Schmitt, Katja; Richter, Christin; Backes, Christina; Meese, Eckart; Ruprecht, Klemens
2013-01-01
Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS. PMID:24109235
Transcriptional Landscape of the Prenatal Human Brain
Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L.; Aiona, Kaylynn; Arnold, James M.; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A.; Dee, Nick; Dolbeare, Tim A.; Facer, Benjamin A. C.; Feng, David; Fliss, Tim P.; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W.; Gu, Guangyu; Howard, Robert E.; Jochim, Jayson M.; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A.; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick F.; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana E.; Player, Allison Stevens; Pletikos, Mihovil; Reding, Melissa; Royall, Joshua J.; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V.; Shen, Elaine H.; Sjoquist, Nathan; Slaughterbeck, Clifford R.; Smith, Michael; Sodt, Andy J.; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B.; Geschwind, Daniel H.; Glass, Ian A.; Hawrylycz, Michael J.; Hevner, Robert F.; Huang, Hao; Jones, Allan R.; Knowles, James A.; Levitt, Pat; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G.; Lein, Ed S.
2014-01-01
Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229
Transcriptional landscape of the prenatal human brain.
Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L; Royall, Joshua J; Aiona, Kaylynn; Arnold, James M; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Dolbeare, Tim A; Facer, Benjamin A C; Feng, David; Fliss, Tim P; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Howard, Robert E; Jochim, Jayson M; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana E; Stevens, Allison; Pletikos, Mihovil; Reding, Melissa; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V; Shen, Elaine H; Sjoquist, Nathan; Slaughterbeck, Clifford R; Smith, Michael; Sodt, Andy J; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B; Geschwind, Daniel H; Glass, Ian A; Hawrylycz, Michael J; Hevner, Robert F; Huang, Hao; Jones, Allan R; Knowles, James A; Levitt, Pat; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G; Lein, Ed S
2014-04-10
The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.
Spiteri, Elizabeth ; Konopka, Genevieve ; Coppola, Giovanni ; Bomar, Jamee ; Oldham, Michael ; Ou, Jing ; Vernes, Sonja C. ; Fisher, Simon E. ; Ren, Bing ; Geschwind, Daniel H.
2007-01-01
Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes. PMID:17999357
Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G
2004-09-15
To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.
An anatomically comprehensive atlas of the adult human brain transcriptome
Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.
2014-01-01
Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553
Mechanisms of Neurodegeneration and Regeneration in Alcoholism
Crews, Fulton T.; Nixon, Kim
2009-01-01
Aims: This is a review of preclinical studies covering alcohol-induced brain neuronal death and loss of neurogenesis as well as abstinence-induced brain cell genesis, e.g. brain regeneration. Efforts are made to relate preclinical studies to human studies. Methods: The studies described are preclinical rat experiments using a 4-day binge ethanol treatment known to induce physical dependence to ethanol. Neurodegeneration and cognitive deficits following binge treatment mimic the mild degeneration and cognitive deficits found in humans. Various histological methods are used to follow brain regional degeneration and regeneration. Results: Alcohol-induced degeneration occurs due to neuronal death during alcohol intoxication. Neuronal death is related to increases in oxidative stress in brain that coincide with the induction of proinflammatory cytokines and oxidative enzymes that insult brain. Degeneration is associated with increased NF-κB proinflammatory transcription and decreased CREB transcription. Corticolimbic brain regions are most sensitive to binge-induced degeneration and induce relearning deficits. Drugs that block oxidative stress and NF-κB transcription or increase CREB transcription block binge-induced neurodegeneration, inhibition of neurogenesis and proinflammatory enzyme induction. Regeneration of brain occurs during abstinence following binge ethanol treatment. Bursts of proliferating cells occur across multiple brain regions, with many new microglia across brain after months of abstinence and many new neurons in neurogenic hippocampal dentate gyrus. Brain regeneration may be important to sustain abstinence in humans. Conclusions: Alcohol-induced neurodegeneration occurs primarily during intoxication and is related to increased oxidative stress and proinflammatory proteins that are neurotoxic. Abstinence after binge ethanol intoxication results in brain cell genesis that could contribute to the return of brain function and structure found in abstinent humans. PMID:18940959
Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela
2014-01-01
Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development. PMID:24637888
Barresi, Sabina; Tomaselli, Sara; Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela
2014-01-01
Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.
Novel transcriptional networks regulated by CLOCK in human neurons.
Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve
2017-11-01
The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.
Comprehensive transcriptional map of primate brain development
Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.
2017-01-01
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810
O'Neil, Richard T; Wang, Xiaojing; Morabito, Michael V; Emeson, Ronald B
2017-04-06
A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species. Additionally, variability in the human population allows us to make novel inferences about the co-regulation of editing at different editing sites and even across different brain regions.
Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.
2018-01-01
Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831
An environment-dependent transcriptional network specifies human microglia identity.
Gosselin, David; Skola, Dylan; Coufal, Nicole G; Holtman, Inge R; Schlachetzki, Johannes C M; Sajti, Eniko; Jaeger, Baptiste N; O'Connor, Carolyn; Fitzpatrick, Conor; Pasillas, Martina P; Pena, Monique; Adair, Amy; Gonda, David D; Levy, Michael L; Ransohoff, Richard M; Gage, Fred H; Glass, Christopher K
2017-06-23
Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi
2016-01-01
Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958
Accelerated recruitment of new brain development genes into the human genome.
Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan
2011-10-01
How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.
Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan
2016-04-01
Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.
2016-01-01
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559
Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C
2016-01-26
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.
Carlsson, Robert; Özen, Ilknur; Barbariga, Marco; Gaceb, Abderahim; Roth, Michaela; Paul, Gesine
2018-01-01
Brain pericytes are important to maintain vascular integrity of the neurovascular unit under both physiological and ischemic conditions. Ischemic stroke is known to induce an inflammatory and hypoxic response due to the lack of oxygen and glucose in the brain tissue. How this early response to ischemia is molecularly regulated in pericytes is largely unknown and may be of importance for future therapeutic targets. Here we evaluate the transcriptional responses in in vitro cultured human brain pericytes after oxygen and/or glucose deprivation. Hypoxia has been widely known to stabilise the transcription factor hypoxia inducible factor 1-alpha (HIF1α) and mediate the induction of hypoxic transcriptional programs after ischemia. However, we find that the transcription factors Jun Proto-Oncogene (c-JUN), Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells (NFκB) and signal transducer and activator of transcription 3 (STAT3) bind genes regulated after 2hours (hs) of omitted glucose and oxygen before HIF1α. Potent HIF1α responses require 6hs of hypoxia to substantiate transcriptional regulation comparable to either c-JUN or STAT3. Phosphorylated STAT3 protein is at its highest after 5 min of oxygen and glucose (OGD) deprivation, whereas maximum HIF1α stabilisation requires 120 min. We show that STAT3 regulates angiogenic and metabolic pathways before HIF1α, suggesting that HIF1α is not the initiating trans-acting factor in the response of pericytes to ischemia.
Dachet, Fabien; Bagla, Shruti; Keren-Aviram, Gal; Morton, Andrew; Balan, Karina; Saadat, Laleh; Valyi-Nagy, Tibor; Kupsky, William; Song, Fei; Dratz, Edward; Loeb, Jeffrey A
2015-02-01
Although epilepsy is associated with a variety of abnormalities, exactly why some brain regions produce seizures and others do not is not known. We developed a method to identify cellular changes in human epileptic neocortex using transcriptional clustering. A paired analysis of high and low spiking tissues recorded in vivo from 15 patients predicted 11 cell-specific changes together with their 'cellular interactome'. These predictions were validated histologically revealing millimetre-sized 'microlesions' together with a global increase in vascularity and microglia. Microlesions were easily identified in deeper cortical layers using the neuronal marker NeuN, showed a marked reduction in neuronal processes, and were associated with nearby activation of MAPK/CREB signalling, a marker of epileptic activity, in superficial layers. Microlesions constitute a common, undiscovered layer-specific abnormality of neuronal connectivity in human neocortex that may be responsible for many 'non-lesional' forms of epilepsy. The transcriptional clustering approach used here could be applied more broadly to predict cellular differences in other brain and complex tissue disorders. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Williamson, Sarah L; Giudici, Laura; Kilstrup-Nielsen, Charlotte; Gold, Wendy; Pelka, Gregory J; Tam, Patrick P L; Grimm, Andrew; Prodi, Dionigio; Landsberger, Nicoletta; Christodoulou, John
2012-02-01
The X-linked cyclin-dependent kinase-like 5 (CDKL5) gene is an important molecular determinant of early-onset intractable seizures with infantile spasms and Rett syndrome-like phenotype. The gene encodes a kinase that may influence components of molecular pathways associated with MeCP2. In humans there are two previously reported splice variants that differ in the 5' untranslated exons and produce the same 115 kDa protein. Furthermore, very recently, a novel transcript including a novel exon (16b) has been described. By aligning both the human and mouse CDKL5 proteins to the orthologs of other species, we identified a theoretical 107 kDa isoform with an alternative C-terminus that terminates in intron 18. In human brain and all other tissues investigated except the testis, this novel isoform is the major CDKL5 transcript. The detailed characterisation of this novel isoform of CDKL5 reveals functional and subcellular localisation attributes that overlap greatly, but not completely, with that of the previously studied human CDKL5 protein. Considering its predominant expression in the human and mouse brain, we believe that this novel isoform is likely to be of primary pathogenic importance in human diseases associated with CDKL5 deficiency, and suggest that screening of the related intronic sequence should be included in the molecular genetic analyses of patients with a suggestive clinical phenotype.
Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J
2016-06-01
Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.
2017-03-01
Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.
Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks
Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.
2012-01-01
While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213
Brain transcriptome perturbations in the Hfe(-/-) mouse model of genetic iron loading.
Johnstone, Daniel; Graham, Ross M; Trinder, Debbie; Delima, Roheeth D; Riveros, Carlos; Olynyk, John K; Scott, Rodney J; Moscato, Pablo; Milward, Elizabeth A
2012-04-11
Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene variants may affect brain function and modify risks of brain disease. To investigate how disruption of HFE influences brain transcript levels, we used microarray and real-time reverse transcription polymerase chain reaction to assess the brain transcriptome in Hfe(-/-) mice relative to wildtype AKR controls (age 10 weeks, n≥4/group). The Hfe(-/-) mouse brain showed numerous significant changes in transcript levels (p<0.05) although few of these related to proteins directly involved in iron homeostasis. There were robust changes of at least 2-fold in levels of transcripts for prominent genes relating to transcriptional regulation (FBJ osteosarcoma oncogene Fos, early growth response genes), neurotransmission (glutamate NMDA receptor Grin1, GABA receptor Gabbr1) and synaptic plasticity and memory (calcium/calmodulin-dependent protein kinase IIα Camk2a). As previously reported for dietary iron-supplemented mice, there were altered levels of transcripts for genes linked to neuronal ceroid lipofuscinosis, a disease characterized by excessive lipofuscin deposition. Labile iron is known to enhance lipofuscin generation which may accelerate brain aging. The findings provide evidence that iron loading disorders can considerably perturb levels of transcripts for genes essential for normal brain function and may help explain some of the neurologic signs and symptoms reported in hemochromatosis patients. Copyright © 2012 Elsevier B.V. All rights reserved.
On Expression Patterns and Developmental Origin of Human Brain Regions.
Kirsch, Lior; Chechik, Gal
2016-08-01
Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.
On Expression Patterns and Developmental Origin of Human Brain Regions
Kirsch, Lior; Chechik, Gal
2016-01-01
Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.
2015-01-01
Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407
Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.
2014-01-01
Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate throughout the lifespan underlie different phenotypic processes during Aging compared to Development. PMID:25329999
Primiani, Christopher T; Ryan, Veronica H; Rao, Jagadeesh S; Cam, Margaret C; Ahn, Kwangmi; Modi, Hiren R; Rapoport, Stanley I
2014-01-01
Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate throughout the lifespan underlie different phenotypic processes during Aging compared to Development.
Convergent transcriptional specializations in the brains of humans and song-learning birds
Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola; Rivas, Miriam V.; Wang, Rui; Roulhac, Petra L.; Howard, Jason T.; Wirthlin, Morgan; Lovell, Peter V.; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M. Arthur; Thompson, J. Will; Soderblom, Erik J.; Iriki, Atsushi; Kato, Masaki; Gilbert, M. Thomas P.; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V.; Hartemink, Alexander J.; Jarvis, Erich D.
2015-01-01
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733
Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan
2018-06-14
Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.
Characterisation of Cdkl5 transcript isoforms in rat.
Hector, Ralph D; Dando, Owen; Ritakari, Tuula E; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R
2017-03-01
CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically and experimentally, the rat Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites and UTRs are described, confirming the presence of four distinct transcript isoforms. The predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for studies into its protein products and provides a reference for the development of molecular therapies for testing in rat models of CDKL5 disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Genomic Perspectives of Transcriptional Regulation in Forebrain Development
Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel; ...
2015-01-07
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less
Toonen, Lodewijk J A; Overzier, Maurice; Evers, Melvin M; Leon, Leticia G; van der Zeeuw, Sander A J; Mei, Hailiang; Kielbasa, Szymon M; Goeman, Jelle J; Hettne, Kristina M; Magnusson, Olafur Th; Poirel, Marion; Seyer, Alexandre; 't Hoen, Peter A C; van Roon-Mom, Willeke M C
2018-06-22
Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights. Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels were examined as potential biomarkers for disease. Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488, Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides were observed in SCA3 mouse blood. The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of motor- and coordination deficits.
Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping
2015-08-01
Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Loss of Brain Aerobic Glycolysis in Normal Human Aging.
Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E
2017-08-01
The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A
2015-06-01
Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.
Evolution of Osteocrin as an activity-regulated factor in the primate brain
Ataman, Bulent; Boulting, Gabriella L.; Harmin, David A.; Yang, Marty G.; Baker-Salisbury, Mollie; Yap, Ee-Lynn; Malik, Athar N.; Mei, Kevin; Rubin, Alex A.; Spiegel, Ivo; Durresi, Ershela; Sharma, Nikhil; Hu, Linda S.; Pletikos, Mihovil; Griffith, Eric C.; Partlow, Jennifer N.; Stevens, Christine R.; Adli, Mazhar; Chahrour, Maria; Sestan, Nenad; Walsh, Christopher A.; Berezovskii, Vladimir K.; Livingstone, Margaret S.; Greenberg, Michael E.
2017-01-01
Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates. PMID:27830782
Characterization of GPR101 transcript structure and expression patterns
Trivellin, Giampaolo; Bjelobaba, Ivana; Daly, Adrian F.; Larco, Darwin O.; Palmeira, Leonor; Faucz, Fabio R.; Thiry, Albert; Leal, Letícia F.; Rostomyan, Liliya; Quezado, Martha; Schernthaner-Reiter, Marie Helene; Janjic, Marija M.; Villa, Chiara; Wu, T. John; Stojilkovic, Stanko S.; Beckers, Albert; Feldman, Benjamin; Stratakis, Constantine A.
2016-01-01
We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. GPR101 transcripts were characterized in human tissues by 5’-RACE and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-qPCR, whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat, and zebrafish. We identified four GPR101 isoforms characterized by different 5’ untranslated regions (UTRs) and a common 6.1 kb-long 3’UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult pituitaries of monkey and rat expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary Gpr101 is expressed only after birth and showed sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species. PMID:27282544
Kamm, Gretel B.; López-Leal, Rodrigo; Lorenzo, Juan R.; Franchini, Lucía F.
2013-01-01
The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain. PMID:24218632
Lema, Sean C.; Dickey, Jon T.; Schultz, Irvin R.; Swanson, Penny
2008-01-01
Background Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDEs may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. Objective We examined the effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)—commonly the highest concentrated PBDE in human tissues—on plasma TH levels and on gene transcripts for glycoprotein hormone α-subunit (GPHα) and thyrotropin β-subunit (TSHβ) in the pituitary gland, the autoinduced TH receptors α and β in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. Methods Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 μg/pair/day or 12.3 μg/pair/day) for 21 days. Results Minnows exposed to PBDE-47 had depressed plasma thyroxine (T4), but not 3,5,3′-triiodothyronine (T3). This decline in T4 was accompanied by elevated mRNA levels for TStHβ (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor αin the brain of females and decreased mRNA for TH receptor β in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. Conclusions Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants. PMID:19079722
The genome in three dimensions: a new frontier in human brain research.
Mitchell, Amanda C; Bharadwaj, Rahul; Whittle, Catheryne; Krueger, Winfried; Mirnics, Karoly; Hurd, Yasmin; Rasmussen, Theodore; Akbarian, Schahram
2014-06-15
Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal "loopings" are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Aerobic glycolysis in the human brain is associated with development and neotenous gene expression
Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.
2015-01-01
SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938
Human-specific features of spatial gene expression and regulation in eight brain regions.
Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro
2018-06-13
Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.
Romero-Garcia, Rafael; Whitaker, Kirstie J; Váša, František; Seidlitz, Jakob; Shinn, Maxwell; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T; Vértes, Petra E
2018-05-01
Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain networks by estimating gene co-expression between pairs of cortical regions. Finally, we explored the hypothesis that transcriptional networks and structural MRI connectomes are coupled. A transcriptional brain network (TBN) and a structural covariance network (SCN) were correlated across connection weights and showed qualitatively similar complex topological properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the weight of an edge was inversely related to the anatomical (Euclidean) distance between regions. There were differences between networks in degree and distance distributions: the transcriptional network had a less fat-tailed degree distribution and a less positively skewed distance distribution than the SCN. However, cortical areas connected to each other within modules of the SCN had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had especially high levels of expression and co-expression of a human supragranular enriched (HSE) gene set that has been specifically located to supragranular layers of human cerebral cortex and is known to be important for large-scale, long-distance cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not entirely accounted for by the common constraint of physical distance on both networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Pearson, Brandon L.; Simon, Jeremy M.; McCoy, Eric S.; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J.
2016-01-01
Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. PMID:27029645
Bazov, Igor; Sarkisyan, Daniil; Kononenko, Olga; Watanabe, Hiroyuki; Karpyak, Victor M; Yakovleva, Tatiana; Bakalkin, Georgy
2018-06-20
Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.
Tan, Wei; Dean, Michael; Law, Amanda J.
2010-01-01
ErbB4 is a growth factor receptor tyrosine kinase essential for neurodevelopment. Genetic variation in ErbB4 is associated with schizophrenia and risk-associated polymorphisms predict overexpression of ErbB4 CYT-1 isoforms in the brain in the disorder. The molecular mechanism of association is unclear because the polymorphisms flank exon 3 of the gene and reside 700 kb distal to the CYT-1 defining exon. We hypothesized that the polymorphisms are indirectly associated with ErbB4 CYT-1 via splicing of exon 3 on the CYT-1 background. We report via cloning and sequencing of adult and fetal human brain cDNA libraries the identification of novel splice isoforms of ErbB4, whereby exon 3 is skipped (del.3). ErbB4 del.3 transcripts exist as CYT-2 isoforms and are predicted to produce truncated proteins. Furthermore, our data refine the structure of the human ErbB4 gene, clarify that juxtamembrane (JM) splice variants of ErbB4, JM-a and JM-b respectively, are characterized by the replacement of a 75 nucleotide (nt) sequence with a 45-nt insertion, and demonstrate that there are four alternative exons in the gene. Our analyses reveal that novel splice variants of ErbB4 exist in the developing and adult human brain and, given the failure to identify ErbB4 del.3 CYT-1 transcripts, suggest that the association of risk polymorphisms in the ErbB4 gene with CYT-1 transcript levels is not mediated via an exon 3 splicing event. PMID:20886074
Functional organization of the transcriptome in human brain
Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H
2009-01-01
The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986
A canine model of Cohen syndrome: Trapped Neutrophil Syndrome.
Shearman, Jeremy R; Wilton, Alan N
2011-05-23
Trapped Neutrophil Syndrome (TNS) is a common autosomal recessive neutropenia in Border collie dogs. We used a candidate gene approach and linkage analysis to show that the causative gene for TNS is VPS13B. We chose VPS13B as a candidate because of similarities in clinical signs between TNS and Cohen syndrome, in human, such as neutropenia and a typical facial dysmorphism. Linkage analysis using microsatellites close to VPS13B showed positive linkage of the region to TNS. We sequenced each of the 63 exons of VPS13B in affected and control dogs and found that the causative mutation in Border collies is a 4 bp deletion in exon 19 of the largest transcript that results in premature truncation of the protein. Cohen syndrome patients present with mental retardation in 99% of cases, but learning disabilities featured in less than half of TNS affected dogs. It has been implied that loss of the alternate transcript of VPS13B in the human brain utilising an alternate exon, 28, may cause mental retardation. Mice cannot be used to test this hypothesis as they do not express the alternate exon. We show that dogs do express alternate transcripts in the brain utilising an alternate exon homologous to human exon 28. Dogs can be used as a model organism to explore the function of the alternately spliced transcript of VPS13B in the brain. TNS in Border collies is the first animal model for Cohen syndrome and can be used to study the disease aetiology.
A canine model of Cohen syndrome: Trapped Neutrophil Syndrome
2011-01-01
Background Trapped Neutrophil Syndrome (TNS) is a common autosomal recessive neutropenia in Border collie dogs. Results We used a candidate gene approach and linkage analysis to show that the causative gene for TNS is VPS13B. We chose VPS13B as a candidate because of similarities in clinical signs between TNS and Cohen syndrome, in human, such as neutropenia and a typical facial dysmorphism. Linkage analysis using microsatellites close to VPS13B showed positive linkage of the region to TNS. We sequenced each of the 63 exons of VPS13B in affected and control dogs and found that the causative mutation in Border collies is a 4 bp deletion in exon 19 of the largest transcript that results in premature truncation of the protein. Cohen syndrome patients present with mental retardation in 99% of cases, but learning disabilities featured in less than half of TNS affected dogs. It has been implied that loss of the alternate transcript of VPS13B in the human brain utilising an alternate exon, 28, may cause mental retardation. Mice cannot be used to test this hypothesis as they do not express the alternate exon. We show that dogs do express alternate transcripts in the brain utilising an alternate exon homologous to human exon 28. Conclusion Dogs can be used as a model organism to explore the function of the alternately spliced transcript of VPS13B in the brain. TNS in Border collies is the first animal model for Cohen syndrome and can be used to study the disease aetiology. PMID:21605373
Syndromes associated with Homo sapiens pol II regulatory genes.
Bina, M; Demmon, S; Pares-Matos, E I
2000-01-01
The molecular basis of human characteristics is an intriguing but an unresolved problem. Human characteristics cover a broad spectrum, from the obvious to the abstract. Obvious characteristics may include morphological features such as height, shape, and facial form. Abstract characteristics may be hidden in processes that are controlled by hormones and the human brain. In this review we examine exaggerated characteristics presented as syndromes. Specifically, we focus on human genes that encode transcription factors to examine morphological, immunological, and hormonal anomalies that result from deletion, insertion, or mutation of genes that regulate transcription by RNA polymerase II (the Pol II genes). A close analysis of abnormal phenotypes can give clues into how sequence variations in regulatory genes and changes in transcriptional control may give rise to characteristics defined as complex traits.
Bertacchi, Michele; Parisot, Josephine; Studer, Michèle
2018-04-27
Transcription factors are expressed in a dynamic fashion both in time and space during brain development, and exert their roles by activating a cascade of multiple target genes. This implies that understanding the precise function of a transcription factor becomes a challenging task. In this review, we will focus on COUP-TFI (or NR2F1), a nuclear receptor belonging to the superfamily of the steroid/thyroid hormone receptors, and considered to be one of the major transcriptional regulators orchestrating cortical arealization, cell-type specification and maturation. Recent data have unraveled the multi-faceted functions of COUP-TFI in the development of several mouse brain structures, including the neocortex, hippocampus and ganglionic eminences. Despite NR2F1 mutations and deletions in humans have been linked to a complex neurodevelopmental disease mainly associated to optic atrophy and intellectual disability, its role during the formation of the retina and optic nerve remains unclear. In light of its major influence in cortical development, we predict that its haploinsufficiency might be the cause of other cognitive diseases, not identified so far. Mouse models offer a unique opportunity of dissecting COUP-TFI function in different regions during brain assembly; hence, the importance of comparing and discussing common points linking mouse models to human patients' symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.
A biochemical landscape of A-to-I RNA editing in the human brain transcriptome
Sakurai, Masayuki; Ueda, Hiroki; Yano, Takanori; Okada, Shunpei; Terajima, Hideki; Mitsuyama, Toutai; Toyoda, Atsushi; Fujiyama, Asao; Kawabata, Hitomi; Suzuki, Tsutomu
2014-01-01
Inosine is an abundant RNA modification in the human transcriptome and is essential for many biological processes in modulating gene expression at the post-transcriptional level. Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosines to inosines (A-to-I editing) in double-stranded regions. We previously established a biochemical method called “inosine chemical erasing” (ICE) to directly identify inosines on RNA strands with high reliability. Here, we have applied the ICE method combined with deep sequencing (ICE-seq) to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome of human adult brain. Taken together with the sites identified by the conventional ICE method, we mapped 19,791 novel sites and newly found 1258 edited mRNAs, including 66 novel sites in coding regions, 41 of which cause altered amino acid assignment. ICE-seq detected novel editing sites in various repeat elements as well as in short hairpins. Gene ontology analysis revealed that these edited mRNAs are associated with transcription, energy metabolism, and neurological disorders, providing new insights into various aspects of human brain functions. PMID:24407955
Illegitimate transcription: transcription of any gene in any cell type.
Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A
1989-01-01
Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532
Axial level-specific regulation of neuronal development: lessons from PITX2.
Waite, Mindy R; Martin, Donna M
2015-02-01
Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions. © 2014 Wiley Periodicals, Inc.
Characterisation of CDKL5 Transcript Isoforms in Human and Mouse
Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C.; Bailey, Mark E. S.; Cobb, Stuart R.
2016-01-01
Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders. PMID:27315173
Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.
Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R
2016-01-01
Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.
Hupe, Mike; Li, Minerva Xueting; Kneitz, Susanne; Davydova, Daria; Yokota, Chika; Kele-Olovsson, Julianna; Hot, Belma; Stenman, Jan M; Gessler, Manfred
2017-07-11
The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin ( Ctnnb1 ). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors ( Foxf2 , Foxl2 , Foxq1 , Lef1 , Ppard , Zfp551 , and Zic3 ) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2 , Foxq1 , Ppard , or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Integrating Retinoic Acid Signaling with Brain Function
ERIC Educational Resources Information Center
Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.
2009-01-01
The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…
Virtual Northern analysis of the human genome.
Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O
2007-05-23
We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.
Topoisomerases interlink genetic network underlying autism.
Vokálová, Lenka; Durdiaková, Jaroslava; Ostatníková, Daniela
2015-12-01
DNA topoisomerases belong to the group of proteins that play an important role in the organizational dynamics of the human genome. Their enzymatic activity solves topological strain rising from DNA supercoiling occurring during transcription. DNA topoisomerases are especially important for transcription of genes involved in neurodevelopment. Disruption of topoisomerase activity in animal models resulted in impaired neurodevelopment and changed brain architecture. Recent research revealed that topoisomerases induced expression of the same group of genes as those associated with autism. Transcriptional inhibition of neuronal genes during critical stages of brain development may be responsible for pathology of neurodevelopmental disorders such as autism. In this review we aim to outline the role of topoisomerase in neurodevelopment and its possible linkage to neuropathology of autism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.
Luhmann, Ulrich F O; Neidhardt, John; Kloeckener-Gruissem, Barbara; Schäfer, Nikolaus F; Glaus, Esther; Feil, Silke; Berger, Wolfgang
2008-05-01
X-linked Norrie disease, familial exudative vitreoretinopathy (FEVR), Coat's disease and retinopathy of prematurity are severe human eye diseases and can all be caused by mutations in the Norrie disease pseudoglioma gene. They all show vascular defects and characteristic features of retinal hypoxia. Only Norrie disease displays additional neurological symptoms, which are sensorineural hearing loss and mental retardation. In the present study, we analysed transcript levels of the ligand Norrin (Ndph) and its two receptors Frizzled-4 (Fzd4) and LDL-related protein receptor 5 (Lrp5) in six different brain regions (cerebellum, cortex, hippocampus, olfactory bulb, pituitary and brain stem) of 6- to 8-month-old wild-type and Ndph knockout mice by quantitative real-time PCR. No effect of the Ndph knockout allele on Fzd4 or Lrp5 receptor expression was found. Furthermore, no alterations of the transcript levels of three hypoxia-regulated angiogenic factors (Vegfa, Itgrb3 and Tie1) were observed in the absence of Norrin. Interestingly, we identified significant differences in Ndph, Fzd4 and Lrp5 transcript levels in brain regions of wild-type mice and observed highest expression of Norrin and frizzled-4 in cerebellum. Transcript analyses were correlated with morphological data obtained from cerebellum and immunohistochemical studies of blood vessels in different brain regions. Vessel density was reduced in the cerebellum of Ndph knockout mice but the number of Purkinje and granular cells was not altered. This provides the first description of a brain phenotype in Ndph knockout mice, which will help to elucidate the role of Norrin in the brain.
Born with an ear for dialects? Structural plasticity in the expert phonetician brain.
Golestani, Narly; Price, Cathy J; Scott, Sophie K
2011-03-16
Are experts born with particular predispositions, or are they made through experience? We examined brain structure in expert phoneticians, individuals who are highly trained to analyze and transcribe speech. We found a positive correlation between the size of left pars opercularis and years of phonetic transcription training experience, illustrating how learning may affect brain structure. Phoneticians were also more likely to have multiple or split left transverse gyri in the auditory cortex than nonexpert controls, and the amount of phonetic transcription training did not predict auditory cortex morphology. The transverse gyri are thought to be established in utero; our results thus suggest that this gross morphological difference may have existed before the onset of phonetic training, and that its presence confers an advantage of sufficient magnitude to affect career choices. These results suggest complementary influences of domain-specific predispositions and experience-dependent brain malleability, influences that likely interact in determining not only how experience shapes the human brain but also why some individuals become engaged by certain fields of expertise.
Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.
Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P
2013-11-01
Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ridge, Justin P; Dodd, Peter R
2009-10-01
Real-time RT-PCR normalized to GAPDH was used to assay N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunit mRNA in human autopsy cortex tissue from chronic alcoholics with and without comorbid cirrhosis of the liver and matched controls. Subunit expression was influenced by the subject's genotype. The TaqIA polymorphism selectively modulated NMDA receptor mean transcript expression in cirrhotic-alcoholic superior frontal cortex, in diametrically opposite ways in male and female subjects. Genetic make-up may differentially influence vulnerability to brain damage by altering the excitation: inhibition balance, particularly in alcoholics with comorbid cirrhosis of the liver. The TaqIA polymorphism occurs within the poorly characterised ankyrin-repeat containing kinase 1 (ANKK1) gene. Using PCR, ANKK1 mRNA transcript was detected in inferior temporal, occipital, superior frontal and primary motor cortex of control human brain. ANKK1 expression may mediate the influence of the TaqIA polymorphism on phenotype.
Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao
2014-01-01
During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302
Virtual Northern Analysis of the Human Genome
Hurowitz, Evan H.; Drori, Iddo; Stodden, Victoria C.; Donoho, David L.; Brown, Patrick O.
2007-01-01
Background We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. Methodology/Principal Findings We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Conclusions/Significance Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes. PMID:17520019
Gryglewski, Gregor; Seiger, René; James, Gregory Miles; Godbersen, Godber Mathis; Komorowski, Arkadiusz; Unterholzner, Jakob; Michenthaler, Paul; Hahn, Andreas; Wadsak, Wolfgang; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert
2018-08-01
The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl- 11 C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level. Copyright © 2018 Elsevier Inc. All rights reserved.
Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain
Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana
2009-01-01
Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998
Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.
Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana
2008-01-01
Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.
Zehra, Rabail; Abbasi, Amir Ali
2018-03-01
Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.
Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.
Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej
2017-01-10
Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Melanin-concentrating hormone and its receptor are expressed and functional in human skin.
Hoogduijn, Martin J; Ancans, Janis; Suzuki, Itaru; Estdale, Siân; Thody, Anthony J
2002-08-23
In this study, we have demonstrated the presence of melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptor (MCHR1) transcripts in human skin. Sequence analysis confirmed that the transcripts of both genes were identical to those previously found in human brain. In culture, endothelial cells showed pro-MCH expression whereas no signal was found in keratinocytes, melanocytes, and fibroblasts. MCHR1 expression was restricted to melanocytes and melanoma cells. Stimulation of cultured human melanocytes with MCH reduced the alpha-MSH-induced increase in cAMP production. Furthermore, the melanogenic actions of alpha-MSH were inhibited by MCH. We propose that the MCH/MCHR1 signalling system is present in human skin and may have a role with the melanocortins in regulating the melanocyte.
Localization of PPAR isotypes in the adult mouse and human brain
Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron
2016-01-01
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430
Localization of PPAR isotypes in the adult mouse and human brain.
Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B; Mayfield, R Dayne; Harris, R Adron
2016-06-10
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.
IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.
The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNAmore » is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.« less
The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain
Gehman, Lauren T.; Stoilov, Peter; Maguire, Jamie; Damianov, Andrey; Lin, Chia-Ho; Shiue, Lily; Ares, Manuel; Mody, Istvan; Black, Douglas L.
2011-01-01
The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts but their role in neuronal physiology is not clear1. We show here that central nervous system (CNS)-specific deletion of the Rbfox1 gene results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording reveals a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole transcriptome analyses identify multiple splicing changes in the Rbfox1−/− brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation, some of which are implicated in human epilepsy. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function. PMID:21623373
Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness
2015-12-01
production in two human glioblastoma xenograft models where the blood–brain barrier (BBB) was disrupted relative to normal brain, suggesting that HP...rodent mammary adenocarcinoma and murine lymphoma xenografts ) has shown ample conversion to leucine.98 In this preclinical study, SNR and contrast were...4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner, Oncogene 33 (2013) 4433–4441. Real
Revealing the missing expressed genes beyond the human reference genome by RNA-Seq.
Chen, Geng; Li, Ruiyuan; Shi, Leming; Qi, Junyi; Hu, Pengzhan; Luo, Jian; Liu, Mingyao; Shi, Tieliu
2011-12-02
The complete and accurate human reference genome is important for functional genomics researches. Therefore, the incomplete reference genome and individual specific sequences have significant effects on various studies. we used two RNA-Seq datasets from human brain tissues and 10 mixed cell lines to investigate the completeness of human reference genome. First, we demonstrated that in previously identified ~5 Mb Asian and ~5 Mb African novel sequences that are absent from the human reference genome of NCBI build 36, ~211 kb and ~201 kb of them could be transcribed, respectively. Our results suggest that many of those transcribed regions are not specific to Asian and African, but also present in Caucasian. Then, we found that the expressions of 104 RefSeq genes that are unalignable to NCBI build 37 in brain and cell lines are higher than 0.1 RPKM. 55 of them are conserved across human, chimpanzee and macaque, suggesting that there are still a significant number of functional human genes absent from the human reference genome. Moreover, we identified hundreds of novel transcript contigs that cannot be aligned to NCBI build 37, RefSeq genes and EST sequences. Some of those novel transcript contigs are also conserved among human, chimpanzee and macaque. By positioning those contigs onto the human genome, we identified several large deletions in the reference genome. Several conserved novel transcript contigs were further validated by RT-PCR. Our findings demonstrate that a significant number of genes are still absent from the incomplete human reference genome, highlighting the importance of further refining the human reference genome and curating those missing genes. Our study also shows the importance of de novo transcriptome assembly. The comparative approach between reference genome and other related human genomes based on the transcriptome provides an alternative way to refine the human reference genome.
Kisby, Glen; Palmer, Valerie; Lasarev, Mike; Fry, Rebecca; Iordanov, Mihail; Magun, Eli; Samson, Leona; Spencer, Peter
2011-11-01
Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC), a prototypical neurodegenerative disease (tauopathy) affecting distinct genetic groups with common exposure to neurotoxic chemicals in cycad seed, has many features of Parkinson's and Alzheimer's diseases (AD), including early olfactory dysfunction. Guam ALS-PDC incidence correlates with cycad flour content of cycasin and its aglycone methylazoxymethanol (MAM), which produces persistent DNA damage (O(6)-methylguanine) in the brains of mice lacking O(6)-methylguanine methyltransferase (Mgmt(-/-)). We described in Mgmt(-/-)mice up to 7 days post-MAM treatment that brain DNA damage was linked to brain gene expression changes found in human neurological disease, cancer, and skin and hair development. This addendum reports 6 months post-MAM treatment- related brain transcriptional changes as well as elevated mitogen activated protein kinases and increased caspase-3 activity, both of which are involved in tau aggregation and neurofibrillary tangle formation typical of ALS-PDC and AD, plus transcriptional changes in olfactory receptors. Does cycasin act as a "slow (geno)toxin" in ALS-PDC?
Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain
Vernes, Sonja C.; Oliver, Peter L.; Spiteri, Elizabeth; Lockstone, Helen E.; Puliyadi, Rathi; Taylor, Jennifer M.; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E.; Geschwind, Daniel H.; Fisher, Simon E.
2011-01-01
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections. PMID:21765815
Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.
Vernes, Sonja C; Oliver, Peter L; Spiteri, Elizabeth; Lockstone, Helen E; Puliyadi, Rathi; Taylor, Jennifer M; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E; Geschwind, Daniel H; Fisher, Simon E
2011-07-01
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.
Gene expression in the aging human brain: an overview.
Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S
2016-03-01
The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less
Aging and Gene Expression in the Primate Brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.
2005-02-18
It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes inmore » the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.« less
Molecular and functional definition of the developing human striatum.
Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena
2014-12-01
The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.
Lipovich, Leonard; Hou, Zhuo-Cheng; Jia, Hui; Sinkler, Christopher; McGowen, Michael; Sterner, Kirstin N; Weckle, Amy; Sugalski, Amara B; Pipes, Lenore; Gatti, Domenico L; Mason, Christopher E; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Grossman, Lawrence I; Goodman, Morris; Wildman, Derek E
2016-02-01
The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes. © 2015 Wiley Periodicals, Inc.
Stadler, Florian; Kolb, Gabriele; Rubusch, Lothar; Baker, Stephen P; Jones, Edward G; Akbarian, Schahram
2005-07-01
Glutamatergic signaling is regulated, in part, through differential expression of NMDA and AMPA/KA channel subunits and G protein-coupled metabotropic receptors. In human brain, region-specific expression patterns of glutamate receptor genes are maintained over the course of decades, suggesting a role for molecular mechanisms involved in long-term regulation of transcription, including methylation of lysine residues at histone N-terminal tails. Using a native chromatin immunoprecipitation assay, we studied histone methylation marks at proximal promoters of 16 ionotropic and metabotropic glutamate receptor genes (GRIN1,2A-D; GRIA1,3,4; GRIK2,4,5; GRM1,3,4,6,7 ) in cerebellar cortex collected across a wide age range from midgestation to 90 years old. Levels of di- and trimethylated histone H3-lysine 4, which are associated with open chromatin and transcription, showed significant differences between promoters and a robust correlation with corresponding mRNA levels in immature and mature cerebellar cortex. In contrast, levels of trimethylated H3-lysine 27 and H4-lysine 20, two histone modifications defining silenced or condensed chromatin, did not correlate with transcription but were up-regulated overall in adult cerebellum. Furthermore, differential gene expression patterns in prefrontal and cerebellar cortex were reflected by similar differences in H3-lysine 4 methylation at promoters. Together, these findings suggest that histone lysine methylation at gene promoters is involved in developmental regulation and maintenance of region-specific expression patterns of ionotropic and metabotropic glutamate receptors. The association of a specific epigenetic mark, H3-(methyl)-lysine 4, with the molecular architecture of glutamatergic signaling in human brain has potential implications for schizophrenia and other disorders with altered glutamate receptor function.
Canonical Genetic Signatures of the Adult Human Brain
Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed
2015-01-01
The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460
Genomic connectivity networks based on the BrainSpan atlas of the developing human brain
NASA Astrophysics Data System (ADS)
Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.
2014-03-01
The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.
Forging our understanding of lncRNAs in the brain.
Andersen, Rebecca E; Lim, Daniel A
2018-01-01
During both development and adulthood, the human brain expresses many thousands of long noncoding RNAs (lncRNAs), and aberrant lncRNA expression has been associated with a wide range of neurological diseases. Although the biological significance of most lncRNAs remains to be discovered, it is now clear that certain lncRNAs carry out important functions in neurodevelopment, neural cell function, and perhaps even diseases of the human brain. Given the relatively inclusive definition of lncRNAs-transcripts longer than 200 nucleotides with essentially no protein coding potential-this class of noncoding transcript is both large and very diverse. Furthermore, emerging data indicate that lncRNA genes can act via multiple, non-mutually exclusive molecular mechanisms, and specific functions are difficult to predict from lncRNA expression or sequence alone. Thus, the different experimental approaches used to explore the role of a lncRNA might each shed light upon distinct facets of its overall molecular mechanism, and combining multiple approaches may be necessary to fully illuminate the function of any particular lncRNA. To understand how lncRNAs affect brain development and neurological disease, in vivo studies of lncRNA function are required. Thus, in this review, we focus our discussion upon a small set of neural lncRNAs that have been experimentally manipulated in mice. Together, these examples illustrate how studies of individual lncRNAs using multiple experimental approaches can help reveal the richness and complexity of lncRNA function in both neurodevelopment and diseases of the brain.
Tao, Ran; Cousijn, Helena; Jaffe, Andrew E; Burnet, Philip W J; Edwards, Freya; Eastwood, Sharon L; Shin, Joo Heon; Lane, Tracy A; Walker, Mary A; Maher, Brady J; Weinberger, Daniel R; Harrison, Paul J; Hyde, Thomas M; Kleinman, Joel E
2014-10-01
The single-nucleotide polymorphism rs1344706 in the zinc finger protein 804A gene (ZNF804A) shows genome-wide association with schizophrenia and bipolar disorder. Little is known regarding the expression of ZNF804A and the functionality of rs1344706. To characterize ZNF804A expression in human brain and to investigate how it changes across the life span and how it is affected by rs1344706, schizophrenia, bipolar disorder, and major depressive disorder. Molecular and immunochemical methods were used to study ZNF804A messenger RNA (mRNA) and ZNF804A protein, respectively. ZNF804A transcripts were investigated using next-generation sequencing and polymerase chain reaction-based methods, and ZNF804A protein was investigated using Western blots and immunohistochemistry. Samples of dorsolateral prefrontal cortex and inferior parietal lobe tissue were interrogated from 697 participants between 14 weeks' gestational age and age 85 years, including patients with schizophrenia, bipolar disorder, or major depressive disorder. Quantitative measurements of ZNF804A mRNA and immunoreactivity, and the effect of diagnosis and rs1344706 genotype. ZNF804A was expressed across the life span, with highest expression prenatally. An abundant and developmentally regulated truncated ZNF804A transcript was identified, missing exons 1 and 2 (ZNF804AE3E4) and predicted to encode a protein lacking the zinc finger domain. rs1344706 influenced expression of ZNF804AE3E4 mRNA in fetal brain (P = .02). In contrast, full-length ZNF804A showed no association with genotype (P > .05). ZNF804AE3E4 mRNA expression was decreased in patients with schizophrenia (P = .006) and increased in those with major depressive disorder (P < .001), and there was a genotype-by-diagnosis interaction in bipolar disorder (P = .002). ZNF804A immunoreactivity was detected in fetal and adult human cerebral cortex. It was localized primarily to pyramidal neurons, with cytoplasmic as well as dendritic and nuclear staining. No differences in ZNF804A-immunoreactive neurons were seen in schizophrenia or related to rs1344706 (P > .05). rs1344706 influences the expression of ZNF804AE3E4, a novel splice variant. The effect is limited to fetal brain and to this isoform. It may be part of the mechanism by which allelic variation in ZNF804A affects risk of psychosis. ZNF804A is translated in human brain, where its functions may extend beyond its predicted role as a transcription factor.
Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María
2014-01-01
Background: The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. Objective: To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. Methods: There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Results: Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. Conclusion: The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition. PMID:25767303
Distribution of vesicular glutamate transporters in the human brain
Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah
2015-01-01
Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091
Distribution of vesicular glutamate transporters in the human brain.
Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah
2015-01-01
Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.
Estruch, Sara B.; Buzón, Víctor; Carbó, Laia R.; Schorova, Lenka; Lüders, Jens; Estébanez-Perpiñá, Eva
2012-01-01
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain. PMID:22675500
Estruch, Sara B; Buzón, Víctor; Carbó, Laia R; Schorova, Lenka; Lüders, Jens; Estébanez-Perpiñá, Eva
2012-01-01
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.
Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC
Swartling, Fredrik J.; Savov, Vasil; Persson, Anders I.; Chen, Justin; Hackett, Christopher S.; Northcott, Paul A.; Grimmer, Matthew R.; Lau, Jasmine; Chesler, Louis; Perry, Arie; Phillips, Joanna J.; Taylor, Michael D.; Weiss, William A.
2012-01-01
SUMMARY The proto-oncogene MYCN is mis-expressed in various types of human brain tumors. To clarify how developmental and regional differences influence transformation, we transduced wild-type or mutationally-stabilized murine N-mycT58A into neural stem cells (NSCs) from perinatal murine cerebellum, brain stem and forebrain. Transplantation of N-mycWT NSCs was insufficient for tumor formation. N-mycT58A cerebellar and brain stem NSCs generated medulloblastoma/primitive neuroectodermal tumors, whereas forebrain NSCs developed diffuse glioma. Expression analyses distinguished tumors generated from these different regions, with tumors from embryonic versus postnatal cerebellar NSCs demonstrating SHH-dependence and SHH-independence, respectively. These differences were regulated in-part by the transcription factor SOX9, activated in the SHH subclass of human medulloblastoma. Our results demonstrate context-dependent transformation of NSCs in response to a common oncogenic signal. PMID:22624711
Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H
2017-01-17
Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.
These hearings transcripts present testimony concerning the status of medical and scientific findings on prenatal and postnatal brain development and the implications of federal policies for childhood development. Testimony was offered by Senators Dan Coats (Indiana) and Christopher Dodd (Connecticut); psychology professor Edward Zigler of Yale…
SIRT1 Activates MAO-A in the Brain to Mediate Anxiety and Exploratory Drive
Libert, Sergiy; Pointer, Kelli; Bell, Eric L.; Das, Abhirup; Cohen, Dena E.; Asara, John M.; Kapur, Karen; Bergmann, Sven; Preisig, Martin; Otowa, Takeshi; Kendler, Kenneth S.; Chen, Xiangning; Hettema, John M.; van den Oord, Edwin J.; Rubio, Justin P.; Guarente, Leonard
2012-01-01
SUMMARY SIRT1 is a NAD+-dependent deacetylase that governs a number of genetic programs to cope with changes in the nutritional status of cells and organisms. Behavioral responses to food abundance are important for the survival of higher animals. Here we used mice with increased or decreased brain SIRT1 to show that this sirtuin regulates anxiety and exploratory drive by activating transcription of the gene encoding the monoamine oxidase A (MAO-A) to reduce serotonin levels in the brain. Indeed, treating animals with MAO-A inhibitors or selective serotonin reuptake inhibitors (SSRIs) normalized anxiety differences between wild-type and mutant animals. SIRT1 deacetylates the brain-specific helix-loop-helix transcription factor NHLH2 on lysine 49 to increase its activation of the MAO-A promoter. Both common and rare variations in the SIRT1 gene were shown to be associated with risk of anxiety in human population samples. Together these data indicate that SIRT1 mediates levels of anxiety, and this regulation may be adaptive in a changing environment of food availability. PMID:22169038
Identification of a set of genes showing regionally enriched expression in the mouse brain
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM
2008-01-01
Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066
Identification of a set of genes showing regionally enriched expression in the mouse brain.
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa L C; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven J M
2008-07-14
The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.
McConnell, Michael J; Moran, John V; Abyzov, Alexej; Akbarian, Schahram; Bae, Taejeong; Cortes-Ciriano, Isidro; Erwin, Jennifer A; Fasching, Liana; Flasch, Diane A; Freed, Donald; Ganz, Javier; Jaffe, Andrew E; Kwan, Kenneth Y; Kwon, Minseok; Lodato, Michael A; Mills, Ryan E; Paquola, Apua C M; Rodin, Rachel E; Rosenbluh, Chaggai; Sestan, Nenad; Sherman, Maxwell A; Shin, Joo Heon; Song, Saera; Straub, Richard E; Thorpe, Jeremy; Weinberger, Daniel R; Urban, Alexander E; Zhou, Bo; Gage, Fred H; Lehner, Thomas; Senthil, Geetha; Walsh, Christopher A; Chess, Andrew; Courchesne, Eric; Gleeson, Joseph G; Kidd, Jeffrey M; Park, Peter J; Pevsner, Jonathan; Vaccarino, Flora M
2017-04-28
Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders. Copyright © 2017, American Association for the Advancement of Science.
Huang, Liang; Nho, Kwangsik; Deng, Min; Chen, Qiang; Weinberger, Daniel R.; Vasquez, Alejandro Arias; Rijpkema, Mark; Mattay, Venkata S.; Saykin, Andrew J.; Shen, Li; Fernández, Guillén; Franke, Barbara; Chen, Jing-chun; Chen, Xiang-ning; Wang, Jin-kai; Xiao, Xiao; Qi, Xue-bin; Xiang, Kun; Peng, Ying-Mei; Cao, Xiang-yu; Li, Yi; Shi, Xiao-dong; Gan, Lin; Su, Bing
2012-01-01
One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development. PMID:23226269
Paterson, Clare; Wang, Yanhong; Hyde, Thomas M; Weinberger, Daniel R; Kleinman, Joel E; Law, Amanda J
2017-03-01
Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I-IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. NRG3 isoform classes I-IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development.
Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.
2018-01-01
Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development. PMID:27771971
Comprehensive comparative analysis of 5'-end RNA-sequencing methods.
Adiconis, Xian; Haber, Adam L; Simmons, Sean K; Levy Moonshine, Ami; Ji, Zhe; Busby, Michele A; Shi, Xi; Jacques, Justin; Lancaster, Madeline A; Pan, Jen Q; Regev, Aviv; Levin, Joshua Z
2018-06-04
Specialized RNA-seq methods are required to identify the 5' ends of transcripts, which are critical for studies of gene regulation, but these methods have not been systematically benchmarked. We directly compared six such methods, including the performance of five methods on a single human cellular RNA sample and a new spike-in RNA assay that helps circumvent challenges resulting from uncertainties in annotation and RNA processing. We found that the 'cap analysis of gene expression' (CAGE) method performed best for mRNA and that most of its unannotated peaks were supported by evidence from other genomic methods. We applied CAGE to eight brain-related samples and determined sample-specific transcription start site (TSS) usage, as well as a transcriptome-wide shift in TSS usage between fetal and adult brain.
Rachidi, Mohammed; Lopes, Carmela; Charron, Giselle; Delezoide, Anne-Lise; Paly, Evelyne; Bloch, Bernard; Delabar, Jean-Maurice
2005-08-01
Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS development and indicate that SIM2 overexpression could participate to the pathogenesis of mental retardation in Down syndrome patients.
2013-01-01
Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312
Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E
2016-04-15
PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B.; Turkheimer, Federico E.
2016-01-01
PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression. PMID:26850512
Farrelly, L.A.; Dill, B.D.; Molina, H.; Birtwistle, M.R.; Maze, I.
2016-01-01
Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover—the complete loss of old, and replacement by new, nucleosomal histones—is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human “bomb pulse labeling”) for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of “neuroepigenetic” plasticity. PMID:27423867
Disruption of DNA methylation-dependent long gene repression in Rett syndrome
Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.
2015-01-01
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136
Analysis of Several PLA2 mRNA in Human Meningiomas
Denizot, Yves; De Armas, Rafael; Durand, Karine; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Weinbreck, Nicolas; Labrousse, François
2009-01-01
In view of the important oncogenic action of phospholipase A2(PLA2) we investigated PLA2 transcripts in human meningiomas. Real-time PCR was used to investigate PLA2 transcripts in 26 human meningioma tumors. Results indicated that three Ca2+-dependent high molecular weight PLA2 (PLA2-IVA, PLA2-IVB, PLA2-IVC), one Ca2+-independent high molecular weight PLA2 (PLA2-VI) and five low molecular weight secreted forms of PLA2 (PLA2-IB, PLA2-IIA, PLA2-III, PLA2-V, and PLA2-XII) are expressed with PLA2-IVA, PLA2-IVB, PLA2-VI, and PLA2-XIIA as the major expressed forms. PLA2-IIE, PLA2-IIF, PLA2-IVD, and PLA2-XIIB are not detected. Plasma (PLA2-VIIA) and intracellular (PLA2-VIIB) platelet-activating factor acetylhydrolase transcripts are expressed in human meningiomas. However no difference was found for PLA2 transcript amounts in relation to the tumor grade, the subtype of meningiomas, the presence of inflammatory infiltrated cells, of an associated edema, mitosis, brain invasion, vascularisation or necrosis. In conclusion numerous genes encoding multiples forms of PLA2 are expressed in meningiomas where they might act on the phospholipid remodeling and on the local eicosanoid and/or cytokine networks. PMID:20339511
Nicholls, R D; Gottlieb, W; Russell, L B; Davda, M; Horsthemke, B; Rinchik, E M
1993-01-01
Prader-Willi and Angelman syndromes are complex neurobehavioral contiguous gene syndromes whose expression depends on the unmasking of genomic imprinting for different genetic loci in human chromosome 15q11-q13. The homologous chromosomal region in the mouse genome has been fine-mapped by using interspecific (Mus spretus) crosses and overlapping, radiation-induced deletions to evaluate potential animal models for both imprinted and nonimprinted components of these syndromes. Four evolutionarily conserved sequences from human 15q11-q13, including two cDNAs from fetal brain (DN10, D15S12h; DN34, D15S9h-1), a microdissected clone (MN7; D15F37S1h) expressed in mouse brain, and the gene for the beta 3 subunit of the gamma-aminobutyric acid type A receptor (Gabrb3), were mapped in mouse chromosome 7 by analysis of deletions at the pink-eyed dilution (p) locus. Three of these loci are deleted in pre- and postnatally lethal p-locus mutations, which extend up to 5.5 +/- 1.7 centimorgans (cM) proximal to p; D15S9h-1, which maps 1.1 +/- 0.8 cM distal to p and is the mouse homolog of the human gene D15S9 (which shows a DNA methylation imprint), is not deleted in any of the p-locus deletion series. A transcript from the Gabrb3 gene, but not the transcript detected by MN7 at the D15F37S1h locus, is expressed in mice homozygous for the p6H deletion, which have an abnormal neurological phenotype. Furthermore, the Gabrb3 transcript is expressed equally well from the maternal or paternal chromosome 7 and, therefore, its expression is not imprinted in mouse brain. Deletions at the mouse p locus should serve as intermediate genetic reagents and models with which to analyze the genetics and etiology of individual components of human 15q11-q13 disorders. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8095339
Transcriptional insulation of the human keratin 18 gene in transgenic mice.
Neznanov, N; Thorey, I S; Ceceña, G; Oshima, R G
1993-01-01
Expression of the 10-kb human keratin 18 (K18) gene in transgenic mice results in efficient and appropriate tissue-specific expression in a variety of internal epithelial organs, including liver, lung, intestine, kidney, and the ependymal epithelium of brain, but not in spleen, heart, or skeletal muscle. Expression at the RNA level is directly proportional to the number of integrated K18 transgenes. These results indicate that the K18 gene is able to insulate itself both from the commonly observed cis-acting effects of the sites of integration and from the potential complications of duplicated copies of the gene arranged in head-to-tail fashion. To begin to identify the K18 gene sequences responsible for this property of transcriptional insulation, additional transgenic mouse lines containing deletions of either the 5' or 3' distal end of the K18 gene have been characterized. Deletion of 1.5 kb of the distal 5' flanking sequence has no effect upon either the tissue specificity or the copy number-dependent behavior of the transgene. In contrast, deletion of the 3.5-kb 3' flanking sequence of the gene results in the loss of the copy number-dependent behavior of the gene in liver and intestine. However, expression in kidney, lung, and brain remains efficient and copy number dependent in these transgenic mice. Furthermore, herpes simplex virus thymidine kinase gene expression is copy number dependent in transgenic mice when the gene is located between the distal 5'- and 3'-flanking sequences of the K18 gene. Each adult transgenic male expressed the thymidine kinase gene in testes and brain and proportionally to the number of integrated transgenes. We conclude that the characteristic of copy number-dependent expression of the K18 gene is tissue specific because the sequence requirements for transcriptional insulation in adult liver and intestine are different from those for lung and kidney. In addition, the behavior of the transgenic thymidine kinase gene in testes and brain suggests that the property of transcriptional insulation of the K18 gene may be conferred by the distal flanking sequences of the K18 gene and, additionally, may function for other genes. Images PMID:7681143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schriner, J.E.; Yi, W.; Hofmann, S.L.
Palmitoyl-protein thioesterase (PPT) is a small glycoprotein that removes palmitate groups from cysteine residues in lipid-modified proteins. We recently reported mutations in PPT in patients with infantile neuronal ceroid lipofuscinosis (INCL), a severe neurodegenerative disorder. INCL is characterized by the accumulation of proteolipid storage material in brain and other tissues, suggesting that the disease is a consequence of abnormal catabolism of acylated proteins. In the current paper, we report the sequence of the human PPT cDNA and the structure of the human PPT gene. The cDNA predicts a protein of 306 amino acids that contains a 25-amino-acid signal peptide, threemore » N-linked glycosylation sites, and consensus motifs characteristic of thioesterases. Northern analysis of a human tissue blot revealed ubiquitous expression of a single 2.5-kb mRNA, with highest expression in lung, brain, and heart. The human PPT gene spans 25 kb and is composed of seven coding exons and a large eighth exon, containing the entire 3{prime}-untranslated region of 1388 bp. An Alu repeat and promoter elements corresponding to putative binding sites for several general transcription factors were identified in the 1060 nucleotides upstream of the transcription start site. The human PPT cDNA sequence and gene structure will provide the means for the identification of further causative mutations in INCL and facilitate genetic screening in selected high-risk populations. 31 refs., 5 figs., 1 tab.« less
2008-06-26
Homo sapiens decorin variant C mRNA, complete cds. 2.117 PKNOX2 HUM408A08B Human fetal brain (TFujiwara) Homo sapiens cDNA clone GEN -408A08 5’, mRNA...mRNA, complete cds. 2.117 PKNOX2 HUM408A08B Human fetal brain (TFujiwara) Homo sapiens cDNA clone GEN -408A08 5’, mRNA sequence. 2.076 SEC23B...RAS oncogene family ; RAB33B, member RAS oncogene family 205300_s_at 0.37 U1SNRNPBP U11/U12 snRNP 35K 220728_at 0.349 218689_at 0.342 FANCF Fanconi
Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico
2014-10-03
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain
Pilaz, Louis-Jan; Silver, Debra L.
2015-01-01
The cerebral cortex, the brain structure responsible for our higher cognitive functions, is built during embryonic development in a process called corticogenesis. During corticogenesis, neural stem cells generate distinct populations of progenitors and excitatory neurons. These new neurons migrate radially in the cortex, eventually forming neuronal layers and establishing synaptic connections with other neurons both within and outside the cortex. Perturbations to corticogenesis can result in severe neurodevelopmental disorders, thus emphasizing the need to better understand molecular regulation of brain development. Recent studies in both model organisms and humans have collectively highlighted roles for post-transcriptional regulation in virtually all steps of corticogenesis. Genomic approaches have revealed global RNA changes associated with spatial and temporal regulation of cortical development. Additionally, genetic studies have uncovered RNA-binding proteins (RBPs) critical for cell proliferation, differentiation, and migration within the developing neocortex. Many of these same RBPs play causal roles in neurodevelopmental pathologies. In the developing neocortex, RBPs influence diverse steps of mRNA metabolism, including splicing, stability, translation, and localization. With the advent of new technologies, researchers have begun to uncover key transcripts regulated by these RBPs. Given the complexity of the developing mammalian cortex, a major challenge for the future will be to understand how dynamic RNA regulation occurs within heterogeneous cell populations, across space and time. In sum, post-transcriptional regulation has emerged as a critical mechanism for driving corticogenesis and exciting direction of future research. PMID:26088328
Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex
Schaefer, Anne; Sampath, Srihari C.; Intrator, Adam; Min, Alice; Gertler, Tracy S.; Surmeier, D. James; Tarakhovsky, Alexander; Greengard, Paul
2009-01-01
SUMMARY The genetic basis of cognition and behavioral adaptation to the environment remains poorly understood. Here we demonstrate that the histone methyltransferase complex GLP/G9a controls cognition and adaptive responses in a region-specific fashion in the adult brain. Using conditional mutagenesis in mice, we show that postnatal, neuron-specific deficiency of GLP/G9a leads to de-repression of numerous non-neuronal and neuron progenitor genes in adult neurons. This transcriptional alteration is associated with complex behavioral abnormalities, including defects in learning, motivation and environmental adaptation. The behavioral changes triggered by GLP/G9a deficiency are similar to key symptoms of the human 9q34 mental retardation syndrome that is associated with structural alterations of the GLP gene. The likely causal role of GLP/G9a in mental retardation in mice and humans suggests a key role for the GLP/G9a controlled histone H3K9 di-methylation in regulation of brain function through maintenance of the transcriptional homeostasis in adult neurons. PMID:20005824
Kv10.1 potassium channel: from the brain to the tumors.
Cázares-Ordoñez, V; Pardo, L A
2017-10-01
The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.
Deregulated proliferation and differentiation in brain tumors
Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I
2014-01-01
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment-resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506
Pohjoismäki, Jaakko L. O.; Goffart, Steffi; Tyynismaa, Henna; Willcox, Smaranda; Ide, Tomomi; Kang, Dongchon; Suomalainen, Anu; Karhunen, Pekka J.; Griffith, Jack D.; Holt, Ian J.; Jacobs, Howard T.
2009-01-01
Analysis of human heart mitochondrial DNA (mtDNA) by electron microscopy and agarose gel electrophoresis revealed a complete absence of the θ-type replication intermediates seen abundantly in mtDNA from all other tissues. Instead only Y- and X-junctional forms were detected after restriction digestion. Uncut heart mtDNA was organized in tangled complexes of up to 20 or more genome equivalents, which could be resolved to genomic monomers, dimers, and linear fragments by treatment with the decatenating enzyme topoisomerase IV plus the cruciform-cutting T7 endonuclease I. Human and mouse brain also contained a population of such mtDNA forms, which were absent, however, from mouse, rabbit, or pig heart. Overexpression in transgenic mice of two proteins involved in mtDNA replication, namely human mitochondrial transcription factor A or the mouse Twinkle DNA helicase, generated abundant four-way junctions in mtDNA of heart, brain, and skeletal muscle. The organization of mtDNA of human heart as well as of mouse and human brain in complex junctional networks replicating via a presumed non-θ mechanism is unprecedented in mammals. PMID:19525233
Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain
2012-01-01
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826
An anatomic transcriptional atlas of human glioblastoma.
Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D
2018-05-11
Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G
2013-01-01
The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized medicine.
Archer, Simon N; Oster, Henrik
2015-10-01
The mammalian circadian system is a multi-oscillator, hierarchically organised system where a central pacemaker synchronises behavioural, physiological and gene expression rhythms in peripheral tissues. Epidemiological studies show that disruption of this internal synchronisation by short sleep and shift work is associated with adverse health outcomes through mechanisms that remain to be elucidated. Here, we review recent animal and human studies demonstrating the profound effects of insufficient and mistimed sleep on the rhythms of gene expression in central and peripheral tissues. In mice, sleep restriction leads to an ~80% reduction in circadian transcripts in the brain and profound disruption of the liver transcriptome. In humans, sleep restriction leads to a 1.9% reduction in circadian transcripts in whole blood, and when sleep is displaced to the daytime, 97% of rhythmic genes become arrhythmic and one-third of all genes show changes in temporal expression profiles. These changes in mice and humans include a significant reduction in the circadian regulation of transcription and translation and core clock genes in the periphery, while at the same time rhythms within the suprachiasmatic nucleus are not disrupted. Although the physiological mediators of these sleep disruption effects on the transcriptome have not been established, altered food intake, changes in hormones such as cortisol, and changes in body and brain temperature may play important roles. Processes and molecular pathways associated with these disruptions include metabolism, immune function, inflammatory and stress responses, and point to the molecular mechanisms underlying the established adverse health outcomes associated with short sleep duration and shift work, such as metabolic syndrome and cancer. © 2015 European Sleep Research Society.
MicroRNA-125b is a novel negative regulator of p53.
Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing
2009-04-01
The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.
MicroRNA-125b is a novel negative regulator of p53
Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing
2009-01-01
The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287
Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*
Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek
2013-01-01
Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741
Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.
Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek
2013-07-19
Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.
Gene expression links functional networks across cortex and striatum.
Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J
2018-04-12
The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.
Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation
Guo, Ailan; Gu, Hongbo; Zhou, Jing; Mulhern, Daniel; Wang, Yi; Lee, Kimberly A.; Yang, Vicky; Aguiar, Mike; Kornhauser, Jon; Jia, Xiaoying; Ren, Jianmin; Beausoleil, Sean A.; Silva, Jeffrey C.; Vemulapalli, Vidyasiri; Bedford, Mark T.; Comb, Michael J.
2014-01-01
Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins. PMID:24129315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal
Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable themore » differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene, isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the “electron transport chain” and neuronal differentiation, emphasizing that “tissue important” genes are regulated at several levels. Furthermore, our analysis shows that the “across tissue approach” has a promising potential when screening for possible explanations for variations, such as those observed at the gene expression levels.« less
Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M
2010-07-01
The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.
TALEN-based generation of a cynomolgus monkey disease model for human microcephaly
Ke, Qiong; Li, Weiqiang; Lai, Xingqiang; Chen, Hong; Huang, Lihua; Kang, Zhuang; Li, Kai; Ren, Jie; Lin, Xiaofeng; Zheng, Haiqing; Huang, Weijun; Ma, Yunhan; Xu, Dongdong; Chen, Zheng; Song, Xinming; Lin, Xinyi; Zhuang, Min; Wang, Tao; Zhuang, Fengfeng; Xi, Jianzhong; Mao, Frank Fuxiang; Xia, Huimin; Lahn, Bruce T; Zhou, Qi; Yang, Shihua; Xiang, Andy Peng
2016-01-01
Gene editing in non-human primates may lead to valuable models for exploring the etiologies and therapeutic strategies of genetically based neurological disorders in humans. However, a monkey model of neurological disorders that closely mimics pathological and behavioral deficits in humans has not yet been successfully generated. Microcephalin 1 (MCPH1) is implicated in the evolution of the human brain, and MCPH1 mutation causes microcephaly accompanied by mental retardation. Here we generated a cynomolgus monkey (Macaca fascicularis) carrying biallelic MCPH1 mutations using transcription activator-like effector nucleases. The monkey recapitulated most of the important clinical features observed in patients, including marked reductions in head circumference, premature chromosome condensation (PCC), hypoplasia of the corpus callosum and upper limb spasticity. Moreover, overexpression of MCPH1 in mutated dermal fibroblasts rescued the PCC syndrome. This monkey model may help us elucidate the role of MCPH1 in the pathogenesis of human microcephaly and better understand the function of this protein in the evolution of primate brain size. PMID:27502025
Digital transcriptome profiling using selective hexamer priming for cDNA synthesis.
Armour, Christopher D; Castle, John C; Chen, Ronghua; Babak, Tomas; Loerch, Patrick; Jackson, Stuart; Shah, Jyoti K; Dey, John; Rohl, Carol A; Johnson, Jason M; Raymond, Christopher K
2009-09-01
We developed a procedure for the preparation of whole transcriptome cDNA libraries depleted of ribosomal RNA from only 1 microg of total RNA. The method relies on a collection of short, computationally selected oligonucleotides, called 'not-so-random' (NSR) primers, to obtain full-length, strand-specific representation of nonribosomal RNA transcripts. In this study we validated the technique by profiling human whole brain and universal human reference RNA using ultra-high-throughput sequencing.
Role of maternal thyroid hormones in the developing neocortex and during human evolution
Stenzel, Denise; Huttner, Wieland B.
2013-01-01
The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187
Ishii, Seiji; Torii, Masaaki; Son, Alexander I; Rajendraprasad, Meenu; Morozov, Yury M; Kawasawa, Yuka Imamura; Salzberg, Anna C; Fujimoto, Mitsuaki; Brennand, Kristen; Nakai, Akira; Mezger, Valerie; Gage, Fred H; Rakic, Pasko; Hashimoto-Torii, Kazue
2017-05-02
Repetitive prenatal exposure to identical or similar doses of harmful agents results in highly variable and unpredictable negative effects on fetal brain development ranging in severity from high to little or none. However, the molecular and cellular basis of this variability is not well understood. This study reports that exposure of mouse and human embryonic brain tissues to equal doses of harmful chemicals, such as ethanol, activates the primary stress response transcription factor heat shock factor 1 (Hsf1) in a highly variable and stochastic manner. While Hsf1 is essential for protecting the embryonic brain from environmental stress, excessive activation impairs critical developmental events such as neuronal migration. Our results suggest that mosaic activation of Hsf1 within the embryonic brain in response to prenatal environmental stress exposure may contribute to the resulting generation of phenotypic variations observed in complex congenital brain disorders.
Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex
Wehrspaun, Claudia C.; Haerty, Wilfried; Ponting, Chris P.
2015-01-01
Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis. PMID:26002684
Between destiny and disease: genetics and molecular pathways of human central nervous system aging.
Glorioso, Christin; Sibille, Etienne
2011-02-01
Aging of the human brain is associated with "normal" functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human post-mortem brain microarray studies, which we hypothesize, point to a potential genetically controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanskiy, Sergey; Van Duyne, Rachel; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lowermore » doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation (IR) increases HIV-1 transcription in latently-infected cells. • IR enhances activating effect of bryostatin 1 on HIV-1 transcription in monocytes. • IR induces apoptosis in HIV-1 infected cells via phosphorylation of p53 Ser46. • IR of HIV-1 infected humanized mice increases HIV-1 RNA in plasma, lung and brain.« less
Induction of innate immune genes in brain create the neurobiology of addiction.
Crews, F T; Zou, Jian; Qin, Liya
2011-06-01
Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction
Crews, FT; Zou, Jian; Qin, Liya
2013-01-01
Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143
Mendoza, Ezequiel; Scharff, Constance
2017-01-01
The Forkhead transcription factor FOXP2 is implicated in speech perception and production. The avian homolog, FoxP21 contributes to song learning and production in birds. In human cell lines, transcriptional activity of FOXP2 requires homo-dimerization or dimerization with paralogs FOXP1 or FOXP4. Whether FoxP dimerization occurs in the brain is unknown. We recently showed that FoxP1, FoxP2 and FoxP4 (FoxP1/2/4) proteins are co-expressed in neurons of Area X, a song control region in zebra finches. We now report on dimer- and oligomerization of zebra finch FoxPs and how this affects transcription. In cell lines and in the brain we identify homo- and hetero-dimers, and an oligomer composed of FoxP1/2/4. We further show that FoxP1/2 but not FoxP4 bind to the regulatory region of the target gene Contactin-associated protein-like 2 (CNTNAP2). In addition, we demonstrate that FoxP1/4 bind to the regulatory region of very low density lipoprotein receptor (VLDLR), as has been shown for FoxP2 previously. Interestingly, FoxP1/2/4 individually or in combinations regulate the promoters for SV40, zebra finch VLDLR and CNTNAP2 differentially. These data exemplify the potential for complex transcriptional regulation of FoxP1/2/4, highlighting the need for future functional studies dissecting their differential regulation in the brain. PMID:28507505
Identification of a mouse synaptic glycoprotein gene in cultured neurons.
Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang
2005-10-01
Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco
Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated networkmore » (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.« less
Ong, Daniel; Wijaya, Linda; Laws, Simon M.; Taddei, Kevin; Newman, Morgan; Lardelli, Michael; Martins, Ralph N.; Verdile, Giuseppe
2013-01-01
We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase) transcription and down-regulation of ADAM10 (α-secretase) transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes. PMID:23805206
Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark
2007-01-01
Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827
Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.
Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M
2000-03-10
The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.
Lattka, E.; Eggers, S.; Moeller, G.; Heim, K.; Weber, M.; Mehta, D.; Prokisch, H.; Illig, T.; Adamski, J.
2010-01-01
Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs. PMID:19546342
Lattka, E; Eggers, S; Moeller, G; Heim, K; Weber, M; Mehta, D; Prokisch, H; Illig, T; Adamski, J
2010-01-01
Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs.
Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P
2014-01-01
Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790
Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury
Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas
2017-01-01
Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777
Aberrant expression of long noncoding RNAs in autistic brain.
Ziats, Mark N; Rennert, Owen M
2013-03-01
The autism spectrum disorders (ASD) have a significant hereditary component, but the implicated genetic loci are heterogeneous and complex. Consequently, there is a gap in understanding how diverse genomic aberrations all result in one clinical ASD phenotype. Gene expression studies from autism brain tissue have demonstrated that aberrantly expressed protein-coding genes may converge onto common molecular pathways, potentially reconciling the strong heritability and shared clinical phenotypes with the genomic heterogeneity of the disorder. However, the regulation of gene expression is extremely complex and governed by many mechanisms, including noncoding RNAs. Yet no study in ASD brain tissue has assessed for changes in regulatory long noncoding RNAs (lncRNAs), which represent a large proportion of the human transcriptome, and actively modulate mRNA expression. To assess if aberrant expression of lncRNAs may play a role in the molecular pathogenesis of ASD, we profiled over 33,000 annotated lncRNAs and 30,000 mRNA transcripts from postmortem brain tissue of autistic and control prefrontal cortex and cerebellum by microarray. We detected over 200 differentially expressed lncRNAs in ASD, which were enriched for genomic regions containing genes related to neurodevelopment and psychiatric disease. Additionally, comparison of differences in expression of mRNAs between prefrontal cortex and cerebellum within individual donors showed ASD brains had more transcriptional homogeneity. Moreover, this was also true of the lncRNA transcriptome. Our results suggest that further investigation of lncRNA expression in autistic brain may further elucidate the molecular pathogenesis of this disorder.
Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.
Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas
2017-01-18
Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.
Emerick, Mark C; Stein, Rebecca; Kunze, Robin; McNulty, Megan M; Regan, Melissa R; Hanck, Dorothy A; Agnew, William S
2006-08-01
We describe the regulated transcriptome of CACNA1G, a human gene for T-type Ca(v)3.1 calcium channels that is subject to extensive alternative RNA splicing. Fifteen sites of transcript variation include 2 alternative 5'-UTR promoter sites, 2 alternative 3'-UTR polyadenylation sites, and 11 sites of alternative splicing within the open reading frame. A survey of 1580 fetal and adult human brain full-length complementary DNAs reveals a family of 30 distinct transcripts, including multiple functional forms that vary in expression with development. Statistical analyses of fetal and adult transcript populations reveal patterns of linkages among intramolecular splice site configurations that change dramatically with development. A shift from nearly independent, biased splicing in fetal transcripts to strongly concerted splicing in adult transcripts suggests progressive activation of multiple "programs" of splicing regulation that reorganize molecular structures in differentiating cells. Patch-clamp studies of nine selected variants help relate splicing regulation to permutations of the gating parameters most likely to modify T-channel physiology in expressing neurons. Gating behavior reflects combinatorial interactions between variable domains so that molecular phenotype depends on ensembles of coselected domains, consistent with the observed emergence of concerted splicing during development. We conclude that the structural gene and networks of splicing regulatory factors define an integrated system for the phenotypic variation of Ca(v)3.1 biophysics during nervous system development. Copyright 2006 Wiley-Liss, Inc.
A chronological expression profile of gene activity during embryonic mouse brain development.
Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P
2013-12-01
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Brain endothelial dysfunction in cerebral adrenoleukodystrophy.
Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S
2015-11-01
See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of melatonin and tetrapeptide on gene expression in mouse brain.
Anisimov, S V; Khavinson, V Kh; Anisimov, V N
2004-11-01
A microchip technique was used to study expression of 16,897 clones from a cDNA library in the brain of mice receiving melatonin or tetrapeptide Epithalon (Ala-Glu-Asp-Gly). Expression of 53 transcripts in mouse brain underwent significant changes after treatment with the preparations. Melatonin and Epithalon modified expression of 38 and 22 transcripts, respectively. These preparations produced similar changes in the expression of 6 transcripts. Expression of 1 transcript (Rp119) was inhibited by melatonin, but induced by Epithalon. The target genes are physiologically related to the cell cycle, apoptosis, biosynthesis, processing, and transport of nucleic acids. Comparative study of gene expression in the brain and heart of CBA mice receiving melatonin and Epithalon suggest that these preparations have a tissue-specific biological effect.
The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.
Koyama-Nasu, R; Haruta, R; Nasu-Nishimura, Y; Taniue, K; Katou, Y; Shirahige, K; Todo, T; Ino, Y; Mukasa, A; Saito, N; Matsui, M; Takahashi, R; Hoshino-Okubo, A; Sugano, H; Manabe, E; Funato, K; Akiyama, T
2014-04-24
Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.
Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B
1995-01-01
Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359
Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor
Manuel, Martine N.; Mi, Da; Mason, John O.; Price, David J.
2015-01-01
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development. PMID:25805971
Hypoxia regulates microRNA expression in the human carotid body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica
The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less
Human-Specific Histone Methylation Signatures at Transcription Start Sites in Prefrontal Neurons
Cheung, Iris; Bharadwaj, Rahul; Chou, Hsin-Jung; Houston, Isaac B.; Peter, Cyril J.; Mitchell, Amanda C.; Yao, Wei-Dong; Myers, Richard H.; Chen, Jiang-fan; Preuss, Todd M.; Rogaev, Evgeny I.; Jensen, Jeffrey D.; Weng, Zhiping; Akbarian, Schahram
2012-01-01
Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans. PMID:23185133
Yin, Shaoman; Kaluz, Stefan; Devi, Narra S.; Jabbar, Adnan A.; de Noronha, Rita G.; Mun, Jiyoung; Zhang, Zhaobin; Boreddy, Purushotham R.; Wang, Wei; Wang, Zhibo; Abbruscato, Thomas; Chen, Zhengjia; Olson, Jeffrey J.; Zhang, Ruiwen; Goodman, Mark M.; Nicolaou, K.C.; Van Meir, Erwin G.
2012-01-01
Purpose The hypoxia inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in cancer patients. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had anti-tumorigenic properties in vivo and further defined its mechanism of action. Experimental Design We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF1α/HIF1β/p300 transcription complex. Results KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1 and carbonic anhydrase 9, in an HRE-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not down-regulate levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional co-activators p300/CBP. Conclusions Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression. PMID:22923450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acquaah-Mensah, George K.; Taylor, Ronald C.
Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genesmore » relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.« less
Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H
2014-11-01
Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.
Malt, Eva A.; Juhasz, Katalin; Malt, Ulrik F.; Naumann, Thomas
2016-01-01
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas. PMID:27064909
Hyde, Thomas M; Lipska, Barbara K; Ali, Towhid; Mathew, Shiny V; Law, Amanda J; Metitiri, Ochuko E; Straub, Richard E; Ye, Tianzhang; Colantuoni, Carlo; Herman, Mary M; Bigelow, Llewellyn B; Weinberger, Daniel R; Kleinman, Joel E
2011-07-27
GABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n = 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n = 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.
DDC and COBL, flanking the imprinted GRB10 gene on 7p12, are biallelically expressed.
Hitchins, Megan P; Bentley, Louise; Monk, David; Beechey, Colin; Peters, Jo; Kelsey, Gavin; Ishino, Fumitoshi; Preece, Michael A; Stanier, Philip; Moore, Gudrun E
2002-12-01
Maternal duplication of human 7p11.2-p13 has been associated with Silver-Russell syndrome (SRS) in two familial cases. GRB10 is the only imprinted gene identified within this region to date. GRB10 demonstrates an intricate tissue- and isoform-specific imprinting profile in humans, with paternal expression in fetal brain and maternal expression of one isoform in skeletal muscle. The mouse homolog is maternally transcribed. The GRB10 protein is a potent growth inhibitor and represents a candidate for SRS, which is characterized by pre- and postnatal growth retardation and a spectrum of additional dysmorphic features. Since imprinted genes tend to be grouped in clusters, we investigated the imprinting status of the dopa-decarboxylase gene (DDC) and the Cordon-bleu gene (COBL) which flank GRB10 within the 7p11.2-p13 SRS duplicated region. Although both genes were found to replicate asynchronously, suggestive of imprinting, SNP expression analyses showed that neither gene was imprinted in multiple human fetal tissues. The mouse homologues, Ddc and Cobl, which map to the homologous imprinted region on proximal Chr 11, were also biallelically expressed in mice with uniparental maternal or paternal inheritance of this region. With the intent of using mouse Grb10 as an imprinted control, biallelic expression was consistently observed in fetal, postnatal, and adult brain of these mice, in contrast to the maternal-specific transcription previously demonstrated in brain in inter-specific F1 progeny. This may be a further example of over-expression of maternally derived transcripts in inter-specific mouse crosses. GRB10 remains the only imprinted gene identified within 7p11.2-p13.
Lionel, Anath C; Tammimies, Kristiina; Vaags, Andrea K; Rosenfeld, Jill A; Ahn, Joo Wook; Merico, Daniele; Noor, Abdul; Runke, Cassandra K; Pillalamarri, Vamsee K; Carter, Melissa T; Gazzellone, Matthew J; Thiruvahindrapuram, Bhooma; Fagerberg, Christina; Laulund, Lone W; Pellecchia, Giovanna; Lamoureux, Sylvia; Deshpande, Charu; Clayton-Smith, Jill; White, Ann C; Leather, Susan; Trounce, John; Melanie Bedford, H; Hatchwell, Eli; Eis, Peggy S; Yuen, Ryan K C; Walker, Susan; Uddin, Mohammed; Geraghty, Michael T; Nikkel, Sarah M; Tomiak, Eva M; Fernandez, Bridget A; Soreni, Noam; Crosbie, Jennifer; Arnold, Paul D; Schachar, Russell J; Roberts, Wendy; Paterson, Andrew D; So, Joyce; Szatmari, Peter; Chrysler, Christina; Woodbury-Smith, Marc; Brian Lowry, R; Zwaigenbaum, Lonnie; Mandyam, Divya; Wei, John; Macdonald, Jeffrey R; Howe, Jennifer L; Nalpathamkalam, Thomas; Wang, Zhuozhi; Tolson, Daniel; Cobb, David S; Wilks, Timothy M; Sorensen, Mark J; Bader, Patricia I; An, Yu; Wu, Bai-Lin; Musumeci, Sebastiano Antonino; Romano, Corrado; Postorivo, Diana; Nardone, Anna M; Monica, Matteo Della; Scarano, Gioacchino; Zoccante, Leonardo; Novara, Francesca; Zuffardi, Orsetta; Ciccone, Roberto; Antona, Vincenzo; Carella, Massimo; Zelante, Leopoldo; Cavalli, Pietro; Poggiani, Carlo; Cavallari, Ugo; Argiropoulos, Bob; Chernos, Judy; Brasch-Andersen, Charlotte; Speevak, Marsha; Fichera, Marco; Ogilvie, Caroline Mackie; Shen, Yiping; Hodge, Jennelle C; Talkowski, Michael E; Stavropoulos, Dimitri J; Marshall, Christian R; Scherer, Stephen W
2014-05-15
Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.
Müller, T; Loosse, C; Schrötter, A; Schnabel, A; Helling, S; Egensperger, R; Marcus, K
2011-08-01
AICD is the intracellular subdomain of the amyloid precursor protein thought to play a pivotal role as a potential transcription factor that might be of relevance for the pathophysiology of Alzheimer's disease. For its signal transduction potential AICD requires interacting proteins like FE65 and TIP60. However, many other proteins were described being able to bind to AICD. Here, we studied mRNA levels of AICD interacting proteins and found one of them (DAB1) strongly up-regulated in human post-mortem frontal cortex brain samples of AD patients. Subsequent cell culture experiments revealed that elevated DAB1 level results in the deregulation of the cellular proteome. We found the proliferation associated protein 2G4 as well as the guanine monophosphate synthetase (GMPS) significantly up-regulated in DAB1 over-expressing cells. Both proteins can be involved in cellular transcription processes supporting the hypothesis that DAB1 acts via modification of the AICD-dependent transcriptionally active complex. Of note, expression of the three components of the putative transcription complex (AICD, FE65, and TIP60 (AFT)) also revealed deregulation of the GMPS protein in an opposite fashion. Our results point to a putative relevance of AICD-dependent mechanisms in AD, caused by protein abundance changes of AICD interacting proteins, as shown for DAB1 in this work.
Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice
2018-02-01
In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.
Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M.; Mariani, John N.; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S.
2015-01-01
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood–brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood–brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood–brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood–brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood–brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood–brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood–brain barrier breakdown. PMID:25805644
Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.
2015-01-01
Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039
Human brain factor 1, a new member of the fork head gene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, D.B.; Wiese, S.; Burfeind, P.
1994-06-01
Analysis of cDNA clones that cross-hybridized with the fork head domain of the rat HNF-3 gene family revealed 10 cDNAs from human fetal brain and human testis cDNA libraries containing this highly conserved DNA-binding domain. Three of these cDNAs (HFK1, HFK2, and HFK3) were further analyzed. The cDNA HFK1 has a length of 2557 nucleotides and shows strong homology at the nucleotide level (91.2%) to brain factor 1 (BF-1) from rat. The HFK1 cDNA codes for a putative 476 amino acid protein. The homology to BF-1 from rat in the coding region at the amino acid level is 87.5%. Themore » fork head homologous region includes 111 amino acids starting at amino acid 160 and has a 97.5% homology to BF-1. Southern hybridization revealed that HFK1 is highly conserved among mammalian species and possibly birds. Northern analysis with total RNA from human tissues and poly(A)-rich RNA from mouse revealed a 3.2-kb transcript that is present in human and mouse fetal brain and in adult mouse brain. In situ hybridization with sections of mouse embryo and human fetal brain reveals that HFK1 expression is restricted to the neuronal cells in the telencepthalon, with strong expression being observed in the developing dentate gyrus and hippocampus. HFK1 was chromosomally localized by in situ hybridization to 14q12. The cDNA clones HFK2 and HFK3 were analyzed by restriction analysis and sequencing. HFK2 and HFK3 were found to be closely related but different from HFK1. Therefore, it would appear that HFK1, HFK2, HFK3, and BF-1 form a new fork head related subfamily. 33 refs., 6 figs.« less
Transcription map of Xq27: candidates for several X-linked diseases.
Zucchi, I; Jones, J; Affer, M; Montagna, C; Redolfi, E; Susani, L; Vezzoni, P; Parvari, R; Schlessinger, D; Whyte, M P; Mumm, S
1999-04-15
Human Xq27 contains candidate regions for several disorders, yet is predicted to be a gene-poor cytogenetic band. We have developed a transcription map for the entire cytogenetic band to facilitate the identification of the relatively small number of expected candidate genes. Two approaches were taken to identify genes: (1) a group of 64 unique STSs that were generated during the physical mapping of the region were used in RT-PCR with RNA from human adult and fetal brain and (2) ESTs that have been broadly mapped to this region of the chromosome were finely mapped using a high-resolution yeast artificial chromosome contig. This combined approach identified four distinct regions of transcriptional activity within the Xq27 band. Among them is a region at the centromeric boundary that contains candidate regions for several rare developmental disorders (X-linked recessive hypoparathyroidism, thoracoabdominal syndrome, albinism-deafness syndrome, and Borjeson-Forssman-Lehman syndrome). Two transcriptionally active regions were identified in the center of Xq27 and include candidate regions for X-linked mental retardation syndrome 6, X-linked progressive cone dystrophy, X-linked retinitis pigmentosa 24, and a prostate cancer susceptibility locus. The fourth region of transcriptional activity encompasses the FMR1 (FRAXA) and FMR2 (FRAXE) genes. The analysis thus suggests clustered transcription in Xq27 and provides candidates for several heritable disorders for which the causative genes have not yet been found. Copyright 1999 Academic Press.
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.
Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I
2013-05-30
Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.
Evolution of Siglec-11 and Siglec-16 Genes in Hominins
Wang, Xiaoxia; Mitra, Nivedita; Cruz, Pedro; Deng, Liwen; Varki, Nissi; Angata, Takashi; Green, Eric D.; Mullikin, Jim; Hayakawa, Toshiyuki; Varki, Ajit
2012-01-01
We previously reported a human-specific gene conversion of SIGLEC11 by an adjacent paralogous pseudogene (SIGLEC16P), generating a uniquely human form of the Siglec-11 protein, which is expressed in the human brain. Here, we show that Siglec-11 is expressed exclusively in microglia in all human brains studied—a finding of potential relevance to brain evolution, as microglia modulate neuronal survival, and Siglec-11 recruits SHP-1, a tyrosine phosphatase that modulates microglial biology. Following the recent finding of a functional SIGLEC16 allele in human populations, further analysis of the human SIGLEC11 and SIGLEC16/P sequences revealed an unusual series of gene conversion events between two loci. Two tandem and likely simultaneous gene conversions occurred from SIGLEC16P to SIGLEC11 with a potentially deleterious intervening short segment happening to be excluded. One of the conversion events also changed the 5′ untranslated sequence, altering predicted transcription factor binding sites. Both of the gene conversions have been dated to ∼1–1.2 Ma, after the emergence of the genus Homo, but prior to the emergence of the common ancestor of Denisovans and modern humans about 800,000 years ago, thus suggesting involvement in later stages of hominin brain evolution. In keeping with this, recombinant soluble Siglec-11 binds ligands in the human brain. We also address a second-round more recent gene conversion from SIGLEC11 to SIGLEC16, with the latter showing an allele frequency of ∼0.1–0.3 in a worldwide population study. Initial pseudogenization of SIGLEC16 was estimated to occur at least 3 Ma, which thus preceded the gene conversion of SIGLEC11 by SIGLEC16P. As gene conversion usually disrupts the converted gene, the fact that ORFs of hSIGLEC11 and hSIGLEC16 have been maintained after an unusual series of very complex gene conversion events suggests that these events may have been subject to hominin-specific selection forces. PMID:22383531
Leal, María C.; Surace, Ezequiel I.; Holgado, María P.; Ferrari, Carina C.; Tarelli, Rodolfo; Pitossi, Fernando; Wisniewski, Thomas; Castaño, Eduardo M.; Morelli, Laura
2012-01-01
Cerebral amyloid β (Aβ) accumulation is pathogenically associated with sporadic Alzheimer’s disease (SAD). BACE-1 is involved in Aβ generation while insulin-degrading enzyme (IDE) partakes in Aβ proteolytic clearance. Vulnerable regions in AD brains show increased BACE-1 protein levels and enzymatic activity while the opposite occurs with IDE. Another common feature in SAD brains is Notch1 overexpression. Here we demonstrate an increase in mRNA levels of Hey-1, a Notch target gene, and a decrease of IDE transcripts in the hippocampus of SAD brains as compared to controls. Transient transfection of Notch intracellular domain (NICD) in N2aSW cells, mouse neuroblastoma cells (N2a) stably expressing human amyloid precursor protein (APP) Swedish mutation, reduce IDE mRNA levels, promoting extracellular Aβ accumulation. Also, NICD, HES-1 and Hey-1 overexpression result in decreased IDE proximal promoter activity. This effect was mediated by 2 functional sites located at −379/−372 and −310 −303 from the first translation start site in the −575/−19 (556 bp) fragment of IDE proximal promoter. By site-directed mutagenesis of the IDE promoter region we reverted the inhibitory effect mediated by NICD transfection suggesting that these sites are indeed responsible for the Notch-mediated inhibition of the IDE gene expression. Intracranial injection of the Notch ligand JAG-1 in Tg2576 mice, expressing the Swedish mutation in human APP, induced overexpression of HES-1 and Hey-1 and reduction of IDE mRNA levels, respectively. Our results support our theory that a Notch-dependent IDE transcriptional modulation may impact on Aβ metabolism providing a functional link between Notch signaling and the amyloidogenic pathway in SAD. PMID:22036964
Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min
2002-09-01
A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.
2010-01-01
Background Adenosine to inosine (A-to-I) RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms. PMID:21029430
Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.
Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L
2017-04-07
The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in cellular functioning, signaling, immune response, and tissue-specific functions. This study identified differentially expressed transcripts between male and female gar in muscle and brain tissue. The majority of differentially expressed transcripts had sex-specific expression. Expanding on these findings to other developmental stages, populations, and species may lead to the identification of genetic factors contributing to the skewed sex ratio seen in the tropical gar and of sex-specific differences in expression in other species. Finally, the transcriptome assembly will open future research avenues on tropical gar development, cell function, environmental resistance, and evolution in the context of other early vertebrates.
Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1
Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.
2014-01-01
Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783
Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J
2009-01-01
Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.
Nuclear Receptor TLX in Development and Diseases.
Sun, Guoqiang; Cui, Qi; Shi, Yanhong
2017-01-01
The nuclear receptor TLX (NR2E1) is a transcription factor that is critical for neural development and adult neurogenesis through its actions in regulating neural stem cell proliferation, self-renewal, and fate determination. These roles are primarily executed by regulating TLX downstream target genes involved in myriad pathways such as cell cycle progression, RNA processing, angiogenesis, and senescence. Recent studies suggest that dysregulation of TLX pathways plays an important role in the pathogenesis of human neurological disorders and brain tumors. Here, we will highlight recent progress in the roles of TLX in brain development and adult neurogenesis, and the relevance of TLX to neurological diseases and brain tumors. We will also discuss the potential of TLX as a therapeutic target for these disorders. © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Murashov, A. K.; Wolgemuth, D. J.
1996-01-01
We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.
Banerjee, Dithi; Bloom, Amanda L M; Panepinto, John C
2016-10-01
The pathogenic fungus Cryptococcus neoformans must adapt to glucose-limited conditions in the lung and glucose replete conditions upon dissemination to the brain. We report that glucose controls ribosome biogenesis and translation by modulating mRNA decay through a balance of PKA and Hog1 signalling. Glucose signalling through PKA stabilized ribosomal protein (RP) mRNAs whereas glucose starvation destabilized RP transcripts through Hog1. Glucose starvation-induced oxidative stress response genes, and treatment of glucose-fed cells with reactive oxygen species (ROS) generating compounds repressed RP transcripts, both of which were dependent on Hog1. Stabilization of RP transcripts led to retention of polysomes in a hog1Δ mutant, whereas stabilization of RP transcripts by cyclic AMP did not affect translation repression, suggesting that Hog1 alone signals translation repression. In sum, this work describes a novel antagonism between PKA and Hog1 controlling ribosome biogenesis via mRNA stability in response to glucose availability in this important human pathogen. © 2016 John Wiley & Sons Ltd.
Pappas, Jane J; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G; Szyf, Moshe
2014-01-01
The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.
Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.
2014-01-01
Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490
Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E
2014-01-01
Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene
2014-01-01
The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.
Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.
Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia
2016-05-01
Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region.
Montini, E; Andolfi, G; Caruso, A; Buchner, G; Walpole, S M; Mariani, M; Consalez, G; Trump, D; Ballabio, A; Franco, B
1998-08-01
Eukaryotic protein kinases are part of a large and expanding family of proteins. Through our transcriptional mapping effort in the Xp22 region, we have isolated and sequenced the full-length transcript of STK9, a novel cDNA highly homologous to serine-threonine kinases. A number of human genetic disorders have been mapped to the region where STK9 has been localized including Nance-Horan (NH) syndrome, oral-facial-digital syndrome type 1 (OFD1), and a novel locus for nonsyndromic sensorineural deafness (DFN6). To evaluate the possible involvement of STK9 in any of the above-mentioned disorders, a 2416-bp full-length cDNA was assembled. The entire genomic structure of the gene, which is composed of 20 coding exons, was determined. Northern analysis revealed a transcript larger than 9.5 kb in several tissues including brain, lung, and kidney. The mouse homologue (Stk9) was identified and mapped in the mouse in the region syntenic to human Xp. This location is compatible with the location of the Xcat mutant, which shows congenital cataracts very similar to those observed in NH patients. Sequence homologies, expression pattern, and mapping information in both human and mouse make STK9 a candidate gene for the above-mentioned disorders. Copyright 1998 Academic Press.
The cerebellum ages slowly according to the epigenetic clock.
Horvath, Steve; Mah, Vei; Lu, Ake T; Woo, Jennifer S; Choi, Oi-Wa; Jasinska, Anna J; Riancho, José A; Tung, Spencer; Coles, Natalie S; Braun, Jonathan; Vinters, Harry V; Coles, L Stephen
2015-05-01
Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2x10-9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8x10-3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases.
The cerebellum ages slowly according to the epigenetic clock
Horvath, Steve; Mah, Vei; Lu, Ake T.; Woo, Jennifer S.; Choi, Oi-Wa; Jasinska, Anna J.; Riancho, José A.; Tung, Spencer; Coles, Natalie S.; Braun, Jonathan; Vinters, Harry V.; Coles, L. Stephen
2015-01-01
Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2×10−9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8×10−3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases. PMID:26000617
An endogenous RNA transcript antisense to CNG(alpha)1 cation channel mRNA.
Cheng, Chin-Hung; Yew, David Tai-Wai; Kwan, Hiu-Yee; Zhou, Qing; Huang, Yu; Liu, Yong; Chan, Wing-Yee; Yao, Xiaoqiang
2002-10-01
CNG channels are cyclic nucleotide-gated Ca(2+)-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG(alpha)1 mRNA. This transcript was capable of down-regulating the expression of sense CNG(alpha)1 in the Xenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG(alpha)1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG(alpha)1. Treatment of human glioma cell T98 with thyroid hormone T(3) caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG(alpha)1 expression. These data suggest that the suppression of CNG(alpha)1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.
Maingat, Ferdinand G; Polyak, Maria J; Paul, Amber M; Vivithanaporn, Pornpun; Noorbakhsh, Farshid; Ahboucha, Samir; Baker, Glen B; Pearson, Keir; Power, Christopher
2013-02-01
Neurosteroids are cholesterol-derived molecules synthesized within the brain, which exert trophic and protective actions. Infection by human and feline immunodeficiency viruses (HIV and FIV, respectively) causes neuroinflammation and neurodegeneration, leading to neurological deficits. Secretion of neuroinflammatory host and viral factors by glia and infiltrating leukocytes mediates the principal neuropathogenic mechanisms during lentivirus infections, although the effect of neurosteroids on these processes is unknown. We investigated the interactions between neurosteroid-mediated effects and lentivirus infection outcomes. Analyses of HIV-infected (HIV(+)) and uninfected human brains disclosed a reduction in neurosteroid synthesis enzyme expression. Human neurons exposed to supernatants from HIV(+) macrophages exhibited suppressed enzyme expression without reduced cellular viability. HIV(+) human macrophages treated with sulfated dehydroepiandrosterone (DHEA-S) showed suppression of inflammatory gene (IL-1β, IL-6, TNF-α) expression. FIV-infected (FIV(+)) animals treated daily with 15 mg/kg body weight. DHEA-S treatment reduced inflammatory gene transcripts (IL-1β, TNF-α, CD3ε, GFAP) in brain compared to vehicle-(β-cyclodextrin)-treated FIV(+) animals similar to levels found in vehicle-treated FIV(-) animals. DHEA-S treatment also increased CD4(+) T-cell levels and prevented neurobehavioral deficits and neuronal loss among FIV(+) animals, compared to vehicle-treated FIV(+) animals. Reduced neuronal neurosteroid synthesis was evident in lentivirus infections, but treatment with DHEA-S limited neuroinflammation and prevented neurobehavioral deficits. Neurosteroid-derived therapies could be effective in the treatment of virus- or inflammation-mediated neurodegeneration.
Reward-based hypertension control by a synthetic brain-dopamine interface.
Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2013-11-05
Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.
Buono, P; Conciliis, L D; Izzo, P; Salvatore, F
1997-01-01
A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889
Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience
Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami
2014-01-01
The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819
Alkallas, Rached; Fish, Lisa; Goodarzi, Hani; Najafabadi, Hamed S
2017-10-13
The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer's disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer's disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer's disease with age and gender."mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer's disease."
Eo, JungWoo; Lee, Hee-Eun; Nam, Gyu-Hwi; Kwon, Yun-Jeong; Choi, Yuri; Choi, Bong-Hwan; Huh, Jae-Won; Kim, Minkyu; Lee, Sang-Eun; Seo, Bohyun; Kim, Heui-Soo
2016-04-15
The monoamine oxidase A (MAOA) gene is an important candidate gene for human behavior that encodes an enzyme regulating the metabolism of key neurotransmitters. The regulatory mechanisms of the MAOA gene in dogs are yet to be elucidated. We measured MAOA gene transcription and analyzed the VNTR genotype and methylation status of the gene promoter region in different dog breeds to determine whether MAOA expression is correlated with the MAOA genotype or epigenetic modification in dogs. We found brain-specific expression of the MAOA gene and different transcription levels in different dog breeds including Beagle, Sapsaree, and German shepherd, and also a robust association of the DNA methylation of the gene promoter with mRNA levels. However, the 90 bp tandem repeats that we observed near the transcription start site were not variable, indicating no correlation with canine MAOA activity. These results show that differential DNA methylation in the MAOA promoter region may affect gene expression by modulating promoter activity. Moreover, the distinctive patterns of MAOA expression and DNA methylation may be involved in breed-specific or individual behavioral characteristics, such as aggression, because behavioral phenotypes are related to different physiological and neuroendocrine responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Usui, Noriyoshi; Co, Marissa; Harper, Matthew; Rieger, Michael A.; Dougherty, Joseph D.; Konopka, Genevieve
2016-01-01
Background Mutations in the gene encoding the transcription factor forkhead box P2, FOXP2, result in brain developmental abnormalities including reduced gray matter in both human patients and rodent models, and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any post-translational modifications of FOXP2 in the brain and disorders have been explored. Methods We characterized sumoylation of FOXP2 biochemically, and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation-state of Foxp2 as well as Foxp2 expression levels in Purkinje cells (PCs) of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. Results We identified sumoylation of FOXP2 at K674 (K673 in mouse) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the SUMO E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrate that Foxp2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of PCs in the mouse cerebellum. Conclusions Sumoylation of Foxp2 in neonatal mouse cerebellum regulates PC development as well as motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors. PMID:27009683
Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia
2013-01-01
DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.
Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia
2013-01-01
Background DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. Results In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. Conclusions We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms. PMID:23776563
Chromosomal localization and cDNA cloning of the human DBP and TEF genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatib, Z.A.; Inaba, T.; Valentine, M.
1994-09-15
The authors have isolated cDNA and genomic clones and determined the human chromosome positions of two genes encoding transcription factors expressed in the liver and the pituitary gland: albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). Both proteins have been identified as members of the PAR (proline and acidic amino acid-rich) subfamily of bZIP transcription factors in the rat, but human homologues have not been characterized. Using a fluorescence in situ hybridization technique, the DBP locus was assigned to chromosome 19q13, and TEF to chromosome 22q13. Each assignment was confirmed by means of human chromosome segregation in somatic cellmore » hybrids. Coding sequences of DBP and TEF, extending beyond the bZIP domain to the PAR region, were highly conserved in both human-human and interspecies comparisons. Conservation of the exon-intron boundaries of each bZIP domain-encoding exon suggested derivation from a common ancestral gene. DBP and TEF mRNAs were expressed in all tissues and cell lines examined, including brain, lung, liver, spleen, and kidney. Knowledge of the human chromosome locations of these PAR proteins will facilitate studies to assess their involvement in carcinogenesis and other fundamental biological processes. 37 refs., 5 figs., 1 tab.« less
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634
Characterization of the human analogue of a Scrapie-responsive gene.
Dron, M; Dandoy-Dron, F; Guillo, F; Benboudjema, L; Hauw, J J; Lebon, P; Dormont, D; Tovey, M G
1998-07-17
We have recently described a novel mRNA denominated ScRG-1, the level of which is increased in the brains of Scrapie-infected mice (Dandoy-Dron, F., Guillo, F., Benboudjema, L., Deslys, J.-P., Lasmézas, C., Dormont, D., Tovey, M. G., and Dron, M. (1998) J. Biol. Chem. 273, 7691-7697). The increase in ScRG-1 mRNA in the brain follows the accumulation of PrPSc, the proteinase K-resistant form of the prion protein (PrP), and precedes the widespread neuronal death that occurs in late stage disease. In the present study, we have isolated a cDNA encoding the human counterpart of ScRG-1. Comparison of the human and mouse transcripts firmly established that both sequences encode a highly conserved protein of 98 amino acids that contains a signal peptide, suggesting that the protein may be secreted. Examination of the distribution of human ScRG-1 mRNA in adult and fetal tissues revealed that the gene was expressed primarily in the central nervous system as a 0.7-kilobase message and was under strict developmental control.
Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.
2018-01-01
There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146
An Ultraconserved Brain-specific Enhancer within ADGRL3 (LPHN3) Underpins ADHD Susceptibility
Martinez, Ariel F.; Abe, Yu; Hong, Sungkook; Molyneux, Kevin; Yarnell, David; Löhr, Heiko; Driever, Wolfgang; Acosta, Maria T.; Arcos-Burgos, Mauricio; Muenke, Maximilian
2016-01-01
BACKGROUND Genetic factors predispose to attention deficit/hyperactivity disorder (ADHD). Previous studies have reported linkage and association to ADHD of gene variants within ADGRL3. In this study, we functionally analyzed non-coding variants in this gene as likely pathological contributors. METHODS In silico, in vitro and in vivo approaches were used to identify and characterize evolutionary conserved elements within the ADGRL3 linkage region (~207 Kb). Family-based genetic analyses on 838 individuals (372 affected and 466 unaffected) identified ADHD-associated SNPs harbored in some of these conserved elements. Luciferase assays and zebrafish GFP transgenesis tested conserved elements for transcriptional enhancer activity. Electromobility shift assays were used to verify transcription factor binding disruption by ADHD risk alleles. RESULTS An ultraconserved element was discovered (ECR47) that functions as a transcriptional enhancer. A three-variant ADHD risk haplotype in ECR47, formed by rs17226398, rs56038622 and rs2271338, reduced enhancer activity by 40% in neuroblastoma and astrocytoma cells (PBonferroni<0.0001). This enhancer also drove GFP expression in the zebrafish brain in a tissue-specific manner, sharing aspects of endogenous ADGRL3 expression. The rs2271338 risk allele disrupts binding of YY1, an important factor in the development and function of the central nervous system. Expression quantitative trait loci analysis of post-mortem human brain tissues revealed an association between rs2271338 and reduced ADGRL3 expression in the thalamus. CONCLUSIONS These results uncover the first functional evidence of common non-coding variants with potential implications for the pathology of ADHD. PMID:27692237
Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu
2015-04-01
Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish. Copyright © 2013 Wiley Periodicals, Inc.
McClain, Crystal R; Sim, Fraser J; Goldman, Steven A
2012-10-24
Oligodendrocyte progenitor cells (OPCs) persist in human white matter, yet the mechanisms by which they are maintained in an undifferentiated state are unknown. Human OPCs differentially express protein tyrosine phosphatase receptor β/ζ (PTPRZ1) and its inhibitory ligand, pleiotrophin, suggesting the maintenance of an autocrine loop by which PTPRZ1 activity is tonically suppressed. PTPRZ1 constitutively promotes the tyrosine dephosphorylation of β-catenin and, thus, β-catenin participation in T cell factor (TCF)-mediated transcription. Using CD140a/PDGFRα-based fluorescence-activated cell sorting to isolate fetal OPCs from the fetal brain at gestational ages 16-22 weeks, we asked whether pleiotrophin modulated the expansion of OPCs and, if so, whether this was effected through the serial engagement of PTPRZ1 and β-catenin-dependent signals, such as TCF-mediated transcription. Lentiviral shRNAi knockdown of PTPRZ1 induced TCF-mediated transcription and substantially augmented GSK3β inhibition-induced TCF-reporter luciferase expression, suggesting dual regulation of β-catenin and the importance of PTPRZ1 as a tonic brake upon TCF-dependent transcription. Pharmacological inhibition of GSK3β triggered substrate detachment and initiated sphere formation, yet had no effect on either proliferation or net cell number. In contrast, pleiotrophin strongly potentiated the proliferation of CD140a(+)-sorted OPCs, as did PTPRZ1 knockdown, which significantly increased the total number of population doublings exhibited by OPCs before mitotic senescence. These observations suggest that pleiotrophin inhibition of PTPRZ1 contributes to the homeostatic self-renewal of OPCs and that this process is mediated by the tonic activation of β-catenin/TCF-dependent transcription.
McClain, Crystal R.; Sim, Fraser J.
2012-01-01
Oligodendrocyte progenitor cells (OPCs) persist in human white matter, yet the mechanisms by which they are maintained in an undifferentiated state are unknown. Human OPCs differentially express protein tyrosine phosphatase receptor β/ζ (PTPRZ1) and its inhibitory ligand, pleiotrophin, suggesting the maintenance of an autocrine loop by which PTPRZ1 activity is tonically suppressed. PTPRZ1 constitutively promotes the tyrosine dephosphorylation of β-catenin and, thus, β-catenin participation in T cell factor (TCF)-mediated transcription. Using CD140a/PDGFRα-based fluorescence-activated cell sorting to isolate fetal OPCs from the fetal brain at gestational ages 16–22 weeks, we asked whether pleiotrophin modulated the expansion of OPCs and, if so, whether this was effected through the serial engagement of PTPRZ1 and β-catenin-dependent signals, such as TCF-mediated transcription. Lentiviral shRNAi knockdown of PTPRZ1 induced TCF-mediated transcription and substantially augmented GSK3β inhibition-induced TCF-reporter luciferase expression, suggesting dual regulation of β-catenin and the importance of PTPRZ1 as a tonic brake upon TCF-dependent transcription. Pharmacological inhibition of GSK3β triggered substrate detachment and initiated sphere formation, yet had no effect on either proliferation or net cell number. In contrast, pleiotrophin strongly potentiated the proliferation of CD140a+-sorted OPCs, as did PTPRZ1 knockdown, which significantly increased the total number of population doublings exhibited by OPCs before mitotic senescence. These observations suggest that pleiotrophin inhibition of PTPRZ1 contributes to the homeostatic self-renewal of OPCs and that this process is mediated by the tonic activation of β-catenin/TCF-dependent transcription. PMID:23100427
Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters
Maunakea, Alika K.; Nagarajan, Raman P.; Bilenky, Mikhail; Ballinger, Tracy J.; D’Souza, Cletus; Fouse, Shaun D.; Johnson, Brett E.; Hong, Chibo; Nielsen, Cydney; Zhao, Yongjun; Turecki, Gustavo; Delaney, Allen; Varhol, Richard; Thiessen, Nina; Shchors, Ksenya; Heine, Vivi M.; Rowitch, David H.; Xing, Xiaoyun; Fiore, Chris; Schillebeeckx, Maximiliaan; Jones, Steven J.M.; Haussler, David; Marra, Marco A.; Hirst, Martin; Wang, Ting; Costello, Joseph F.
2014-01-01
While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies. PMID:20613842
Ciura, Sorana; Lattante, Serena; Le Ber, Isabelle; Latouche, Morwena; Tostivint, Hervé; Brice, Alexis; Kabashi, Edor
2013-08-01
To define the role that repeat expansions of a GGGGCC hexanucleotide sequence of the C9orf72 gene play in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A genetic model for ALS was developed to determine whether loss of function of the zebrafish orthologue of C9orf72 (zC9orf72) leads to abnormalities in neuronal development. C9orf72 mRNA levels were quantified in brain and lymphoblasts derived from FTLD and ALS/FTLD patients and in zebrafish. Knockdown of the zC9orf72 was performed using 2 specific antisense morpholino oligonucleotides to block transcription. Quantifications of spontaneous swimming and tactile escape response, as well as measurements of axonal projections from the spinal cord, were performed. Significantly decreased expression of C9orf72 transcripts in brain and lymphoblasts was found in sporadic FTLD and ALS/FTLD patients with normal-size or expanded hexanucleotide repeats. The zC9orf72 is selectively expressed in the developing nervous system at developmental stages. Loss of function of the zC9orf72 transcripts causes both behavioral and cellular deficits related to locomotion without major morphological abnormalities. These deficits were rescued upon overexpression of human C9orf72 mRNA transcripts. Our results indicate C9orf72 haploinsufficiency could be a contributing factor in the spectrum of ALS/FTLD neurodegenerative disorders. Loss of function of the zebrafish orthologue of zC9orf72 expression in zebrafish is associated with axonal degeneration of motor neurons that can be rescued by expressing human C9orf72 mRNA, highlighting the specificity of the induced phenotype. These results reveal a pathogenic consequence of decreased C9orf72 levels, supporting a loss of function mechanism of disease. © 2013 American Neurological Association.
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues
2013-01-01
Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues. PMID:23721503
Cadet, Jean Lud; Brannock, Christie; Jayanthi, Subramaniam; Krasnova, Irina N
2015-04-01
Methamphetamine use disorder is a chronic neuropsychiatric disorder characterized by recurrent binge episodes, intervals of abstinence, and relapses to drug use. Humans addicted to methamphetamine experience various degrees of cognitive deficits and other neurological abnormalities that complicate their activities of daily living and their participation in treatment programs. Importantly, models of methamphetamine addiction in rodents have shown that animals will readily learn to give themselves methamphetamine. Rats also accelerate their intake over time. Microarray studies have also shown that methamphetamine taking is associated with major transcriptional changes in the striatum measured within a short or longer time after cessation of drug taking. After a 2-h withdrawal time, there was increased expression of genes that participate in transcription regulation. These included cyclic AMP response element binding (CREB), ETS domain-containing protein (ELK1), and members of the FOS family of transcription factors. Other genes of interest include brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor, type 2 (TrkB), and synaptophysin. Methamphetamine-induced transcription was found to be regulated via phosphorylated CREB-dependent events. After a 30-day withdrawal from methamphetamine self-administration, however, there was mostly decreased expression of transcription factors including junD. There was also downregulation of genes whose protein products are constituents of chromatin-remodeling complexes. Altogether, these genome-wide results show that methamphetamine abuse might be associated with altered regulation of a diversity of gene networks that impact cellular and synaptic functions. These transcriptional changes might serve as triggers for the neuropsychiatric presentations of humans who abuse this drug. Better understanding of the way that gene products interact to cause methamphetamine addiction will help to develop better pharmacological treatment of methamphetamine addicts.
Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R
2015-06-01
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood-brain barrier breakdown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Xiu-Juan
2018-05-01
The role of long non-coding RNA in diabetic retinopathy, a serious complication of diabetes mellitus, has attracted increasing attention in recent years. The purpose of this study was to explore whether long non-coding RNA nuclear paraspeckle assembly transcript 1 was involved in the context of diabetic retinopathy and its underlying mechanisms. Our results revealed that nuclear paraspeckle assembly transcript 1 was significantly downregulated in the retina of diabetes mellitus rats. Meanwhile, miR-497 was significantly increased in diabetes mellitus rats' retina and high glucose-treated Müller cells, but brain-derived neurotrophic factor was increased. We also found that high glucose-induced apoptosis of Müller cells was accompanied by the significant downregulation of nuclear paraspeckle assembly transcript 1 in vitro. Further study demonstrated that high glucose-promoted Müller cells apoptosis through downregulating nuclear paraspeckle assembly transcript 1 and downregulated nuclear paraspeckle assembly transcript 1 mediated this effect via negative regulating miR-497. Moreover, brain-derived neurotrophic factor was negatively regulated by miR-497 and associated with the apoptosis of Müller cells under high glucose. Our results suggested that under diabetic conditions, downregulated nuclear paraspeckle assembly transcript 1 decreased the expression of brain-derived neurotrophic factor through elevating miR-497, thereby promoting Müller cells apoptosis and aggravating diabetic retinopathy.
Shumay, Elena; Fowler, Joanna S
2010-05-16
Monoamine oxidase A (MAO A) is an enzyme that catalyzes the oxidation of neurotransmitter amines. A functional polymorphism in the human MAOA gene (high- and low-MAOA) has been associated with distinct behavioral phenotypes. To investigate directly the biological mechanism whereby this polymorphism influences brain function, we recently measured the activity of the MAO A enzyme in healthy volunteers. When found no relationship between the individual's brain MAO A level and the MAOA genotype, we postulated that there are additional regulatory mechanisms that control the MAOA expression. Given that DNA methylation is linked to the regulation of gene expression, we hypothesized that epigenetic mechanisms factor into the MAOA expression. Our underplaying assumption was that the differences in an individual's genotype play a key role in the epigenetic potential of the MAOA locus and, consequently, determine the individual's level of MAO A activity in the brain. As a first step towards experimental validation of the hypothesis, we performed a comprehensive bioinformatic analysis aiming to interrogate genomic features and attributes of the MAOA locus that might modulate its epigenetic sensitivity. Major findings of our analysis are the following: (1) the extended MAOA regulatory region contains two CpG islands (CGIs), one of which overlaps with the canonical MAOA promoter and the other is located further upstream; both CGIs exhibit sensitivity to differential methylation. (2) The uVNTR's effect on the MAOA's transcriptional activity might have epigenetic nature: this polymorphic region resides within the MAOA's CGI and itself contains CpGs, thus, the number of repeating increments effectively changes the number of methylatable cytosines in the MAOA promoter. An array of in silico analyses (the nucleosome positioning, the physical properties of the local DNA, the clustering of transcription-factor binding sites) together with experimental data on histone modifications and Pol 2 sites and data from the RefSeq mRNA library suggest that the MAOA gene might have an alternative promoter. Based on our findings, we propose a regulatory mechanism for the human MAOA according to which the MAOA expression in vivo is executed by the generation of tissue-specific transcripts initiated from the alternative promoters (both CGI-associated) where transcriptional activation of a particular promoter is under epigenetic control.
Transcriptional regulation of brain gene expression in response to a territorial intrusion
Sanogo, Yibayiri O.; Band, Mark; Blatti, Charles; Sinha, Saurabh; Bell, Alison M.
2012-01-01
Aggressive behaviour associated with territorial defence is widespread and has fitness consequences. However, excess aggression can interfere with other important biological functions such as immunity and energy homeostasis. How the expression of complex behaviours such as aggression is regulated in the brain has long intrigued ethologists, but has only recently become amenable for molecular dissection in non-model organisms. We investigated the transcriptomic response to territorial intrusion in four brain regions in breeding male threespined sticklebacks using expression microarrays and quantitative polymerase chain reaction (qPCR). Each region of the brain had a distinct genomic response to a territorial challenge. We identified a set of genes that were upregulated in the diencephalon and downregulated in the cerebellum and the brain stem. Cis-regulatory network analysis suggested transcription factors that regulated or co-regulated genes that were consistently regulated in all brain regions and others that regulated gene expression in opposing directions across brain regions. Our results support the hypothesis that territorial animals respond to social challenges via transcriptional regulation of genes in different brain regions. Finally, we found a remarkably close association between gene expression and aggressive behaviour at the individual level. This study sheds light on the molecular mechanisms in the brain that underlie the response to social challenges. PMID:23097509
Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei
2013-10-11
Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases ofmore » human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.« less
Transcriptional Control of Antioxidant Defense by the Circadian Clock
Patel, Sonal A.; Velingkaar, Nikkhil S.
2014-01-01
Abstract Significance: The circadian clock, an internal timekeeping system, is implicated in the regulation of metabolism and physiology, and circadian dysfunctions are associated with pathological changes in model organisms and increased risk of some diseases in humans. Recent Advances: Data obtained in different organisms, including humans, have established a tight connection between the clock and cellular redox signaling making it among the major candidates for a link between the circadian system and physiological processes. Critical Issues: In spite of the recent progress in understanding the importance of the circadian clock in the regulation of reactive oxygen species homeostasis, molecular mechanisms and key regulators are mostly unknown. Future Directions: Here we review, with an emphasis on transcriptional control, the circadian-clock-dependent control of oxidative stress response system as a potential mechanism in age-associated diseases. We will discuss the roles of the core clock components such as brain and muscle ARNT-like 1, Circadian Locomotor Output Cycles Kaput, the circadian-clock-controlled transcriptional factors such as nuclear factor erythroid-2-related factor, and peroxisome proliferator-activated receptor and circadian clock control chromatin modifying enzymes from sirtuin family in the regulation of cellular and organism antioxidant defense. Antioxid. Redox Signal. 20, 2997–3006. PMID:24111970
Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera
Biswas, Sunita; Russell, Robyn J.; Jackson, Colin J.; Vidovic, Maria; Ganeshina, Olga; Oakeshott, John G.; Claudianos, Charles
2008-01-01
Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate α- and β-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3′ region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3′ splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development. PMID:18974885
Suzuki, Michitaka; Sugimoto, Yuko; Ohsaki, Yuki; Ueno, Makoto; Kato, Shinsuke; Kitamura, Yukisato; Hosokawa, Hiroshi; Davies, Joanna P; Ioannou, Yiannis A; Vanier, Marie T; Ohno, Kousaku; Ninomiya, Haruaki
2007-02-21
Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2 genes. Loss of function of either protein results in the endosomal accumulation of cholesterol and other lipids, progressive neurodegeneration, and robust glial cell activation. Here, we report that cultured human NPC fibroblasts secrete interferon-beta, interleukin-6 (IL-6), and IL-8, and contain increased levels of signal transducers and activators of transcription (STATs). These cells also contained increased levels of Toll-like receptor 4 (TLR4) that accumulated in cholesterol-enriched endosomes/lysosomes, and small interfering RNA knockdown of this receptor reduced cytokine secretion. In the NPC1-/- mouse brain, glial cells expressed TLR4 and IL-6, whereas both glial and neuronal cells expressed STATs. Genetic deletion of TLR4 in NPC1-/- mice reduced IL-6 secretion by cultured fibroblasts but failed to alter STAT levels or glial cell activation in the brain. In contrast, genetic deletion of IL-6 normalized STAT levels and suppressed glial cell activation. These findings indicate that constitutive cytokine secretion leads to activation of STATs in NPC fibroblasts and that this secretion is partly caused by an endosomal accumulation of TLR4. These results also suggest that similar signaling events may underlie glial cell activation in the NPC1-/- mouse brain.
Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.
2004-01-01
The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107
Bouso, José Carlos; Palhano-Fontes, Fernanda; Rodríguez-Fornells, Antoni; Ribeiro, Sidarta; Sanches, Rafael; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Riba, Jordi
2015-04-01
Psychedelic agents have a long history of use by humans for their capacity to induce profound modifications in perception, emotion and cognitive processes. Despite increasing knowledge of the neural mechanisms involved in the acute effects of these drugs, the impact of sustained psychedelic use on the human brain remains largely unknown. Molecular pharmacology studies have shown that psychedelic 5-hydroxytryptamine (5HT)2A agonists stimulate neurotrophic and transcription factors associated with synaptic plasticity. These data suggest that psychedelics could potentially induce structural changes in brain tissue. Here we looked for differences in cortical thickness (CT) in regular users of psychedelics. We obtained magnetic resonance imaging (MRI) images of the brains of 22 regular users of ayahuasca (a preparation whose active principle is the psychedelic 5HT2A agonist N,N-dimethyltryptamine (DMT)) and 22 controls matched for age, sex, years of education, verbal IQ and fluid IQ. Ayahuasca users showed significant CT differences in midline structures of the brain, with thinning in the posterior cingulate cortex (PCC), a key node of the default mode network. CT values in the PCC were inversely correlated with the intensity and duration of prior use of ayahuasca and with scores on self-transcendence, a personality trait measuring religiousness, transpersonal feelings and spirituality. Although direct causation cannot be established, these data suggest that regular use of psychedelic drugs could potentially lead to structural changes in brain areas supporting attentional processes, self-referential thought, and internal mentation. These changes could underlie the previously reported personality changes in long-term users and highlight the involvement of the PCC in the effects of psychedelics. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Won, Jung Hee; Park, Jung Sik; Ju, Hyun Hee; Kim, Soyeon; Suh-Kim, Haeyoung; Ghil, Sung Ho
2008-05-01
Heterotrimeric GTP-binding proteins (G proteins) mediate signal transduction generated by neurotransmitters and hormones. Go, a member of the Go/Gi family, is the most abundant heterotrimeric G protein in the brain. Most mechanistic analyses on Go activation demonstrate that its action is mediated by the Gbetagamma dimer; downstream effectors for its alpha subunit (Goalpha) have not been clearly defined. Here, we employ the yeast two-hybrid system to screen for Goalpha-interacting partners in a cDNA library from human fetal brain. The transcription factor promyelocytic leukemia zinc finger protein (PLZF) specifically bound to Goalpha. Interactions between PLZF and Goalpha were confirmed using in vitro and in vivo affinity binding assays. Activated Goalpha interacted directly with PLZF, and enhanced its function as a transcriptional and cell growth suppressor. Notably, PLZF activity was additionally promoted by the Go/ialpha-coupled cannabinoid receptor (CB) in HL60 cells endogenously expressing CB and PLZF. These results collectively suggest that Goalpha modulates the function of PLZF via direct interactions. Our novel findings provide insights into the diverse cellular roles of Goalpha and its coupled receptor.
Schirer, Yulie; Malishkevich, Anna; Ophir, Yotam; Lewis, Jada; Giladi, Eliezer; Gozes, Illana
2014-01-01
Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts) in the cerebral cortex of young transgenic mice (~disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is warranted.
Unique and shared inflammatory profiles of human brain endothelia and pericytes.
Smyth, Leon C D; Rustenhoven, Justin; Park, Thomas I-H; Schweder, Patrick; Jansson, Deidre; Heppner, Peter A; O'Carroll, Simon J; Mee, Edward W; Faull, Richard L M; Curtis, Maurice; Dragunow, Mike
2018-05-11
Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1β, TNFα, LPS, IFN-γ, TGF-β 1 , IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1β. Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1β. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1β, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.
DeVry, C G; Tsai, W; Clarke, S
1996-11-15
The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.
Ryan, Veronica H.; Primiani, Christopher T.; Rao, Jagadeesh S.; Ahn, Kwangmi; Rapoport, Stanley I.; Blanchard, Helene
2014-01-01
Background The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. Hypothesis AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. Methods The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Results Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Conclusions Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease. PMID:24963629
Analysis of alternative splicing associated with aging and neurodegeneration in the human brain
Tollervey, James R.; Wang, Zhen; Hortobágyi, Tibor; Witten, Joshua T.; Zarnack, Kathi; Kayikci, Melis; Clark, Tyson A.; Schweitzer, Anthony C.; Rot, Gregor; Curk, Tomaž; Zupan, Blaž; Rogelj, Boris; Shaw, Christopher E.; Ule, Jernej
2011-01-01
Age is the most important risk factor for neurodegeneration; however, the effects of aging and neurodegeneration on gene expression in the human brain have most often been studied separately. Here, we analyzed changes in transcript levels and alternative splicing in the temporal cortex of individuals of different ages who were cognitively normal, affected by frontotemporal lobar degeneration (FTLD), or affected by Alzheimer's disease (AD). We identified age-related splicing changes in cognitively normal individuals and found that these were present also in 95% of individuals with FTLD or AD, independent of their age. These changes were consistent with increased polypyrimidine tract binding protein (PTB)–dependent splicing activity. We also identified disease-specific splicing changes that were present in individuals with FTLD or AD, but not in cognitively normal individuals. These changes were consistent with the decreased neuro-oncological ventral antigen (NOVA)–dependent splicing regulation, and the decreased nuclear abundance of NOVA proteins. As expected, a dramatic down-regulation of neuronal genes was associated with disease, whereas a modest down-regulation of glial and neuronal genes was associated with aging. Whereas our data indicated that the age-related splicing changes are regulated independently of transcript-level changes, these two regulatory mechanisms affected expression of genes with similar functions, including metabolism and DNA repair. In conclusion, the alternative splicing changes identified in this study provide a new link between aging and neurodegeneration. PMID:21846794
Lionel, Anath C.; Tammimies, Kristiina; Vaags, Andrea K.; Rosenfeld, Jill A.; Ahn, Joo Wook; Merico, Daniele; Noor, Abdul; Runke, Cassandra K.; Pillalamarri, Vamsee K.; Carter, Melissa T.; Gazzellone, Matthew J.; Thiruvahindrapuram, Bhooma; Fagerberg, Christina; Laulund, Lone W.; Pellecchia, Giovanna; Lamoureux, Sylvia; Deshpande, Charu; Clayton-Smith, Jill; White, Ann C.; Leather, Susan; Trounce, John; Melanie Bedford, H.; Hatchwell, Eli; Eis, Peggy S.; Yuen, Ryan K.C.; Walker, Susan; Uddin, Mohammed; Geraghty, Michael T.; Nikkel, Sarah M.; Tomiak, Eva M.; Fernandez, Bridget A.; Soreni, Noam; Crosbie, Jennifer; Arnold, Paul D.; Schachar, Russell J.; Roberts, Wendy; Paterson, Andrew D.; So, Joyce; Szatmari, Peter; Chrysler, Christina; Woodbury-Smith, Marc; Brian Lowry, R.; Zwaigenbaum, Lonnie; Mandyam, Divya; Wei, John; MacDonald, Jeffrey R.; Howe, Jennifer L.; Nalpathamkalam, Thomas; Wang, Zhuozhi; Tolson, Daniel; Cobb, David S.; Wilks, Timothy M.; Sorensen, Mark J.; Bader, Patricia I.; An, Yu; Wu, Bai-Lin; Musumeci, Sebastiano Antonino; Romano, Corrado; Postorivo, Diana; Nardone, Anna M.; Monica, Matteo Della; Scarano, Gioacchino; Zoccante, Leonardo; Novara, Francesca; Zuffardi, Orsetta; Ciccone, Roberto; Antona, Vincenzo; Carella, Massimo; Zelante, Leopoldo; Cavalli, Pietro; Poggiani, Carlo; Cavallari, Ugo; Argiropoulos, Bob; Chernos, Judy; Brasch-Andersen, Charlotte; Speevak, Marsha; Fichera, Marco; Ogilvie, Caroline Mackie; Shen, Yiping; Hodge, Jennelle C.; Talkowski, Michael E.; Stavropoulos, Dimitri J.; Marshall, Christian R.; Scherer, Stephen W.
2014-01-01
Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3′ terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3′-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3′ end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment. PMID:24381304
Human homologues of the bacterial heat-shock protein DnaJ are preferentially expressed in neurons.
Cheetham, M E; Brion, J P; Anderton, B H
1992-01-01
The bacterial heat-shock protein DnaJ has been implicated in protein folding and protein complex dissociation. The DnaJ protein interacts with the prokaryotic analogue of Hsp70, DnaK, and accelerates the rate of ATP hydrolysis by DnaK. Several yeast homologues of DnaJ, with different proposed subcellular localizations and functions, have recently been isolated and are the only eukaryotic forms of DnaJ so far described. We have isolated cDNAs corresponding to two alternatively spliced transcripts of a novel human gene, HSJ1, which show sequence similarity to the bacterial DnaJ protein and the yeast homologues. The cDNA clones were isolated from a human brain-frontal-cortex expression library screened with a polyclonal antiserum raised to paired-helical-filament (PHF) proteins isolated from extracts of the brains of patients suffering from Alzheimer's disease. The similarity between the predicted human protein sequences and the bacterial and yeast proteins is highest at the N-termini, this region also shows a limited similarity to viral T-antigens and is a possible common motif involved in the interaction with DnaK/Hsp70. Northern-blot analysis has shown that human brain contains higher levels of mRNA for the DnaJ homologue than other tissues examined, and hybridization studies with riboprobes in situ show a restricted pattern of expression of the mRNA within the brain, with neuronal layers giving the strongest signal. These findings suggest that the DnaJ-DnaK (Hsp70) interaction is general to eukaryotes and, indeed, to higher organisms. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1599432
Berens, Ali J; Tibbetts, Elizabeth A; Toth, Amy L
2017-06-15
The specialized ability to learn and recall individuals based on distinct facial features is known in only a few, large-brained social taxa. Social paper wasps in the genus Polistes are the only insects known to possess this form of cognitive specialization. We analyzed genome-wide brain gene expression during facial and pattern training for two species of paper wasps ( P. fuscatus , which has face recognition, and P. metricus , which does not) using RNA sequencing. We identified 237 transcripts associated with face specialization in P. fuscatus , including some transcripts involved in neuronal signaling (serotonin receptor and tachykinin). Polistes metricus that learned faces (without specialized learning) and P. fuscatus in social interactions with familiar partners (from a previous study) showed distinct sets of brain differentially expressed transcripts. These data suggest face specialization in P. fuscatus is related to shifts in the brain transcriptome associated with genes distinct from those related to general visual learning and social interactions. © 2017. Published by The Company of Biologists Ltd.
Sengoelge, Guerkan; Winnicki, Wolfgang; Kupczok, Anne; von Haeseler, Arndt; Schuster, Michael; Pfaller, Walter; Jennings, Paul; Weltermann, Ansgar; Blake, Sophia; Sunder-Plassmann, Gere
2014-08-27
Large scale transcript analysis of human glomerular microvascular endothelial cells (HGMEC) has never been accomplished. We designed this study to define the transcriptome of HGMEC and facilitate a better characterization of these endothelial cells with unique features. Serial analysis of gene expression (SAGE) was used for its unbiased approach to quantitative acquisition of transcripts. We generated a HGMEC SAGE library consisting of 68,987 transcript tags. Then taking advantage of large public databases and advanced bioinformatics we compared the HGMEC SAGE library with a SAGE library of non-cultured ex vivo human glomeruli (44,334 tags) which contained endothelial cells. The 823 tags common to both which would have the potential to be expressed in vivo were subsequently checked against 822,008 tags from 16 non-glomerular endothelial SAGE libraries. This resulted in 268 transcript tags differentially overexpressed in HGMEC compared to non-glomerular endothelia. These tags were filtered using a set of criteria: never before shown in kidney or any type of endothelial cell, absent in all nephron regions except the glomerulus, more highly expressed than statistically expected in HGMEC. Neurogranin, a direct target of thyroid hormone action which had been thought to be brain specific and never shown in endothelial cells before, fulfilled these criteria. Its expression in glomerular endothelium in vitro and in vivo was then verified by real-time-PCR, sequencing and immunohistochemistry. Our results represent an extensive molecular characterization of HGMEC beyond a mere database, underline the endothelial heterogeneity, and propose neurogranin as a potential link in the kidney-thyroid axis.
Clk post-transcriptional control denoises circadian transcription both temporally and spatially.
Lerner, Immanuel; Bartok, Osnat; Wolfson, Victoria; Menet, Jerome S; Weissbein, Uri; Afik, Shaked; Haimovich, Daniel; Gafni, Chen; Friedman, Nir; Rosbash, Michael; Kadener, Sebastian
2015-05-08
The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.
Tajiri, Naoki; Acosta, Sandra A.; Shahaduzzaman, Md; Ishikawa, Hiroto; Shinozuka, Kazutaka; Pabon, Mibel; Hernandez-Ontiveros, Diana; Kim, Dae Won; Metcalf, Christopher; Staples, Meaghan; Dailey, Travis; Vasconcellos, Julie; Franyuti, Giorgio; Gould, Lisa; Patel, Niketa
2014-01-01
Traumatic brain injury (TBI) survivors exhibit motor and cognitive symptoms from the primary injury that can become aggravated over time because of secondary cell death. In the present in vivo study, we examined the beneficial effects of human adipose-derived stem cells (hADSCs) in a controlled cortical impact model of mild TBI using young (6 months) and aged (20 months) F344 rats. Animals were transplanted intravenously with 4 × 106 hADSCs (Tx), conditioned media (CM), or vehicle (unconditioned media) at 3 h after TBI. Significant amelioration of motor and cognitive functions was revealed in young, but not aged, Tx and CM groups. Fluorescent imaging in vivo and ex vivo revealed 1,1′ dioactadecyl-3-3-3′,3′-tetramethylindotricarbocyanine iodide-labeled hADSCs in peripheral organs and brain after TBI. Spatiotemporal deposition of hADSCs differed between young and aged rats, most notably reduced migration to the aged spleen. Significant reduction in cortical damage and hippocampal cell loss was observed in both Tx and CM groups in young rats, whereas less neuroprotection was detected in the aged rats and mainly in the Tx group but not the CM group. CM harvested from hADSCs with silencing of either NEAT1 (nuclear enriched abundant transcript 1) or MALAT1 (metastasis associated lung adenocarcinoma transcript 1), long noncoding RNAs (lncRNAs) known to play a role in gene expression, lost the efficacy in our model. Altogether, hADSCs are promising therapeutic cells for TBI, and lncRNAs in the secretome is an important mechanism of cell therapy. Furthermore, hADSCs showed reduced efficacy in aged rats, which may in part result from decreased homing of the cells to the spleen. PMID:24381292
Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain.
Hopp, Sarah C; Bihlmeyer, Nathan A; Corradi, John P; Vanderburg, Charles; Cacace, Angela M; Das, Sudeshna; Clark, Timothy W; Betensky, Rebecca A; Hyman, Bradley T; Hudry, Eloise
2018-05-28
Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-β plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-β synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN overexpression on neuronal gene expression in vivo. We found dramatic transcriptional downregulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells (NFAT) and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to downregulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Usui, Noriyoshi; Co, Marissa; Harper, Matthew; Rieger, Michael A; Dougherty, Joseph D; Konopka, Genevieve
2017-02-01
Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Banerjee, Disha; Nandagopal, Krishnadas
2007-12-01
(1) GARS-AIRS-GART is an important candidate gene in studies of Down syndrome (DS)-related Alzheimer's disease (AD), due to its chromosomal localization (21q22.1) in the Down syndrome critical region, involvement in de novo purine biosynthesis, and over-expression in DS brain. The aim of this study was to identify factor(s) likely to enhance transcription of GARS-AIRS-GART in DS-related AD. (2) Based on a bio-informatics approach, the PromoterInspector, Promoter Scan II, and EBI toolbox CpG plot software programs were used to identify GARS-AIRS-GART sequences important for gene transcription. Transcription factor binding motifs within these regions were mapped with the help of the MatInspector and TFSEARCH programs. Factors implicated in neurodevelopment or neurodegeneration were the focus of attention, and mining of human (T1Dbase) and murine (GNF) expression databases revealed information on the regional distribution of these factors and their relative abundance vis-a-vis GARS-AIRS-GART. (3) The Leader-binding protein 1-c (LBP-1c/CP2/LSF) emerged as a promising candidate from these studies, as MatInspector and TFSEARCH analyses revealed a total of four CP2 binding sites with potential for functional interaction(s) within the promoter and CpG islands of GARS-AIRS-GART. Furthermore, two of these sites harbor sequences for methylation-sensitive restriction enzymes, which suggest that methylation status may, in part, regulate CP2-mediated transcription of GARS-AIRS-GART. A search of T1Dbase and GNF expression databases reveals co-expression of CP2 and GARS-AIRS-GART in brain regions relevant to DS-related AD. (4) The virtual screen identified CP2/LBP-1c/LSF as a factor that likely mediates enhanced transcription of GARS-AIRS-GART in DS-related AD.
A sense of time: how molecular clocks organize metabolism.
Kohsaka, Akira; Bass, Joseph
2007-01-01
The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.
Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development
Mahmoudi Saber, Morteza
2017-01-01
Abstract Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes. PMID:28633494
Daniel, Dianne C; Johnson, Edward M
2018-02-15
The PURA gene encodes Pur-alpha, a 322 amino acid protein with repeated nucleic acid binding domains that are highly conserved from bacteria through humans. PUR genes with a single copy of this domain have been detected so far in spirochetes and bacteroides. Lower eukaryotes possess one copy of the PUR gene, whereas chordates possess 1 to 4 PUR family members. Human PUR genes encode Pur-alpha (Pura), Pur-beta (Purb) and two forms of Pur-gamma (Purg). Pur-alpha is a protein that binds specific DNA and RNA sequence elements. Human PURA, located at chromosome band 5q31, is under complex control of three promoters. The entire protein coding sequence of PURA is contiguous within a single exon. Several studies have found that overexpression or microinjection of Pura inhibits anchorage-independent growth of oncogenically transformed cells and blocks proliferation at either G1-S or G2-M checkpoints. Effects on the cell cycle may be mediated by interaction of Pura with cellular proteins including Cyclin/Cdk complexes and the Rb tumor suppressor protein. PURA knockout mice die shortly after birth with effects on brain and hematopoietic development. In humans environmentally induced heterozygous deletions of PURA have been implicated in forms of myelodysplastic syndrome and progression to acute myelogenous leukemia. Pura plays a role in AIDS through association with the HIV-1 protein, Tat. In the brain Tat and Pura association in glial cells activates transcription and replication of JC polyomavirus, the agent causing the demyelination disease, progressive multifocal leukoencephalopathy. Tat and Pura also act to stimulate replication of the HIV-1 RNA genome. In neurons Pura accompanies mRNA transcripts to sites of translation in dendrites. Microdeletions in the PURA locus have been implicated in several neurological disorders. De novo PURA mutations have been related to a spectrum of phenotypes indicating a potential PURA syndrome. The nucleic acid, G-rich Pura binding element is amplified as expanded polynucleotide repeats in several brain diseases including fragile X syndrome and a familial form of amyotrophic lateral sclerosis/fronto-temporal dementia. Throughout evolution the Pura protein plays a critical role in survival, based on conservation of its nucleic acid binding properties. These Pura properties have been adapted in higher organisms to the as yet unfathomable development of the human brain. Copyright © 2017 Elsevier B.V. All rights reserved.
KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes
Putoux, Audrey; Thomas, Sophie; Coene, Karlien L M; Davis, Erica E; Alanay, Yasemin; Ogur, Gönül; Uz, Elif; Buzas, Daniela; Gomes, Céline; Patrier, Sophie; Bennett, Christopher L; Elkhartoufi, Nadia; Frison, Marie-Hélène Saint; Rigonnot, Luc; Joyé, Nicole; Pruvost, Solenn; Utine, Gulen Eda; Boduroglu, Koray; Nitschke, Patrick; Fertitta, Laura; Thauvin-Robinet, Christel; Munnich, Arnold; Cormier-Daire, Valérie; Hennekam, Raoul; Colin, Estelle; Akarsu, Nurten Ayse; Bole-Feysot, Christine; Cagnard, Nicolas; Schmitt, Alain; Goudin, Nicolas; Lyonnet, Stanislas; Encha-Razavi, Férechté; Siffroi, Jean-Pierre; Winey, Mark; Katsanis, Nicholas; Gonzales, Marie; Vekemans, Michel; Beales, Philip L; Attié-Bitach, Tania
2012-01-01
KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations. KIF7 is also a likely contributor of alleles across the ciliopathy spectrum, as sequencing of a diverse cohort identified several missense mutations detrimental to protein function. In addition, in vivo genetic interaction studies indicated that knockdown of KIF7 could exacerbate the phenotype induced by knockdown of other ciliopathy transcripts. Our data show the role of KIF7 in human primary cilia, especially in the Hedgehog pathway through the regulation of GLI targets, and expand the clinical spectrum of ciliopathies. PMID:21552264
Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J
2018-04-11
Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators. Copyright © 2018 Elsevier B.V. All rights reserved.
Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.
Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi
2014-01-01
Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.
[The pharmacology of memory (results and prospects)].
Borodkin, Iu S; Zaĭtsev, Iu V
1984-07-01
Principal possibilities and limits of using the pharmacological approach for control of memory in studies of neurophysiological and neurochemical mechanisms of learning and memory in humans and animals are reviewed as well as its place in experimental and clinical therapy of memory disorders. Using an unspecific connector aethimizol as a pharmacological probe aided to assess changes accompanying the formation and consolidation of memory traces. The significance of fast and slow bioelectrical brain activity in the memory processing, the role of enzymes involved in transcription and template chromatine activity of the neurons under the effect of drugs on memory and learning, the correlation between time-depending learning and the pattern of RNA synthesis in brain cells, as well as possibilities and pathways of utilization of drugs in the correction of the long-term memory matrix formed by a stable pathological state of the brain, are discussed.
Dysregulation of Alternative Poly-adenylation as a Potential Player in Autism Spectrum Disorder
Szkop, Krzysztof J.; Cooke, Peter I. C.; Humphries, Joanne A.; Kalna, Viktoria; Moss, David S.; Schuster, Eugene F.; Nobeli, Irene
2017-01-01
We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3′ untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3′ UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3′ sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled in vitro systems will be required to model the effect of calcium signaling dysregulation in the ASD brain. PMID:28955198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambaldorj, Jamiyansuren; Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585; Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar
2012-08-24
Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1),more » which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.« less
ERIC Educational Resources Information Center
Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael
2004-01-01
Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…
The regulation of catalase activity by PPAR γ is affected by α-synuclein
Yakunin, Eugenia; Kisos, Haya; Kulik, Willem; Grigoletto, Jessica; Wanders, Ronald J A; Sharon, Ronit
2014-01-01
Objective While evidence for oxidative injury is frequently detected in brains of humans affected by Parkinson's disease (PD) and in relevant animal models, there is uncertainty regarding its cause. We tested the potential role of catalase in the oxidative injury that characterizes PD. Methods Utilizing brains of A53T α-Syn and ntg mice, and cultured cells, we analyzed catalase activity and expression, and performed biochemical analyses of peroxisomal metabolites. Results Lower catalase expression and lower activity levels were detected in A53T α-Syn brains and α-Syn-expressing cells. The effect on catalase activity was independent of disease progression, represented by mouse age and α-Syn mutation, suggesting a potential physiological function for α-Syn. Notably, catalase activity and expression were unaffected in brains of mice modeling Alzheimer's disease. Moreover, we found that α-Syn expression downregulate the peroxisome proliferator-activated receptor (PPAR)γ, which controls catalase transcription. Importantly, activation of either PPARγ2, PPARα or retinoic X receptor eliminated the inhibiting effect of α-Syn on catalase activity. In addition, activation of these nuclear receptors enhanced the accumulation of soluble α-Syn oligomers, resulting in a positive association between the degree of soluble α-Syn oligomers and catalase activity. Of note, a comprehensive biochemical analysis of specific peroxisomal metabolites indicated no signs of dysfunction in specific peroxisomal activities in brains of A53T α-Syn mice. Interpretation Our results suggest that α-Syn expression may interfere with the complex and overlapping network of nuclear receptors transcription activation. In result, catalase activity is affected through mechanisms involved in the regulation of soluble α-Syn oligomers. PMID:25356396
Uddin, Monica; Wildman, Derek E.; Liu, Guozhen; Xu, Wenbo; Johnson, Robert M.; Hof, Patrick R.; Kapatos, Gregory; Grossman, Lawrence I.; Goodman, Morris
2004-01-01
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000–15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. PMID:14976249
CacyBP/SIP as a regulator of transcriptional responses in brain cells
Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal
2014-01-01
Summary The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed CacyBP/SIP enhanced BDNF-mediated activation of the Nuclear Factor of Activated T-cells (NFAT) but not the Serum Response Element (SRE). These stimulatory effects required an intact C-terminal domain of CacyBP/SIP. Moreover, in C6 rat glioma cells, the overexpressed CacyBP/SIP enhanced activation of CRE- or NFAT- following forskolin- or serum stimulation, respectively. Conversely, knockdown of endogenous CacyBP/SIP reduced activation of CRE- and NFAT but not SRE. Taken together, these results indicate that CacyBP/SIP is a novel regulator of CRE- and NFAT-driven transcription. PMID:25163685
Pappas, Jane J.; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G.; Szyf, Moshe
2014-01-01
The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain. PMID:25353162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coon, S.L.; Bernard, M.; Roseboom, P.H.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable atmore » low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.« less
Li, Qing-Xin; Shen, Yu-Xian; Ahmad, Akhlaq; Shen, Yu-Jun; Zhang, Yi-Quan; Xu, Pei-Kun; Chen, Wei-Wei; Yu, Yong-Qiang
2018-06-05
Our previous studies have shown that MANF provides neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This work investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). The model of TBI was induced by Feeney free falling methods with male Sprauge-Dawley rats. The expression of MANF, 24 hrs after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot and Reverse transcription PCR(RT-PCR) techniques. After treatment with recombinant human MANF following TBI, assessment was conducted - 24 hrs later for brain water content(BWC), cerebral edema volume in MRI, neurobehavioral testing and Evans blue extravasation. Moreover, by the techniques of Western blot and RT-PCR, the expression of inflammatory cytokines(IL-1β, TNF-α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. At 24 hrs after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with high dose of recombinant human MANF(20 μg/20 μL) - significantly increased the modified Garcia score, and reduced BWC as well as cerebral edema volume in MRI. Furthermore, MANF alleviated not only the blood-brain barrier(BBB) permeability, but also the expressions of IL-1β and TNF-α mRNA and protein. Besides, the activation of P65 was also inhibited. These results suggest that MANF provides neuroprotective effect against acute brain injury after TBI, via attenuating BBB disruption and intracranial neuroinflammation, while the inhibition of NF-κB signaling pathway might be a potential mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.
Baribault, Carl; Ehrlich, Kenneth C.; Ponnaluri, V. K. Chaithanya; Pradhan, Sriharsa; Lacey, Michelle; Ehrlich, Melanie
2018-01-01
ABSTRACT DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development. PMID:29498561
RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts
Sanchez-Pulido, Luis; Haerty, Wilfried
2015-01-01
Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length. The paucity of micro-exons (≤ 51 nt) suggests that their recognition and correct processing by the splicing machinery present greater challenges than for longer exons. Yet, because thousands of human genes harbor processed micro-exons, specialized mechanisms may be in place to promote their splicing. Here, we survey deep genomic data sets to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions. More than 60% of annotated human micro-exons exhibit a high level of sequence conservation, an indicator of functionality. While most human micro-exons require splicing-enhancing genomic features to be processed, the splicing of hundreds of micro-exons is enhanced by the adjacent binding of splice factors in the introns of pre-messenger RNAs. Notably, splicing of a significant number of micro-exons was found to be facilitated by the binding of RBFOX proteins, which promote their inclusion in the brain, muscle, and heart. Our analyses suggest that accurate regulation of micro-exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein–protein interactions. PMID:25524026
Chandrasekaran, Sriram; Ament, Seth A.; Eddy, James A.; Rodriguez-Zas, Sandra L.; Schatz, Bruce R.; Price, Nathan D.; Robinson, Gene E.
2011-01-01
Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior. PMID:21960440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Pawel K., E-mail: olsze005@umn.edu; Minnesota Obesity Center, Saint Paul, MN 55108; Fredriksson, Robert
2011-05-13
Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance throughmore » a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.« less
A Noncoding, Regulatory Mutation Implicates HCFC1 in Nonsyndromic Intellectual Disability
Huang, Lingli; Jolly, Lachlan A.; Willis-Owen, Saffron; Gardner, Alison; Kumar, Raman; Douglas, Evelyn; Shoubridge, Cheryl; Wieczorek, Dagmar; Tzschach, Andreas; Cohen, Monika; Hackett, Anna; Field, Michael; Froyen, Guy; Hu, Hao; Haas, Stefan A.; Ropers, Hans-Hilger; Kalscheuer, Vera M.; Corbett, Mark A.; Gecz, Jozef
2012-01-01
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function. PMID:23000143
Hydroxysteroid dehydrogenase HSD1L is localised to the pituitary–gonadal axis of primates
Bird, A Daniel; Greatorex, Spencer; Reser, David; Lavery, Gareth G
2017-01-01
Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate. PMID:28871060
Panaitof, S. Carmen; Abrahams, Brett S.; Dong, Hongmei; Geschwind, Daniel H.; White, Stephanie A.
2010-01-01
Multiple studies, involving distinct clinical populations, implicate contactin associated protein-like 2 (CNTNAP2) in aspects of language development and performance. While CNTNAP2 is broadly distributed in developing rodent brain, it shows a striking gradient of frontal cortical enrichment in developing human brain, consistent with a role in patterning circuits that subserve higher cognition and language. To test the hypothesis that CNTNAP2 may be important for learned vocal communication in additional species, we employed in situ hybridization to characterize transcript distribution in the zebra finch, an experimentally tractable songbird for which the neural substrate of this behavior is well-established. Consistent with an important role in learned vocalization, Cntnap2 was enriched or diminished in key song control nuclei relative to adjacent brain tissue. Importantly, this punctuated expression was observed in males, but not females, in accord with the sexual dimorphism of neural circuitry and vocal learning in this species. Ongoing functional work will provide important insights into the relationship between Cntnap2 and vocal communication in songbirds and thereby clarify mechanisms at play in disorders of human cognition and language. PMID:20394055
Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang
2018-05-01
Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Expression of Gls and Gls2 glutaminase isoforms in astrocytes.
Cardona, Carolina; Sánchez-Mejías, Elisabeth; Dávila, José C; Martín-Rufián, Mercedes; Campos-Sandoval, José A; Vitorica, Javier; Alonso, Francisco J; Matés, José M; Segura, Juan A; Norenberg, Michael D; Rama Rao, Kakulavarapu V; Jayakumar, Arumugan R; Gutiérrez, Antonia; Márquez, Javier
2015-03-01
The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase in these glial cells. In this work, a comprehensive study was devised to elucidate expression of glutaminase in neuroglia and, more concretely, in astrocytes. Immunocytochemistry in rat and human brain tissues employing isoform-specific antibodies revealed expression of both Gls and Gls2 glutaminase isozymes in glutamatergic and GABAergic neuronal populations as well as in astrocytes. Nevertheless, there was a different subcellular distribution: Gls isoform was always present in mitochondria while Gls2 appeared in two different locations, mitochondria and nucleus. Confocal microscopy and double immunofluorescence labeling in cultured astrocytes confirmed the same pattern previously seen in brain tissue samples. Astrocytic glutaminase expression was also assessed at the mRNA level, real-time quantitative RT-PCR detected transcripts of four glutaminase isozymes but with marked differences on their absolute copy number: the predominance of Gls isoforms over Gls2 transcripts was remarkable (ratio of 144:1). Finally, we proved that astrocytic glutaminase proteins possess enzymatic activity by in situ activity staining: concrete populations of astrocytes were labeled in the cortex, cerebellum and hippocampus of rat brain demonstrating functional catalytic activity. These results are relevant for the stoichiometry of the Glu/Gln cycle at the tripartite synapse and suggest novel functions for these classical metabolic enzymes. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Schmidt, M. A.; Goodwin, T. J.
2014-01-01
Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth
Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J
2008-04-01
In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not found to be down-regulated in neurons treated with 24S-hydroxycholesterol, while apolipoprotein E (apo E), a cholesterol trafficking protein, was found to be up-regulated. Taken together, this data leads to the hypothesis that, in times of cholesterol excess, 24S-hydroxycholesterols signals down-regulation of cholesterol synthesis enzymes through SREBP-2, but up-regulates apo E synthesis (through the liver X receptor) leading to cholesterol storage and restoration of cholesterol balance.
Loss of Sfpq Causes Long-Gene Transcriptopathy in the Brain.
Takeuchi, Akihide; Iida, Kei; Tsubota, Toshiaki; Hosokawa, Motoyasu; Denawa, Masatsugu; Brown, J B; Ninomiya, Kensuke; Ito, Mikako; Kimura, Hiroshi; Abe, Takaya; Kiyonari, Hiroshi; Ohno, Kinji; Hagiwara, Masatoshi
2018-05-01
Genes specifically expressed in neurons contain members with extended long introns. Longer genes present a problem with respect to fulfilment of gene length transcription, and evidence suggests that dysregulation of long genes is a mechanism underlying neurodegenerative and psychiatric disorders. Here, we report the discovery that RNA-binding protein Sfpq is a critical factor for maintaining transcriptional elongation of long genes. We demonstrate that Sfpq co-transcriptionally binds to long introns and is required for sustaining long-gene transcription by RNA polymerase II through mediating the interaction of cyclin-dependent kinase 9 with the elongation complex. Phenotypically, Sfpq disruption caused neuronal apoptosis in developing mouse brains. Expression analysis of Sfpq-regulated genes revealed specific downregulation of developmentally essential neuronal genes longer than 100 kb in Sfpq-disrupted brains; those genes are enriched in associations with neurodegenerative and psychiatric diseases. The identified molecular machinery yields directions for targeted investigations of the association between long-gene transcriptopathy and neuronal diseases. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease
Lukiw, Walter J.
2016-01-01
The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer’s disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This ‘Perspectives communication’ will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain. PMID:27725817
Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks
Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.
2014-01-01
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961
Differential transcriptome expression in human nucleus accumbens as a function of loneliness
Canli, Turhan; Wen, Ruofeng; Wang, Xuefeng; Mikhailik, Anatoly; Yu, Lei; Fleischman, Debra; Wilson, Robert S.; Bennett, David A.
2017-01-01
Loneliness is associated with impaired mental and physical health. Studies of lonely individuals reported differential expression of inflammatory genes in peripheral leukocytes and diminished activation in brain reward regions such as nucleus accumbens, but could not address gene expression in the human brain. Here, we examined genome-wide RNA expression in postmortem nucleus accumbens from donors (N = 26) with known loneliness measures. Loneliness was associated with 1 710 differentially expressed transcripts from 1 599 genes (DEGs; FDR p < 0.05, fold-change ≥ |2|, controlling for confounds) previously associated with behavioral processes, neurological disease, psychological disorders, cancer, organismal injury, and skeletal and muscular disorders, as well as networks of upstream RNA regulators. Furthermore, a number of DEGs were associated with Alzheimer’s disease genes (which was correlated with loneliness in this sample, although gene expression analyses controlled for AD diagnosis). These results identify novel targets for future mechanistic studies of gene networks in nucleus accumbens and gene regulatory mechanisms across a variety of diseases exacerbated by loneliness. PMID:27801889
Regulation of myeloid leukemia factor-1 interacting protein (MLF1IP) expression in glioblastoma.
Hanissian, Silva H; Teng, Bin; Akbar, Umar; Janjetovic, Zorica; Zhou, Qihong; Duntsch, Christopher; Robertson, Jon H
2005-06-14
The myelodysplasia/myeloid leukemia factor 1-interacting protein MLF1IP is a novel gene which encodes for a putative transcriptional repressor. It is localized to human chromosome 4q35.1 and is expressed in both the nuclei and cytoplasm of cells. Northern and Western blot analyses have revealed MLF1IP to be present at very low amounts in normal brain tissues, whereas a number of human and rat glioblastoma (GBM) cell lines demonstrated a high level expression of the MLF1IP protein. Immunohistochemical analysis of rat F98 and C6 GBM tumor models showed that MLF1IP was highly expressed in the tumor core where it was co-localized with MLF1 and nestin. Moreover, MLF1IP expression was elevated in the contralateral brain where no tumor cells were detected. These observations, together with previous data demonstrating a role for MLF1IP in erythroleukemias, suggest a possible function for this protein in glioma pathogenesis and potentially in other types of malignancies.
Molecular bases of methamphetamine-induced neurodegeneration.
Cadet, Jean Lud; Krasnova, Irina N
2009-01-01
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.
Tannir, Nizar M.; Williams, Michelle D.; Chen, Yunxin; Yao, Hui; Zhang, Jianping; Thompson, Erika J.; Meric-Bernstam, Funda; Medeiros, L. Jeffrey; Weinstein, John N.
2013-01-01
Elucidation of tumor-DNA virus associations in many cancer types has enhanced our knowledge of fundamental oncogenesis mechanisms and provided a basis for cancer prevention initiatives. RNA-Seq is a novel tool to comprehensively assess such associations. We interrogated RNA-Seq data from 3,775 malignant neoplasms in The Cancer Genome Atlas database for the presence of viral sequences. Viral integration sites were also detected in expressed transcripts using a novel approach. The detection capacity of RNA-Seq was compared to available clinical laboratory data. Human papillomavirus (HPV) transcripts were detected using RNA-Seq analysis in head-and-neck squamous cell carcinoma, uterine endometrioid carcinoma, and squamous cell carcinoma of the lung. Detection of HPV by RNA-Seq correlated with detection by in situ hybridization and immunohistochemistry in squamous cell carcinoma tumors of the head and neck. Hepatitis B virus and Epstein-Barr virus (EBV) were detected using RNA-Seq in hepatocellular carcinoma and gastric carcinoma tumors, respectively. Integration sites of viral genes and oncogenes were detected in cancers harboring HPV or hepatitis B virus but not in EBV-positive gastric carcinoma. Integration sites of expressed viral transcripts frequently involved known coding areas of the host genome. No DNA virus transcripts were detected in acute myeloid leukemia, cutaneous melanoma, low- and high-grade gliomas of the brain, and adenocarcinomas of the breast, colon and rectum, lung, prostate, ovary, kidney, and thyroid. In conclusion, this study provides a large-scale overview of the landscape of DNA viruses in human malignant cancers. While further validation is necessary for specific cancer types, our findings highlight the utility of RNA-Seq in detecting tumor-associated DNA viruses and identifying viral integration sites that may unravel novel mechanisms of cancer pathogenesis. PMID:23740984
Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study
Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku
2014-01-01
Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620
Noorbakhsh, Farshid; Ramachandran, Rithwik; Barsby, Nicola; Ellestad, Kristofor K; LeBlanc, Andrea; Dickie, Peter; Baker, Glen; Hollenberg, Morley D; Cohen, Eric A; Power, Christopher
2010-06-01
MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.
Johnson, Kaitlin M; Lema, Sean C
2011-07-01
In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status. Copyright © 2011 Elsevier Inc. All rights reserved.
Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C
2013-11-01
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.
Llorens-Bobadilla, Enric; Zhao, Sheng; Baser, Avni; Saiz-Castro, Gonzalo; Zwadlo, Klara; Martin-Villalba, Ana
2015-09-03
Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhang, Wenri; Klaus, Judith; Young, Jennifer; Koerner, Ines; Sheldahl, Laird C.; Hurn, Patricia D.; Martínez-Murillo, Francisco; Alkayed, Nabil J.
2006-09-01
Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases. ischemia | stroke | estrogen
Wang, Fei; Zou, Zhirong; Gong, Yi; Yuan, Dong; Chen, Xun; Sun, Tao
2017-05-01
Vascular risk factors have been linked to cognitive decline and dementia in the elderly. Microvascular inflammation, especially of the endothelium, may contribute to the progression of neurodegenerative events in Alzheimer's disease (AD). Memantine, an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is a licensed drug used for the treatment of moderate to severe AD. However, little information is available regarding its anti-inflammatory effects on the endothelium. In this study, we investigated the effects of memantine on human brain microvascular endothelial dysfunction induced by the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Our results show that memantine prevents the attachment of monocyte THP-1 cells to human brain microvascular endothelial cells (HBMVEs). An in vitro BBB model experiment displayed that memantine could rescue TNF-α-induced disruption of the in vitro BBB model. In addition, memantine also interferes with monocyte transmigration across the BBB model. Our results indicate that TNF-α significantly increased the expression of cell adhesion molecules, such as ICAM-1, VCAM-1, and E-selectin, which was prevented by pretreatment with memantine. Mechanistically, memantine reversed activation of the transcription factor NF-κB by preventing the phosphorylation and degradation of its inhibitor IκBα. Our data is the first to describe a novel anti-inflammatory mechanism driven by the endothelial cell-mediated neuroprotective effects of memantine.
Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie
2017-10-03
Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.
Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal
2014-01-01
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism. PMID:25692240
Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal
2014-01-01
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.
Mechanisms of specificity in neuronal activity-regulated gene transcription
Lyons, Michelle R.; West, Anne E.
2011-01-01
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929
Kharlyngdoh, Joubert Banjop; Pradhan, Ajay; Asnake, Solomon; Walstad, Anders; Ivarsson, Per; Olsson, Per-Erik
2015-01-01
Brominated flame-retardants (BFRs) are used in industrial products to reduce the risk of fire. However, their continuous release into the environment is a concern as they are often persistent, bioaccumulating and toxic. Information on the impact these compounds have on human health and wildlife is limited and only a few of them have been identified to disrupt hormone receptor functions. In the present study we used in silico modeling to determine the interactions of selected BFRs with the human androgen receptor (AR). Three compounds were found to dock into the ligand-binding domain of the human AR and these were further tested using in vitro analysis. Allyl 2,4,6-tribromophenyl ether (ATE), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) were observed to act as AR antagonists. These BFRs have recently been detected in the environment, in house dust and in aquatic animals. The compounds have been detected at high concentrations in both blubber and brain of seals and we therefore also assessed their impact on the expression of L-type amino acid transporter system (LAT) genes, that are needed for amino acid uptake across the blood-brain barrier, as disruption of LAT gene function has been implicated in several brain disorders. The three BFRs down-regulated the expression of AR target genes that encode for prostate specific antigen (PSA), 5α-reductases and β-microseminoprotein. The potency of PSA inhibition was of the same magnitude as the common prostate cancer drugs, demonstrating that these compounds are strong AR antagonists. Western blot analysis of AR protein showed that ATE, BATE and DPTE decreased the 5α-dihydrotestosterone-induced AR protein levels, further confirming that these BFRs act as AR antagonists. The transcription of the LAT genes was altered by the three BFRs, indicating an effect on amino-acid uptake across cellular membranes and blood-brain barrier. This study demonstrated that ATE, BATE and DPTE are potent AR antagonists and the alterations in LAT gene transcription suggest that these compounds can affect neuronal functions and should be considered as potential neurotoxic and endocrine disrupting compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkoe, D.J.; Podlisny, M.B.; Joachim, C.L.
1988-10-01
Progressive cerebral deposition of extracellular filaments composed of the {beta}-amyloid protein ({beta}AP) is a constant feature of Alzheimer disease (AD). Since the gene on chromosome 21 encoding the {beta}AP precursor ({beta}APP) is not known to be altered in AD, transcriptional or posttranslational changes may underlie accelerated {beta}AP deposition. Using two antibodies to the predicted carboxyl terminus of {beta}APP, the authors have identified the native {beta}APP in brain and nonneural human tissues as a 110- to 135-kDa protein complex that is insoluble in buffer and found in various membrane-rich subcellular fractions. These proteins are relatively uniformly distributed in adult brain, abundantmore » in fetal brain, and detected in nonneural tissues that contain {beta}APP mRNA. Similarly sized proteins occur in rat, cow, and monkey brain and in cultured human HL-60 and HeLa cells; the precise patterns in the 110- to 135-kDa range are heterogeneous among various tissues and cell lines. They conclude that the highly conserved {beta}APP molecule occurs in mammalian tissues as a heterogeneous group of membrane-associated proteins of {approx} 120 kDa. Detection of the nonamyloidogenic carboxyl terminus within plaques suggests that proteolytic processing of the {beta}APP into insoluble filaments occurs locally in cortical regions that develop {beta}-amyloid deposits with age.« less
Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma.
Sonabend, Adam M; Carminucci, Arthur S; Amendolara, Benjamin; Bansal, Mukesh; Leung, Richard; Lei, Liang; Realubit, Ronald; Li, Hai; Karan, Charles; Yun, Jonathan; Showers, Christopher; Rothcock, Robert; O, Jane; Califano, Andrea; Canoll, Peter; Bruce, Jeffrey N
2014-09-01
Glioblastoma subtypes have been defined based on transcriptional profiling, yet personalized care based on molecular classification remains unexploited. Topoisomerase II (TOP2) contributes to the transcriptional signature of the proneural glioma subtype. Thus, we targeted TOP2 pharmacologically with etoposide in proneural glioma models. TOP2 gene expression was evaluated in mouse platelet derived growth factor (PDGF)(+)phosphatase and tensin homolog (PTEN)(-/-)p53(-/-) and PDGF(+)PTEN(-/-) proneural gliomas and cell lines, as well as human glioblastoma from The Cancer Genome Atlas. Correlation between TOP2 transcript levels and etoposide susceptibility was investigated in 139 human cancer cell lines from the Cancer Cell Line Encyclopedia public dataset and in mouse proneural glioma cell lines. Convection-enhanced delivery (CED) of etoposide was tested on cell-based PDGF(+)PTEN(-/-)p53(-/-) and retroviral-based PDGF(+)PTEN(-/-) mouse proneural glioma models. TOP2 expression was significantly higher in human proneural glioblastoma and in mouse proneural tumors at early as well as late stages of development compared with normal brain. TOP2B transcript correlated with susceptibility to etoposide in mouse proneural cell lines and in 139 human cancer cell lines from the Cancer Cell Line Encyclopedia. Intracranial etoposide CED treatment (680 μM) was well tolerated by mice and led to a significant survival benefit in the PDGF(+)PTEN(-/-)p53(-/-) glioma model. Moreover, etoposide CED treatment at 80 μM but not 4 μM led to a significant survival advantage in the PDGF(+)PTEN(-/-) glioma model. TOP2 is highly expressed in proneural gliomas, rendering its pharmacological targeting by intratumoral administration of etoposide by CED effective on murine proneural gliomas. We provide evidence supporting clinical testing of CED of etoposide with a molecular-based patient selection approach. Published by Oxford University Press on behalf of the Society for Neuro-Oncology 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Presence of Human Herpesvirus 6B in the Pancreas of Subjects With and Without Type 1 Diabetes.
Ericsson, Maja; Skog, Oskar
The aims of this study were to investigate the presence of human herpesvirus 6 (HHV6) A and B in human pancreata and to search for signs of active infection in this organ of subjects with and without type 1 diabetes (T1D). Pancreata from brain-dead organ donors with and without T1D were examined for the presence of HHV6 genomic sequences by polymerase chain reaction (PCR), transcripts by reverse transcriptase-PCR, and protein by immunohistochemistry. Quantitative PCR of isolated pancreatic islets and exocrine cell clusters was used to determine the intrapancreatic location of HHV6 DNA. Human herpesvirus 6B genomic sequences were present in 1 of 2 donors who died of acute-onset T1D, 4 of 6 donors with long-standing T1D, and 9 of 12 nondiabetic donors. Higher copy numbers of HHV6B DNA were present in isolated islets than in exocrine tissue from the same donors. No signs of active HHV6 transcription were found. Human herpesvirus 6A was not present in any tested pancreas. The herein presented data demonstrate, for the first time, the presence of a latent HHV6B infection in the pancreas and islets of Langerhans. Whether this virus can contribute to disease in the pancreas remains to be determined.
Germline Chd8 haploinsufficiency alters brain development in mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
Germline Chd8 haploinsufficiency alters brain development in mouse
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob; ...
2017-06-26
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
Coufal, Nicole G.; Garcia-Perez, Josè Luis; Peng, Grace E.; Marchetto, Maria C. N.; Muotri, Alysson R.; Mu, Yangling; Carson, Christian T.; Macia, Angela; Moran, John V.; Gage, Fred H.
2011-01-01
Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition. PMID:22159035
Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress.
Vialou, Vincent; Thibault, Mackenzie; Kaska, Sophia; Cooper, Sarah; Gajewski, Paula; Eagle, Andrew; Mazei-Robison, Michelle; Nestler, Eric J; Robison, A J
2015-12-01
Major depressive disorder is thought to arise in part from dysfunction of the brain's "reward circuitry", consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in many of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in ∼25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, ΔFosB, and Δ2ΔFosB) in brain regions associated with depression--the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus--in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 h following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable ΔFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael
2017-02-01
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.
Shashoua, V E; Adams, D; Boyer-Boiteau, A
2001-10-19
An 8-amino acid peptide fragment (CMX-8933) of Ependymin, a glycoprotein component of the extracellular fluid and cerebrospinal fluid of goldfish brain, was synthesized and tested for its capacity to activate AP-1 transcription factor in cell cultures. Dose-response and time-course studies of AP-1's binding to DNA were carried out in neuroblastoma (NB2a/dl) and primary rat brain cortical cultures using an electrophoretic mobility shift assay (EMSA). A 13-14-fold increase in AP-1's DNA binding was obtained when NB2a cells were incubated for 4 h with 6-10 microg/ml CMX-8933. Primary rat brain cortical cultures were much more sensitive to the effects of CMX-8933 than transformed (NB2a) cultures; here a 26.7+/-5.2-fold increase in binding was observed following a 3-h treatment with as little as 10 ng/ml peptide. These findings are consistent with an activation of this transcription factor, a characteristic that has been previously correlated with functional aspects of full-sized neurotrophic factors (nerve growth factor and brain-derived nerve growth factor) in neuronal differentiation and regeneration. Such data suggest a role for Ependymin in transcriptional control.
Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.
Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas
2017-01-01
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.
Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin
2014-01-01
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111
Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors.
Heller, Elizabeth A; Cates, Hannah M; Peña, Catherine J; Sun, Haosheng; Shao, Ningyi; Feng, Jian; Golden, Sam A; Herman, James P; Walsh, Jessica J; Mazei-Robison, Michelle; Ferguson, Deveroux; Knight, Scott; Gerber, Mark A; Nievera, Christian; Han, Ming-Hu; Russo, Scott J; Tamminga, Carol S; Neve, Rachael L; Shen, Li; Zhang, H Steve; Zhang, Feng; Nestler, Eric J
2014-12-01
Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral plasticity by chromatin remodeling that occurs at a single gene. We investigated the mechanism linking chromatin dynamics to neurobiological phenomena by applying engineered transcription factors to selectively modify chromatin at a specific mouse gene in vivo. We found that histone methylation or acetylation at the Fosb locus in nucleus accumbens, a brain reward region, was sufficient to control drug- and stress-evoked transcriptional and behavioral responses via interactions with the endogenous transcriptional machinery. This approach allowed us to relate the epigenetic landscape at a given gene directly to regulation of its expression and to its subsequent effects on reward behavior.
Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech
2017-07-01
Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.
González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier
2015-10-01
Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.
Post-transcriptional Regulation of Tyrosine Hydroxylase Expression in Adrenal Medulla and Brain
Tank, A. William; Xu, Lu; Chen, Xiqun; Radcliffe, Pheona; Sterling, Carol R.
2009-01-01
It is well-established that long-term stress leads to induction of tyrosine hydroxylase (TH) mRNA and TH protein in adrenal medulla and brain. This induction is usually associated with stimulation of TH gene transcription rate. However, a number of studies have reported major discrepancies between the stress-induced changes in TH gene transcription, TH mRNA and TH protein. These discrepancies suggest that post-transcriptional mechanisms also play an important role in regulating TH expression in response to stress and other stimuli. In this report we summarize some of our findings and literature reports that demonstrate these discrepancies in adrenal medulla, locus coeruleus and midbrain dopamine neurons. We then describe our recent work investigating the molecular mechanisms that mediate this post-transcriptional regulation in adrenal medulla and midbrain. Our results suggest that trans-acting factors binding to the polypyrimidine-rich region of the 3′UTR of TH mRNA play a role in these post-transcriptional mechanisms. A hypothetical cellular model describing this post-transcriptional regulation is proposed. PMID:19120116
Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS
Gagliano, Sarah A.; Ptak, Carolyn; Mak, Denise Y.F.; Shamsi, Mehrdad; Oh, Gabriel; Knight, Joanne; Boutros, Paul C.; Petronis, Arturas
2016-01-01
Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%–7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs. PMID:27087318
Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review.
Eckstrand, Chrissy D; Sparger, Ellen E; Murphy, Brian G
2017-08-01
Infection with feline immunodeficiency virus (FIV), a lentivirus similar to human immunodeficiency virus (HIV), results in lifelong viral persistence and progressive immunopathology in the cat. FIV has the ability to infect and produce infectious virus in a number of different cell types. FIV provirus can also be maintained in a replication-competent but transcriptionally quiescent state, facilitating viral persistence over time. Immediately after the initial infection, FIV infection quickly disseminates to many anatomical compartments within the host including lymphoid organs, gastrointestinal tract and brain. Collectively, the anatomic and cellular compartments that harbour FIV provirus constitute the viral reservoir and contain foci of both ongoing viral replication and transcriptionally restricted virus that may persist over time. The relative importance of the different phenotypes observed for infected cells, anatomic compartment, replication status and size of the reservoir represent crucial areas of investigation for developing effective viral suppression and eradication therapies. In this review, we discuss what is currently known about FIV reservoirs, and emphasize the utility of the FIV-infected cat as a model for the HIV-infected human.
Zhenilo, S V; Sokolov, A S; Prokhortchouk, E B
2016-01-01
Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS 1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences.
Aghajanirefah, A; Nguyen, L N; Ohadi, M
2016-01-15
Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. Copyright © 2015 Elsevier B.V. All rights reserved.
Alawad, Abdullah; Alharbi, Sultan; Alhazzaa, Othman; Alagrafi, Faisal; Alkhrayef, Mohammed; Alhamdan, Ziyad; Alenazi, Abdullah; Al-Johi, Hasan; Alanazi, Ibrahim O; Hammad, Mohamed
2016-01-01
Although the sequencing information of Sox2 cDNA for many mammalian is available, the Sox2 cDNA of Camelus dromedaries has not yet been characterized. The objective of this study was to sequence and characterize Sox2 cDNA from the brain of C. dromedarius (also known as Arabian camel). A full coding sequence of the Sox2 gene from the brain of C. dromedarius was amplified by reverse transcription PCRjmc and then sequenced using the 3730XL series platform Sequencer (Applied Biosystem) for the first time. The cDNA sequence displayed an open reading frame of 822 nucleotides, encoding a protein of 273 amino acids. The molecular weight and the isoelectric point of the translated protein were calculated as 29.825 kDa and 10.11, respectively, using bioinformatics analysis. The predicted cSox2 protein sequence exhibited high identity: 99% for Homo sapiens, Mus musculus, Bos taurus, and Vicugna pacos; 98% for Sus scrofa and 93% for Camelus ferus. A 3D structure was built based on the available crystal structure of the HMG-box domain of human stem cell transcription factor Sox2 (PDB: 2 LE4) with 81 residues and predicting bioinformatics software for 273 amino acid residues. The comparison confirms the presence of the HMG-box domain in the cSox2 protein. The orthologous phylogenetic analysis showed that the Sox2 isoform from C. dromedarius was grouped with humans, alpacas, cattle, and pigs. We believe that this genetic and structural information will be a helpful source for the annotation. Furthermore, Sox2 is one of the transcription factors that contributes to the generation-induced pluripotent stem cells (iPSCs), which in turn will probably help generate camel induced pluripotent stem cells (CiPSCs).
Hodes, Georgia E; Pfau, Madeline L; Purushothaman, Immanuel; Ahn, H Francisca; Golden, Sam A; Christoffel, Daniel J; Magida, Jane; Brancato, Anna; Takahashi, Aki; Flanigan, Meghan E; Ménard, Caroline; Aleyasin, Hossein; Koo, Ja Wook; Lorsch, Zachary S; Feng, Jian; Heshmati, Mitra; Wang, Minghui; Turecki, Gustavo; Neve, Rachel; Zhang, Bin; Shen, Li; Nestler, Eric J; Russo, Scott J
2015-12-16
Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic mechanism, which normally suppresses DNA transcription, creating a hybrid male/female transcriptional pattern. Removal of this epigenetic mechanism also induces behavioral resilience to stress in females. These findings shed new light onto molecular factors controlling sex differences in stress response. Copyright © 2015 the authors 0270-6474/15/3516363-15$15.00/0.
Hodes, Georgia E.; Pfau, Madeline L.; Purushothaman, Immanuel; Ahn, H. Francisca; Golden, Sam A.; Christoffel, Daniel J.; Magida, Jane; Brancato, Anna; Takahashi, Aki; Flanigan, Meghan E.; Ménard, Caroline; Aleyasin, Hossein; Koo, Ja Wook; Lorsch, Zachary S.; Feng, Jian; Heshmati, Mitra; Wang, Minghui; Turecki, Gustavo; Neve, Rachel; Zhang, Bin; Shen, Li; Nestler, Eric J.
2015-01-01
Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. SIGNIFICANCE STATEMENT Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic mechanism, which normally suppresses DNA transcription, creating a hybrid male/female transcriptional pattern. Removal of this epigenetic mechanism also induces behavioral resilience to stress in females. These findings shed new light onto molecular factors controlling sex differences in stress response. PMID:26674863
Single cell gene expression profiling in Alzheimer's disease.
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
2006-07-01
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Epigenetic Induction of EGR-1 Expression by the Amyloid Precursor Protein during Exposure to Novelty
Hendrickx, Aurélie; Pierrot, Nathalie; Tasiaux, Bernadette; Schakman, Olivier; Brion, Jean-Pierre; Kienlen-Campard, Pascal; De Smet, Charles; Octave, Jean-Noël
2013-01-01
Following transcriptome comparison of primary cultures isolated from brain of mice expressing or not the amyloid precursor protein APP, we found transcription of the EGR-1 gene to be regulated by APP. In primary cultures of cortical neurons, APP significantly down regulated EGR-1 expression at both mRNA and protein levels in a γ-secretase independent manner. The intracellular domain of APP did not interact with EGR-1 gene promoter, but enrichment of acetylated histone H4 at the EGR-1 promoter region was measured in APP-/- neurons, as well as in brain of APP-/- mice, in which increase in EGR-1 expression was also measured. These results argue for an important function of APP in the epigenetic regulation of EGR-1 gene transcription both in vitro and in vivo. In APP-/- mice, constitutive overexpression of EGR-1 in brain impaired epigenetic induction of this early transcriptional regulator during exposure to novelty. Altogether, these results indicate an important function of APP in the epigenetic regulation of the transcription of EGR-1, known to be important for memory formation. PMID:24066134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
Altered proliferation and networks in neural cells derived from idiopathic autistic individuals.
Marchetto, Maria C; Belinson, Haim; Tian, Yuan; Freitas, Beatriz C; Fu, Chen; Vadodaria, Krishna; Beltrao-Braga, Patricia; Trujillo, Cleber A; Mendes, Ana P D; Padmanabhan, Krishnan; Nunez, Yanelli; Ou, Jing; Ghosh, Himanish; Wright, Rebecca; Brennand, Kristen; Pierce, Karen; Eichenfield, Lawrence; Pramparo, Tiziano; Eyler, Lisa; Barnes, Cynthia C; Courchesne, Eric; Geschwind, Daniel H; Gage, Fred H; Wynshaw-Boris, Anthony; Muotri, Alysson R
2017-06-01
Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.
Mapping of Human FOXP2 Enhancers Reveals Complex Regulation.
Becker, Martin; Devanna, Paolo; Fisher, Simon E; Vernes, Sonja C
2018-01-01
Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators - FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2 . Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders.
Mapping of Human FOXP2 Enhancers Reveals Complex Regulation
Becker, Martin; Devanna, Paolo; Fisher, Simon E.; Vernes, Sonja C.
2018-01-01
Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators – FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2. Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders. PMID:29515369
Li, Yang I; Sanchez-Pulido, Luis; Haerty, Wilfried; Ponting, Chris P
2015-01-01
Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length. The paucity of micro-exons (≤ 51 nt) suggests that their recognition and correct processing by the splicing machinery present greater challenges than for longer exons. Yet, because thousands of human genes harbor processed micro-exons, specialized mechanisms may be in place to promote their splicing. Here, we survey deep genomic data sets to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions. More than 60% of annotated human micro-exons exhibit a high level of sequence conservation, an indicator of functionality. While most human micro-exons require splicing-enhancing genomic features to be processed, the splicing of hundreds of micro-exons is enhanced by the adjacent binding of splice factors in the introns of pre-messenger RNAs. Notably, splicing of a significant number of micro-exons was found to be facilitated by the binding of RBFOX proteins, which promote their inclusion in the brain, muscle, and heart. Our analyses suggest that accurate regulation of micro-exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein-protein interactions. © 2015 Li et al.; Published by Cold Spring Harbor Laboratory Press.
Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.
Fryer, J P; Oetting, W S; Brott, M J; King, R A
2001-11-01
We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.
Modeling the functional genomics of autism using human neurons.
Konopka, G; Wexler, E; Rosen, E; Mukamel, Z; Osborn, G E; Chen, L; Lu, D; Gao, F; Gao, K; Lowe, J K; Geschwind, D H
2012-02-01
Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-01-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230
Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism
Jiang, Xi; Hu, Haiyang; Guijarro, Patricia; Mitchell, Amanda; Ely, John J.; Sherwood, Chet C.; Hof, Patrick R.; Qiu, Zilong; Pääbo, Svante; Akbarian, Schahram; Khaitovich, Philipp
2016-01-01
Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans. PMID:27685936
Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia.
Cox-Limpens, Kimberly E M; Vles, Johan S H; LA van den Hove, Daniel; Zimmermann, Luc J I; Gavilanes, Antonio W D
2014-05-29
Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates.Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection.
Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia
2014-01-01
Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection. PMID:24885038
Zhu, Hu; Urban, Daniel J.; Blashka, Jared; McPheeters, Matthew T.; Kroeze, Wesley K.; Mieczkowski, Piotr; Overholser, James C.; Jurjus, George J.; Dieter, Lesa; Mahajan, Gouri J.; Rajkowska, Grazyna; Wang, Zefeng; Sullivan, Patrick F.; Stockmeier, Craig A.; Roth, Bryan L.
2012-01-01
A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain. PMID:22912834
Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.
Lubin, Farah D
2011-07-01
Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. Copyright © 2011 Elsevier Inc. All rights reserved.
Belinson, H; Nakatani, J; Babineau, BA; Birnbaum, RY; Ellegood, J; Bershteyn, M; McEvilly, RJ; Long, JM; Willert, K; Klein, OD; Ahituv, N; Lerch, JP; Rosenfeld, GM; Wynshaw-Boris, A
2015-01-01
Social interaction is a fundamental behavior in all animal species, but the developmental timing of the social neural circuit formation and the cellular and molecular mechanisms governing its formation are poorly understood. We generated a mouse model with mutations in two Dishevelled genes, Dvl1 and Dvl3, that displays adult social and repetitive behavioral abnormalities associated with transient embryonic brain enlargement during deep layer cortical neuron formation. These phenotypes were mediated by the embryonic expansion of basal neural progenitor cells (NPCs) via deregulation of a β-catenin/Brn2/Tbr2 transcriptional cascade. Transient pharmacological activation of the canonical Wnt pathway during this period of early corticogenesis rescued the β-catenin/Brn2/Tbr2 transcriptional cascade and the embryonic brain phenotypes. Remarkably, this embryonic treatment prevented adult behavioral deficits and partially rescued abnormal brain structure in Dvl mutant mice. Our findings define a mechanism that links fetal brain development and adult behavior, demonstrating a fetal origin for social and repetitive behavior deficits seen in disorders such as autism. PMID:26830142
Belinson, H; Nakatani, J; Babineau, B A; Birnbaum, R Y; Ellegood, J; Bershteyn, M; McEvilly, R J; Long, J M; Willert, K; Klein, O D; Ahituv, N; Lerch, J P; Rosenfeld, M G; Wynshaw-Boris, A
2016-10-01
Social interaction is a fundamental behavior in all animal species, but the developmental timing of the social neural circuit formation and the cellular and molecular mechanisms governing its formation are poorly understood. We generated a mouse model with mutations in two Disheveled genes, Dvl1 and Dvl3, that displays adult social and repetitive behavioral abnormalities associated with transient embryonic brain enlargement during deep layer cortical neuron formation. These phenotypes were mediated by the embryonic expansion of basal neural progenitor cells (NPCs) via deregulation of a β-catenin/Brn2/Tbr2 transcriptional cascade. Transient pharmacological activation of the canonical Wnt pathway during this period of early corticogenesis rescued the β-catenin/Brn2/Tbr2 transcriptional cascade and the embryonic brain phenotypes. Remarkably, this embryonic treatment prevented adult behavioral deficits and partially rescued abnormal brain structure in Dvl mutant mice. Our findings define a mechanism that links fetal brain development and adult behavior, demonstrating a fetal origin for social and repetitive behavior deficits seen in disorders such as autism.
Yin Yang 1 Is a Critical Repressor of Matrix Metalloproteinase-9 Expression in Brain Neurons*
Rylski, Marcin; Amborska, Renata; Zybura, Katarzyna; Mioduszewska, Barbara; Michaluk, Piotr; Jaworski, Jacek; Kaczmarek, Leszek
2008-01-01
Membrane depolarization controls long lasting adaptive neuronal changes in brain physiology and pathology. Such responses are believed to be gene expression-dependent. Notably, however, only a couple of gene repressors active in nondepolarized neurons have been described. In this study, we show that in the unstimulated rat hippocampus in vivo, as well as in the nondepolarized brain neurons in primary culture, the transcriptional regulator Yin Yang 1 (YY1) is bound to the proximal Mmp-9 promoter and strongly represses Mmp-9 transcription. Furthermore, we demonstrate that monoubiquitinated and CtBP1 (C-terminal binding protein 1)-bound YY1 regulates Mmp-9 mRNA synthesis in rat brain neurons controlling its transcription apparently via HDAC3-dependent histone deacetylation. In conclusion, our data suggest that YY1 exerts, via epigenetic mechanisms, a control over neuronal expression of MMP-9. Because MMP-9 has recently been shown to play a pivotal role in physiological and pathological neuronal plasticity, YY1 may be implicated in these phenomena as well. PMID:18940814
Mayer-Jaekel, R E; Baumgartner, S; Bilbe, G; Ohkura, H; Glover, D M; Hemmings, B A
1992-01-01
cDNA clones encoding the catalytic subunit and the 65-kDa regulatory subunit of protein phosphatase 2A (PR65) from Drosophila melanogaster have been isolated by homology screening with the corresponding human cDNAs. The Drosophila clones were used to analyze the spatial and temporal expression of the transcripts encoding these two proteins. The Drosophila PR65 cDNA clones contained an open reading frame of 1773 nucleotides encoding a protein of 65.5 kDa. The predicted amino acid sequence showed 75 and 71% identity to the human PR65 alpha and beta isoforms, respectively. As previously reported for the mammalian PR65 isoforms, Drosophila PR65 is composed of 15 imperfect repeating units of approximately 39 amino acids. The residues contributing to this repeat structure show also the highest sequence conservation between species, indicating a functional importance for these repeats. The gene encoding Drosophila PR65 was located at 29B1,2 on the second chromosome. A major transcript of 2.8 kilobase (kb) encoding the PR65 subunit and two transcripts of 1.6 and 2.5 kb encoding the catalytic subunit could be detected throughout Drosophila development. All of these mRNAs were most abundant during early embryogenesis and were expressed at lower levels in larvae and adult flies. In situ hybridization of different developmental stages showed a colocalization of the PR65 and catalytic subunit transcripts. The mRNA expression is high in the nurse cells and oocytes, consistent with a high equally distributed expression in early embryos. In later embryonal development, the expression remains high in the nervous system and the gonads but the overall transcript levels decrease. In third instar larvae, high levels of mRNA could be observed in brain, imaginal discs, and in salivary glands. These results indicate that protein phosphatase 2A transcript levels change during development in a tissue and in a time-specific manner. Images PMID:1320961
The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor.
Aaron, Phylicia A; Jamklang, Mantana; Uhrig, John P; Gelli, Angie
2018-03-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningitis most commonly in populations with impaired immunity. Here, we resolved the transcriptome of the human brain endothelium challenged with C. neoformans to establish whether C. neoformans invades the CNS by co-opting particular signalling pathways as a means to promote its own entry. Among the 5 major pathways targeted by C. neoformans, the EPH-EphrinA1 (EphA2) tyrosine kinase receptor-signalling pathway was examined further. Silencing the EphA2 receptor transcript in a human brain endothelial cell line or blocking EphA2 activity with an antibody or chemical inhibitor prevented transmigration of C. neoformans in an in vitro model of the blood-brain barrier (BBB). In contrast, treating brain endothelial cells with an EphA2 chemical agonist or an EphA2 ligand promoted greater migration of fungal cells across the BBB. C. neoformans activated the EPH-tyrosine kinase pathway through a CD44-dependent phosphorylation of EphA2, promoting clustering and internalisation of EphA2 receptors. Moreover, HEK293T cells expressing EphA2 revealed an association between EphA2 and C. neoformans that boosted internalisation of C. neoformans. Collectively, the results suggest that C. neoformans promotes EphA2 activity via CD44, and this in turn creates a permeable barrier that facilitates the migration of C. neoformans across the BBB. © 2017 John Wiley & Sons Ltd.
Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways
Krasnova, Irina N.; Justinova, Zuzana; Cadet, Jean Lud
2017-01-01
Rationale and objectives Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcriptional and immune responses in the brain. Methods We used the rat model of METH self-administration with extended access (15 hours/day for 8 consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 hours – 1 month after cessation of drug exposure. Results Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and post-mortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in CREB signaling pathway and in the activation of neuroinflammatory response in the brain. Conclusion These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients. PMID:26873080
Aruna, Adimoolam; Nagarajan, Ganesan; Chang, Ching-Fong
2015-01-15
To analyze and compare the stress and osmoregulatory hormones and receptors in pituitary during acute salinity changes, the expression patterns of corticotropin releasing hormone (crh) in hypothalamus, prolactin (prl) releasing peptide (pRrp) in telencephalon and diencephalon, glucocorticoid receptors 2 (gr2), and mineralocorticoid receptor (mr), crh-r, pro-opiomelanocorticotropin (pomc), pRrp, prl, dopamine 2 receptor (d2-r), growth hormone (gh), gh-receptor (gh-r) and insulin-like growth hormone (igf-1) transcripts in pituitary were characterized in euryhaline tilapia. The results indicate that the crh transcripts increased in the hypothalamus and rostral pars distalis of the pituitary after the transfer of fish to SW. Similarly, the pRrp transcripts were more abundant in SW acclimated tilapia forebrain and hypothalamus. The crh-r, gr2 and mr transcripts were more expressed in rostral pars distalis and pars intermedia of pituitary at SW than FW tilapia. The data indicate that the SW acclimation stimulates these transcripts in the specific regions of the brain and pituitary which may be related to the activation of the hypothalamic-pituitary-interrenal (HPI)-axis. The results of dual in situ hybridization reveal that the transcripts of crh-r, gr2 and mr with pomc are highly co-localized in corticotrophs of pituitary. Furthermore, we demonstrate high expression of pRrp in the brain and low expression of pRrp and prl transcripts in the pituitary of SW fish. No crh-r and corticosteroid receptors were co-localized with prl transcripts in the pituitary. The gh-r and igf-1 mRNA levels were significantly increased in SW acclimated tilapia pituitary whereas there was no difference in the gh mRNA levels. The data suggest that the locally produced pRrp and d2-r may control and regulate the expression of prl mRNA in pituitary. Therefore, the dual roles of pRrp are involved in the stress (via brain-pituitary) and osmoregulatory (via pituitary) pathways in tilapia exposed to acute salinity changes. Copyright © 2014 Elsevier Inc. All rights reserved.
Pasieka, Tracy Jo; Cilloniz, Cristian; Carter, Victoria S; Rosato, Pamela; Katze, Michael G; Leib, David A
2011-12-01
Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results indicated an essential role for normal Stat1-dependent signaling in mediating a nonpathological immune response to viral CNS infection.
Prini, Pamela; Penna, Federica; Sciuccati, Emanuele; Alberio, Tiziana; Rubino, Tiziana
2017-10-04
Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ⁸-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ⁸-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ⁸-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ⁸-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ⁸-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ⁸-THC adverse effects.
Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways.
Higgins, Gerald A; Allyn-Feuer, Ari; Georgoff, Patrick; Nikolian, Vahagn; Alam, Hasan B; Athey, Brian D
2017-07-01
The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS. Copyright © 2017. Published by Elsevier Inc.
Assi, Hikmat H; Paran, Chris; VanderVeen, Nathan; Savakus, Jonathan; Doherty, Robert; Petruzzella, Emanuele; Hoeschele, James D; Appelman, Henry; Raptis, Leda; Mikkelsen, Tom; Lowenstein, Pedro R; Castro, Maria G
2014-06-01
Signal transducer and activator of transcription 3 (STAT3) has been implicated as a hub for multiple oncogenic pathways. The constitutive activation of STAT3 is present in several cancers, including gliomas (GBMs), and is associated with poor therapeutic responses. Phosphorylation of STAT3 triggers its dimerization and nuclear transport, where it promotes the transcription of genes that stimulate tumor growth. In light of this role, inhibitors of the STAT3 pathway are attractive therapeutic targets for cancer. To this end, we evaluated the STAT3-inhibitory activities of three compounds (CPA-7 [trichloronitritodiammineplatinum(IV)], WP1066 [(S,E)-3-(6-bromopyridin-2-yl)-2-cyano-N-(1-phenylethyl)acrylamide, C17H14BrN3O], and ML116 [4-benzyl-1-{thieno[2,3-d]pyrimidin-4-yl}piperidine, C18H19N3S]) in cultured rodent and human glioma cells, including GBM cancer stem cells. Our results demonstrate a potent induction of growth arrest in GBM cells after drug treatment with a concomitant induction of cell death. Although these compounds were effective at inhibiting STAT3 phosphorylation, they also displayed variable dose-dependent inhibition of STAT1, STAT5, and nuclear factor κ light-chain enhancer of activated B cells. The therapeutic efficacy of these compounds was further evaluated in peripheral and intracranial mouse tumor models. Whereas CPA-7 elicited regression of peripheral tumors, both melanoma and GBM, its efficacy was not evident when the tumors were implanted within the brain. Our data suggest poor permeability of this compound to tumors located within the central nervous system. WP1066 and ML116 exhibited poor in vivo efficacy. In summary, CPA-7 constitutes a powerful anticancer agent in models of peripheral solid cancers. Our data strongly support further development of CPA-7-derived compounds with increased permeability to enhance their efficacy in primary and metastatic brain tumors.
Nerve growth factor metabolic dysfunction in Down’s syndrome brains
Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge
2014-01-01
Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down’s syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer’s disease and Down’s syndrome. PMID:24519975
Baumgart, Mario; Groth, Marco; Priebe, Steffen; Savino, Aurora; Testa, Giovanna; Dix, Andreas; Ripa, Roberto; Spallotta, Francesco; Gaetano, Carlo; Ori, Michela; Terzibasi Tozzini, Eva; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro
2014-12-01
The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled five different time points to characterize whole-genome transcript regulation during brain aging of N. furzeri. Comparison with human datasets revealed conserved up-regulation of ribosome, lysosome, and complement activation and conserved down-regulation of synapse, mitochondrion, proteasome, and spliceosome. Down-regulated genes differ in their temporal profiles: neurogenesis and extracellular matrix genes showed rapid decay, synaptic and axonal genes a progressive decay. A substantial proportion of differentially expressed genes (~40%) showed inversion of their temporal profiles in the last time point: spliceosome and proteasome showed initial down-regulation and stress-response genes initial up-regulation. Extensive regulation was detected for chromatin remodelers of the DNMT and CBX families as well as members of the polycomb complex and was mirrored by an up-regulation of the H3K27me3 epigenetic mark. Network analysis showed extensive coregulation of cell cycle/DNA synthesis genes with the uncharacterized zinc-finger protein ZNF367 as central hub. In situ hybridization showed that ZNF367 is expressed in neuronal stem cell niches of both embryonic zebrafish and adult N. furzeri. Other genes down-regulated with age, not previously associated with adult neurogenesis and with similar patterns of expression are AGR2, DNMT3A, KRCP, MEX3A, SCML4, and CBX1. CBX7, on the other hand, was up-regulated with age. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.
Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina
2017-08-01
Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.
Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E
2003-11-01
Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.
Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity
Choi, Joungil; Chandrasekaran, Krish; Demarest, Tyler G; Kristian, Tibor; Xu, Su; Vijaykumar, Kadambari; Dsouza, Kevin Geoffrey; Qi, Nathan R; Yarowsky, Paul J; Gallipoli, Rao; Koch, Lauren G; Fiskum, Gary M; Britton, Steven L; Russell, James W
2014-01-01
Objectives Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human “impaired glucose tolerance” or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. Methods Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. Results The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD+-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. Interpretation These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction. PMID:25356430
Neurexin 1 (NRXN1) Splice Isoform Expression During Human Neocortical Development and Aging
Jenkins, Aaron K.; Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Kleinman, Joel E.; Law, Amanda J.
2015-01-01
Neurexin 1 (NRXN1), a presynaptic adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including, autism, intellectual disability, and schizophrenia. To gain insight into NRXN1’s involvement in human cortical development we used quantitative real time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms NRXN1-α and NRXN1-β in prefrontal cortex from fetal stages to aging. Additionally, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison to non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, dramatically increasing with gestational age. In the postnatal DLPFC, expression levels were negatively correlated with age, peaking at birth until approximately 3 years of age, after which levels declined dramatically to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared to non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders. PMID:26216298
Isolating dividing neural and brain tumour cells for gene expression profiling.
Endaya, Berwini; Cavanagh, Brenton; Alowaidi, Faisal; Walker, Tom; de Pennington, Nicholas; Ng, Jin-Ming A; Lam, Paula Y P; Mackay-Sim, Alan; Neuzil, Jiri; Meedeniya, Adrian C B
2016-01-15
The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation. Copyright © 2015 Elsevier B.V. All rights reserved.
Saaristo, Minna; Wong, Bob B M; Mincarelli, Laura; Craig, Allison; Johnstone, Christopher P; Allinson, Mayumi; Lindström, Kai; Craft, John A
2017-05-01
Waterways are increasingly being contaminated by chemical compounds that can disrupt the endocrinology of organisms. One such compound is 17α-ethinyl estradiol (EE2), a synthetic estrogen used in the contraceptive pill. Despite considerable research interest in the effects of EE2 on reproduction and gene expression, surprisingly, only a few studies have capitalised on technologies, such as next-generation sequencing (NGS), to uncover the molecular pathways related to EE2 exposure. Accordingly, using high-throughput sequencing technologies, the aim of our study was to explore the effects of EE2 on brain transcriptome in wild-type male and female guppy (Poecilia reticulata). We conducted two sets of experiments, where fish were exposed to EE2 (measured concentrations: 8ng/L and 38ng/L) in a flow-through system for 21days. The effects on the brain transcriptome on both males and females were assessed using Illumina sequencing (MiSeq and HiSeq) platform followed by bioinformatics analysis (edgeR, DESeq2). Here, we report that exposure to EE2 caused both up- and downregulation of specific transcript abundances, and affected transcript abundance in a sex-specific manner. Specifically, we found 773 transcripts, of which 60 were male-specific, 61 female-specific and 285 treatment-specific. EE2 affected expression of 165 transcripts in males, with 88 downregulated and 77 upregulated, while in females, 120 transcripts were affected with 62 downregulated and 58 upregulated. Finally, RT-qPCR validation demonstrated that expression of transcripts related to transposable elements, neuroserpin and heat shock protein were significantly affected by EE2-exposure. Our study is the first to report brain transcriptome libraries for guppies exposed to EE2. Not only does our study provide a valuable resource, it offers insights into the mechanisms underlying the feminizing effects on the brains of organisms exposed to environmentally realistic concentrations of EE2. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.
We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, moleculemore » transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.« less
Turgeon, B; Saba-El-Leil, M K; Meloche, S
2000-02-15
MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.
Ikeda, Tatsuro; Satou, Yutaka
2017-01-01
In embryos of an invertebrate chordate, Ciona intestinalis, two transcription factors, Foxa.a and Zic-r.b, are required for specification of the brain and the notochord, which are derived from distinct cell lineages. In the brain lineage, Foxa.a and Zic-r.b are expressed with no temporal overlap. In the notochord lineage, Foxa.a and Zic-r.b are expressed simultaneously. In the present study, we found that the temporally non-overlapping expression of Foxa.a and Zic-r.b in the brain lineage was regulated by three repressors: Prdm1-r.a (formerly called BZ1), Prdm1-r.b (BZ2) and Hes.a. In morphant embryos of these three repressor genes, Foxa.a expression was not terminated at the normal time, and Zic-r.b was precociously expressed. Consequently, Foxa.a and Zic-r.b were expressed simultaneously, which led to ectopic activation of Brachyury and its downstream pathways for notochord differentiation. Thus, temporal controls by transcriptional repressors are essential for specification of the two distinct fates of brain and notochord by Foxa.a and Zic-r.b Such a mechanism might enable the repeated use of a limited repertoire of transcription factors in developmental gene regulatory networks. © 2017. Published by The Company of Biologists Ltd.
Kumar, J. P.
2009-01-01
The sine oculis homeobox (SIX) protein family is a group of evolutionarily conserved transcription factors that are found in diverse organisms that range from flatworms to humans. These factors are expressed within, and play pivotal developmental roles in, cell populations that give rise to the head, retina, ear, nose, brain, kidney, muscle and gonads. Mutations within the fly and mammalian versions of these genes have adverse consequences on the development of these organs/tissues. Several SIX proteins have been shown to directly influence the cell cycle and are present at elevated levels during tumorigenesis and within several cancers. This review aims to highlight aspects of (1) the evolutionary history of the SIX family; (2) the structural differences and similarities amongst the different SIX proteins; (3) the role that these genes play in retinal development; and (4) the influence that these proteins have on cell proliferation and growth. PMID:18989625
Mushtaq, Ameeq Ul; Lee, Yejin; Hwang, Eunha; Bang, Jeong Kyu; Hong, Eunmi; Byun, Youngjoo; Song, Ji-Joon; Jeon, Young Ho
2018-01-01
MeCP2 is a chromatin associated protein which is highly expressed in brain and relevant with Rett syndrome (RTT). There are AT-hook motifs in MeCP2 which can bind with AT-rich DNA, suggesting a role in chromatin binding. Here, we report the identification and characterization of another AT-rich DNA binding motif (residues 295 to 313) from the C-terminal transcription repression domain of MeCP2 by nuclear magnetic resonance (NMR) and isothermal calorimetry (ITC). This motif shows a micromolar affinity to AT-rich DNA, and it binds to the minor groove of DNA like AT-hook motifs. Together with the previous studies, our results provide an insight into a critical role of this motif in chromatin structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Chi Chiu; Kadota, Mitsutaka; Nishigaki, Ryuichi; Kazuki, Yasuhiro; Shirayoshi, Yasuaki; Rogers, Michael Scott; Gojobori, Takashi; Ikeo, Kazuho; Oshimura, Mitsuo
2004-02-06
Defects in neurogenesis and neuronal differentiation in the fetal brain of Down syndrome (DS) patients lead to the apparent neuropathological abnormalities and contribute to the phenotypic characters of mental retardation, and premature development of Alzheimer's disease, those being the most common phenotype in DS. In order to understand the molecular mechanism underlying the cause of phenotypic abnormalities in the DS brain, we have utilized an in vitro model of TT2F mouse embryonic stem cells containing a single human chromosome 21 (hChr21) to study neuron development and neuronal differentiation by microarray containing 15K developmentally expressed cDNAs. Defective neuronal differentiation in the presence of extra hChr21 manifested primarily the post-transcriptional and translational modification, such as Mrpl10, SNAPC3, Srprb, SF3a60 in the early neuronal stem cell stage, and Mrps18a, Eef1g, and Ubce8 in the late differentiated stage. Hierarchical clustering patterned specific expression of hChr21 gene dosage effects on neuron outgrowth, migration, and differentiation, such as Syngr2, Dncic2, Eif3sf, and Peg3.
Low-grade inflammation disrupts structural plasticity in the human brain.
Szabó, C; Kelemen, O; Kéri, S
2014-09-05
Increased low-grade inflammation is thought to be associated with several neuropsychiatric disorders characterized by decreased neuronal plasticity. The purpose of the present study was to investigate the relationship between structural changes in the human brain during cognitive training and the intensity of low-grade peripheral inflammation in healthy individuals (n=56). A two-month training (30 min/day) with a platformer video game resulted in a significantly increased volume of the right hippocampal formation. The number of stressful life events experienced during the past year was associated with less pronounced enlargement of the hippocampus. However, the main predictor of hippocampal volume expansion was the relative peripheral expression of Nuclear Factor-κB (NF-κB), a transcription factor playing a central role in the effect of pro-inflammatory cytokines. Interleukin-6 (IL-6) and C-reactive protein levels were not related to hippocampal plasticity when NF-κB was taken into consideration. These results suggest that more intensive peripheral inflammation is associated with weaker neuronal plasticity during cognitive training. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Vialou, Vincent; Heller, Elizabeth A; Yieh, Lynn; LaBonté, Benoit; Peña, Catherine J; Shen, Li; Wittenberg, Gayle M; Nestler, Eric J
2017-02-15
Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Najera, Julia A; Bustamante, Eduardo A; Bortell, Nikki; Morsey, Brenda; Fox, Howard S; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi
2016-04-23
Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.
Signals that regulate the oncogenic fate of neural stem cells and progenitors
Swartling, Fredrik J.; Bolin, Sara; Phillips, Joanna J.; Persson, Anders I.
2013-01-01
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors. PMID:23376224
Peripheral inflammation is associated with remote global gene expression changes in the brain
2014-01-01
Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is indicative of peripherally triggered, interferon-mediated CNS inflammation. Similar models of sterile inflammation and lipoteichoic-acid-induced systemic inflammation did not share the capacity to trigger ISG induction in the brain. Conclusions These data highlight ISG induction in the brain as being a consequence of a TLR-induced type I interferon response. As considerable evidence links type I interferons to psychiatric disorders, we hypothesize that interferon production in the brain could represent an important mechanism, linking peripheral TLR-induced inflammation with behavioural changes. PMID:24708794
Repunte-Canonigo, Vez; Lutjens, Robert; van der Stap, Lena D; Sanna, Pietro Paolo
2007-03-23
Intermittent models of alcohol exposure that mimic human patterns of alcohol consumption produce profound physiological and biochemical changes and induce rapid increases in alcohol self-administration. We used high-density oligonucleotide microarrays to investigate gene expression changes during chronic intermittent alcohol exposure in three brain regions that receive mesocorticolimbic dopaminergic projections and that are believed to be involved in alcohol's reinforcing actions: the medial prefrontal cortex, the nucleus accumbens and the amygdala. An independent replication of the experiment was used for RT-PCR validation of the microarray results. The protein kinase A inhibitor alpha (PKI-alpha, Pkia), a member of the endogenous PKI family implicated in reducing nuclear PKA activity, was found to be increased in all three regions tested. Conversely, we observed a downregulation of the expression of several PKA-regulated transcripts in one or more of the brain regions studied, including the activity and neurotransmitter-regulated early gene (Ania) - 1, -3, -7, -8, the transcription factors Egr1 and NGFI-B (Nr4a1) and the neuropeptide NPY. Reduced expression of PKA-regulated genes in mesocorticolimbic projection areas may have motivational significance in the rapid increase in alcohol self-administration induced by intermittent alcohol exposure.
Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana
2017-01-01
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421
Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo
2017-01-01
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.
Paterson, Clare; Wang, Yanhong; Kleinman, Joel E.; Law, Amanda J.
2015-01-01
OBJECTIVE Neuregulin 1 (NRG1) is a multifunctional neurotrophin and a critical mediator of neurodevelopment and risk for schizophrenia. NRG1 undergoes extensive alternative splicing, and association of brain NRG1-IV isoform expression with the schizophrenia-risk polymorphism, rs6994992, is a potential molecular mechanism of risk. Novel splice variants of NRG1-IV (NRG1-IVNV), with predicted unique signaling capabilities, have been cloned in fetal brain. Because the developmental expression and genetic regulation of NRG1-IVNV in human brain and relationship to schizophrenia is unknown, the authors investigated the temporal dynamics of NRG1-IVNV transcription, compared to the major NRG1 isoforms (types I-IV), across human prenatal and postnatal prefrontal cortical development and examined the association of rs6994992 with NRG1-IVNV expression. METHOD NRG1, types I-IV and NRG1-IVNV isoform expression was evaluated using quantitative real-time PCR in prefrontal cortex during human fetal brain development (14-39 weeks gestation: N=41) and postnatally through aging (age range 0-83 years: N=195). The association of rs6994992 genotype with NRG1-IVNV expression was determined. In-vitro assays were performed to determine the subcellular distribution and proteolytic processing of NRG1-IVNV isoforms. RESULTS Expression of NRG1, types I, II, III was temporally regulated during human prenatal and postnatal neocortical development and the trajectory of NRG1-IVNV was unique, being expressed from 16 weeks gestation until 3 years of age, after which it was undetectable. NRG1-IVNVs expression was associated with rs6994992 genotype, whereby homozygosity for the schizophrenia-risk allele (T) conferred lower cortical NRG1-IVNV levels. Finally, in-vitro cellular assays demonstrate that NRG1-IVNV is a novel nuclear enriched, truncated NRG1 protein that is resistant to proteolytic processing. CONCLUSION This study provides the first quantitative map of NRG1 isoform expression during human neocortical development and aging and identifies a potential mechanism of early developmental risk for schizophrenia at the NRG1 locus, involving a novel class of NRG1 proteins. PMID:24935406
The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation.
Ye, Qiao; Wu, Yonghong; Gao, Yan; Li, Zhihui; Li, Weiguang; Zhang, Chenggang
2016-05-01
The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy‑specific protein long‑chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time‑dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals.
The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation
YE, QIAO; WU, YONGHONG; GAO, YAN; LI, ZHIHUI; LI, WEIGUANG; ZHANG, CHENGGANG
2016-01-01
The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy-specific protein long-chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time-dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals. PMID:26986971
Estruch, Sara B; Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E
2016-02-12
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and identified members of the PIAS family as novel FOXP2 interactors. PIAS proteins mediate post-translational modification of a range of target proteins with small ubiquitin-like modifiers (SUMOs). We found that FOXP2 can be modified with all three human SUMO proteins and that PIAS1 promotes this process. An aetiological FOXP2 mutation found in a family with speech and language disorder markedly reduced FOXP2 SUMOylation. We demonstrate that FOXP2 is SUMOylated at a single major site, which is conserved in all FOXP2 vertebrate orthologues and in the paralogues FOXP1 and FOXP4. Abolishing this site did not lead to detectable changes in FOXP2 subcellular localization, stability, dimerization or transcriptional repression in cellular assays, but the conservation of this site suggests a potential role for SUMOylation in regulating FOXP2 activity in vivo.
Estruch, Sara B.; Graham, Sarah A.; Deriziotis, Pelagia; Fisher, Simon E.
2016-01-01
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and identified members of the PIAS family as novel FOXP2 interactors. PIAS proteins mediate post-translational modification of a range of target proteins with small ubiquitin-like modifiers (SUMOs). We found that FOXP2 can be modified with all three human SUMO proteins and that PIAS1 promotes this process. An aetiological FOXP2 mutation found in a family with speech and language disorder markedly reduced FOXP2 SUMOylation. We demonstrate that FOXP2 is SUMOylated at a single major site, which is conserved in all FOXP2 vertebrate orthologues and in the paralogues FOXP1 and FOXP4. Abolishing this site did not lead to detectable changes in FOXP2 subcellular localization, stability, dimerization or transcriptional repression in cellular assays, but the conservation of this site suggests a potential role for SUMOylation in regulating FOXP2 activity in vivo. PMID:26867680
Expression regulation by a methyl-CpG binding domain in an E. coli based, cell-free TX-TL system
NASA Astrophysics Data System (ADS)
Schenkelberger, M.; Shanak, S.; Finkler, M.; Worst, E. G.; Noireaux, V.; Helms, V.; Ott, A.
2017-04-01
Cytosine methylation plays an important role in the epigenetic regulation of eukaryotic gene expression. The methyl-CpG binding domain (MBD) is common to a family of eukaryotic transcriptional regulators. How MBD, a stretch of about 80 amino acids, recognizes CpGs in a methylation dependent manner, and as a function of sequence, is only partly understood. Here we show, using an Escherichia coli cell-free expression system, that MBD from the human transcriptional regulator MeCP2 performs as a specific, methylation-dependent repressor in conjunction with the BDNF (brain-derived neurotrophic factor) promoter sequence. Mutation of either base flanking the central CpG pair changes the expression level of the target gene. However, the relative degree of repression as a function of MBD concentration remains unaltered. Molecular dynamics simulations that address the DNA B fiber ratio and the handedness reveal cooperative transitions in the promoter DNA upon MBD binding that correlate well with our experimental observations. We suggest that not only steric hindrance, but also conformational changes of the BDNF promoter as a result of MBD binding are required for MBD to act as a specific inhibitory element. Our work demonstrates that the prokaryotic transcription machinery can reproduce features of epigenetic mammalian transcriptional regulatory elements.
Huggins, P; Johnson, CK; Schoergendorfer, A; Putta, S; Bathke, AC; Stromberg, AJ; Voss, SR
2011-01-01
The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5,884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p < 0.05, fold change > 1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. PMID:21457787
Huggins, P; Johnson, C K; Schoergendorfer, A; Putta, S; Bathke, A C; Stromberg, A J; Voss, S R
2012-01-01
The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p<0.05, fold change >1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. Copyright © 2011 Elsevier Inc. All rights reserved.
NRF2-regulation in brain health and disease: implication of cerebral inflammation
Sandberg, Mats; Patil, Jaspal; D’Angelo, Barbara; Weber, Stephen G; Mallard, Carina
2014-01-01
The nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulator of endogenous inducible defense systems in the body. Under physiological conditions NRF2 is mainly located in the cytoplasm. However, in response to oxidative stress, NRF2 translocates to the nucleus and binds to specific DNA sites termed “anti-oxidant response elements” or “electrophile response elements” to initiate transcription of cytoprotective genes. Acute oxidative stress to the brain, such as stroke and traumatic brain injury is increased in animals that are deficient in NRF2. Insufficient NRF2 activation in humans has been linked to chronic diseases such as Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis. New findings have also linked activation of the NRF2 system to anti-inflammatory effects via interactions with NF-κB. Here we review literature on cellular mechanisms of NRF2 regulation, how to maintain and restore NRF2 function and the relationship between NRF2 regulation and brain damage. We bring forward the hypothesis that inflammation via prolonged activation of key kinases (p38 and GSK-3β) and activation of histone deacetylases gives rise to dysregulation of the NRF2 system in the brain, which contributes to oxidative stress and injury. PMID:24262633
Diverse functions of 24(S)-hydroxycholesterol in the brain.
Noguchi, Noriko; Saito, Yoshiro; Urano, Yasuomi
2014-04-11
24(S)-hydroxycholesterol (24S-OHC) which is enzymatically produced in the brain plays important physiological roles in maintaining brain cholesterol homeostasis. We found that 24S-OHC at sub-lethal concentrations down-regulated amyloid precursor protein (APP) trafficking via enhancement of the complex formation of APP with up-regulated glucose-regulated protein 78, an endoplasmic reticulum chaperone. In accordance with this mechanism, 24S-OHC suppressed amyloid-β production in human neuroblastoma SH-SY5Y cells. Furthermore, 24S-OHC at sub-lethal concentrations induced adaptive responses via transcriptional activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against the forthcoming oxidative stress induced by 7-ketocholesterol. On the other hand, we found that high concentrations of 24S-OHC induced apoptosis in T-lymphoma Jurkat cells which endogenously expressed caspase-8, and induced necroptosis - a form of programmed necrosis - in neuronal SH-SY5Y cells which expressed no caspase-8. In this Article, we show the diverse functions of 24S-OHC and consider the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Hala, D
2017-03-21
The interconnected topology of transcriptional regulatory networks (TRNs) readily lends to mathematical (or in silico) representation and analysis as a stoichiometric matrix. Such a matrix can be 'solved' using the mathematical method of extreme pathway (ExPa) analysis, which identifies uniquely activated genes subject to transcription factor (TF) availability. In this manuscript, in silico multi-tissue TRN models of brain, liver and gonad were used to study reproductive endocrine developmental programming in zebrafish (Danio rerio) from 0.25h post fertilization (hpf; zygote) to 90 days post fertilization (dpf; adult life stage). First, properties of TRN models were studied by sequentially activating all genes in multi-tissue models. This analysis showed the brain to exhibit lowest proportion of co-regulated genes (19%) relative to liver (23%) and gonad (32%). This was surprising given that the brain comprised 75% and 25% more TFs than liver and gonad respectively. Such 'hierarchy' of co-regulatory capability (brain
Zhong, Jian-Bin; Li, Xie; Zhong, Si-Ming; Liu, Jiu-Di; Chen, Chi-Bang; Wu, Xiao-Yan
2017-09-27
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.
Ho, Beng-Choon; Epping, Eric; Wang, Kai; Andreasen, Nancy C; Librant, Amy; Wassink, Thomas H
2008-12-01
Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p
Borkowski, Julia; Li, Li; Steinmann, Ulrike; Quednau, Natascha; Stump-Guthier, Carolin; Weiss, Christel; Findeisen, Peter; Gretz, Norbert; Ishikawa, Hiroshi; Tenenbaum, Tobias; Schroten, Horst; Schwerk, Christian
2014-09-13
The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.
Yu-Taeger, Libo; Bonin, Michael; Stricker-Shaver, Janice; Riess, Olaf; Nguyen, Hoa Huu Phuc
2017-05-01
Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels. By defining the threshold of significance at p < 0.01, we found 1608 genes and 871 genes differentially expressed in both TG5 and TG9 rats when compared to the wild type littermates, respectively. We only chose the highly up-/down-regulated genes for further analysis by setting an additional threshold of 1.5 fold change. Comparing gene expression profiles of human HD brains and BACHD rats revealed a high concordance in both functional and IPA (Ingenuity Pathway Analysis) canonical pathways relevant to HD. In addition, we investigated the causes leading to gene expression changes at molecular and protein levels in BACHD rats including the involvement of polyQ-containing transcription factors TATA box-binding protein (TBP), Sp1 and CBP as well as the chromatin structure. We demonstrate that the BACHD rat model recapitulates the gene expression changes of the human disease supporting its role as a preclinical research animal model. We also show for the first time that TFIID complex formation is reduced, while soluble TBP is increased in an HD model. This finding suggests that mHTT is a competitor instead of a recruiter of polyQ-containing transcription factors in the transcription process in HD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ibarrola, N; Rodríguez-Peña, A
1997-03-28
To assess the role of thyroid hormone on myelin gene expression, we have studied the effect of hypothyroidism on the mRNA steady state levels for the major myelin protein genes: myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in different rat brain regions, during the first postnatal month. We found that hypothyroidism reduces the levels of every myelin protein transcript, with striking differences between the different brain regions. Thus, in the more caudal regions, the effect of hypothyroidism was extremely modest, being only evident at the earlier stages of myelination. In contrast, in the striatum and the cerebral cortex the important decrease in the myelin protein transcripts is maintained beyond the first postnatal month. Therefore, thyroid hormone modulates in a synchronous fashion the expression of the myelin genes and the length of its effect depends on the brain region. On the other hand, hyperthyroidism leads to an increase of the major myelin protein transcripts above control values. Finally, lack of thyroid hormone does not change the expression of the oligodendrocyte progenitor-specific gene, the platelet derived growth factor receptor alpha.
Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi
2005-05-01
The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.
Hammack, Sayamwong E.; Cheung, Joseph; Rhodes, Kimberly M.; Schutz, Kristin C.; Falls, William A.; Braas, Karen M.; May, Victor
2009-01-01
Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC1 receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC1 receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 day chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC1 receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC1 receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior. PMID:19181454
Decoding the non-coding genome: elucidating genetic risk outside the coding genome.
Barr, C L; Misener, V L
2016-01-01
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim
2013-03-21
ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.
Decoding the non-coding RNAs in Alzheimer's disease.
Schonrock, Nicole; Götz, Jürgen
2012-11-01
Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.
Pregnane X Receptor and P-glycoprotein: a connexion for Alzheimer's disease management.
Jain, Sumit; Rathod, Vijay; Prajapati, Rameshwar; Nandekar, Prajwal P; Sangamwar, Abhay T
2014-11-01
The translational failure between preclinical animal models and clinical outcome has alarmed us to search for a new strategy in the treatment of Alzheimer's disease (AD). Interlink between Pregnane X Receptor (PXR) and P-glycoprotein (Pgp) at the blood brain barrier (BBB) has raised hope toward a new disease modifying therapy in AD. Pgp is a major efflux transporter for beta amyloid (Aβ) at human BBB. A literature survey reveals diminished expression of Pgp transporter at the BBB in AD patients. Pregnane X Receptor is a major transcriptional regulator of Pgp. Restoration of Pgp at the BBB enhances the elimination of the Aβ from brain alongside and inhibits the apical to basolateral movement of Aβ from the circulatory blood. This review concentrates on in vitro, in vivo, and in silico advancements on the study of the PXR in context to Pgp and discusses the substrate and inhibitor specificity between PXR and Pgp.
Bai, Zhen-Zhong; Yang, Ying-Zhong; Jin, Guo-En; Ma, Lan; Ge, Ri-Li
2012-11-01
Neuroglobin (Ngb) is a respiratory protein that is preferentially expressed in brain of mouse and man. In this article, Tibetan antelope, living at altitude of 3 000-5 000 m for millions of years, was selected as the model of hypoxia-tolerant adaptation species. Using reverse transcription polymerase chain reaction (RT-PCR) and Western blot techniques, expression of Ngb gene was amplified and analyzed in antelope brain tissue. Our results showed that Ngb homology protein in Tibetan antelope was identified with more sequence similarity with cattle (96%), sheep (95%), and human (95%). We detected that there were some mutations occurred in the Open Reading Frame of Ngb in Tibetan antelope compared with sheep. Phylogenetic analysis of Ngb chain showed that it was closer to cattle than the others. This study suggests possible roles of central nervous system enriched Ngb in adaptation of Tibetan antelope to extremely high altitude.
Morais, Daniel Kumazawa; Cuadros-Orellana, Sara; Pais, Fabiano Sviatopolk-Mirsky; Medeiros, Julliane Dutra; Geraldo, Juliana Assis; Gilbert, Jack; Volpini, Angela Cristina; Fernandes, Gabriel Rocha
2016-01-01
Background In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. Methodology/Principal Findings Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. Conclusions/Significance We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy. PMID:27332714
Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J
2002-01-01
The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles. PMID:11882478
Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J
2002-03-01
The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles.
The hedgehog/Gli signaling paradigm in prostate cancer
Chen, Mengqian; Carkner, Richard; Buttyan, Ralph
2011-01-01
Hedgehog is a ligand-activated signaling pathway that regulates Gli-mediated transcription. Although most noted for its role as an embryonic morphogen, hyperactive hedgehog also causes human skin and brain malignancies. The hedgehog-related gene anomalies found in these tumors are rarely found in prostate cancer. Yet surveys of human prostate tumors show concordance of high expression of hedgehog ligands and Gli2 that correlate with the potential for metastasis and therapy-resistant behavior. Likewise, prostate cancer cell lines express hedgehog target genes, and their growth and survival is affected by hedgehog/Gli inhibitors. To date, the preponderance of data supports the idea that prostate tumors benefit from a paracrine hedgehog microenvironment similar to the developing prostate. Uncertainty remains as to whether hedgehog’s influence in prostate cancer also includes aspects of tumor cell autocrine-like signaling. The recent findings that Gli proteins interact with the androgen receptor and affect its transcriptional output have helped to identify a novel pathway through which hedgehog/Gli might affect prostate tumor behavior and raises questions as to whether hedgehog signaling in prostate cancer cells is suitably measured by the expression of Gli target genes alone. PMID:21776292
McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G
1987-01-01
We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903
Samal, Babru B; Waites, Cameron K; Almeida-Suhett, Camila; Li, Zheng; Marini, Ann M; Samal, Nihar R; Elkahloun, Abdel; Braga, Maria F M; Eiden, Lee E
2015-10-01
We have previously demonstrated that mild controlled cortical impact (mCCI) injury to rat cortex causes indirect, concussive injury to underlying hippocampus and other brain regions, providing a reproducible model for mild traumatic brain injury (mTBI) and its neurochemical, synaptic, and behavioral sequelae. Here, we extend a preliminary gene expression study of the hippocampus-specific events occurring after mCCI and identify 193 transcripts significantly upregulated, and 21 transcripts significantly downregulated, 24 h after mCCI. Fifty-three percent of genes altered by mCCI within 24 h of injury are predicted to be expressed only in the non-neuronal/glial cellular compartment, with only 13% predicted to be expressed only in neurons. The set of upregulated genes following mCCI was interrogated using Ingenuity Pathway Analysis (IPA) augmented with manual curation of the literature (190 transcripts accepted for analysis), revealing a core group of 15 first messengers, mostly inflammatory cytokines, predicted to account for >99% of the transcript upregulation occurring 24 h after mCCI. Convergent analysis of predicted transcription factors (TFs) regulating the mCCI target genes, carried out in IPA relative to the entire Affymetrix-curated transcriptome, revealed a high concordance with TFs regulated by the cohort of 15 cytokines/cytokine-like messengers independently accounting for upregulation of the mCCI transcript cohort. TFs predicted to regulate transcription of the 193-gene mCCI cohort also displayed a high degree of overlap with TFs predicted to regulate glia-, rather than neuron-specific genes in cortical tissue. We conclude that mCCI predominantly affects transcription of non-neuronal genes within the first 24 h after insult. This finding suggests that early non-neuronal events trigger later permanent neuronal changes after mTBI, and that early intervention after mTBI could potentially affect the neurochemical cascade leading to later reported synaptic and behavioral dysfunction.
Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior
ERIC Educational Resources Information Center
Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.
2015-01-01
The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…
NASA Technical Reports Server (NTRS)
Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.
2005-01-01
Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.
Zhu, Changqi C; Boone, Jason Q; Jensen, Philip A; Hanna, Scott; Podemski, Lynn; Locke, John; Doe, Chris Q; O'Connor, Michael B
2008-02-01
The Drosophila Activin-like ligands Activin-beta and Dawdle control several aspects of neuronal morphogenesis, including mushroom body remodeling, dorsal neuron morphogenesis and motoneuron axon guidance. Here we show that the same two ligands act redundantly through the Activin receptor Babo and its transcriptional mediator Smad2 (Smox), to regulate neuroblast numbers and proliferation rates in the developing larval brain. Blocking this pathway results in the development of larvae with small brains and aberrant photoreceptor axon targeting, and restoring babo function in neuroblasts rescued these mutant phenotypes. These results suggest that the Activin signaling pathway is required for producing the proper number of neurons to enable normal connection of incoming photoreceptor axons to their targets. Furthermore, as the Activin pathway plays a key role in regulating propagation of mouse and human embryonic stem cells, our observation that it also regulates neuroblast numbers and proliferation in Drosophila suggests that involvement of Activins in controlling stem cell propagation may be a common regulatory feature of this family of TGF-beta-type ligands.
Role of Low-Level Laser Therapy in Neurorehabilitation
Hashmi, Javad T.; Huang, Ying-Ying; Osmani, Bushra Z.; Sharma, Sulbha K.; Naeser, Margaret A.; Hamblin, Michael R.
2011-01-01
This year marks the 50th anniversary of the discovery of the laser. The development of lasers for medical use, which became known as low-level laser therapy (LLLT) or photobiomodulation, followed in 1967. In recent years, LLLT has become an increasingly mainstream modality, especially in the areas of physical medicine and rehabilitation. At first used mainly for wound healing and pain relief, the medical applications of LLLT have broadened to include diseases such as stroke, myocardial infarction, and degenerative or traumatic brain disorders. This review will cover the mechanisms of LLLT that operate both on a cellular and a tissue level. Mitochondria are thought to be the principal photoreceptors, and increased adenosine triphosphate, reactive oxygen species, intracellular calcium, and release of nitric oxide are the initial events. Activation of transcription factors then leads to expression of many protective, anti-apoptotic, anti-oxidant, and pro-proliferation gene products. Animal studies and human clinical trials of LLLT for indications with relevance to neurology, such as stroke, traumatic brain injury, degenerative brain disease, spinal cord injury, and peripheral nerve regeneration, will be covered. PMID:21172691
The Human Orphan Nuclear Receptor Tailless (TLX, NR2E1) Is Druggable
Benod, Cindy; Villagomez, Rosa; Filgueira, Carly S.; Hwang, Peter K.; Leonard, Paul G.; Poncet-Montange, Guillaume; Rajagopalan, Senapathy; Fletterick, Robert J.; Gustafsson, Jan-Åke; Webb, Paul
2014-01-01
Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open. PMID:24936658
The human orphan nuclear receptor tailless (TLX, NR2E1) is druggable.
Benod, Cindy; Villagomez, Rosa; Filgueira, Carly S; Hwang, Peter K; Leonard, Paul G; Poncet-Montange, Guillaume; Rajagopalan, Senapathy; Fletterick, Robert J; Gustafsson, Jan-Åke; Webb, Paul
2014-01-01
Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.
Molecular characterization of human thyroid hormone receptor β isoform 4.
Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya
2016-01-01
Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus.
Identification of a neuronal transcription factor network involved in medulloblastoma development.
Lastowska, Maria; Al-Afghani, Hani; Al-Balool, Haya H; Sheth, Harsh; Mercer, Emma; Coxhead, Jonathan M; Redfern, Chris P F; Peters, Heiko; Burt, Alastair D; Santibanez-Koref, Mauro; Bacon, Chris M; Chesler, Louis; Rust, Alistair G; Adams, David J; Williamson, Daniel; Clifford, Steven C; Jackson, Michael S
2013-07-11
Medulloblastomas, the most frequent malignant brain tumours affecting children, comprise at least 4 distinct clinicogenetic subgroups. Aberrant sonic hedgehog (SHH) signalling is observed in approximately 25% of tumours and defines one subgroup. Although alterations in SHH pathway genes (e.g. PTCH1, SUFU) are observed in many of these tumours, high throughput genomic analyses have identified few other recurring mutations. Here, we have mutagenised the Ptch+/- murine tumour model using the Sleeping Beauty transposon system to identify additional genes and pathways involved in SHH subgroup medulloblastoma development. Mutagenesis significantly increased medulloblastoma frequency and identified 17 candidate cancer genes, including orthologs of genes somatically mutated (PTEN, CREBBP) or associated with poor outcome (PTEN, MYT1L) in the human disease. Strikingly, these candidate genes were enriched for transcription factors (p=2x10-5), the majority of which (6/7; Crebbp, Myt1L, Nfia, Nfib, Tead1 and Tgif2) were linked within a single regulatory network enriched for genes associated with a differentiated neuronal phenotype. Furthermore, activity of this network varied significantly between the human subgroups, was associated with metastatic disease, and predicted poor survival specifically within the SHH subgroup of tumours. Igf2, previously implicated in medulloblastoma, was the most differentially expressed gene in murine tumours with network perturbation, and network activity in both mouse and human tumours was characterised by enrichment for multiple gene-sets indicating increased cell proliferation, IGF signalling, MYC target upregulation, and decreased neuronal differentiation. Collectively, our data support a model of medulloblastoma development in SB-mutagenised Ptch+/- mice which involves disruption of a novel transcription factor network leading to Igf2 upregulation, proliferation of GNPs, and tumour formation. Moreover, our results identify rational therapeutic targets for SHH subgroup tumours, alongside prognostic biomarkers for the identification of poor-risk SHH patients.
Damberg, M; Garpenstrand, H; Alfredsson, J; Ekblom, J; Forslund, K; Rylander, G; Oreland, L
2000-03-01
Transcription factor AP-2beta is implicated in playing an important role during embryonic development of different parts of the brain, eg, midbrain, hindbrain, spinal cord, dorsal and cranial root ganglia.1,2 The gene encoding AP-2beta contains a polymorphic region which includes a tetranucleotide repeat of [CAAA] four or five times, located in intron 2 between nucleotides 12593 and 12612.3 Since the midbrain contains structures important for variables such as mood and personality, we have investigated if the AP-2beta genotype is associated with personality traits estimated by the Karolinska Scales of Personality (KSP). Identification of transcription factor genes as candidate genes in psychiatric disorders is a novel approach to further elucidate the genetic factors that, together with environmental factors, are involved in the expression of specific psychiatric phenotypes. The AP-2beta genotype and KSP scores were determined for 137 Caucasian volunteers (73 females and 64 males). The personality traits muscular tension, guilt, somatic anxiety, psychastenia and indirect aggression were significantly associated with the specific AP-2beta genotype, albeit with significant difference between genders. Based on this result the human AP-2beta gene seems to be an important candidate gene for personality disorders. Moreover, the present results suggest that the structure of the intron 2 region of the AP-2beta gene is one factor that contributes to development of the constitutional component of specific personality traits.
Mishra, Surabhi; Chaube, Radha
2017-01-15
In vertebrates, steroids are synthesized de novo in the central and peripheral nervous system, independent of peripheral steroidogenic glands, such as the adrenal, gonads and placenta. 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) is a key steroidogenic enzyme in vertebrate gonads, placenta and adrenal. It mediates the oxidation and isomerization reactions of progesterone from pregnenolone, 17-hydroxyprogesterone from 17-hydroxypregnenolone and androstenedione from dehydroepiandrosterone. In the present study, we examined the expression of 3β-HSD cDNA by real time-PCR and localization of the mRNA by in situ hybridization in the brain and its regions during the different phases of the reproductive cycle of the catfish Heteropneustes fossilis. Further, 3β-HSD activity was assayed biochemically to show seasonal variations. We showed significant seasonal and sexual dimorphic changes in the levels of transcript abundance in the whole brain and its regions. In whole brain, level was the highest in post-spawning phase and lowest in spawning phase in males. In females, there was a progressive increase through resting phase to pre-spawning phase, a decline in the spawning phase and increase in the post-spawning phase. In the preparatory phase, the highest transcript level was seen in medulla oblongata and the lowest in pituitary in males. In females, the level was the highest in the hypothalamus and lowest in olfactory bulb and pituitary. However, in the pre-spawning phase, in males it was the highest in telencephalon and hypothalamus and lowest in pituitary. In females, the highest transcript level was in olfactory bulb and lowest in pituitary. 3β-HSD enzyme activity showed significant seasonal variation in the brain, the highest in the resting phase and lowest in the preparatory and spawning phases. In situ hybridization showed the presence of 3β-HSD transcript was especially high in the cerebellum region. The presence of 3β-HSD in the brain may indicate steroidogenesis in the catfish brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Woo, Young Jae; Wang, Tao; Guadalupe, Tulio; Nebel, Rebecca A.; Vino, Arianna; Del Bene, Victor A.; Molholm, Sophie; Ross, Lars A.; Zwiers, Marcel P.; Fisher, Simon E.; Foxe, John J.; Abrahams, Brett S.
2016-01-01
Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1-2) are associated with language-related difficulties and increased risk for developmental disorders in which language is compromised. Towards underlying mechanisms, we investigated relationships between single nucleotide polymorphisms (SNPs) across the region and quantitative measures of human brain structure obtained by magnetic resonance imaging of healthy subjects. We report an association between rs4778298, a common variant at CYFIP1, and inter-individual variation in surface area across the left supramarginal gyrus (lh.SMG), a cortical structure implicated in speech and language in independent discovery (n = 100) and validation cohorts (n = 2621). In silico analyses determined that this same variant, and others nearby, is also associated with differences in levels of CYFIP1 mRNA in human brain. One of these nearby polymorphisms is predicted to disrupt a consensus binding site for FOXP2, a transcription factor implicated in speech and language. Consistent with a model where FOXP2 regulates CYFIP1 levels and in turn influences lh.SMG surface area, analysis of publically available expression data identified a relationship between expression of FOXP2 and CYFIP1 mRNA in human brain. We propose that altered CYFIP1 dosage, through aberrant patterning of the lh.SMG, may contribute to language-related difficulties associated with BP1-2 CNVs. More generally, this approach may be useful in clarifying the contribution of individual genes at CNV risk loci. PMID:27351196
Revisiting the human polypeptide GalNAc-T1 and T13 paralogs
Festari, María Florencia; Trajtenberg, Felipe; Berois, Nora; Pantano, Sergio; Revoredo, Leslie; Kong, Yun; Solari-Saquieres, Patricia; Narimatsu, Yoshiki; Freire, Teresa; Bay, Sylvie; Robello, Carlos; Bénard, Jean; Gerken, Thomas A; Clausen, Henrik; Osinaga, Eduardo
2017-01-01
Polypeptide GalNAc-transferases (GalNAc-Ts) constitute a family of 20 human glycosyltransferases (comprising 9 subfamilies), which initiate mucin-type O-glycosylation. The O-glycoproteome is thought to be differentially regulated via the different substrate specificities and expression patterns of each GalNAc-T isoforms. Here, we present a comprehensive in vitro analysis of the peptide substrate specificity of GalNAc-T13, showing that it essentially overlaps with the ubiquitous expressed GalNAc-T1 isoform found in the same subfamily as T13. We have also identified and partially characterized nine splice variants of GalNAc-T13, which add further complexity to the GalNAc-T family. Two variants with changes in their lectin domains were characterized by in vitro glycosylation assays, and one (Δ39Ex9) was inactive while the second one (Ex10b) had essentially unaltered activity. We used reverse transcription-polymerase chain reaction analysis of human neuroblastoma cell lines, normal brain and a small panel of neuroblastoma tumors to demonstrate that several splice variants (Ex10b, ΔEx9, ΔEx2-7 and ΔEx6/8-39bpEx9) were highly expressed in tumor cell lines compared with normal brain, although the functional implications remain to be unveiled. In summary, the GalNAc-T13 isoform is predicted to function similarly to GalNAc-T1 against peptide substrates in vivo, in contrast to a prior report, but is unique by being selectively expressed in the brain. PMID:27913570
RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation
Xie, Qi; Wu, Qiulian; Kim, Leo; Miller, Tyler E.; Liau, Brian B.; Mack, Stephen C.; Yang, Kailin; Factor, Daniel C.; Fang, Xiaoguang; Huang, Zhi; Zhou, Wenchao; Alazem, Kareem; Wang, Xiuxing; Bernstein, Bradley E.; Bao, Shideng; Rich, Jeremy N.
2016-01-01
Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor–initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH. PMID:27322055
Tighe, S.; Holbrook, J.; Nadella, V.; Carmical, R.; Sol-Church, K.; Yueng, A.T.; Chittur, S.
2011-01-01
The Nucleic Acid Research Group (NARG) has previously conducted studies evaluating the impact of RNA integrity and priming strategies on cDNA synthesis and real-time RT-qPCR. The results of last year's field study as it relates to degraded RNA will be presented. In continuation of the RNA integrity theme, this year's study was designed to evaluate the impact of RNA integrity on the analysis of miRNA expression using real-time RT-qPCR. Target section was based on data obtained by the Microarray Research Group (MARG) and other published data from next gen sequencing. These 9 miRNAs represent three groups of miRNA that are expressed at low, medium or high levels in the First Choice human brain reference RNA sample. Two popular RT priming strategies tested in this study include the Megaplex miRNA TaqMan assay (ABI) and the RT2 miRNA qPCR assay (Qiagen/SA Biosciences). The basis for the ABI assay design is a target-specific stem-loop structure and reverse-transcription primer, while the Qiagen design combines poly(A) tailing and a universal reverse transcription in one cDNA synthesis reaction. For this study, the human brain reference RNA was subject to controlled degradation using RNase A to RIN (RNA Integrity Number) values of 7 (good), 4 (moderately degraded), and 2 (severely degraded).These templates were then used to assess both RT methods. In addition to this real-time RT-qPCR data, the same RNA templates were further analyzed using universal poly(A) tailing and hybridization to Affymetrix miRNA GeneChips. This talk will provide insights into RT priming strategies for miRNA and contrast the qPCR results obtained using different technologies.
Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Pérez-Mediavilla, Alberto; Frechilla, Diana; Del Río, Joaquin; García-Osta, Ana
2009-06-01
Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.
Epigenetic Basis of Neuronal and Synaptic Plasticity.
Karpova, Nina N; Sales, Amanda J; Joca, Samia R
2017-01-01
Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.
Araki, Ryota; Nishida, Shoji; Hiraki, Yosuke; Matsumoto, Kinzo; Yabe, Takeshi
2015-10-08
The levels of allopregnanolone (ALLO), a neurosteroid, in brain and serum are related to severity of depression and anxiety. Steroid 5α-reductase type I is the rate-limiting enzyme in ALLO biosynthesis and plays an important role in control of the ALLO level in mammalian brain. In this study, we examined an epigenetic mechanism for transcriptional regulation of srd5a1, which codes for steroid 5α-reductase type I, using isolation-reared mice. The mRNA level of srd5a1 was decreased in the prefrontal cortex (PFC) in isolation-reared mice. Rearing in social isolation increased methylation of cytosines at -82 and -12 bp downstream of the transcription start site, which are located in a GC box element in the promoter region of srd5a1. Binding of Sp1, a ubiquitous transcription factor, to the GC box was decreased in the promoter region of srd5a1 in the PFC in isolation-reared mice. Site-specific methylation at cytosine -12 of a srd5a1 promoter-luciferase reporter construct, but not that of cytosine -82, downregulated the promoter activity of srd5a1. These findings suggest that transcription of srd5a1 in brain is regulated by environmental factor-induced cytosine methylation in the promoter region. This finding could contribute to development of antidepressant and anxiolytic agents. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cirelli, C; Tononi, G
1999-06-01
The consequences of sleep and sleep deprivation at the molecular level are largely unexplored. Knowledge of such molecular events is essential to understand the restorative processes occurring during sleep as well as the cellular mechanisms of sleep regulation. Here we review the available data about changes in neural gene expression across different behavioural states using candidate gene approaches such as in situ hybridization and immunocytochemistry. We then describe new techniques for systematic screening of gene expression in the brain, such as subtractive hybridization, mRNA differential display, and cDNA microarray technology, outlining advantages and disadvantages of these methods. Finally, we summarize our initial results of a systematic screening of gene expression in the rat brain across behavioural states using mRNA differential display and cDNA microarray technology. The expression pattern of approximately 7000 genes was analysed in the cerebral cortex of rats after 3 h of spontaneous sleep, 3 h of spontaneous waking, or 3 h of sleep deprivation. While the majority of transcripts were expressed at the same level among these three conditions, 14 mRNAs were modulated by sleep and waking. Six transcripts, four more expressed in waking and two more expressed in sleep, corresponded to novel genes. The eight known transcripts were all expressed at higher levels in waking than in sleep and included transcription factors and mitochondrial genes. A possible role for these known transcripts in mediating neural plasticity during waking is discussed.
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-10-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Multi-step splicing of sphingomyelin synthase linear and circular RNAs.
Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V
2018-05-15
The SGMS1 gene encodes the enzyme sphingomyelin synthase 1 (SMS1), which is involved in the regulation of lipid metabolism, apoptosis, intracellular vesicular transport and other significant processes. The SGMS1 gene is located on chromosome 10 and has a size of 320 kb. Previously, we showed that dozens of alternative transcripts of the SGMS1 gene are present in various human tissues. In addition to mRNAs that provide synthesis of the SMS1 protein, this gene participates in the synthesis of non-coding transcripts, including circular RNAs (circRNAs), which include exons of the 5'-untranslated region (5'-UTR) and are highly represented in the brain. In this study, using the high-throughput technology RNA-CaptureSeq, many new SGMS1 transcripts were identified, including both intronic unspliced RNAs (premature RNAs) and RNAs formed via alternative splicing. Recursive exons (RS-exons) that can participate in the multi-step splicing of long introns of the gene were also identified. These exons participate in the formation of circRNAs. Thus, multi-step splicing may provide a variety of linear and circular RNAs of eukaryotic genes in tissues. Copyright © 2018 Elsevier B.V. All rights reserved.
[Pain and emotional dysregulation: Cellular memory due to pain].
Narita, Minoru; Watanabe, Moe; Hamada, Yusuke; Tamura, Hideki; Ikegami, Daigo; Kuzumaki, Naoko; Igarashi, Katsuhide
2015-08-01
Genetic factors are involved in determinants for the risk of psychiatric disorders, and neurological and neurodegenerative diseases. Chronic pain stimuli and intense pain have effects at a cellular and/or gene expression level, and will eventually induce "cellular memory due to pain", which means that tissue damage, even if only transient, can elicit epigenetically abnormal transcription/translation and post-translational modification in related cells depending on the degree or kind of injury or associated conditions. Such cell memory/transformation due to pain can cause an abnormality in a fundamental intracellular response, such as a change in the three-dimensional structure of DNA, transcription, or translation. On the other hand, pain is a multidimensional experience with sensory-discriminative and motivational-affective components. Recent human brain imaging studies have examined differences in activity in the nucleus accumbens between controls and patients with chronic pain, and have revealed that the nucleus accumbens plays a role in predicting the value of a noxious stimulus and its offset, and in the consequent changes in the motivational state. In this review, we provide a very brief overview of a comprehensive understanding of chronic pain associated with emotional dysregulation due to transcriptional regulation, epigenetic modification and miRNA regulation.
Chromatin-bound RNA and the neurobiology of psychiatric disease.
Tushir, J S; Akbarian, S
2014-04-04
A large, and still rapidly expanding literature on epigenetic regulation in the nervous system has provided fundamental insights into the dynamic regulation of DNA methylation and post-translational histone modifications in the context of neuronal plasticity in health and disease. Remarkably, however, very little is known about the potential role of chromatin-bound RNAs, including many long non-coding transcripts and various types of small RNAs. Here, we provide an overview on RNA-mediated regulation of chromatin structure and function, with focus on histone lysine methylation and psychiatric disease. Examples of recently discovered chromatin-bound long non-coding RNAs important for neuronal health and function include the brain-derived neurotrophic factor antisense transcript (Bdnf-AS) which regulates expression of the corresponding sense transcript, and LOC389023 which is associated with human-specific histone methylation signatures at the chromosome 2q14.1 neurodevelopmental risk locus by regulating expression of DPP10, an auxillary subunit for voltage-gated K(+) channels. We predict that the exploration of chromatin-bound RNA will significantly advance our current knowledge base in neuroepigenetics and biological psychiatry. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Urade, Y; Oberdick, J; Molinar-Rode, R; Morgan, J I
1991-01-01
The cerebellum contains a hexadecapeptide, termed cerebellin, that is conserved in sequence from human to chicken. Three independent, overlapping cDNA clones have been isolated from a human cerebellum cDNA library that encode the cerebellin sequence. The longest clone codes for a protein of 193 amino acids that we term precerebellin. This protein has a significant similarity (31.3% identity, 52.2% similarity) to the globular (non-collagen-like) region of the B chain of human complement component C1q. The region of relatedness extends over approximately 145 amino acids located in the carboxyl terminus of both proteins. Unlike C1q B chain, no collagen-like motifs are present in the amino-terminal regions of precerebellin. The amino terminus of precerebellin contains three possible N-linked glycosylation sites. Although hydrophobic amino acids are clustered at the amino terminus, they do not conform to the classical signal-peptide motif, and no other obvious membrane-spanning domains are predicted from the cDNA sequence. The cDNA predicts that the cerebellin peptide is flanked by Val-Arg and Glu-Pro residues. Therefore, cerebellin is not liberated from precerebellin by the classical dibasic amino acid proteolytic-cleavage mechanism seen in many neuropeptide precursors. In Northern (RNA) blots, precerebellin transcripts, with four distinct sizes (1.8, 2.3, 2.7, and 3.0 kilobases), are abundant in cerebellum. These transcripts are present at either very low or undetectable levels in other brain areas and extraneural structures. A similar pattern of cerebellin precursor transcripts are seen in rat, mouse, and human cerebellum. Furthermore, a partial genomic fragment from mouse shows the same bands in Northern blots as the human cDNA clone. During rat development, precerebellin transcripts mirror the level of cerebellin peptide. Low levels of precerebellin mRNA are seen at birth. Levels increase modestly from postpartum day 1 to 8, then increase more dramatically between day 5 and 15, and eventually reach peak values between day 21 and 56. Because cerebellin-like immunoreactivity is associated with Purkinje cell postsynaptic structures, these data raise interesting possibilities concerning the function of the cerebellin precursor in synaptic physiology. Images PMID:1704129
Inflammation in Parkinson’s disease: role of glucocorticoids
Herrero, María-Trinidad; Estrada, Cristina; Maatouk, Layal; Vyas, Sheela
2015-01-01
Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD). Studies in PD patients show evidence of augmented levels of potent pro-inflammatory molecules e.g., TNF-α, iNOS, IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergic neurons are particularly vulnerable to activated glia releasing these toxic factors. Recent genetic studies point to the role of immune system in the etiology of PD, thus in combination with environmental factors, both peripheral and CNS-mediated immune responses could play important roles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are known to mediate chronic inflammation, the roles of other immune-competent cells are less well understood. Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis. Glucocorticoids (GCs) released from adrenal glands upon stimulation of HPA axis, in response to either cell injury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both through direct transcriptional action on target genes and by indirectly inhibiting transcriptional activities of transcriptional factors such as NF-κB, AP-1 or interferon regulatory factors. In PD patients, the HPA axis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GR function in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucial effect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover, GCs are also known to regulate human brain vasculature as well as blood brain barrier (BBB) permeability, any dysfunction in their actions may influence infiltration of cytotoxic molecules resulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation of glucocorticoid receptor actions is likely important in dopamine neuron degeneration through establishment of chronic inflammation. PMID:25883554
Graves, Stephanie D; Kidd, Karen A; Batchelar, Katharina L; Cowie, Andrew M; O'Driscoll, Nelson J; Martyniuk, Christopher J
2017-02-01
Methylmercury (MeHg) exposure and adverse health effects in fishes have been documented, but the molecular mechanisms involved in toxicity have not been fully characterized. The objectives of the current study were to (1) determine whether total Hg (THg) in the muscle was predictive of MeHg concentrations in the brain of wild female yellow perch (Perca flavescens) collected from four lakes in Kejimkujik National Park, a known biological mercury (Hg) hotspot in Nova Scotia, Canada and (2) to determine whether transcripts involved in the oxidative stress response were altered in abundance in fish collected across five lakes representing a MeHg gradient. In female yellow perch, MeHg in whole brain (0.38 to 2.00μg/g wet weight) was positively associated with THg in muscle (0.18 to 2.13μg/g wet weight) (R 2 =0.61, p<0.01), suggesting that muscle THg may be useful for predicting MeHg concentrations in the brain. Catalase (cat) mRNA levels were significantly lower in brains of perch collected from lakes with high Hg when compared to those individuals from lakes with relatively lower Hg (p=0.02). Other transcripts (cytochrome c oxidase, glutathione peroxidase, glutathione-s-transferase, heat shock protein 70, protein disulfide isomerase, and superoxide dismutase) did not show differential expression in the brain over the gradient. These findings suggest that MeHg may be inversely associated with catalase mRNA abundance in the central nervous system of wild fishes. Copyright © 2016 Elsevier Inc. All rights reserved.
Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts
Kang, Wenjing; Bang-Berthelsen, Claus Heiner; Holm, Anja; Houben, Anna J.S.; Müller, Anne Holt; Thymann, Thomas; Pociot, Flemming; Estivill, Xavier; Friedländer, Marc R.
2017-01-01
miRNAs are small 22-nucleotide RNAs that can post-transcriptionally regulate gene expression. It has been proposed that dietary plant miRNAs can enter the human bloodstream and regulate host transcripts; however, these findings have been widely disputed. We here conduct the first comprehensive meta-study in the field, surveying the presence and abundances of cross-species miRNAs (xenomiRs) in 824 sequencing data sets from various human tissues and body fluids. We find that xenomiRs are commonly present in tissues (17%) and body fluids (69%); however, the abundances are low, comprising 0.001% of host human miRNA counts. Further, we do not detect a significant enrichment of xenomiRs in sequencing data originating from tissues and body fluids that are exposed to dietary intake (such as liver). Likewise, there is no significant depletion of xenomiRs in tissues and body fluids that are relatively separated from the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are a rare human dietary contribution but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomiR compositions, suggesting technical batch effects. Last, we performed carefully designed and controlled animal feeding studies, in which we detected no transfer of plant miRNAs into rat blood, or bovine milk sequences into piglet blood. In summary, our comprehensive computational and experimental results indicate that xenomiRs originate from technical artifacts rather than dietary intake. PMID:28062594
Li, Yuanyuan; Wang, Ran; Qiao, Nan; Peng, Guangdun; Zhang, Ke; Tang, Ke; Han, Jing-Dong J; Jing, Naihe
2017-12-01
Proper neural commitment is essential for ensuring the appropriate development of the human brain and for preventing neurodevelopmental diseases such as autism spectrum disorders, schizophrenia, and intellectual disorders. However, the molecular mechanisms underlying the neural commitment in humans remain elusive. Here, we report the establishment of a neural differentiation system based on human embryonic stem cells (hESCs) and on comprehensive RNA sequencing analysis of transcriptome dynamics during early hESC differentiation. Using weighted gene co-expression network analysis, we reveal that the hESC neurodevelopmental trajectory has five stages: pluripotency (day 0); differentiation initiation (days 2, 4, and 6); neural commitment (days 8-10); neural progenitor cell proliferation (days 12, 14, and 16); and neuronal differentiation (days 18, 20, and 22). These stages were characterized by unique module genes, which may recapitulate the early human cortical development. Moreover, a comparison of our RNA-sequencing data with several other transcriptome profiling datasets from mice and humans indicated that Module 3 associated with the day 8-10 stage is a critical window of fate switch from the pluripotency to the neural lineage. Interestingly, at this stage, no key extrinsic signals were activated. In contrast, using CRISPR/Cas9-mediated gene knockouts, we also found that intrinsic hub transcription factors, including the schizophrenia-associated SIX3 gene and septo-optic dysplasia-related HESX1 gene, are required to program hESC neural determination. Our results improve the understanding of the mechanism of neural commitment in the human brain and may help elucidate the etiology of human mental disorders and advance therapies for managing these conditions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Transcriptome analysis by strand-specific sequencing of complementary DNA
Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey
2009-01-01
High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online. PMID:19620212
Transcriptome analysis by strand-specific sequencing of complementary DNA.
Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey
2009-10-01
High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.
Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo
2017-01-01
Abstract Lateralized behavior (“handedness”) is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior—biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. PMID:29069363
Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo; Meyer, Axel
2017-11-01
Lateralized behavior ("handedness") is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior-biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Rozhdestvensky, Timofey S; Robeck, Thomas; Galiveti, Chenna R; Raabe, Carsten A; Seeger, Birte; Wolters, Anna; Gubar, Leonid V; Brosius, Jürgen; Skryabin, Boris V
2016-02-05
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.
Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria
Basu-Roy, Upal; Ty, Maureen; Alique, Matilde; Fernandez-Arias, Cristina; Movila, Alexandru; Gomes, Pollyanna; Edagha, Innocent; Wassmer, Samuel C.; Walther, Thomas
2016-01-01
Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised. PMID:27643439
Lombardo, M V; Moon, H M; Su, J; Palmer, T D; Courchesne, E; Pramparo, T
2018-04-01
Maternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates rat fetal brain gene expression (at a time point analogous to the end of the first trimester of human gestation) in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in the ASD cortex later in life and which are canonically known for roles in affecting prenatally late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.
Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico
2014-01-01
Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.
Zhao, Yanbin; Castiglioni, Sara; Fent, Karl
2015-08-18
Progestins alter hormone homeostasis and may result in reproductive effects in humans and animals. Thus far, studies in fish have focused on the hypothalamic-pituitary-gonadal (HPG)-axis and reproduction, but other effects have little been investigated. Here we report that progesterone (P4) and drospirenone (DRS) interfere with regulation of the circadian rhythm in fish. Breeding pairs of adult zebrafish were exposed to P4 and DRS at concentrations between 7 and 13 650 ng/L for 21 days. Transcriptional analysis revealed significant and dose-dependent alterations of the circadian rhythm network in the brain with little effects in the gonads. Significant alterations of many target transcripts occurred even at environmental relevant concentrations of 7 ng/L P4 and at 99 ng/L DRS. They were fully consistent with the well-described circadian rhythm negative/positive feedback loops. Transcriptional alterations of the circadian rhythm network were correlated with those in the HPG-Liver-axis. Fecundity was decreased at 742 (P4) and 2763 (DRS) ng/L. Dose-dependent alterations in the circadian rhythm network were also observed in F1 eleuthero-embryos. Our results suggest a potential target of environmental progestins, the circadian rhythm network, in addition to the adverse reproductive effects. Forthcoming studies should show whether the transcriptional alterations in circadian rhythm translate into physiological effects.
Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice.
Bustos, Fernando J; Ampuero, Estibaliz; Jury, Nur; Aguilar, Rodrigo; Falahi, Fahimeh; Toledo, Jorge; Ahumada, Juan; Lata, Jaclyn; Cubillos, Paula; Henríquez, Berta; Guerra, Miguel V; Stehberg, Jimmy; Neve, Rachael L; Inestrosa, Nibaldo C; Wyneken, Ursula; Fuenzalida, Marco; Härtel, Steffen; Sena-Esteves, Miguel; Varela-Nallar, Lorena; Rots, Marianne G; Montecino, Martin; van Zundert, Brigitte
2017-12-01
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.
Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki
2002-12-30
Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.
Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins
Kfoury, N.; Kapatos, G.
2009-01-01
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292
Kisspeptin Signaling in the Brain
Oakley, Amy E.; Clifton, Donald K.; Steiner, Robert A.
2009-01-01
Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function. PMID:19770291
Echevarría, Juan E.; Avellón, Ana; Juste, Javier; Vera, Manuel; Ibáñez, Carlos
2001-01-01
Brain analysis cannot be used for the investigation of active lyssavirus infection in healthy bats because most bat species are protected by conservation directives. Consequently, serology remains the only tool for performing virological studies on natural bat populations; however, the presence of antibodies merely reflects past exposure to the virus and is not a valid marker of active infection. This work describes a new nested reverse transcription (RT)-PCR technique specifically designed for the detection of the European bat virus 1 on oropharyngeal swabs obtained from bats but also able to amplify RNA from the remaining rabies-related lyssaviruses in brain samples. The technique was successfully used for surveillance of a serotine bat (Eptesicus serotinus) colony involved in a case of human exposure, in which 15 out of 71 oropharyngeal swabs were positive. Lyssavirus infection was detected on 13 oropharyngeal swabs but in only 5 brains out of the 34 animals from which simultaneous brain and oropharyngeal samples had been taken. The lyssavirus involved could be rapidly identified by automatic sequencing of the RT-PCR products obtained from 14 brains and three bat oropharyngeal swabs. In conclusion, RT-PCR using oropharyngeal swabs will permit screening of wild bat populations for active lyssavirus infection, for research or epidemiological purposes, in line not only with conservation policies but also in a more efficient manner than classical detection techniques used on the brain. PMID:11574590
Meta-connectomics: human brain network and connectivity meta-analyses.
Crossley, N A; Fox, P T; Bullmore, E T
2016-04-01
Abnormal brain connectivity or network dysfunction has been suggested as a paradigm to understand several psychiatric disorders. We here review the use of novel meta-analytic approaches in neuroscience that go beyond a summary description of existing results by applying network analysis methods to previously published studies and/or publicly accessible databases. We define this strategy of combining connectivity with other brain characteristics as 'meta-connectomics'. For example, we show how network analysis of task-based neuroimaging studies has been used to infer functional co-activation from primary data on regional activations. This approach has been able to relate cognition to functional network topology, demonstrating that the brain is composed of cognitively specialized functional subnetworks or modules, linked by a rich club of cognitively generalized regions that mediate many inter-modular connections. Another major application of meta-connectomics has been efforts to link meta-analytic maps of disorder-related abnormalities or MRI 'lesions' to the complex topology of the normative connectome. This work has highlighted the general importance of network hubs as hotspots for concentration of cortical grey-matter deficits in schizophrenia, Alzheimer's disease and other disorders. Finally, we show how by incorporating cellular and transcriptional data on individual nodes with network models of the connectome, studies have begun to elucidate the microscopic mechanisms underpinning the macroscopic organization of whole-brain networks. We argue that meta-connectomics is an exciting field, providing robust and integrative insights into brain organization that will likely play an important future role in consolidating network models of psychiatric disorders.
Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B
2017-06-01
The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.
Wylezinski, Lukasz S; Hawiger, Jacek
2016-10-28
The pleiotropic cytokine interleukin 2 (IL2) disrupts the blood-brain barrier and alters brain microcirculation, underlying vascular leak syndrome that complicates cancer immunotherapy with IL2. The microvascular effects of IL2 also play a role in the development of multiple sclerosis and other chronic neurological disorders. The mechanism of IL2-induced disruption of brain microcirculation has not been determined previously. We found that both human and murine brain microvascular endothelial cells express constituents of the IL2 receptor complex. Then we established that signaling through this receptor complex leads to activation of the transcription factor, nuclear factor κB, resulting in expression of proinflammatory interleukin 6 and monocyte chemoattractant protein 1. We also discovered that IL2 induces disruption of adherens junctions, concomitant with cytoskeletal reorganization, ultimately leading to increased endothelial cell permeability. IL2-induced phosphorylation of vascular endothelial cadherin (VE-cadherin), a constituent of adherens junctions, leads to dissociation of its stabilizing adaptor partners, p120-catenin and β-catenin. Increased phosphorylation of VE-cadherin was also accompanied by a reduction of Src homology 2 domain-containing protein-tyrosine phosphatase 2, known to maintain vascular barrier function. These results unravel the mechanism of deleterious effects induced by IL2 on brain microvascular endothelial cells and may inform the development of new measures to improve IL2 cancer immunotherapy, as well as treatments for autoimmune diseases affecting the central nervous system. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Witteveen, Josefine S; Willemsen, Marjolein H; Dombroski, Thaís C D; van Bakel, Nick H M; Nillesen, Willy M; van Hulten, Josephus A; Jansen, Eric J R; Verkaik, Dave; Veenstra-Knol, Hermine E; van Ravenswaaij-Arts, Conny M A; Wassink-Ruiter, Jolien S Klein; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M; Engels, Hartmut; de Munnik, Sonja A; Visser, Jasper E; Brunner, Han G; Martens, Gerard J M; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M
2016-08-01
Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development.
Homer1a is a core brain molecular correlate of sleep loss.
Maret, Stéphanie; Dorsaz, Stéphane; Gurcel, Laure; Pradervand, Sylvain; Petit, Brice; Pfister, Corinne; Hagenbuchle, Otto; O'Hara, Bruce F; Franken, Paul; Tafti, Mehdi
2007-12-11
Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Schadt, Eric E; Edwards, Stephen W; GuhaThakurta, Debraj; Holder, Dan; Ying, Lisa; Svetnik, Vladimir; Leonardson, Amy; Hart, Kyle W; Russell, Archie; Li, Guoya; Cavet, Guy; Castle, John; McDonagh, Paul; Kan, Zhengyan; Chen, Ronghua; Kasarskis, Andrew; Margarint, Mihai; Caceres, Ramon M; Johnson, Jason M; Armour, Christopher D; Garrett-Engele, Philip W; Tsinoremas, Nicholas F; Shoemaker, Daniel D
2004-01-01
Background Computational and microarray-based experimental approaches were used to generate a comprehensive transcript index for the human genome. Oligonucleotide probes designed from approximately 50,000 known and predicted transcript sequences from the human genome were used to survey transcription from a diverse set of 60 tissues and cell lines using ink-jet microarrays. Further, expression activity over at least six conditions was more generally assessed using genomic tiling arrays consisting of probes tiled through a repeat-masked version of the genomic sequence making up chromosomes 20 and 22. Results The combination of microarray data with extensive genome annotations resulted in a set of 28,456 experimentally supported transcripts. This set of high-confidence transcripts represents the first experimentally driven annotation of the human genome. In addition, the results from genomic tiling suggest that a large amount of transcription exists outside of annotated regions of the genome and serves as an example of how this activity could be measured on a genome-wide scale. Conclusions These data represent one of the most comprehensive assessments of transcriptional activity in the human genome and provide an atlas of human gene expression over a unique set of gene predictions. Before the annotation of the human genome is considered complete, however, the previously unannotated transcriptional activity throughout the genome must be fully characterized. PMID:15461792
KIM, J. Y.; YENARI, M. A.; LEE, J. E.
2018-01-01
Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, electrophoretic-mobility shift assay and reverse transcription-polymerase chain reaction assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and bluntsDNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes inheat-pretreatedastrocytes. Takentogether, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors. PMID:25485480
Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G
2011-02-01
We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Aging in the Brain: New Roles of Epigenetics in Cognitive Decline.
Barter, Jolie D; Foster, Thomas C
2018-06-01
Gene expression in the aging brain depends on transcription signals generated by senescent physiology, interacting with genetic and epigenetic programs. In turn, environmental factors influence epigenetic mechanisms, such that an epigenetic-environmental link may contribute to the accumulation of cellular damage, susceptibility or resilience to stressors, and variability in the trajectory of age-related cognitive decline. Epigenetic mechanisms, DNA methylation and histone modifications, alter chromatin structure and the accessibility of DNA. Furthermore, small non-coding RNA, termed microRNA (miRNA) bind to messenger RNA (mRNA) to regulate translation. In this review, we examine key questions concerning epigenetic mechanisms in regulating the expression of genes associated with brain aging and age-related cognitive decline. In addition, we highlight the interaction of epigenetics with senescent physiology and environmental factors in regulating transcription.
Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases
Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz
2016-01-01
Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies. PMID:27853238
Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases.
Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz
2016-11-17
Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer's disease (AD), Parkinson's disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.
Seke-Etet, Paul F.; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Bentivoglio, Marina
2017-01-01
Background Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. Methodology/Principal findings The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. Conclusions/Significance The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis. PMID:28821016
Chaube, R; Rawat, A; Inbaraj, R M; Bobe, J; Guiguen, Y; Fostier, A; Joy, K P
2017-05-15
Catechol-O-methyltransferase (COMT) is involved in the methylation and inactivation of endogenous and xenobiotic catechol compounds, and serves as a common biochemical link in the catecholamine and catecholestrogen metabolism. Studies on cloning, sequencing and function characterization comt gene in lower vertebrates like fish are fewer. In the present study, a full-length comt cDNA of 1442bp with an open-reading frame (ORF) of 792bp, and start codon (ATG) at nucleotide 162 and stop codon (TAG) at nucleotide 953 was isolated and characterized in the stinging catfish Heteropneustes fossilis (accession No. KT597925). The ORF codes for a protein of 263 amino acid residues, which is also validated by the catfish transcriptome data analysis. The catfish Comt shared conserved putative structural regions important for S-adenosyl methionine (AdoMet)- and catechol-binding, transmembrane regions, two glycosylation sites (N-65 and N-91) at the N-terminus and two phosphorylation sites (Ser-235 and Thr-240) at the C-terminus. The gene was expressed in all tissues examined and the expression showed significant sex dimorphic distribution with high levels in females. The transcript was abundant in the liver, brain and gonads and low in muscles. The transcripts showed significant seasonal variations in the brain and ovary, increased progressively to the peak levels in spawning phase and then declined. The brain and ovarian comt mRNA levels showed periovulatory changes after in vivo and in vitro human chorionic gonadotropin (hCG) treatments with high fold increases at 16 and 24h in the brain and at 16h in the ovary. The catecholestrogen 2-hydroxyE 2 up regulated ovarian comt expression in vitro with the highest fold increase at 16h. The mRNA and protein was localized in the follicular layer of the vitellogenic follicles and in the cytoplasm of primary follicles. The data were discussed in relation to catecholamine and catecholestrogen-mediated functions in the brain and ovary of the stinging catfish. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling
2017-05-01
Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.
Gomez-Pastor, Rocio; Burchfiel, Eileen T.; Neef, Daniel W.; Jaeger, Alex M.; Cabiscol, Elisa; McKinstry, Spencer U.; Doss, Argenia; Aballay, Alejandro; Lo, Donald C.; Akimov, Sergey S.; Ross, Christopher A.; Eroglu, Cagla; Thiele, Dennis J.
2017-01-01
Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α′ kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α′ shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α′. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD. PMID:28194040
Stratoulias, Vassilis; Heino, Tapio I
2015-05-01
Glia are abundant cells in the brain of animals ranging from flies to humans. They perform conserved functions not only in neural development and wiring, but also in brain homeostasis. Here we show that by manipulating gene expression in glia, a previously unidentified cell type appears in the Drosophila brain during metamorphosis. More specifically, this cell type appears in three contexts: (1) after the induction of either immunity, or (2) autophagy, or (3) by silencing of neurotrophic factor DmMANF in glial cells. We call these cells MANF immunoreactive Cells (MiCs). MiCs are migratory based on their shape, appearance in brain areas where no cell bodies exist and the nuclear localization of dSTAT. They are labeled with a unique set of molecular markers including the conserved neurotrophic factor DmMANF and the transcription factor Zfh1. They possess the nuclearly localized protein Relish, which is the hallmark of immune response activation. They also express the conserved engulfment receptor Draper, therefore indicating that they are potentially phagocytic. Surprisingly, they do not express any of the common glial and neuronal markers. In addition, ultrastructural studies show that MiCs are extremely rich in lysosomes. Our findings reveal critical molecular and functional components of an unusual cell type in the Drosophila brain. We suggest that MiCs resemble macrophages/hemocytes and vertebrate microglia based on their appearance in the brain upon genetically challenged conditions and the expression of molecular markers. Interestingly, macrophages/hemocytes or microglia-like cells have not been reported in the fly nervous system before.
Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.
Patrick, Rhonda P; Ames, Bruce N
2014-06-01
Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder. © FASEB.
Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain
Perez, Julio D; Rubinstein, Nimrod D; Fernandez, Daniel E; Santoro, Stephen W; Needleman, Leigh A; Ho-Shing, Olivia; Choi, John J; Zirlinger, Mariela; Chen, Shau-Kwaun; Liu, Jun S; Dulac, Catherine
2015-01-01
The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased—rather than monoallelic—expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain. DOI: http://dx.doi.org/10.7554/eLife.07860.001 PMID:26140685
Adamopoulos, Panagiotis G; Kontos, Christos K; Scorilas, Andreas
2018-03-31
Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer. Copyright © 2018. Published by Elsevier Inc.
Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quina, Ana Sofia; Instituto Gulbenkian de Ciencia, 2781-901 Oeiras; Parreira, Leonor
2005-07-01
Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters uponmore » activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.« less
FGF signaling is required for brain left-right asymmetry and brain midline formation.
Neugebauer, Judith M; Yost, H Joseph
2014-02-01
Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.
CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier
Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.
2014-01-01
During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068
Lopez-Atalaya, Jose P; Askew, Katharine E; Sierra, Amanda; Gomez-Nicola, Diego
2018-06-01
Microglia and non-parenchymal macrophages located in the perivascular space, the meninges and the choroid plexus are independent immune populations that play vital roles in brain development, homeostasis, and tissue healing. Resident macrophages account for a significant proportion of cells in the brain and their density remains stable throughout the lifespan thanks to constant turnover. Microglia develop from yolk sac progenitors, later evolving through intermediate progenitors in a fine-tuned process in which intrinsic factors and external stimuli combine to progressively sculpt their cell type-specific transcriptional profiles. Recent evidence demonstrates that non-parenchymal macrophages are also generated during early embryonic development. In recent years, the development of powerful fate mapping approaches combined with novel genomic and transcriptomic methodologies have greatly expanded our understanding of how brain macrophages develop and acquire specialized functions, and how cell population dynamics are regulated. Here, we review the transcription factors, epigenetic remodeling, and signaling pathways orchestrating the embryonic development of microglia and non-parenchymal macrophages. Next, we describe the dynamics of the macrophage populations of the brain and discuss the role of progenitor cells, to gain a better understanding of their functions in the healthy and diseased brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 561-579, 2018. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.
FGF Signaling is Required for Brain Left-Right Asymmetry and Brain Midline Formation
Neugebauer, Judith M.; Yost, H. Joseph
2014-01-01
Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expression, and a midline barrier structure. PMID:24333178
Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone
Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P
2009-01-01
Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908
Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi
2018-05-16
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.
Hu, Fang; Knoedler, Joseph R.
2016-01-01
Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257
Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.
Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria
2017-01-01
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H
2018-09-01
The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.
Essential role of interleukin-6 in post-stroke angiogenesis
Gertz, Karen; Kronenberg, Golo; Kälin, Roland E.; Baldinger, Tina; Werner, Christian; Balkaya, Mustafa; Eom, Gina D.; Hellmann-Regen, Julian; Kröber, Jan; Miller, Kelly R.; Lindauer, Ute; Laufs, Ulrich; Dirnagl, Ulrich; Heppner, Frank L.
2012-01-01
Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6−/−) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6−/− mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6−/− mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6−/− mice. In addition, systemic neoangiogenesis was impaired in IL-6−/− mice. Transplantation of interleukin-6 competent bone marrow into IL-6−/− mice (IL-6chi) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6chi mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen–glucose deprivation did not. However, oxygen–glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection. PMID:22492561
2014-01-01
Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene expression in the developing A. aegypti brain. Conclusions These studies revealed sex-specific gene expression profiles in the developing A. aegypti pupal head and identified Doublesex as a key regulator of sexually dimorphic gene expression during mosquito neural development. PMID:25729562
Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.
2015-01-01
Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012
Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development.
de Kovel, Carolien G F; Lisgo, Steven; Karlebach, Guy; Ju, Jia; Cheng, Gang; Fisher, Simon E; Francks, Clyde
2017-08-01
Left-right asymmetry is a fundamental organizing feature of the human brain, and neuropsychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks postconception, the majority of human fetuses move their right arms more than their left arms, but because nerve fiber tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and the left and right hindbrains, of 18 postmortem human embryos aged 4 to 8 weeks postconception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia. The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared with the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05). These are the earliest stage left-right differences of human neural development ever reported. Disruption of the lateralized developmental program may play a role in the genetic susceptibility to schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Stanek, Lisa M; Yang, Wendy; Angus, Stuart; Sardi, Pablo S; Hayden, Michael R; Hung, Gene H; Bennett, C Frank; Cheng, Seng H; Shihabuddin, Lamya S
2013-01-01
Huntington's disease (HD) is a neurological disorder caused by mutations in the huntingtin (HTT) gene, the product of which leads to selective and progressive neuronal cell death in the striatum and cortex. Transcriptional dysregulation has emerged as a core pathologic feature in the CNS of human and animal models of HD. It is still unclear whether perturbations in gene expression are a consequence of the disease or importantly, contribute to the pathogenesis of HD. To examine if transcriptional dysregulation can be ameliorated with antisense oligonucleotides that reduce levels of mutant Htt and provide therapeutic benefit in the YAC128 mouse model of HD. Quantitative real-time PCR analysis was used to evaluate dysregulation of a subset of striatal genes in the YAC128 mouse model. Transcripts were then evaluated following ICV delivery of antisense oligonucleotides (ASO). Rota rod and Porsolt swim tests were used to evaluate phenotypic deficits in these mice following ASO treatment. Transcriptional dysregulation was detected in the YAC128 mouse model and appears to progress with age. ICV delivery of ASOs directed against mutant Htt resulted in reduction in mutant Htt levels and amelioration in behavioral deficits in the YAC128 mouse model. These improvements were correlated with improvements in the levels of several dysregulated striatal transcripts. The role of transcriptional dysregulation in the pathogenesis of Huntington's disease is not well understood, however, a wealth of evidence now strongly suggests that changes in transcriptional signatures are a prominent feature in the brains of both HD patients and animal models of the disease. Our study is the first to show that a therapeutic agent capable of improving an HD disease phenotype is concomitantly correlated with normalization of a subset of dysregulated striatal transcripts. Our data suggests that correction of these disease-altered transcripts may underlie, at least in part, the therapeutic efficacy shown associated with ASO-mediated correction of HD phenotypes and may provide a novel set of early biomarkers for evaluating future therapeutic concepts for HD.
DMRTA2 (DMRT5) is mutated in a novel cortical brain malformation.
Urquhart, J E; Beaman, G; Byers, H; Roberts, N A; Chervinsky, E; O'Sullivan, J; Pilz, D; Fry, A; Williams, S G; Bhaskar, S S; Khayat, M; Simanovsky, N; Shachar, I B; Shalev, S A; Newman, W G
2016-06-01
Lissencephaly is a phenotypically and genetically heterogeneous group of cortical brain malformations due to abnormal neuronal migration. The identification of many causative genes has increased the understanding of normal brain development. A consanguineous family was ascertained with three siblings affected by a severe prenatal neurodevelopmental disorder characterised by fronto-parietal pachygyria, agenesis of the corpus callosum and progressive severe microcephaly. Autozygosity mapping and exome sequencing identified a homozygous novel single base pair deletion, c.1197delT in DMRTA2, predicted to result in a frameshift variant p.(Pro400Leufs*33). DMRTA2 encodes doublesex and mab-3-related transcription factor a2, a transcription factor key to the development of the dorsal telencephalon. Data from murine and zebrafish knockout models are consistent with the variant of DMTRA2 (DMRT5) as responsible for the cortical brain phenotype. Our study suggests that loss of function of DMRTA2 leads to a novel disorder of cortical development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M
2010-07-02
Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1alpha, NRF-1alpha and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa
Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for themore » first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.« less
Zika Virus RNA Replication and Persistence in Brain and Placental Tissue
Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.
2017-01-01
Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260
Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.
Leighton, Laura J; Bredy, Timothy W
2018-06-07
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
TALE transcription factors during early development of the vertebrate brain and eye.
Schulte, Dorothea; Frank, Dale
2014-01-01
Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.
Baiker, Kerstin; Hofmann, Sabine; Fischer, Andrea; Gödde, Thomas; Medl, Susanne; Schmahl, Wolfgang; Bauer, Matthias F; Matiasek, Kaspar
2009-11-01
Our knowledge of molecular mechanisms underlying mitochondrial disorders in humans has increased considerably during the past two decades. Mitochondrial encephalomyopathies have sporadically been reported in dogs. However, molecular and biochemical data that would lend credence to the suspected mitochondrial origin are largely missing. This study was aimed to characterise a Leigh-like subacute necrotising encephalopathy (SNE) in Yorkshire Terriers and to shed light on its enzymatic and genetic background. The possible resemblance to SNE in Alaskan Huskies and to human Leigh syndrome (LS) was another focus of interest. Eleven terriers with imaging and/or gross evidence of V-shaped, non-contiguous, cyst-like cavitations in the striatum, thalamus and brain stem were included. Neuropathological examinations focussed on muscle, brain pathology and mitochondrial ultrastructure. Further investigations encompassed respiratory-chain activities and the mitochondrial DNA. In contrast to mild non-specific muscle findings, brain pathology featured the stereotypic triad of necrotising grey matter lesions with relative preservation of neurons in the aforementioned regions, multiple cerebral infarcts, and severe patchy Purkinje-cell degeneration in the cerebellar vermis. Two dogs revealed a reduced activity of respiratory-chain-complexes I and IV. Genetic analyses obtained a neutral tRNA-Leu(UUR) A-G-transition only. Neuropathologically, SNE in Yorkshire Terriers is nearly identical to the Alaskan Husky form and very similar to human LS. This study, for the first time, demonstrated that canine SNE can be associated with a combined respiratory chain defect. Mitochondrial tRNA mutations and large genetic rearrangements were excluded as underlying aetiology. Further studies, amongst relevant candidates, should focus on nuclear encoded transcription and translation factors.
Yu, Chunjiang; Narasipura, Srinivas D; Richards, Maureen H; Hu, Xiu-Ti; Yamamoto, Bryan; Al-Harthi, Lena
2017-10-01
Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16 INK 4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Villeneuve, L; Wang, Rong-Lin; Bencic, David C; Biales, Adam D; Martinović, Dalma; Lazorchak, James M; Toth, Gregory; Ankley, Gerald T
2009-08-01
As part of a research effort examining system-wide responses of the hypothalamic-pituitary-gonadal (HPG) axis in fish to endocrine-active chemicals (EACs) with different modes of action, zebrafish (Danio rerio) were exposed to 25 or 100 microg/L of the aromatase inhibitor fadrozole for 24, 48, or 96 h. Global transcriptional response in brain and ovarian tissue of fish exposed to 25 microg/L of fadrozole was compared to that in control fish using a commercially available, 22,000-gene oligonucleotide microarray. Transcripts altered in brain were functionally linked to differentiation, development, DNA replication, and cell cycle. Additionally, multiple genes associated with the one-carbon pool by folate pathway (KEGG 00670) were significantly up-regulated. Transcripts altered in ovary were functionally linked to cell-cell adhesion, extracellular matrix, vasculogenesis, and development. Promoter motif analysis identified GATA-binding factor 2, Ikaros 2, alcohol dehydrogenase gene regulator 1, myoblast-determining factor, and several heat shock factors as being associated with coexpressed gene clusters that were differentially expressed following exposure to fadrozole. Based on the transcriptional changes observed, it was hypothesized that fadrozole elicits neurodegenerative stress in brain tissue and that fish cope with this stress through proliferation of radial glial cells. Additionally, it was hypothesized that changes of gene expression in the ovary of fadrozole-exposed zebrafish reflect disruption of oocyte maturation and ovulation because of impaired vitellogenesis. These hypotheses and others derived from the microarray results provide a foundation for future studies aimed at understanding responses of the HPG axis to EACs and other chemical stressors.
Manshack, Lindsey K; Conard, Caroline M; Bryan, Sara J; Deem, Sharon L; Holliday, Dawn K; Bivens, Nathan J; Givan, Scott A; Rosenfeld, Cheryl S
2017-04-01
Developmental exposure of turtles and other reptiles to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE), can stimulate partial to full gonadal sex-reversal in males. We have also recently shown that in ovo exposure to either EDC can induce similar sex-dependent behavioral changes typified by improved spatial learning and memory or possibly feminized brain responses. Observed behavioral changes are presumed to be due to BPA- and EE-induced brain transcriptomic alterations during development. To test this hypothesis, we treated painted turtles ( Chrysemys picta ) at developmental stage 17 , incubated at 26°C (male-inducing temperature), with 1 ) BPA (1 ng/µl), 2 ) EE (4 ng/µl), or 3 ) vehicle ethanol (control group). Ten months after hatching and completion of the behavioral tests, juvenile turtles were euthanized, brains were collected and frozen in liquid nitrogen, and RNA was isolated for RNA-Seq analysis. Turtles exposed to BPA clustered separately from EE-exposed and control individuals. More transcripts and gene pathways were altered in BPA vs. EE individuals. The one transcript upregulated in both BPA- and EE-exposed individuals was the mitochondrial-associated gene, ND5, which is involved in oxidative phosphorylation. Early exposure of turtles to BPA increases transcripts linked with ribosomal and mitochondrial functions, especially bioenergetics, which has been previously linked with improved cognitive performance. In summary, even though both BPA and EE resulted in similar behavioral alterations, they diverge in the pattern of neural transcript alterations with early BPA significantly upregulating several genes involved in oxidative phosphorylation, mitochondrial activity, and ribosomal function, which could enhance cognitive performance. Copyright © 2017 the American Physiological Society.
Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta
2016-02-01
Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Jiang, Xuan; Dong, Xiao; Li, Shi-Hua; Zhou, Yue-Peng; Rayner, Simon; Xia, Hui-Min; Gao, George F; Yuan, Hui; Tang, Ya-Ping; Luo, Min-Hua
2018-01-01
Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.
Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease.
Gjoneska, Elizabeta; Pfenning, Andreas R; Mathys, Hansruedi; Quon, Gerald; Kundaje, Anshul; Tsai, Li-Huei; Kellis, Manolis
2015-02-19
Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.
Majumdar, Sreeparna; Farris, Corrie L.; Kabat, Brock E.; Jung, Deborah O.; Ellsworth, Buffy S.
2012-01-01
Congenital pituitary hormone deficiencies have been reported in approximately one in 4,000 live births, however studies reporting mutations in some widely studied transcription factors account for only a fraction of congenital hormone deficiencies in humans. Anterior pituitary hormones are required for development and function of several glands including gonads, adrenals, and thyroid. In order to identify additional factors that contribute to human congenital hormone deficiencies, we are investigating the forkhead transcription factor, FOXO1, which has been implicated in development of several organs including ovary, testis, and brain. We find that FOXO1 is present in the nuclei of non-dividing pituitary cells during embryonic development, consistent with a role in limiting proliferation and/or promoting differentiation. FOXO1 is present in a subset of differentiated cells at e18.5 and in adult with highest level of expression in somatotrope cells. We detected FOXO1 in p27Kip1-positive cells at e14.5. In the absence of p27Kip1 the number of pituitary cells containing FOXO1 is significantly increased at e14.5 suggesting that a feedback loop regulates the interplay between FOXO1 and p27Kip1. PMID:23251696
Localization of BDNF expression in the developing brain of zebrafish
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-01-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. PMID:24588510
Localization of BDNF expression in the developing brain of zebrafish.
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-05-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. © 2014 Anatomical Society.
Tirosh, Y; Morpurgo, N; Cohen, M; Linial, M; Bloch, G
2012-06-01
We identified a predicted compact cysteine-rich sequence in the honey bee genome that we called 'Raalin'. Raalin transcripts are enriched in the brain of adult honey bee workers and drones, with only minimum expression in other tissues or in pre-adult stages. Open-reading frame (ORF) homologues of Raalin were identified in the transcriptomes of fruit flies, mosquitoes and moths. The Raalin-like gene from Drosophila melanogaster encodes for a short secreted protein that is maximally expressed in the adult brain with negligible expression in other tissues or pre-imaginal stages. Raalin-like sequences have also been found in the recently sequenced genomes of six ant species, but not in the jewel wasp Nasonia vitripennis. As in the honey bee, the Raalin-like sequences of ants do not have an ORF. A comparison of the genome region containing Raalin in the genomes of bees, ants and the wasp provides evolutionary support for an extensive genome rearrangement in this sequence. Our analyses identify a new family of ancient cysteine-rich short sequences in insects in which insertions and genome rearrangements may have disrupted this locus in the branch leading to the Hymenoptera. The regulated expression of this transcript suggests that it has a brain-specific function. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.
Translating HDAC inhibitors in Friedrich's ataxia
Soragni, Elisabetta; Gottesfeld, Joel M
2016-01-01
Introduction Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. Areas covered We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. Expert opinion 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing. PMID:28392990
Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts.
Kang, Wenjing; Bang-Berthelsen, Claus Heiner; Holm, Anja; Houben, Anna J S; Müller, Anne Holt; Thymann, Thomas; Pociot, Flemming; Estivill, Xavier; Friedländer, Marc R
2017-04-01
miRNAs are small 22-nucleotide RNAs that can post-transcriptionally regulate gene expression. It has been proposed that dietary plant miRNAs can enter the human bloodstream and regulate host transcripts; however, these findings have been widely disputed. We here conduct the first comprehensive meta-study in the field, surveying the presence and abundances of cross-species miRNAs (xenomiRs) in 824 sequencing data sets from various human tissues and body fluids. We find that xenomiRs are commonly present in tissues (17%) and body fluids (69%); however, the abundances are low, comprising 0.001% of host human miRNA counts. Further, we do not detect a significant enrichment of xenomiRs in sequencing data originating from tissues and body fluids that are exposed to dietary intake (such as liver). Likewise, there is no significant depletion of xenomiRs in tissues and body fluids that are relatively separated from the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are a rare human dietary contribution but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomiR compositions, suggesting technical batch effects. Last, we performed carefully designed and controlled animal feeding studies, in which we detected no transfer of plant miRNAs into rat blood, or bovine milk sequences into piglet blood. In summary, our comprehensive computational and experimental results indicate that xenomiRs originate from technical artifacts rather than dietary intake. © 2017 Kang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
R1, a novel repressor of the human monoamine oxidase A.
Chen, Kevin; Ou, Xiao-Ming; Chen, Gao; Choi, Si Ho; Shih, Jean C
2005-03-25
Monoamine oxidase catalyzes the oxidative deamination of a number of neurotransmitters. A deficiency in monoamine oxidase A results in aggressive behavior in both humans and mice. Studies on the regulation of monoamine oxidase A gene expression have shown that the Sp1 family is important for monoamine oxidase A expression. To search for novel transcription factors, the sequences of three Sp1 sites in the monoamine oxidase A core promoter were used in the yeast one-hybrid system to screen a human cDNA library. A novel repressor, R1 (RAM2), has been cloned. The R1 cDNA encodes a protein with 454 amino acids and an open reading frame at the 5'-end. The transfection of R1 in a human neuroblastoma cell line, SK-N-BE (2)-C, inhibited the monoamine oxidase A promoter and enzymatic activity. The degree of inhibition of monoamine oxidase A by R1 correlated with the level of R1 protein expression. R1 was also found to repress monoamine oxidase A promoter activity within a natural chromatin environment. A gel-shift assay indicated that the endogenous R1 protein in SK-N-BE (2)-C cells interacted with the R1 binding sequence. R1 also bound directly to the natural monoamine oxidase A promoter in vivo as shown by chromatin immunoprecipitation assay. Immunocytochemical analysis showed that R1 was expressed in both cytosol and nucleus, which suggested a role for R1 in transcriptional regulation. Northern blot analysis revealed the presence of endogenous R1 mRNA in human brain and peripheral tissues. Taken together, this study shows that R1 is a novel repressor that inhibits monoamine oxidase A gene expression.
Goldfish spexin: solution structure and novel function as a satiety factor in feeding control.
Wong, Matthew K H; Sze, Kong Hung; Chen, Ting; Cho, Chi Kong; Law, Henry C H; Chu, Ivan K; Wong, Anderson O L
2013-08-01
Spexin (SPX) is a neuropeptide identified recently by bioinformatic approach. At present not much is known about its biological actions, and comparative studies of SPX in nonmammalian species are still lacking. To examine the structure and function of SPX in fish model, SPX was cloned in goldfish and found to be highly comparable with its mammalian counterparts. As revealed by NMR spectroscopies, goldfish SPX is composed of an α-helix from Gln(5) to Gln(14) with a flexible NH2 terminus from Asn(1) to Pro(4), and its molecular surface is largely hydrophobic except for Lys(11) as the only charged residue in the helical region. In goldfish, SPX transcripts were found to be widely expressed in various tissues, and protein expression of SPX was also detected in the brain. In vivo feeding studies revealed that SPX mRNA levels in the telencephalon, optic tectum, and hypothalamus of goldfish brain could be elevated by food intake. However, brain injection of goldfish SPX inhibited both basal and NPY- or orexin-induced feeding behavior and food consumption. Similar treatment also reduced transcript expression of NPY, AgRP, and apelin, with concurrent rises in CCK, CART, POMC, MCH, and CRH mRNA levels in different brain areas examined. The differential effects of SPX treatment on NPY, CCK, and MCH transcript expression could also be noted in vitro in goldfish brain cell culture. Our studies for the first time unveil the solution structure of SPX and its novel function as a satiety factor through differential modulation of central orexigenic and anorexigenic signals.
Gene transfer to brain using herpes simplex virus vectors.
Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A
1994-01-01
Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.
Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice
Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji
2017-01-01
Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205
Rat PPAR delta contains a CGG triplet repeat and is prominently expressed in the thalamic nuclei.
Xing, G; Zhang, L; Zhang, L; Heynen, T; Yoshikawa, T; Smith, M; Weiss, S; Detera-Wadleigh, S
1995-12-26
We have isolated a new rat sequence containing motifs of a nuclear hormone receptor from a brain cDNA library. The deduced amino acid sequence encoded by the cDNA clone showed a strong homology to the human NUCI and the mouse peroxisome proliferator activated receptor delta (PPAR delta). We therefore refer to this new clone as rat PPAR delta (rPPAR delta). The new feature of rPPAR delta is a 14 CGG triplet repeat on the 5' untranslated region, not previously reported in either NUCI or mPPAR delta. We found that rPPAR delta was expressed as a 3.5-kb transcript which showed a wide distribution in adult rat tissues. Abundant expression was detected in brain, heart, skeletal muscle, kidney and lung. Weaker expression was noted in the liver, spleen and testis. To determine the specific brain localization of rPPAR delta we performed in situ hybridization analysis. Prominent expression was observed in the thalamus, particularly in the posterior part of the ventral medial nucleus, a site responsive to pain and cold stress. These results raise the possibility that PPAR delta might play a role in modulating response to thermal and pain sensations.
Bai, Ying; Zhang, Yuan; Hua, Jun; Yang, Xiangyu; Zhang, Xiaotian; Duan, Ming; Zhu, Xinjian; Huang, Wenhui; Chao, Jie; Zhou, Rongbin; Hu, Gang; Yao, Honghong
2016-01-01
MicroRNA-143 (miR-143) plays a critical role in various cellular processes; however, the role of miR-143 in the maintenance of blood-brain barrier (BBB) integrity remains poorly defined. Silencing miR-143 in a genetic animal model or via an anti-miR-143 lentivirus prevented the BBB damage induced by methamphetamine. miR-143, which targets p53 unregulated modulator of apoptosis (PUMA), increased the permeability of human brain endothelial cells and concomitantly decreased the expression of tight junction proteins (TJPs). Silencing miR-143 increased the expression of TJPs and protected the BBB integrity against the effects of methamphetamine treatment. PUMA overexpression increased the TJP expression through a mechanism that involved the NF-κB and p53 transcription factor pathways. Mechanistically, methamphetamine mediated up-regulation of miR-143 via sigma-1 receptor with sequential activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3′ kinase (PI3K)/Akt and STAT3 pathways. These results indicated that silencing miR-143 could provide a novel therapeutic strategy for BBB damage-related vascular dysfunction. PMID:27767041
Ren, Wei; Zhu, Liang-Hua; Xu, Hua-Guo; Jin, Rui; Zhou, Guo-Ping
2012-06-01
Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon genes, plays an important role in host defense against viral and microbial infection as well as in cell growth regulation. Promoter plays a crucial role in gene transcription. We have reported the characterization of the wide type of human IRF-3 promoter, but the characterization of the spliced variant of human IRF-3 Int2V1 promoter has not been systematically analyzed. To observe the spliced variant of human IRF-3 promoter, we have cloned the human IRF-3 gene promoter region containing 300 nucleotides upstream the transcription start site (TSS). Transient transfection of 5' deleted promoter-reporter constructs and luciferase assay illustrated the region -159/-100 relative to the TSS is sufficient for full promoter activity. This region contains GATA1 and specific protein-1 (Sp1) transcription factor binding sites. Interestingly, mutation of this Sp1 site reduced the promoter activity by 50%. However, overexpression of Sp1 increased the transcription activity by 2.4-fold. These results indicated that the spliced variant of human IRF-3 gene core promoter was located within the region -159/-100 relative to the TSS. Sp1 transcription factor upregulates the spliced variant of human IRF-3 gene promoter.
Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui
2017-01-01
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jinmei; Wang Xuefeng; Xi Zhiqin
2006-10-06
Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in themore » temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures.« less