCOVA analysis calculated the main effects and interactions on VAIs of gender and brain regions controlling the effect of age. The only significant finding was the main effect of brain regions (F (6, 9373.605) 44.369, P < .001; partial η2 = .101, and power of 1.0), with no significant interaction between gender and brain regions (F (6, 50.517) .239, P = .964). Volumetric asymmetries are present across all brain regions, with larger values found in the limbic system and parietal lobe. The absence of a significant influence of gender and age in the evaluation of the numerous measurements generated by multivariate analyses in this study should not discourage researchers to report and interpret similar results, as this topic still deserves further assessment. Copyright © 2013 Wiley Periodicals, Inc.

  16. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy.

    PubMed

    Montaldo, Paolo; Chaban, Badr; Lally, Peter J; Sebire, Neil J; Taylor, Andrew M; Thayyil, Sudhin

    2015-11-01

    Post-mortem (PM) magnetic resonance imaging (MRI) is increasingly used as an alternative to conventional autopsy in babies dying from neonatal encephalopathy. However, the confounding effect of post-mortem changes on the detection of ante-mortem ischemic injury is unclear. We examined whether quantitative MR measurements can accurately distinguish ante-mortem ischemic brain injury from artifacts using post-mortem MRI. We compared PM brain MRI (1.5 T Siemens, Avanto) in 7 infants who died with neonatal encephalopathy (NE) of presumed hypoxic-ischemic origin with 7 newborn infants who had sudden unexplained neonatal death (SUND controls) without evidence of hypoxic-ischemic brain injury at autopsy. We measured apparent diffusion coefficients (ADCs), T1-weighted signal intensity ratios (SIRs) compared to vitreous humor and T2 relaxation times from 19 predefined brain areas typically involved in neonatal encephalopathy. There were no differences in mean ADC values, SIRs on T1-weighted images or T2 relaxation times in any of the 19 predefined brain areas between NE and SUND infants. All MRI images showed loss of cortical gray/white matter differentiation, loss of the normal high signal intensity (SI) in the posterior limb of the internal capsule on T1-weighted images, and high white matter SI on T2-weighted images. Normal post-mortem changes may be easily mistaken for ante-mortem ischemic injury, and current PM MRI quantitative assessment cannot reliably distinguish these. These findings may have important implications for appropriate interpretation of PM imaging findings, especially in medico-legal practice. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  17. Resected Brain Tissue, Seizure Onset Zone and Quantitative EEG Measures: Towards Prediction of Post-Surgical Seizure Control

    PubMed Central

    Andrzejak, Ralph G.; Hauf, Martinus; Pollo, Claudio; Müller, Markus; Weisstanner, Christian; Wiest, Roland; Schindler, Kaspar

    2015-01-01

    Background Epilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure. Methods Despite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels. Results In patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings). The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied. Conclusions We conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that spatially extended networks might be more relevant for seizure generation, evolution and termination than a single highly localized brain region (i.e. a “focus”) where seizures start. PMID:26513359

  18. Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy?

    PubMed Central

    Elder, Gregory A.; Stone, James R.; Ahlers, Stephen T.

    2014-01-01

    High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system. PMID:25566175

  19. Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates

    PubMed Central

    Valero-Cabre, Antoni; Wattiez, Nicolas; Monfort, Morgane; François, Chantal; Rivaud-Péchoux, Sophie; Gaymard, Bertrand; Pouget, Pierre

    2012-01-01

    A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes. PMID:22701691

  20. Kv10.1 potassium channel: from the brain to the tumors.

    PubMed

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  1. Molecular Imaging of Neuropsychiatric Symptoms in Alzheimer’s and Parkinson’s disease

    PubMed Central

    Hirao, Kentaro; Pontone, Gregory M.; Smith, Gwenn S.

    2015-01-01

    Neuropsychiatric symptoms (NPS) are very common in neurodegenerative diseases and are a major contributor to disability and caregiver burden. There is accumulating evidence that NPS may be a prodrome of neurodegenerative diseases and are associated with functional decline. The medications used to treat these symptoms in younger patients are not very effective in patients with neurodegenerative disease and may have serious side effects. An understanding of the neurobiology of NPS is critical for the development of more effective intervention strategies. Targeting these symptoms may also have implications for prevention of cognitive or motor decline. Molecular brain imaging represents a bridge between basic and clinical observations and provides many opportunities for translation from animal models and human post-mortem studies to in vivo human studies. Molecular brain imaging studies in Alzheimer’s disease (AD) and Parkinson’s disease (PD) are reviewed with a primary focus on positron emission tomography studies of NPS. Future directions for the field of molecular imaging in AD and PD to understand the neurobiology of NPS will be discussed. PMID:25446948

  2. Molecular hierarchy in neurons differentiated from mouse ES cells containing a single human chromosome 21.

    PubMed

    Wang, Chi Chiu; Kadota, Mitsutaka; Nishigaki, Ryuichi; Kazuki, Yasuhiro; Shirayoshi, Yasuaki; Rogers, Michael Scott; Gojobori, Takashi; Ikeo, Kazuho; Oshimura, Mitsuo

    2004-02-06

    Defects in neurogenesis and neuronal differentiation in the fetal brain of Down syndrome (DS) patients lead to the apparent neuropathological abnormalities and contribute to the phenotypic characters of mental retardation, and premature development of Alzheimer's disease, those being the most common phenotype in DS. In order to understand the molecular mechanism underlying the cause of phenotypic abnormalities in the DS brain, we have utilized an in vitro model of TT2F mouse embryonic stem cells containing a single human chromosome 21 (hChr21) to study neuron development and neuronal differentiation by microarray containing 15K developmentally expressed cDNAs. Defective neuronal differentiation in the presence of extra hChr21 manifested primarily the post-transcriptional and translational modification, such as Mrpl10, SNAPC3, Srprb, SF3a60 in the early neuronal stem cell stage, and Mrps18a, Eef1g, and Ubce8 in the late differentiated stage. Hierarchical clustering patterned specific expression of hChr21 gene dosage effects on neuron outgrowth, migration, and differentiation, such as Syngr2, Dncic2, Eif3sf, and Peg3.

  3. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using 18F-FDG PET and MRI

    PubMed Central

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-01-01

    Abstract Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD. PMID:27082610

  4. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using ¹⁸F-FDG PET and MRI.

    PubMed

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-04-01

    Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD.

  5. Emotional Prosody Processing in Epilepsy: Some Insights on Brain Reorganization.

    PubMed

    Alba-Ferrara, Lucy; Kochen, Silvia; Hausmann, Markus

    2018-01-01

    Drug resistant epilepsy is one of the most complex, multifactorial and polygenic neurological syndrome. Besides its dynamicity and variability, it still provides us with a model to study brain-behavior relationship, giving cues on the anatomy and functional representation of brain function. Given that onset zone of focal epileptic seizures often affects different anatomical areas, cortical but limited to one hemisphere, this condition also let us study the functional differences of the left and right cerebral hemispheres. One lateralized function in the human brain is emotional prosody, and it can be a useful ictal sign offering hints on the location of the epileptogenic zone. Besides its importance for effective communication, prosody is not considered an eloquent domain, making resective surgery on its neural correlates feasible. We performed an Electronic databases search (Medline and PsychINFO) from inception to July 2017 for studies about prosody in epilepsy. The search terms included "epilepsy," "seizure," "emotional prosody," and "vocal affect." This review focus on emotional prosody processing in epilepsy as it can give hints regarding plastic functional changes following seizures (preoperatively), resection (post operatively), and also as an ictal sign enabling the assessment of dynamic brain networks. Moreover, it is argued that such reorganization can help to preserve the expression and reception of emotional prosody as a central skill to develop appropriate social interactions.

  6. Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates

    PubMed Central

    Bartels, Markus F.; Winterhalter, Patrick R.; Yu, Jin; Liu, Yan; Lommel, Mark; Möhrlen, Frank; Hu, Huaiyu; Feizi, Ten; Westerlind, Ulrika; Ruppert, Thomas; Strahl, Sabine

    2016-01-01

    Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins. PMID:27812179

  7. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    PubMed

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  8. Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight

    NASA Technical Reports Server (NTRS)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; hide

    2017-01-01

    Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.

  9. Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I.

    PubMed

    Belur, Lalitha R; Temme, Alexa; Podetz-Pedersen, Kelly M; Riedl, Maureen; Vulchanova, Lucy; Robinson, Nicholas; Hanson, Leah R; Kozarsky, Karen F; Orchard, Paul J; Frey, William H; Low, Walter C; McIvor, R Scott

    2017-07-01

    Mucopolysaccharidosis type I (MPS I) is a progressive, multi-systemic, inherited metabolic disease caused by deficiency of α-L-iduronidase (IDUA). Current treatments for this disease are ineffective in treating central nervous system (CNS) disease due to the inability of lysosomal enzymes to traverse the blood-brain barrier. A noninvasive and effective approach was taken in the treatment of CNS disease by intranasal administration of an IDUA-encoding adeno-associated virus serotype 9 (AAV9) vector. Adult IDUA-deficient mice aged 3 months were instilled intranasally with AAV9-IDUA vector. Animals sacrificed 5 months post instillation exhibited IDUA enzyme activity levels that were up to 50-fold that of wild-type mice in the olfactory bulb, with wild-type levels of enzyme restored in all other parts of the brain. Intranasal treatment with AAV9-IDUA also resulted in the reduction of tissue glycosaminoglycan storage materials in the brain. There was strong IDUA immunofluorescence staining of tissue sections observed in the nasal epithelium and olfactory bulb, but there was no evidence of the presence of transduced cells in other portions of the brain. This indicates that reduction of storage materials most likely occurred as a result of enzyme diffusion from the olfactory bulb and the nasal epithelium into deeper areas of the brain. At 8 months of age, neurocognitive testing using the Barnes maze to assess spatial navigation demonstrated that treated IDUA-deficient mice were no different from normal control animals, while untreated IDUA-deficient mice exhibited significant learning and navigation deficits. This novel, noninvasive strategy for intranasal AAV9-IDUA instillation could potentially be used to treat CNS manifestations of human MPS I.

  10. PANDA: a pipeline toolbox for analyzing brain diffusion images

    PubMed Central

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named “Pipeline for Analyzing braiN Diffusion imAges” (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies. PMID:23439846

  11. Hominin life history: reconstruction and evolution

    PubMed Central

    Robson, Shannen L; Wood, Bernard

    2008-01-01

    In this review we attempt to reconstruct the evolutionary history of hominin life history from extant and fossil evidence. We utilize demographic life history theory and distinguish life history variables, traits such as weaning, age at sexual maturity, and life span, from life history-related variables such as body mass, brain growth, and dental development. The latter are either linked with, or can be used to make inferences about, life history, thus providing an opportunity for estimating life history parameters in fossil taxa. We compare the life history variables of modern great apes and identify traits that are likely to be shared by the last common ancestor of Pan-Homo and those likely to be derived in hominins. All great apes exhibit slow life histories and we infer this to be true of the last common ancestor of Pan-Homo and the stem hominin. Modern human life histories are even slower, exhibiting distinctively long post-menopausal life spans and later ages at maturity, pointing to a reduction in adult mortality since the Pan-Homo split. We suggest that lower adult mortality, distinctively short interbirth intervals, and early weaning characteristic of modern humans are derived features resulting from cooperative breeding. We evaluate the fidelity of three life history-related variables, body mass, brain growth and dental development, with the life history parameters of living great apes. We found that body mass is the best predictor of great ape life history events. Brain growth trajectories and dental development and eruption are weakly related proxies and inferences from them should be made with caution. We evaluate the evidence of life history-related variables available for extinct species and find that prior to the transitional hominins there is no evidence of any hominin taxon possessing a body size, brain size or aspects of dental development much different from what we assume to be the primitive life history pattern for the Pan-Homo clade. Data for life history-related variables among the transitional hominin grade are consistent and none agrees with a modern human pattern. Aside from mean body mass, adult brain size, crown and root formation times, and the timing and sequence of dental eruption of Homo erectus are inconsistent with that of modern humans. Homo antecessor fossil material suggests a brain size similar to that of Homo erectus s. s., and crown formation times that are not yet modern, though there is some evidence of modern human-like timing of tooth formation and eruption. The body sizes, brain sizes, and dental development of Homo heidelbergensis and Homo neanderthalensis are consistent with a modern human life history but samples are too small to be certain that they have life histories within the modern human range. As more life history-related variable information for hominin species accumulates we are discovering that they can also have distinctive life histories that do not conform to any living model. At least one extinct hominin subclade, Paranthropus, has a pattern of dental life history-related variables that most likely set it apart from the life histories of both modern humans and chimpanzees. PMID:18380863

  12. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses

    PubMed Central

    Cansev, Mehmet; Wurtman, Richard J.; Sakamoto, Toshimasa; Ulus, Ismail H.

    2008-01-01

    Although cognitive performance in humans and experimental animals can be improved by administering the omega-3 fatty acid docosahexaenoic acid (DHA), the neurochemical mechanisms underlying this effect remain uncertain. In general, nutrients or drugs that modify brain function or behavior do so by affecting synaptic transmission, usually by changing the quantities of particular neurotransmitters present within synaptic clefts or by acting directly on neurotransmitter receptors or signal-transduction molecules. We find that DHA also affects synaptic transmission in mammalian brain: Brain cells of gerbils or rats receiving this fatty acid manifest increased levels of phosphatides and of specific pre- or post-synaptic proteins. They also exhibit increased numbers of dendritic spines on postsynaptic neurons. These actions are markedly enhanced in animals that have also received the other two circulating precursors for phosphatidylcholine – uridine (which gives rise to brain UTP and CTP), and choline (which gives rise to phosphocholine). The actions of DHA are reproduced by eicosapentaenoic acid (EPA), another omega-3 compound, but not by the omega-6 fatty acid arachidonic acid (AA). Administration of circulating phosphatide precursors can also increase neurotransmitter release (acetylcholine; dopamine) and affect animal behavior. Conceivably, this treatment might have use in patients with the synaptic loss that characterizes Alzheimer's disease or other neurodegenerative diseases, or occurs after stroke or brain injury. PMID:18631994

  13. Photobiomodulation of the brain: a new paradigm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2017-02-01

    Photobiomodulation (PBM) describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia), degenerative diseases (dementia, Alzheimer's and Parkinson's), and psychiatric disorders (depression, anxiety, post traumatic stress disorder). There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM) application, near-infrared (NIR) light is often applied to the forehead because of the better penetration (no hair, longer wavelength). Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED) arrays has allowed the development of light emitting helmets or "brain caps". This presentation will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken in this area.

  14. Brain-Derived Neurotrophic Factor (BDNF) in Traumatic Brain Injury-Related Mortality: Interrelationships Between Genetics and Acute Systemic and Central Nervous System BDNF Profiles.

    PubMed

    Failla, Michelle D; Conley, Yvette P; Wagner, Amy K

    2016-01-01

    Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain-derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) can be protective against acute mortality. Postacutely, these genotypes carry lower mortality risk in older adults and greater mortality risk among younger adults. Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Cerebrospinal fluid (CSF) and serum BDNF were assessed prospectively during the first week following severe TBI (n = 203) and in controls (n = 10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. CSF BDNF levels tended to be higher post-TBI (P = .061) versus controls and were associated with time until death (P = .042). In contrast, serum BDNF levels were reduced post-TBI versus controls (P < .0001). Both gene * BDNF serum and gene * age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (P = .07). BDNF levels predicted mortality, in addition to gene * age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. © The Author(s) 2015.

  15. Normative brain size variation and brain shape diversity in humans.

    PubMed

    Reardon, P K; Seidlitz, Jakob; Vandekar, Simon; Liu, Siyuan; Patel, Raihaan; Park, Min Tae M; Alexander-Bloch, Aaron; Clasen, Liv S; Blumenthal, Jonathan D; Lalonde, Francois M; Giedd, Jay N; Gur, Ruben C; Gur, Raquel E; Lerch, Jason P; Chakravarty, M Mallar; Satterthwaite, Theodore D; Shinohara, Russell T; Raznahan, Armin

    2018-06-15

    Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  17. Impact of X/Y genes and sex hormones on mouse neuroanatomy.

    PubMed

    Vousden, Dulcie A; Corre, Christina; Spring, Shoshana; Qiu, Lily R; Metcalf, Ariane; Cox, Elizabeth; Lerch, Jason P; Palmert, Mark R

    2018-06-01

    Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.

    PubMed

    Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi

    2017-01-01

    Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.

  19. Early life influences on emotional reactivity: evidence that social enrichment has greater effects than handling on anxiety-like behaviors, neuroendocrine responses to stress and central BDNF levels.

    PubMed

    Cirulli, Francesca; Berry, Alessandra; Bonsignore, Luca Tommaso; Capone, Francesca; D'Andrea, Ivana; Aloe, Luigi; Branchi, Igor; Alleva, Enrico

    2010-05-01

    During the early post-natal phases the brain is experience-seeking and provided by a considerable plasticity which allows a fine tuning between the external environment and the developing organism. Since the early work of Seymour Levine, an impressive amount of research has clearly shown that stressful experiences exert powerful effects on the brain and body development. These effects can last throughout the entire life span influencing brain function and increasing the risk for depression and anxiety disorders. The mechanisms underlying the effects of early stress on the developing organism have been widely studied in rodents through experimental manipulations of the post-natal environment, such as handling, which have been shown to exert important effects on the emotional phenotype and the response to stress. In the present paper we review the relevant literature and present some original data indicating that, compared to handling, which imposes an external manipulation on the mother-infant relationship, social enrichment, in the form of communal rearing, in mice has very profound effects on animal's emotionality and the response to stress. These effects are also accompanied by important changes in central levels of brain-derived neurotrophic factor. The present data indicate that communal rearing has more pervasive effects than handling, strengthening previous data suggesting that it is a good animal model of reduced susceptibility to depression-like behavior. Overall, the availability of ever more sophisticated animal models represents a fundamental tool to translate basic research data into appropriate interventions for humans raised under traumatic or impoverished situations. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, David J.; Li Yong; Chao, Moses V.

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but maymore » incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.« less

  1. From perceptual to lexico‐semantic analysis—cortical plasticity enabling new levels of processing

    PubMed Central

    Schlaffke, Lara; Rüther, Naima N.; Heba, Stefanie; Haag, Lauren M.; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian

    2015-01-01

    Abstract Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico‐semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico‐semantic analysis). Perceptual and lexico‐semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico‐semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico‐semantic stimulus analysis. Importantly, the activation pattern remains task‐related LOP and is thus the result of a decision process as to which LOP to engage in. Hum Brain Mapp 36:4512–4528, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26304153

  2. Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury.

    PubMed

    Donat, Cornelius K; Gaber, Khaled; Meixensberger, Jürgen; Brust, Peter; Pinborg, Lars H; Hansen, Henrik H; Mikkelsen, Jens D

    2016-06-01

    After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [(123)I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [(123)I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague-Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [(123)I]CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [(123)I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI.

  3. Hepatic Expression of Serum Amyloid A1 Is Induced by Traumatic Brain Injury and Modulated by Telmisartan

    PubMed Central

    Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G.; Campbell, Ashley M.; Saavedra, Juan M.; Shewmaker, Frank P.; Symes, Aviva J.

    2016-01-01

    Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. PMID:26435412

  4. Exercise Preconditioning Improves Traumatic Brain Injury Outcomes

    PubMed Central

    Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.

    2015-01-01

    Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153

  5. Cerebral correlates of the "Kohnstamm phenomenon": an fMRI study.

    PubMed

    Duclos, C; Roll, R; Kavounoudias, A; Roll, J-P

    2007-01-15

    This paper addresses the issue of the central correlates of the "Kohnstamm phenomenon", i.e. the long-lasting involuntary muscle contraction which develops after a prolonged isometric voluntary contraction. Although this phenomenon was described as early as 1915, the mechanisms underlying these post-effects are not yet understood. It was therefore proposed to investigate whether specific brain areas may be involved in the motor post-effects induced by either wrist muscle contraction or vibration using the fMRI method. For this purpose, experiments were carried out on the right wrist of 11 healthy subjects. Muscle activity (EMG) and regional cerebral blood flow were recorded during isometric voluntary muscle contraction and muscle vibration, as well as during the subsequent involuntary contractions (the post-effects) which occurred under both conditions. Brain activations were found to occur during the post-contraction and post-vibration periods, which were very similar under both conditions. Brain activation involved motor-related areas usually responsible for voluntary motor command (primary sensory and motor cortices, premotor cortex, anterior and posterior cingulate gyrus) and sensorimotor integration structures such as the posterior parietal cortex. Comparisons between the patterns of brain activation associated with the involuntary post-effects and those accompanying voluntary contraction showed that cerebellar vermis was activated during the post-effect periods whereas the supplementary motor area was activated only during the induction periods. Although post-effects originate from asymmetric proprioceptive inputs, they might also involve a central network where the motor and somatosensory areas and the cerebellum play a key role. In functional terms, they might result from the adaptive recalibration of the postural reference frame altered by the sustained proprioceptive inputs elicited by muscle contraction and vibration.

  6. Exercise preconditioning improves traumatic brain injury outcomes.

    PubMed

    Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J

    2015-10-05

    To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  8. Anxiety-like behavior and proinflammatory cytokine levels in the brain of C57BL/6 mice infected with Plasmodium berghei (strain ANKA).

    PubMed

    de Miranda, Aline Silva; Lacerda-Queiroz, Norinne; de Carvalho Vilela, Márcia; Rodrigues, David Henrique; Rachid, Milene Alvarenga; Quevedo, João; Teixeira, Antônio Lúcio

    2011-03-24

    Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. The underlying mechanisms of CM pathogenesis remain incompletely understood. The imbalance between the release of proinflammatory and anti-inflammatory cytokines has been associated with central nervous system dysfunction found in human and experimental CM. The current study investigated anxiety-like behavior, histopathological changes and release of brain cytokines in C57BL/6 mice infected with Plasmodium berghei strain ANKA (PbA). Anxiety-like behavior was assessed in control and PbA-infected mice using the elevated plus maze test. Histopathological changes in brain tissue were assessed by haematoxylin and eosin staining. Brain concentration of the cytokines IL-1β, IL-4, IL-10, TNF-α and IFN-γ was determined by ELISA. We found that PbA-infected mice on day 5 post-infection presented anxiety symptoms, histopathological alterations in the brainstem, cerebrum and hippocampus and increased cerebral levels of proinflammatory cytokines IL-1β and TNF-α. These findings suggest an involvement of central nervous system inflammatory mediators in anxiety symptoms found in CM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability

    PubMed Central

    Lykens, Nicole M.; Reddi, Jyoti M.

    2017-01-01

    Glutamate-activated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) mediate the majority of excitatory neurotransmission in brain and thus are major drug targets for diseases associated with hyperexcitability or neurotoxicity. Due to the critical nature of AMPA-Rs in normal brain function, typical AMPA-R antagonists have deleterious effects on cognition and motor function, highlighting the need for more precise modulators. A dramatic increase in the flip isoform of alternatively spliced AMPA-R GluA1 subunits occurs post-seizure in humans and animal models. GluA1-flip produces higher gain AMPA channels than GluA1-flop, increasing network excitability and seizure susceptibility. Splice modulating oligonucleotides (SMOs) bind to pre-mRNA to influence alternative splicing, a strategy that can be exploited to develop more selective drugs across therapeutic areas. We developed a novel SMO, GR1, which potently and specifically decreased GluA1-flip expression throughout the brain of neonatal mice lasting at least 60 days after single intracerebroventricular injection. GR1 treatment reduced AMPA-R mediated excitatory postsynaptic currents at hippocampal CA1 synapses, without affecting long-term potentiation or long-term depression, cellular models of memory, or impairing GluA1-dependent cognition or motor function in mice. Importantly, GR1 demonstrated anti-seizure properties and reduced post-seizure hyperexcitability in neonatal mice, highlighting its drug candidate potential for treating epilepsies and other neurological diseases involving network hyperexcitability. PMID:28178321

  10. Motor impairment factors related to brain injury timing in early hemiparesis Part I: expression of upper extremity weakness

    PubMed Central

    Sukal-Moulton, Theresa; Krosschell, Kristin J.; Gaebler-Spira, Deborah J.; Dewald, Julius P.A.

    2014-01-01

    Background Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. Objective This study investigated the impact of timing of brain injury on magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. Methods Twenty-four individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n=8), around the time of birth (PERI-natal, n=8) or after 6 months of age (POST-natal, n=8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple degree-of-freedom load cell to quantify torques in 10 directions. A mixed model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. Results There was a significant effect of both time of injury group (p<0.001) and joint torque direction (p<0.001) on the relative weakness of the paretic arm. Distal joints were more affected compared to proximal joints, especially in the POST-natal group. Conclusions The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, while those who sustained later injury may rely more on indirect ipsilateral cortico-bulbospinal projections during the generation of torques with the paretic arm. PMID:24009182

  11. Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. This study investigated the impact of timing of brain injury on the magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. A total of 24 individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), or after 6 months of age (POST-natal, n = 8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple-degree-of-freedom load cell to quantify torques in 10 directions. A mixed-model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. There was a significant effect of both time of injury group (P < .001) and joint torque direction (P < .001) on the relative weakness of the paretic arm. Distal joints were more affected compared with proximal joints, especially in the POST-natal group. The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, whereas those who sustained later injury may rely more on indirect ipsilateral corticobulbospinal projections during the generation of torques with the paretic arm.

  12. Outcome prediction in home- and community-based brain injury rehabilitation using the Mayo-Portland Adaptability Inventory.

    PubMed

    Malec, James F; Parrot, Devan; Altman, Irwin M; Swick, Shannon

    2015-01-01

    The objective of the study was to develop statistical formulas to predict levels of community participation on discharge from post-hospital brain injury rehabilitation using retrospective data analysis. Data were collected from seven geographically distinct programmes in a home- and community-based brain injury rehabilitation provider network. Participants were 642 individuals with post-traumatic brain injury. Interventions consisted of home- and community-based brain injury rehabilitation. The main outcome measure was the Mayo-Portland Adaptability Inventory (MPAI-4) Participation Index. Linear discriminant models using admission MPAI-4 Participation Index score and log chronicity correctly predicted excellent (no to minimal participation limitations), very good (very mild participation limitations), good (mild participation limitations), and limited (significant participation limitations) outcome levels at discharge. Predicting broad outcome categories for post-hospital rehabilitation programmes based on admission assessment data appears feasible and valid. Equations to provide patients and families with probability statements on admission about expected levels of outcome are provided. It is unknown to what degree these prediction equations can be reliably applied and valid in other settings.

  13. Post-exposure therapy with human butyrylcholinesterase following percutaneous VX challenge in guinea pigs.

    PubMed

    Mumford, Helen; E Price, Matthew; Lenz, David E; Cerasoli, Douglas M

    2011-04-01

    Human butyrylcholinesterase (huBuChE) has potential utility as a post-exposure therapy following percutaneous nerve agent poisoning as there is a slower absorption of agent by this route and hence a later onset of poisoning. METHODS. We used surgically implanted radiotelemetry devices to monitor heart rate, EEG, body temperature and locomotor activity in guinea pigs challenged with VX via the percutaneous route. RESULTS. Treatment with huBuChE (24.2 mg/kg, i.m.) at 30 or 120 min following percutaneous VX (~2.5 × LD(50)) protected 9 out of 10 animals from lethality. When i.m. huBuChE administration was delayed until the onset of observable signs of systemic cholinergic poisoning, only one out of six animals survived to 7 days. Survival increased to 50% when the same dose of huBuChE was given intravenously at the onset of signs of poisoning. This dose represents approximately 1/10th the stoichiometric equivalent of the dose of VX administered (0.74 mg/kg). Intramuscular administration of huBuChE (24.2 mg/kg) alone did not produce any changes in heart rate, brain electrical activity, temperature or locomotion compared to saline control. Survival following VX and huBuChE treatment was associated with minimal incapacitation and observable signs of poisoning, and the mitigation or prevention of detrimental physiological changes (e.g. seizure, bradycardia and hypothermia) observed in VX + saline-treated animals. At 7 days, cholinesterase activity in the erythrocytes and most brain areas of guinea pigs that received huBuChE at either 18 h prior to or 30 min following VX was not significantly different from that of naïve, weight-matched control animals. CONCLUSION. Percutaneous VX poisoning was successfully treated using post-exposure therapy with huBuChE bioscavenger. The opportunity for post-exposure treatment may have particular relevance in civilian settings, and this is a promising indication for the use of huBuChE.

  14. Brain/MINDS: brain-mapping project in Japan

    PubMed Central

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  15. An in vivo model of functional and vascularized human brain organoids.

    PubMed

    Mansour, Abed AlFatah; Gonçalves, J Tiago; Bloyd, Cooper W; Li, Hao; Fernandes, Sarah; Quang, Daphne; Johnston, Stephen; Parylak, Sarah L; Jin, Xin; Gage, Fred H

    2018-06-01

    Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.

  16. Humans, Intentionality, Experience And Tools For Learning: Some Contributions From Post-cognitive Theories To The Use Of Technology In Physics Education

    NASA Astrophysics Data System (ADS)

    Bernhard, Jonte

    2007-11-01

    Human cognition cannot be properly understood if we do not take the use of tools into account. The English word cognition stems from the Latin "cognoscere," meaning "to become acquainted with" or "to come to know." Following the original Latin meaning we should not only study "what happens in the head" if we want to study cognition. Experientially based perspectives, such as pragmatism, phenomenology, phenomenography, and activity theory, stress that we should study person-world relationships. Technologies actively shape the character of human-world relationships. An emergent understanding in modern cognitive research is the co-evolution of the human brain and human use of tools and the active character of perception. Thus, I argue that we must analyze the role of technologies in physics education in order to realize their full potential as tools for learning, and I will provide selected examples from physics learning environments to support this assertion.

  17. 78 FR 17917 - Medical Waivers for Merchant Mariner Credential Applicants With a History of Seizure Disorders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... structural brain lesion). (1) If a mariner is determined to be low-risk for seizure recurrence, does not... penetrating head injury; (b) Intracerebral hemorrhage of any etiology, including stroke and trauma; (c) Brain... hemorrhage; (f) Post-operative brain surgery with significant brain hemorrhage; or (g) Brain tumor. (4) Under...

  18. A neurovascular perspective for long-term changes after brain trauma.

    PubMed

    Pop, V; Badaut, J

    2011-12-01

    Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.

  19. ZIKV – CDB: A Collaborative Database to Guide Research Linking SncRNAs and ZIKA Virus Disease Symptoms

    PubMed Central

    Morais, Daniel Kumazawa; Cuadros-Orellana, Sara; Pais, Fabiano Sviatopolk-Mirsky; Medeiros, Julliane Dutra; Geraldo, Juliana Assis; Gilbert, Jack; Volpini, Angela Cristina; Fernandes, Gabriel Rocha

    2016-01-01

    Background In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. Methodology/Principal Findings Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. Conclusions/Significance We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy. PMID:27332714

  20. Gold Nanoparticles for Brain Tumor Imaging: A Systematic Review.

    PubMed

    Meola, Antonio; Rao, Jianghong; Chaudhary, Navjot; Sharma, Mayur; Chang, Steven D

    2018-01-01

    Demarcation of malignant brain tumor boundaries is critical to achieve complete resection and to improve patient survival. Contrast-enhanced brain magnetic resonance imaging (MRI) is the gold standard for diagnosis and pre-surgical planning, despite limitations of gadolinium (Gd)-based contrast agents to depict tumor margins. Recently, solid metal-based nanoparticles (NPs) have shown potential as diagnostic probes for brain tumors. Gold nanoparticles (GNPs) emerged among those, because of their unique physical and chemical properties and biocompatibility. The aim of the present study is to review the application of GNPs for in vitro and in vivo brain tumor diagnosis. We performed a PubMed search of reports exploring the application of GNPs in the diagnosis of brain tumors in biological models including cells, animals, primates, and humans. The search words were "gold" AND "NP" AND "brain tumor." Two reviewers performed eligibility assessment independently in an unblinded standardized manner. The following data were extracted from each paper: first author, year of publication, animal/cellular model, GNP geometry, GNP size, GNP coating [i.e., polyethylene glycol (PEG) and Gd], blood-brain barrier (BBB) crossing aids, imaging modalities, and therapeutic agents conjugated to the GNPs. The PubMed search provided 100 items. A total of 16 studies, published between the 2011 and 2017, were included in our review. No studies on humans were found. Thirteen studies were conducted in vivo on rodent models. The most common shape was a nanosphere (12 studies). The size of GNPs ranged between 20 and 120 nm. In eight studies, the GNPs were covered in PEG. The BBB penetration was increased by surface molecules (nine studies) or by means of external energy sources (in two studies). The most commonly used imaging modalities were MRI (four studies), surface-enhanced Raman scattering (three studies), and fluorescent microscopy (three studies). In two studies, the GNPs were conjugated with therapeutic agents. Experimental studies demonstrated that GNPs might be versatile, persistent, and safe contrast agents for multimodality imaging, thus enhancing the tumor edges pre-, intra-, and post-operatively improving microscopic precision. The diagnostic GNPs might also be used for multiple therapeutic approaches, namely as "theranostic" NPs.

  1. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury.

    PubMed

    Li, Ying; Korgaonkar, Akshata A; Swietek, Bogumila; Wang, Jianfeng; Elgammal, Fatima S; Elkabes, Stella; Santhakumar, Vijayalakshmi

    2015-02-01

    Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Very Large Metastases to the Brain: Retrospective Study on Outcomes of Surgical Management.

    PubMed

    Gattozzi, Domenico A; Alvarado, Anthony; Kitzerow, Collin; Funkhouser, Alexander; Bimali, Milan; Moqbel, Murad; Chamoun, Roukoz B

    2018-05-25

    The incidence of brain metastases is rising. No published study focuses exclusively on brain metastases larger than 4 cm. We present our surgical outcomes for patients with brain metastases larger than 4 cm. This is a retrospective chart review of inpatient data at our institution from January 2006 to September 2015. Primary endpoints included overall survival, progression-free survival, and local recurrence rate. Sixty-one patients had a total of 67 brain metastases larger than 4 cm: 52 supratentorial and 15 infratentorial. Forty-three patients underwent surgical resection. Average duration of disease freedom after resection was 4.79 months (range 0-30). Excluding patients with residual on immediate post-operative MRI, average rate of local recurrence was 7 months (range 1-14). Overall survival after surgery excluding patients who chose palliation in the immediate postoperative period averaged 8.76 months (range 1-37). Thirty-five (81.4%) of 43 patients had stable or improved neurological exams post-operatively. Six (13.95%) patients developed surgical complications. There were 3 (6.98%) major complications: 2 pseudomeningoceles requiring intervention, and 1 post-operative hematoma requiring external ventricular drain placement. There were 3 (6.98%) minor complications: 1 self-limited pseudomeningocele, 1 subgaleal fluid collection, and 1 post-operative seizure. Surgery resulted in stable or improved neurological exam in 81.4% of cases. On statistical analysis, significantly increased overall survival was noted in patients undergoing surgical resection, as well as those with higher KPS and lower number of brain metastases at presentation. There is need for further studies to evaluate management of brain metastases larger than 4 cm. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient.

  4. Induction of innate immune genes in brain create the neurobiology of addiction.

    PubMed

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction

    PubMed Central

    Crews, FT; Zou, Jian; Qin, Liya

    2013-01-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143

  6. Investigation of human multiple sclerosis lesions using high resolution spectrally unmixed CARS microscopy

    NASA Astrophysics Data System (ADS)

    Poon, Kelvin W.; Brideau, Craig; Teo, Wulin; Schenk, Geert J.; Klaver, Roel; Klauser, Antoine M.; Kawasoe, Jean H.; Geurts, Jeroen J. G.; Stys, Peter K.

    2013-03-01

    The pathology of multiple sclerosis (MS) involves both the gray and white matter regions of the brain and spinal cord. It is characterized by various combinations of demyelination, inflammatory infiltration, axonal degeneration, and later gliosis in chronic lesions. While acute and chronic white matter plaques are well characterized and easily identified, evidence indicates that the CNS of MS patients may be globally altered, with subtle abnormalities found in grossly normal appearing white matter (NAWM) and in diffusely abnormal white matter (DAWM) where histochemical stains and advanced magnetic resonance imaging indicate altered tissue composition. Thus, the prototypical acute inflammatory lesion may merely represent the most obvious manifestation of a chronic widespread involvement of the CNS, which is difficult to examine reliably. The current study deals with the microstructure and biochemistry of demyelination, remyelination and axonal loss in various regions of post-mortem human MS brain, including NAWM, areas of remyelination and more typical acute and chronic lesions. The myelin sheath, neuroglia and perivascular spaces were investigated using a novel Coherent Anti-Stokes Raman Scattering (CARS) microscope with simultaneous Two-Photon Excited Fluorescence (TPEF) imaging. The active CH stretching region between 2800 and 3000 cm-1 was probed to provide chemically specific, high resolution, label-free imaging pertaining to the progression of the disease. CARS data were correlated with TPEF and conventional histochemical and immunohistochemical stains. Our novel CARS microscopy system provides detailed morphological and biochemical information regarding CNS pathology in MS and that may be applicable to a broad range of other human brain and spinal cord disorders.

  7. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    PubMed

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  8. Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods

    PubMed Central

    Daugherty, Ana M; Raz, Naftali

    2015-01-01

    Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology. PMID:26248580

  9. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.

    PubMed

    Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko

    2015-01-01

    Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.

  10. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural equilibrium with HDT bed rest. This suggests that neuroplastic processes may facilitate adaptation to the HDT bed rest environment. The findings from this study provide novel insights into the neurobiology and future risk assessments of long-duration spaceflight.

  11. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer's disease.

    PubMed

    Lim, Charles; Hammond, Christine J; Hingley, Susan T; Balin, Brian J

    2014-12-24

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which infection with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular respiratory pathogen that may enter the central nervous system (CNS) following infection and trafficking of monocytes through the blood-brain barrier. Following this entry, these cells may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD brain, which have been thought to contribute to AD neurodegeneration. The objectives of this work were: (i) to determine if Cpn infection influences monocyte gene transcript expression at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are produced and secreted from these cells over 24 to 120 hours post-infection. Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity microarray with 84 genes organized into 5 functional categories: inflammatory response, host defense against bacteria, antibacterial humoral response, septic shock, and cytokines, chemokines and their receptors. Statistical analysis of the results was performed using the Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical analysis with ANOVA. When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater expression, and no gene expression was found to be down-regulated. Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection. Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 human monocytes promotes an innate immune response and suggests a potential role in the initiation of inflammation in sporadic/late-onset Alzheimer's disease.

  12. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies.

    PubMed

    Andrews, Jessica L; Goodfellow, Frederic J; Matosin, Natalie; Snelling, Mollie K; Newell, Kelly A; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2017-07-01

    Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radiological evolution of porcine neurocysticercosis after combined antiparasitic treatment with praziquantel and albendazole

    PubMed Central

    Bustos, Javier A.; Calcina, Juan; Vargas-Calla, Ana; Mamani, Javier; Suarez, Diego; Arroyo, Gianfranco; Gonzalez, Armando E.; Chacaltana, Juan; Guerra-Giraldez, Cristina; Mahanty, Siddhartha; Nash, Theodore E.; García, Héctor H.

    2017-01-01

    Background The onset of anthelmintic treatment of neurocysticercosis (NCC) provokes an acute immune response of the host, which in human cases is associated with exacerbation of neurological symptoms. This inflammation can occur at the first days of therapy. So, changes in the brain cysts appearance may be detected by medical imaging. We evaluated radiological changes in the appearance of brain cysts (enhancement and size) on days two and five after the onset of antiparasitic treatment using naturally infected pigs as a model for human NCC. Methods and results Contrast T1-weighted magnetic resonance imaging with gadolinium was performed before and after antiparasitic treatment. Eight NCC-infected pigs were treated with praziquantel plus albendazole and euthanized two (n = 4) and five (n = 4) days after treatment; another group of four infected pigs served as untreated controls. For each lesion, gadolinium enhancement intensity (GEI) and cyst volume were measured at baseline and after antiparasitic treatment. Volume and GEI quantification ratios (post/pre-treatment measures) were used to appraise the effect of treatment. Cysts from untreated pigs showed little variations between their basal and post treatment measures. At days 2 and 5 there were significant increases in GEI ratio compared with the untreated group (1.32 and 1.47 vs 1.01, p = 0.021 and p = 0.021). Cyst volume ratios were significantly lower at days 2 and 5 compared with the untreated group (0.60 and 0.22 vs 0.95, p = 0.04 and p = 0.02). Cysts with lower cyst volume ratios showed more marked post-treatment inflammation, loss of vesicular fluid and cyst wall wrinkling. Conclusion/Significance A significant and drastic reduction of cyst size and increased pericystic enhancement occur in the initial days after antiparasitic treatment as an effect of acute perilesional immune response. These significant changes showed that early anthelmintic efficacy (day two) can be detected using magnetic resonance imaging. PMID:28575043

  14. Histological Characterization of the Irritative Zones in Focal Cortical Dysplasia Using a Preclinical Rat Model.

    PubMed

    Deshmukh, Abhay; Leichner, Jared; Bae, Jihye; Song, Yinchen; Valdés-Hernández, Pedro A; Lin, Wei-Chiang; Riera, Jorge J

    2018-01-01

    Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones , have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones-independent of them being epileptogenic-are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILβ1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.

  15. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  16. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    PubMed

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  17. Navigating the Terrain in the Identification and Program Development for Children with Mild Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Leach, Susan L.; Scott, Rebecca A.; Scott, Kamela K.

    2015-01-01

    Data indicate children with traumatic brain injury (TBI), especially those with mild TBI (mTBI), represent a significant population within the U.S. school system. Yet, many school professionals report little or no formal coursework for training on the needs of children post-TBI, have minimal or no experience working with children post-TBI, and…

  18. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    PubMed

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  19. Optical clearing of the dura mater using glycerol: a reversible process to aid the post-mortem investigation of infant head injury.

    PubMed

    Cheshire, Emma C; Malcomson, Roger D G; Joseph, Shiju; Biggs, Mike J B; Adlam, David; Rutty, Guy N

    2015-09-01

    In cases of suspected abusive head trauma, a thorough and systematic study of the cranium and its contents is essential, preferably using the best available methods for observing the brain and its coverings. Building upon recent developments in skull bone removal techniques in infant autopsies, we have assessed the use of two optical clearing agents (OCAs), glycerol and mannitol, on pediatric dura mater in an attempt to increase the transparency of this tissue and thereby enhance the post-mortem assessment of infant head injuries, particularly subdural hematomas. Extracorporeal testing revealed glycerol to be the more effective OCA. Therefore, in situ investigations were commenced using glycerol during 33 pediatric post-mortem examinations. An increase in the transparency of the dura was observed in 32 of the 33 cases, within 1 min of application of the OCA. In a 2 year old with cerebral palsy, only partial optical clearance of the dura was seen, most likely due to a significantly atrophic brain, prominent gelatinous leptomeninges, and abnormally thickened dura. This technique allowed for detection of minimal amounts of subdural bleeding over the convexities, before dissection of the dura, avoiding post-mortem blood spillage from artifactually disrupted bridging veins. Optical clearing of the dura aided in the evaluation of patterns of subdural hemorrhage in three cases of non-accidental head injury, three cases of peri-natal head injury and one case of overlaying, apparently resulting in minor crush injury to the head. We have demonstrated that glycerol is an effective and easy-to-use OCA to effect the readily reversible optical clearing of human infant calvarial dura at autopsy.

  20. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  1. Accelerated recruitment of new brain development genes into the human genome.

    PubMed

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan

    2011-10-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.

  2. Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study.

    PubMed

    De Reuck, J L; Deramecourt, V; Auger, F; Durieux, N; Cordonnier, C; Devos, D; Defebvre, L; Moreau, C; Caparros-Lefebvre, D; Leys, D; Maurage, C A; Pasquier, F; Bordet, R

    2014-07-01

    Accumulation of iron (Fe) is often detected in brains of people suffering from neurodegenerative diseases. However, no studies have compared the Fe load between these disease entities. The present study investigates by T2*-weighted gradient-echo 7.0 T magnetic resonance imaging (MRI) the Fe content in post-mortem brains with different neurodegenerative and cerebrovascular diseases. One hundred and fifty-two post-mortem brains, composed of 46 with Alzheimer's disease (AD), 37 with frontotemporal lobar degeneration (FTLD), 11 with amyotrophic lateral sclerosis, 13 with Lewy body disease, 14 with progressive supranuclear palsy, 16 with vascular dementia (VaD) and 15 controls without a brain disease, were examined. The Fe load was determined semi-quantitatively on T2*-weighted MRI serial brain sections in the claustrum, caudate nucleus, putamen, globus pallidus, thalamus, subthalamic nucleus, hippocampus, mamillary body, lateral geniculate body, red nucleus, substantia nigra and dentate nucleus. The disease diagnosis was made on subsequent neuropathological examination. The Fe load was significantly increased in the claustrum, caudate nucleus and putamen of FTLD brains and to a lesser degree in the globus pallidus, thalamus and subthalamic nucleus. In the other neurodegenerative diseases no Fe accumulation was observed, except for a mild increase in the caudate nucleus of AD brains. In VaD brains no Fe increase was detected. Only FTLD displays a significant Fe load, suggesting that impaired Fe homeostasis plays an important role in the pathogenesis of this heterogeneous disease entity. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  3. Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2016-08-01

    Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.

  4. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD)

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-10-1-0962 TITLE: Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury...164. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0962 Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced...month follow-up period post-hyperbaric oxygen treatment. 1 additional subject is scheduled to be screened in October 2016 and 3 are awaiting first

  5. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  6. Employment outcome four years after a severe traumatic brain injury: results of the Paris severe traumatic brain injury study.

    PubMed

    Ruet, Alexis; Jourdan, Claire; Bayen, Eléonore; Darnoux, Emmanuelle; Sahridj, Dalila; Ghout, Idir; Azerad, Sylvie; Pradat Diehl, Pascale; Aegerter, Philippe; Charanton, James; Vallat Azouvi, Claire; Azouvi, Philippe

    2017-05-18

    To describe employment outcome four years after a severe traumatic brain injury by the assessment of individual patients' preinjury sociodemographic data, injury-related and postinjury factors. A prospective, multicenter inception cohort of 133 adult patients in the Paris area (France) who had received a severe traumatic brain injury were followed up postinjury at one and four years. Sociodemographic data, factors related to injury severity and one-year functional and cognitive outcomes were prospectively collected. The main outcome measure was employment status. Potential predictors of employment status were assessed by univariate and multivariate analysis. At the four-year follow-up, 38% of patients were in paid employment. The following factors were independent predictors of unemployment: being unemployed or studying before traumatic brain injury, traumatic brain injury severity (i.e., a lower Glasgow Coma Scale score upon admission and a longer stay in intensive care) and a lower one-year Glasgow Outcome Scale-Extended score. This study confirmed the low rate of long-term employment amongst patients after a severe traumatic brain injury. The results illustrated the multiple determinants of employment outcome and suggested that students who had received a traumatic brain injury were particularly likely to be unemployed, thus we propose that they may require specific support to help them find work. Implications for rehabilitation Traumatic brain injury is a leading cause of persistent disablity and can associate cognitive, emotional, physical and sensory impairments, which often result in quality-of-life reduction and job loss. Predictors of post-traumatic brain injury unemployment and job loss remains unclear in the particular population of severe traumatic brain injury patients. The present study highlights the post-traumatic brain injury student population require a close follow-up and vocational rehabilitation. The study suggests that return to work post-severe traumatic brain injury is frequently unstable and workers often experience difficulties that caregivers have to consider.

  7. Hepatic expression of serum amyloid A1 is induced by traumatic brain injury and modulated by telmisartan.

    PubMed

    Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G; Campbell, Ashley M; Saavedra, Juan M; Shewmaker, Frank P; Symes, Aviva J

    2015-10-01

    Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Preliminary Evidence of Reduced Brain Network Activation in Patients with Post-traumatic Migraine following Concussion

    PubMed Central

    Kontos, Anthony P.; Reches, Amit; Elbin, R. J.; Dickman, Dalia; Laufer, Ilan; Geva, Amir; Shacham, Galit; DeWolf, Ryan; Collins, Michael W.

    2015-01-01

    Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4-week post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM. PMID:26091725

  9. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits

    PubMed Central

    Corser-Jensen, Chelsea E.; Goodell, Dayton J.; Freund, Ronald K.; Serbedzija, Predrag; Murphy, Robert C.; Farias, Santiago E.; Dell'Acqua, Mark L.; Frey, Lauren C.; Serkova, Natalie; Heidenreich, Kim A.

    2014-01-01

    Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11 weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arms water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits. PMID:24681156

  10. Sex steroid hormones and brain function: PET imaging as a tool for research.

    PubMed

    Moraga-Amaro, R; van Waarde, A; Doorduin, J; de Vries, E F J

    2018-02-01

    Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients. © 2017 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  11. The brain-life theory: towards a consistent biological definition of humanness.

    PubMed Central

    Goldenring, J M

    1985-01-01

    This paper suggests that medically the term a 'human being' should be defined by the presence of an active human brain. The brain is the only unique and irreplaceable organ in the human body, as the orchestrator of all organ systems and the seat of personality. Thus, the presence or absence of brain life truly defines the presence or absence of human life in the medical sense. When viewed in this way, human life may be seen as a continuous spectrum between the onset of brain life in utero (eight weeks gestation), until the occurrence of brain death. At any point human tissue or organ systems may be present, but without the presence of a functional human brain, these do not constitute a 'human being', at least in a medical sense. The implications of this theory for various ethical concerns such as in vitro fertilisation and abortion are discussed. This theory is the most consistent possible for the definition of a human being with no contradictions inherent. However, having a good theory of definition of a 'human being' does not necessarily solve the ethical problems discussed herein. PMID:4078859

  12. Radiosurgery reduces plasma levels of angiogenic factors in brain arteriovenous malformation patients.

    PubMed

    Xu, Ming; Liu, Xiaoxia; Mei, Guanghai; Zhang, Junjie; Wang, Weixing; Xu, Hongzhi

    2018-05-09

    Aberrant expression of angiogenic factors has been anecdotally documented in brain arteriovenous malformation (AVM) nidus vessels; however, no data is available on the effect of radiosurgery on the levels of angiogenic factors in AVM patients. We sought to determine the plasma contents of VEGF, TGF-β, Ang-2 and bFGF in 28 brain AVM patients at baseline and post radiosurgery and further analyzed the relationship between plasma contents of these angiogenic factors with clinicopathologic variables of these patients. We enrolled brain AVM patients who underwent Cyberknife radiosurgery at our hospital between January 2014 and December 2015. Brain AVM was confirmed by cerebral angiography and radiosurgery was performed with Cyberknife irradiation. Plasma contents of VEGF, TGF-β, Ang-2 and bFGF were analyzed using commercially available enzyme-linked immunoassay (ELISA) kits. The baseline plasma VEGF content was 222.63 pg/mL (range 43.25-431.25 pg/mL). At three months post surgery, there was a significant -34.29% decline in plasma VEGF content versus baseline (P = 0.000). Furthermore, the median baseline plasma VEGF levels were higher in brain AVM with a nidus volume ≥ 10 cm 3 ) than those with a nidus volume < 10 cm 3 [median(IQR) 293.5 (186.5,359.25) vs. 202 (59.75, 270.75) pg/mL, P = 0.057]. The baseline plasma TGF-β content was 556.17 pg/mL (range 44.44-1486.11 pg/mL) and there was a significant -27.47% decline in plasma TGF-β content at 3 months post radiosurgery versus baseline (P = 0.015). Moreover, the baseline plasma ANG-2 content was 214.27 pg/mL (range 77.14-453.76 pg/mL). There was an immediate and significant -12.47% decline in plasma ANG-2 content post surgery versus baseline (P = 0.002). At three months post surgery, the plasma ANG-2 content still remained significantly depressed versus baseline (P = 0.002). In addition, the baseline plasma bFGF content was 9.17 pg/mL (range 3.67-36.78 pg/mL). No significant difference in plasma bFGF content was observed immediately post surgery and 3 months post surgery versus baseline (P = 0.05). Radiosurgery for brain AVM patients significantly reduced the plasma levels of angiogenic factors. The plasma angiogenic factors may be candidate markers for aberrant agniogenesis of brain AVM and patient response to radiosurgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Brain-Derived Neurotrophic Factor in TBI-related mortality: Interrelationships between Genetics and Acute Systemic and CNS BDNF Profiles

    PubMed Central

    Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.

    2015-01-01

    Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (p<0.0001). Both gene*BDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196

  14. Comparison Of Efficacy Of Phenytoin And Levetiracetam For Prevention Of Early Post Traumatic Seizures.

    PubMed

    Khan, Shahbaz Ali; Bhatti, Sajid Nazir; Khan, Aftab Alam; Khan Afridi, Ehtisham Ahmed; Muhammad, Gul; Gul, Nasim; Zadran, Khalid Khan; Alam, Sudhair; Aurangzeb, Ahsan

    2016-01-01

    The incidence of early post-traumatic seizures after civilian traumatic brain injury ranges 4-25%. The control of early post-traumatic seizure is mandatory because these acute insults may add secondary damage to the already damaged brain with poor outcome. Prophylactic use of anti-epileptic drugs have been found to be have variable efficacy against early post-traumatic seizures. The objective of this study was to compare the efficacy of Phenytion and Levetiracetam in prevention of early post-traumatic seizures in moderate to severe traumatic brain injury. This randomized controlled trial was conducted in department of Neurosurgery, Ayub Medical College, Abbottabad from March, 2012 to March 2013. The patients with moderate to severe head injury were randomly allocated in two groups. Patients in group A were given phenytoin and patients in group B were given Levetiracetam. Patients were followed for one week to detect efficacy of drug in terms of early post traumatic seizures. The 154 patients included in the study were equally divided into two groups. Out of 154 patients 115 (74.7%) were male while 29 (25.3%) were females. Age of patients ranges from 7-48 (24.15±9.56) years. Ninety one (59.1%) patients had moderate head injury while 63 (40.9%) patients had severe head injury. Phenytoin was effective in preventing early post traumatic seizures in 73 (94.8%) patients whereas Levetiracetam effectively controlled seizures in 70 (90.95%) cases (p-value of .348). There is no statistically significant difference in the efficacy of Phenytoin and Levetiracetam in prophylaxis of early posttraumatic seizures in cases of moderate to severe traumatic brain injury.

  15. Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte-endothelial interactions in the cerebral microcirculation from the male offspring in adult life.

    PubMed

    Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças

    2015-08-07

    We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. γδ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration

    PubMed Central

    Gelderblom, Mathias; Arunachalam, Priyadharshini; Magnus, Tim

    2014-01-01

    Spontaneous or medically induced reperfusion occurs in up to 70% of patients within 24 h after cerebral ischemia. Reperfusion of ischemic brain tissue can augment the inflammatory response that causes additional injury. Recently, T cells have been shown to be an essential part of the post-ischemic tissue damage, and especially IL-17 secreting T cells have been implicated in the pathogenesis of a variety of inflammatory reactions in the brain. After stroke, it seems that the innate γδ T cells are the main IL-17 producing cells and that the γδ T cell activation constitutes an early and mainly damaging immune response in stroke. Effector mechanism of γδ T cell derived IL-17 in the ischemic brain include the induction of metalloproteinases, proinflammatory cytokines and neutrophil attracting chemokines, leading to a further amplification of the detrimental inflammatory response. In this review, we will give an overview on the concepts of γδ T cells and IL-17 in stroke pathophysiology and on their potential importance for human disease conditions. PMID:25414640

  17. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  18. An update on anesthetics and impact on the brain.

    PubMed

    Fodale, Vincenzo; Tripodi, Vincenzo F; Penna, Olivia; Famà, Fausto; Squadrito, Francesco; Mondello, Epifanio; David, Antonio

    2017-09-01

    While anesthetics are indispensable clinical tools and generally considered safe and effective, a growing concern over the potential neurotoxicity of anesthesia or specific anesthetic agents has called into question the safety of general anesthetics, especially when administered at extremes of age. Areas covered: This article reviews and updates research findings on the safety of anesthesia and anesthetics in terms of long-term neurotoxicity, with particular focus on postoperative cognitive dysfunctions, Alzheimer's disease and dementias, developing brain, post-operative depression and autism spectrum disorder. Expert opinion: Exposure to general anesthetics is potentially harmful to the human brain, and the consequent long-term cognitive deficits should be classified as an iatrogenic pathology, and considered a public health problem. The fact that in laboratory and clinical research only certain anesthetic agents and techniques, but not others, appear to be involved, raises the problem on what is the safest and the least safe anesthetic to maximize anesthesia efficiency, avoid occurrence of adverse events, and ensure patient safety. New trends in research are moving toward the theory that neuroinflammation could be the hallmark of, or could have a pivotal role in, several neurological disorders.

  19. [Streptococcus pyogenes and the brain: living with the enemy].

    PubMed

    Dale, R C

    Streptococcus pyogenes (or group A beta hemolytic streptococcus) is a pathogenic bacterium that can give rise to a range of invasive and autoimmune diseases, although it is more widely known as the cause of tonsillitis. It is particularly interesting to note that this germ only causes disease in humans. For many years it has been acknowledged that it can cause an autoimmune brain disease (Sydenham s chorea). Yet, the spectrum of post streptococcal brain disorders has recently been extended to include other movement disorders such as tics or dystonia. A number of systematic psychiatric studies have shown that certain emotional disorders generally accompany the movement disorder (particularly, obsessive compulsive disorder). The proposed pathogenetic mechanism is that of a neuronal dysfunction in which antibodies play a mediating role. The antibodies that are produced after the streptococcal infection cross react with neuronal proteins, and more especially so in individuals with a propensity. This represents a possible model of immunological mimicry and its potential importance with respect to certain idiopathic disorders such as Tourette syndrome and obsessive compulsive disorder.

  20. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    PubMed Central

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. PMID:21228547

  1. Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. Copyright © 2011 S. Karger AG, Basel.

  2. Development of a Post-Processing Algorithm for Accurate Human Skull Profile Extraction via Ultrasonic Phased Arrays

    NASA Astrophysics Data System (ADS)

    Al-Ansary, Mariam Luay Y.

    Ultrasound Imaging has been favored by clinicians for its safety, affordability, accessibility, and speed compared to other imaging modalities. However, the trade-offs to these benefits are a relatively lower image quality and interpretability, which can be addressed by, for example, post-processing methods. One particularly difficult imaging case is associated with the presence of a barrier, such as a human skull, with significantly different acoustical properties than the brain tissue as the target medium. Some methods were proposed in the literature to account for this structure if the skull's geometry is known. Measuring the skull's geometry is therefore an important task that requires attention. In this work, a new edge detection method for accurate human skull profile extraction via post-processing of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo Extraction algorithm, SEE, processes each A-Scan separately and determines the outermost and innermost boundaries of the skull by means of adaptive filtering. The method can also be used to determine the average attenuation coefficient of the skull. When applied to simulated B-Mode images of the skull profile, promising results were obtained. The profiles obtained from the proposed process in simulations were found to be within 0.15lambda +/- 0.11lambda or 0.09 +/- 0.07mm from the actual profiles. Experiments were also performed to test SEE on skull mimicking phantoms with major acoustical properties similar to those of the actual human skull. With experimental data, the profiles obtained with the proposed process were within 0.32lambda +/- 0.25lambda or 0.19 +/- 0.15mm from the actual profile.

  3. [Post-ischemic innate immunity and its application for novel therapeutic strategy targeting brain inflammation].

    PubMed

    Ito, Minako; Kondo, Taisuke; Shichita, Takashi; Yoshimura, Akihiko

    2013-07-01

    Stroke or brain ischemia is one of the major causes of death and disability worldwide. Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In a mouse stroke model, we have reported that IL-23 produced from infiltrating macrophages induces IL-17 producing T cells. IL-17 is mainly produced from gammadeltaT cells and promotes delayed (day 3-4) ischemic brain damage. We also demonstrated that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including IL-23 in macrophages through activation of Toll-like receptor 2(TLR2) and TLR4, thereby promoting neural cell death. We thus propose that regulation of the IL-23-IL-17 axis including gammadeltaT cells, macrophages, and extracellular Prxs could be a potent neuroprotective tool.

  4. Elevated gene expression levels distinguish human from non-human primate brains

    PubMed Central

    Cáceres, Mario; Lachuer, Joel; Zapala, Matthew A.; Redmond, John C.; Kudo, Lili; Geschwind, Daniel H.; Lockhart, David J.; Preuss, Todd M.; Barlow, Carrolee

    2003-01-01

    Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that exhibited expression differences between human and chimpanzee cortex, and 91 were ascribed to the human lineage by using macaques as an outgroup. Surprisingly, most differences between the brains of humans and non-human primates involved up-regulation, with ≈90% of the genes being more highly expressed in humans. By contrast, in the comparison of human and chimpanzee heart and liver, the numbers of up- and down-regulated genes were nearly identical. Our results indicate that the human brain displays a distinctive pattern of gene expression relative to non-human primates, with higher expression levels for many genes belonging to a wide variety of functional classes. The increased expression of these genes could provide the basis for extensive modifications of cerebral physiology and function in humans and suggests that the human brain is characterized by elevated levels of neuronal activity. PMID:14557539

  5. A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies.

    PubMed

    Umehara, Kenta; Sun, Yuchen; Hiura, Satoshi; Hamada, Koki; Itoh, Motoyuki; Kitamura, Keita; Oshima, Motohiko; Iwama, Atsushi; Saito, Kosuke; Anzai, Naohiko; Chiba, Kan; Akita, Hidetaka; Furihata, Tomomi

    2018-07-01

    While pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology. Herein, we report on the development of a new human brain pericyte cell line, hereafter referred to as the human brain pericyte/conditionally immortalized clone 37 (HBPC/ci37). Developed via the cell conditionally immortalization method, these cells exhibited excellent proliferative ability at 33 °C. However, when cultured at 37 °C, HBPC/ci37 cells showed a differentiated phenotype that was marked by morphological alterations and increases in several pericyte-enriched marker mRNA levels, such as platelet-derived growth factor receptor β. It was also found that HBPC/ci37 cells possessed the facilitative ability of in vitro BBB formation and differentiation into a neuronal lineage. Furthermore, HBPC/ci37 cells exhibited the typical "reactive" features of brain pericytes in response to pro-inflammatory cytokines. To summarize, our results clearly demonstrate that HBPC/ci37 cells possess the ability to perform several key brain pericyte functions while also showing the capacity for extensive and continuous proliferation. Based on these findings, it can be expected that, as a unique human brain pericyte model, HBPC/ci37 cells have the potential to contribute to significant advances in the understanding of human brain pericyte physiology and pathophysiology.

  6. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain

    PubMed Central

    Gehman, Lauren T.; Stoilov, Peter; Maguire, Jamie; Damianov, Andrey; Lin, Chia-Ho; Shiue, Lily; Ares, Manuel; Mody, Istvan; Black, Douglas L.

    2011-01-01

    The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts but their role in neuronal physiology is not clear1. We show here that central nervous system (CNS)-specific deletion of the Rbfox1 gene results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording reveals a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole transcriptome analyses identify multiple splicing changes in the Rbfox1−/− brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation, some of which are implicated in human epilepsy. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function. PMID:21623373

  7. Phaeohyphomycosis in a snow leopard (Uncia uncia) due to Cladophialophora bantiana.

    PubMed

    Janovsky, M; Gröne, A; Ciardo, D; Völlm, J; Burnens, A; Fatzer, R; Bacciarini, L N

    2006-01-01

    Phaeohyphomycosis caused by Cladophialophora bantiana was diagnosed in a 5-month-old snow leopard with spastic paralysis of the hind legs and inability to defaecate or urinate. At post-mortem examination, a greenish soft mass resembling an abscess was found on one side of the epidural space at the fourth lumbar vertebral body. Histological examination revealed a purulent meningitis with myelomalacia. Dematiaceous fungal hyphae, present within the inflammatory infiltrate, were identified as C. bantiana by culture and sequence analysis of the 18S ribosomal RNA gene. This neurotropic fungus rarely affects organs other than the brain in human beings and cats, and has been reported only occasionally in Europe. The case described suggests that phaeohyphomycosis due to C. bantiana infection may be recognized more frequently in the future and the possible involvement of organs other than the brain should be borne in mind.

  8. Autoradiographic analysis of tritiated imipramine binding in the human brain post mortem: effects of suicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross-Isseroff, R.; Israeli, M.; Biegon, A.

    In vitro quantitative autoradiography of high-affinity tritiated imipramine binding sites was performed on brains of 12 suicide victims and 12 matched controls. Region-specific differences in imipramine binding were found between the two groups. Thus, the pyramidal and molecular layers of the cornu ammoni hippocampal fields and the hilus of the dentate gyrus exhibited 80%, 60%, and 90% increases in binding in the suicide group, respectively. The postcentral cortical gyrus, insular cortex, and claustrum had 45%, 28%, and 75% decreases in binding in the suicide group, respectively. No difference in imipramine binding was observed in prefrontal cortical regions, in the basalmore » ganglia, and in mesencephalic nuclei. No sex and postmortem delay effects on imipramine binding were found. Imipramine binding was positively correlated with age, the effect of age being most pronounced in portions of the basal ganglia and temporal cortex.« less

  9. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    PubMed

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use. ©AlphaMed Press.

  10. Factors associated with remission of post-traumatic brain injury fatigue in the years following traumatic brain injury (TBI): a TBI model systems module study.

    PubMed

    Lequerica, Anthony H; Botticello, Amanda L; Lengenfelder, Jean; Chiaravalloti, Nancy; Bushnik, Tamara; Dijkers, Marcel P; Hammond, Flora M; Kolakowsky-Hayner, Stephanie A; Rosenthal, Joseph

    2017-10-01

    Post-traumatic brain injury fatigue (PTBIF) is a major problem in the years after traumatic brain injury (TBI), yet little is known about its persistence and resolution. The objective of the study was to identify factors related to PTBIF remission and resolution. TBI Model System registrants at five centres participated in interviews at either one and two years post-injury (Y1-2 Cohort), or two and five years post-injury (Y2-5 Cohort). Characteristics of participants with PTBIF remission were compared to those with PTBIF persistence. Variables studied included the presence of and changes in disability, sleep dysfunction, mood, and community participation. The Functional Independence Measure did not differ significantly between groups or over time. In the Y1-2 Cohort the Fatigue Resolved group scored significantly better on the Disability Rating Scale and Pittsburgh Sleep Quality Index. In the Y2-5 Cohort the Fatigue Resolved group scored significantly higher on a measure of community participation. It was concluded that fewer than half of the sample in each cohort experienced a remission of PTBIF between time points. Persistence of PTBIF 1-2 years post-injury is associated with disability, sleep disturbance, and depression while persistence of fatigue beyond 2 years post-injury appears to be related to participation level, underscoring the potential impact of effective surveillance, assessment, and treatment of this condition in optimising life after TBI. Differences in fatigue progression may point to the presence of different types of PTBIF.

  11. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice.

    PubMed

    Okada, Takeshi; Kawakita, Fumihiro; Nishikawa, Hirofumi; Nakano, Fumi; Liu, Lei; Suzuki, Hidenori

    2018-05-31

    There are no direct evidences showing the linkage between Toll-like receptor 4 (TLR4) and blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). The purpose of this study was to examine if selective blockage of TLR4 prevents BBB disruption after SAH in mice and if the TLR4 signaling involves mitogen-activated protein kinases (MAPKs). One hundred and fifty-one C57BL/6 male mice underwent sham or endovascular perforation SAH operation, randomly followed by an intracerebroventricular infusion of vehicle or two dosages (117 or 585 ng) of a selective TLR4 antagonist IAXO-102 at 30 min post-operation. The effects were evaluated by survival rates, neurological scores, and brain water content at 24-72 h and immunoglobulin G immunostaining and Western blotting at 24 h post-SAH. IAXO-102 significantly prevented post-SAH neurological impairments, brain edema, and BBB disruption, resulting in improved survival rates. IAXO-102 also significantly suppressed post-SAH activation of a major isoform of MAPK p46 c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-9 as well as periostin induction and preserved tight junction protein zona occludens-1. Another selective TLR4 antagonist TAK-242, which has a different binding site from IAXO-102, also showed similar effects to IAXO-102. This study first provided the evidence that TLR4 signaling is involved in post-SAH acute BBB disruption and that the signaling is mediated at least partly by JNK activation. TLR4-targeted therapy may be promising to reduce post-SAH morbidities and mortalities.

  12. There will be some changes made: A survivor perspective on post-acquired brain injury residential transition.

    PubMed

    O'Neil-Pirozzi, Therese M; Lorenz, Laura S; Demore-Taber, Michelle; Samayoa, Sindi

    2015-01-01

    Brain injury survivors experience many transitions post-injury and it is important that they experience these in the most supportive and integrative ways possible. This study provided a group of chronic brain injury survivors the opportunity to share their insights and experience of residential transition and to suggest strategies to help maximize the transition experience and outcomes. This study used a qualitative design that consisted of semi-structured interviews. Twenty-one adults with chronic acquired brain injury residing in community-based supported group houses answered a series of scripted questions. Interviews were recorded and participant statements were transcribed and coded according to prospectively developed transition themes. Participants discussed positive and negative insights and experiences regarding residential transitions. Themes of balance between support and independence, life purpose and transition to more or less structure were frequently addressed. Participants suggested caregiver-targeted strategies to facilitate successful transitions before, during and after a move. The insights and suggestions shared by this group of chronic acquired brain injury survivors add to already existing knowledge of post-injury residential transitions and strategies professional caregivers may use to maximize the ease and success of the survivor's transitional experience.

  13. Epilepsy, regulation of brain energy metabolism and neurotransmission.

    PubMed

    Cloix, Jean-François; Hévor, Tobias

    2009-01-01

    Seizures are the result of a sudden and temporary synchronization of neuronal activity, the reason for which is not clearly understood. Astrocytes participate in the control of neurotransmitter storage and neurotransmission efficacy. They provide fuel to neurons, which need a high level of energy to sustain normal and pathological neuronal activities, such as during epilepsy. Various genetic or induced animal models have been developed and used to study epileptogenic mechanisms. Methionine sulfoximine induces both seizures and the accumulation of brain glycogen, which might be considered as a putative energy store to neurons in various animals. Animals subjected to methionine sulfoximine develop seizures similar to the most striking form of human epilepsy, with a long pre-convulsive period of several hours, a long convulsive period during up to 48 hours and a post convulsive period during which they recover normal behavior. The accumulation of brain glycogen has been demonstrated in both the cortex and cerebellum as early as the pre-convulsive period, indicating that this accumulation is not a consequence of seizures. The accumulation results from an activation of gluconeogenesis specifically localized to astrocytes, both in vivo and in vitro. Both seizures and brain glycogen accumulation vary when using different inbred strains of mice. C57BL/6J is the most "resistant" strain to methionine sulfoximine, while CBA/J is the most "sensitive" one. The present review describes the data obtained on methionine sulfoximine dependent seizures and brain glycogen in the light of neurotransmission, highlighting the relevance of brain glycogen content in epilepsies.

  14. Hypoxia regulates microRNA expression in the human carotid body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less

  15. Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain.

    PubMed

    Dobolyi, Arpád; Bagó, Attila G; Gál, Aniko; Molnár, Mária J; Palkovits, Miklós; Adam-Vizi, Vera; Chinopoulos, Christos

    2015-04-01

    We have recently shown that the ATP-forming SUCLA2 subunit of succinyl-CoA ligase, an enzyme of the citric acid cycle, is exclusively expressed in neurons of the human cerebral cortex; GFAP- and S100-positive astroglial cells did not exhibit immunohistoreactivity or in situ hybridization reactivity for either SUCLA2 or the GTP-forming SUCLG2. However, Western blotting of post mortem samples revealed a minor SUCLG2 immunoreactivity. In the present work we sought to identify the cell type(s) harboring SUCLG2 in paraformaldehyde-fixed, free-floating surgical human cortical tissue samples. Specificity of SUCLG2 antiserum was supported by co-localization with mitotracker orange staining of paraformaldehyde-fixed human fibroblast cultures, delineating the mitochondrial network. In human cortical tissue samples, microglia and oligodendroglia were identified by antibodies directed against Iba1 and myelin basic protein, respectively. Double immunofluorescence for SUCLG2 and Iba1 or myelin basic protein exhibited no co-staining; instead, SUCLG2 appeared to outline the cerebral microvasculature. In accordance to our previous work there was no co-localization of SUCLA2 immunoreactivity with either Iba1 or myelin basic protein. We conclude that SUCLG2 exist only in cells forming the vasculature or its contents in the human brain. The absence of SUCLA2 and SUCLG2 in human glia is in compliance with the presence of alternative pathways occurring in these cells, namely the GABA shunt and ketone body metabolism which do not require succinyl CoA ligase activity, and glutamate dehydrogenase 1, an enzyme exhibiting exquisite sensitivity to inhibition by GTP.

  16. Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats.

    PubMed

    Xu, Ningbo; Zhang, Yixin; Doycheva, Desislava Met; Ding, Yan; Zhang, Yiting; Tang, Jiping; Guo, Hongbo; Zhang, John H

    2018-05-01

    Adiponectin is an important adipocyte-derived plasma protein that has beneficial effects on cardio- and cerebrovascular diseases. A low level of plasma Adiponectin is associated with increased mortality post ischemic stroke; however, little is known about the causal role of Adiponectin as well as its molecular mechanisms in neonatal hypoxia ischemia (HI). In the present study, ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. Recombinant human Adiponectin (rh-Adiponectin) was administered intranasally 1 h post HI. Adiponectin Receptor 1 (AdipoR1) siRNA, APPL1 siRNA, LKB1 siRNA were administered through intracerebroventricular injection 48 h before HI. Brain infarct area measurement, neurological function test, western blot, Fluoro Jade C (FJC), TUNEL, and immunofluorescence staining were conducted. Results revealed that endogenous Adiponectin, AdipoR1 and APPL1 were increased in a time dependent manner after HI. Administration of rh-Adiponectin reduced brain infarct area, neuronal apoptosis, brain atrophy and improved neurological function at 24 h and 4 weeks post HI. Furthermore, rh-Adiponectin treatment increased Adiponectin, AdipoR1, APPL1, cytosolic LKB1, p-AMPK expression levels and thereby attenuated apoptosis as shown by the decreased expression of the pro-apoptotic marker, Cleaved Caspase 3 (C-Cas3), as well as the number of FJC and TUNEL positively stained neurons. AdipoR1, APPL1 and LKB1 siRNAs abolished the anti-apoptotic effects of rh-Adiponectin at 24 h after HI. Collectively, the data provided evidence that intranasal administration of rh-Adiponectin attenuated neuronal apoptosis at least in part via activating AdipoR1/APPL1/LKB1/AMPK signaling pathway. Adiponectin could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics. PMID:27309348

  18. Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments.

    PubMed

    Shultz, Sandy R; MacFabe, Derrick F; Foley, Kelly A; Taylor, Roy; Cain, Donald P

    2012-04-01

    Sub-concussive brain injuries may result in neurophysiological changes, cumulative effects, and neurodegeneration. The current study investigated the effects of a mild lateral fluid percussion injury (0.50-0.99 atm) on rat behavior and neuropathology to address the need to better understand sub-concussive brain injury. Male Long-Evans rats received either a single mild lateral fluid percussion injury or a sham-injury, followed by either a short (24 h) or long (4 weeks) recovery period. After recovery, rats underwent extensive behavioral testing consisting of tasks for rodent cognition, anxiety- and depression-like behaviors, social behavior, and sensorimotor function. At the completion of behavioral testing rats were sacrificed and brains were examined immunohistochemically with markers for neuroinflammation and axonal injury. No significant group differences were found on behavioral and axonal injury measures. However, rats given one mild fluid percussion injury displayed an acute neuroinflammatory response, consisting of increased microglia/macrophages and reactive astrogliosis, at 4 days post-injury. Neuroinflammation is a mechanism with the potential to contribute to the cumulative and neurodegenerative effects of repeated sub-concussive injuries. The current findings are consistent with findings in humans experiencing a sub-concussive blow, and provide support for the use of mild lateral fluid percussion injury in the rat as a model of sub-concussive brain injury. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-09

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  20. Increasing time to postoperative stereotactic radiation therapy for patients with resected brain metastases: investigating clinical outcomes and identifying predictors associated with time to initiation.

    PubMed

    Yusuf, Mehran B; Amsbaugh, Mark J; Burton, Eric; Nelson, Megan; Williams, Brian; Koutourousiou, Maria; Nauta, Haring; Woo, Shiao

    2018-02-01

    We sought to determine the impact of time to initiation (TTI) of post-operative radiosurgery on clinical outcomes for patients with resected brain metastases and to identify predictors associated with TTI. All patients with resected brain metastases treated with postoperative SRS or fractionated stereotactic radiation therapy (fSRT) from 2012 to 2016 at a single institution were reviewed. TTI was defined as the interval from resection to first day of radiosurgery. Receiver operating characteristic (ROC) curves were used to identify an optimal threshold for TTI with respect to local failure (LF). Survival outcomes were estimated using the Kaplan-Meier method and analyzed using the log-rank test and Cox proportional hazards models. Logistic regression models were used to identify factors associated with ROC-determined TTI covariates. A total of 79 resected lesions from 73 patients were evaluated. An ROC curve of LF and TTI identified an optimal threshold for TTI of 30.5 days, with an area under the curve of 0.637. TTI > 30 days was associated with an increased hazard of LF (HR 4.525, CI 1.239-16.527) but was not significantly associated with survival (HR 1.002, CI 0.547-1.823) or distant brain failure (DBF, HR 1.943, CI 0.989-3.816). Fifteen patients (20.5%) required post-operative inpatient rehabilitation. Post-operative rehabilitation was associated with TTI > 30 days (OR 1.48, CI 1.142-1.922). In our study of resected brain metastases, longer time to initiation of post-operative radiosurgery was associated with increased local failure. Ideally, post-op SRS should be initiated within 30 days of resection if feasible.

  1. Reduced expression of IA channels is associated with post-ischemic seizures.

    PubMed

    Lei, Zhigang; Zhang, Hui; Liang, Yanling; Xu, Zao C

    2016-08-01

    Post-stroke seizures are considered as a major cause of epilepsy in adults. The pathophysiologic mechanisms resulting in post-stroke seizures are not fully understood. The present study attempted to reveal a new mechanism underlying neuronal hyperexcitability responsible to the seizure development after ischemic stroke. Transient global ischemia was produced in adult Wistar rats using the 4-vessel occlusion (4-VO) method. The spontaneous behavioral seizures were defined by the Racine scale III-V. The neuronal death in the brain was determined by hematoxylin-eosin staining. The expression levels of A-type potassium channels were analyzed by immunohistochemical staining and western blotting. We found that the incidence of spontaneous behavioral seizures increased according to the severity of ischemia with 0% after 15-min ischemia and ∼50% after 25-min ischemia. All behavioral seizures occurred with 48h after ischemia. Morphological analysis indicated that brain damage was not correlated with behavioral seizures. Immunohistochemical staining showed that the expression levels of the A-type potassium channel subunit Kv4.2 was significantly reduced in ischemic brains with behavioral seizures, but not in ischemic brains without seizures. In addition, rats failing to develop spontaneous behavioral seizures within 2days after ischemia were more sensitive to bicuculline-induced seizures at 2 months after ischemia than control rats. Meanwhile, Kv4.2 expression was decreased in brain at 2 months after ischemia. Our results demonstrated the reduction of Kv4.2 expression might contribute to the development of post-ischemic seizures and long-term increased seizure susceptibility after ischemia. The mechanisms underlying post-stroke seizures and epilepsy is unknown so far. The down-regulation of IA channels may explained the abnormal neuronal hyperexcitability responsible for the seizure development after ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  3. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    PubMed

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.

  4. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation

    PubMed Central

    Moffett, John R.; Arun, Peethambaran; Ariyannur, Prasanth S.; Namboodiri, Aryan M. A.

    2013-01-01

    N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury. PMID:24421768

  5. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki valuesmore » obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.« less

  6. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    PubMed

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Post-conventional moral reasoning is associated with increased ventral striatal activity at rest and during task.

    PubMed

    Fang, Zhuo; Jung, Wi Hoon; Korczykowski, Marc; Luo, Lijuan; Prehn, Kristin; Xu, Sihua; Detre, John A; Kable, Joseph W; Robertson, Diana C; Rao, Hengyi

    2017-08-02

    People vary considerably in moral reasoning. According to Kohlberg's theory, individuals who reach the highest level of post-conventional moral reasoning judge moral issues based on deeper principles and shared ideals rather than self-interest or adherence to laws and rules. Recent research has suggested the involvement of the brain's frontostriatal reward system in moral judgments and prosocial behaviors. However, it remains unknown whether moral reasoning level is associated with differences in reward system function. Here, we combined arterial spin labeling perfusion and blood oxygen level-dependent functional magnetic resonance imaging and measured frontostriatal reward system activity both at rest and during a sequential risky decision making task in a sample of 64 participants at different levels of moral reasoning. Compared to individuals at the pre-conventional and conventional level of moral reasoning, post-conventional individuals showed increased resting cerebral blood flow in the ventral striatum and ventromedial prefrontal cortex. Cerebral blood flow in these brain regions correlated with the degree of post-conventional thinking across groups. Post-conventional individuals also showed greater task-induced activation in the ventral striatum during risky decision making. These findings suggest that high-level post-conventional moral reasoning is associated with increased activity in the brain's frontostriatal system, regardless of task-dependent or task-independent states.

  8. Organoid technology for brain and therapeutics research.

    PubMed

    Wang, Zhi; Wang, Shu-Na; Xu, Tian-Ying; Miao, Zhu-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2017-10-01

    Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics. © 2017 John Wiley & Sons Ltd.

  9. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease

    PubMed Central

    Mendez, Ivar; Sanchez-Pernaute, Rosario; Cooper, Oliver; Viñuela, Angel; Ferrari, Daniela; Björklund, Lars; Dagher, Alain; Isacson, Ole

    2008-01-01

    We report the first post-mortem analysis of two patients with Parkinson’s disease who received fetal midbrain transplants as a cell suspension in the striatum, and in one case also in the substantia nigra. These patients had a favourable clinical evolution and positive 18F-fluorodopa PET scans and did not develop motor complications. The surviving transplanted dopamine neurons were positively identified with phenotypic markers of normal control human substantia nigra (n = 3), such as tyrosine hydroxylase, G-protein-coupled inward rectifying current potassium channel type 2 (Girk2) and calbindin. The grafts restored the cell type that provides specific dopaminergic innervation to the most affected striatal regions in the parkinsonian brain. Such transplants were able to densely reinnervate the host putamen with new dopamine fibres. The patients received only 6 months of standard immune suppression, yet by post-mortem analysis 3–4 years after surgery the transplants appeared only mildly immunogenic to the host brain, by analysis of microglial CD45 and CD68 markers. This study demonstrates that, using these methods, dopamine neuronal replacement cell therapy can be beneficial for patients with advanced disease, and that changing technical approaches could have a favourable impact on efficacy and adverse events following neural transplantation. PMID:15872020

  10. Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish

    2017-04-01

    Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.

  11. Inference of ecological and social drivers of human brain-size evolution.

    PubMed

    González-Forero, Mauricio; Gardner, Andy

    2018-05-01

    The human brain is unusually large. It has tripled in size from Australopithecines to modern humans 1 and has become almost six times larger than expected for a placental mammal of human size 2 . Brains incur high metabolic costs 3 and accordingly a long-standing question is why the large human brain has evolved 4 . The leading hypotheses propose benefits of improved cognition for overcoming ecological 5-7 , social 8-10 or cultural 11-14 challenges. However, these hypotheses are typically assessed using correlative analyses, and establishing causes for brain-size evolution remains difficult 15,16 . Here we introduce a metabolic approach that enables causal assessment of social hypotheses for brain-size evolution. Our approach yields quantitative predictions for brain and body size from formalized social hypotheses given empirical estimates of the metabolic costs of the brain. Our model predicts the evolution of adult Homo sapiens-sized brains and bodies when individuals face a combination of 60% ecological, 30% cooperative and 10% between-group competitive challenges, and suggests that between-individual competition has been unimportant for driving human brain-size evolution. Moreover, our model indicates that brain expansion in Homo was driven by ecological rather than social challenges, and was perhaps strongly promoted by culture. Our metabolic approach thus enables causal assessments that refine, refute and unify hypotheses of brain-size evolution.

  12. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood.

    PubMed

    Dinel, A L; Rey, C; Baudry, C; Fressange-Mazda, C; Le Ruyet, P; Nadjar, A; Pallet, P; Joffre, C; Layé, S

    2016-10-01

    Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    PubMed

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P < 0.05 uncorrected). This study found that, at 1 month after LT, spontaneous brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  14. Acute stress promotes post-injury brain regeneration in fish.

    PubMed

    Sinyakov, Michael S; Haimovich, Amihai; Avtalion, Ramy R

    2017-12-01

    The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  16. Comparing pre-operative stereotactic radiosurgery (SRS) to post-operative whole brain radiation therapy (WBRT) for resectable brain metastases: a multi-institutional analysis.

    PubMed

    Patel, Kirtesh R; Burri, Stuart H; Boselli, Danielle; Symanowski, James T; Asher, Anthony L; Sumrall, Ashley; Fraser, Robert W; Press, Robert H; Zhong, Jim; Cassidy, Richard J; Olson, Jeffrey J; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-02-01

    Pre-operative stereotactic radiosurgery (pre-SRS) has been shown as a viable treatment option for resectable brain metastases (BM). The aim of this study is to compare oncologic outcomes and toxicities for pre-SRS and post-operative WBRT (post-WBRT) for resectable BM. We reviewed records of consecutive patients who underwent resection of BM and either pre-SRS or post-WBRT between 2005 and 2013 at two institutions. Overall survival (OS) was calculated using the Kaplan-Meier method. Cumulative incidence was used for intracranial outcomes. Multivariate analysis (MVA) was performed using the Cox and Fine and Gray models, respectively. Overall, 102 patients underwent surgical resection of BM; 66 patients with 71 lesions received pre-SRS while 36 patients with 42 cavities received post-WBRT. Baseline characteristics were similar except for the pre-SRS cohort having more single lesions (65.2% vs. 38.9%, p = 0.001) and smaller median lesion volume (8.3 cc vs. 15.3 cc, p = 0.006). 1-year OS was similar between cohorts (58% vs. 56%, respectively) (p = 0.43). Intracranial outcomes were also similar (2-year outcomes, pre-SRS vs. post-WBRT): local recurrence: 24.5% vs. 25% (p = 0.81), distant brain failure (DBF): 53.2% vs. 45% (p = 0.66), and leptomeningeal disease (LMD) recurrence: 3.5% vs. 9.0% (p = 0.66). On MVA, radiation cohort was not independently associated with OS or any intracranial outcome. Crude rates of symptomatic radiation necrosis were 5.6 and 0%, respectively. OS and intracranial outcomes were similar for patients treated with pre-SRS or post-WBRT for resected BM. Pre-SRS is a viable alternative to post-WBRT for resected BM. Further confirmatory studies with neuro-cognitive outcomes comparing these two treatment paradigms are needed.

  17. Brain Transcriptome Profiles in Mouse Model Simulating Features of Post-traumatic Stress Disorder

    DTIC Science & Technology

    2015-02-28

    comorbid-related signaling pathways indicate the pervasive and multisystem effects of aggressor exposure in mice, potentially mirroring the pathologic...11,12]. Impaired extinction of fear- potentiated startle and en- hanced cue conditioning in these brain regions (of trau- matized patients and animal...lead to either a long-term synap- tic potentiation (LTP) increase in synaptic strength and in- crease in excitatory post-synaptic potential

  18. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis.

    PubMed

    Doeppner, Thorsten R; Traut, Viktorija; Heidenreich, Alexander; Kaltwasser, Britta; Bosche, Bert; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.

  19. T-cell infiltration into the perilesional cortex is long-lasting and associates with poor somatomotor recovery after experimental traumatic brain injury.

    PubMed

    Ndode-Ekane, Xavier Ekolle; Matthiesen, Liz; Bañuelos-Cabrera, Ivette; Palminha, Cátia Alexandra Pêgas; Pitkänen, Asla

    2018-06-06

    T-lymphocyte (T-cell) invasion into the brain parenchyma is a major consequence of traumatic brain injury (TBI). However, the role of T-cells in the post-TBI functional outcome and secondary inflammatory processes is unknown. We explored the dynamics of T-cell infiltration into the cortex after TBI to establish whether the infiltration relates to post-injury functional impairment/recovery and progression of the secondary injury. TBI was induced in rats by lateral fluid-percussion injury, and the acute functional impairment was assessed using the neuroscore. Animals were killed between 1-90 d post-TBI for immunohistochemical analysis of T-cell infiltration (CD3), chronic macrophage/microglial reaction (CD68), blood-brain barrier (BBB) dysfunction (IgG), and endophenotype of the cortical injury. Furthermore, the occurrence of spontaneous seizures and spike-and-wave discharges were assessed using video-electroencephalography. The number of T-cells peaked at 2-d post-TBI, and then dramatically decreased by 7-d post-TBI (5% of 2-d value). Unexpectedly, chronic T-cell infiltration at 1 or 3 months post-TBI did not correlate with the severity of chronic inflammation (p >  0.05) or BBB dysfunction (p >  0.05). Multiple regression analysis indicated that inflammation and BBB dysfunction is associated with 48% of the perilesional T-cell infiltration even at the chronic time-point (r = 0.695, F = 6.54, p <  0.05). The magnitude of T-cell infiltration did not predict the pathologic endophenotype of cortical injury, but the higher the number of T-cells in the cortex, the poorer the recovery index based on the neuroscore (r = - 0.538, p <  0.05). T-cell infiltration was not associated with the number or duration of age-related spike-and-wave discharges (SWD). Nevertheless, the higher the number of SWD, the poorer the recovery index (r = - 0.767, p <  0.5). These findings suggest that acute infiltration of T-cells into the brain parenchyma after TBI is a contributing factor to poor post-injury recovery.

  20. Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain.

    PubMed

    Hezel, Marcus; Ebrahimi, Fahim; Koch, Marco; Dehghani, Faramarz

    2012-10-01

    Immunohistochemical visualization of antigens in specimen has evolved to an indispensable technique in biomedical research for investigations of cell morphology and pathology both in bright field and fluorescence microscopy. While there are couple of staining methods that reveal entire cytoarchitecture in bright field microscopy such as Nissl or hemalaun-eosin, there are still limitations in visualizations of cytoarchitecture in fluorescence microscopy. The present study reports a simple staining method that provides the required illustration of cell allocations and cellular composition in fluorescence microscopy in adult and in developing rodent central nervous system using the fluorophore propidium iodide (PI, 5μg/mL). PI is a well-accepted marker for degenerating cells when applied prior to fixation (pre-fixation PI staining). Here, PI was added to the sections after the fixation (post-fixation PI staining). This revised labeling procedure led to similar cytoarchitectural staining patterns in fluorescence microscopy as observed with hemalaun in bright field microscopy. This finding was proven in organotypic hippocampal slice cultures (OHSC) and brain sections obtained from different postnatal developmental stages. Excitotoxically lesioned OHSC subjected to pre-fixation PI staining merely showed brightly labeled condensed nuclei of degenerating neurons. In contrast, post-fixation PI staining additionally revealed extensive labeling of neuronal cell bodies and glial cells within the OHSC, thus allowing visualization of stratification of neuronal layers and cell morphology. Furthermore, post-fixation PI staining was combined with NeuN, calbindin, calretinin, glial fibrillary acidic protein or Griffonia simplicifolia isolectin B4 (IB(4)) in post natal (p1 and p9) and adult rats. In early post-natal brain sections almost all mentioned cellular markers led to an incomplete staining of the native cell organization and resulted in an inaccurate estimation of cell morphology when compared to adult brains. In contrast, post-fixation PI staining allowed investigation of the whole cytoarchitecture independent of the developmental stage. Taken together, post-fixation PI staining provides a detailed insight in the morphology of both developing and adult brain tissues in fluorescence microscopy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Human sexual behavior related to pathology and activity of the brain.

    PubMed

    Komisaruk, Barry R; Rodriguez Del Cerro, Maria Cruz

    2015-01-01

    Reviewed in this chapter are: (1) correlations among human sexual behavior, brain pathology, and brain activity, including caveats regarding the interpretation of "cause and effect" among these factors, and the degree to which "hypersexuality" and reported changes in sexual orientation correlated with brain pathology are uniquely sexual or are attributable to a generalized disinhibition of brain function; (2) the effects, in some cases inhibitory, in others facilitatory, on sexual behavior and motivation, of stroke, epileptic seizures, traumatic brain injury, and brain surgery; and (3) insights into sexual motivation and behavior recently gained from functional brain imaging research and its interpretive limitations. We conclude from the reviewed research that the neural orchestra underlying the symphony of human sexuality comprises, rather than brain "centers," multiple integrated brain systems, and that there are more questions than answers in our understanding of the control of human sexual behavior by the brain - a level of understanding that is still in embryonic form. © 2015 Elsevier B.V. All rights reserved.

  2. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.

    PubMed

    Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2016-08-01

    The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. © The Author 2016. Published by Oxford University Press.

  3. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from pre bed rest to the last day in bed rest. In contrast, connectivity within the default mode network remained stable over the course of bed rest. We also utilized a battery of behavioral measures including spatial working memory tasks and measures of functional mobility and balance. These behavioral measurements were collected before, during, and after bed rest. We will report the preliminary findings of correlations observed between brain functional connectivity and behavioral performance changes. Our results suggest that sensorimotor brain networks exhibit decoupling with extended periods of reduced usage. The findings from this study could aid in the understanding and future design of targeted countermeasures to alleviate the detrimental health and neurocognitive effects of long-duration spaceflight.

  4. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  5. Neuroinvasion of the Highly Pathogenic Influenza Virus H7N1 Is Caused by Disruption of the Blood Brain Barrier in an Avian Model

    PubMed Central

    Chaves, Aida J.; Vergara-Alert, Júlia; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2014-01-01

    Influenza A virus (IAV) causes central nervous system (CNS) lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI) virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i) detecting Evans blue (EB) extravasation into the brain, (ii) determining the leakage of the serum protein immunoglobulin Y (IgY) into the brain and (iii) assessing the stability of the tight-junction (TJ) proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi). The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR) at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi) with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma. PMID:25506836

  6. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study.

    PubMed

    Hametner, Simon; Endmayr, Verena; Deistung, Andreas; Palmrich, Pilar; Prihoda, Max; Haimburger, Evelin; Menard, Christian; Feng, Xiang; Haider, Thomas; Leisser, Marianne; Köck, Ulrike; Kaider, Alexandra; Höftberger, Romana; Robinson, Simon; Reichenbach, Jürgen R; Lassmann, Hans; Traxler, Hannes; Trattnig, Siegfried; Grabner, Günther

    2018-06-15

    Quantitative susceptibility mapping (QSM) and effective transverse relaxation rate (R2*) mapping are both highly sensitive to variations in brain iron content. Clinical Magnetic Resonance Imaging (MRI) studies report changes of susceptibilities and relaxation rates in various neurological diseases which are often equated with changes in regional brain iron content. However, these mentioned metrics lack specificity for iron, since they are also influenced by the presence of myelin. In this study, we assessed the extent to which QSM and R2* reflect iron concentration as well as histological iron and myelin intensities. Six unfixed human post-mortem brains were imaged in situ with a 7 T MRI scanner. After formalin fixation, the brains were sliced axially and punched. 671 tissue punches were subjected to ferrozine iron quantification. Subsequently, brain slices were embedded in paraffin, and histological double-hemispheric axial brain slices were stained for Luxol fast blue (myelin) and diaminobenzidine (DAB)-enhanced Turnbull blue (iron). 3331 regions of interest (ROIs) were drawn on the histological stainings to assess myelin and iron intensities, which were compared with MRI data in corresponding ROIs. QSM more closely reflected quantitative ferrozine iron values (r = 0.755 vs. 0.738), whereas R2* correlated better with iron staining intensities (r = 0.619 vs. 0.445). Myelin intensities correlated negatively with QSM (r = -0.352), indicating a diamagnetic effect of myelin on susceptibility. Myelin intensities were higher in the thalamus than in the basal ganglia. A significant relationship was nonetheless observed between quantitative iron values and QSM, confirming the applicability of the latter in this brain region for iron quantification. Copyright © 2018. Published by Elsevier Inc.

  7. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease.

    PubMed

    Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S

    Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis

    PubMed Central

    Wang, Junping; Kong, Decong; Zhang, Shengwei; Jiang, Hua; Zheng, Yuling; Zang, Yating; Hao, Huaijie; Jiang, Yongqiang

    2015-01-01

    Muramidase-released protein (MRP) is as an important virulence marker of Streptococcus suis (S. suis) serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg); however, the function of this interaction in S. suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3). Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood–brain barrier (BBB). In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis. PMID:26441928

  9. Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults

    PubMed Central

    Wei, Gao-Xia; Dong, Hao-Ming; Yang, Zhi; Luo, Jing; Zuo, Xi-Nian

    2014-01-01

    Whether Tai Chi Chuan (TCC) can influence the intrinsic functional architecture of the human brain remains unclear. To examine TCC-associated changes in functional connectomes, resting-state functional magnetic resonance images were acquired from 40 older individuals including 22 experienced TCC practitioners (experts) and 18 demographically matched TCC-naïve healthy controls, and their local functional homogeneities across the cortical mantle were compared. Compared to the controls, the TCC experts had significantly greater and more experience-dependent functional homogeneity in the right post-central gyrus (PosCG) and less functional homogeneity in the left anterior cingulate cortex (ACC) and the right dorsal lateral prefrontal cortex. Increased functional homogeneity in the PosCG was correlated with TCC experience. Intriguingly, decreases in functional homogeneity (improved functional specialization) in the left ACC and increases in functional homogeneity (improved functional integration) in the right PosCG both predicted performance gains on attention network behavior tests. These findings provide evidence for the functional plasticity of the brain’s intrinsic architecture toward optimizing locally functional organization, with great implications for understanding the effects of TCC on cognition, behavior and health in aging population. PMID:24860494

  10. BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury

    PubMed Central

    Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan

    2011-01-01

    Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305

  11. Long-Term Effects of Attentional Performance on Functional Brain Network Topology

    PubMed Central

    Breckel, Thomas P. K.; Thiel, Christiane M.; Bullmore, Edward T.; Zalesky, Andrew; Patel, Ameera X.; Giessing, Carsten

    2013-01-01

    Individuals differ in their cognitive resilience. Less resilient people demonstrate a greater tendency to vigilance decrements within sustained attention tasks. We hypothesized that a period of sustained attention is followed by prolonged changes in the organization of “resting state” brain networks and that individual differences in cognitive resilience are related to differences in post-task network reorganization. We compared the topological and spatial properties of brain networks as derived from functional MRI data (N = 20) recorded for 6 mins before and 12 mins after the performance of an attentional task. Furthermore we analysed changes in brain topology during task performance and during the switches between rest and task conditions. The cognitive resilience of each individual was quantified as the rate of increase in response latencies over the 32-minute time course of the attentional paradigm. On average, functional networks measured immediately post-task demonstrated significant and prolonged changes in network organization compared to pre-task networks with higher connectivity strength, more clustering, less efficiency, and shorter distance connections. Individual differences in cognitive resilience were significantly correlated with differences in the degree of recovery of some network parameters. Changes in network measures were still present in less resilient individuals in the second half of the post-task period (i.e. 6–12 mins after task completion), while resilient individuals already demonstrated significant reductions of functional connectivity and clustering towards pre-task levels. During task performance brain topology became more integrated with less clustering and higher global efficiency, but linearly decreased with ongoing time-on-task. We conclude that sustained attentional task performance has prolonged, “hang-over” effects on the organization of post-task resting-state brain networks; and that more cognitively resilient individuals demonstrate faster rates of network recovery following a period of attentional effort. PMID:24040185

  12. Concussive Brain Trauma in the Mouse Results in Acute Cognitive Deficits and Sustained Impairment of Axonal Function

    PubMed Central

    Creed, Jennifer A.; DiLeonardi, Ann Mae; Fox, Douglas P.; Tessler, Alan R.

    2011-01-01

    Abstract Concussive brain injury (CBI) accounts for approximately 75% of all brain-injured people in the United States each year and is particularly prevalent in contact sports. Concussion is the mildest form of diffuse traumatic brain injury (TBI) and results in transient cognitive dysfunction, the neuropathologic basis for which is traumatic axonal injury (TAI). To evaluate the structural and functional changes associated with concussion-induced cognitive deficits, adult mice were subjected to an impact on the intact skull over the midline suture that resulted in a brief apneic period and loss of the righting reflex. Closed head injury also resulted in an increase in the wet weight:dry weight ratio in the cortex suggestive of edema in the first 24 h, and the appearance of Fluoro-Jade-B-labeled degenerating neurons in the cortex and dentate gyrus of the hippocampus within the first 3 days post-injury. Compared to sham-injured mice, brain-injured mice exhibited significant deficits in spatial acquisition and working memory as measured using the Morris water maze over the first 3 days (p<0.001), but not after the fourth day post-injury. At 1 and 3 days post-injury, intra-axonal accumulation of amyloid precursor protein in the corpus callosum and cingulum was accompanied by neurofilament dephosphorylation, impaired transport of Fluoro-Gold and synaptophysin, and deficits in axonal conductance. Importantly, deficits in retrograde transport and in action potential of myelinated axons continued to be observed until 14 days post-injury, at which time axonal degeneration was apparent. These data suggest that despite recovery from acute cognitive deficits, concussive brain trauma leads to axonal degeneration and a sustained perturbation of axonal function. PMID:21299360

  13. Preliminary evidence of reduced brain network activation in patients with post-traumatic migraine following concussion.

    PubMed

    Kontos, Anthony P; Reches, Amit; Elbin, R J; Dickman, Dalia; Laufer, Ilan; Geva, Amir B; Shacham, Galit; DeWolf, Ryan; Collins, Michael W

    2016-06-01

    Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.

  14. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    PubMed

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  15. Healthy body, healthy mind: A mixed methods study of outcomes, barriers and supports for exercise by people who have chronic moderate-to-severe acquired brain injury.

    PubMed

    Lorenz, Laura S; Charrette, Ann L; O'Neil-Pirozzi, Therese M; Doucett, Julia M; Fong, Jeffrey

    2018-01-01

    Few people with chronic moderate-to-severe brain injury are following recommended physical activity guidelines. Investigate effects of planned, systematic physical activity while cultivating social and emotional well-being of people with chronic moderate-to-severe brain injury. Moderate-to-intensive physical activity would be associated with improvements in impairment and activity limitation measures (endurance, mobility, gait speed) immediately post-intervention and six weeks later (study week 12). The intervention was a single group pre-/post-intervention study with 14 people with chronic moderate-to-severe brain injury who live in brain injury group homes and exercised 60-90 min, 3 days per week for 6 weeks at a maximum heart rate of 50-80%. Pre-post measures (administered weeks 0, 6 and 12) were the 6 Minute Walk Test, High-level Mobility Assessment Tool and 10 Meter Walk Test. The qualitative component used a brief survey and semi-structured interview guide with participants, family members, and staff. Following program completion, post-intervention group changes were noted on all outcome measures and greater than minimal detectable change for people with brain injury. Three transitioned from low to high ambulatory status and maintained this change at 12 weeks. During interviews, participants agreed the program was stimulating. More than eighty percent liked working out in a group and felt better being active. Program impact included physical, cognitive and social/emotional aspects. Social aspects (group format, trainers) were highly motivating and supported by residents, family, and staff. Investments in transportation and recruiting and training interns to assist participants are critical to program sustainability and expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    PubMed

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  17. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    PubMed

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  18. The riddle of style changes in the visual arts after interference with the right brain.

    PubMed

    Blanke, Olaf; Pasqualini, Isabella

    2011-01-01

    We here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. In our analysis we focus in particular on the oeuvre of Lovis Corinth and Luchino Visconti as both major artists continued to be highly productive over many years after their right brain damage. We analyzed their post-stroke paintings and films, indicate several aspects that differ from their pre-stroke work (omissions, use of color, perseveration, deformation), and propose-although both artists come from different times, countries, genres, and styles-that their post-stroke oeuvre reveals important similarities in style. We argue that these changes may be associated with visuo-spatial hemineglect and the right brain. We discuss future avenues of how the neuropsychological investigation of visual artists with and without neglect may allow us to investigate the relationship between brain and art.

  19. Improved Dysphagia After Decannulation of Tracheostomy in Patients With Brain Injuries

    PubMed Central

    Kim, Yong Kyun; Choi, Jung-Hwa; Yoon, Jeong-Gyu; Lee, Jang-Won

    2015-01-01

    Objective To investigate improved dysphagia after the decannulation of a tracheostomy in patients with brain injuries. Methods The subjects of this study are patients with brain injuries who were admitted to the Department of Rehabilitation Medicine in Myongji Hospital and who underwent a decannulation between 2012 and 2014. A video fluoroscopic swallowing study (VFSS) was performed in order to investigate whether the patients' dysphagia had improved. We measured the following 5 parameters: laryngeal elevation, pharyngeal transit time, post-swallow pharyngeal remnant, upper esophageal width, and semisolid aspiration. We analyzed the patients' results from VFSS performed one month before and one month after decannulation. All VFSS images were recorded using a camcorder running at 30 frames per second. An AutoCAD 2D screen was used to measure laryngeal elevation, post-swallow pharyngeal remnant, and upper esophageal width. Results In this study, a number of dysphagia symptoms improved after decannulation. Laryngeal elevation, pharyngeal transit time, and semisolid aspiration showed no statistically significant differences (p>0.05), however after decannulation, the post-swallow pharyngeal remnant (pre 37.41%±24.80%, post 21.02%±11.75%; p<0.001) and upper esophageal width (pre 3.57±1.93 mm, post 4.53±2.05 mm; p<0.001) showed statistically significant differences. Conclusion When decannulation is performed on patients with brain injuries who do not require a ventilator and who are able to independently excrete sputum, improved esophageal dysphagia can be expected. PMID:26605176

  20. Improved Dysphagia After Decannulation of Tracheostomy in Patients With Brain Injuries.

    PubMed

    Kim, Yong Kyun; Choi, Jung-Hwa; Yoon, Jeong-Gyu; Lee, Jang-Won; Cho, Sung Sik

    2015-10-01

    To investigate improved dysphagia after the decannulation of a tracheostomy in patients with brain injuries. The subjects of this study are patients with brain injuries who were admitted to the Department of Rehabilitation Medicine in Myongji Hospital and who underwent a decannulation between 2012 and 2014. A video fluoroscopic swallowing study (VFSS) was performed in order to investigate whether the patients' dysphagia had improved. We measured the following 5 parameters: laryngeal elevation, pharyngeal transit time, post-swallow pharyngeal remnant, upper esophageal width, and semisolid aspiration. We analyzed the patients' results from VFSS performed one month before and one month after decannulation. All VFSS images were recorded using a camcorder running at 30 frames per second. An AutoCAD 2D screen was used to measure laryngeal elevation, post-swallow pharyngeal remnant, and upper esophageal width. In this study, a number of dysphagia symptoms improved after decannulation. Laryngeal elevation, pharyngeal transit time, and semisolid aspiration showed no statistically significant differences (p>0.05), however after decannulation, the post-swallow pharyngeal remnant (pre 37.41%±24.80%, post 21.02%±11.75%; p<0.001) and upper esophageal width (pre 3.57±1.93 mm, post 4.53±2.05 mm; p<0.001) showed statistically significant differences. When decannulation is performed on patients with brain injuries who do not require a ventilator and who are able to independently excrete sputum, improved esophageal dysphagia can be expected.

Top