Science.gov

Sample records for human cell tissues

  1. Engineering human cells and tissues through pluripotent stem cells.

    PubMed

    Jones, Jeffrey R; Zhang, Su-Chun

    2016-08-01

    The utility of human pluripotent stem cells (hPSCs) depends on their ability to produce functional cells and tissues of the body. Two strategies have been developed: directed differentiation of enriched populations of cells that match a regional and functional profile and spontaneous generation of three-dimensional organoids that resemble tissues in the body. Genomic editing of hPSCs and their differentiated cells broadens the use of the hPSC paradigm in studying human cellular function and disease as well as developing therapeutics.

  2. Human natural killer cell development in secondary lymphoid tissues.

    PubMed

    Freud, Aharon G; Yu, Jianhua; Caligiuri, Michael A

    2014-04-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34(+)CD45RA(+) hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field.

  3. Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells.

    PubMed

    Yamashita, Akihiro; Liu, Shiying; Woltjen, Knut; Thomas, Bradley; Meng, Guoliang; Hotta, Akitsu; Takahashi, Kazutoshi; Ellis, James; Yamanaka, Shinya; Rancourt, Derrick E

    2013-01-01

    Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening human iPSC lines for tumorigenic potential. Although all human embryonic stem cells (ESCs) and most iPSC lines tested formed cartilage safely, certain human iPSCs displayed a pro-oncogenic state, as indicated by the presence of secretory tumors during cartilage differentiation in vitro. We observed five abnormal iPSC clones amoungst 21 lines derived from five different reprogramming methods using three cellular origins. We conclude that in vitro cartilage tissue engineering is a useful approach to identify abnormal human iPSC lines.

  4. Multipotent progenitor cells isolated from adult human pancreatic tissue.

    PubMed

    Todorov, I; Nair, I; Ferreri, K; Rawson, J; Kuroda, A; Pascual, M; Omori, K; Valiente, L; Orr, C; Al-Abdullah, I; Riggs, A; Kandeel, F; Mullen, Y

    2005-10-01

    The supply of islet cells is a limiting factor for the widespread application of islet transplantation of type-1 diabetes. Islets constitute 1% to 2% of pancreatic tissue, leaving approximately 98% as discard after islet isolation and purification. In this report we present our data on the isolation of multipotent progenitor cells from discarded adult human pancreatic tissue. The collected cells from discarded nonislet fractions, after enzymatic digestion and gradient purification of islets, were dissociated for suspension culture in a serum-free medium. The cell clusters grown to a size of 100 to 150 mum contained cells staining for stage-specific embryonic antigens, but not insulin or C-peptide. To direct cell differentiation toward islets, clusters were recultured in a pancreatic differentiation medium. Insulin and C-peptide-positive cells by immunocytochemistry appeared within a week, reaching over 10% of the cell population. Glucagon and somatostatin-positive cells were also detected. The cell clusters were found to secrete insulin in response to glucose stimulation. Cells from the same clusters also had the capacity for differentiation into neural cells, as documented by staining for neural and glial cell markers when cultured as monolayers in media containing neurotrophic factors. These data suggest that multipotent pancreatic progenitor cells exist within the human pancreatic tissue that is typically discarded during islet isolation procedures. These adult progenitor cells can be successfully differentiated into insulin-producing cells, and thus they have the potential for treatment of type-1 diabetes mellitus. PMID:16298614

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  6. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  7. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  8. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  9. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  10. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  11. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  12. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell...

  13. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  14. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined. PMID:11414630

  15. Cervical Tissue Engineering Using Silk Scaffolds and Human Cervical Cells

    PubMed Central

    Sanchez, Cristina C.; Rice, William L.; Socrate, Simona; Kaplan, David L.

    2010-01-01

    Spontaneous preterm birth is a frequent complication of pregnancy and a common cause of morbidity in childhood. Obstetricians suspect abnormalities of the cervix are implicated in a significant number of preterm births. The cervix is composed of fibrous connective tissue and undergoes significant remodeling in preparation for birth. We hypothesized that a tissue engineering strategy could be used to develop three-dimensional cervical-like tissue constructs that would be suitable for investigating cervical remodeling. Cervical cells were isolated from two premenopausal women undergoing hysterectomy for a benign gynecological condition, and the cells were seeded on porous silk scaffolds in the presence or absence of dynamic culture and with 10% or 20% serum. Morphological, biochemical, and mechanical properties were measured during the 8-week culture period. Cervical cells proliferated in three-dimensions and synthesized an extracellular matrix with biochemical constituents and morphology similar to native tissue. Compared to static culture, dynamic culture was associated with significantly increased collagen deposition (p < 0.05), sulfated glycosaminoglycan synthesis (p < 0.05), and mechanical stiffness (p < 0.05). Serum concentration did not affect measured variables. Relevant human tissue-engineered cervical-like constructs constitute a novel model system for a range of fundamental and applied studies related to cervical remodeling. PMID:20121593

  16. Nattokinase-promoted tissue plasminogen activator release from human cells.

    PubMed

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration.

  17. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  18. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  19. Binding of tissue plasminogen activator to cultured human endothelial cells.

    PubMed Central

    Hajjar, K A; Hamel, N M; Harpel, P C; Nachman, R L

    1987-01-01

    Tissue plasminogen activator (t-PA) and urokinase (u-PA), the major activators of plasminogen, are synthesized and released from endothelial cells. We previously demonstrated specific and functional binding of plasminogen to cultured human umbilical vein endothelial cells (HUVEC). In the present study we found that t-PA could bind to HUVEC. Binding of t-PA to HUVEC was specific, saturable, plasminogen-independent, and did not require lysine binding sites. The t-PA bound in a rapid and reversible manner, involving binding sites of both high (Kd, 28.7 +/- 10.8 pM; Bmax, 3,700 +/- 300) and low (Kd, 18.1 +/- 3.8 nM; Bmax 815,000 +/- 146,000) affinity. t-PA binding was 70% inhibited by a 100-fold molar excess of u-PA. When t-PA was bound to HUVEC, its apparent catalytic efficiency increased by three- or fourfold as measured by plasminogen activation. HUVEC-bound t-PA was active site-protected from its rapidly acting inhibitor: plasminogen activator inhibitor. These results demonstrate that t-PA specifically binds to HUVEC and that such binding preserves catalytic efficiency with respect to plasminogen activation. Therefore, endothelial cells can modulate hemostatic and thrombotic events at the cell surface by providing specific binding sites for activation of plasminogen. PMID:3119664

  20. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  1. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells

    PubMed Central

    Rodríguez, Larissa V.; Alfonso, Zeni; Zhang, Rong; Leung, Joanne; Wu, Benjamin; Ignarro, Louis J.

    2006-01-01

    Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific α actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. PMID:16880387

  2. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    PubMed

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  3. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.

    PubMed

    Feric, Nicole T; Radisic, Milica

    2016-01-15

    Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.

  4. NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines

    PubMed Central

    North, William G; Liu, Fuli; Tian, Ruiyang; Abbasi, Hamza; Akerman, Bonnie

    2015-01-01

    We have earlier demonstrated that breast cancer and small-cell lung cancer express functional NMDA receptors that can be targeted to promote cancer cell death. Human ovarian cancer tissues and human ovarian cancer cell lines (SKOV3, A2008, and A2780) have now been shown to also express NMDA-receptor subunit 1 (GluN1) and subunit 2B (GluN2B). Seventeen ovarian cancers in two arrays were screened by immunohistochemistry using polyclonal antibodies that recognize an extracellular moiety on GluN1 and on GluN2B. These specimens comprised malignant tissue with pathology diagnoses of serous papillary cystadenocarcinoma, endometrioid adenocarcinoma, and clear-cell carcinoma. Additionally, archival tissues defined as ovarian adenocarcinoma from ten patients treated at this institute were also evaluated. All of the cancerous tissues demonstrated positive staining patterns with the NMDA-receptor antibodies, while no staining was found for tumor-adjacent normal tissues or sections of normal ovarian tissue. Human ovarian adenocarcinoma cell lines (A2008, A2780, SKOV3) were demonstrated to express GluN1 by Western blotting, but displayed different levels of expression. Through immunocytochemistry utilizing GluN1 antibodies and imaging using a confocal microscope, we were able to demonstrate that GluN1 protein is expressed on the surface of these cells. In addition to these findings, GluN2B protein was demonstrated to be expressed using polyclonal antibodies against this protein. Treatment of all ovarian cell lines with antibodies against GluN1 was found to result in decreased cell viability (P<0.001), with decreases to 10%–25% that of untreated cells. Treatment of control HEK293 cells with various dilutions of GluN1 antibodies had no effect on cell viability. The GluN1 antagonist MK-801 (dizocilpine maleate) and the GluN2B antagonist ifenprodil, like antibodies, dramatically decreased the viability of A2780 ovarian tumor cells (P<0.01). Treatment of A2780 tumor xenografts with

  5. NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines.

    PubMed

    North, William G; Liu, Fuli; Tian, Ruiyang; Abbasi, Hamza; Akerman, Bonnie

    2015-01-01

    We have earlier demonstrated that breast cancer and small-cell lung cancer express functional NMDA receptors that can be targeted to promote cancer cell death. Human ovarian cancer tissues and human ovarian cancer cell lines (SKOV3, A2008, and A2780) have now been shown to also express NMDA-receptor subunit 1 (GluN1) and subunit 2B (GluN2B). Seventeen ovarian cancers in two arrays were screened by immunohistochemistry using polyclonal antibodies that recognize an extracellular moiety on GluN1 and on GluN2B. These specimens comprised malignant tissue with pathology diagnoses of serous papillary cystadenocarcinoma, endometrioid adenocarcinoma, and clear-cell carcinoma. Additionally, archival tissues defined as ovarian adenocarcinoma from ten patients treated at this institute were also evaluated. All of the cancerous tissues demonstrated positive staining patterns with the NMDA-receptor antibodies, while no staining was found for tumor-adjacent normal tissues or sections of normal ovarian tissue. Human ovarian adenocarcinoma cell lines (A2008, A2780, SKOV3) were demonstrated to express GluN1 by Western blotting, but displayed different levels of expression. Through immunocytochemistry utilizing GluN1 antibodies and imaging using a confocal microscope, we were able to demonstrate that GluN1 protein is expressed on the surface of these cells. In addition to these findings, GluN2B protein was demonstrated to be expressed using polyclonal antibodies against this protein. Treatment of all ovarian cell lines with antibodies against GluN1 was found to result in decreased cell viability (P<0.001), with decreases to 10%-25% that of untreated cells. Treatment of control HEK293 cells with various dilutions of GluN1 antibodies had no effect on cell viability. The GluN1 antagonist MK-801 (dizocilpine maleate) and the GluN2B antagonist ifenprodil, like antibodies, dramatically decreased the viability of A2780 ovarian tumor cells (P<0.01). Treatment of A2780 tumor xenografts with

  6. Dendritic Cells Enhance HIV Infection of Memory CD4(+) T Cells in Human Lymphoid Tissues.

    PubMed

    Reyes-Rodriguez, Angel L; Reuter, Morgan A; McDonald, David

    2016-02-01

    Dendritic cells (DCs) play a key role in controlling infections by coordinating innate and adaptive immune responses to invading pathogens. Paradoxically, DCs can increase HIV-1 dissemination in vitro by binding and transferring infectious virions to CD4(+) T cells, a process called transinfection. Transinfection has been well characterized in cultured cell lines and circulating primary T cells, but it is unknown whether DCs enhance infection of CD4(+) T cells in vivo. In untreated HIV infection, massive CD4(+) T-cell infection and depletion occur in secondary lymphoid tissues long before decline is evident in the peripheral circulation. To study the role of DCs in HIV infection of lymphoid tissues, we utilized human tonsil tissues, cultured either as tissue blocks or as aggregate suspension cultures, in single-round infection experiments. In these experiments, addition of monocyte-derived DCs (MDDCs) to the cultures increased T-cell infection, particularly in CD4(+) T cells expressing lower levels of HLA-DR. Subset analysis demonstrated that MDDCs increased HIV-1 infection of central and effector memory T-cell populations. Depletion of endogenous myeloid DCs (myDCs) from the cultures decreased memory T-cell infection, and readdition of MDDCs restored infection to predepletion levels. Using an HIV-1 fusion assay, we found that MDDCs equally increased HIV delivery into naïve, central, and effector memory T cells in the cultures, whereas predepletion of myDCs reduced fusion into memory T cells. Together, these data suggest that resident myDCs facilitate memory T-cell infection in lymphoid tissues, implicating DC-mediated transinfection in driving HIV dissemination within these tissues in untreated HIV/AIDS.

  7. Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Moretti, Pierre; Hatlapatka, Tim; Marten, Dana; Lavrentieva, Antonina; Majore, Ingrida; Hass, Ralf; Kasper, Cornelia

    Mesenchymal stem or stromal cells (MSCs) have a high potential for cell-based therapies as well as for tissue engineering applications. Since Friedenstein first isolated stem or precursor cells from the human bone marrow (BM) stroma that were capable of osteogenesis, BM is currently the most common source for MSCs. However, BM presents several disadvantages, namely low frequency of MSCs, high donor-dependent variations in quality, and painful invasive intervention. Thus, tremendous research efforts have been observed during recent years to find alternative sources for MSCs.

  8. Adult human adipose tissue contains several types of multipotent cells.

    PubMed

    Tallone, Tiziano; Realini, Claudio; Böhmler, Andreas; Kornfeld, Christopher; Vassalli, Giuseppe; Moccetti, Tiziano; Bardelli, Silvana; Soldati, Gianni

    2011-04-01

    Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.

  9. ESTIV questionnaire on the acquisition and use of primary human cells and tissue in toxicology.

    PubMed

    Sladowski, Dariusz; Combes, Robert; van der Valk, Jan; Nawrot, Ireneusz; Gut, Grzegorz

    2005-10-01

    The ability to use human cells and tissues in toxicology research and testing has the benefit that it obviates the need to undertake species extrapolation when assessing human hazard. However, obtaining and using human cells and tissues is logistically difficult, ethically complex and is a potential source of infections to those coming into contact with human cell material. The issue is also controversial, with the recent EU legislation draft on tissue engineering, and also due to some instances of human material being obtained and used without informed consent. There are also varying regulations and attitudes relating to the use of human cells and tissues throughout Member States of the EU, and there is a need for harmonisation. The European Society of Toxicology in Vitro (ESTIV) Executive Board and the European Network of Human Research Tissue Banks (ENRTB) have conducted a survey to ascertain the extent to which human cells and tissues are used by its members, how these are obtained, what local regulations are in force, how the material is used, and the advantages and disadvantages experienced by members in using such material, as opposed to cell lines. The results obtained have been compared with the results from a previous survey conducted in 2000. It is hoped that this information will help to facilitate the process of acquiring and using human cells and tissues in a safe and effective way to promote the use of non-animal approaches for investigating the mechanisms of toxicity, and for predicting the toxic hazard of substances. PMID:16150566

  10. Patents on Technologies of Human Tissue and Organ Regeneration from Pluripotent Human Embryonic Stem Cells

    PubMed Central

    Parsons, Xuejun H; Teng, Yang D; Moore, Dennis A; Snyder, Evan Y

    2011-01-01

    Human embryonic stem cells (hESCs) are genetically stable with unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of a large supply of disease-targeted human somatic cells that are restricted to the lineage in need of repair. There is a large healthcare need to develop hESC-based therapeutic solutions to provide optimal regeneration and reconstruction treatment options for the damaged or lost tissue or organ that have been lacking. In spite of controversy surrounding the ownership of hESCs, the number of patent applications related to hESCs is growing rapidly. This review gives an overview of different patent applications on technologies of derivation, maintenance, differentiation, and manipulation of hESCs for therapies. Many of the published patent applications have been based on previously established methods in the animal systems and multi-lineage inclination of pluripotent cells through spontaneous germ-layer differentiation. Innovative human stem cell technologies that are safe and effective for human tissue and organ regeneration in the clinical setting remain to be developed. Our overall view on the current patent situation of hESC technologies suggests a trend towards hESC patent filings on novel therapeutic strategies of direct control and modulation of hESC pluripotent fate, particularly in a 3-dimensional context, when deriving clinically-relevant lineages for regenerative therapies. PMID:23355961

  11. Concise Review: Tissue-Specific Microvascular Endothelial Cells Derived from Human Pluripotent Stem Cells

    PubMed Central

    Wilson, Hannah K.; Canfield, Scott G.; Shusta, Eric V.; Palecek, Sean P.

    2014-01-01

    Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed towards tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell co-culture, directed differentiation, and direct reprogramming strategies. PMID:25070152

  12. Human Circulating and Tissue-Resident CD56bright Natural Killer Cell Populations

    PubMed Central

    Melsen, Janine E.; Lugthart, Gertjan; Lankester, Arjan C.; Schilham, Marco W.

    2016-01-01

    Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation. PMID:27446091

  13. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    PubMed Central

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  14. Scaffold-Free Human Cardiac Tissue Patch Created from Embryonic Stem Cells

    PubMed Central

    Stevens, Kelly R.; Pabon, Lil; Muskheli, Veronica

    2009-01-01

    Progress in cardiac tissue engineering has been limited by (1) unfavorable cell and host responses to biomaterial scaffolds, (2) lack of suitable human cardiomyocyte sources, and (3) lack of fabrication techniques for scalable production of engineered tissue constructs. Here we report a novel and scalable method to generate scaffold-free human cardiac tissue patches. Human embryonic stem cells were differentiated to cardiomyocytes using activin A and BMP4 and placed into suspension on a rotating orbital shaker. Cells aggregated to form macroscopic disc-shaped patches of beating tissue after 2 days. Patch diameter was directly proportional to input cell number (approximately 11 mm with 12 million cells), and patches were 300–600 μm thick. Cardiomyocytes were concentrated around the patch edges and exhibited increased purity and maturation with time, comprising approximately 80% of total cells after 11 days. Noncardiac cell elements, primarily epithelium, were present at day 2 but were diminished markedly at later time points. Cardiomyocyte proliferation occurred throughout the patches at day 2 but declined by day 8. Patches exhibited automaticity and synchronous calcium transients, indicating electromechanical coupling. These novel scaffold-free human myocardial patches address critical challenges related to human cell sourcing and tissue fabrication that previously inhibited progress in cardiac tissue engineering. PMID:19063661

  15. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  16. Intra-Operatively Obtained Human Tissue: Protocols and Techniques for the Study of Neural Stem Cells

    PubMed Central

    Chaichana, Kaisorn; Guerrero-Cazares, Hugo; Capilla-Gonzalez, Vivian; Zamora-Berridi, Grettel; Achanta, Praganthi; Gonzalez-Perez, Oscar; Jallo, George I.; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2009-01-01

    The discoveries of neural (NSCs) and brain tumor stem cells (BTSCs) in the adult human brain and in brain tumors, respectively, have led to a new era in neuroscience research. These cells represent novel approaches to studying normal phenomena such as memory and learning, as well as pathological conditions such as Parkinson’s disease, stroke, and brain tumors. This new paradigm stresses the importance of understanding how these cells behave in vitro and in vivo. It also stresses the need to use human-derived tissue to study human disease because animal models may not necessarily accurately replicate the processes that occur in humans. An important, but often underused, source of human tissue and, consequently, both NSCs and BTSCs, is the operating room. This study describes in detail both current and newly developed laboratory techniques, which in our experience are used to process and study human NSCs and BTSCs from tissue obtained directly from the operating room. PMID:19427538

  17. [The application progress of human urine derived stem cells in bone tissue engineering].

    PubMed

    Gao, Peng; Jiang, Dapeng; Li, Zhaozhu

    2016-04-01

    The research of bone tissue engineering bases on three basic directions of seed cells, scaffold materials and growth information. Stem cells have been widely studied as seed cells. Human urine-derived stem cell (hUSC) is extracted from urine and described to be adhesion growth, cloning, expression of the majority of mesenchymal stem cell markers and peripheral cell markers, multi-potential and no tumor but stable karyotype with passaging many times. Some researches proposed that hUSC might be a new source of seed cells in tissue engineering because of their invasive and convenient obtention, stable culture and multiple differentiation potential. PMID:27029208

  18. Isolation and Expansion of Mesenchymal Stem/Stromal Cells Derived from Human Placenta Tissue

    PubMed Central

    Pelekanos, Rebecca A.; Sardesai, Varda S.; Futrega, Kathryn; Lott, William B.; Kuhn, Michael; Doran, Michael R.

    2016-01-01

    Mesenchymal stem/stromal cells (MSC) are promising candidates for use in cell-based therapies. In most cases, therapeutic response appears to be cell-dose dependent. Human term placenta is rich in MSC and is a physically large tissue that is generally discarded following birth. Placenta is an ideal starting material for the large-scale manufacture of multiple cell doses of allogeneic MSC. The placenta is a fetomaternal organ from which either fetal or maternal tissue can be isolated. This article describes the placental anatomy and procedure to dissect apart the decidua (maternal), chorionic villi (fetal), and chorionic plate (fetal) tissue. The protocol then outlines how to isolate MSC from each dissected tissue region, and provides representative analysis of expanded MSC derived from the respective tissue types. These methods are intended for pre-clinical MSC isolation, but have also been adapted for clinical manufacture of placental MSC for human therapeutic use. PMID:27340821

  19. The fractional viscoelastic response of human breast tissue cells

    NASA Astrophysics Data System (ADS)

    Carmichael, B.; Babahosseini, H.; Mahmoodi, S. N.; Agah, M.

    2015-07-01

    The mechanical response of a living cell is notoriously complicated. The complex, heterogeneous characteristics of cellular structure introduce difficulties that simple linear models of viscoelasticity cannot overcome, particularly at deep indentation depths. Herein, a nano-scale stress-relaxation analysis performed with an atomic force microscope reveals that isolated human breast cells do not exhibit simple exponential relaxation capable of being modeled by the standard linear solid (SLS) model. Therefore, this work proposes the application of the fractional Zener (FZ) model of viscoelasticity to extract mechanical parameters from the entire relaxation response, improving upon existing physical techniques to probe isolated cells. The FZ model introduces a new parameter that describes the fractional time-derivative dependence of the response. The results show an exceptional increase in conformance to the experimental data compared to that predicted by the SLS model, and the order of the fractional derivative (α) is remarkably homogeneous across the populations, with a median value of 0.48 ± 0.06 for the malignant population and 0.51 ± 0.07 for the benign. The cells’ responses exhibit power-law behavior and complexity not associated with simple relaxation (SLS, α = 1) that supports the application of a fractional model. The distributions of some of the FZ parameters also preserve the distinction between the malignant and benign sample populations seen from the linear model and previous results while including the contribution of fast-relaxation behavior. The resulting viscosity, measured by a composite relaxation time, exhibits considerably less dispersion due to residual error than the distribution generated by the linear model and therefore serves as a more powerful marker for cell differentiation.

  20. Revisions to Exceptions Applicable to Certain Human Cells, Tissues, and Cellular and Tissue-Based Products. Final rule.

    PubMed

    2016-06-22

    : The Food and Drug Administration (FDA or Agency or we) is issuing this final rule to amend certain regulations regarding donor eligibility, including the screening and testing of donors of particular human cells, tissues, and cellular and tissue-based products (HCT/Ps), and related labeling. This final rule is in response to our enhanced understanding in this area and in response to comments from stakeholders regarding the importance of embryos to individuals and couples seeking access to donated embryos. PMID:27373010

  1. Revisions to Exceptions Applicable to Certain Human Cells, Tissues, and Cellular and Tissue-Based Products. Final rule.

    PubMed

    2016-06-22

    : The Food and Drug Administration (FDA or Agency or we) is issuing this final rule to amend certain regulations regarding donor eligibility, including the screening and testing of donors of particular human cells, tissues, and cellular and tissue-based products (HCT/Ps), and related labeling. This final rule is in response to our enhanced understanding in this area and in response to comments from stakeholders regarding the importance of embryos to individuals and couples seeking access to donated embryos.

  2. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    PubMed

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.

  3. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity.

  4. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  5. Repair of Cartilage Defects in Arthritic Tissue with Differentiated Human Embryonic Stem Cells

    PubMed Central

    Olee, Tsaiwei; Grogan, Shawn P.; Lotz, Martin K.; Colwell, Clifford W.

    2014-01-01

    Chondrocytes have been generated in vitro from a range of progenitor cell types and by a number of strategies. However, achieving reconstitution of actual physiologically relevant, appropriately-laminated cartilage in situ that would be applicable to conditions, such as arthritis and cartilage degeneration remains elusive. This lack of success is multifactorial and includes limited cell source, decreased proliferation rate of mature chondrocytes, lack of maintenance of phenotype, reduced matrix synthesis, and poor integration with host tissue. We report an efficient approach for deriving mesenchymal chondroprogenitor cells from human embryonic stem cells. These cells generated tissue containing cartilage-specific matrix proteins that integrated in situ in a partial-thickness defect in ex vivo articular cartilage harvested from human arthritic joints. Given that stem cells provide a virtually inexhaustible supply of starting material and that our technique is easily scalable, cartilaginous tissue primed and grafted in this manner could be suitable for clinical translation. PMID:24028447

  6. From cell lines to tissues: extrapolation of transcriptional effects to human tissues (SOT)

    EPA Science Inventory

    A new suite of assays in the metabolically-competent, human hepatocyte-derived HepaRG cell line has been added to the ToxCast screening suite. For 1066 chemicals we have evaluated the chemical treatment-induced changes in expression for a diverse set of 93 genes representative of...

  7. Gene Transfection of Human Turbinate Mesenchymal Stromal Cells Derived from Human Inferior Turbinate Tissues

    PubMed Central

    Kwon, Jin Seon; Park, Seung Hun; Baek, Ji Hye; Dung, Truong Minh; Kim, Sung Won; Min, Byoung Hyun; Kim, Jae Ho; Kim, Moon Suk

    2016-01-01

    Human turbinate mesenchymal stromal cells (hTMSCs) are novel stem cells derived from nasal inferior turbinate tissues. They are easy to isolate from the donated tissue after turbinectomy or conchotomy. In this study, we applied hTMSCs to a nonviral gene delivery system using polyethyleneimine (PEI) as a gene carrier; furthermore, the cytotoxicity and transfection efficiency of hTMSCs were evaluated to confirm their potential as resources in gene therapy. DNA-PEI nanoparticles (NPs) were generated by adding the PEI solution to DNA and were characterized by a gel electrophoresis and by measuring particle size and surface charge of NPs. The hTMSCs were treated with DNA-PEI NPs for 4 h, and toxicity of NPs to hTMSCs and gene transfection efficiency were monitored using MTT assay, fluorescence images, and flow cytometry after 24 h and 48 h. At a high negative-to-positive charge ratio, DNA-PEI NPs treatment led to cytotoxicity of hTMSCs, but the transfection efficiency of DNA was increased due to the electrostatic effect between the NPs and the membranes of hTMSCs. Importantly, the results of this research verified that PEI could deliver DNA into hTMSCs with high efficiency, suggesting that hTMSCs could be considered as untapped resources for applications in gene therapy. PMID:26783402

  8. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  9. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  10. Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications.

    PubMed

    Kusuma, Sravanti; Facklam, Amanda; Gerecht, Sharon

    2015-02-15

    Tissue-engineered constructs are rendered useless without a functional vasculature owing to a lack of nutrients and oxygen. Cell-based approaches to reconstruct blood vessels can yield structures that mimic native vasculature and aid transplantation. Vascular derivatives of human induced pluripotent stem cells (hiPSCs) offer opportunities to generate patient-specific therapies and potentially provide unlimited amounts of vascular cells. To be used in engineered vascular constructs and confer therapeutic benefit, vascular derivatives must exhibit additional key properties, including extracellular matrix (ECM) production to confer structural integrity and growth factor production to facilitate integration. In this study, we examine the hypothesis that vascular cells derived from hiPSCs exhibit these critical properties to facilitate their use in engineered tissues. hiPSCs were codifferentiated toward early vascular cells (EVCs), a bicellular population of endothelial cells (ECs) and pericytes, under varying low-oxygen differentiation conditions; subsequently, ECs were isolated and passaged. We found that EVCs differentiated under low-oxygen conditions produced copious amounts of collagen IV and fibronectin as well as vascular endothelial growth factor and angiopoietin 2. EVCs differentiated under atmospheric conditions did not demonstrate such abundant ECM expression, but exhibited greater expression of angiopoietin 1. Isolated ECs could proliferate up to three passages while maintaining the EC marker vascular endothelial cadherin. Isolated ECs demonstrated an increased propensity to produce ECM compared with their EVC correlates and took on an arterial-like fate. These findings illustrate that hiPSC vascular derivates hold great potential for therapeutic use and should continue to be a preferred cell source for vascular construction.

  11. Immunolocalization of nitric oxide synthase isoforms in human archival and rat tissues, and cultured cells.

    PubMed

    Martins, Antonio R; Zanella, Cesar A B; Zucchi, Fabiola C R; Dombroski, Thaís C D; Costa, Edmar T; Guethe, Liliane M; Oliveira, Alina O; Donatti, Ana L F; Neder, Luciano; Chimelli, Leila; De Nucci, Gilberto; Lee-Ho, Paulo; Murad, Ferid

    2011-05-15

    Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900 W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900 W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens.

  12. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  13. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  14. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells

    PubMed Central

    Belair, David G.; Whisler, Jordan A.; Valdez, Jorge; Velazquez, Jeremy; Molenda, James A.; Vickerman, Vernella; Lewis, Rachel; Daigh, Christine; Hansen, Tyler D.; Mann, David A.; Thomson, James A.; Griffith, Linda G.; Kamm, Roger D.; Schwartz, Michael P.; Murphy, William L.

    2015-01-01

    Here we describe a strategy to model blood vessel development using a well-defined iPSC-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats. PMID:25190668

  15. The regulation of allogeneic human cells and tissue products as biomaterials.

    PubMed

    Yano, Kazuo; Tsuyuki, Kenichiro; Watanabe, Natsumi; Kasanuki, Hiroshi; Yamato, Masayuki

    2013-04-01

    The current definition of biomaterials differs vastly from it of just a decade ago. According to advancing technologies, it encompasses unpredictable materials such as engineered human cells and tissue. These biomaterials also have to be approved to use in health care business by regulatory authority, which are defined as drug, medical device, or biologics in the regulation. This Leading Opinion Paper addresses the regulatory issues of engineered human cells and tissue products using allogeneic cells that should have a great possibility to develop therapeutics for life-threating diseases or orphan diseases. Six allogeneic human cells and tissue products derived from neonatal or infant fibroblasts and/or keratinocytes were approved as medical devices or biologics in the United States as well as a hematopoietic cell product. For five of the seven products, well-controlled comparative clinical trials were conducted as pre-approval evaluation followed by post-approval evaluation. Although these products avoid a sterilization process usually used for medical devices, no serious malfunction that would lead to class 1 recall was reported. This article would provide insight for development of the engineered human cells and tissue.

  16. T cell-dependent survival of CD20+ and CD20- plasma cells in human secondary lymphoid tissue.

    PubMed

    Withers, David R; Fiorini, Claudia; Fischer, Randy T; Ettinger, Rachel; Lipsky, Peter E; Grammer, Amrie C

    2007-06-01

    The signals mediating human plasma cell survival in vivo, particularly within secondary lymphoid tissue, are unclear. Human tonsils grafted into immunodeficient mice were therefore used to delineate the mechanisms promoting the survival of plasma cells. Tonsillar plasma cells were maintained within the grafts and the majority were nonproliferating, indicating a long-lived phenotype. A significant depletion of graft plasma cells was observed after anti-CD20 treatment, consistent with the expression of CD20 by most of the cells. Moreover, anti-CD52 treatment caused the complete loss of all graft lymphocytes, including plasma cells. Unexpectedly, anti-CD3, but not anti-CD154, treatment caused the complete loss of plasma cells, indicating an essential role for T cells, but not CD40-CD154 interactions in plasma cell survival. The in vitro coculture of purified tonsillar plasma cells and T cells revealed a T-cell survival signal requiring cell contact. Furthermore, immunofluorescence studies detected a close association between human plasma cells and T cells in vivo. These data reveal that human tonsil contains long-lived plasma cells, the majority of which express CD20 and can be deleted with anti-CD20 therapy. In addition, an important role for contact-dependent interactions with T cells in human plasma cell survival within secondary lymphoid tissue was identified.

  17. Species-Specific Metastasis of Human Tumor Cells in the Severe Combined Immunodeficiency Mouse Engrafted with Human Tissue

    NASA Astrophysics Data System (ADS)

    Shtivelman, Emma; Namikawa, Reiko

    1995-05-01

    We have attempted to model human metastatic disease by implanting human target organs into the immunodeficient C.B-17 scid/scid (severe combined immunodeficiency; SCID) mouse, creating SCID-hu mice. Preferential metastasis to implants of human fetal lung and human fetal bone marrow occurred after i.v. injection of human small cell lung cancer (SCLC) cells into SCID-hu mice; the homologous mouse organs were spared. Clinically more aggressive variant SCLC cells metastasized more efficiently to human fetal lung implants than did cells from classic SCLC. Metastasis of variant SCLC to human fetal bone marrow was enhanced in SCID-hu mice exposed to γ-irradiation or to interleukin 1α. These data indicate that the SCID-hu mice may provide a model in which to study species- and tissue-specific steps of the human metastatic process.

  18. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue

    PubMed Central

    Vellasamy, Shalini; Sandrasaigaran, Pratheep; Vidyadaran, Sharmili; George, Elizabeth; Ramasamy, Rajesh

    2012-01-01

    AIM: To explore the feasibility of placenta tissue as a reliable and efficient source for generating mesenchymal stem cells (MSC). METHODS: MSC were generated from human placenta tissue by enzymatic digestion and mechanical dissociation. The placenta MSC (PLC-MSC) were characterized for expression of cell surface markers, embryonic stem cell (ECS) gene expression and their differentiation ability into adipocytes and osteocytes. The immunosuppressive properties of PLC-MSC on resting and phytohemagglutinin (PHA) stimulated allogenic T cells were assessed by means of cell proliferation via incorporation of tritium thymidine (3H-TdR). RESULTS: The generated PLC-MSC appeared as spindle-shaped cells, expressed common MSC surface markers and ESC transcriptional factors. They also differentiated into adipogenic and osteogenic lineages when induced. However, continuous cultivation up to passage 15 caused changes in morphological appearance and cellular senescence, although the stem cell nature of their protein expression was unchanged. In terms of their immunosuppressive properties, PLC-MSC were unable to stimulate resting T cell proliferation; they inhibited the PHA stimulated T cells in a dose dependent manner through cell to cell contact. In our study, MSC generated from human placenta exhibited similar mesenchymal cell surface markers; MSC-like gene expression pattern and MSC-like differentiation potential were comparable to other sources of MSC. CONCLUSION: We suggest that placenta tissues can serve as an alternative source of MSC for future experimental and clinical studies. PMID:22993662

  19. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    PubMed

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  20. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage

    PubMed Central

    Zorzi, Alessandro R.; Amstalden, Eliane M. I.; Plepis, Ana Maria G.; Martins, Virginia C. A.; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S. S.; Luzo, Angela C. M.; Miranda, João B.

    2015-01-01

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model. PMID:26569221

  1. Generating human intestinal tissue from pluripotent stem cells in vitro.

    PubMed

    McCracken, Kyle W; Howell, Jonathan C; Wells, James M; Spence, Jason R

    2011-12-01

    Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids, pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction, the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step, 3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors, and they proliferate and expand over 1-3 months to give rise to intestinal tissue, complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date, this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro. PMID:22082986

  2. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    PubMed

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  3. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration.

    PubMed

    Masumoto, Hidetoshi; Ikuno, Takeshi; Takeda, Masafumi; Fukushima, Hiroyuki; Marui, Akira; Katayama, Shiori; Shimizu, Tatsuya; Ikeda, Tadashi; Okano, Teruo; Sakata, Ryuzo; Yamashita, Jun K

    2014-01-01

    To realize cardiac regeneration using human induced pluripotent stem cells (hiPSCs), strategies for cell preparation, tissue engineering and transplantation must be explored. Here we report a new protocol for the simultaneous induction of cardiomyocytes (CMs) and vascular cells [endothelial cells (ECs)/vascular mural cells (MCs)], and generate entirely hiPSC-engineered cardiovascular cell sheets, which showed advantageous therapeutic effects in infarcted hearts. The protocol adds to a previous differentiation protocol of CMs by using stage-specific supplementation of vascular endothelial cell growth factor for the additional induction of vascular cells. Using this cell sheet technology, we successfully generated physically integrated cardiac tissue sheets (hiPSC-CTSs). HiPSC-CTS transplantation to rat infarcted hearts significantly improved cardiac function. In addition to neovascularization, we confirmed that engrafted human cells mainly consisted of CMs in >40% of transplanted rats four weeks after transplantation. Thus, our HiPSC-CTSs show promise for cardiac regenerative therapy.

  4. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments.

    PubMed

    Dunne, Lina W; Huang, Zhao; Meng, Weixu; Fan, Xuejun; Zhang, Ningyan; Zhang, Qixu; An, Zhiqiang

    2014-06-01

    Human adipose tissue extracellular matrix, derived through decellularization processing, has been shown to provide a biomimetic microenvironment for adipose tissue regeneration. This study reports the use of human adipose tissue-derived extracellular matrix (hDAM) scaffolds as a three-dimensional cell culturing system for the investigation of breast cancer growth and drug treatments. The hDAM scaffolds have similar extracellular matrix composition to the microenvironment of breast tissues. Breast cancer cells were cultured in hDAM scaffolds, and cell proliferation, migration, morphology, and drug responses were investigated. The growth profiles of multiple breast cancer cell lines cultured in hDAM scaffolds differed from the growth of those cultured on two-dimensional surfaces and more closely resembled the growth of xenografts. hDAM-cultured breast cancer cells also differed from those cultured on two-dimensional surfaces in terms of cell morphology, migration, expression of adhesion molecules, and sensitivity to drug treatment. Our results demonstrated that the hDAM system provides breast cancer cells with a biomimetic microenvironment in vitro that more closely mimics the in vivo microenvironment than existing two-dimensional and Matrigel three-dimensional cultures do, and thus can provide vital information for the characterization of cancer cells and screening of cancer therapeutics.

  5. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization.

    PubMed

    Iftimia-Mander, Andreea; Hourd, Paul; Dainty, Roger; Thomas, Robert J

    2013-10-01

    Human tissue banks are a potential source of cellular material for the nascent cell-based therapy industry; umbilical cord (UC) tissue is increasingly privately banked in such facilities as a source of mesenchymal stem cells for future therapeutic use. However, early handling of UC tissue is relatively uncontrolled due to the clinical demands of the birth environment and subsequent transport logistics. It is therefore necessary to develop extraction methods that are robust to real-world operating conditions, rather than idealized operation. Cell yield, growth, and differentiation potential of UC tissue extracted cells was analyzed from tissue processed by explant and enzymatic digestion. Variability of cell yield extracted with the digestion method was significantly greater than with the explant method. This was primarily due to location within the cord tissue (higher yield from placental end) and time delay before tissue processing (substantially reduced yield with time). In contrast, extraction of cells by explant culture was more robust to these processing variables. All cells isolated showed comparable proliferative and differentiation functionality. In conclusion, given the challenge of tightly controlled operating conditions associated with isolation and shipping of UC tissue to banking facilities, explant extraction of cells offers a more robust and lower-variability extraction method than enzymatic digestion. PMID:24835260

  6. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model.

    PubMed

    Hasegawa, Masateru; Yamato, Masayuki; Kikuchi, Akihiko; Okano, Teruo; Ishikawa, Isao

    2005-01-01

    Conventional periodontal regeneration methods remain insufficient to attain complete and reliable clinical regeneration of periodontal tissues. We have developed a new method of cell transplantation using cell sheet engineering and have applied it to this problem. The purpose of this study was to investigate the characteristics of human periodontal ligament (HPDL) cell sheets retrieved from culture on unique temperature-responsive culture dishes, and to examine whether these cell sheets can regenerate periodontal tissues. The HPDL cell sheets were examined histologically and biochemically, and also were transplanted into a mesial dehiscence model in athymic rats. HPDL cells were harvested from culture dishes as a contiguous cell sheet with abundant extracellular matrix and retained intact integrins that are susceptible to trypsin-EDTA treatment. In the animal study, periodontal ligament-like tissues that include an acellular cementum-like layer and fibrils anchoring into this layer were identified in all the athymic rats transplanted with HPDL cell sheets. This fibril anchoring highly resembles native periodontal ligament fibers; such regeneration was not observed in nontransplanted controls. These results suggest that this technique, based on the concept of cell sheet engineering, can be useful for periodontal tissue regeneration. PMID:15869425

  7. Characterization and Differentiation of Stem Cells Isolated from Human Newborn Foreskin Tissue.

    PubMed

    Somuncu, Özge Sezin; Taşlı, Pakize Neslihan; Şişli, Hatice Burcu; Somuncu, Salih; Şahin, Fikrettin

    2015-11-01

    Circumcision is described as a cultural, medical, and religious process which states surgical removal of the foreskin either partly or fully. Cells isolated from the circumcised tissues are referred as foreskin cells. They have been thought as feeder cell lines for embryonic stem cells. Their fibroblastic properties were also utilized for several experiments. The waste tissues that remain after the circumcision thought to have stem cell properties. Therefore, there have been very few attempts to expose their stem cell properties without turning them into induced pluripotent stem cells. Although stem cell isolation from prepuce and their mesenchymal multilineage differentiation potential have been presented many times in the literature, the current study explored hematopoietical phenotype of newborn foreskin stem cells for the first time. According to the results, human newborn foreskin stem cells (hnFSSCs) were identified by their capability to turn into all three germ layer cell types under in vitro conditions. In addition, these cells have exhibited a stable phenotype and have remained as a monolayer in vitro. hnFSSCs suggested to carry different treatment potentials for bone damages, cartilage problems, nerve damages, lesion formations, and other diseases that are derive from mesodermal, endodermal, and ectodermal origins. Owing to the location of the tissue in the body and differentiation capabilities of hnFSSCs, these cells can be considered as easily obtainable and utilizable even better than the other stem cell sources. In addition, hnFSSCs offers a great potential for tissue engineering approaches due to exhibiting embryonic stem cell-like characteristics, not having any ethical issues, and teratoma induction as in embryonic stem cell applications.

  8. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. PMID:27521270

  9. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body.

  10. Thrombopoietin receptor expression in human cancer cell lines and primary tissues.

    PubMed

    Columbyova, L; Loda, M; Scadden, D T

    1995-08-15

    c-mpl is the receptor for the recently identified megakaryocyte growth and differentiation factor thrombopoietin. Thrombopoietin has been shown to be capable of raising platelet counts in animals and is about to enter clinical trials in humans. In anticipation of its likely use in the care of patients receiving cancer chemotherapy, we evaluated the expression of human c-mpl by reverse transcription PCR on 39 human cell lines and 20 primary human tissue samples derived from both normal and malignant sources. c-mpl transcripts were found in all megakaryocytic cell lines tested (CMK, CMK-2B, CMK-2D, SO, and DAMI), the CD34+ leukemia cell line KMT-2, and a hepatocellular carcinoma cell line (Hep3B). Among primary tissues, fetal liver cells and brain had detectable levels of c-mpl message, and among primary tumors, none were found to express c-mpl. These data support the conclusion that c-mpl has restricted expression that is primarily, but not exclusively, related to megakaryocytopoiesis. These observations suggest that thrombopoietin is unlikely to have direct effects on other malignant or normal tissue should it have a clinical role in the treatment of chemotherapy-induced thrombocytopenia. PMID:7627956

  11. Novel strong tissue specific promoter for gene expression in human germ cells

    PubMed Central

    2010-01-01

    Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12), and an important role - in the rest two cell lines. PMID:20716342

  12. Hypoxia Created Human Mesenchymal Stem Cell Sheet for Prevascularized 3D Tissue Construction.

    PubMed

    Zhang, Lijun; Xing, Qi; Qian, Zichen; Tahtinen, Mitchell; Zhang, Zhaoqiang; Shearier, Emily; Qi, Shaohai; Zhao, Feng

    2016-02-01

    3D tissue based on human mesenchymal stem cell (hMSC) sheets offers many interesting opportunities for regenerating multiple types of connective tissues. Prevascularizing hMSC sheets with endothelial cells (ECs) will improve 3D tissue performance by supporting cell survival and accelerating integration with host tissue. It is hypothesized that hypoxia cultured hMSC sheets can promote microvessel network formation and preserve stemness of hMSCs. This study investigates the vascularization of hMSC sheets under different oxygen tensions. It is found that the HN condition, in which hMSC sheets formed under physiological hypoxia (2% O2 ) and then cocultured with ECs under normoxia (20% O2 ), enables longer and more branched microvessel network formation. The observation is corroborated by higher levels of angiogenic factors in coculture medium. Additionally, the hypoxic hMSC sheet is more uniform and less defective, which facilitates fabrication of 3D prevascularized tissue construct by layering the prevascularized hMSC sheets and maturing in rotating wall vessel bioreactor. The hMSCs in the 3D construct still maintain multilineage differentiation ability, which indicates the possible application of the 3D construct for various connective tissues regeneration. These results demonstrate that hypoxia created hMSC sheets benefit the microvessel growth and it is feasible to construct 3D prevascularized tissue construct using the prevascularized hMSC sheets.

  13. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  14. Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues

    PubMed Central

    Ivliev, Alexander E.; 't Hoen, Peter A. C.; van Roon-Mom, Willeke M. C.; Peters, Dorien J. M.; Sergeeva, Marina G.

    2012-01-01

    Cilia are cell organelles that play important roles in cell motility, sensory and developmental functions and are involved in a range of human diseases, known as ciliopathies. Here, we search for novel human genes related to cilia using a strategy that exploits the previously reported tendency of cell type-specific genes to be coexpressed in the transcriptome of complex tissues. Gene coexpression networks were constructed using the noise-resistant WGCNA algorithm in 12 publicly available microarray datasets from human tissues rich in motile cilia: airways, fallopian tubes and brain. A cilia-related coexpression module was detected in 10 out of the 12 datasets. A consensus analysis of this module's gene composition recapitulated 297 known and predicted 74 novel cilia-related genes. 82% of the novel candidates were supported by tissue-specificity expression data from GEO and/or proteomic data from the Human Protein Atlas. The novel findings included a set of genes (DCDC2, DYX1C1, KIAA0319) related to a neurological disease dyslexia suggesting their potential involvement in ciliary functions. Furthermore, we searched for differences in gene composition of the ciliary module between the tissues. A multidrug-and-toxin extrusion transporter MATE2 (SLC47A2) was found as a brain-specific central gene in the ciliary module. We confirm the localization of MATE2 in cilia by immunofluorescence staining using MDCK cells as a model. While MATE2 has previously gained attention as a pharmacologically relevant transporter, its potential relation to cilia is suggested for the first time. Taken together, our large-scale analysis of gene coexpression networks identifies novel genes related to human cell cilia. PMID:22558177

  15. Discovery of Human sORF-Encoded Polypeptides (SEPs) in Cell Lines and Tissue

    PubMed Central

    2015-01-01

    The existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs. These results continue to expand the human genome and proteome and demonstrate that SEPs are a ubiquitous class of nonannotated polypeptides that require further investigation. PMID:24490786

  16. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues

    PubMed Central

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    Introduction: Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy. PMID:24745973

  17. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    PubMed

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  18. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue.

    PubMed

    Gavin, Kathleen M; Gutman, Jonathan A; Kohrt, Wendy M; Wei, Qi; Shea, Karen L; Miller, Heidi L; Sullivan, Timothy M; Erickson, Paul F; Helm, Karen M; Acosta, Alistaire S; Childs, Christine R; Musselwhite, Evelyn; Varella-Garcia, Marileila; Kelly, Kimberly; Majka, Susan M; Klemm, Dwight J

    2016-03-01

    White adipocytes in adults are typically derived from tissue resident mesenchymal progenitors. The recent identification of de novo production of adipocytes from bone marrow progenitor-derived cells in mice challenges this paradigm and indicates an alternative lineage specification that adipocytes exist. We hypothesized that alternative lineage specification of white adipocytes is also present in human adipose tissue. Bone marrow from transgenic mice in which luciferase expression is governed by the adipocyte-restricted adiponectin gene promoter was adoptively transferred to wild-type recipient mice. Light emission was quantitated in recipients by in vivo imaging and direct enzyme assay. Adipocytes were also obtained from human recipients of hematopoietic stem cell transplantation. DNA was isolated, and microsatellite polymorphisms were exploited to quantify donor/recipient chimerism. Luciferase emission was detected from major fat depots of transplanted mice. No light emission was observed from intestines, liver, or lungs. Up to 35% of adipocytes in humans were generated from donor marrow cells in the absence of cell fusion. Nontransplanted mice and stromal-vascular fraction samples were used as negative and positive controls for the mouse and human experiments, respectively. This study provides evidence for a nontissue resident origin of an adipocyte subpopulation in both mice and humans.

  19. Antigenic properties of pleuropneumonia-like organisms from tissue cell cultures and the human genital area.

    PubMed

    BAILEY, J S; CLARK, H W; FELTS, W R; FOWLER, R C; BROWN, T M

    1961-10-01

    Bailey, Jack S. (George Washington University, Washington, D. C.), Harold W. Clark, William R. Felts, Richard C. Fowler, and Thomas McP. Brown. Antigenic properties of pleuropneumonia-like organisms from tissue cell cultures and the human genital area. J. Bacteriol. 82:542-547. 1961.-Antigens were prepared from several tissue culture and human genital strains of pleuropneumonia-like organisms (PPLO) by a method utilizing continuous agitation of the incubating cultures. Antisera were produced in rabbits by intravenous injection of suspensions of these organisms standardized turbidimetrically. The antigenic properties of the selected strains were compared by agglutination techniques supplemented by a test based upon the inhibition of growth of PPLO by specific antisera.The majority of tissue culture strains of PPLO studied, including contaminants from several HeLa cell lines, appeared to be antigenically similar to the human type 1 strains. However, one strain (Sp-1) from a HeLa cell line was found to be related to the human type 2 PPLO.

  20. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

    PubMed Central

    Wang, Limin; Zhao, Liang; Detamore, Michael S.

    2013-01-01

    Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869

  1. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body.

    PubMed

    Kambe, Naotomo; Hiramatsu, Hidefumi; Shimonaka, Mika; Fujino, Hisanori; Nishikomori, Ryuta; Heike, Toshio; Ito, Mamoru; Kobayashi, Kimio; Ueyama, Yoshito; Matsuyoshi, Norihisa; Miyachi, Yoshiki; Nakahata, Tatsutoshi

    2004-02-01

    The transplantation of primitive human cells into sublethally irradiated immune-deficient mice is the well-established in vivo system for the investigation of human hematopoietic stem cell function. Although mast cells are the progeny of hematopoietic stem cells, human mast cell development in mice that underwent human hematopoietic stem cell transplantation has not been reported. Here we report on human mast cell development after xenotransplantation of human hematopoietic stem cells into nonobese diabetic severe combined immunodeficient (NOD/SCID)/gamma(c)(null) (NOG) mice with severe combined immunodeficiency and interleukin 2 (IL-2) receptor gamma-chain allelic mutation. Supported by the murine environment, human mast cell clusters developed in mouse dermis, but they required more time than other forms of human cell reconstitution. In lung and gastric tract, mucosal-type mast cells containing tryptase but lacking chymase located on gastric mucosa and in alveoli, whereas connective tissue-type mast cells containing both tryptase and chymase located on gastric submucosa and around major airways, as in the human body. Mast cell development was also observed in lymph nodes, spleen, and peritoneal cavity but not in the peripheral blood. Xenotransplantation of human hematopoietic stem cells into NOG mice can be expected to result in a highly effective model for the investigation of human mast cell development and function in vivo.

  2. Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering

    PubMed Central

    Rosa, Vinicius; Dubey, Nileshkumar; Islam, Intekhab; Min, Kyung-San; Nör, Jacques E.

    2016-01-01

    Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates). The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies. PMID:27313627

  3. Computerized image analysis of cell-cell interactions in human renal tissue by using multi-channel immunoflourescent confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Liarski, Vladimir M.; Kaverina, Natalya; Clark, Marcus R.; Giger, Maryellen L.

    2012-03-01

    Analysis of interactions between B and T cells in tubulointerstitial inflammation is important for understanding human lupus nephritis. We developed a computer technique to perform this analysis, and compared it with manual analysis. Multi-channel immunoflourescent-microscopy images were acquired from 207 regions of interest in 40 renal tissue sections of 19 patients diagnosed with lupus nephritis. Fresh-frozen renal tissue sections were stained with combinations of immunoflourescent antibodies to membrane proteins and counter-stained with a cell nuclear marker. Manual delineation of the antibodies was considered as the reference standard. We first segmented cell nuclei and cell membrane markers, and then determined corresponding cell types based on the distances between cell nuclei and specific cell-membrane marker combinations. Subsequently, the distribution of the shortest distance from T cell nuclei to B cell nuclei was obtained and used as a surrogate indicator of cell-cell interactions. The computer and manual analyses results were concordant. The average absolute difference was 1.1+/-1.2% between the computer and manual analysis results in the number of cell-cell distances of 3 μm or less as a percentage of the total number of cell-cell distances. Our computerized analysis of cell-cell distances could be used as a surrogate for quantifying cell-cell interactions as either an automated and quantitative analysis or for independent confirmation of manual analysis.

  4. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  5. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens.

    PubMed

    Skogberg, Gabriel; Lundberg, Vanja; Berglund, Martin; Gudmundsdottir, Judith; Telemo, Esbjörn; Lindgren, Susanne; Ekwall, Olov

    2015-09-01

    Exosomes are nano-sized vesicles released by cells into the extracellular space and have been shown to be present in thymic tissue both in mice and in humans. The source of thymic exosomes is however still an enigma and hence it is not known whether thymic epithelial cells (TECs) are able to produce exosomes. In this work, we have cultured human TECs and isolated exosomes. These exosomes carry tissue-restricted antigens (TRAs), for example, myelin basic protein and desmoglein 3. The presence of TRAs indicates a possible role for thymic epithelium-derived exosomes in the selection process of thymocytes. The key contribution of these exosomes could be to disseminate self-antigens from the thymic epithelia, thus making them more accessible to the pool of maturing thymocytes. This would increase the coverage of TRAs within the thymus, and facilitate the process of positive and negative selection.

  6. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering.

    PubMed

    Daei-Farshbaf, Neda; Ardeshirylajimi, Abdolreza; Seyedjafari, Ehsan; Piryaei, Abbas; Fadaei Fathabady, Fatemeh; Hedayati, Mehdi; Salehi, Mohammad; Soleimani, Masoud; Nazarian, Hamid; Moradi, Sadegh-Lotfalah; Norouzian, Mohsen

    2014-02-01

    The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

  7. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

    PubMed

    Mesri, Mehdi; Birse, Charlie; Heidbrink, Jenny; McKinnon, Kathy; Brand, Erin; Bermingham, Candy Lee; Feild, Brian; Fitzhugh, William; He, Tao; Ruben, Steve; Moore, Paul A

    2013-01-01

    Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.

  8. Identification and Characterization of Angiogenesis Targets through Proteomic Profiling of Endothelial Cells in Human Cancer Tissues

    PubMed Central

    Mesri, Mehdi; Birse, Charlie; Heidbrink, Jenny; McKinnon, Kathy; Brand, Erin; Bermingham, Candy Lee; Feild, Brian; FitzHugh, William; He, Tao; Ruben, Steve; Moore, Paul A.

    2013-01-01

    Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3. PMID:24236063

  9. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.

    PubMed

    Montjovent, Marc-Olivier; Mark, Silke; Mathieu, Laurence; Scaletta, Corinne; Scherberich, Arnaud; Delabarde, Claire; Zambelli, Pierre-Yves; Bourban, Pierre-Etienne; Applegate, Lee Ann; Pioletti, Dominique P

    2008-03-01

    Fetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(l-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt.% beta-tricalcium phosphate (TCP). Bone regeneration was assessed by radiography and histology after implantation of PLA/TCP scaffolds alone, seeded with primary fetal bone cells, or coated with demineralized bone matrix. Craniotomy critical size defects and drill defects in the femoral condyle in rats were employed. In the cranial defects, polymer degradation and cortical bone regeneration were studied up to 12 months postoperatively. Complete bone ingrowth was observed after implantation of PLA/TCP constructs seeded with human fetal bone cells. Further tests were conducted in the trabecular neighborhood of femoral condyles, where scaffolds seeded with fetal bone cells also promoted bone repair. We present here a promising approach for bone tissue engineering using human primary fetal bone cells in combination with porous PLA/TCP structures. Fetal bone cells could be selected regarding osteogenic and immune-related properties, along with their rapid growth, ease of cell banking and associated safety. PMID:18178142

  10. Human immunodeficiency virus type 1 infection of cells and tissues from the upper and lower human female reproductive tract.

    PubMed Central

    Howell, A L; Edkins, R D; Rier, S E; Yeaman, G R; Stern, J E; Fanger, M W; Wira, C R

    1997-01-01

    Viable tissue sections and isolated cell cultures from the human fallopian tube, uterus, cervix, and vaginal mucosa were examined for susceptibility to infection with human immunodeficiency virus type 1 (HIV-1). We examined infectivity by using the monocytotropic strain HIV-1(JR-FL) and several primary isolates of HIV-1 obtained from infected neonates. HIV-1 infection was measured by p24 production in short-term culture and by immunofluorescence detection of HIV-1 Nef and p24 proteins by laser scanning confocal microscopy. Three-color immunofluorescence was used to phenotype HIV-infected cells within tissue sections from each site. Our findings indicate that epithelial, stromal, and dendritic cells and cells with CD14+ CD4+, CD14-CD4-, and CD4+ CD14- phenotypes from the female reproductive tract are infectable with HIV-1. Of importance is the finding that tissues from the upper reproductive tract are susceptible to infection with HIV-1. Moreover, tissue samples from women in all stages of the menstrual cycle, including postmenopausal women (inactive), could be infected with HIV-1. Female reproductive tract cells required a minimum of 60 min of exposure to HIV-1 in order for infection to occur, in contrast to peripheral blood lymphocytes, which became infected after being exposed to HIV-1 for only 1 min. These findings demonstrate that HIV-1 can infect cells and tissues from different sites within the female reproductive tract and suggest that multiple cell types, including epithelial cells, may be targets for the initial infection by HIV-1. PMID:9094621

  11. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    PubMed Central

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-01-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 – 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery. PMID:25961911

  12. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    PubMed

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application.

  13. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    PubMed

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-10-12

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue.

  14. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    PubMed Central

    Finkbeiner, Stacy R.; Freeman, Jennifer J.; Wieck, Minna M.; El-Nachef, Wael; Altheim, Christopher H.; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S.; Grikscheit, Tracy C.; Teitelbaum, Daniel H.; Spence, Jason R.

    2015-01-01

    ABSTRACT Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. PMID:26459240

  15. Induced pluripotent stem cells from human placental chorion for perinatal tissue engineering applications.

    PubMed

    Jiang, Guihua; Di Bernardo, Julie; DeLong, Cynthia J; Monteiro da Rocha, André; O'Shea, K Sue; Kunisaki, Shaun M

    2014-09-01

    The reliable derivation of induced pluripotent stem cells (iPSCs) from a noninvasive autologous source at birth would facilitate the study of patient-specific in vitro modeling of congenital diseases and would enhance ongoing efforts aimed at developing novel cell-based treatments for a wide array of fetal and pediatric disorders. Accordingly, we have successfully generated iPSCs from human fetal chorionic somatic cells extracted from term pregnancies by ectopic expression of OCT4, SOX2, KLF4, and cMYC. The isolated parental somatic cells exhibited an immunophenotypic profile consistent with that of chorionic mesenchymal stromal cells (CMSCs). CMSC-iPSCs maintained pluripotency in feeder-free systems for more than 15 passages based on morphology, immunocytochemistry, and gene expression studies and were capable of embryoid body formation with spontaneous trilineage differentiation. CMSC-iPSCs could be selectively differentiated in vitro into various germ layer derivatives, including neural stem cells, beating cardiomyocytes, and definitive endoderm. This study demonstrates the feasibility of term placental chorion as a novel noninvasive alternative to dermal fibroblasts and cord blood for human perinatal iPSC derivation and may provide additional insights regarding the reprogramming capabilities of extra-embryonic tissues as they relate to developmental ontogeny and perinatal tissue engineering applications.

  16. Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Diamond, S. L.; Eskin, S. G.; McIntire, L. V.

    1989-03-01

    Wall shear stress generated by blood flow may regulate the expression of fibrinolytic proteins by endothelial cells. Tissue plasminogen activator (tPA) and plasminogen activator inhibitor, type 1 (PAI-1) secretion by cultured human endothelial cells were not affected by exposure to venous shear stress (4 dynes/cm2). However, at arterial shear stresses of 15 and 25 dynes/cm2, the tPA secretion rate was 2.1 and 3.0 times greater, respectively, than the basal tPA secretion rate. PAI-1 secretion was unaffected by shear stress over the entire physiological range.

  17. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures. PMID:21942189

  18. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures.

  19. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue.

    PubMed

    Tews, D; Schwar, V; Scheithauer, M; Weber, T; Fromme, T; Klingenspor, M; Barth, T F; Möller, P; Holzmann, K; Debatin, K M; Fischer-Posovszky, P; Wabitsch, M

    2014-09-01

    Brown and white adipocytes have been shown to derive from different progenitors. In this study we sought to clarify the molecular differences between human brown and white adipocyte progenitors cells. To this end, we performed comparative gene array analysis on progenitor cells isolated from paired biopsies of deep and subcutaneous neck adipose tissue from individuals (n = 6) undergoing neck surgery. Compared with subcutaneous neck progenitors, cells from the deep neck adipose tissue displayed marked differences in gene expression pattern, including 355 differentially regulated (>1.5 fold) genes. Analysis of highest regulated genes revealed that STMN2, MME, ODZ2, NRN1 and IL13RA2 genes were specifically expressed in white progenitor cells, whereas expression of LRRC17, CNTNAP3, CD34, RGS7BP and ADH1B marked brown progenitor cells. In conclusion, progenitors from deep neck and subcutaneous neck adipose tissue are characterized by a distinct molecular signature, giving rise to either brown or white adipocytes. The newly identified markers may provide potential pharmacological targets facilitating brown adipogenesis. PMID:25102227

  20. A comparison of human smooth muscle and mesenchymal stem cells as potential cell sources for tissue-engineered vascular patches.

    PubMed

    Williams, Corin; Xie, Angela W; Emani, Sirisha; Yamato, Masayuki; Okano, Teruo; Emani, Sitaram M; Wong, Joyce Y

    2012-05-01

    In pediatric patients requiring vascular reconstruction, the development of a cell-based tissue-engineered vascular patch (TEVP) has great potential to overcome current issues with nonliving graft materials. Determining the optimal cell source is especially critical to TEVP success. In this study, we compared the ability of human aortic smooth muscle cells (HuAoSMCs) and human mesenchymal stem cells (hMSCs) to form cell sheets on thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) substrates. hMSCs treated with transforming growth factor beta 1 (TGFβ1) and ascorbic acid (AA) had higher expression of SMC-specific proteins compared to HuAoSMCs. hMSCs also had larger cell area and grew to confluence more quickly on PIPAAm than did HuAoSMCs. hMSCs typically formed cell sheets in 2-3 weeks and had greater wet tissue weight and collagen content compared with HuAoSMC sheets, which generally required growth for up to 5 weeks. Assays for calcification and alkaline phosphatase activity revealed that the osteogenic potential of TGFβ1+AA-treated hMSCs was low; however, Alcian Blue staining suggested high chondrogenic behavior of TGFβ1+AA-treated hMSCs. Although hMSCs are promising for cell-based TEVPs in their ability to form robust tissue with significant extracellular matrix content, improved control over hMSC behavior will be required for long-term TEVP success.

  1. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds.

    PubMed

    Wang, Yongyu; Hu, Jiang; Jiao, Jiao; Liu, Zhongning; Zhou, Zhou; Zhao, Chao; Chang, Lung-Ji; Chen, Y Eugene; Ma, Peter X; Yang, Bo

    2014-10-01

    Tissue-engineered blood vessels (TEBVs) are promising in the replacement of diseased vascular tissues. However, it remains a great challenge to obtain a sufficient number of functional smooth muscle cells (SMCs) in a clinical setting to construct patient-specific TEBVs. In addition, it is critical to develop a scaffold to accommodate these cells and retain their functional phenotype for the regeneration of TEBVs. In this study, human induced pluripotent stem cells (iPSCs) were established from primary human aortic fibroblasts, and characterized with the pluripotency markers expression and cells' capabilities to differentiate into all three germ layer cells. A highly efficient method was then developed to induce these human iPSCs into proliferative SMCs. After multiple times of expansion, the expanded SMCs retained the potential to be induced into the functional contractile phenotype of mature SMCs, which was characterized by the contractile response to carbachol treatment, up-regulation of specific collagen genes under transforming growth factor β1 treatment, and up-regulation of specific matrix metalloproteinase genes under cytokine stimulation. We also developed an advanced macroporous and nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffold with suitable pore size and interpore connectivity to seed these human iPSC-derived SMCs and maintain their differentiated phenotype. Subcutaneous implantation of the SMC-scaffold construct in nude mice demonstrated vascular tissue formation, with robust collagenous matrix deposition inside the scaffold and the maintenance of differentiated SMC phenotype. Taken together, this study established an exciting approach towards the construction of patient-specific TEBVs. We established patient-specific human iPSCs, derived proliferative SMCs for expansion, turned on their mature contractile SMC phenotype, and developed an advanced scaffold for these cells to regenerate vascular tissue in vivo.

  2. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    PubMed

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  3. Cell lineage tracing in human epithelial tissues using mitochondrial DNA mutations as clonal markers.

    PubMed

    Walther, Viola; Alison, Malcolm R

    2016-01-01

    The study of cell lineages through heritable genetic lineage tracing is well established in experimental animals, particularly mice. While such techniques are not feasible in humans, we have taken advantage of the fact that the mitochondrial genome is highly prone to nonpathogenic mutations and such mutations can be used as clonal markers to identify stem cell derived clonal populations in human tissue sections. A mitochondrial DNA (mtDNA) mutation can spread by a stochastic process through the several copies of the circular genome in a single mitochondrion, and then through the many mitochondria in a single cell, a process called 'genetic drift.' This process takes many years and so is likely to occur only in stem cells, but once established, the fate of stem cell progeny can be followed. A cell having at least 80% of its mtDNA genomes bearing the mutation results in a demonstrable deficiency in mtDNA-encoded cytochrome c oxidase (CCO), optimally detected in frozen tissue sections by dual-color histochemistry, whereby CCO activity stains brown and CCO deficiency is highlighted by subsequent succinate dehydrogenase activity, staining the CCO-deficient areas blue. Cells with CCO deficiency can be laser captured and subsequent mtDNA sequencing can ascertain the nature of the mutation. If all cells in a CCO-deficient area have an identical mutation, then a clonal population has been identified; the chances of the same mutation initially arising in separate cells are highly improbable. The technique lends itself to the study of both normal epithelia and can answer several questions in tumor biology. WIREs Dev Biol 2016, 5:103-117. doi: 10.1002/wdev.203 For further resources related to this article, please visit the WIREs website. PMID:26302049

  4. Generating human intestinal tissues from pluripotent stem cells to study development and disease.

    PubMed

    Sinagoga, Katie L; Wells, James M

    2015-05-01

    As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host-parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling. PMID:25792515

  5. Generating human intestinal tissues from pluripotent stem cells to study development and disease

    PubMed Central

    Sinagoga, Katie L; Wells, James M

    2015-01-01

    As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host–parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling. PMID:25792515

  6. Differentiation of immature DCs into endothelial-like cells in human esophageal carcinoma tissue homogenates.

    PubMed

    Lu, Jing; Bai, Ruihua; Qin, Zhenzhu; Zhang, Yanyan; Zhang, Xiaoyan; Jiang, Yanan; Yang, Hongyan; Huang, Youtian; Li, Gang; Zhao, Mingyao; Dong, Ziming

    2013-08-01

    We previously reported endothelial-like differentiation (ELD) of immature dendritic cells (iDCs) in the microenvironment derived from EC9706 human esophageal squamous cell carcinoma conditioned medium (CM). However, the CM is far different from the esophageal carcinoma tissue of patients. In addition, the potential role of peri-esophageal carcinoma in the ELD of iDCs is also unknown. In the present study, we showed that the tumor microenvironment derived from esophageal carcinoma homogenate promoted iDCs to differentiate from the DC pathway toward endothelial cells, while the peri-esophageal carcinoma homogenate did not have this function. During the course of ELD, ERK signaling pathway and CREB were activated. Blocking MEK, both the phosphorylation of ERK and CREB, and the ELD of iDCs were inhibited. These data suggest that esophageal carcinoma tissue, not peri-esophageal carcinoma tissue, can drive iDCs to differentiate into endothelial-like cells, instead of differentiation into mature DCs, thereby losing the ability of antigen presentation. PMID:23708958

  7. Generation and Applications of Human Pluripotent Stem Cells Induced into Neural Lineages and Neural Tissues

    PubMed Central

    Martinez, Y.; Dubois-Dauphin, M.; Krause, K.-H.

    2012-01-01

    Human pluripotent stem cells (hPSCs) represent a new and exciting field in modern medicine, now the focus of many researchers and media outlets. The hype is well-earned because of the potential of stem cells to contribute to disease modeling, drug screening, and even therapeutic approaches. In this review, we focus first on neural differentiation of these cells. In a second part we compare the various cell types available and their advantages for in vitro modeling. Then we provide a “state-of-the-art” report about two major biomedical applications: (1) the drug and toxicity screening and (2) the neural tissue replacement. Finally, we made an overview about current biomedical research using differentiated hPSCs. PMID:22457650

  8. MERAV: a tool for comparing gene expression across human tissues and cell types.

    PubMed

    Shaul, Yoav D; Yuan, Bingbing; Thiru, Prathapan; Nutter-Upham, Andy; McCallum, Scott; Lanzkron, Carolyn; Bell, George W; Sabatini, David M

    2016-01-01

    The oncogenic transformation of normal cells into malignant, rapidly proliferating cells requires major alterations in cell physiology. For example, the transformed cells remodel their metabolic processes to supply the additional demand for cellular building blocks. We have recently demonstrated essential metabolic processes in tumor progression through the development of a methodological analysis of gene expression. Here, we present the Metabolic gEne RApid Visualizer (MERAV, http://merav.wi.mit.edu), a web-based tool that can query a database comprising ∼4300 microarrays, representing human gene expression in normal tissues, cancer cell lines and primary tumors. MERAV has been designed as a powerful tool for whole genome analysis which offers multiple advantages: one can search many genes in parallel; compare gene expression among different tissue types as well as between normal and cancer cells; download raw data; and generate heatmaps; and finally, use its internal statistical tool. Most importantly, MERAV has been designed as a unique tool for analyzing metabolic processes as it includes matrixes specifically focused on metabolic genes and is linked to the Kyoto Encyclopedia of Genes and Genomes pathway search.

  9. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    PubMed

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  10. A Combined Approach for the Assessment of Cell Viability and Cell Functionality of Human Fibrochondrocytes for Use in Tissue Engineering

    PubMed Central

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5–P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5–P6 for cell therapy protocols. PMID:23272194

  11. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues.

    PubMed

    Thome, Joseph J C; Bickham, Kara L; Ohmura, Yoshiaki; Kubota, Masaru; Matsuoka, Nobuhide; Gordon, Claire; Granot, Tomer; Griesemer, Adam; Lerner, Harvey; Kato, Tomoaki; Farber, Donna L

    2016-01-01

    It is unclear how the immune response in early life becomes appropriately stimulated to provide protection while also avoiding excessive activation as a result of diverse new antigens. T cells are integral to adaptive immunity; mouse studies indicate that tissue localization of T cell subsets is important for both protective immunity and immunoregulation. In humans, however, the early development and function of T cells in tissues remain unexplored. We present here an analysis of lymphoid and mucosal tissue T cells derived from pediatric organ donors in the first two years of life, as compared to adult organ donors, revealing early compartmentalization of T cell differentiation and regulation. Whereas adult tissues contain a predominance of memory T cells, in pediatric blood and tissues the main subset consists of naive recent thymic emigrants, with effector memory T cells (T(EM)) found only in the lungs and small intestine. Additionally, regulatory T (T(reg)) cells comprise a high proportion (30-40%) of CD4(+) T cells in pediatric tissues but are present at much lower frequencies (1-10%) in adult tissues. Pediatric tissue T(reg) cells suppress endogenous T cell activation, and early T cell functionality is confined to the mucosal sites that have the lowest T(reg):T(EM) cell ratios, which suggests control in situ of immune responses in early life. PMID:26657141

  12. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues.

    PubMed

    Thome, Joseph J C; Bickham, Kara L; Ohmura, Yoshiaki; Kubota, Masaru; Matsuoka, Nobuhide; Gordon, Claire; Granot, Tomer; Griesemer, Adam; Lerner, Harvey; Kato, Tomoaki; Farber, Donna L

    2016-01-01

    It is unclear how the immune response in early life becomes appropriately stimulated to provide protection while also avoiding excessive activation as a result of diverse new antigens. T cells are integral to adaptive immunity; mouse studies indicate that tissue localization of T cell subsets is important for both protective immunity and immunoregulation. In humans, however, the early development and function of T cells in tissues remain unexplored. We present here an analysis of lymphoid and mucosal tissue T cells derived from pediatric organ donors in the first two years of life, as compared to adult organ donors, revealing early compartmentalization of T cell differentiation and regulation. Whereas adult tissues contain a predominance of memory T cells, in pediatric blood and tissues the main subset consists of naive recent thymic emigrants, with effector memory T cells (T(EM)) found only in the lungs and small intestine. Additionally, regulatory T (T(reg)) cells comprise a high proportion (30-40%) of CD4(+) T cells in pediatric tissues but are present at much lower frequencies (1-10%) in adult tissues. Pediatric tissue T(reg) cells suppress endogenous T cell activation, and early T cell functionality is confined to the mucosal sites that have the lowest T(reg):T(EM) cell ratios, which suggests control in situ of immune responses in early life.

  13. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  14. Transplantation of insulin-secreting cells differentiated from human adipose tissue-derived stem cells into type 2 diabetes mice.

    PubMed

    Nam, Ji Sun; Kang, Hyun Mi; Kim, Jiyoung; Park, Seah; Kim, Haekwon; Ahn, Chul Woo; Park, Jin Oh; Kim, Kyung Rae

    2014-01-10

    Currently, there are limited ways to preserve or recover insulin secretory capacity in human pancreas. We evaluated the efficacy of cell therapy using insulin-secreting cells differentiated from human eyelid adipose tissue-derived stem cells (hEAs) into type 2 diabetes mice. After differentiating hEAs into insulin-secreting cells (hEA-ISCs) in vitro, cells were transplanted into a type 2 diabetes mouse model. Serum levels of glucose, insulin and c-peptide were measured, and changes of metabolism and inflammation were assessed in mice that received undifferentiated hEAs (UDC group), differentiated hEA-ISCs (DC group), or sham operation (sham group). Human gene expression and immunohistochemical analysis were done. DC group mice showed improved glucose level, and survival up to 60 days compared to those of UDC and sham group. Significantly increased levels of human insulin and c-peptide were detected in sera of DC mice. RT-PCR and immunohistochemical analysis showed human gene expression and the presence of human cells in kidneys of DC mice. When compared to sham mice, DC mice exhibited lower levels of IL-6, triglyceride and free fatty acids as the control mice. Transplantation of hEA-ISCs lowered blood glucose level in type 2 diabetes mice by increasing circulating insulin level, and ameliorating metabolic parameters including IL-6.

  15. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    PubMed Central

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  16. Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins

    PubMed Central

    Koh, Sehwon; Kim, Namsoo; Yin, Henry H.; Harris, Ian R.; Dejneka, Nadine S.

    2015-01-01

    Cell therapy demonstrates great potential for the treatment of neurological disorders. Human umbilical tissue-derived cells (hUTCs) were previously shown to have protective and regenerative effects in animal models of stroke and retinal degeneration, but the underlying therapeutic mechanisms are unknown. Because synaptic dysfunction, synapse loss, degeneration of neuronal processes, and neuronal death are hallmarks of neurological diseases and retinal degenerations, we tested whether hUTCs contribute to tissue repair and regeneration by stimulating synapse formation, neurite outgrowth, and neuronal survival. To do so, we used a purified rat retinal ganglion cell culture system and found that hUTCs secrete factors that strongly promote excitatory synaptic connectivity and enhance neuronal survival. Additionally, we demonstrated that hUTCs support neurite outgrowth under normal culture conditions and in the presence of the growth-inhibitory proteins chondroitin sulfate proteoglycan, myelin basic protein, or Nogo-A (reticulon 4). Furthermore, through biochemical fractionation and pharmacology, we identified the major hUTC-secreted synaptogenic factors as the thrombospondin family proteins (TSPs), TSP1, TSP2, and TSP4. Silencing TSP expression in hUTCs, using small RNA interference, eliminated both the synaptogenic function of these cells and their ability to promote neurite outgrowth. However, the majority of the prosurvival functions of hUTC-conditioned media was spared after TSP knockdown, indicating that hUTCs secrete additional neurotrophic factors. Together, our findings demonstrate that hUTCs affect multiple aspects of neuronal health and connectivity through secreted factors, and each of these paracrine effects may individually contribute to the therapeutic function of these cells. SIGNIFICANCE STATEMENT Human umbilical tissue-derived cells (hUTC) are currently under clinical investigation for the treatment of geographic atrophy secondary to age-related macular

  17. Adult Stromal Cells Derived from Human Adipose Tissue Provoke Pancreatic Cancer Cell Death both In Vitro and In Vivo

    PubMed Central

    Cousin, Beatrice; Ravet, Emmanuel; Poglio, Sandrine; De Toni, Fabienne; Bertuzzi, Mélanie; Lulka, Hubert; Touil, Ismahane; André, Mireille; Grolleau, Jean-Louis; Péron, Jean-Marie; Chavoin, Jean-Pierre; Bourin, Philippe; Pénicaud, Luc; Casteilla, Louis; Buscail, Louis; Cordelier, Pierre

    2009-01-01

    Background Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC) spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC) on pancreatic tumor cell proliferation. Principal Findings Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate). ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth. Conclusion These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available. PMID:19609435

  18. Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells.

    PubMed

    Chen, Chao; Liu, Jia-Bao; Bian, Zhi-Ping; Xu, Jin-Dan; Wu, Heng-Fang; Gu, Chun-Rong; Shi, Yi; Zhang, Ji-Nan; Chen, Xiang-Jian; Yang, Di

    2014-01-01

    Cardiac troponin I (cTnI) is the only sarcomeric protein identified to date that is expressed exclusively in cardiac muscle. Its expression in cancer tissues has not been reported. Herein, we examined cTnI expression in non-small cell lung cancer (NSCLC) tissues, human adenocarcinoma cells SPCA-1 (lung) and BGC 823 (gastric) by immunohistochemistry, western blot analysis and real-time PCR. Immunopositivity for cTnI was demonstrated in 69.4% (34/49) NSCLC tissues evaluated, and was strong intensity in 35.3% (6/17) lung squamous cell carcinoma cases. The non-cancer-bearing lung tissues except tuberculosis (9/9, 100%) showed negative staining for cTnI. Seven monoclonal antibodies (mAbs) against human cTnI were applied in immunofluorescence. The result showed that the staining pattern within SPCA-1 and BGC 823 was dependent on the epitope of the cTnI mAbs. The membrane and nucleus of cancer cells were stained by mAbs against N-terminal peptides of cTnI, and cytoplasm was stained by mAbs against the middle and C-terminal peptides of cTnI. A ~25 kD band was identified by anti-cTnI mAb in SPCA-1 and BGC 823 extracts by western blot, as well as in cardiomyocyte extracts. The cTnI mRNA expressions in SPCA-1 and BGC 823 cells were about ten thousand times less than that in cardiomyocytes. Our study shows for the first time that cTnI protein and mRNA were abnormally expressed in NSCLC tissues, SPCA-1 and BGC 823 cells. These findings challenge the conventional view of cTnI as a cardiac-specific protein, enabling the potential use of cTnI as a diagnostic marker or targeted therapy for cancer.

  19. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    PubMed

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications.

  20. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution.

    PubMed

    Yao, Rui; Du, Yanan; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-08-01

    An in vitro model that recapitulates the characteristics of native human adipose tissue would largely benefit pathology studies and therapy development. In this paper, we fabricated a physiological model composed of both human adipocytes and endothelial cells with spatially controlled distribution that biomimics the structure and composition of human adipose tissue. Detailed studies into the cell-cell interactions between the adipocytes and endothelial cells revealed a mutual-enhanced effect which resembles the in vivo routine. Furthermore, comparisons between planar coculture and model coculture demonstrated improved adipocyte function as well as endothelial cell proliferation under the same conditions. This research provided a reliable model for human adipose tissue development studies and potential obesity-related therapy development.

  1. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells.

    PubMed

    Gao, Lixiong; Chen, Xi; Zeng, Yuxiao; Li, Qiyou; Zou, Ting; Chen, Siyu; Wu, Qian; Fu, Caiyun; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro. PMID:27435522

  2. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells

    PubMed Central

    Gao, Lixiong; Chen, Xi; Zeng, Yuxiao; Li, Qiyou; Zou, Ting; Chen, Siyu; Wu, Qian; Fu, Caiyun; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro. PMID:27435522

  3. T cell–dependent survival of CD20+ and CD20− plasma cells in human secondary lymphoid tissue

    PubMed Central

    Withers, David R.; Fiorini, Claudia; Fischer, Randy T.; Ettinger, Rachel; Grammer, Amrie C.

    2007-01-01

    The signals mediating human plasma cell survival in vivo, particularly within secondary lymphoid tissue, are unclear. Human tonsils grafted into immunodeficient mice were therefore used to delineate the mechanisms promoting the survival of plasma cells. Tonsillar plasma cells were maintained within the grafts and the majority were nonproliferating, indicating a long-lived phenotype. A significant depletion of graft plasma cells was observed after anti-CD20 treatment, consistent with the expression of CD20 by most of the cells. Moreover, anti-CD52 treatment caused the complete loss of all graft lymphocytes, including plasma cells. Unexpectedly, anti-CD3, but not anti-CD154, treatment caused the complete loss of plasma cells, indicating an essential role for T cells, but not CD40-CD154 interactions in plasma cell survival. The in vitro coculture of purified tonsillar plasma cells and T cells revealed a T-cell survival signal requiring cell contact. Furthermore, immunofluorescence studies detected a close association between human plasma cells and T cells in vivo. These data reveal that human tonsil contains long-lived plasma cells, the majority of which express CD20 and can be deleted with anti-CD20 therapy. In addition, an important role for contact-dependent interactions with T cells in human plasma cell survival within secondary lymphoid tissue was identified. PMID:17299094

  4. Trade in human tissue products.

    PubMed

    Tonti-Filippini, Nicholas; Zeps, Nikolajs

    2011-03-01

    Trade in human tissue in Australia is prohibited by state law, and in ethical guidelines by the National Health and Medical Research Council: National statement on ethical conduct in human research; Organ and tissue donation by living donors: guidelines for ethical practice for health professionals. However, trade in human tissue products is a common practice especially for: reconstructive orthopaedic or plastic surgery; novel human tissue products such as a replacement trachea created by using human mesenchymal stem cells; biomedical research using cell lines, DNA and protein provided through biobanks. Cost pressures on these have forced consideration of commercial models to sustain their operations. Both the existing and novel activities require a robust framework to enable commercial uses of human tissue products while maintaining community acceptability of such practices, but to date no such framework exists. In this article, we propose a model ethical framework for ethical governance which identifies specific ethical issues such as: privacy; unique value of a person's tissue; commodification of the body; equity and benefit to the community; perverse incentives; and "attenuation" as a potentially useful concept to help deal with the broad range of subjective views relevant to whether it is acceptable to commercialise certain human tissue products. PMID:21382003

  5. Trade in human tissue products.

    PubMed

    Tonti-Filippini, Nicholas; Zeps, Nikolajs

    2011-03-01

    Trade in human tissue in Australia is prohibited by state law, and in ethical guidelines by the National Health and Medical Research Council: National statement on ethical conduct in human research; Organ and tissue donation by living donors: guidelines for ethical practice for health professionals. However, trade in human tissue products is a common practice especially for: reconstructive orthopaedic or plastic surgery; novel human tissue products such as a replacement trachea created by using human mesenchymal stem cells; biomedical research using cell lines, DNA and protein provided through biobanks. Cost pressures on these have forced consideration of commercial models to sustain their operations. Both the existing and novel activities require a robust framework to enable commercial uses of human tissue products while maintaining community acceptability of such practices, but to date no such framework exists. In this article, we propose a model ethical framework for ethical governance which identifies specific ethical issues such as: privacy; unique value of a person's tissue; commodification of the body; equity and benefit to the community; perverse incentives; and "attenuation" as a potentially useful concept to help deal with the broad range of subjective views relevant to whether it is acceptable to commercialise certain human tissue products.

  6. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity.

    PubMed

    Salans, L B; Knittle, J L; Hirsch, J

    1968-01-01

    Glucose metabolism and insulin sensitivity of isolated human adipose tissue was studied as a function of adipose cell size and number. Glucose metabolism by these tissues was closely related to the number of cells in the fragment, irrespective of cell size. Adipose cells of obese individuals metabolized glucose to carbon dioxide and triglyceride at rates similar to adipose cells of nonobese subjects. In contrast, insulin responsiveness of adipose tissue was dependent upon adipose cell size. The larger its adipose cells the less insulin sensitive was the tissue. Thus, adipose tissue of obese subjects, with enlarged cells, showed a diminished response to insulin. After weight loss and reduction in adipose cell size, insulin sensitivity of the adipose tissue of obese patients was restored to normal. When adipose tissue of obese individuals showed impaired responsiveness to insulin, their plasma insulin levels, after oral glucose, were elevated. Weight loss and reduction in adipose cell size restored plasma insulin concentration to normal, concomitant with the return of normal tissue insulin sensitivity.

  7. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts.

    PubMed

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H; Keshamouni, Venkateshwar G; Peters-Golden, Marc; Lama, Vibha N

    2011-06-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs.

  8. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.

    PubMed

    Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F

    2009-11-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.

  9. Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells.

    PubMed

    Giesecke, Claudia; Frölich, Daniela; Reiter, Karin; Mei, Henrik E; Wirries, Ina; Kuhly, Rainer; Killig, Monica; Glatzer, Timor; Stölzel, Katharina; Perka, Carsten; Lipsky, Peter E; Dörner, Thomas

    2014-04-01

    Memory B cells (mBCs) are a key to immunologic memory, yet their distribution within lymphoid organs and the individual role of these for mBC functionality remain largely unknown. This study characterized the distribution and phenotype of human (Ag-specific) mBCs in peripheral blood (PB), spleen, tonsil, and bone marrow. We found that the spleen harbors most mBCs, followed by tonsils, BM, and PB, and we detected no major differences in expression of markers associated with higher maturity. Testing the distribution of tetanus toxoid-specific (TT(+)) mBCs revealed their presence in PB during steady state, yet absolute numbers suggested their largest reservoir in the spleen, followed by tonsils. To explore the role of both tissues in the maintenance of reactive B cell memory, we revaccinated controls and splenectomized and tonsillectomized individuals with TT. All donor groups exhibited comparable emergence of anti-TT IgG, TT(+) plasma cells, and TT(+) mBCs in the PB, together with similar molecular characteristics of TT(+) plasma cells. In summary, human mBCs recirculate through PB and reside in different lymphoid organs that do not reflect different mBC maturity stages. The spleen and tonsil, although harboring the largest number of overall and TT(+) mBCs, appear to be dispensable to preserve adequate responsiveness to secondary antigenic challenge.

  10. Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels.

    PubMed

    Jung, Youngmee; Ji, HaYeun; Chen, Zaozao; Fai Chan, Hon; Atchison, Leigh; Klitzman, Bruce; Truskey, George; Leong, Kam W

    2015-10-12

    Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.

  11. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells.

    PubMed

    Chao, Yuan-Hung; Huang, Shih-Yung; Yang, Ruei-Cheng; Sun, Jui-Sheng

    2016-07-01

    Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.

  12. Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels

    PubMed Central

    Jung, Youngmee; Ji, HaYeun; Chen, Zaozao; Fai Chan, Hon; Atchison, Leigh; Klitzman, Bruce; Truskey, George; Leong, Kam W.

    2015-01-01

    Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm2. The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening. PMID:26456074

  13. Tissue factor: A potent stimulator of Von Willebrand factor synthesis by human umbilical vein endothelial cells

    PubMed Central

    Meiring, Muriel; Allers, W.; Le Roux, E.

    2016-01-01

    Inflammation and dysfunction of endothelial cells are thought to be triggers for the secretion of Von Willebrand factor. The aim of this study was to examine the effects of the inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) and the coagulation factors, tissue factor and thrombin on the release and cleavage potential of ultra-large von Willebrand factor (ULVWF) and its cleavage protease by cultured human umbilical vein endothelial cells (HUVEC). HUVEC were treated with IL-6, IL-8, and TNF-α, tissue factor (TF) and thrombin, and combinations thereof for 24 hours under static conditions. The cells were then exposed to shear stress after which the VWF-propeptide levels and the VWF cleavage protease, ADAMTS13 content were measured. All treatments and their combinations, excluding IL-6, significantly stimulated the secretion of VWF from HUVEC. The VWF secretion from the HUVEC was stimulated most by the combination of TF with TNF-α. Slightly lower levels of ADAMTS13 secretion were found with all treatments. This may explain the thrombogenicity of patients with inflammation where extremely high VWF levels and slightly lower ADAMTS13 levels are present. PMID:27766025

  14. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells.

    PubMed

    Gui, Liqiong; Dash, Biraja C; Luo, Jiesi; Qin, Lingfeng; Zhao, Liping; Yamamoto, Kota; Hashimoto, Takuya; Wu, Hongwei; Dardik, Alan; Tellides, George; Niklason, Laura E; Qyang, Yibing

    2016-09-01

    Derivation of functional vascular smooth muscle cells (VSMCs) from human induced pluripotent stem cells (hiPSCs) to generate tissue-engineered blood vessels (TEBVs) holds great potential in treating patients with vascular diseases. Herein, hiPSCs were differentiated into alpha-smooth muscle actin (α-SMA) and calponin-positive VSMCs, which were seeded onto polymer scaffolds in bioreactors for vascular tissue growth. A functional TEBV with abundant collagenous matrix and sound mechanics resulted, which contained cells largely positive for α-SMA and smooth muscle myosin heavy chain (SM-MHC). Moreover, when hiPSC-derived TEBV segments were implanted into nude rats as abdominal aorta interposition grafts, they remained unruptured and patent with active vascular remodeling, and showed no evidence of teratoma formation during a 2-week proof-of-principle study. Our studies represent the development of the first implantable TEBVs based on hiPSCs, and pave the way for developing autologous or allogeneic grafts for clinical use in patients with vascular disease. PMID:27336184

  15. Development of A Three-Dimensional Tissue Construct from Dental Human Ectomesenchymal Stem Cells: In Vitro and In Vivo Study

    PubMed Central

    Guzmán-Uribe, Daniela; Estrada, Keila Neri Alvarado; Guillén, Amaury de Jesús Pozos; Pérez, Silvia Martín; Ibáñez, Raúl Rosales

    2012-01-01

    Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix. PMID:23308086

  16. Development of a three-dimensional tissue construct from dental human ectomesenchymal stem cells: in vitro and in vivo study.

    PubMed

    Guzmán-Uribe, Daniela; Estrada, Keila Neri Alvarado; Guillén, Amaury de Jesús Pozos; Pérez, Silvia Martín; Ibáñez, Raúl Rosales

    2012-01-01

    Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix. PMID:23308086

  17. Comparative study of the cytoplasmic organelles of epithelial cell lines derived from human carcinomas and nonmalignant tissues

    SciTech Connect

    Springer, E.L.

    1980-03-01

    The cytoplasmic organelles of 16 human epithelial cell lines have been characterized by electron microscopy. The cell lines were derived from normal, nonmalignant tissues of cancerous organs and from primary and metastatic carcinomas. Mitochondrial pleomorphism was expressed slightly by normal, to variable degrees by lines derived from nonmalignant tissues of cancerous organs, and to a much greater extent by all lines derived from malignant tissues. Hypertrophied mitochondria and longitudinal cristal arrangement were found in almost all the malignant lines, but not in any lines derived from nonmalignant tissues of cancerous organs or from normal tissues. All the lines appeared differentiate and showed slightly to moderately developed Golgi and smooth and rough endoplasmic reticula. There were no significant ultrastructural differences in cells at different passage levels or subconfluent and confluent tumor cells; however, more tight junctions were observed in confluent than in subconfluent normal cells.

  18. Cystoisospora canis (Apicomplexa: Sarcocystidae): development of monozoic tissue cysts in human cells, demonstration of egress of zoites from tissue cysts, and demonstration of repeat monozoic tissue cyst formation by zoites.

    PubMed

    Houk, Alice E; Lindsay, David S

    2013-11-01

    Sporozoites of Cystoisospora canis penetrated and developed to monozoic tissue cysts in 4 human, 1 monkey, 1 bovine and 2 canine cell lines. No asexual division was documented although multiple infection of a single cell was observed. Examination of cultures using transmission electron microscopy demonstrated that they were monozoic tissue cysts and contained a single sporozoite. The appearance of monozoic tissue cysts in all cell lines was similar but the parasitophorous vacuole surrounding some sporozoites in DH82 dog macrophages was swollen. Monozoic tissue cysts were observed for up to 127 days in human pigmented retinal epithelial cells. Treatment of cell cultures containing monozoic tissue cysts with 0.75 sodium taurocholic acid and 0.25% trypsin stimulated egress of zoites (former sporozoites) from tissue cysts. Zoites collected from monozoic tissue cysts were able to penetrate and develop to monozoic tissue cysts in new host cells. Monozoic tissue cysts survived exposure to acid pepsin solution indicating that they would be orally infectious. The tissue cyst wall surrounding zoites did not autofluoresce as did oocyst and sporocyst walls exposed to UV light. We believe that C. canis can be used as a model system to study extra-intestinal monozoic tissue cysts stages of Cystoisospora belli of humans.

  19. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption

    PubMed Central

    Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.

    2009-01-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393

  20. In Vitro Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(ε-caprolactone) Film for Bone Tissue Engineering Applications

    PubMed Central

    Romagnoli, Cecilia; Zonefrati, Roberto; Galli, Gianna; Puppi, Dario; Pirosa, Alessandro; Chiellini, Federica; Martelli, Francesco Saverio; Tanini, Annalisa; Brandi, Maria Luisa

    2015-01-01

    Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies. PMID:26558266

  1. In Vitro Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(ε-caprolactone) Film for Bone Tissue Engineering Applications.

    PubMed

    Romagnoli, Cecilia; Zonefrati, Roberto; Galli, Gianna; Puppi, Dario; Pirosa, Alessandro; Chiellini, Federica; Martelli, Francesco Saverio; Tanini, Annalisa; Brandi, Maria Luisa

    2015-01-01

    Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies. PMID:26558266

  2. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes.

    PubMed

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  3. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  4. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  5. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  6. Expression of ODC Antizyme Inhibitor 2 (AZIN2) in Human Secretory Cells and Tissues.

    PubMed

    Rasila, Tiina; Lehtonen, Alexandra; Kanerva, Kristiina; Mäkitie, Laura T; Haglund, Caj; Andersson, Leif C

    2016-01-01

    Ornithine decarboxylase (ODC) antizyme inhibitor 2 (AZIN2), originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s) of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3) to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated. PMID:26963840

  7. Human Mesenchymal Stem Cells Reendothelialize Porcine Heart Valve Scaffolds: Novel Perspectives in Heart Valve Tissue Engineering.

    PubMed

    Lanuti, Paola; Serafini, Francesco; Pierdomenico, Laura; Simeone, Pasquale; Bologna, Giuseppina; Ercolino, Eva; Di Silvestre, Sara; Guarnieri, Simone; Canosa, Carlo; Impicciatore, Gianna Gabriella; Chiarini, Stella; Magnacca, Francesco; Mariggiò, Maria Addolorata; Pandolfi, Assunta; Marchisio, Marco; Di Giammarco, Gabriele; Miscia, Sebastiano

    2015-01-01

    Heart valve diseases are usually treated by surgical intervention addressed for the replacement of the damaged valve with a biosynthetic or mechanical prosthesis. Although this approach guarantees a good quality of life for patients, it is not free from drawbacks (structural deterioration, nonstructural dysfunction, and reintervention). To overcome these limitations, the heart valve tissue engineering (HVTE) is developing new strategies to synthesize novel types of valve substitutes, by identifying efficient sources of both ideal scaffolds and cells. In particular, a natural matrix, able to interact with cellular components, appears to be a suitable solution. On the other hand, the well-known Wharton's jelly mesenchymal stem cells (WJ-MSCs) plasticity, regenerative abilities, and their immunomodulatory capacities make them highly promising for HVTE applications. In the present study, we investigated the possibility to use porcine valve matrix to regenerate in vitro the valve endothelium by WJ-MSCs differentiated along the endothelial lineage, paralleled with human umbilical vein endothelial cells (HUVECs), used as positive control. Here, we were able to successfully decellularize porcine heart valves, which were then recellularized with both differentiated-WJ-MSCs and HUVECs. Data demonstrated that both cell types were able to reconstitute a cellular monolayer. Cells were able to positively interact with the natural matrix and demonstrated the surface expression of typical endothelial markers. Altogether, these data suggest that the interaction between a biological scaffold and WJ-MSCs allows the regeneration of a morphologically well-structured endothelium, opening new perspectives in the field of HVTE.

  8. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  9. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types.

  10. Higher maturity and connective tissue association distinguish resident from recently generated human tonsil plasma cells.

    PubMed

    Medina, Francisco; Segundo, Carmen; Jiménez-Gómez, Gema; González-García, Inés; Campos-Caro, Antonio; Brieva, José A

    2007-12-01

    Human plasma cells (PC) are present in cell suspensions obtained from the tonsil by mechanical disaggregation (PC(MECH)). The present study shows that a collagenase treatment of tonsillar debris remaining after mechanical disaggregation yielded similar proportions of PC (PC(COLL)). Moreover, PC(MECH) were present in suspensions highly enriched in germinal center cells whereas PC(COLL) contained most of the IgA-secreting cells, suggesting their predominant location in follicular and parafollicular areas and connective tissue-rich zones such as tonsil subepithelium, respectively. Tonsil PC(MECH) and PC(COLL) shared the phenotype CD38(high) CD19(+) CD20(low) CD45(high), expressed equivalent amounts of PRDI BF1/Blimp-1 transcription factor, and carried similarly mutated IgVH6 genes. However, they differed in several features. 1) PC(MECH) still expressed the early B cell transcription factor BSAP and were HLA-DR(high); in contrast, PC(COLL) were BSAP(-)and HLA-DR(low). 2) PC(MECH) were CD95(+) and Bcl-2(+/-) whereas PC(COLL) showed CD95(+/-) and Bcl-2(+) expression; in addition, PC(MECH) exhibited increased spontaneous apoptosis. 3) The two PC subsets exhibited distinctive adhesion molecule profiles, since PC(COLL) expressed higher levels of CD31, CD44, and CD49d, but a lower level of CD11a than PC(MECH). These results suggest that PC(MECH) are recently generated, short-living PC, and PC(COLL) constitutes a subset with higher maturity and survival, which resides in connective tissue-rich areas.

  11. The suitability of human adipose-derived stem cells for the engineering of ligament tissue.

    PubMed

    Eagan, Michael J; Zuk, Patricia A; Zhao, Ke-Wei; Bluth, Benjamin E; Brinkmann, Elyse J; Wu, Benjamin M; McAllister, David R

    2012-10-01

    Rupture of the anterior cruciate ligament (ACL) is the one of the most common sports-related injuries. With its poor healing capacity, surgical reconstruction using either autografts or allografts is currently required to restore function. However, serious complications are associated with graft reconstructions and the number of such reconstructions has steadily risen over the years, necessitating the search for an alternative approach to ACL repair. Such an approach may likely be tissue engineering. Recent engineering approaches using ligament-derived fibroblasts have been promising, but the slow growth rate of such fibroblasts in vitro may limit their practical application. More promising results are being achieved using bone marrow mesenchymal stem cells (MSCs). The adipose-derived stem cell (ASC) is often proposed as an alternative choice to the MSC and, as such, may be a suitable stem cell for ligament engineering. However, the use of ASCs in ligament engineering still remains relatively unexplored. Therefore, in this study, the potential use of human ASCs in ligament tissue engineering was initially explored by examining their ability to express several ligament markers under growth factor treatment. ASC populations treated for up to 4 weeks with TGFβ1 or IGF1 did not show any significant and consistent upregulation in the expression of collagen types 1 and 3, tenascin C and scleraxis. While treatment with EGF or bFGF resulted in increased tenascin C expression, increased expression of collagens 1 and 3 were never observed. Therefore, simple in vitro treatment of human ASC populations with growth factors may not stimulate their ligament differentiative potential.

  12. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering.

    PubMed

    Unger, Ronald E; Wolf, Michael; Peters, Kirsten; Motta, Antonella; Migliaresi, Claudio; James Kirkpatrick, C

    2004-03-01

    We have examined a novel biomaterial consisting of a non-woven fibroin net produced from silk (Bombyx mori) cocoons for its ability to support the growth of human cells. Various human cells of different tissue and cell types (endothelial, epithelial, fibroblast, glial, keratinocyte, osteoblast) were examined for adherence and growth on the nets by confocal laser microscopy after staining of the cells with calcein-AM and by electron microscopy. All the cells readily adhered and spread over the individual fibers of the nets. Most of the cells were able to grow and survive on the nets for at least 7 weeks and growth not only covered the individual fibers of the net but generally bridged the gaps between individual fibers forming tissue-like structures. Scanning electron microscopic examination of the nets demonstrated a tight association of individual cells with the fibers and nets examined after removal of cells showed no evidence that the growth of cells in any way changed the structure of the fibers. Thus, silk fibroin nets are highly human cell-compatible and should be a useful new scaffolding biomaterial applicable for a wide range of target tissues in addition to supporting endothelial cells required for the vascularization of the newly formed tissue.

  13. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration.

    PubMed

    Linero, Itali; Chaparro, Orlando

    2014-01-01

    Mesenchymal stem cell (MSC) transplantation has proved to be a promising strategy in cell therapy and regenerative medicine. Although their mechanism of action is not completely clear, it has been suggested that their therapeutic activity may be mediated by a paracrine effect. The main goal of this study was to evaluate by radiographic, morphometric and histological analysis the ability of mesenchymal stem cells derived from human adipose tissue (Ad-MSC) and their conditioned medium (CM), to repair surgical bone lesions using an in vivo model (rabbit mandibles). The results demonstrated that both, Ad-MSC and CM, induce bone regeneration in surgically created lesions in rabbit's jaws, suggesting that Ad-MSC improve the process of bone regeneration mainly by releasing paracrine factors. The evidence of the paracrine effect of MSC on bone regeneration has a major impact on regenerative medicine, and the use of their CM can address some issues and difficulties related to cell transplants. In particular, CM can be easily stored and transported, and is easier to handle by medical personnel during clinical procedures.

  14. Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells.

    PubMed

    Schöpf, Bernd; Schäfer, Georg; Weber, Anja; Talasz, Heribert; Eder, Iris E; Klocker, Helmut; Gnaiger, Erich

    2016-06-01

    Altered mitochondrial metabolism plays a pivotal role in the development and progression of various diseases, including cancer. Cell lines are frequently used as models to study mitochondrial (dys)function, but little is known about their mitochondrial respiration and metabolic properties in comparison to the primary tissue of origin. We have developed a method for assessment of oxidative phosphorylation in prostate tissue samples of only 2 mg wet weight using high-resolution respirometry. Reliable protocols were established to investigate the respiratory activity of different segments of the mitochondrial electron transfer system (ETS) in mechanically permeabilized tissue biopsies. Additionally, the widely used immortalized prostate epithelial and fibroblast cell lines, RWPE1 and NAF, representing the major cell types in prostate tissue, were analyzed and compared to the tissue of origin. Our results show that mechanical treatment without chemical permeabilization agents or sample processing constitutes a reliable preparation method for OXPHOS analysis in small amounts of prostatic tissue typically obtained by prostate biopsy. The cell lines represented the bioenergetic properties of fresh tissue to a limited extent only. Particularly, tissue showed a higher oxidative capacity with succinate and glutamate, whereas pyruvate was a substrate supporting significantly higher respiratory activities in cell lines. Several fold higher zinc levels measured in tissue compared to cells confirmed the role of aconitase for prostate-specific metabolism in agreement with observed respiratory properties. In conclusion, combining the flexibility of cell culture models and tissue samples for respirometric analysis are powerful tools for investigation of mitochondrial function and tissue-specific metabolism. PMID:27060259

  15. Formation of Cartilage and Synovial Tissue by Human Gingival Stem Cells

    PubMed Central

    Larjava, Hannu; Loison-Robert, Ludwig-Stanislas; Berbar, Tsouria; Owen, Gethin R.; Berdal, Ariane; Chérifi, Hafida; Gogly, Bruno; Häkkinen, Lari; Fournier, Benjamin P.J.

    2014-01-01

    Human gingival stem cells (HGSCs) can be easily isolated and manipulated in culture to investigate their multipotency. Osteogenic differentiation of bone-marrow-derived mesenchymal stem/stromal cells has been well documented. HGSCs derive from neural crests, however, and their differentiation capacity has not been fully established. The aim of the present report was to investigate whether HGSCs can be induced to differentiate to osteoblasts and chondrocytes. HGSCs were cultured either in a classical monolayer culture or in three-dimensional floating micromass pellet cultures in specific differentiation media. HGSC differentiation to osteogenic and chondrogenic lineages was determined by protein and gene expression analyses, and also by specific staining of cells and tissue pellets. HGSCs cultured in osteogenic differentiation medium showed induction of Runx2, alkaline phosphatase (ALPL), and osterix expression, and subsequently formed mineralized nodules consistent with osteogenic differentiation. Interestingly, HGSC micromass cultures maintained in chondrogenic differentiation medium showed SOX9-dependent differentiation to both chondrocyte and synoviocyte lineages. Chondrocytes at different stages of differentiation were identified by gene expression profiles and by histochemical and immunohistochemical staining. In 3-week-old cultures, peripheral cells in the micromass cultures organized in layers of cuboidal cells with villous structures facing the medium. These cells were strongly positive for cadherin-11, a marker of synoviocytes. In summary, the findings indicate that HGSCs have the capacity to differentiate to osteogenic, chondrogenic, and synoviocyte lineages. Therefore, HGSCs could serve as an alternative source for stem cell therapies in regenerative medicine for patients with cartilage and joint destructions, such as observed in rheumatoid arthritis. PMID:25003637

  16. Derivation of Multiple Cranial Tissues and Isolation of Lens Epithelium-Like Cells From Human Embryonic Stem Cells

    PubMed Central

    2013-01-01

    Human embryonic stem cells (hESCs) provide a powerful tool to investigate early events occurring during human embryonic development. In the present study, we induced differentiation of hESCs in conditions that allowed formation of neural and non-neural ectoderm and to a lesser extent mesoderm. These tissues are required for correct specification of the neural plate border, an early embryonic transient structure from which neural crest cells (NCs) and cranial placodes (CPs) originate. Although isolation of CP derivatives from hESCs has not been previously reported, isolation of hESC-derived NC-like cells has been already described. We performed a more detailed analysis of fluorescence-activated cell sorting (FACS)-purified cell populations using the surface antigens previously used to select hESC-derived NC-like cells, p75 and HNK-1, and uncovered their heterogeneous nature. In addition to the NC component, we identified a neural component within these populations using known surface markers, such as CD15 and FORSE1. We have further exploited this information to facilitate the isolation and purification by FACS of a CP derivative, the lens, from differentiating hESCs. Two surface markers expressed on lens cells, c-Met/HGFR and CD44, were used for positive selection of multiple populations with a simultaneous subtraction of the neural/NC component mediated by p75, HNK-1, and CD15. In particular, the c-Met/HGFR allowed early isolation of proliferative lens epithelium-like cells capable of forming lentoid bodies. Isolation of hESC-derived lens cells represents an important step toward the understanding of human lens development and regeneration and the devising of future therapeutic applications. PMID:23341438

  17. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

    PubMed

    Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph

    2010-10-01

    The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  18. Toad skin extract cinobufatini inhibits migration of human breast carcinoma MDA-MB-231 cells into a model stromal tissue.

    PubMed

    Nakata, Munehiro; Mori, Shuya; Kamoshida, Yo; Kawaguchi, Shota; Fujita-Yamaguchi, Yoko; Gao, Bo; Tang, Wei

    2015-08-01

    Toad skin extract cinobufatini study has been focused on anticancer activity, especially apoptosis-inducing activity by bufosteroids. The present study examined effect of the toad skin extract on cancer cell migration into model stromal tissues. Human breast carcinoma cell line MDA-MB-231 was incubated in the presence or absence of toad skin extract on a surface of reconstituted type I collagen gel as a model stromal tissue allowing the cells to migrate into the gel. Frozen sections were microscopically observed after azan staining. Data showed a decrease of cell number in a microscopic field and shortening of cell migration into the model stromal tissue in a dose dependent manner. This suggests that toad skin extract may possess migration-preventing activity in addition to cell toxicity such as apoptosis-inducing activity. The multifaceted effects including apoptosis-inducing and cancer cell migration-preventing activities would improve usefulness of toad skin extract cinobufatini as an anticancer medicine.

  19. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications.

    PubMed

    Pak, Jaewoo; Lee, Jung Hun; Kartolo, Wiwi Andralia; Lee, Sang Hee

    2016-01-01

    Osteoarthritis (OA) is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs) in the form of stromal vascular fraction (SVF) may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP), have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA. PMID:26881220

  20. Access to bacteriophage therapy: discouraging experiences from the human cell and tissue legal framework.

    PubMed

    Verbeken, G; Huys, I; De Vos, D; De Coninck, A; Roseeuw, D; Kets, E; Vanderkelen, A; Draye, J P; Rose, T; Jennes, S; Ceulemans, C; Pirnay, J P

    2016-02-01

    Cultures of human epithelial cells (keratinocytes) are used as an additional surgical tool to treat critically burnt patients. Initially, the production environment of keratinocyte grafts was regulated exclusively by national regulations. In 2004, the European Tissues and Cells Directive 2004/23/EC (transposed into Belgian Law) imposed requirements that resulted in increased production costs and no significant increase in quality and/or safety. In 2007, Europe published Regulation (EC) No. 1394/2007 on Advanced Therapy Medicinal Products. Overnight, cultured keratinocytes became (arguably) 'Advanced' Therapy Medicinal Products to be produced as human medicinal products. The practical impact of these amendments was (and still is) considerable. A similar development appears imminent in bacteriophage therapy. Bacteriophages are bacterial viruses that can be used for tackling the problem of bacterial resistance development to antibiotics. Therapeutic natural bacteriophages have been in clinical use for almost 100 years. Regulators today are framing the (re-)introduction of (natural) bacteriophage therapy into 'modern western' medicine as biological medicinal products, also subject to stringent regulatory medicinal products requirements. In this paper, we look back on a century of bacteriophage therapy to make the case that therapeutic natural bacteriophages should not be classified under the medicinal product regulatory frames as they exist today. It is our call to authorities to not repeat the mistake of the past.

  1. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo.

    PubMed

    Havens, Aaron M; Sun, Hongli; Shiozawa, Yusuke; Jung, Younghun; Wang, Jingcheng; Mishra, Anjali; Jiang, Yajuan; O'Neill, David W; Krebsbach, Paul H; Rodgerson, Denis O; Taichman, Russell S

    2014-04-01

    The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.

  2. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

    PubMed

    Chien, Karen B; Shah, Ramille N

    2012-02-01

    Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications.

  3. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

    PubMed

    Chien, Karen B; Shah, Ramille N

    2012-02-01

    Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications. PMID:22019761

  4. Development of a combined model of tissue kinetics and radiation response of human bronchiolar epithelium with single cell resolution

    NASA Astrophysics Data System (ADS)

    Ostrovskaya, Natela Grigoryevna

    2005-07-01

    Lack of accurate data for epidemiological studies of low dose radiation effects necessitates development of dosimetric models allowing prediction of cancer risks for different organs. The objective of this work is to develop a model of the radiation response of human bronchiolar tissue with single cell resolution. The computer model describes epithelial tissue as an ensemble of individual cells, with the geometry of a human bronchiole and the properties of different cell types are taken into account. The model simulates the tissue kinetics and radiation exposure in four dimensions: three spatial dimensions and a temporal dimension. The bronchiole is modeled as a regular hollow cylinder with the epithelial cells of three different types (basal, secretory, and ciliated) lining its interior. For the purposes of assessment of radiation damage to the cells only the nuclei of the cells have been modeled. Subroutines describing cellular kinetics have been developed to simulate cell turnover in a normal epithelial tissue. Monte Carlo subroutines have been developed to simulate exposure to alpha particles; the GEANT4 toolkit has been used to simulate exposure to low LET radiation. Each hit cell is provided with a record of energy deposition, and this record is passed to the progeny if the cell survives. The model output provides data on the number of basal progenitor cells in different phases of a cell life-cycle and secretory to ciliated cell ratio after several generations of cell proliferation. The model calculates labeling and mitotic indices and estimates the average cell turnover time for the bronchiolar tissue. Microdosimetric calculations are performed for cells traversed by ionizing particles. The model will be used to assess the accumulation of damage in cells due to protracted low level radiation exposure. The model output may provide directions for the future experimental design.

  5. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    PubMed

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  6. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts.

    PubMed

    Lama, Vibha N; Smith, Lisa; Badri, Linda; Flint, Andrew; Andrei, Adin-Cristian; Murray, Susan; Wang, Zhuo; Liao, Hui; Toews, Galen B; Krebsbach, Paul H; Peters-Golden, Marc; Pinsky, David J; Martinez, Fernando J; Thannickal, Victor J

    2007-04-01

    The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% +/- 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ.

  7. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue.

    PubMed Central

    Powell, J J; Ainley, C C; Harvey, R S; Mason, I M; Kendall, M D; Sankey, E A; Dhillon, A P; Thompson, R P

    1996-01-01

    Macrophages at the base of human gut associated lymphoid tissue (GALT), become loaded early in life with dark granular pigment that is rich in aluminium, silicon, and titanium. The molecular characteristics, intracellular distribution, and source of this pigment is described. Laser scanning and electron microscopy showed that pigmented macrophages were often closely related to collagen fibres and plasma cells in GALT of both small and large intestine and contained numerous phagolysosomes, previously described as granules, that are rich in electron dense submicron sized particles. Morphological assessment, x ray microanalysis, and image electron energy loss spectroscopy showed three distinct types of microparticle: type I - spheres of titanium dioxide, 100-200 nm diameter, characterised as the synthetic food-additive polymorph anatase; type II - aluminosilicates, < 100-400 nm in length, generally of flaky appearance, often with adsorbed surface iron, and mostly characteristic of the natural clay mineral kaolinite; and type III - mixed environmental silicates without aluminium, 100-700 nm in length and of variable morphology. Thus, this cellular pigment that is partly derived from food additives and partly from the environment is composed of inert inorganic microparticles and loaded into phagolysosomes of macrophages within the GALT of all human subjects. These observations suggest that the pathogenicity of this pigment should be further investigated since, in susceptible individuals, the same intracellular distribution of these three types of submicron particle causes chronic latent granulomatous inflammation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:8675092

  8. Human Skin Cells That Express Stage-Specific Embryonic Antigen 3 Associate with Dermal Tissue Regeneration

    PubMed Central

    Vega Crespo, Agustin; Awe, Jason P.; Reijo Pera, Renee

    2012-01-01

    Abstract Stage-specific embryonic antigen 3 (SSEA3) is a glycosphingolipid that has previously been used to identify cells with stem cell-like, multipotent, and pluripotent characteristics. A rare subpopulation of SSEA3-expressing cells exists in the dermis of adult human skin. These SSEA3-expressing cells undergo a significant increase in cell number in response to injury, suggesting a possible role in regeneration. These SSEA3-expressing regeneration-associated (SERA) cells were derived through primary cell culture, purified by fluorescence-activated cell sorting (FACS), and characterized. Longer in vitro culture of the primary skin cells led to lower SSEA3 expression stability after FACS-based purification, suggesting that the current culture conditions may need to be optimized to permit the large-scale expansion of SERA cells. The SERA cells demonstrated a global transcriptional state that was most similar to bone marrow- and fat-derived mesenchymal stem cells (MSCs), and the highest expressing SSEA3-expressing cells co-expressed CD105 (clone 35). However, while a rare population of MSCs was observed in primary human skin cell cultures that could differentiate into adipocytes, osteoblasts, or chondrocytes, SERA cells did not possess this differentiation capacity, suggesting that there are at least two different rare subpopulations in adult human skin primary cultures. The identification, efficient purification, and large-scale expansion of these rare subpopulations (SERA cells and MSCs) from heterogeneous adult human skin primary cell cultures may have applications for future patient-specific cellular therapies. PMID:23514702

  9. Expression of serum amyloid A transcripts in human bone tissues, differentiated osteoblast-like stem cells and human osteosarcoma cell lines.

    PubMed

    Kovacevic, Alenka; Hammer, Astrid; Stadelmeyer, Elke; Windischhofer, Werner; Sundl, Monika; Ray, Alpana; Schweighofer, Natascha; Friedl, Gerald; Windhager, Reinhard; Sattler, Wolfgang; Malle, Ernst

    2008-02-15

    Although the liver is the primary site of cytokine-mediated expression of acute-phase serum amyloid A (SAA) protein, extrahepatic production has also been reported. Besides its role in amyloidosis and lipid homeostasis during the acute-phase, SAA has recently been assumed to contribute to bone and cartilage destruction. However, expression of SAA in human osteogenic tissue has not been studied. Therefore, we first show that SAA1 (coding for the major SAA isoform) but not SAA2 transcripts are expressed in human trabecular and cortical bone fractions and bone marrow. Next, we show expression of (i) IL-1, IL-6, and TNF receptor transcripts; (ii) the human homolog of SAA-activating factor-1 (SAF-1, a transcription factor involved in cytokine-mediated induction of SAA genes); and (iii) SAA1/2 transcripts in non-differentiated and, to a higher extent, in osteoblast-like differentiated human mesenchymal stem cells. Third, we provide evidence that human osteoblast-like cells of tumor origin (MG-63 and SAOS-2) express SAF-1 under basal conditions. SAA1/2 transcripts are expressed under basal conditions (SAOS-2) and cytokine-mediated conditions (MG-63 and SAOS-2). RT-PCR, Western blot analysis, and immunofluorescence technique confirmed cytokine-mediated expression of SAA on RNA and protein level in osteosarcoma cell lines while SAA4, a protein of unknown function, is constitutively expressed in all osteogenic tissues investigated.

  10. Results from a horizon scan on risks associated with transplantation of human organs, tissues and cells: from donor to patient.

    PubMed

    Herberts, C A; Park, M V D Z; Pot, J W G A; de Vries, C G J C A

    2015-03-01

    The successful transplantation of human materials such as organs, tissues and cells into patients does not only depend on the benefits, but also on the mitigation of risks. To gain insight into recent publications on risks associated with the process of transferring human materials from donor to recipient we performed a horizon scan by reviewing scientific literature and news websites of 2011 on this subject. We found there is ample information on how extended donor criteria, such as donor age, affect the survival rates of organs or patients. Interestingly, gender mismatch does not appear to be a major risk factor in organ rejection. Data on risks of donor tumor transmission was very scarce; however, risk categories for various tumor types have been suggested. In order to avoid rejection, a lot of research is directed towards engineering tissues from a patient's own tissues and cells. Some but not all of these developments have reached the clinic. Developments in the field of stem cell therapy are rapid. However, many hurdles are yet to be overcome before these cells can be applied on a large scale in the clinic. The processes leading to genetic abnormalities in cells differentiated from stem cells need to be identified in order to avoid transplantation of aberrant cells. New insights have been obtained on storage and preservation of human materials, a critical step for success of their clinical use. Likewise, quality management systems have been shown to improve the quality and safety of human materials used for transplantation.

  11. Characterization of human skin cells for tissue engineering applications by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pudlas, Marieke; Koch, Steffen; Bolwien, Carsten; Walles, Heike

    2010-02-01

    In the field of cell culture and tissue engineering is an increasing need for non-invasive methods to analyze living cells in vitro. One important application is the cell characterization in tissue engineering products. Raman spectroscopy is a method which analyzes cells without lysis, fixation or the use of any chemicals and do not affect cell vitality adversely if suitable laser powers and wavelength are used. This purely optical technique is based on inelastic scattering of laser photons by molecular vibrations of biopolymers. Basically Raman spectra of cells contain typical fingerprint regions and information about cellular properties. Characteristic peaks in Raman spectra could be assigned to biochemical molecules like proteins, nucleic acid or lipids. The distinction of cell types by a multivariate analysis of Raman spectra is possible due to their biochemical differences. As this method allows a characterization of cells without any cell damage it is a promising technology for the quality control of cells in tissue engineering or cell culture applications.

  12. Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors

    PubMed Central

    de Peppo, Giuseppe Maria; Vunjak-Novakovic, Gordana; Marolt, Darja

    2014-01-01

    Human pluripotent stem cells represent an unlimited source of skeletal tissue progenitors for studies of bone biology, pathogenesis, and the development of new approaches for bone reconstruction and therapies. In order to construct in vitro models of bone tissue development and to grow functional, clinical-size bone substitutes for transplantation, cell cultivation in three-dimensional environments composed of porous osteoconductive scaffolds and dynamic culture systems—bioreactors—has been studied. Here, we describe a stepwise procedure for the induction of human embryonic and induced pluripotent stem cells (collectively termed PSCs) into mesenchymal-like progenitors, and their subsequent cultivation on decellularized bovine bone scaffolds in perfusion bioreactors, to support the development of viable, stable bone-like tissue in defined geometries. PMID:24281874

  13. Effect of FGF-2 on collagen tissue regeneration by human vertebral bone marrow stem cells.

    PubMed

    Park, Dong-Soo; Park, Jung-Chul; Lee, Jung-Seok; Kim, Tae-Wan; Kim, Ki-Joon; Jung, Byung-Joo; Shim, Eun-Kyung; Choi, Eun-Young; Park, So-Yon; Cho, Kyoo-Sung; Kim, Chang-Sung

    2015-01-15

    The effects of fibroblast growth factor-2 (FGF-2) on collagen tissue regeneration by human bone marrow stem cells (hBMSCs) were investigated. hBMSCs were isolated from human vertebral body bone marrow during vertebral surgery and a population of hBMSCs with the characteristics of mesenchymal stem cells was observed. The FGF-2 treatment (5 ng/mL) affected on the colony-forming efficiency, proliferation, and in vitro differentiation of hBMSCs. Insoluble/soluble collagen and hydroxyproline synthesis was significantly enhanced in hBMSCs expanded with FGF-2 and the treatment of FGF-2 caused a reduction in the mRNA expression of collagen type I, but an increase of collagen types II and III along with lysyl oxidase family genes. Collagen formation was also examined using an in vivo assay model by transplanting hBMSCs into immunocompromised mice (n=4) and the histologic and immunohistochemical results revealed that significantly more collagen with a well-organized structure was formed by FGF-2-treated hBMSCs at 8 weeks posttransplantation (P<0.05). The DNA microarray assay demonstrated that genes related to extracellular matrix formation were significantly upregulated. To elucidate the underlying mechanism, chemical inhibitors against extracellular-signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) were treated and following downstream expression was observed. Collectively, FGF-2 facilitated the collagen-producing potency of hBMSCs both in vitro and in vivo, rendering them more suitable for use in collagen regeneration in the clinical field.

  14. Human tissue mast cells are an inducible reservoir of persistent HIV infection.

    PubMed

    Sundstrom, J Bruce; Ellis, Jane E; Hair, Gregory A; Kirshenbaum, Arnold S; Metcalfe, Dean D; Yi, Hong; Cardona, Adriana C; Lindsay, Michael K; Ansari, Aftab A

    2007-06-15

    We have proposed that, unlike other HIV-vulnerable cell lineages, progenitor mast cells (prMCs), cultured in vitro from undifferentiated bone marrow-derived CD34(+) pluripotent progenitors (PPPs), are susceptible to infection during a limited period of their ontogeny. As infected prMCs mature in culture, they lose expression of viral chemokine coreceptors necessary for viral entry and develop into long-lived, latently infected mature tissue mast cells (MCs), resistant to new infection. In vivo recruitment of prMCs to different tissue compartments occurs in response to tissue injury, growth, and remodeling or allergic inflammation, allowing populations of circulating and potentially HIV-susceptible prMCs to spread persistent infection to diverse tissue compartments. In this report, we provide in vivo evidence to confirm this model by demonstrating that HIV-infected women have both circulating prMCs and placental tissue MCs (PLMCs) that harbor inducible infectious HIV even after highly active antiretroviral therapy (HAART) during pregnancy. Furthermore, infectious virus, capable of infecting alloactivated fetal cord blood mononuclear cells (CBMCs), could be induced in isolated latently infected PLMCs after weeks in culture in vitro. These data provide the first in vivo evidence that tissue MCs, developed from infected circulating prMCs, comprise a long-lived inducible reservoir of persistent HIV in infected persons during HAART.

  15. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine.

    PubMed

    Toh, Wei Seong; Lee, Eng Hin; Cao, Tong

    2011-09-01

    The current surgical intervention of using autologous chondrocyte implantation (ACI) for cartilage repair is associated with several problems such as donor site morbidity, de-differentiation upon expansion and fibrocartilage repair following transplantation. This has led to exploration of the use of stem cells as a model for chondrogenic differentiation as well as a potential source of chondrogenic cells for cartilage tissue engineering and repair. Embryonic stem cells (ESCs) are advantageous, due to their unlimited self-renewal and pluripotency, thus representing an immortal cell source that could potentially provide an unlimited supply of chondrogenic cells for both cell and tissue-based therapies and replacements. This review aims to present an overview of emerging trends of using ESCs in cartilage tissue engineering and regenerative medicine. In particular, we will be focusing on ESCs as a promising cell source for cartilage regeneration, the various strategies and approaches employed in chondrogenic differentiation and tissue engineering, the associated outcomes from animal studies, and the challenges that need to be overcome before clinical application is possible.

  16. Autophagy Releases Lipid That Promotes Fibrogenesis by Activated Hepatic Stellate Cells in Mice and in Human Tissues

    PubMed Central

    HERNÁNDEZ–GEA, VIRGINIA; GHIASSI–NEJAD, ZAHRA; ROZENFELD, RAPHAEL; GORDON, RONALD; FIEL, MARIA ISABEL; YUE, ZHENYU; CZAJA, MARK J.; FRIEDMAN, SCOTT L.

    2012-01-01

    BACKGROUND & AIMS The pathogenesis of liver fibrosis involves activation of hepatic stellate cells, which is associated with depletion of intracellular lipid droplets. When hepatocytes undergo autophagy, intracellular lipids are degraded in lysosomes. We investigated whether autophagy also promotes loss of lipids in hepatic stellate cells to provide energy for their activation and extended these findings to other fibrogenic cells. METHODS We analyzed hepatic stellate cells from C57BL/6 wild-type, Atg7F/F, and Atg7F/F-GFAP-Cre mice, as well as the mouse stellate cell line JS1. Fibrosis was induced in mice using CCl4 or thioacetamide (TAA); liver tissues and stellate cells were analyzed. Autophagy was blocked in fibrogenic cells from liver and other tissues using small interfering RNAs against Atg5 or Atg7 and chemical antagonists. Human pulmonary fibroblasts were isolated from samples of lung tissue from patients with idiopathic pulmonary fibrosis or from healthy donors. RESULTS In mice, induction of liver injury with CCl4 or TAA increased levels of autophagy. We also observed features of autophagy in activated stellate cells within injured human liver tissue. Loss of autophagic function in cultured mouse stellate cells and in mice following injury reduced fibrogenesis and matrix accumulation; this effect was partially overcome by providing oleic acid as an energy substrate. Autophagy also regulated expression of fibrogenic genes in embryonic, lung, and renal fibroblasts. CONCLUSIONS Autophagy of activated stellate cells is required for hepatic fibrogenesis in mice. Selective reduction of autophagic activity in fibrogenic cells in liver and other tissues might be used to treat patients with fibrotic diseases. PMID:22240484

  17. Pore geometry regulates early stage human bone marrow cell tissue formation and organisation.

    PubMed

    Knychala, J; Bouropoulos, N; Catt, C J; Katsamenis, O L; Please, C P; Sengers, B G

    2013-05-01

    Porous architecture has a dramatic effect on tissue formation in porous biomaterials used in regenerative medicine. However, the wide variety of 3D structures used indicates there is a clear need for the optimal design of pore architecture to maximize tissue formation and ingrowth. Thus, the aim of this study was to characterize initial tissue growth solely as a function of pore geometry. We used an in vitro system with well-defined open pore slots of varying width, providing a 3D environment for neo-tissue formation while minimizing nutrient limitations. Results demonstrated that initial tissue formation was strongly influenced by pore geometry. Both velocity of tissue invasion and area of tissue formed increased as pores became narrower. This is associated with distinct patterns of actin organisation and alignment depending on pore width, indicating the role of active cell generated forces. A mathematical model based on curvature driven growth successfully predicted both shape of invasion front and constant rate of growth, which increased for narrower pores as seen in experiments. Our results provide further evidence for a front based, curvature driven growth mechanism depending on pore geometry and tissue organisation, which could provide important clues for 3D scaffold design.

  18. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs

    PubMed Central

    Dikina, Anna D.; Strobel, Hannah A.; Lai, Bradley P.; Rolle, Marsha W.; Alsberg, Eben

    2015-01-01

    There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted in a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. PMID:25818451

  19. T-cell receptor heterogeneity of gamma delta T-cell clones from human female reproductive tissues.

    PubMed

    Christmas, S E; Brew, R; Deniz, G; Taylor, J J

    1993-03-01

    gamma delta T cells were isolated from human decidua parietalis, decidua basalis and cervix and cloned in the presence of interleukin-2 (IL-2). T-cell receptor (TcR) expression was then analysed and compared with that of a panel of gamma delta T-cell clones from peripheral blood. Only 17/40 (42.5%) clones from decidua parietalis were V gamma 9+/V delta 2+ as compared to 68/94 (72%) of peripheral blood clones (P < 0.005). Conversely, 50% of clones from decidua parietalis but only 15% of clones from peripheral blood were V delta 1+ (P < 0.001). At least seven distinct TcR types were identified among the panel of clones from decidua parietalis and at least six different types were expressed by the panel of 17 clones from cervix. This receptor heterogeneity was not a result of interdonor variation as in all instances where more than one clone was obtained from a single sample, individual clones having between two and five receptor types were identified. However, 23/24 (95.8%) of clones from decidua basalis were V gamma 9+/V delta 2+. Most clones from decidua parietalis and cervix, whether V gamma 9+/V delta 2+ or V delta 1+, were positive for the mucosal lymphocyte marker, HML-1, but expression was often heterogeneous within a single clone. In contrast, almost all gamma delta T-cell clones from peripheral blood were HML-1-. Thus, unlike the mouse, gamma delta T cells within these human female reproductive tissues have a diverse TcR repertoire which, in decidua parietalis, is distinct from that of peripheral blood.

  20. Regulation of LPS-induced tissue factor expression in human monocytic THP-1 cells by curcumin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tissue factor (TF) is a transmembrane receptor, which initiates thrombotic episodes associated with various diseases. In addition to membrane-bound TF, we have discovered an alternatively spliced form of human TF mRNA. It was later confirmed that this form of TF mRNA expresses a soluble protein circ...

  1. Better science with human cell-based organ and tissue models.

    PubMed

    Heinonen, Tuula

    2015-03-01

    At present, animal-based models are the major test systems for assessing the tolerability and safety of chemical substances for regulatory purposes, and also for pivotal efficacy testing in pharmaceutical development. In spite of the high genetic similarity between many laboratory animals and humans, animal models are very poor predictors of human health effects and pathophysiological processes. Thus, models and testing strategies that are more relevant to human biology, are needed for these purposes. The best predictability is achieved with human organotypic models that mimic the microenvironment of human tissues. During their development, such models have to be characterised at the structural, genetic and functional levels, and compared to the respective human tissues. Their predictivity should be confirmed by using known reference chemicals with corresponding human data. The use of these methods in safety assessment and biomedical research, combined with the knowledge gained of the underlying biological processes on gene and protein expression, as well as on cellular signalling, will ultimately lead to better human science and animal welfare.

  2. Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues.

    PubMed

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ikram, Masroor

    2016-06-01

    Optical polarimetry was employed for assessment of ex vivo healthy and basal cell carcinoma (BCC) tissue samples from human skin. Polarimetric analyses revealed that depolarization and retardance for healthy tissue group were significantly higher (p<0.001) compared to BCC tissue group. Histopathology indicated that these differences partially arise from BCC-related characteristic changes in tissue morphology. Wilks lambda statistics demonstrated the potential of all investigated polarimetric properties for computer assisted classification of the two tissue groups. Based on differences in polarimetric properties, partial least square (PLS) regression classified the samples with 100% accuracy, sensitivity and specificity. These findings indicate that optical polarimetry together with PLS statistics hold promise for automated pathology classification. PMID:27083851

  3. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6

    PubMed Central

    Guye, Patrick; Ebrahimkhani, Mohammad R.; Kipniss, Nathan; Velazquez, Jeremy J.; Schoenfeld, Eldi; Kiani, Samira; Griffith, Linda G.; Weiss, Ron

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues. PMID:26732624

  4. Acellular human glans extracellular matrix as a scaffold for tissue engineering: in vitro cell support and biocompatibility

    PubMed Central

    Egydio, Fernanda M.; Freitas, Luiz G.; Sayeg, Kleber; Laks, Marcus; Oliveira, Andréia S.; Almeida, Fernando G.

    2015-01-01

    ABSTRACT Objectives: Diseases of the genitourinary tract can lead to significant damage. Current reconstructive techniques are limited by tissue availability and compatibility. This study aims to assess if the decellularized human glans can be used as a biomaterial for penile reconstruction. Materials and Methods: Samples of the glans matrices were descellularized. We evaluate the presence of collagen type I and III, and elastic fibers. Biocompatibility assays were performed to assess the cytotoxic and non-cytotoxic interactions between the acellular matrix and 3T3 cells. The matrices were seeded with mesenchymal stem cells and were assessed for viability and integration of these cells. Biomechanical tests in native tissue, descellularized matrix and seeded matrix were performed to characterize their biomechanical properties. Results: The tissue architecture of the decellularized matrix of human glans was preserved as well as the maintenance of the biomechanical and biological properties. The analyzes of glans seeded with mesenchymal stem cells revealed the integration of these cells to the matrices, and its viability during two weeks “in vitro”. Conclusion: The decellularization process did not alter the biological and biomechanical characteristics of the human glans. When these matrices were seeded they were able to maintain the cells integrity and vitality. PMID:26689526

  5. Human Mesenchymal Cells from Adipose Tissue Deposit Laminin and Promote Regeneration of Injured Spinal Cord in Rats

    PubMed Central

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a descripton of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury. PMID:24830794

  6. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    PubMed

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  7. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.

    2015-01-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it

  8. Isolation, characterization and cardiac differentiation of human thymus tissue derived mesenchymal stromal cells.

    PubMed

    Lin, Ze Bang; Qian, Bo; Yang, Yu Zhong; Zhou, Kai; Sun, Jian; Mo, Xu Ming; Wu, Kai Hong

    2015-07-01

    Mesenchymal stromal cells (MSCs) are promising candidate donor cells for replacement of cardiomyocyte loss during ischemia and in vitro generation of myocardial tissue. We have successfully isolated MSCs from the discarded neonatal thymus gland during cardiac surgery. The thymus MSCs were characterized by cell-surface antigen expression. These cells have high ability for proliferation and are able to differentiate into osteoblasts and adipocytes in vitro. For cardiac differentiation, the cells were divided into 3 groups: untreated control; 5-azacytidine group and sequential exposure to 5-azacytidine, bone morphogenetic protein 4, and basic fibroblast growth factor. Thymus MSCs showed a fibrolast-like morphology and some differentiated cells increased in size, formed a ball-like appearance over time and spontaneously contracting cells were observed in sequential exposure group. Immunostaining studies, cardiac specific genes/protein expression confirmed the cardiomyocyte phenotype of the differentiated cells. These results demonstrate that thymus MSCs can be a promising cellular source for cardiac cell therapy and tissue engineering.

  9. Tissue Distribution Dynamics of Human NK Cells Inferred from Peripheral Blood Depletion Kinetics after Sphingosine-1-Phosphate Receptor Blockade.

    PubMed

    Mehling, M; Burgener, A-V; Brinkmann, V; Bantug, G R; Dimeloe, S; Hoenger, G; Kappos, L; Hess, C

    2015-11-01

    Human natural killer (NK) cell subsets differentially distribute throughout the organism. While CD56(dim) and CD56(bright) NK cell subsets similarly reside in the bone marrow (BM), the CD56(dim) population predominantly accumulates in non-lymphoid tissues and the CD56(bright) counterpart in lymphoid tissue (LT). The dynamics with which these NK cell subsets redistribute to tissues remains unexplored. Here, we studied individuals newly exposed to fingolimod, a drug that efficiently blocks sphingosine-1-phosphate (S1P)-directed lymphocyte - including NK cell - egress from tissue to blood. During an observation period of 6h peripheral blood depletion of CD56(bright) NK cells was observed 3 h after first dose of fingolimod, with 40-50% depletion after 6 h, while a decrease of the numbers of CD56(dim) NK cells did not reach the level of statistical significance. In vitro, CD56(bright) and CD56(dim) NK cells responded comparably to the BM-homing chemokine CXCL12, while CD56(bright) NK cells migrated more efficiently in gradients of the LT-homing chemokines CCL19 and CCL21. In conjuncture with these in vitro studies, the indirectly observed subset-specific depletion kinetics from blood are compatible with preferential and more rapid redistribution of CD56(bright) NK cells from blood to peripheral tissue such as LT and possibly also the inflamed central nervous system. These data shed light on an unexplored level at which access of NK cells to LT, and thus, for example antigen-presenting cells, is regulated.

  10. Regeneration of mandibular defects using adipose tissue mesenchymal stromal cells in combination with human serum-derived scaffolds.

    PubMed

    Peña González, Ignacio; Álvarez-Viejo, María; Alonso-Montes, Cristina; Menéndez-Menéndez, Yolanda; Gutiérrez Álvarez, Fernando; de Vicente Rodríguez, Juan Carlos; Otero Hernández, Jesús; Meana Infiesta, Álvaro

    2016-09-01

    Bone regeneration is a challenging issue. Traditional solutions bring risks, potential complications, and morbidity. The aim of the present study was to regenerate critical-sized mandible defects in athymic rats with adipose tissue mesenchymal stromal cells (AT-MSCs) in combination with human serum-derived scaffolds. Two approaches to treatment were performed. The first approach used differentiated stromal cells that became osteogenic cell lines. The second approach used no pre-differentiation. Follow-up periods were 45 days and 90 days. Both cell types were combined with human serum-derived scaffolds. Afterward, histological (haematoxylin-eosin and Masson's Trichrome stain modified by Goldner), immunohistochemical (human vimentin and Stro-1), and radiological (microCT) studies were performed. The level of calcification between the groups was compared by analysis of variance, and statistical significance was set at p < 0.05. The results demonstrate that bone regeneration can be achieved with both undifferentiated and pre-differentiated cells, but that the structure and level of calcification were better achieved with pre-differentiated cells (p < 0.05). The scaffold is suitable for this cell type, is osteoconductive and simple to perform. This article highlights the possible application of adipose tissue mesenchymal stromal cells in combination with a non-mineralized scaffold in bone regeneration. PMID:27450897

  11. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics.

    PubMed

    Katsuda, Takeshi; Oki, Katsuyuki; Ochiya, Takahiro

    2015-01-01

    In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell-cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer's disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.

  12. Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines

    PubMed Central

    Chhibber, Aparna; French, Courtney E.; Yee, Sook Wah; Gamazon, Eric R.; Theusch, Elizabeth; Qin, Xiang; Webb, Amy; Papp, Audrey C.; Wang, Ann; Simmons, Christine Q.; Konkashbaev, Anuar; Chaudhry, Amarjit S.; Mitchel, Katrina; Stryke, Doug; Ferrin, Thomas E.; Weiss, Scott T.; Kroetz, Deanna L.; Sadee, Wolfgang; Nickerson, Deborah A.; Krauss, Ronald M.; George, Alfred L.; Schuetz, Erin G.; Medina, Marisa W.; Cox, Nancy J.; Scherer, Steven E.; Giacomini, Kathleen M.; Brenner, Steven E

    2015-01-01

    Variation in the expression level and activity of genes involved in drug disposition and action (“pharmacogenes”) can affect drug response and toxicity, especially when in tissues of pharmacological importance. Previous studies have relied primarily on microarrays to understand gene expression differences, or have focused on a single tissue or small number of samples. The goal of this study was to use RNA-seq to determine the expression levels and alternative splicing of 389 PGRN pharmacogenes across four tissues (liver, kidney, heart and adipose) and lymphoblastoid cell lines (LCLs), which are used widely in pharmacogenomics studies. Analysis of RNA-seq data from 139 different individuals across the 5 tissues (20–45 individuals per tissue type) revealed substantial variation in both expression levels and splicing across samples and tissue types. This in-depth exploration also revealed 183 splicing events in pharmacogenes that were previously not annotated. Overall, this study serves as a rich resource for the research community to inform biomarker and drug discovery and use. PMID:26856248

  13. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes.

    PubMed

    Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon

    2014-05-01

    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.

  14. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.

    PubMed

    Russo, Valerio; Yu, Claire; Belliveau, Paul; Hamilton, Andrew; Flynn, Lauren E

    2014-02-01

    Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source. PMID:24361924

  15. Human cells, tissues, and cellular and tissue-based products; establishment registration and listing. Interim final rule; opportunity for public comment.

    PubMed

    2004-01-27

    The Food and Drug Administration (FDA) is issuing an interim final rule to except human dura mater and human heart valve allografts, currently subject to application or notification requirements under the Federal Food, Drug, and Cosmetic Act (the act), from the scope of the definition of "human cells, tissues, or cellular or tissue-based products (HCT/P's)" subject to the registration and listing requirements contained in 21 CFR part 1271. That definition became effective on January 21, 2004. FDA is taking this action to assure that these products, which are currently subject to the act and therefore regulated under the current good manufacturing practice regulations set out in the quality system regulations in 21 CFR part 820 are not released from the scope of those regulations before a more comprehensive regulatory framework applicable to HCT/P's, including donor suitability requirements, good tissue practice regulations, and appropriate enforcement provisions, is fully in place. When that comprehensive framework is in place, FDA intends that human dura mater and human heart valves will be subject to it. FDA intends to revoke this interim final rule at that time. PMID:14968801

  16. Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients.

    PubMed

    Salans, L B; Cushman, S W; Weismann, R E

    1973-04-01

    The cellular character of the adipose tissue of 21 nonobese and 78 obese patients has been examined. Adipose cell size (lipid per cell) was determined in three different subcutaneous and deep fat depots in each patient and the total number of adipose cells in the body estimated by division of total body fat by various combinations of the adipose cell sizes at six different sites. Cell number has also been estimated on the basis of various assumed distribution of total fat between the subcutaneous and deep fat depots. Obese patients, as a group, have larger adipose cells than do nonobese patients; cell size, however, varies considerably among the fat depots of individuals of either group. The variation in cell size exists not only between, but also within subcutaneous and deep sites. Estimates of total adipose cell number for a given individual based upon cell size can, therefore, vary by as much as 85%. On the basis of these studies it is suggested that the total adipose number of an individual is best and most practically estimated, at this time, by division of total body fat by the mean of the adipose cell sizes of at least three subcutaneous sites. IRRESPECTIVE OF THE METHOD BY WHICH TOTAL ADIPOSE CELL NUMBER IS ESTIMATED, TWO PATTERNS OF OBESITY EMERGE WITH RESPECT TO THE CELLULAR CHARACTER OF THE ADIPOSE TISSUE MASS OF THESE PATIENTS: hyperplastic, with increased adipose cell number and normal or increased size, and hypertrophic, with increased cell size alone. These two cellular patterns of obesity are independent of a variety of assumed distributions of fat among the subcutaneous and deep depots. When these different cellular patterns are examined in terms of various aspects of body size, body composition, and the degree, duration, and age of onset of obesity, only the latter uniquely distinguishes the hyperplastic from the hypertrophic: hyperplastic obesity is characterized by an early age of onset, hypertrophic, by a late age of onset. These studies

  17. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering.

    PubMed

    Wang, Limin; Tran, Ivy; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2009-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have long been considered the criterion standard for stem cell sources in musculoskeletal tissue engineering. The true test of a stem cell source is a side-by-side comparison with BMSCs. Human umbilical cord-derived mesenchymal stromal cells (hUCMSCs), one such candidate with high potential, are a fetus-derived stem cell source collected from discarded tissue (Wharton's jelly) after birth. Compared with human BMSCs (hBMSCs), hUCMSCs have the advantages of abundant supply, painless collection, no donor site morbidity, and faster and longer self-renewal in vitro. In this 6-week study, a chondrogenic comparison was conducted of hBMSCs and hUCMSCs in a three-dimensional (3D) scaffold for the first time. Cells were seeded on polyglycolic acid (PGA) scaffolds at 25 M cells/mL and then cultured in identical conditions. Cell proliferation, biosynthesis, and chondrogenic differentiation were assessed at weeks 0, 3, and 6 after seeding. At weeks 3 and 6, hUCMSCs produced more glycosaminoglycans than hBMSCs. At week 6, the hUCMSC group had three times as much collagen as the hBMSC group. Immunohistochemistry revealed the presence of collagen types I and II and aggrecan in both groups, but type II collagen staining was more intense for hBMSCs than hUCMSCs. At week 6, the quantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed less type I collagen messenger RNA (mRNA) with both cell types, and more type II collagen mRNA with hBMSCs, than at week 3. Therefore, it was concluded that hUCMSCs may be a desirable option for use as a mesenchymal cell source for fibrocartilage tissue engineering, based on abundant type I collagen and aggrecan production of hUCMSCs in a 3D matrix, although further investigation of signals that best promote type II collagen production of hUCMSCs is warranted for hyaline cartilage engineering.

  18. Comparisons of Differentiation Potential in Human Mesenchymal Stem Cells from Wharton's Jelly, Bone Marrow, and Pancreatic Tissues

    PubMed Central

    Kao, Shih-Yi; Shyu, Jia-Fwu; Wang, Hwai-Shi; Lin, Chi-Hung; Su, Cheng-Hsi; Chen, Tien-Hua; Weng, Zen-Chung; Tsai, Pei-Jiun

    2015-01-01

    Background. Type 1 diabetes mellitus results from autoimmune destruction of β-cells. Insulin-producing cells (IPCs) differentiated from mesenchymal stem cells (MSCs) in human tissues decrease blood glucose levels and improve survival in diabetic rats. We compared the differential ability and the curative effect of IPCs from three types of human tissue to determine the ideal source of cell therapy for diabetes. Methods. We induced MSCs from Wharton's jelly (WJ), bone marrow (BM), and surgically resected pancreatic tissue to differentiate into IPCs. The in vitro differential function of these IPCs was compared by insulin-to-DNA ratios and C-peptide levels after glucose challenge. In vivo curative effects of IPCs transplanted into diabetic rats were monitored by weekly blood glucose measurement. Results. WJ-MSCs showed better proliferation and differentiation potential than pancreatic MSCs and BM-MSCs. In vivo, WJ-IPCs significantly reduced blood glucose levels at first week after transplantation and maintained significant decrease till week 8. BM-IPCs reduced blood glucose levels at first week but gradually increased since week 3. In resected pancreas-IPCs group, blood glucose levels were significantly reduced till two weeks after transplantation and gradually increased since week 4. Conclusion. WJ-MSCs are the most promising stem cell source for β-cell regeneration in diabetes treatment. PMID:26294917

  19. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station.

    PubMed

    Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid; Grivel, Jean-Charles

    2009-12-01

    The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.

  20. Localization and identification of granzymes A and B-expressing cells in normal human lymphoid tissue and peripheral blood.

    PubMed

    Kummer, J A; Kamp, A M; Tadema, T M; Vos, W; Meijer, C J; Hack, C E

    1995-04-01

    Cytoplasmic granules from activated natural killer (NK) and cytotoxic T lymphocytes (CTL) contain a pore-forming protein, perforin, and several homologous serine proteinases called granzymes. Expression of these proteins correlates with the cytolytic potential of cytotoxic lymphocytes. Using a panel of MoAbs specific for human granzyme A and B, respectively, expression of these proteinases in non-pathological lymphoid tissue and peripheral blood lymphocyte (PBL) subpopulations was investigated. Using immunohistochemistry and double stainings, the phenotype of granzyme-expressing cells in lymphoid tissue was investigated. Granzyme-positive cells were detected in all lymphoid tissues tested. No large differences in the number and distribution between granzyme A- and granzyme B-positive cells were observed. The highest number of positive cells was located in the red pulp of the spleen. Significant numbers were detected in tonsil, lymph nodes, liver and thymus. Low numbers were present in the lamina propria of non-inflamed stomach, small intestine and colon. Phenotypic analysis and cell sorting showed that most of the granzyme-positive cells in lymphoid tissue and PBL consisted of CD3-CD16+CD56+ lymphocytes. Hardly any granzyme-positive CD3+CD8+ CTL were present in peripheral blood. The synthesis of granzyme A as well as B by both CD3+CD16+CD56+ and CD3+CD8+ cells in peripheral blood was increased upon IL-2 stimulation. These results indicate that in normal lymphoid tissue the predominant cytolytic cell population is formed by the NK cells, and activated CTL are rare.

  1. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    SciTech Connect

    Van der Hauwaert, Cynthia; Savary, Grégoire; Buob, David; Leroy, Xavier; Aubert, Sébastien; Flamand, Vincent; Hennino, Marie-Flore; Perrais, Michaël; and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  2. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues.

    PubMed

    Weidenhamer, Nathan K; Moore, Dusty L; Lobo, Fluvio L; Klair, Nathaniel T; Tranquillo, Robert T

    2015-05-01

    The variables that influence the in vitro recellularization potential of decellularized engineered tissues, such as cell culture conditions and scaffold alignment, have yet to be explored. The goal of this work was to explore the influence of insulin and ascorbic acid and extracellular matrix (ECM) alignment on the recellularization of decellularized engineered tissue by human mesenchymal stem cells (hMSCs). Aligned and non-aligned tissues were created by specifying the geometry and associated mechanical constraints to fibroblast-mediated fibrin gel contraction and remodelling using circular and C-shaped moulds. Decellularized tissues (matrices) of the same alignment were created by decellularization with detergents. Ascorbic acid promoted the invasion of hMSCs into the matrices due to a stimulated increase in motility and proliferation. Invasion correlated with hyaluronic acid secretion, α-smooth muscle actin expression and decreased matrix thickness. Furthermore, hMSCs invasion into aligned and non-aligned matrices was not different, although there was a difference in cell orientation. Finally, we show that hMSCs on the matrix surface appear to differentiate toward a smooth muscle cell or myofibroblast phenotype with ascorbic acid treatment. These results inform the strategy of recellularizing decellularized engineered tissue with hMSCs.

  3. High-Frequency Vibration Treatment of Human Bone Marrow Stromal Cells Increases Differentiation toward Bone Tissue

    PubMed Central

    Prè, D.; Ceccarelli, G.; Visai, L.; Benedetti, L.; Imbriani, M.; Cusella De Angelis, M. G.; Magenes, G.

    2013-01-01

    In order to verify whether differentiation of adult stem cells toward bone tissue is promoted by high-frequency vibration (HFV), bone marrow stromal cells (BMSCs) were mechanically stimulated with HFV (30 Hz) for 45 minutes a day for 21 or 40 days. Cells were seeded in osteogenic medium, which enhances differentiation towards bone tissue. The effects of the mechanical treatment on differentiation were measured by Alizarin Red test, (q) real-time PCR, and protein content of the extracellular matrix. In addition, we analyzed the proliferation rate and apoptosis of BMSC subjected to mechanical stimulation. A strong increase in all parameters characterizing differentiation was observed. Deposition of calcium was almost double in the treated samples; the expression of genes involved in later differentiation was significantly increased and protein content was higher for all osteogenic proteins. Lastly, proliferation results indicated that stimulated BMSCs have a decreased growth rate in comparison with controls, but both treated and untreated cells do not enter the apoptosis process. These findings could reduce the gap between research and clinical application for bone substitutes derived from patient cells by improving the differentiation protocol for autologous cells and a further implant of the bone graft into the patient. PMID:23585968

  4. Altered expression of mast cell chymase and tryptase and of c-Kit in human cutaneous scar tissue.

    PubMed

    Hermes, B; Feldmann-Böddeker, I; Welker, P; Algermissen, B; Steckelings, M U; Grabbe, J; Henz, B M

    2000-01-01

    In order to explore a possible involvement of mast cells during human wound healing, we studied sections from scars (4-369-d-old) (N = 20) and normal skin (N = 10) for mast-cell-specific tryptase and chymase by enzyme histochemistry, for the stem cell factor receptor c-Kit and the melanosomal marker TA99 by immunohistochemistry, and for simultaneous c-Kit expression and avidin fluorescence by double staining. Enzyme activities and mRNA expression were also studied in tissue extracts. Chymase-reactive mast cell numbers as well as chymase activity and mRNA expression were reduced in all scars, whereas overall numbers of tryptase-reactive cells did not differ from normal skin, although tryptase activity and mRNA expression were increased in scar extracts. In contrast, numbers of c-Kit positive cells were significantly increased in old scars, and in the mid and lower dermis of all scars. A marked reduction of c-Kit reactivity was noted, however, in avidin-positive dermal mast cells and in epidermal basal cells, despite unchanged numbers of melanosome-positive cells, with an associated overall decrease of c-Kit mRNA in scar extracts. These data thus show that numbers of resident mast cells are very low in human cutaneous scars, suggesting massive mediator release from these cells into fresh wounds. Downregulation of stem cell factor receptors may also prevent these cells from increasing in number even in old scars. Instead, scar tissue is populated by a mast cell subpopulation that is chymase-, avidin-, tryptase +, c-Kit +, reflecting most probably an increased immigration and/or proliferation of immature mast cells and their precursors.

  5. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells.

    PubMed

    Puissant, Bénédicte; Barreau, Corinne; Bourin, Philippe; Clavel, Cyril; Corre, Jill; Bousquet, Christine; Taureau, Christine; Cousin, Béatrice; Abbal, Michel; Laharrague, Patrick; Penicaud, Luc; Casteilla, Louis; Blancher, Antoine

    2005-04-01

    Like mesenchymal stem cells from bone marrow (BM-MSCs), adipose tissue-derived adult stem cells (ADAS cells) can differentiate into several lineages and present therapeutical potential for repairing damaged tissues. The use of allogenic stem cells can enlarge their therapeutical interest, provided that the grafted cells could be tolerated. We investigate here, for the first time, the immunosuppressive properties of ADAS cells compared with the well-characterized immunosuppressive properties of BM-MSCs. ADAS cells did not provoke in vitro alloreactivity of incompatible lymphocytes and, moreover, suppressed mixed lymphocyte reaction (MLR) and lymphocyte proliferative response to mitogens. The impairment of inhibition when ADAS cells and BM-MSCs were separated from lymphocytes by a permeable membrane suggests that cell contact is required for a full inhibitory effect. Hepatocyte growth factor is secreted by both stem cells but, similar to interleukin-10 and transforming growth factor-beta (TGF-beta), the levels of which were undetectable in supernatants of MLR inhibited by ADAS cells or BM-MSCs, it did not seem implicated in the stem cell suppressive effect. These findings support that ADAS cells share immunosuppressive properties with BM-MSCs. Therefore, ADAS cell-based reconstructive therapy could employ allogenic cells and because of their immunosuppressive properties, ADAS cells could be an alternative source to BM-MSCs to treat allogenic conflicts.

  6. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    SciTech Connect

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  7. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  8. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  9. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  10. Immunochemistry of the Streptococcus mutans BHT cell membrane: detection of determinants cross-reactive with human heart tissue.

    PubMed Central

    Ayakawa, G Y; Siegel, J L; Crowley, P J; Bleiweis, A S

    1985-01-01

    Cell membranes of Streptococcus mutans BHT serotype b were prepared after glass bead disruption or mutanolysin digestion of whole cells. Immunoblot analyses of BHT membrane extracts revealed major polypeptides of 42,000, 46,000, 62,000, and 82,000 daltons, as well as several minor bands, to be reactive with rabbit anti-human heart immunoglobulins. Heart cross-reactive antigens have been reported in the cell walls and culture fluids of several S. mutans serotypes. This represents the first report of cell membrane-localized heart cross-reactive antigens in this oral pathogen. Positive enzyme-linked immunosorbent assay and immunoblot reactions were also obtained with heart tissue antigen and anti-BHT sera, indicating mutual cross-reactivity. The major cross-reactive component detected by immunoblotting of human heart extracts was a 69,000-dalton polypeptide. Images PMID:3886543

  11. Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.

    1997-08-01

    Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

  12. Orchitis and human immunodeficiency virus type 1 infected cells in reproductive tissues from men with the acquired immune deficiency syndrome.

    PubMed Central

    Pudney, J.; Anderson, D.

    1991-01-01

    Mechanisms underlying human immunodeficiency virus type 1 (HIV-1) infection of the male reproductive tract and the sexual transmission of HIV-1 through semen are poorly understood. To address these issues, the authors performed morphologic and immunocytochemical analyses of reproductive tissues obtained at autopsy from 43 male acquired immune deficiency syndrome (AIDS) patients. Monoclonal antibodies recognizing different subpopulations of white blood cells were used to detect leukocyte infiltration and map the location of potential lymphocytic/monocytic HIV-1 host cells and immunocytochemistry and in situ hybridization techniques were used to detect HIV-1-infected cells in the testis, excurrent ducts, and prostate. Distinct pathologic changes were observed in a majority of testes of AIDS patients that included azoospermia, hyalinization of the boundary wall of seminiferous tubules, and lymphocytic infiltration of the interstitium. The reproductive excurrent ducts and prostate appeared morphologically normal except for the presence of focal accumulations of white blood cells in the connective tissue stroma. In the testis many white blood cells were shown to be CD4+, indicating the presence of abundant host cells (T-helper/inducer lymphocytes and macrophages) for HIV-1. Furthermore macrophages and cells of lymphocytic morphology were observed migrating across the boundary walls of hyalinized seminiferous in tubules to enter the lumen. In 9 of the 23 cases tested for HIV-1 protein expression by immunocytochemistry. HIV-1 + cells of lymphocytic/monocytic morphology were found in the seminiferous tubules and interstitium of the testis, epididymal epithelium, and connective tissue of the epididymis and prostate. One patient with epididymal blockage had accumulations of HIV-1-antigen-positive cells of macrophages morphology in the distended lumen of the efferent ducts. There was no evidence of active HIV-1 infection in germ cells or Sertoli cells of the seminiferous

  13. Mammosphere formation assay from human breast cancer tissues and cell lines.

    PubMed

    Lombardo, Ylenia; de Giorgio, Alexander; Coombes, Charles R; Stebbing, Justin; Castellano, Leandro

    2015-01-01

    Similar to healthy tissues, many blood and solid malignancies are now thought to be organised hierarchically, with a subset of stem-like cancer cells that self-renew while giving rise to more differentiated progeny. Understanding and targeting these cancer stem cells in breast cancer, which may possess enhanced chemo- and radio-resistance compared to the non-stem tumor bulk, has become an important research area. Markers including CD44, CD24, and ALDH activity can be assessed using fluorescence activated cell sorting (FACS) to prospectively isolate cells that display enhanced tumorigenicity when implanted into immunocompromised mice: the mammosphere assay has also become widely used for its ability to retrospectively identify sphere-forming cells that develop from single stem cell-like clones. Here we outline approaches for the appropriate culturing of mammospheres from cell lines or primary patient samples, their passaging, and calculations to estimate sphere forming efficiency (SFE). First we discuss key considerations and pitfalls in the appropriate planning and interpretation of mammosphere experiments. PMID:25867607

  14. Business oriented EU human cell and tissue product legislation will adversely impact Member States' health care systems.

    PubMed

    Pirnay, Jean-Paul; Vanderkelen, Alain; De Vos, Daniel; Draye, Jean-Pierre; Rose, Thomas; Ceulemans, Carl; Ectors, Nadine; Huys, Isabelle; Jennes, Serge; Verbeken, Gilbert

    2013-12-01

    The transplantation of conventional human cell and tissue grafts, such as heart valve replacements and skin for severely burnt patients, has saved many lives over the last decades. The late eighties saw the emergence of tissue engineering with the focus on the development of biological substitutes that restore or improve tissue function. In the nineties, at the height of the tissue engineering hype, industry incited policymakers to create a European regulatory environment, which would facilitate the emergence of a strong single market for tissue engineered products and their starting materials (human cells and tissues). In this paper we analyze the elaboration process of this new European Union (EU) human cell and tissue product regulatory regime-i.e. the EU Cell and Tissue Directives (EUCTDs) and the Advanced Therapy Medicinal Product (ATMP) Regulation and evaluate its impact on Member States' health care systems. We demonstrate that the successful lobbying on key areas of regulatory and policy processes by industry, in congruence with Europe's risk aversion and urge to promote growth and jobs, led to excessively business oriented legislation. Expensive industry oriented requirements were introduced and contentious social and ethical issues were excluded. We found indications that this new EU safety and health legislation will adversely impact Member States' health care systems; since 30 December 2012 (the end of the ATMP transitional period) there is a clear threat to the sustainability of some lifesaving and established ATMPs that were provided by public health institutions and small and medium-sized enterprises under the frame of the EUCTDs. In the light of the current economic crisis it is not clear how social security systems will cope with the inflation of costs associated with this new regulatory regime and how priorities will be set with regard to reimbursement decisions. We argue that the ATMP Regulation should urgently be revised to focus on delivering

  15. Business oriented EU human cell and tissue product legislation will adversely impact Member States' health care systems.

    PubMed

    Pirnay, Jean-Paul; Vanderkelen, Alain; De Vos, Daniel; Draye, Jean-Pierre; Rose, Thomas; Ceulemans, Carl; Ectors, Nadine; Huys, Isabelle; Jennes, Serge; Verbeken, Gilbert

    2013-12-01

    The transplantation of conventional human cell and tissue grafts, such as heart valve replacements and skin for severely burnt patients, has saved many lives over the last decades. The late eighties saw the emergence of tissue engineering with the focus on the development of biological substitutes that restore or improve tissue function. In the nineties, at the height of the tissue engineering hype, industry incited policymakers to create a European regulatory environment, which would facilitate the emergence of a strong single market for tissue engineered products and their starting materials (human cells and tissues). In this paper we analyze the elaboration process of this new European Union (EU) human cell and tissue product regulatory regime-i.e. the EU Cell and Tissue Directives (EUCTDs) and the Advanced Therapy Medicinal Product (ATMP) Regulation and evaluate its impact on Member States' health care systems. We demonstrate that the successful lobbying on key areas of regulatory and policy processes by industry, in congruence with Europe's risk aversion and urge to promote growth and jobs, led to excessively business oriented legislation. Expensive industry oriented requirements were introduced and contentious social and ethical issues were excluded. We found indications that this new EU safety and health legislation will adversely impact Member States' health care systems; since 30 December 2012 (the end of the ATMP transitional period) there is a clear threat to the sustainability of some lifesaving and established ATMPs that were provided by public health institutions and small and medium-sized enterprises under the frame of the EUCTDs. In the light of the current economic crisis it is not clear how social security systems will cope with the inflation of costs associated with this new regulatory regime and how priorities will be set with regard to reimbursement decisions. We argue that the ATMP Regulation should urgently be revised to focus on delivering

  16. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    PubMed

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (p<0.05). No significant differences were detected among the three types of stem cells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (p<0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.

  17. T cell engraftment in lymphoid tissues of human peripheral blood lymphocyte reconstituted SCID mice with or without prior activation of cells.

    PubMed

    Olive, C; Cheung, C; Falk, M C

    1998-12-01

    The reconstitution of severe combined immunodeficiency (SCID) mice with human PBL (Hu-PBL-SCID) was assessed using fresh unstimulated PBL and anti-CD3-stimulated PBL. Mice were reconstituted with PBL by intraperitoneal injection of 1-2.5 x 107 PBL in PBS; controls received PBS. Successful engraftment of human PBL in SCID mice was determined by measurement of human IgG in mouse sera, polymerase chain reaction (PCR) detection of human-specific HLA-DRbeta DNA in SCID periphery, and immunohistochemical staining of mouse tissues (spleen, lymph nodes, thymus, liver and lung) with antibodies specific for human CD45 and CD3. Human IgG was detected 1 week after reconstitution in sera of all animals that received at least 1 x 107 PBL and continued to increase for 8 weeks. Human-specific HLA-DRbeta DNA was detected in the majority of mice 3 weeks after reconstitution but not in controls. Moreover, immunohistochemical analysis of Hu-PBL-SCID mouse tissues revealed the presence of human CD45+ cells in all tissues examined. CD3+ T cell engraftment was observed in lymphoid tissues irrespective of whether PBL had been activated prior to transfer or not. PMID:9893029

  18. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    PubMed Central

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  19. Meniscus Tissue Engineering Using a Novel Combination of Electrospun Scaffolds and Human Meniscus Cells Embedded within an Extracellular Matrix Hydrogel

    PubMed Central

    Baek, Jihye; Chen, Xian; Sovani, Sujata; Jin, Sungho; Grogan, Shawn P; D’Lima, Darryl D

    2015-01-01

    Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time PCR, respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies. PMID:25640671

  20. Human histocultures (tissue explants) in retrovirology

    PubMed Central

    Arakelyan, Anush; Fitzgerald, Wendy; Grivel, Jean-Charles; Vanpouille, Christophe; Margolis, Leonid

    2014-01-01

    Summary Viral pathogenesis is studied predominantly in cultures of primary isolated cells or cell lines. Many retroviruses efficiently replicate only in activated cells. Therefore, in order to become efficient viral producers cells should be artificially activated, a procedure which significantly changes cell physiology. However, for many viral diseases, like HIV-1 and other retroviruses’ diseases, critical pathogenic events occur in tissues and cell isolation from their native microenvironment prevents single cell cultures from faithfully reflecting important aspects of cell-cell and cell-pathogen interactions that occur in the context of complex tissue cytoarchitecture. Tissue explants (histocultures) that retain tissue cytoarchitecture and many aspects of cell-cell interactions more faithfully represent in vivo tissue features. Human histocultures constitute an adequate model for studying viral pathogenesis under controlled laboratory conditions. Protocols for various human histocultures as applied to study retroviral pathogenesis, in particular of HIV-1, have been refined by our laboratory and are described in the present publication. Human histocultures of human tonsils and lymph nodes, as well as of recto-sigmoid and cervico-vaginal tissues can be used to study viral transmission, pathogenesis and as a pre-clinical platform for antivirals evaluation. PMID:24158827

  1. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.

    PubMed

    Muguruma, Keiko; Nishiyama, Ayaka; Kawakami, Hideshi; Hashimoto, Kouichi; Sasai, Yoshiki

    2015-02-01

    During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC) culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19) promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester. PMID:25640179

  2. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene

    PubMed Central

    2013-01-01

    Background RNA sequencing has opened new avenues for the study of transcriptome composition. Significant evidence has accumulated showing that the human transcriptome contains in excess of a hundred thousand different transcripts. However, it is still not clear to what extent this diversity prevails when considering the relative abundances of different transcripts from the same gene. Results Here we show that, in a given condition, most protein coding genes have one major transcript expressed at significantly higher level than others, that in human tissues the major transcripts contribute almost 85 percent to the total mRNA from protein coding loci, and that often the same major transcript is expressed in many tissues. We detect a high degree of overlap between the set of major transcripts and a recently published set of alternatively spliced transcripts that are predicted to be translated utilizing proteomic data. Thus, we hypothesize that although some minor transcripts may play a functional role, the major ones are likely to be the main contributors to the proteome. However, we still detect a non-negligible fraction of protein coding genes for which the major transcript does not code a protein. Conclusions Overall, our findings suggest that the transcriptome from protein coding loci is dominated by one transcript per gene and that not all the transcripts that contribute to transcriptome diversity are equally likely to contribute to protein diversity. This observation can help to prioritize candidate targets in proteomics research and to predict the functional impact of the detected changes in variation studies. PMID:23815980

  3. Ectopic Osteogenesis of Macroscopic Tissue Constructs Assembled from Human Mesenchymal Stem Cell-Laden Microcarriers through In Vitro Perfusion Culture

    PubMed Central

    Chen, Maiqin; Zhou, Min; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-01-01

    We had previously demonstrated the feasibility of preparing a centimeter-sized bone tissue construct by following a modular approach. In the present study, the objectives were to evaluate osteogenesis and tissue formation of human amniotic mesenchymal stem cells-laden CultiSpher S microcarriers during in vitro perfusion culture and after subcutaneous implantation. Microtissues were prepared in dynamic culture using spinner flasks in 28 days. In comparison with 1-week perfusion culture, microtissues became more obviously fused, demonstrating significantly higher cellularity, metabolic activity, ALP activity and calcium content while maintaining cell viability after 2-week perfusion. After subcutaneous implantation in nude mice for 6 and 12 weeks, all explants showed tight contexture, suggesting profound tissue remodeling in vivo. In addition, 12-week implantation resulted in slightly better tissue properties. However, in vitro perfusion culture time exerted great influence on the properties of corresponding explants. Degradation of microcarriers was more pronounced in the explants of 2-week perfused macrotissues compared to those of 1-week perfusion and directly implanted microtissues. Moreover, more blood vessel infiltration and bone matrix deposition with homogeneous spatial distribution were found in the explants of 2-week perfused macrotissues. Taken together, in vitro perfusion culture time is critical in engineering bone tissue replacements using such a modular approach, which holds great promise for bone regeneration. PMID:25275528

  4. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells.

    PubMed

    Wölfle, Ute; Elsholz, Floriana A; Kersten, Astrid; Haarhaus, Birgit; Schumacher, Udo; Schempp, Christoph M

    2016-01-01

    Bitter taste receptors (TAS2Rs) are expressed in mucous epithelial cells of the tongue but also outside the gustatory system in epithelial cells of the colon, stomach and bladder, in the upper respiratory tract, in the cornified squamous epithelium of the skin as well as in airway smooth muscle cells, in the testis and in the brain. In the present work we addressed the question if bitter taste receptors might also be expressed in other epithelial tissues as well. By staining a tissue microarray with 45 tissue spots from healthy human donors with an antibody directed against the best characterized bitter taste receptor TAS2R38, we observed an unexpected strong TAS2R38 expression in the amniotic epithelium, syncytiotrophoblast and decidua cells of the human placenta. To analyze the functionality we first determined the TAS2R38 expression in the placental cell line JEG-3. Stimulation of these cells with diphenidol, a clinically used antiemetic agent that binds TAS2Rs including TAS2R38, demonstrated the functionality of the TAS2Rs by inducing calcium influx. Restriction enzyme based detection of the TAS2R38 gene allele identified JEG-3 cells as PTC (phenylthiocarbamide)-taster cell line. Calcium influx induced by PTC in JEG-3 cells could be inhibited with the recently described TAS2R38 inhibitor probenecid and proved the specificity of the TAS2R38 activation. The expression of TAS2R38 in human placental tissues points to further new functions and hitherto unknown endogenous ligands of TAS2Rs far beyond bitter tasting. PMID:26950109

  5. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  6. Identification in human lymphoid tissues of cells that produce group 1 or group 2 gamma-globulins

    PubMed Central

    Pernis, B.; Chiappino, G.

    1964-01-01

    The cells that produce group 1 and group 2 γ-globulins have been localized in human lymphoid tissues. This has been done with the use of antisera specific for group 1 or group 2 γ-globulins prepared by immunizing rabbits with purified Bence-Jones proteins of the corresponding group and subsequently conjugated with different fluorochromes. The immunofluorescence observations have shown that in the red pulp of the spleen of adult humans two populations of plasma cells, present in approximately equal numbers, can be differentiated on the basis of the type of γ-globulin produced. The cells in the germinal centres of lymphoid follicles in the spleen and lymph nodes appear, instead, to contain both group 1 and group 2 γ-globulins. ImagesFIG. 1FIGS. 2-5 PMID:14210761

  7. Immortalization of epithelial-like cells from human liver tissue with SV40 T-antigen gene.

    PubMed

    Miyazaki, M; Mihara, K; Bai, L; Kano, Y; Tsuboi, S; Endo, A; Seshimo, K; Yoshioka, T; Namba, M

    1993-05-01

    The cells derived from the human embryo liver tissue were transfected with a plasmid pSV3neo containing both the large and small T-antigen gene of the early region of simian virus 40 (SV40), and two cell strains, OUMS-21 and -22, were obtained. OUMS-22 cells, to date, have reached over 100 population doublings through a culture crisis and are considered to have become an immortal cell line. However, OUMS-21 cells failed to become an immortal cell line. Both OUMS-21 and -22 cells were SV40 T-antigen-positive, epithelial-like, and immunoreactive against an anti-keratin 18 monoclonal antibody but against neither an anti-vimentin nor an anti-von Willebrandt factor VIII monoclonal antibody. The staining pattern of cytokeratin in these cells was similar to that in the differentiated human hepatoblastoma and hepatocellular carcinoma cell lines but not to that in the human cholangiocellular carcinoma cell lines. OUMS-21 and -22 cells expressed neither alpha-fetoprotein nor albumin mRNAs. These cells showed no tyrosine aminotransferase activity. However, both OUMS-21 and -22 cells were sensitive to cytotoxicity of aflatoxin B1, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole, and benzo[a]pyrene, whereas human embryo lung fibroblasts were insensitive to the cytotoxicity of these carcinogens. These findings suggest that OUMS-21 and -22 cells may arise from undifferentiated liver stem cells or from hepatocytes that lost their ability to express the liver-specific functions prior to immortalization. Both OUMS-21 and -22 cells expressed glutathione S-transferase pi (GST-pi) mRNA. The expression of GST-pi mRNA highly increased in OUMS-22 cells with their immortalization. Karyotypic analysis showed that numerical and structural aberrations of the chromosomes were profound, but neither specific events nor marker chromosomes were found in OUMS-21 and -22 cells. Both OUMS-21 and -22 cells could grow in soft agar, but they were not tumorigenic when transplanted into nude mice. PMID

  8. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    PubMed Central

    Rowan, Brian G.; Gimble, Jeffrey M.; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L.; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. Methodology/Principal Findings Human MDA-MB-231 breast cancer cells represents “triple negative” breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. Conclusions Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231

  9. Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.

    PubMed

    Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi

    2016-05-01

    Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.

  10. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling

    PubMed Central

    Liuzzi, Anna Rita; Kift-Morgan, Ann; Lopez-Anton, Melisa; Friberg, Ida M.; Zhang, Jingjing; Brook, Amy C.; Roberts, Gareth W.; Donovan, Kieron L.; Colmont, Chantal S.; Toleman, Mark A.; Bowen, Timothy; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Fraser, Donald J.

    2016-01-01

    The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2+ γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response. PMID:27527598

  11. Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat.

    PubMed

    Yan, Zhong-Jie; Zhang, Peng; Hu, Yu-Qin; Zhang, Hong-Tian; Hong, Sun-Quan; Zhou, Hong-Long; Zhang, Mao-Ying; Xu, Ru-Xiang

    2013-05-01

    Although human amnion derived mesenchymal stem cells (AMSC) are a promising source of stem cells, their therapeutic potential for traumatic brain injury (TBI) has not been widely investigated. In this study, we evaluated the therapeutic potential of AMSC using a rat TBI model. AMSC were isolated from human amniotic membrane and characterized by flow cytometry. After induction, AMSC differentiated in vitro into neural stem-like cells (AM-NSC) that expressed higher levels of the neural stem cell markers, nestin, sox2 and musashi, in comparison to undifferentiated AMSC. Interestingly, the neurotrophic factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT-3), glial cell derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) were markedly upregulated after neural stem cell induction. Following transplantation in a rat TBI model, significant improvements in neurological function, brain tissue morphology, and higher levels of BDNF, NGF, NT-3, GDNF and CNTF, were observed in the AM-NSC group compared with the AMSC and Matrigel groups. However, few grafted cells survived with minimal differentiation into neural-like cells. Together, our results suggest that transplantation of AM-NSC promotes functional rehabilitation of rats with TBI, with enhanced expression of neurotrophic factors a likely mechanistic pathway.

  12. Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs

    PubMed Central

    Li, Jane; Smith, Corey; Edwards, Jarem; Sierro, Frederic; Feng, Carl G.; Khanna, Rajiv; Bell, Andrew; Hislop, Andrew D.; Tangye, Stuart G.; Rickinson, Alan B.; Gebhardt, Thomas; Britton, Warwick J.

    2016-01-01

    Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103—, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2). Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections. PMID:27540722

  13. Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1-β

    PubMed Central

    Yakimchuk, Konstantin; Roura-Mir, Carme; Magalhaes, Kelly Grace; De Jong, Annemieke; Kasmar, Anne G.; Granter, Scott R.; Budd, Ralph; Steere, Allen; Pena-Cruz, Victor; Kirschning, Carsten; Cheng, Tan-Yun; Moody, D. Branch

    2011-01-01

    The appearance of newly translated group 1 CD1 proteins (CD1a, CD1b, CD1c) on maturing myeloid DC to effective lipid antigen presenting cells. Here we show that Borrelia burgdorferi, the causative agent of Lyme disease, triggers appearance of group 1 CD1 proteins at high density on the surface of human myeloid DC during infection. Within human skin, CD1b and CD1c expression was low or absent prior to infection, but increased significantly after experimental infections and in erythema migrans lesions from Lyme Disease patients. The induction of CD1 was initiated by borrelial lipids acting through TLR-2 within minutes, but required 3 days for maximum effect. The delay in CD1 protein appearance involved a multi-step process whereby TLR-2 stimulated cells release soluble factors, which are sufficient to transfer the CD1-inducing effect in trans to other cells. Analysis of these soluble factors identified IL-1β as a previously unknown pathway leading to group 1 CD1 protein function. These studies establish that upregulation of group 1 CD1 proteins is an early event in B. burgdorferi infection and suggest a stepwise mechanism whereby bacterial cell walls, TLR activation and cytokine release cause DC precursors to express group 1 CD1 proteins. PMID:21246541

  14. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation.

    PubMed

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  15. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation

    PubMed Central

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A.; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  16. Release of Tensile Strain on Engineered Human Tendon Tissue Disturbs Cell Adhesions, Changes Matrix Architecture, and Induces an Inflammatory Phenotype

    PubMed Central

    Bayer, Monika L.; Schjerling, Peter; Herchenhan, Andreas; Zeltz, Cedric; Heinemeier, Katja M.; Christensen, Lise; Krogsgaard, Michael; Gullberg, Donald; Kjaer, Michael

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors showed a contrasting response with a clear drop in integrin subunit α11 mRNA and protein expression, and an increase in α2 integrin mRNA and protein levels. Further, specific markers for tendon cell differentiation declined and normal tendon architecture was disturbed, whereas pro-inflammatory molecules were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads to a decrease in phenotypical markers for tendon, while expression of pro-inflammatory mediators is induced. PMID:24465881

  17. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. PMID:26774799

  18. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  19. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix.

    PubMed

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2016-01-01

    This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs) and homogenized extracellular matrix (ECM) in the form of adipose stromal vascular fraction (SVF), along with hyaluronic acid (HA) and platelet-rich plasma (PRP) activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA) patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI) data, functional rating index, range of motion (ROM), and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees. PMID:27588219

  20. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2016-01-01

    Abstract This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs) and homogenized extracellular matrix (ECM) in the form of adipose stromal vascular fraction (SVF), along with hyaluronic acid (HA) and platelet-rich plasma (PRP) activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA) patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI) data, functional rating index, range of motion (ROM), and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees. PMID:27588219

  1. Murine and Human Tissue-Engineered Esophagus Form from Sufficient Stem/Progenitor Cells and Do Not Require Microdesigned Biomaterials

    PubMed Central

    Spurrier, Ryan Gregory; Speer, Allison L.; Hou, Xiaogang; El-Nachef, Wael N.

    2015-01-01

    Purpose: Tissue-engineered esophagus (TEE) may serve as a therapeutic replacement for absent foregut. Most prior esophagus studies have favored microdesigned biomaterials and yielded epithelial growth alone. None have generated human TEE with mesenchymal components. We hypothesized that sufficient progenitor cells might only require basic support for successful generation of murine and human TEE. Materials and Methods: Esophageal organoid units (EOUs) were isolated from murine or human esophagi and implanted on a polyglycolic acid/poly-l-lactic acid collagen-coated scaffold in adult allogeneic or immune-deficient mice. Alternatively, EOU were cultured for 10 days in vitro prior to implantation. Results: TEE recapitulated all key components of native esophagus with an epithelium and subjacent muscularis. Differentiated suprabasal and proliferative basal layers of esophageal epithelium, muscle, and nerve were identified. Lineage tracing demonstrated that multiple EOU could contribute to the epithelium and mesenchyme of a single TEE. Cultured murine EOU grew as an expanding sphere of proliferative basal cells on a neuromuscular network that demonstrated spontaneous peristalsis in culture. Subsequently, cultured EOU generated TEE. Conclusions: TEE forms after transplantation of mouse and human organ-specific stem/progenitor cells in vivo on a relatively simple biodegradable scaffold. This is a first step toward future human therapies. PMID:25298083

  2. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  3. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development

    NASA Astrophysics Data System (ADS)

    Leeansyah, Edwin; Loh, Liyen; Nixon, Douglas F.; Sandberg, Johan K.

    2014-01-01

    Innate-like, evolutionarily conserved MR1-restricted mucosa-associated invariant T (MAIT) cells represent a large antimicrobial T-cell subset in humans. Here, we investigate the development of these cells in second trimester human fetal tissues. MAIT cells are rare and immature in the fetal thymus, spleen and mesenteric lymph nodes. In contrast, mature IL-18Rα+ CD8αα MAIT cells are enriched in the fetal small intestine, liver and lung. Independently of localization, MAIT cells express CD127 and Ki67 in vivo and readily proliferate in response to Escherichia coli in vitro. Maturation is accompanied by the gradual post-thymic acquisition of the PLZF transcription factor and the ability to produce IFNγ and IL-22 in response to bacteria in mucosa. Thus, MAIT cells acquire innate-like antimicrobial responsiveness in mucosa before exposure to environmental microbes and the commensal microflora. Establishment of this arm of immunity before birth may help protect the newborn from a range of pathogenic microbes.

  4. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

    SciTech Connect

    Grayson, Warren L.; Zhao, Feng; Bunnell, Bruce; Ma, Teng . E-mail: teng@eng.fsu.edu

    2007-07-06

    Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O{sub 2}) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2{alpha}, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation.

  5. Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1-β.

    PubMed

    Yakimchuk, Konstantin; Roura-Mir, Carme; Magalhaes, Kelly G; de Jong, Annemieke; Kasmar, Anne G; Granter, Scott R; Budd, Ralph; Steere, Allen; Pena-Cruz, Victor; Kirschning, Carsten; Cheng, Tan-Yun; Moody, D Branch

    2011-03-01

    The appearance of group 1 CD1 proteins (CD1a, CD1b and CD1c) on maturing myeloid DC is a key event that converts myeloid DC to effective lipid APC. Here, we show that Borrelia burgdorferi, the causative agent of Lyme disease, triggers appearance of group 1 CD1 proteins at high density on the surface of human myeloid DC during infection. Within human skin, CD1b and CD1c expression was low or absent prior to infection, but increased significantly after experimental infections and in erythema migrans lesions from Lyme disease patients. The induction of CD1 was initiated by borrelial lipids acting through TLR-2 within minutes, but required 3 days for maximum effect. The delay in CD1 protein appearance involved a multi-step process whereby TLR-2 stimulated cells release soluble factors, which are sufficient to transfer the CD1-inducing effect in trans to other cells. Analysis of these soluble factors identified IL-1β as a previously unknown pathway leading to group 1 CD1 protein function. This study establishes that upregulation of group 1 CD1 proteins is an early event in B. burgdorferi infection and suggests a stepwise mechanism whereby bacterial cell walls, TLR activation and cytokine release cause DC precursors to express group 1 CD1 proteins.

  6. [Molecular cloning, tissue distribution and expression in engineered cells of human orphan receptor GPR81].

    PubMed

    Wu, Fang-Ming; Huang, Huo-Gao; Hu, Ming; Gao, Yue; Liu, Yong-Xue

    2006-05-01

    The gpr81 was amplified by polymerase chain reaction (PCR) using human fetus kidney cDNA and whole blood genome DNA as template, respectively. The expression profile of gpr81 in human fetus was analyzed by RT-PCR and the result indicated GPR81 mRNA was most abundant in fetus liver and heart. In addition, the deduced amino acid of GPR81 was compared with other related molecules by Clustal w/x software, and a molecular phylogenetic tree was constructed with Treeview software. It was showed that GPR81 had the highest homology with nicotinic acid receptor in amino acids. After sequence identification, gpr81 was inserted into the plasmid pcDNA3. 1 (-)/his-mycA and then transfected into Chinese hamster ovary cell (CHO-K1). With the selection of G418, an engineered cell line which could stably express gpr81 was obtained by the indication of RT-PCR and Western-blot detection. The establishment of the cell line will serve as means for further study of GPR81.

  7. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue.

    PubMed

    Hsiao, Sarah Tzu-Feng; Asgari, Azar; Lokmic, Zerina; Sinclair, Rodney; Dusting, Gregory James; Lim, Shiang Yong; Dilley, Rodney James

    2012-08-10

    Human adult mesenchymal stem cells (MSCs) support the engineering of functional tissue constructs by secreting angiogenic and cytoprotective factors, which act in a paracrine fashion to influence cell survival and vascularization. MSCs have been isolated from many different tissue sources, but little is known about how paracrine factor secretion varies between different MSC populations. We evaluated paracrine factor expression patterns in MSCs isolated from adipose tissue (ASCs), bone marrow (BMSCs), and dermal tissues [dermal sheath cells (DSCs) and dermal papilla cells (DPCs)]. Specifically, mRNA expression analysis identified insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor-D (VEGF-D), and interleukin-8 (IL-8) to be expressed at higher levels in ASCs compared with other MSC populations whereas VEGF-A, angiogenin, basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) were expressed at comparable levels among the MSC populations examined. Analysis of conditioned media (CM) protein confirmed the comparable level of angiogenin and VEGF-A secretion in all MSC populations and showed that DSCs and DPCs produced significantly higher concentrations of leptin. Functional assays examining in vitro angiogenic paracrine activity showed that incubation of endothelial cells in ASC(CM) resulted in increased tubulogenic efficiency compared with that observed in DPC(CM). Using neutralizing antibodies we concluded that VEGF-A and VEGF-D were 2 of the major growth factors secreted by ASCs that supported endothelial tubulogenesis. The variation in paracrine factors of different MSC populations contributes to different levels of angiogenic activity and ASCs maybe preferred over other MSC populations for augmenting therapeutic approaches dependent upon angiogenesis.

  8. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. PMID:26918856

  9. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells.

  10. Human Tissue Stimulator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  11. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells.

    PubMed

    Gao, Guifang; Schilling, Arndt F; Yonezawa, Tomo; Wang, Jiang; Dai, Guohao; Cui, Xiaofeng

    2014-10-01

    Bioprinting based on thermal inkjet printing is a promising but unexplored approach in bone tissue engineering. Appropriate cell types and suitable biomaterial scaffolds are two critical factors to generate successful bioprinted tissue. This study was undertaken in order to evaluate bioactive ceramic nanoparticles in stimulating osteogenesis of printed bone marrow-derived human mesenchymal stem cells (hMSCs) in poly(ethylene glycol)dimethacrylate (PEGDMA) scaffold. hMSCs suspended in PEGDMA were co-printed with nanoparticles of bioactive glass (BG) and hydroxyapatite (HA) under simultaneous polymerization so the printed substrates were delivered with highly accurate placement in three-dimensional (3D) locations. hMSCs interacted with HA showed the highest cell viability (86.62 ± 6.02%) and increased compressive modulus (358.91 ± 48.05 kPa) after 21 days in culture among all groups. Biochemical analysis showed the most collagen production and highest alkaline phosphatase activity in PEG-HA group, which is consistent with gene expression determined by quantitative PCR. Masson's trichrome staining also showed the most collagen deposition in PEG-HA scaffold. Therefore, HA is more effective comparing to BG for hMSCs osteogenesis in bioprinted bone constructs. Combining with our previous experience in vasculature, cartilage, and muscle bioprinting, this technology demonstrates the capacity for both soft and hard tissue engineering with biomimetic structures.

  12. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  13. Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes.

    PubMed

    Vallières, Karine; Laterreur, Véronique; Tondreau, Maxime Y; Ruel, Jean; Germain, Lucie; Fradette, Julie; Auger, François A

    2015-09-01

    There is a clinical need for small-diameter vascular substitutes, notably for coronary and peripheral artery bypass procedures since these surgeries are limited by the availability of grafting material. This study reports the characterization of a novel autologous tissue-engineered vascular substitute (TEVS) produced in 10weeks exclusively from human adipose-derived stromal cells (ASC) self-assembly, and its comparison to an established model made from dermal fibroblasts (DF). Briefly, ASC and DF were cultured with ascorbate to form cell sheets subsequently rolled around a mandrel. These TEVS were further cultured as a maturation period before undergoing mechanical testing, histological analyses and endothelialization. No significant differences were measured in burst pressure, suture strength, failure load, elastic modulus and failure strain according to the cell type used to produce the TEVS. Indeed, ASC- and DF-TEVS both displayed burst pressures well above maximal physiological blood pressure. However, ASC-TEVS were 1.40-fold more compliant than DF-TEVS. The structural matrix, comprising collagens type I and III, fibronectin and elastin, was very similar in all TEVS although histological analysis showed a wavier and less dense collagen matrix in ASC-TEVS. This difference in collagen organization could explain their higher compliance. Finally, human umbilical vein endothelial cells (HUVEC) successfully formed a confluent endothelium on ASC and DF cell sheets, as well as inside ASC-TEVS. Our results demonstrated that ASC are an alternative cell source for the production of TEVS displaying good mechanical properties and appropriate endothelialization.

  14. Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm(2). After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs.

  15. Gene Expression Profiles of Human Adipose Tissue-Derived Mesenchymal Stem Cells Are Modified by Cell Culture Density

    PubMed Central

    Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm2. After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs. PMID:24400072

  16. Behavior of in situ human native adipose tissue CD34+ stromal/progenitor cells during different stages of repair. Tissue-resident CD34+ stromal cells as a source of myofibroblasts.

    PubMed

    Díaz-Flores, Lucio; Gutiérrez, Ricardo; Lizartza, Koldo; Goméz, Miriam González; García, M Del Pino; Sáez, Francisco J; Díaz-Flores, Lucio; Madrid, Juan F

    2015-05-01

    CD34+ adipose stromal cells are scattered in the adipose tissue and found in the CD34+ population of the stromal vascular fraction (SVF). This fraction includes adipose-derived stromal/stem/progenitor cells (ASCs), which have attracted considerable attention and show great promise for the future of regenerative medicine. Studies in this field have been undertaken mainly in vitro. In this work, however, we assessed the characteristics of human adipose tissue-resident CD34+ stromal cells in normal conditions and when activated in vivo during inflammatory/repair processes at different stages of evolution. In normal adipose tissue, these cells showed a characteristic location (peri/paravascular and between adipocytes), a fusiform or stellate morphology, long and moniliform processes, and scarce organelles. During inflammatory/repair stages, native CD34+ stromal cells increased in size, proliferated, developed numerous organelles of synthesis, lost CD34 expression, and differentiated into myofibroblasts (αSMA expression and typical ultrastructure). In double-stained sections, cells expressing both CD34 and αSMA were observed. CD34 expression correlated positively with a high proliferative capacity (Ki-67 expression). Conversely, CD34 expression was lost with successive mitoses and with increased numbers of macrophages in the granulation tissue. CD34+ stromal cell behavior varied depending on proximity to (with myofibroblast differentiation) or remoteness from (with activated plump cells conserving CD34 expression) injury. In conclusion, our observations point to human adipose tissue-resident CD34+ stromal cells as an important source of myofibroblasts during inflammatory/repair processes. Moreover, stromal cell activation may occur with or without αSMA expression (with or without myofibroblast transformation) and with loss or persistence of CD34 expression, respectively.

  17. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages

    PubMed Central

    Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P.; Yuan, Fangping; Ye, Fei; Kowalski, William J.; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K.; Keller, Bradley B.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

  18. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages.

    PubMed

    Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P; Yuan, Fangping; Ye, Fei; Kowalski, William J; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K; Keller, Bradley B

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

  19. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages

    PubMed Central

    Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P.; Yuan, Fangping; Ye, Fei; Kowalski, William J.; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K.; Keller, Bradley B.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

  20. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells.

    PubMed

    Cebotari, Serghei; Tudorache, Igor; Jaekel, Thomas; Hilfiker, Andres; Dorfman, Suzanne; Ternes, Waldemar; Haverich, Axel; Lichtenberg, Artur

    2010-03-01

    Detergents are powerful agents for tissue decellularization. Despite this, the high toxicity of detergent residua can be a major limitation. This study evaluated the efficacy of detergent removal from decellularized pulmonary valves (PVs) and the consequences of repopulation with human endothelial cells (HECs). Porcine PVs were treated with 1% sodium deoxycholate (SDC), group A; 1% sodium dodecyl sulfate (SDS), group B; and a mixture of 0.5% SDC/0.5% SDS, group C (n = 5 each). After each of 10 succeeding wash cycles (WCs), samples of the washing solution (WS) were analyzed by solid phase extraction and high performance liquid chromatography for the presence of detergents. Metabolic activity of HEC was also assessed in the WS samples (cytotoxicity and MTS assays). Decellularized and washed PVs were reseeded with HEC. Histological analysis demonstrated efficient tissue decellularization in all groups. Detergents' concentration in all WSs decreased exponentially and was below 50 mg/L after 6, 8, and 4 WCs in groups A, B, and C, respectively. This concentration resulted in no significant toxic influence on cell cultures, and scaffolds could be efficiently reseeded with HEC. In conclusion, intensive washing of detergent decellularized valvular scaffolds lowers the residual contamination below a hazardous threshold and allows their successful repopulation with HEC for tissue engineering purposes.

  1. 17β-Estradiol modulates huntingtin levels in rat tissues and in human neuroblastoma cell line.

    PubMed

    Nuzzo, Maria Teresa; Fiocchetti, Marco; Servadio, Michela; Trezza, Viviana; Ascenzi, Paolo; Marino, Maria

    2016-02-01

    17β-Estradiol (E2) exerts neurotrophic and neuroprotective functions in the brain. Here, E2-induced increased levels of huntingtin (HTT), a protein involved in several crucial neuronal functions is reported. E2 physiological concentrations up-regulate HTT in hippocampus and striatum of rats as well as in human neuroblastoma cells. This effect requires both nuclear and extra-nuclear estrogen receptor (ER)α activities. Intriguingly, HTT silencing completely prevents E2 protective effects against oxidative stress injury. In conclusion, these data indicate for the first time that HTT is an E2-inducible protein involved in the first steps of E2-induced signaling pathways committed to neuronal protection against oxidative stress. PMID:26264729

  2. Predicting Virulence of Aeromonas Isolates Based-on Changes in Transcription of c-jun and c-fos in Human Tissue Culture Cells

    EPA Science Inventory

    Aims: To assess virulence of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. Methods and Results: Aeromonas cells were added to Caco-2 cells at approximately a one to one ratio. After 1, 2 and 3 ...

  3. Sustainable three-dimensional tissue model of human adipose tissue.

    PubMed

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  4. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-Incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Sun, Aaron X.; Lin, Hang; Beck, Angela M.; Kilroy, Evan J.; Tuan, Rocky S.

    2015-01-01

    The poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL) offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light-based PSL (VL-PSL) system to encapsulate human adipose-derived stem cells (hASCs) into a biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PDLLA-PEG)]/hyaluronic acid (HA) matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84%) and were uniformly distributed throughout the constructs, which possessed high mechanical properties with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium-treated group (TGF-β3 group), hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 × 105 fold increases, respectively compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan-rich extracellular matrix, detected by immunohistochemistry, Alcian blue staining, and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group), cell viability decreased with time (65% at 28 days) and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL and PDLLA-PEG/HA-based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint

  5. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Fortini, Cinzia; Setti, Stefania; De Mattei, Monica

    2014-09-01

    Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.

  6. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes

    PubMed Central

    Raja, Waseem K.; Mungenast, Alison E.; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer’s disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  7. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

    PubMed

    Raja, Waseem K; Mungenast, Alison E; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  8. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    PubMed

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  9. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy – The Turning Point of Cell-Based Regenerative Medicine

    PubMed Central

    Parsons, Xuejun H.

    2014-01-01

    To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting

  10. Enhanced hepatogenic transdifferentiation of human adipose tissue mesenchymal stem cells by gene engineering with Oct4 and Sox2.

    PubMed

    Han, Sei-Myoung; Coh, Ye-Rin; Ahn, Jin-Ok; Jang, Goo; Yum, Soo Young; Kang, Sung-Keun; Lee, Hee-Woo; Youn, Hwa-Young

    2015-01-01

    Adipose tissue mesenchymal stem cells (ATMSCs) represent an attractive tool for the establishment of a successful stem cell-based therapy in the field of liver regeneration medicine. ATMSCs overexpressing Oct4 and Sox2 (Oct4/Sox2-ATMSCs) showed enhanced proliferation and multipotency. Hence, we hypothesized that Oct4 and Sox2 can increase "transdifferentiation" of ATMSCs into cells of the hepatic lineage. In this study, we generated Oct4- and Sox2-overexpressing human ATMSCs by liposomal transfection. We confirmed the expression of mesenchymal stem cell surface markers without morphological alterations in both red-fluorescent protein (RFP) (control)- and Oct4/Sox2-ATMSCs by flow cytometry. After induction of differentiation into hepatocyte-like cells, the morphology of ATMSCs changed and they began to appear as round or polygonal epithelioid cells. Hepatic markers were evaluated by reverse transcription-polymerase chain reaction and confirmed by immunofluorescence. The results showed that albumin was strongly expressed in hepatogenic differentiated Oct4/Sox2-ATMSCs, whereas the expression level of α-fetoprotein was lower than that of RFP-ATMSCs. The functionality of hepatocytes was evaluated by periodic acid-Schiff (PAS) staining and urea assays. The number of PAS-positive cells was significantly higher and urea production was significantly higher in Oct4/Sox2-ATMSCs compared to that in RFP-ATMSCs. Taken together, the hepatocyte-like cells derived from Oct4/Sox2-ATMSCs were mature hepatocytes, possibly functional hepatocytes with enhanced capacity to store glycogen and produce urea. In this study, we demonstrated the enhanced transdifferentiation of Oct4- and Sox2-overexpressing ATMSCs into hepatocyte-like cells that have enhanced hepatocyte-specific functions. Therefore, we expect that Oct4/Sox2-ATMSCs may become a very useful source for hepatocyte regeneration or liver cell transplantation.

  11. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  12. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing

    PubMed Central

    LI, QIANG; GUO, YANPING; CHEN, FEIFEI; LIU, JING; JIN, PEISHENG

    2016-01-01

    Adipose tissue-derived stem cells (ADSCs) hold great potential for the stem cell-based therapy of cutaneous wound healing. Stromal cell-derived factor-1 (SDF-1) activates CXC chemokine receptor (CXCR)4+ and CXCR7+ cells and plays an important role in wound healing. Increasing evidence suggests a critical role for SDF-1 in cell apoptosis and the survival of mesenchymal stem cells. However, the function of SDF-1 in the apoptosis and wound healing ability of ADSCs is not well understood. The aim of this study was to analyze the effect of SDF-1 on the apoptosis and therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivos. By flow cytometric analysis, it was found that hypoxia and serum free promoted the apoptosis of ADSCs. When pretreated with SDF-1, the apoptosis of ADSCs induced by hypoxia and serum depletion was partly recovered. Furthermore, in vivo experiments established that the post-implantation cell survival and chronic wound healing ability of ADSCs were increased following pretreatment with SDF-1 in a diabetic mouse model of chronic wound healing. To explore the potential mechanism underlying the effect of SDF-1 on ADSC apoptosis, western blot analysis was employed and the results indicate that SDF-1 may protect against cell apoptosis in hypoxic and serum-free conditions through activation of the caspase signaling pathway in ADSCs. This study provides evidence that SDF-1 pretreatment can increase the therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivo. PMID:27347016

  13. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    PubMed Central

    Lei, Deqiang; Ouyang, Weixiang; Ren, Jinghua; Li, Huiyu; Hu, Jingqiong; Huang, Shiang

    2014-01-01

    Human mesenchymal stem cells (MSCs) have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs). We found (1) MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2) MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3) real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4) furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy. PMID:24971310

  14. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro

    PubMed Central

    Martens, Wendy; Sanen, Kathleen; Georgiou, Melanie; Struys, Tom; Bronckaers, Annelies; Ameloot, Marcel; Phillips, James; Lambrichts, Ivo

    2014-01-01

    In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d-hDPSCs), which promoted survival and neurite outgrowth in 2-dimensional dorsal root ganglia cultures. In addition, neurites were myelinated by d-hDPSCs in a 3-dimensional collagen type I hydrogel neural tissue construct. This engineered construct contained aligned columns of d-hDPSCs that supported and guided neurite outgrowth. Taken together, these findings provide the first evidence that hDPSCs are able to undergo Schwann cell differentiation and support neural outgrowth in vitro, proposing them to be good candidates for cell-based therapies as treatment for peripheral nerve injury.—Martens, W., Sanen, K., Georgiou, M., Struys, T., Bronckaers, A., Ameloot, M., Phillips, J., Lambrichts, I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. PMID:24352035

  15. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs.

    PubMed

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-06-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  16. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    PubMed Central

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-01-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks’ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  17. Radiation Effect on Human Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered

  18. Gene Expression in Single Cells Isolated from the CWR-R1 Prostate Cancer Cell Line and Human Prostate Tissue Based on the Side Population Phenotype

    PubMed Central

    Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J

    2016-01-01

    Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary. PMID:27785389

  19. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  20. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  1. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-09-06

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  2. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    PubMed

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  3. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging.

    PubMed

    Thulborn, Keith; Lui, Elaine; Guntin, Jonathan; Jamil, Saad; Sun, Ziqi; Claiborne, Theodore C; Atkinson, Ian C

    2016-02-01

    Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.

  4. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell.

    PubMed

    Niknamasl, Azadeh; Ostad, Seyed Nasser; Soleimani, Mansoureh; Azami, Mahmoud; Salmani, Maryam Kabir; Lotfibakhshaiesh, Nasrin; Ebrahimi-Barough, Somayeh; Karimi, Roya; Roozafzoon, Reza; Ai, Jafar

    2014-10-01

    Metabolic diabetes mellitus as the most serious and prevalent metabolic disease in the world has various complications. The most effective treatment of type I diabetes seems to be islet cell transplantation. Shortage of donors and difficult procedures and high rate of rejection have always restricted this approach. Tissue engineering is a novel effective solution to many medical problems such as diabetes. Endometrial mesenchymal stem cells as a lineage which have the potential to differentiate to mesodermal and endodermal tissues seem to be suitable for this purpose. Fibrin hydrogel with a high degree of biocompatibility and specific properties making it similar to normal pancreas seems to be an ideal scaffold. After successfully isolating stem cells (hEnSCs) from human endometrium, a three-step protocol was used to differentiate them into pancreatic beta cells. Fibrin was used as 3D scaffold. After 2 weeks, cells formed clusters like islets cells, and secretion of insulin was measured by chemiluminescence. PDX1, proinsulin, and c-peptide as special markers of β cells were detected by immunofluorescence. Expression of glucagon, PDX1, and insulin genes in mRNA level was detected by Real time PCR and gel electrophoresis. The former showed higher levels of gene expression in 3D cultures. SEM analysis showed good integrity between cells and scaffold. No toxicity was detected with fibrin scaffold by MTT assay.

  5. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

    PubMed

    Ferraro, Giuseppe A; De Francesco, Francesco; Nicoletti, Gianfranco; Paino, Francesca; Desiderio, Vincenzo; Tirino, Virginia; D'Andrea, Francesco

    2013-05-01

    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine.

  6. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  7. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue.

    PubMed

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K; Ma, Yingyu; Morrison, Carl D; Liu, Song; Johnson, Candace S; Trump, Donald L

    2013-09-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissue obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion

  8. Tissue Specificity of Human Disease Module

    PubMed Central

    Kitsak, Maksim; Sharma, Amitabh; Menche, Jörg; Guney, Emre; Ghiassian, Susan Dina; Loscalzo, Joseph; Barabási, Albert-László

    2016-01-01

    Genes carrying mutations associated with genetic diseases are present in all human cells; yet, clinical manifestations of genetic diseases are usually highly tissue-specific. Although some disease genes are expressed only in selected tissues, the expression patterns of disease genes alone cannot explain the observed tissue specificity of human diseases. Here we hypothesize that for a disease to manifest itself in a particular tissue, a whole functional subnetwork of genes (disease module) needs to be expressed in that tissue. Driven by this hypothesis, we conducted a systematic study of the expression patterns of disease genes within the human interactome. We find that genes expressed in a specific tissue tend to be localized in the same neighborhood of the interactome. By contrast, genes expressed in different tissues are segregated in distinct network neighborhoods. Most important, we show that it is the integrity and the completeness of the expression of the disease module that determines disease manifestation in selected tissues. This approach allows us to construct a disease-tissue network that confirms known and predicts unexpected disease-tissue associations. PMID:27748412

  9. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration

    PubMed Central

    Shirai, Hiroshi; Mandai, Michiko; Matsushita, Keizo; Kuwahara, Atsushi; Yonemura, Shigenobu; Nakano, Tokushige; Assawachananont, Juthaporn; Kimura, Toru; Saito, Koichi; Terasaki, Hiroko; Eiraku, Mototsugu; Sasai, Yoshiki; Takahashi, Masayo

    2016-01-01

    Retinal transplantation therapy for retinitis pigmentosa is increasingly of interest due to accumulating evidence of transplantation efficacy from animal studies and development of techniques for the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells into retinal tissues or cells. In this study, we aimed to assess the potential clinical utility of hESC-derived retinal tissues (hESC-retina) using newly developed primate models of retinal degeneration to obtain preparatory information regarding the potential clinical utility of these hESC-retinas in transplantation therapy. hESC-retinas were first transplanted subretinally into nude rats with or without retinal degeneration to confirm their competency as a graft to mature to form highly specified outer segment structure and to integrate after transplantation. Two focal selective photoreceptor degeneration models were then developed in monkeys by subretinal injection of cobalt chloride or 577-nm optically pumped semiconductor laser photocoagulation. The utility of the developed models and a practicality of visual acuity test developed for monkeys were evaluated. Finally, feasibility of hESC-retina transplantation was assessed in the developed monkey models under practical surgical procedure and postoperational examinations. Grafted hESC-retina was observed differentiating into a range of retinal cell types, including rod and cone photoreceptors that developed structured outer nuclear layers after transplantation. Further, immunohistochemical analyses suggested the formation of host–graft synaptic connections. The findings of this study demonstrate the clinical feasibility of hESC-retina transplantation and provide the practical tools for the optimization of transplantation strategies for future clinical applications. PMID:26699487

  10. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver.

    PubMed

    Harmon, Cathal; Robinson, Mark W; Fahey, Ronan; Whelan, Sarah; Houlihan, Diarmaid D; Geoghegan, Justin; O'Farrelly, Cliona

    2016-09-01

    The adult human liver is enriched with natural killer (NK) cells, accounting for 30-50% of hepatic lymphocytes, which include tissue-resident hepatic NK-cell subpopulations, distinct from peripheral blood NK cells. In murine liver, a subset of liver-resident hepatic NK cells have altered expression of the two highly related T-box transcription factors, T-bet and eomesodermin (Eomes). Here, we investigate the heterogeneity of T-bet and Eomes expression in NK cells from healthy adult human liver with a view to identifying human liver-resident populations. Hepatic NK cells were isolated from donor liver perfusates and biopsies obtained during orthotopic liver transplantation (N = 28). Hepatic CD56(bright) NK cells were Eomes(hi) T-bet(lo) , a phenotype virtually absent from peripheral blood. These NK cells express the chemokine receptor CXCR6 (chemokine (C-X-C motif) receptor 6), a marker of tissue residency, which is absent from hepatic CD56(dim) and blood NK cells. Compared to blood populations, these hepatic CD56(bright) NK cells have increased expression of activatory receptors (NKp44, NKp46, and NKG2D). They show reduced ability to produce IFN-γ but enhanced degranulation in response to challenge with target cells. This functionally distinct population of hepatic NK cells constitutes 20-30% of the total hepatic lymphocyte repertoire and represents a tissue-resident immune cell population adapted to the tolerogenic liver microenvironment.

  11. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells.

    PubMed Central

    Kaufman, R J; Wasley, L C; Spiliotes, A J; Gossels, S D; Latt, S A; Larsen, G R; Kay, R M

    1985-01-01

    Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported. Images PMID:4040603

  12. Role of thioredoxin 1 and thioredoxin 2 on proliferation of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Song, Ji Sun; Cho, Hyun Hwa; Lee, Byung-Joo; Bae, Yong Chan; Jung, Jin Sup

    2011-09-01

    Thioredoxin (TRX) is a ubiquitous redox protein that is involved in numerous biological functions, including the first unique step in DNA synthesis. TRX provides control over a number of transcription factors affecting cell proliferation and death through a mechanism referred to as redox regulation. In mammals, there are at least 3 members of the TRX family: TRX1, TRX2, and sperm TRX. To investigate the role of TRX1 and TRX2 in human adipose tissue-derived mesenchymal stem cells (hADSC), we modulated TRX1 and TRX2 expressions in hADSC using a lentiviral gene transfer system and small interfering RNA technique. Reverse transcription-polymerase chain reaction analysis confirmed the changes in expression of TRX1 and TRX2 in lentivirus-transduced or small interfering RNA-transfected cells. Although overexpression of TRX1 and TRX2 did not affect the differentiation of hADSC into adipogenic and osteogenic lineages, it increased the proliferation of hADSC compared with control lentivirus-transduced cells, decreased reactive oxygen species production, and inhibited oxidant-induced cell death. Downregulation of TRX1 and TRX2 inhibited cell proliferation. The treatment of U0126 blocked TRX-induced increase in cell proliferation. Overexpression of TRX1 and TRX2 increased ERK1/2 phosphorylation, nuclear factor-kappaB activation, and β-catenin/Tcf promoter activities and inhibited lucine zipper tumor suppressor 2 expression. On the contrary, downregulation of TRX1 and TRX2 expression induced inhibition of ERK1/2 phosphorylation, nuclear factor-kappaB activation, and β-catenin/Tcf promoter activities and increased lucine zipper tumor suppressor 2 expression. Activation of Wnt signal increased ERK1/2 activities in hADSC. These results indicated that TRX1 and TRX2 regulate the proliferation and survival of hADSC; these processes are mediated by the activation of ERK1/2. PMID:21158569

  13. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    SciTech Connect

    Wang, Pingzhang; Sun, Bo; Hao, Dongxia; Zhang, Xiujun; Shi, Taiping; Ma, Dalong

    2010-04-16

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174{Delta}TM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  14. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor.

    PubMed

    de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla

    2013-01-01

    Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.

  15. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  16. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  17. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  18. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  19. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    SciTech Connect

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young; Lee, Sun Young; Bae, Yong Chan; Jung, Jin Sup

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  20. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  1. Pathologic changes of wound tissue in rats with stage III pressure ulcers treated by transplantation of human amniotic epithelial cells.

    PubMed

    Zheng, Xilan; Jiang, Zhixia; Zhou, Aiting; Yu, Limei; Quan, Mingtao; Cheng, Huagang

    2015-01-01

    This study aims to determine the impact of orthotopic transplantation of human amniotic epithelial cells (hAECs) on the pathologic changes of wound tissues in a self-prepared rat stage III pressure ulcer model. Ninety-six SD rats were randomly divided into the model group (group M), hAEC transplantation group (group H), traditional treatment group (group T), and the control group (group C), with 24 rats in each group. The wound healing time was observed in 6 rats from each group, and 6 rats of each group were selected for post-modeling on day(s) (D) 1, 3, and 7 for HE staining to compare the pathological changes. The healing time of group H was significantly shorter than the other three groups. Moreover, pathological observations revealed that group H exhibited significant proliferation of fibrous tissues and vessels in the dermal layer, and the appearance time and degree of skin appendages were significantly greater than that observed in the other three groups. Pathological observations showed that hAEC transplantation could significantly speed up the healing of stage III pressure ulcer.

  2. Extensive genetic variation in somatic human tissues.

    PubMed

    O'Huallachain, Maeve; Karczewski, Konrad J; Weissman, Sherman M; Urban, Alexander Eckehart; Snyder, Michael P

    2012-10-30

    Genetic variation between individuals has been extensively investigated, but differences between tissues within individuals are far less understood. It is commonly assumed that all healthy cells that arise from the same zygote possess the same genomic content, with a few known exceptions in the immune system and germ line. However, a growing body of evidence shows that genomic variation exists between differentiated tissues. We investigated the scope of somatic genomic variation between tissues within humans. Analysis of copy number variation by high-resolution array-comparative genomic hybridization in diverse tissues from six unrelated subjects reveals a significant number of intraindividual genomic changes between tissues. Many (79%) of these events affect genes. Our results have important consequences for understanding normal genetic and phenotypic variation within individuals, and they have significant implications for both the etiology of genetic diseases such as cancer and for immortalized cell lines that might be used in research and therapeutics.

  3. Up-regulation of gelatinases and tissue type plasminogen activator by root canal sealers in human osteoblastic cells.

    PubMed

    Huang, Fu-Mei; Yang, Shun-Fa; Chang, Yu-Chao

    2008-03-01

    Histologic investigations have demonstrated that root canal sealers can induce mild to severe inflammatory alternations. However, there is little information on the precise mechanisms about root canal sealer-induced inflammatory reaction. The proteolysis of extracellular matrix by matrix metalloproteinases (MMPs) and plasminogen activators (PAs) seems to be a key initiating event for the progression of the inflammatory process. The aim of this study was to investigate the effects of epoxy resin-based root canal sealer AH26 and zinc oxide-eugenol-based root canal sealer Canals and one paste sealer N2 on the expression of MMPs and PAs in human osteoblastic cell line U2OS cells. The levels of gelatinolytic and caseinolytic activities were measured by gelatin and casein zymography. The results showed that AH26, Canals, and N2 were cytotoxic to U2OS cells in a concentration-dependent manner (P < .05). The gelatin zymograms revealed that MMP-2 (72 kd) and MMP-9 (92 kd) were secreted by U2OS cells. The exposure of U2OS cells to root canal sealers resulted in the up-regulation of MMP-2 and MMP-9 expression (P < .05). Casein zymography exhibited a caseinolytic band with a molecular weight of 70 kd, indicative of the presence of tissue type plasminogen activators (t-PA). t-PA was also found to be up-regulated by root canal sealers (P < .05). Taken together, the activation of gelatinases and t-PA might play an important role in the pathogenesis of root canal sealer-induced periapical inflammation.

  4. Engraftment Potential of Adipose Tissue-Derived Human Mesenchymal Stem Cells After Transplantation in the Fetal Rabbit

    PubMed Central

    Martínez-González, Itziar; Moreno, Rafael; Petriz, Jordi; Gratacós, Eduard

    2012-01-01

    Due to their favorable intrinsic features, including engraftment, differentiation, and immunomodulatory potential, adult mesenchymal stem cells (MSCs) have been proposed for therapeutic in utero intervention. Further improvement of such attributes for particular diseases might merely be achieved by ex vivo MSC genetic engineering previous to transplantation. Here, we evaluated for the first time the feasibility, biodistribution, long-term engraftment, and transgenic enhanced green fluorescent protein (EGFP) expression of genetically engineered human adipose tissue-derived MSCs (EGFP+-ASCs) after intra-amniotic xenotransplantation at E17 of gestation into our validated pregnant rabbit model. Overall, the procedure was safe (86.4% survival rate; absence of anatomical defects). Stable, low-level engraftment of EGFP+-ASCs was confirmed by assessing the presence of the pWT-EGFP lentiviral provirus in the young transplanted rabbit tissues. Accordingly, similar frequencies of provirus-positive animals were found at both 8 weeks (60%) and 16 weeks (66.7%) after in utero intervention. The presence of EGFP+-ASCs was more frequent in respiratory epithelia (lung and trachea), according to the route of administration. However, we were unable to detect EGFP expression, neither by real-time polymerase chain reaction nor by immunohistochemistry, in the provirus-positive tissues, suggesting EGFP transgene silencing mediated by epigenetic events. Moreover, we noticed lack of both host cellular immune responses against xenogeneic ASCs and humoral immune responses against transgenic EGFP. Therefore, the fetal microchimerism achieved by the EGFP+-ASCs in the young rabbit hosts indicates induction of donor-specific tolerance after fetal rabbit xenotransplantation, which should boost postnatal transplantation for the early treatment/prevention of many devastating congenital disorders. PMID:22738094

  5. Prevascularization of self-organizing engineered heart tissue by human umbilical vein endothelial cells abrogates contractile performance.

    PubMed

    Sondergaard, Claus Svane; Witt, Russell; Mathews, Grant; Najibi, Skender; Le, Lisa; Clift, Tracy; Si, Ming-Sing

    2012-12-01

    Establishing vascularization is a critical obstacle to the generation of engineered heart tissue (EHT) of substantial thickness. Addition of endothelial cells to the formative stages of EHT has been demonstrated to result in prevascularization, or the formation of capillary-like structures. The detailed study of the effects of prevascularization on EHT contractile function is lacking. Here, we evaluated the functional impact of prevascularization by human umbilical vein endothelial cells (HUVECs) in self-organizing EHT. EHT fibers were generated by the self-organization of neonatal rat cardiac cells on a fibrin hydrogel scaffold with or without HUVECs. Contractile function was measured and force-length relationship and rate of force production were assessed. Immunofluorescent studies were used to evaluate arrangement and distribution of HUVECs within the EHT fibers. RT-PCR was used to assess the transcript levels of hypoxia inducible factor-1a (Hif-1α). EHT with HUVECs manifested tubule-like structures at the periphery during fiber formation. After fiber formation, HUVECs were heterogeneously located throughout the EHT fiber and human CD31+ tubule-like structures were identified. The expression level of Hif-1α did not change with the addition of HUVECs. However, maximal force and rate of force generation were not improved in HUVECs containing EHT as compared to control EHT fibers. The addition of HUVECs may result in sparse microvascularization of EHT. However, this perceived benefit is overshadowed by a significant decrease in contractile function and highlights the need for perfused vascularization strategies in order to generate EHT that approaches clinically relevant dimensions. PMID:22955563

  6. IFATS collection: Selenium induces improvement of stem cell behaviors in human adipose-tissue stromal cells via SAPK/JNK and stemness acting signals.

    PubMed

    Kim, Jeong Hwan; Lee, Mi Ran; Kim, Jee Hun; Jee, Min Ki; Kang, Soo Kyung

    2008-10-01

    In the present study, the potential of selenium to enhance stem cell behavior through improvement of human adipose tissue-derived stromal cells (ATSCs) and the associated molecular mechanism was evaluated. Selenium-induced improvement in stem cell behavior of human ATSCs caused expression of several genes, indicating downregulated mature cell marker proteins coupled with increased cell growth and telomerase activities after the overexpression of Rex1, Nanog, OCT4, SOX2, KLF4, and c-Myc. Also, selenium-treated ATSCs significantly downregulated p53 and p21 tumor suppressor gene products. Selenium induced active growth and growth enhanced by the activation of signal proteins in ATSCs via the inhibition of reactive oxygen species-mediated phospho-stress-activated protein kinase/c-Jun N-terminal protein kinase activation. The selenium-induced activation of extracellular regulated kinases 1/2 and Akt in ATSCs resulted in a subsequent induction of the expression of stemness transcription factors, particularly Rex1, Nanog, and Oct4, along with definitive demethylation on regulatory regions of Rex-1, Nanog, and Oct4. The results of our small interfering RNA knockdown experiment showed that Rex1 plays a major role in the proliferation of selenium-induced ATSCs. Selenium-treated ATSCs also exhibited more profound differentiation into mesodermal and neural lineages. We performed a direct comparison of gene expression profiles in control ATSCs and selenium-treated ATSCs and delineated specific members of important growth factor, signaling, cell adhesion, and transcription factor families. The observations of improved life span and multipotency of selenium-treated ATSCs clearly indicate that selenium-treated ATSCs represent an extraordinarily useful candidate cell source for tissue regeneration. Disclosure of potential conflicts of interest is found at the end of this article. PMID:18583539

  7. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    PubMed Central

    Kim, Ki Joo; Joe, Young Ae; Kim, Min Kyoung; Lee, Su Jin; Ryu, Yeon Hee; Cho, Dong-Woo; Rhie, Jong Won

    2015-01-01

    Background Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs) both in vitro and in vivo. Silica (silicon dioxide alone) exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs. Methods Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 μm filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs). hADSCs were incubated with silica NPs or 3 μm silica microparticles (MPs), examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling. Results Eighty-nine percent of the silica NPs were around 50–120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in this regard. Instead, silica MPs induced slight apoptosis. Silica NPs increased phosphorylation of extracellular signal-related kinase (ERK)1/2, while silica MPs increased phosphorylation of p38. Silica NPs had no effect on phosphorylation of Janus kinase or p38. Pretreatment with PD98059, a MEK inhibitor, prevented the ERK1/2 phosphorylation and proliferation induced by silica NPs. Conclusion Scaffolds containing silicon dioxide for tissue engineering may enhance cell growth through ERK1/2 activation only when NPs around 50–120 nm in size are included, and single component silica

  8. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs.

    PubMed

    Poulin, Patrick; Chen, Yung-Hsiang; Ding, Xiao; Gould, Stephen E; Hop, Cornelis Eca; Messick, Kirsten; Oeh, Jason; Liederer, Bianca M

    2015-04-01

    Advanced tissue composition-based models can predict the tissue-plasma partition coefficient (Kp ) values of drugs under in vivo conditions on the basis of in vitro and physiological input data. These models, however, focus on healthy tissues and do not incorporate data from tumors. The objective of this study was to apply a tissue composition-based model to six marketed antineoplastic drugs (docetaxel, DOC; doxorubicin, DOX; gemcitabine, GEM; methotrexate, MTX; topotecan, TOP; and fluorouracil, 5-FU) to predict their Kp values in three human tumor xenografts (HCT-116, H2122, and PC3) as well as in healthy tissues (brain, muscle, lung, and liver) under steady-state in vivo conditions in female NCR nude mice. The mechanisms considered in the tissue/tumor composition-based model are the binding to lipids and to plasma proteins, but the transporter effect was also investigated. The method consisted of analyzing tissue composition, performing the pharmacokinetics studies in mice, and calculating the corresponding in vivo Kp values. Analyses of tumor composition indicated that the tumor xenografts contained no or low amounts of common transporters by contrast to lipids. The predicted Kp values were within twofold and threefold of the measured values in 77% and 93% of cases, respectively. However, predictions for brain for each drug, for liver for MTX, and for each tumor xenograft for GEM were disparate from the observed values, and, therefore, not well served by the model. Overall, this study is the first step toward the mechanism-based prediction of Kp values of small molecules in healthy and tumor tissues in mouse when no transporter and permeation limitation effect is evident. This approach will be useful in selecting compounds based on their abilities to penetrate human cancer xenografts with a physiologically based pharmacokinetic (PBPK) model, thereby increasing therapeutic index for chemotherapy in oncology study.

  9. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. PMID:27470612

  10. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches.

    PubMed

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the "aspect plastic adherence" without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  11. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  12. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches

    PubMed Central

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  13. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.

    PubMed

    Alizadeh, Aliakbar; Moztarzadeh, Fathollah; Ostad, Seyed Naser; Azami, Mahmoud; Geramizadeh, Bita; Hatam, Gholamreza; Bizari, Davood; Tavangar, Seyed Mohammad; Vasei, Mohammad; Ai, Jafar

    2016-01-01

    To address the hypothesis that using a zirconia (ZrO2)/ β-tricalcium phosphate (β-TCP) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO2/β-TCP composite scaffolds with different ZrO2/β-TCP ratios, and evaluated their physical and mechanical characteristics, also the effect of three-dimensional (3D) culture (ZrO2/β-TCP scaffold) on the behavior of human endometrial stem cells. Results showed the porosity of a ZrO2/β-TCP scaffold can be adjusted from 65% to 84%, and the compressive strength of the scaffold increased from 4.95 to 6.25 MPa when the ZrO2 content increased from 30 to 50 wt%. The cell adhesion and proliferation in the ZrO2/β-TCP scaffold was greatly improved when ZrO2 decreased. Moreover, in vitro study showed that an osteoblasts-loaded ZrO2/β-TCP scaffold provided a suitable 3D environment for osteoblast survival and enhanced bone regeneration. We thus showed that a porous ZrO2/β-TCP composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed during in vivo study for treatment of large bone defects.

  14. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells.

    PubMed

    Siciliano, Camilla; Chimenti, Isotta; Ibrahim, Mohsen; Napoletano, Chiara; Mangino, Giorgio; Scafetta, Gaia; Zoccai, Giuseppe Biondi; Rendina, Erino Angelo; Calogero, Antonella; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS

  15. Calcium regulation of tissue plasminogen activator and plasminogen activator inhibitor-1 release from cultured human vascular endothelial cells.

    PubMed

    Yamamoto, C; Kaji, T; Sakamoto, M; Kozuka, H; Koizumi, F

    1994-04-15

    Tissue plasminogen activator (t-PA) produced by vascular endothelial cells converts plasminogen to plasmin which degrades fibrin. Since t-PA activity is greatly potentiated in the presence of fibrin (1,2), the activator is implicated in intravascular fibrinolysis. On the other hand, endothelial cells also produce plasminogen activator inhibitor-1 (PAI-1) (3). The inhibitor associated with vascular endothelium rapidly inhibits t-PA, while that released into the liquid phase has a little anti-activator activity (4). However, clinical studies have shown that elevation of plasma PAI-1 level is a risk factor of thrombosis (5,6). It is thus suggested that the balance between t-PA and PAI-1 is important for the regulation of fibrinolysis. The release of t-PA and PAI-1 from vascular endothelial cells is regulated by physiological factors including thrombin (3,7), histamine (8), vasoconstrictor peptide endothelins (9,10) and cytokines (11). In addition, the regulation of the t-PA release and that of the PAI-1 release are not necessarily coupled. It has been shown that activated protein kinase C and cyclic AMP are involved in the stimulation and suppression, respectively, of the endothelial t-PA and PAI-1 production (12,13). However, the role of intracellular calcium in the regulation of endothelial t-PA and PAI-1 release has remained to be elucidated. In the present study, we investigated the effect of calcium ionophore A23187 on the release of t-PA antigen (t-PA:Ag) and PAI-1 antigen (PAI-1:Ag) from cultured vascular endothelial cells derived from human umbilical vein.

  16. Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering.

    PubMed

    Tang, M; Chen, W; Weir, M D; Thein-Han, W; Xu, H H K

    2012-09-01

    Human embryonic stem cells (hESC) are promising for use in regenerative medicine applications because of their strong proliferative ability and multilineage differentiation capability. To date there have been no reports on hESC seeding with calcium phosphate cement (CPC). The objective of this study was to investigate hESC-derived mesenchymal stem cell (hESCd-MSC) encapsulation in hydrogel microbeads in macroporous CPC for bone tissue engineering. hESC were cultured to form embryoid bodies (EB), and the MSC were then migrated out of the EB. hESCd-MSC had surface markers characteristic of MSC, with positive alkaline phosphatase (ALP) staining when cultured in osteogenic medium. hESCd-MSC were encapsulated in alginate at a density of 1millioncellsml(-1), with an average microbead size of 207μm. CPC contained mannitol porogen to create a porosity of 64% and 218-μm macropores, with 20% absorbable fibers for additional porosity when the fibers degrade. hESCd-MSC encapsulated in microbeads in CPC had good viability from 1 to 21days. ALP gene expression at 21days was 25-fold that at 1day. Osteocalcin (OC) at 21days was two orders of magnitude of that at 1day. ALP activity in colorimetric p-nitrophenyl phosphate assay at 21days was fivefold that at 1day. Mineral synthesis by the encapsulated hESCd-MSC at 21days was sevenfold that at 1day. Potential benefits of the CPC-stem cell paste include injectability, intimate adaptation to complex-shaped bone defects, ease in contouring to achieve esthetics in maxillofacial repairs, and in situ setting ability. In conclusion, hESCd-MSC were encapsulated in alginate microbeads in macroporous CPC, showing good cell viability, osteogenic differentiation and mineral synthesis for the first time. The hESCd-MSC-encapsulating macroporous CPC construct is promising for bone regeneration in a wide range of orthopedic and maxillofacial applications.

  17. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering.

    PubMed

    Zanetti, A S; McCandless, G T; Chan, J Y; Gimble, J M; Hayes, D J

    2015-04-01

    In this study, three different akermanite:poly-ϵ-caprolactone (PCL) composite scaffolds (wt%: 75:25, 50:50, 25:75) were characterized in terms of structure, compression strength, degradation rate and in vitro biocompatibility to human adipose-derived stem cells (hASC). Pure ceramic scaffolds [CellCeram™, custom-made, 40:60 wt%; β-tricalcium phosphate (β-TCP):hydroxyapatite (HA); and akermanite] and PCL scaffolds served as experimental controls. Compared to ceramic scaffolds, the authors hypothesized that optimal akermanite:PCL composites would have improved compression strength and comparable biocompatibility to hASC. Electron microscopy analysis revealed that PCL-containing scaffolds had the highest porosity but CellCeram™ had the greatest pore size. In general, compression strength in PCL-containing scaffolds was greater than in ceramic scaffolds. PCL-containing scaffolds were also more stable in culture than ceramic scaffolds. Nonetheless, mass losses after 21 days were observed in all scaffold types. Reduced hASC metabolic activity and increased cell detachment were observed after acute exposure to akermanite:PCL extracts (wt%: 75:25, 50:50). Among the PCL-containing scaffolds, hASC cultured for 21 days on akermanite:PCL (wt%: 75:25) discs displayed the highest viability, increased expression of osteogenic markers (alkaline phosphatase and osteocalcin) and lowest IL-6 expression. Together, the results indicate that akermanite:PCL composites may have appropriate mechanical and biocompatibility properties for use as bone tissue scaffolds.

  18. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

    PubMed

    Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya; Dezawa, Mari

    2014-04-01

    In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair.

  19. QUANTITATIVE TOXICOPROTEOMIC ANALYSIS OF CARCINOGEN-TREATED ANIMAL TISSUES AND HUMAN CELLS FOR HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Humans are exposed to a variety of environmental toxicants, and this together with a large number of interacting factors can contribute to an individual's risk for health. To understand the toxic mechanisms and/or modes of action for human health risk assessment, molecular charac...

  20. Lubricin in human breast tissue expander capsules.

    PubMed

    Cheriyan, Thomas; Guo, Lifei; Orgill, Dennis P; Padera, Robert F; Schmid, Thomas M; Spector, Myron

    2012-10-01

    Capsular contraction is the most common complication of breast reconstruction surgery. While presence of the contractile protein alpha smooth muscle actin (α-SMA) is considered among the causes of capsular contraction, the exact etiology and pathophysiology is not fully understood. The objective of this study was to investigate the possible role of lubricin in capsular formation and contraction by determining the presence and distribution of the lubricating protein lubricin in human breast tissue expander capsules. Related aims were to evaluate select histopathologic features of the capsules, and the percentage of cells expressing α-SMA, which reflects the myofibroblast phenotype. Capsules from tissue expanders were obtained from eight patients. Lubricin, at the tissue-implant interface, in the extracellular matrix, and in cells, and α-SMA-containing cells were evaluated immunohistochemically. The notable finding was that lubricin was identified in all tissue expander capsules: as a discrete layer at the tissue-implant interface, extracellular, and intracellular. There was a greater amount of lubricin in the extracellular matrix in the intimal-subintimal zone when compared with the tissue away from the implant. Varying degrees of synovial metaplasia were seen at the tissue-implant interface. α-SMA-containing cells were also seen in all but one patient. The findings might help us better understand factors involved in capsule formation.

  1. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells.

    PubMed

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A; Tang, Moon-shong

    2014-06-15

    Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.

  2. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms

    PubMed Central

    2014-01-01

    Introduction Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. Methods Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. Results Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. Conclusions UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results

  3. Histamine induces activation of protein kinase D that mediates tissue factor expression and activity in human aortic smooth muscle cells.

    PubMed

    Hao, Feng; Wu, Daniel Dongwei; Xu, Xuemin; Cui, Mei-Zhen

    2012-12-01

    Histamine, an inflammatory mediator, has been shown to influence the pathogenesis of vascular wall cells. However, the molecular basis of its influence is not well understood. Our data reveal that histamine markedly induces protein kinase D (PKD) activation in human aortic smooth muscle cells. PKD belongs to a family of serine/threonine protein kinases, and its function in vascular disease is largely unknown. Our data show that histamine-induced PKD phosphorylation is dependent on the activation of histamine receptor 1 and protein kinase C (PKC). To determine the role of PKD in the histamine pathway, we employed a small-interfering RNA approach to downregulate PKD expression and found that PKD1 and PKD2 are key mediators for expression of tissue factor (TF), which is the key initiator of blood coagulation and is important for thrombosis. Our results show that PKD2 predominantly mediates histamine-induced TF expression via the p38 mitogen-activated protein kinase (MAPK) pathway, whereas PKD1 mediates histamine-induced TF expression through a p38 MAPK-independent pathway. We demonstrate that histamine induces TF expression via the PKC-dependent PKD activation. Our data provide the first evidence that PKD is a new component in histamine signaling in live cells and that PKD has a novel function in the histamine signaling pathway leading to gene expression, as evidenced by TF expression. Importantly, our data reveal a regulatory link from histamine to PKD and TF, providing new insights into the mechanisms of coagulation and the development of atherothrombosis.

  4. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering.

    PubMed

    Vuornos, Kaisa; Björninen, Miina; Talvitie, Elina; Paakinaho, Kaarlo; Kellomäki, Minna; Huhtala, Heini; Miettinen, Susanna; Seppänen-Kaijansinkko, Riitta; Haimi, Suvi

    2016-03-01

    Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 μM l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-ɛ-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.

  5. MRI Detects Brain Reorganization after Human Umbilical Tissue-Derived Cells (hUTC) Treatment of Stroke in Rat

    PubMed Central

    Jiang, Quan; Thiffault, Christine; Kramer, Brian C.; Ding, Guang Liang; Zhang, Li; Nejad-Davarani, Siamak P.; Li, Lian; Arbab, Ali S.; Lu, Mei; Navia, Brad; Victor, Stephen J.; Hong, Klaudyne; Li, Qing Jiang; Wang, Shi Yang; Li, Yi; Chopp, Michael

    2012-01-01

    Human umbilical tissue-derived cells (hUTC) represent an attractive cell source and a potential technology for neurorestoration and improvement of functional outcomes following stroke. Male Wistar rats were subjected to a transient middle cerebral artery occlusion (tMCAo) and were intravenously administered hUTC (N = 11) or vehicle (N = 10) 48 hrs after stroke. White matter and vascular reorganization was monitored over a 12-week period using MRI and histopathology. MRI results were correlated with neurological functional and histology outcomes to demonstrate that MRI can be a useful tool to measure structural recovery after stroke. MRI revealed a significant reduction in the ventricular volume expansion and improvement in cerebral blood flow (CBF) in the hUTC treated group compared to vehicle treated group. Treatment with hUTC resulted in histological and functional improvements as evidenced by enhanced expression of vWF and synaptophysin, and improved outcomes on behavioral tests. Significant correlations were detected between MRI ventricular volumes and histological lesion volume as well as number of apoptotic cells. A positive correlation was also observed between MRI CBF or cerebral blood volume (CBV) and histological synaptic density. Neurological functional tests were also significantly correlated with MRI ventricular volume and CBV. Our data demonstrated that MRI measurements can detect the effect of hUTC therapy on the brain reorganization and exhibited positive correlation with histological measurements of brain structural changes and functional behavioral tests after stroke. MRI ventricular volumes provided the most sensitive index in monitoring brain remodeling and treatment effects and highly correlated with histological and functional measurements. PMID:22900057

  6. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  7. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.

  8. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    PubMed

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  9. Humanized mice with ectopic artificial liver tissues

    PubMed Central

    Chen, Alice A.; Thomas, David K.; Ong, Luvena L.; Schwartz, Robert E.; Golub, Todd R.; Bhatia, Sangeeta N.

    2011-01-01

    “Humanized” mice offer a window into aspects of human physiology that are otherwise inaccessible. The best available methods for liver humanization rely on cell transplantation into immunodeficient mice with liver injury but these methods have not gained widespread use due to the duration and variability of hepatocyte repopulation. In light of the significant progress that has been achieved in clinical cell transplantation through tissue engineering, we sought to develop a humanized mouse model based on the facile and ectopic implantation of a tissue-engineered human liver. These human ectopic artificial livers (HEALs) stabilize the function of cryopreserved primary human hepatocytes through juxtacrine and paracrine signals in polymeric scaffolds. In contrast to current methods, HEALs can be efficiently established in immunocompetent mice with normal liver function. Mice transplanted with HEALs exhibit humanized liver functions persistent for weeks, including synthesis of human proteins, human drug metabolism, drug–drug interaction, and drug-induced liver injury. Here, mice with HEALs are used to predict the disproportionate metabolism and toxicity of “major” human metabolites using multiple routes of administration and monitoring. These advances may enable manufacturing of reproducible in vivo models for diverse drug development and research applications. PMID:21746904

  10. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.

    PubMed

    Yeo, MyungGu; Lee, Ji-Seon; Chun, Wook; Kim, Geun Hyung

    2016-04-11

    Three-dimensional (3D) cell printing processes have been used widely in various tissue engineering applications due to the efficient embedding of living cells in appropriately designed micro- or macro-structures. However, there are several issues to overcome, such as the limited choice of bioinks and tailor-made fabricating strategies. Here, we suggest a new, innovative cell-printing process, supplemented with a core-sheath nozzle and an aerosol cross-linking method, to obtain multilayered cell-laden mesh structure and a newly considered collagen-based cell-laden bioink. To obtain a mechanically and biologically enhanced cell-laden structure, we used collagen-bioink in the core region, and also used pure alginate in the sheath region to protect the cells in the collagen during the printing and cross-linking process and support the 3D cell-laden mesh structure. To achieve the most appropriate conditions for fabricating cell-embedded cylindrical core-sheath struts, various processing conditions, including weight fractions of the cross-linking agent and pneumatic pressure in the core region, were tested. The fabricated 3D MG63-laden mesh structure showed significantly higher cell viability (92 ± 3%) compared with that (83 ± 4%) of the control, obtained using a general alginate-based cell-printing process. To expand the feasibility to stem cell-embedded structures, we fabricated a cell-laden mesh structure consisting of core (cell-laden collagen)/sheath (pure alginate) using human adipose stem cells (hASCs). Using the selected processing conditions, we could achieve a stable 3D hASC-laden mesh structure. The fabricated cell-laden 3D core-sheath structure exhibited outstanding cell viability (91%) compared to that (83%) of an alginate-based hASC-laden mesh structure (control), and more efficient hepatogenic differentiations (albumin: ∼ 1.7-fold, TDO-2: ∼ 7.6-fold) were observed versus the control. The selection of collagen-bioink and the new printing strategy

  11. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.

    PubMed

    Yeo, MyungGu; Lee, Ji-Seon; Chun, Wook; Kim, Geun Hyung

    2016-04-11

    Three-dimensional (3D) cell printing processes have been used widely in various tissue engineering applications due to the efficient embedding of living cells in appropriately designed micro- or macro-structures. However, there are several issues to overcome, such as the limited choice of bioinks and tailor-made fabricating strategies. Here, we suggest a new, innovative cell-printing process, supplemented with a core-sheath nozzle and an aerosol cross-linking method, to obtain multilayered cell-laden mesh structure and a newly considered collagen-based cell-laden bioink. To obtain a mechanically and biologically enhanced cell-laden structure, we used collagen-bioink in the core region, and also used pure alginate in the sheath region to protect the cells in the collagen during the printing and cross-linking process and support the 3D cell-laden mesh structure. To achieve the most appropriate conditions for fabricating cell-embedded cylindrical core-sheath struts, various processing conditions, including weight fractions of the cross-linking agent and pneumatic pressure in the core region, were tested. The fabricated 3D MG63-laden mesh structure showed significantly higher cell viability (92 ± 3%) compared with that (83 ± 4%) of the control, obtained using a general alginate-based cell-printing process. To expand the feasibility to stem cell-embedded structures, we fabricated a cell-laden mesh structure consisting of core (cell-laden collagen)/sheath (pure alginate) using human adipose stem cells (hASCs). Using the selected processing conditions, we could achieve a stable 3D hASC-laden mesh structure. The fabricated cell-laden 3D core-sheath structure exhibited outstanding cell viability (91%) compared to that (83%) of an alginate-based hASC-laden mesh structure (control), and more efficient hepatogenic differentiations (albumin: ∼ 1.7-fold, TDO-2: ∼ 7.6-fold) were observed versus the control. The selection of collagen-bioink and the new printing strategy

  12. Glucose metabolism and the response to insulin by human adipose tissue in spontaneous and experimental obesity. Effects of dietary composition and adipose cell size.

    PubMed

    Salans, L B; Bray, G A; Cushman, S W; Danforth, E; Glennon, J A; Horton, E S; Sims, E A

    1974-03-01

    [1-(14)C]glucose oxidation to CO(2) and conversion into glyceride by adipose tissue from nonobese and obese subjects has been studied in vitro in the presence of varying medium glucose and insulin concentrations as functions of adipose cell size, the composition of the diet, and antecedent weight gain or loss. Increasing medium glucose concentrations enhance the incorporation of glucose carbons by human adipose tissue into CO(2) and glyceride-glycerol. Insulin further stimulates the conversion of glucose carbons into CO(2), but not into glyceride-glycerol. Incorporation of [1-(14)C]glucose into glyceride-fatty acids by these tissues could not be demonstrated under any of the conditions tested. Both adipose cell size and dietary composition influence the in vitro metabolism of glucose in, and the response to insulin by, human adipose tissue. During periods of ingestion of weight-maintenance isocaloric diets of similar carbohydrate, fat, and protein composition, increasing adipose cell size is associated with (a) unchanging rates of glucose oxidation and increasing rates of glucose carbon incorporation into glyceride-glycerol in the absence of insulin, but (b) decreasing stimulation of glucose oxidation by insulin. On the other hand, when cell size is kept constant, increasing dietary carbohydrate intake is associated with an increased basal rate of glucose metabolism and response to insulin by both small and large adipose cells. Thus, the rate of glucose oxidation and the magnitude of the insulin response of large adipose cells from individuals ingesting a high carbohydrate diet may be similar to or greater than that in smaller cells from individuals ingesting an isocaloric lower carbohydrate diet.The alterations in basal glucose metabolism and insulin response observed in adipose tissue from patients with spontaneous obesity are reproduced by weight gain induced experimentally in nonobese volunteers; these metabolic changes are reversible with weight loss. The

  13. [Tissue factor expression in human umbilical vien endothelial cells stimulated by TNF-alpha and its molecular mechanism].

    PubMed

    Song, Shan-Jun; Wang, Lin-Lin; Wei, Wen-Ning

    2003-04-01

    The objective of this study was to explore tissue factor (TF) expression induced by TNF-alpha in cultured human umbilical vien endothelial cells (HUVEC) and its molecular mechanism. TF expression on the surface of HUVEC, TF mRNA and nuclear factor kappaB (NF-kappaB) in HUVEC were detected by flow cytometry, RT-PCR and Western blot respectively. The results showed that TNF-alpha could enhance TF expression on the surface of HUVEC, the TF expression increase was highly consistent with the increased synthesis of TF mRNA, and the increase of TF expression was lately appeared for several hours. It was also found activation of NF kappaB at the time TF mRNA increase. In conclusion, NF-kappaB could be activated promptly after HUVEC incubated with TNF-alpha, then it was bound to TF promotor to start the TF transcription, TF mRNA expression was upregulated, that leaded to the increase of TF expression on the HUVEC surface and activated the coagulation cascade. PMID:12744731

  14. Comparison of international guidelines for regenerative medicine: Knee cartilage repair and replacement using human-derived cells and tissues.

    PubMed

    Itoh, Kuni; Kano, Shingo

    2016-07-01

    Regenerative medicine (RM) is an emerging field using human-derived cells and tissues (HCT). Due to the complexity and diversity of HCT products, each country has its own regulations for authorization and no common method has been applied to date. Individual regulations were previously clarified at the level of statutes but no direct comparison has been reported at the level of guidelines. Here, we generated a new analytical framework that allows comparison of guidelines independent from local definitions of RM, using 2 indicators, product type and information type. The guidelines for products for repair and replacement of knee cartilage in Japan, the United States of America, and Europe were compared and differences were detected in both product type and information type by the proposed analytical framework. Those findings will be critical not only for the product developers to determine the region to initiate the clinical trials but also for the regulators to assess and build their regulations. This analytical framework is potentially expandable to other RM guidelines to identify gaps, leading to trigger discussion of global harmonization in RM regulations. PMID:27156144

  15. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    PubMed

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  16. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue

    PubMed Central

    HEO, JUNE SEOK; CHOI, YOUJEONG; KIM, HAN-SOO; KIM, HYUN OK

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage-related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro trilineage differentiation potential, but also gene expression profiles. While there was considerable interdonor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for the

  17. MicroRNA-302 induces proliferation and inhibits oxidant-induced cell death in human adipose tissue-derived mesenchymal stem cells

    PubMed Central

    Kim, J Y; Shin, K K; Lee, A L; Kim, Y S; Park, H J; Park, Y K; Bae, Y C; Jung, J S

    2014-01-01

    Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have a fibroblast-like morphology, form colonies in vitro and can differentiate into bone, cartilage and fat cells. The abundance, ease and repeatable access to subcutaneous adipose tissue and the simple isolation procedures provide clear advantages for the use of human adipose tissue-derived mesenchymal stem cells (hASDCs) in clinical applications. We screened microRNAs (miRNAs) that affected the proliferation and survival of hADSCs. Transfection of miR-302d mimic increased cell proliferation and protected cells from oxidant-induced cell death in hADSCs, which was supported by flow-cytometric analysis. miR-302d did not affect the expression of Bcl-2 family members or anti-oxidant molecules. The Nrf2-Keap1 system, which is one of the major mechanisms for the cellular defense against oxidative stress, was not altered by transfection of miR-302d mimic. To identify the target of the miR-302d actions on proliferation and survival of hADSCs, a microarray analysis was performed using miR-302d-overexpressing hADSCs. Real-time PCR analysis showed that transfection of miR-302d mimic inhibited the CDKN1A and CCL5 expression. Downregulation of CDKN1A with a specific siRNA mimicked the effect of miR-302d on hADSCs proliferation, but did not affect miR-302d-induced cell survival. Downregulation of CCL5 protected oxidant-induced cell death as miR-302d, inhibited oxidant-induced reactive oxygen species (ROS) generation and the addition of recombinant CCL5 inhibited the protective action of miR-302d on oxidant-induced cell death. This study indicates that miR-302 controls proliferation and cell survival of hADSCs through different targets and that this miRNA can be used to enhance the therapeutic efficacy of hADSCs transplantation in vivo. PMID:25144720

  18. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells.

    PubMed

    Yang, Hyun Jin; Kim, Ki-Joo; Kim, Min Kyoung; Lee, Su Jin; Ryu, Yeon Hee; Seo, Bommie F; Oh, Deuk-Young; Ahn, Sang-Tae; Lee, Hee Young; Rhie, Jong Won

    2014-01-01

    Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) from various sites are applied in tissue engineering and cell therapy. The condition of AT-MSCs depends on the donor's age, body mass index (BMI), and gender. AT-MSCs from 66 human donors were analyzed, and the cells were sorted according to donor age (10-19 years: n = 1; 20-29 years: n = 5; 30-39 years: n = 12; 40-49 years: n = 22; 50-59 years: n = 12; 60-69 years: n = 9, and 70 years or older: n = 5), BMI (under 25, 25-30, and over 30), and gender (19 males and 48 females). Additionally, AT-MSCs were compared to bone marrow MSCs and chorionic tissue-derived MSCs. We measured the MSC yield, growth rate, colony-forming units, multipotency, and surface antigens. AT-MSC proliferation was greater in cells isolated from individuals aged less than 30 years compared to the proliferation of AT-MSCs from those over 50 years old. BMI was correlated with osteogenic differentiation potency; increased BMI enhanced osteogenesis. Adipogenic differentiation was more strongly induced in cells isolated from donors aged less than 30 years compared to those isolated from other age groups. Also, a BMI above 30 was associated with enhanced adipogenic differentiation compared to cells isolated from individuals with a BMI below 25. Bone marrow MSCs were strongly induced to differentiate along both osteogenic and adipogenic lineages, whereas AT-MSCs predominantly differentiated into the chondrogenic lineage. Therefore, the type of regeneration required and variations among potential donors must be carefully considered when selecting MSCs for use in applied tissue engineering or cell therapy.

  19. A first approach for the production of human adipose tissue-derived stromal cells for therapeutic use.

    PubMed

    Bourin, Philippe; Peyrafitte, Julie-Anne; Fleury-Cappellesso, Sandrine

    2011-01-01

    Adipose tissue-derived stromal cells (ASCs) are promising tools for the new therapeutic field of regenerative medicine. Many research teams are intent on producing these cells for therapeutic purposes. The cell production must follow strict rules for safety and for constant quality of the cell product to ensure a reliable effect in patients. These rules are grouped under the generic term Good Manufacturing Practices. In this chapter, we describe the general concepts of ASC production for therapeutic use, explaining new terms such as traceability and qualification. We also introduce general requirements for the installation, equipment, material, and staff for the cell production. Then, we outline a general strategy for building a cell culture process. Finally, as an example, we describe the use of CellStack™ chambers and specific tube sets that allow for producing cells beginning with the stromal vascular fraction under near-closed conditions.

  20. Artificial human tissues from cord and cord blood stem cells for multi-organ regenerative medicine: viable alternatives to animal in vitro toxicology.

    PubMed

    Jurga, Marcin; Forraz, Nico; McGuckin, Colin P

    2010-05-01

    New medicinal products and procedures must meet very strict safety criteria before being applied for use in humans. The laboratory procedures involved require the use of large numbers of animals each year. Furthermore, such investigations do not always give an accurate translation to the human setting. Here, we propose a viable alternative to animal testing, which uses novel technology featuring human cord and cord blood stem cells. With over 130 million children born each year, cord and cord blood remains the most widely available alternative to the use of animals or cadaveric human tissues for in vitro toxicology.

  1. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  2. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6

    PubMed Central

    Guye, Patrick; Ebrahimkhani, Mohammad R.; Kipniss, Nathan; Velazquez, Jeremy J.; Schoenfeld, Eldi; Kiani, Samira; Griffith, Linda G.; Weiss, Ron

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues. PMID:26732624

  3. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration.

    PubMed

    Xu, Fang-Tian; Liang, Zhi-Jie; Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-06-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.

  4. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cells function for soft tissue regeneration

    PubMed Central

    Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De-Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De-Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-01-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering. PMID:27191987

  5. [Heart tissue from embryonic stem cells].

    PubMed

    Zimmermann, W-H

    2008-09-01

    Embryonic stem cells can give rise to all somatic cells, making them an attractive cell source for tissue engineering applications. The propensity of cells to form tissue-like structures in a culture dish has been well documented. We and others made use of this intrinsic property to generate bioartificial heart muscle. First proof-of-concept studies involved immature heart cells mainly from fetal chicken, neonatal rats and mice. They eventually provided evidence that force-generating heart muscle can be engineered in vitro. Recently, the focus shifted to the application of stem cells to eventually enable the generation of human heart muscle and reach following long-term goals: (1) development of a simplified in vitro model of heart muscle development; (2) generation of a human test-bed for drug screening and development; (3) allocation of surrogate heart tissue to myocardial repair applications. This overview will provide the background for cell-based myocardial repair, introduce the main myocardial tissue engineering concepts, discuss the use of embryonic and non-embryonic stem cells, and lays out the potential direct and indirect therapeutic use of human tissue engineered myocardium.

  6. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells.

    PubMed

    Kronsteiner, Barbara; Wolbank, Susanne; Peterbauer, Anja; Hackl, Christa; Redl, Heinz; van Griensven, Martijn; Gabriel, Christian

    2011-12-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells exerting immunomodulatory effects on cells of the innate and adaptive immune system. It has been shown that an inflammatory milieu is required for the activation of MSC-mediated immunomodulation, and interferon-γ (IFN-γ) plays an important role in this process. We determined the influence of IFN-γ on human adipose-derived stem cells (ASCs) and human amniotic mesenchymal stromal cells (hAMSCs). We further evaluated the effect of MSCs on stimulated T-cells and peripheral blood mononuclear cells (PBMCs) in a cell-contact independent setting. On IFN-γ treatment, ASCs and hAMSCs possessed significantly higher antiproliferative properties and showed surface characteristics of nonprofessional antigen presenting cells (HLA-DR(+)CD40(med+)CD54(high)) with a possible regulatory phenotype (PD-L1(+)PD-L2(+)). The effect of ASCs and hAMSCs on cytokine secretion and T-cell activation was dependent on stimulation method and cellular context. Although ASCs and hAMSCs highly inhibited cytokine secretion of stimulated PBMCs, this was not observed in the case of purified T-cells. The presence of ASCs even favored the secretion of pro-inflammatory cytokines including IFN-γ by T-cells, although T-cell proliferation was efficiently inhibited. Further, ASCs enhanced the number of CD69(+) T-cells independent of the stimuli and cellular context. Interestingly, ASCs significantly suppressed CD25 expression on phytohemagglutinin stimulated PBMCs but had no effect on αCD3/αCD28 stimulated cells. Depending on the stimulation method and cellular context, immune cells create a specific cytokine milieu in vitro, thus differently influencing MSCs and, in turn, affecting their action on immune cells.

  7. Human Adipose-Tissue Derived Stromal Cells in Combination with Hypoxia Effectively Support Ex Vivo Expansion of Cord Blood Haematopoietic Progenitors

    PubMed Central

    Andreeva, Elena R.; Buravkov, Sergey V.; Romanov, Yury A.; Buravkova, Ludmila B.

    2015-01-01

    The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions. PMID:25919031

  8. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.

    PubMed

    Choi, Jeein; Kim, Sohyeun; Jung, Jinsun; Lim, Youngbin; Kang, Kyungsun; Park, Seungsu; Kang, Sookyung

    2011-10-01

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis

  9. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source

    PubMed Central

    Mellor, Liliana F.; Mohiti-Asli, Mahsa; Williams, John; Kannan, Arthi; Dent, Morgan R.; Guilak, Farshid

    2015-01-01

    We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-β1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach

  10. Isolation of Primary Human Colon Tumor Cells from Surgical Tissues and Culturing Them Directly on Soft Elastic Substrates for Traction Cytometry.

    PubMed

    Ali, M Yakut; Anand, Sandeep V; Tangella, Krishnarao; Ramkumar, Davendra; Saif, Taher A

    2015-01-01

    Cancer cells respond to matrix mechanical stiffness in a complex manner using a coordinated, hierarchical mechano-chemical system composed of adhesion receptors and associated signal transduction membrane proteins, the cytoskeletal architecture, and molecular motors. Mechanosensitivity of different cancer cells in vitro are investigated primarily with immortalized cell lines or murine derived primary cells, not with primary human cancer cells. Hence, little is known about the mechanosensitivity of primary human colon cancer cells in vitro. Here, an optimized protocol is developed that describes the isolation of primary human colon cells from healthy and cancerous surgical human tissue samples. Isolated colon cells are then successfully cultured on soft (2 kPa stiffness) and stiff (10 kPa stiffness) polyacrylamide hydrogels and rigid polystyrene (~3.6 GPa stiffness) substrates functionalized by an extracellular matrix (fibronectin in this case). Fluorescent microbeads are embedded in soft gels near the cell culture surface, and traction assay is performed to assess cellular contractile stresses using free open access software. In addition, immunofluorescence microscopy on different stiffness substrates provides useful information about primary cell morphology, cytoskeleton organization and vinculin containing focal adhesions as a function of substrate rigidity. PMID:26065530

  11. High-resolution molecular validation of self-renewal and spontaneous differentiation in adipose-tissue derived human mesenchymal stem cells cultured in human platelet lysate

    PubMed Central

    Dudakovic, Amel Dudakovic; Camilleri, Emily; Riester, Scott M.; Lewallen, Eric A.; Kvasha, Sergiy; Chen, Xiaoyue; Radel, Darcie J.; Anderson, Jarett M.; Nair, Asha A.; Evans, Jared M.; Krych, Aaron J.; Smith, Jay; Deyle, David R.; Stein, Janet L.; Stein, Gary S.; Im, Hee-Jeong; Cool, Simon M.; Westendorf, Jennifer J.; Kakar, Sanjeev; Dietz, Allan B.; van Wijnen, Andre J.

    2014-01-01

    Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. PMID:24905804

  12. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells.

    PubMed

    Eiró, Noemí; Sendon-Lago, Juan; Seoane, Samuel; Bermúdez, María A; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J

    2014-11-15

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy. PMID:25296979

  13. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells

    PubMed Central

    Seoane, Samuel; Bermúdez, María A.; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J.

    2014-01-01

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy. PMID:25296979

  14. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells.

    PubMed

    Eiró, Noemí; Sendon-Lago, Juan; Seoane, Samuel; Bermúdez, María A; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J

    2014-11-15

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy.

  15. Pre-existing Epithelial Diversity in Normal Human Livers: A Tissue-tethered Cytometric Analysis in Portal/Periportal Epithelial Cells

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.

    2012-01-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208

  16. Who "owns" cells and tissues?

    PubMed

    Lebacqz, K

    2001-01-01

    Opposition to 'ownership' of cells and tissues often depends on arguments about the special or sacred nature of human bodies and other living things. Such arguments are not very helpful in dealing with the patenting of DNA fragments. Two arguments undergird support for patenting: the notion that an author has a 'right' to an invention resulting from his/her labor, and the utilitarian argument that patents are needed to support medical inventiveness. The labor theory of ownership rights is subject to critique, thought it may still have enduring value. The more important argument is that deriving from the common good. If patents on DNA are supported on the basis of their contributions to the common good, then they can also be limited based on considerations of the common good.

  17. Transplantation of human adipose tissue to nude mice.

    PubMed

    Bach-Mortensen, N; Romert, P; Ballegaard, S

    1976-08-01

    Human adipose tissue was transplanted to the mouse mutant nude (nu/nu). All the grafts were accepted and contained fat cells easily distinguishable from those of the mouse. No detectable relation between the histological pictures before and after grafting was found. In some transplants nerve tissue, and in others macrophages containing fat droplets, were found. The fat tissue graft might be useful for investigation of the influence of various hormones on human fat cells.

  18. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  19. Effects of Gravity on Cells, Tissues, and Organisms: Their Implications on Habitat and Human Support in Microgravity

    NASA Technical Reports Server (NTRS)

    Kizito, John

    2004-01-01

    This presentation will demonstrate that gravity plays a major role in advanced human life support in a closed habitat. The examples include, but are not limited to, control of purity in drinking water supplies (application of biocides), control of urine in space rodent habitats and operation of space septic tanks (waste management). Our goal is to understand and determine possible mechanisms that describe the process by which cells anchor to a substrate to form dynamic, vibrant communities of cells which influence human health in absence of gravity. The balance of all forces (mechanotransduction) acting on a cell will determine whether a cell thrives and multiplies or dies in a process called apoptosis and/or necrosis. The balance of forces are tightly coupled to the transport of nutrients and metabolic products (biochemotransduction) to and from the cell interface. We will highlight our effort to improve astronaut health by showing that microgravity life support systems have to be designed differently from those on Earth.

  20. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    SciTech Connect

    Liang, Weiguo; Fang, Dejian; Ye, Dongping; Zou, Longqiang; Shen, Yan; Dai, Libing; Xu, Jiake

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  1. Counting Mycobacteria in Infected Human Cells and Mouse Tissue: A Comparison between qPCR and CFU

    PubMed Central

    Pathak, Sharad; Awuh, Jane A.; Leversen, Nils Anders; Flo, Trude H.; Åsjø, Birgitta

    2012-01-01

    Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to facilitate basic research, development of vaccines and anti-mycobacterial drugs. In this study we have developed quantitative polymerase chain reaction (qPCR) assays for simultaneous quantification of mycobacterial and host DNA in infected human macrophage cultures and in mouse tissues. The qPCR method cannot discriminate live from dead bacteria and found a 10- to 100-fold excess of mycobacterial genomes, relative to colony formation. However, good linear correlations were observed between viable colony counts and qPCR results from infected macrophage cultures (Pearson correlation coefficient [r] for M. tuberculosis = 0.82; M. a. avium = 0.95; M. a. paratuberculosis = 0.91). Regression models that predict colony counts from qPCR data in infected macrophages were validated empirically and showed a high degree of agreement with observed counts. Similar correlation results were also obtained in liver and spleen homogenates of M. a. avium infected mice, although the correlations were distinct for the early phase (

  2. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    PubMed

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose.

  3. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    PubMed

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  4. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    PubMed

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use. PMID:22776022

  5. Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo.

    PubMed

    Nelson, G N; Roh, J D; Mirensky, T L; Wang, Y; Yi, T; Tellides, G; Pober, J S; Shkarin, P; Shapiro, E M; Saltzman, W M; Papademetris, X; Fahmy, T M; Breuer, C K

    2008-11-01

    This pilot study examines noninvasive MR monitoring of tissue-engineered vascular grafts (TEVGs) in vivo using cells labeled with iron oxide nanoparticles. Human aortic smooth muscle cells (hASMCs) were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The labeled hASMCs, along with human aortic endothelial cells, were incorporated into eight TEVGs and were then surgically implanted as aortic interposition grafts in a C.B-17 SCID/bg mouse host. USPIO-labeled hASMCs persisted in the grafts throughout a 3 wk observation period and allowed noninvasive MR imaging of the human TEVGs for real-time, serial monitoring of hASMC retention. This study demonstrates the feasibility of applying noninvasive imaging techniques for evaluation of in vivo TEVG performance. PMID:18711027

  6. Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells

    PubMed Central

    Zhang, Peihua; Li, Jin; Qi, Yawei; Tang, Xudong; Duan, Jianfeng; Liu, Li; Wu, Zeyong; Liang, Jie; Li, Jiangfeng; Wang, Xian; Zeng, Guofang; Liu, Hongwei

    2016-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs). Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2), and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs. PMID:27239203

  7. Generating kidney tissue from pluripotent stem cells

    PubMed Central

    Little, MH

    2016-01-01

    With the isolation of human pluripotent stem cells came the possibility of generating specific cell types for regenerative medicine. This has required the development of protocols for directed differentiation into many distinct cell types. One of the more complicated tissue types to recreate is the kidney. Here we review recent progress towards the recreation of not only specific kidney cell types but complex kidney organoids, models of the developing human organ, in vitro. We will also discuss potential short and long term applications of these approaches. PMID:27551541

  8. Soluble CD14 is essential for lipopolysaccharide-dependent activation of human intestinal mast cells from macroscopically normal as well as Crohn's disease tissue.

    PubMed

    Brenner, Sibylle A; Zacheja, Steffi; Schäffer, Michael; Feilhauer, Katharina; Bischoff, Stephan C; Lorentz, Axel

    2014-10-01

    Mast cells are now considered sentinels in immunity. Given their location underneath the gastrointestinal barrier, mast cells are entrusted with the task of tolerating commensal microorganisms and eliminating potential pathogens in the gut microbiota. The aim of our study was to analyse the responsiveness of mast cells isolated from macroscopically normal and Crohn's disease-affected intestine to lipopolysaccharide (LPS). To determine the LPS-mediated signalling, human intestinal mast cells were treated with LPS alone or in combination with soluble CD14 due to their lack of surface CD14 expression. LPS alone failed to stimulate cytokine expression in human intestinal mast cells from both macroscopically normal and Crohn's disease tissue. Upon administration of LPS and soluble CD14, there was a dose- and time-dependent induction of cytokine and chemokine expression. Moreover, CXCL8 and interleukin-1β protein expression was induced in response to activation with LPS plus soluble CD14. Expression of cytokines and chemokines was at similar levels in mast cells from macroscopically normal and Crohn's disease-affected intestine after LPS/soluble CD14 treatment. In conclusion, human intestinal mast cells appear to tolerate LPS per se. The LPS-mediated activation in mast cells may be provoked by soluble CD14 distributed by other LPS-triggered cells at the gastrointestinal barrier.

  9. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells.

    PubMed

    Bigley, Venetia; McGovern, Naomi; Milne, Paul; Dickinson, Rachel; Pagan, Sarah; Cookson, Sharon; Haniffa, Muzlifah; Collin, Matthew

    2015-04-01

    Langerin is a C-type lectin expressed at high level by LCs of the epidermis. Langerin is also expressed by CD8(+)/CD103(+) XCR1(+) cross-presenting DCs of mice but is not found on the homologous human CD141(high) XCR1(+) myeloid DC. Here, we show that langerin is expressed at a low level on DCs isolated from dermis, lung, liver, and lymphoid tissue and that langerin(+) DCs are closely related to CD1c(+) myeloid DCs. They are distinguishable from LCs by the level of expression of CD1a, EpCAM, CD11b, CD11c, CD13, and CD33 and are found in tissues and tissue-draining LNs devoid of LCs. They are unrelated to CD141(high) XCR1(+) myeloid DCs, lacking the characteristic expression profile of cross-presenting DCs, conserved between mammalian species. Stem cell transplantation and DC deficiency models confirm that dermal langerin(+) DCs have an independent homeostasis to LCs. Langerin is not expressed by freshly isolated CD1c(+) blood DCs but is rapidly induced on CD1c(+) DCs by serum or TGF-β via an ALK-3-dependent pathway. These results show that langerin is expressed outside of the LC compartment of humans and highlight a species difference: langerin is expressed by the XCR1(+) "DC1" population of mice but is restricted to the CD1c(+) "DC2" population of humans (homologous to CD11b(+) DCs in the mouse).

  10. Preparation of Scaffold-Free Tissue-Engineered Constructs Derived from Human Synovial Mesenchymal Stem Cells Under Low Oxygen Tension Enhances Their Chondrogenic Differentiation Capacity.

    PubMed

    Yasui, Yukihiko; Chijimatsu, Ryota; Hart, David A; Koizumi, Kota; Sugita, Norihiko; Shimomura, Kazunori; Myoui, Akira; Yoshikawa, Hideki; Nakamura, Norimasa

    2016-03-01

    Low oxygen tension (LOT) has been reported to promote chondrogenic differentiation and prevent cellular senescence of stem cells. Therefore, the introduction of LOT conditions into conventional tissue engineering processes could further improve the potential of the constructs generated for cartilage repair. The purpose of this study was to elucidate the feasibility of LOT preparation on the chondrogenic differentiation of a scaffold-free tissue-engineered construct (TEC) derived from synovial mesenchymal stem cells (MSCs), construct whose feasibility for cartilage repair has been demonstrated in previous preclinical and clinical studies. Culture of MSCs under LOT conditions prevented cellular senescence and promoted the proliferative capacity of human synovial MSCs. In addition, TEC prepared from human synovial MSCs under LOT conditions (5% O2; LOT-TEC) showed superior in vitro chondrogenic differentiation capacity compared to that prepared under the usual 20% O2 (normal oxygen tension [NOT]; NOT-TEC), with elevated glycosaminoglycan production and elevated levels of chondrogenic marker gene expression. Notably, LOT-TEC differentiated into a hyaline-like cartilaginous tissue of approximately 1 cm in diameter without the detectable presence of fibrous tissue, while conventional NOT-TEC differentiated into a mixture of hyaline-like and fibrocartilaginous tissues. This is the first demonstration of in vitro development of a hyaline-like cartilaginous tissue of an implantable size to chondral lesion that was derived from human MSCs without the use of an exogenous scaffold. The manipulation of oxygen tension is a safe procedure with low cost and, thus, may be a clinically relevant option to improve the quality of TEC-mediated cartilage repair. PMID:26974507

  11. MicroRNA-103a-3p controls proliferation and osteogenic differentiation of human adipose tissue-derived stromal cells

    PubMed Central

    Sol Kim, Da; Young Lee, Sun; Hee Lee, Jung; Chan Bae, Yong; Sup Jung, Jin

    2015-01-01

    The elucidation of the molecular mechanisms underlying the differentiation and proliferation of human adipose tissue-derived stromal cells (hADSCs) represents a critical step in the development of hADSCs-based cellular therapies. To examine the role of the microRNA-103a-3p (miR-103a-3p) in hADSCs functions, miR-103a-3p mimics were transfected into hADSCs in order to overexpress miR-103a-3p. Osteogenic differentiation was induced for 14 days in an osetogenic differentiation medium and assessed by using an Alizarin Red S stain. The regulation of the expression of CDK6 (cyclin-dependent kinase 6), a predicted target of miR-103a-3p, was determined by western blot, real-time PCR and luciferase reporter assays. Overexpression of miR-103a-3p inhibited the proliferation and osteogenic differentiation of hADSCs. In addition, it downregulated protein and mRNA levels of predicted target of miR-103a-3p (CDK6 and DICER1). In contrast, inhibition of miR-103a-3p with 2′O methyl antisense RNA increased the proliferation and osteogenic differentiation of hADSCs. The luciferase reporter activity of the construct containing the miR-103a-3p target site within the CDK6 and DICER1 3′-untranslated regions was lower in miR-103a-3p-transfected hADSCs than in control miRNA-transfected hADSCs. RNA interference-mediated downregulation of CDK6 and DICER1 in hADSCs inhibited their proliferation and osteogenic differentiation. The results of the current study indicate that miR-103a-3p regulates the osteogenic differentiation of hADSCs and proliferation of hADSCs by direct targeting of CDK6 and DICER1 partly. These findings further elucidate the molecular mechanisms governing the differentiation and proliferation of hADSCs. PMID:26160438

  12. In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Populations.

    PubMed

    Krawiec, Jeffrey T; Weinbaum, Justin S; Liao, Han-Tsung; Ramaswamy, Aneesh K; Pezzone, Dominic J; Josowitz, Alexander D; D'Amore, Antonio; Rubin, J Peter; Wagner, William R; Vorp, David A

    2016-05-01

    Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the context of TEVG therapy, we implanted TEVGs constructed with human AD-MSCs from each donor type as an aortic interposition graft in a rat model. The key failure mechanism observed was thrombosis, and this was most prevalent in grafts using cells from diabetic patients. The remainder of the TEVGs was able to generate robust vascular-like tissue consisting of smooth muscle cells, endothelial cells, collagen, and elastin. We further investigated a potential mechanism for the thrombotic failure of AD-MSCs from diabetic donors; we found that these cells have a diminished potential to promote fibrinolysis compared to those from healthy donors. Together, this study served as proof of concept for the development of a TEVG based on human AD-MSCs, illustrated the importance of testing cells from realistic patient populations, and highlighted one possible mechanistic explanation as to the observed thrombotic failure of our diabetic AD-MSC-based TEVGs. PMID:27079751

  13. TGF-β1 Up-Regulates Connective Tissue Growth Factor Expression in Human Granulosa Cells through Smad and ERK1/2 Signaling Pathways

    PubMed Central

    Cheng, Jung-Chien; Chang, Hsun-Ming; Fang, Lanlan; Sun, Ying-Pu; Leung, Peter C. K.

    2015-01-01

    Connective tissue growth factor (CTGF), which is also called CCN2, is a secreted matricellular protein. CTGF regulates various important cellular functions by interacting with multiple molecules in the microenvironment. In the ovary, CTGF is mainly expressed in granulosa cells and involved in the regulation of follicular development, ovulation and luteinization. TGF-β1 has been shown to up-regulate CTGF expression in rat and hen granulosa cells. However, the underlying molecular mechanisms of this up-regulation remain undefined. More importantly, whether the stimulatory effect of TGF-β1 on CTGF expression can be observed in human granulosa cells remains unknown. In the present study, our results demonstrated that TGF-β1 treatment up-regulates CTGF expression in both immortalized human granulosa cells and primary human granulosa cells. Using a siRNA-mediated knockdown approach and a pharmacological inhibitor, we demonstrated that the inhibition of Smad2, Smad3 or ERK1/2 attenuates the TGF-β1-induced up-regulation of CTGF. This study provides important insights into the molecular mechanisms that mediate TGF-β1-up-regulated CTGF expression in human granulosa cells. PMID:25955392

  14. TGF-β1 Up-Regulates Connective Tissue Growth Factor Expression in Human Granulosa Cells through Smad and ERK1/2 Signaling Pathways.

    PubMed

    Cheng, Jung-Chien; Chang, Hsun-Ming; Fang, Lanlan; Sun, Ying-Pu; Leung, Peter C K

    2015-01-01

    Connective tissue growth factor (CTGF), which is also called CCN2, is a secreted matricellular protein. CTGF regulates various important cellular functions by interacting with multiple molecules in the microenvironment. In the ovary, CTGF is mainly expressed in granulosa cells and involved in the regulation of follicular development, ovulation and luteinization. TGF-β1 has been shown to up-regulate CTGF expression in rat and hen granulosa cells. However, the underlying molecular mechanisms of this up-regulation remain undefined. More importantly, whether the stimulatory effect of TGF-β1 on CTGF expression can be observed in human granulosa cells remains unknown. In the present study, our results demonstrated that TGF-β1 treatment up-regulates CTGF expression in both immortalized human granulosa cells and primary human granulosa cells. Using a siRNA-mediated knockdown approach and a pharmacological inhibitor, we demonstrated that the inhibition of Smad2, Smad3 or ERK1/2 attenuates the TGF-β1-induced up-regulation of CTGF. This study provides important insights into the molecular mechanisms that mediate TGF-β1-up-regulated CTGF expression in human granulosa cells.

  15. [Changes of ultrastructure of the capillary endotheliocytes of ischemized and nonaffected muscular tissue after transplantation of human hemopoietic stem cells of fetal liver in experiment in vivo].

    PubMed

    Saliutin, R V; Zadorozhna, T D; Medvets'kyĭ, E B; Driuk, M F; Petrenko, A Iu

    2010-04-01

    In experiment was investigated ultrastructure of the capillaries endothelial cells and histological peculiarities of muscular tissue on various stages after transplantation of hemopoietic stem cells of fetal liver (HSCFL). There was proved, that in ischemic environment HSCFL stimulate processes of angiogenesis, and in the case of transplantation into intact muscular tissue they are differentiating into the tissue macrophages, not interfering with muscular tissue structure.

  16. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice.

    PubMed

    Zhou, Yixuan; Yuan, Jingdong; Zhou, Bin; Lee, Austin J; Lee, Albert J; Ghawji, Maher; Yoo, Tai June

    2011-05-01

    Autoimmune inner ear disease is characterized by progressive, bilateral although asymmetric, sensorineural hearing loss. Patients with autoimmune inner ear disease had higher frequencies of interferon-γ-producing T cells than did control subjects tested. Human adipose-derived mesenchymal stem cells (hASCs) were recently found to suppress effector T cells and inflammatory responses and therefore have beneficial effects in various autoimmune diseases. The aim of this study was to examine the immunosuppressive activity of hASCs on autoreactive T cells from the experimental autoimmune hearing loss (EAHL) murine model. Female BALB/c mice underwent β-tubulin immunization to develop EAHL; mice with EAHL were given hASCs or PBS intraperitoneally once a week for 6 consecutive weeks. Auditory brainstem responses were examined over time. The T helper type 1 (Th1)/Th17-mediated autoreactive responses were examined by determining the proliferative response and cytokine profile of splenocytes stimulated with β-tubulin. The frequency of regulatory T (Treg) cells and their suppressive capacity on autoreactive T cells were also determined. Systemic infusion of hASCs significantly improved hearing function and protected hair cells in established EAHL. The hASCs decreased the proliferation of antigen-specific Th1/Th17 cells and induced the production of anti-inflammatory cytokine interleukin-10 in splenocytes. They also induced the generation of antigen-specific CD4(+) CD25(+) Foxp3(+) Treg cells with the capacity to suppress autoantigen-specific T-cell responses. The experiment demonstrated that hASCs are one of the important regulators of immune tolerance with the capacity to suppress effector T cells and to induce the generation of antigen-specific Treg cells.

  17. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues

    PubMed Central

    Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T

    2016-01-01

    Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to

  18. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function.

    PubMed

    Cai, Liying; Johnstone, Brian H; Cook, Todd G; Tan, Jian; Fishbein, Michael C; Chen, Peng-Sheng; March, Keith L

    2009-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  19. 75 FR 34146 - Proposed Collection; Comment Request Resource for the Collection and Evaluation of Human Tissues...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Collection and Evaluation of Human Tissues and Cells From Donors With an Epidemiology Profile (NCI) SUMMARY... Collection: Title: Resource for the Collection and Evaluation of Human Tissues and Cells From Donors With...

  20. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    SciTech Connect

    Pilgaard, L.; Lund, P.; Duroux, M.; Lockstone, H.; Taylor, J.; Emmersen, J.; Fink, T.; Ragoussis, J.; Zachar, V.

    2009-07-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  1. Polyamines modulate nitric oxide production and COX-2 gene expression in response to mechanical loading in human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Tjabringa, Geuranne S; Vezeridis, Peter S; Zandieh-Doulabi, Behrouz; Helder, Marco N; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2006-10-01

    For bone tissue engineering, it is important that mesenchymal stem cells (MSCs) display a bone cell-like response to mechanical loading. We have shown earlier that this response includes increased nitric oxide (NO) production and cyclooxygenase-2 (COX-2) gene expression, both of which are intimately involved in mechanical adaptation of bone. COX-2 gene expression is likely regulated by polyamines, which are organic cations implicated in cell proliferation and differentiation. This has led to the hypothesis that polyamines may play a role in the response of adipose tissue-derived MSCs (AT-MSCs) to mechanical loading. The aim of this study was to investigate whether genes involved in polyamine metabolism are regulated by mechanical loading and to study whether polyamines modulate mechanical loading-induced NO production and COX-2 gene expression in human AT-MSCs. Human AT-MSCs displayed a bone cell-like response to mechanical loading applied by pulsating fluid flow (PFF), as demonstrated by increased NO production and increased gene expression of COX-2. Furthermore, PFF increased gene expression of spermidine/spermine N (1)-acetyltransferase, which is involved in polyamine catabolism, suggesting that mechanical loading modulates polyamine levels. Finally, the polyamine spermine was shown to inhibit both PFF-induced NO production and COX-2 gene expression, suggesting that polyamines modulate the response of human AT-MSCs to mechanical loading. In conclusion, this is the first study implicating polyamines in the response of human AT-MSCs to mechanical loading, creating opportunities for the use of polyamines in tissue engineering approaches targeting skeletal defects.

  2. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage.

    PubMed

    Liu, Shuyun; Hou, Ke Dong; Yuan, Mei; Peng, Jiang; Zhang, Li; Sui, Xiang; Zhao, Bin; Xu, Wenjing; Wang, Aiyuan; Lu, Shibi; Guo, Quanyi

    2014-02-01

    Once cartilage is damaged, it has limited potential for self-repair. Autologous chondrocyte implantation is an effective treatment, but patients may suffer during cartilage harvesting and the donor-site morbidity may accelerate joint degeneration. Using autologous mesenchymal stem cells (MSCs) derived chondrocytes is another selection, while it also causes some injuring. The umbilical cord, an ecto-embryo tissue may be an ideal source of cells, because of its accessibility, abundant resources, painless procedures for harvesting, and lack of ethical issues. We isolated MSCs from Wharton's jelly of human umbilical cord (WMSCs), which expressed CD44, CD105 and CD271 but not CD34 and CD45 with flow cytometry analysis. RT-PCR showed not only positive expression of CD90, c-kit, Sca1, SH2 and SH3 but also positive expression of the chondrocyte markers Sox-9 and Col-2A1. WMSCs cultured in high-density in the presence of transforming growth factor β1 and dexamethasone showed cartilage extracellular matrix-secretion and integrated into a thin piece of cell-based membrane. The cell-based thin membrane cultured in rotary cell culture system formed a round, opaque, glistening non-scaffold cartilage-like tissue, larger and condenser than what was formed with conventional pellet culture. Glycosaminoglycan and type II collagen content significantly increased after 3-week culture. The human WMSCs express characteristics of pre-chondrocytes, low immunogenicity and are easy to be obtained with higher purity because there have no hematopoietic cells in Wharton's jelly, so it may be a new seed cells more suitable for constructing tissue-engineered cartilage.

  3. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    PubMed

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  4. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint.

    PubMed

    Shim, Jin-Hyung; Jang, Ki-Mo; Hahn, Sei Kwang; Park, Ju Young; Jung, Hyuntae; Oh, Kyunghoon; Park, Kyeng Min; Yeom, Junseok; Park, Sun Hwa; Kim, Sung Won; Wang, Joon Ho; Kim, Kimoon; Cho, Dong-Woo

    2016-03-01

    The use of cell-rich hydrogels for three-dimensional (3D) cell culture has shown great potential for a variety of biomedical applications. However, the fabrication of appropriate constructs has been challenging. In this study, we describe a 3D printing process for the preparation of a multilayered 3D construct containing human mesenchymal stromal cells with a hydrogel comprised of atelocollagen and supramolecular hyaluronic acid (HA). This construct showed outstanding regenerative ability for the reconstruction of an osteochondral tissue in the knee joints of rabbits. We found that the use of a mechanically stable, host-guest chemistry-based hydrogel was essential and allowed two different types of extracellular matrix (ECM) hydrogels to be easily printed and stacked into one multilayered construct without requiring the use of potentially harmful chemical reagents or physical stimuli for post-crosslinking. To the best of our knowledge, this is the first study to validate the potential of a 3D printed multilayered construct consisting of two different ECM materials (atelocollagen and HA) for heterogeneous tissue regeneration using an in vivo animal model. We believe that this 3D printing-based platform technology can be effectively exploited for regeneration of various heterogeneous tissues as well as osteochondral tissue.

  5. Alpha-dispersion in human tissue

    NASA Astrophysics Data System (ADS)

    Grimnes, Sverre; Martinsen, Ørjan G.

    2010-04-01

    Beta dispersion is found in living tissue in the kilohertz - megahertz range and is caused by the cellular structure of biological materials with low frequency properties caused by cell membranes. Alpha dispersion is found in the hertz range and the causes are not so well known. Alpha dispersions are the first to disappear when tissue dies. Tissue data have often been based upon excised specimen from animals and are therefore not necessarily representative for human tissue alpha dispersions. Here we present data obtained with non-invasive skin surface electrodes for different segments of the living human body. We found alpha dispersions in all cases; the ankle-wrist results had the smallest. Large alpha dispersions were found where the distance between the electrodes and muscle masses was small, e.g. on the calf. Further studies on electrode technique and reciprocity, electrode positioning, statistical variations, gender, age and bodily constitutions are necessary in order to reveal more about the alpha dispersion, its appearance and disappearance.

  6. Use of a Tissue Engineered Human Skin Model to Investigate the Effects of Wounding and of an Anti-Inflammatory on Melanoma Cell Invasion.

    PubMed

    Marques, Claudia Mirian de Godoy; MacNeil, Sheila

    2016-01-01

    An increasing number of studies suggest inflammation stimulates tumour invasion. In melanoma, despite recent advances in targeted therapy and immunomodulatory therapies, this cancer remains difficult to treat. Our previous studies show melanoma cells interact with skin cells in their invasion into tissue engineered skin and suggest inflammation stimulates invasion. The aim of this study was to investigate the use of an anti-inflammatory on melanoma invasion. To do this we developed a wounded and inflamed in vitro 3D melanoma model in which to investigate the use of an anti-inflammatory on melanoma invasion. The tissue engineered skin model was based on human de-epidermised acellular dermis to which keratinocytes, fibroblasts and three different melanoma cell lines were added in various combinations. A simple incisional wound was made in the model and TNF-α and fibrin were added to simulate conditions of inflammation. Topical ibuprofen in a hydrogel was added and the extent of melanoma invasion into the dermis was assessed under the various conditions. The results showed that penetration of two of the cell lines (HBL and A375SM) into the tissue engineered skin was exacerbated by wounding and ibuprofen significantly decreased invasion of A375SM cells and slightly reduced invasion of HBL cells. A third cell line, C8161, was aggressively invasive under all conditions to an extent that was not influenced by wounding, TNF-α or the addition of ibuprofen. In summary, the results for one these cell lines (and a trend for a second cell line) support the hypothesis that a wound environment is conducive to melanoma invasion but the local addition of an anti-inflammatory drug such as ibuprofen may attenuate invasion.

  7. Use of a Tissue Engineered Human Skin Model to Investigate the Effects of Wounding and of an Anti-Inflammatory on Melanoma Cell Invasion

    PubMed Central

    Marques, Claudia Mirian de Godoy; MacNeil, Sheila

    2016-01-01

    An increasing number of studies suggest inflammation stimulates tumour invasion. In melanoma, despite recent advances in targeted therapy and immunomodulatory therapies, this cancer remains difficult to treat. Our previous studies show melanoma cells interact with skin cells in their invasion into tissue engineered skin and suggest inflammation stimulates invasion. The aim of this study was to investigate the use of an anti-inflammatory on melanoma invasion. To do this we developed a wounded and inflamed in vitro 3D melanoma model in which to investigate the use of an anti-inflammatory on melanoma invasion. The tissue engineered skin model was based on human de-epidermised acellular dermis to which keratinocytes, fibroblasts and three different melanoma cell lines were added in various combinations. A simple incisional wound was made in the model and TNF-α and fibrin were added to simulate conditions of inflammation. Topical ibuprofen in a hydrogel was added and the extent of melanoma invasion into the dermis was assessed under the various conditions. The results showed that penetration of two of the cell lines (HBL and A375SM) into the tissue engineered skin was exacerbated by wounding and ibuprofen significantly decreased invasion of A375SM cells and slightly reduced invasion of HBL cells. A third cell line, C8161, was aggressively invasive under all conditions to an extent that was not influenced by wounding, TNF-α or the addition of ibuprofen. In summary, the results for one these cell lines (and a trend for a second cell line) support the hypothesis that a wound environment is conducive to melanoma invasion but the local addition of an anti-inflammatory drug such as ibuprofen may attenuate invasion. PMID:27270229

  8. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis1

    PubMed Central

    Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.

    2010-01-01

    Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445

  9. Human Adipose Tissue Derived Stem Cells as a Source of Smooth Muscle Cells in the Regeneration of Muscular Layer of Urinary Bladder Wall

    PubMed Central

    SALEM, Salah Abood; HWIE, Angela Ng Min; SAIM, Aminuddin; CHEE KONG, Christopher Ho; SAGAP, Ismail; SINGH, Rajesh; YUSOF, Mohd Reusmaazran; MD ZAINUDDIN, Zulkifili; HJ IDRUS, Ruszymah

    2013-01-01

    Background: Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells. Methods: In this study, adipose tissue samples were digested with 0.075% collagenase, and the resulting ADSCs were cultured and expanded in vitro. ADSCs at passage two were differentiated by incubation in smooth muscle inductive media (SMIM) consisting of MCDB I31 medium, 1% FBS, and 100 U/mL heparin for three and six weeks. ADSCs in non-inductive media were used as controls. Characterisation was performed by cell morphology and gene and protein expression. Result: The differentiated cells became elongated and spindle shaped, and towards the end of six weeks, sporadic cell aggregation appeared that is typical of smooth muscle cell culture. Smooth muscle markers (i.e. alpha smooth muscle actin (ASMA), calponin, and myosin heavy chain (MHC)) were used to study gene expression. Expression of these genes was detected by PCR after three and six weeks of differentiation. At the protein expression level, ASMA, MHC, and smoothelin were expressed after six weeks of differentiation. However, only ASMA and smoothelin were expressed after three weeks of differentiation. Conclusion: Adipose tissue provides a possible source of smooth muscle precursor cells that possess the potential capability of smooth muscle differentiation. This represents a promising alternative for urinary bladder smooth muscle repair. PMID:24044001

  10. Hippocampus and epilepsy: Findings from human tissues.

    PubMed

    Huberfeld, G; Blauwblomme, T; Miles, R

    2015-03-01

    Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal

  11. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    PubMed

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  12. Laser-based microdissection of single cells from tissue sections and PCR analysis of rearranged immunoglobulin genes from isolated normal and malignant human B cells.

    PubMed

    Küppers, Ralf; Schneider, Markus; Hansmann, Martin-Leo

    2013-01-01

    Normal and malignant B cells carry rearranged immunoglobulin (Ig) variable region genes, which due to their practically limitless diversity represent ideal clonal markers for these cells. We describe here an approach to isolate single cells from frozen tissue sections by microdissection using a laser-based method. From the isolated cells rearranged IgH and Igκ genes are amplified in a semi-nested PCR approach, using a collection of V gene family-specific primers recognizing nearly all V gene segments together with primers for the J gene segments. By sequence analysis of V genes from distinct cells, the clonal relationship of the B lineage cells can unequivocally be determined and related to the histological distribution of the cells. The approach is also useful to determine V, D, and J gene usage. Moreover, the presence and pattern of somatic Ig V gene mutations give valuable insight into the stage of differentiation of the B cells.

  13. An antigenic study of human plasma cells in normal tissue and in myeloma: identification of a novel plasma cell associated antigen.

    PubMed Central

    Nathan, P D; Walker, L; Hardie, D; Richardson, P; Khan, M; Johnson, G D; Ling, N R

    1986-01-01

    A mouse monoclonal antibody named BU11 which detects an antigen strongly expressed on human plasma cells is described. The antibody stains plasma cells in tonsil sections, fresh and cultured plasmacytoid cells from the bone marrow of patients with multiple myeloma and cells of the plasmacytoid cell line RPMI 8226 used as the immunogen. In vitro studies of pokeweed mitogen (PWM) stimulated peripheral blood B cells and Epstein-Barr virus (EBV) stimulated tonsil B cells show that the antigen is present mainly on cells coexpressing the OKT10 antigen and containing cytoplasmic immunoglobulin (cIg). The BU11 antigen is expressed weakly on some normal B cells and is not present on T cells, monocytes or granulocytes. The antigen is of molecular weight 58kD under reducing conditions and is biochemically distinct from previously described plasma cell antigens. Images Fig. 4 PMID:3024883

  14. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction.

    PubMed

    Park, Ho; Park, Hyeon; Pak, Ha-Jin; Yang, Dong-Yun; Kim, Yun-Hong; Choi, Won-Jun; Park, Se-Jin; Cho, Jung-Ah; Lee, Kyo-Won

    2015-01-01

    MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation.

  15. Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface

    PubMed Central

    Wong, Tzyy Yue; Chen, Ying-Hui; Liu, Szu-Heng; Solis, Mairim Alexandra; Yu, Chen-Hsiang; Chang, Chiung-Hsin; Huang, Lynn L. H.

    2016-01-01

    Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth. PMID:27057169

  16. Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface.

    PubMed

    Wong, Tzyy Yue; Chen, Ying-Hui; Liu, Szu-Heng; Solis, Mairim Alexandra; Yu, Chen-Hsiang; Chang, Chiung-Hsin; Huang, Lynn L H

    2016-01-01

    Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth. PMID:27057169

  17. Blood cell oxidative stress precedes hemolysis in whole blood-liver slice co-cultures of rat, dog, and human tissues

    SciTech Connect

    Vickers, Alison E.M.; Sinclair, John R.; Fisher, Robyn L.; Morris, Stephen R.; Way, William

    2010-05-01

    A novel in vitro model to investigate time-dependent and concentration-dependent responses in blood cells and hemolytic events is studied for rat, dog, and human tissues. Whole blood is co-cultured with a precision-cut liver slice. Methimazole (MMI) was selected as a reference compound, since metabolism of its imidazole thione moiety is linked with hematologic disorders and hepatotoxicity. An oxidative stress response occurred in all three species, marked by a decline in blood GSH levels by 24 h that progressed, and preceded hemolysis, which occurred at high MMI concentrations in the presence of a liver slice with rat (>= 1000 muM at 48 h) and human tissues (>= 1000 muM at 48 h, >= 750 muM at 72 h) but not dog. Human blood-only cultures exhibited a decline of GSH levels but minimal to no hemolysis. The up-regulation of liver genes for heme degradation (Hmox1 and Prdx1), iron cellular transport (Slc40a1), and GSH synthesis and utilization (mGST1 and Gclc) were early markers of the oxidative stress response. The up-regulation of the Kupffer cell lectin Lgals3 gene expression indicated a response to damaged red blood cells, and Hp (haptoglobin) up-regulation is indicative of increased hemoglobin uptake. Up-regulation of liver IL-6 and IL-8 gene expression suggested an activation of an inflammatory response by liver endothelial cells. In summary, MMI exposure led to an oxidative stress response in blood cells, and an up-regulation of liver genes involved with oxidative stress and heme homeostasis, which was clearly separate and preceded frank hemolysis.

  18. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells*

    PubMed Central

    ZONG, Wen; JIANG, Yan; ZHAO, Jing; ZHANG, Jian; GAO, Jian-gang

    2015-01-01

    The lysyl oxidase (LOX) family encodes the copper-dependent amine oxidases that play a key role in determining the tensile strength and structural integrity of connective tissues by catalyzing the crosslinking of elastin or collagen. Estrogen may upregulate the expression of LOX and lysyl oxidase-like 1 (LOXL1) in the vagina. The objective of this study was to determine the effect of estrogen on the expression of all LOX family genes in the urogenital tissues of accelerated ovarian aging mice and human Ishikawa cells. Mice and Ishikawa cells treated with estradiol (E2) showed increased expression of LOX family genes and transforming growth factor β1 (TGF-β1). Ishikawa cells treated with TGF-β1 also showed increased expression of LOX family genes. The Ishikawa cells were then treated with either E2 plus the TGF-β receptor (TGFBR) inhibitor SB431542 or E2 alone. The expression of LOX family genes induced by E2 was reduced in the Ishikawa cells treated with TGFBR inhibitor. Our results showed that E2 increased the expression of the LOX family genes, and suggest that this induction may be mediated by the TGF-β signal pathway. E2 may play a role in regulating the expression of LOX family genes. PMID:26465133

  19. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells.

    PubMed

    Zong, Wen; Jiang, Yan; Zhao, Jing; Zhang, Jian; Gao, Jian-gang

    2015-10-01

    The lysyl oxidase (LOX) family encodes the copper-dependent amine oxidases that play a key role in determining the tensile strength and structural integrity of connective tissues by catalyzing the crosslinking of elastin or collagen. Estrogen may upregulate the expression of LOX and lysyl oxidase-like 1 (LOXL1) in the vagina. The objective of this study was to determine the effect of estrogen on the expression of all LOX family genes in the urogenital tissues of accelerated ovarian aging mice and human Ishikawa cells. Mice and Ishikawa cells treated with estradiol (E2) showed increased expression of LOX family genes and transforming growth factor β1 (TGF-β1). Ishikawa cells treated with TGF-β1 also showed increased expression of LOX family genes. The Ishikawa cells were then treated with either E2 plus the TGF-β receptor (TGFBR) inhibitor SB431542 or E2 alone. The expression of LOX family genes induced by E2 was reduced in the Ishikawa cells treated with TGFBR inhibitor. Our results showed that E2 increased the expression of the LOX family genes, and suggest that this induction may be mediated by the TGF-β signal pathway. E2 may play a role in regulating the expression of LOX family genes. PMID:26465133

  20. Human Endometrial Mesenchymal Stem Cells Modulate the Tissue Response and Mechanical Behavior of Polyamide Mesh Implants for Pelvic Organ Prolapse Repair

    PubMed Central

    Ulrich, Daniela; Edwards, Sharon Lee; Su, Kai; Tan, Ker Sin; White, Jacinta F.; Ramshaw, John A.M.; Lo, Camden; Rosamilia, Anna; Werkmeister, Jerome A.

    2014-01-01

    Background: Pelvic organ prolapse (POP) is defined as the descent of one or more of the pelvic structures into the vagina and includes uterine, vaginal vault, and anterior or posterior vaginal wall prolapse. The treatment of POP may include implantation of a synthetic mesh. However, the long-term benefit of mesh surgery is controversial due to complications such as mesh exposure or pain. The aim of this study was to use a tissue engineering (TE) approach to assess the in vivo biological and biomechanical behavior of a new gelatin/polyamide mesh, seeded with a novel source of mesenchymal stem cells in a subcutaneous rat model of wound repair. Methods: W5C5-enriched human endometrial mesenchymal stem cells (eMSC) were seeded onto meshes (gelatin-coated polyamide knit) at 100,000 cells/cm2. Meshes, with or without cells were subcutaneously implanted dorsally in immunocompromised rats for 7, 30, 60, and 90 days. Flow cytometry was used to detect DiO labeled cells after explantation. Immunohistochemical assessment of foreign body reaction and tissue integration were conducted. Total collagen and the levels of collagens type III and type I were determined. Uniaxial tensiometry was performed on explanted meshes, originally seeded with and without cells, at days 7 and 90. Results: Implanted meshes were well tolerated, with labeled cells detected on the mesh up to 14 days postimplantation. Meshes with cells promoted significantly more neovascularization at 7 days (p<0.05) and attracted fewer macrophages at 90 days (p<0.05). Similarly, leukocyte infiltration was significantly lower in the cell-seeded meshes at 90 days (p<0.05). Meshes with cells were generally less stiff than those without cells, after 7 and 90 days implantation. Conclusion: The TE approach used in this study significantly reduced the number of inflammatory cells around the implanted mesh and promoted neovascularization. Seeding with eMSC exerts an anti-inflammatory effect and promotes wound repair with new

  1. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.

    PubMed

    Stewart, Elise; Kobayashi, Nao R; Higgins, Michael J; Quigley, Anita F; Jamali, Sina; Moulton, Simon E; Kapsa, Robert M I; Wallace, Gordon G; Crook, Jeremy M

    2015-04-01

    Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.

  2. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering.

    PubMed

    Shao, Zhenxing; Zhang, Xin; Pi, Yanbin; Yin, Ling; Li, La; Chen, Haifeng; Zhou, Chunyan; Ao, Yingfang

    2015-01-01

    Synovium-derived mesenchymal stem cells (SMSC) have been studied for over a decade since first being successfully isolated in 2001. These cells demonstrate the most promising therapeutic efficacy for musculoskeletal regeneration of the MSC family, particularly for cartilage regeneration. However, the mobilization and transfer of MSCs to defective or damaged tissues and organs in vivo with high accuracy and efficiency has been a major problem in tissue engineering (TE). In the present study, we identified a seven amino acid peptide sequence [SMSCs-affinity peptide (LTHPRWP; L7)] through phage display technology that has a high specific affinity to SMSCs. Our analysis suggested that L7 efficiently and specifically interacted with SMSCs without any species specificity. Thereafter, L7 was covalently conjugated onto both polycaprolactone (PCL) electrospun meshes and human decalcified bone scaffolds (hDBSc) to investigate its TE applications. After 24 h coculture with human SMSCs (hSMSCs), L7-conjugated PCL electrospun meshes had significantly more adherent hSMSCs than the control group, and the cells expanded well. Similar results were obtained using hDBSs. These results suggest that the novel L7 peptide sequence has a high specific affinity to SMSCs. Covalently conjugating this peptide to either artificial polymer material (PCL mesh) or natural material (hDBS) significantly enhances the adhesion of SMSCs. This method is applicable to a wide range of potential SMSC-based TE applications, particularly to cartilage regeneration, via surface modification on various type of materials.

  3. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects

    PubMed Central

    Farahzadi, Raheleh; Mesbah-Namin, Seyed Alireza; Zarghami, Nosratollah; Fathi, Ezzatollah

    2016-01-01

    Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres. PMID:27426092

  4. Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering.

    PubMed

    Rauh, Juliane; Jacobi, Angela; Stiehler, Maik

    2015-02-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin

  5. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration.

    PubMed

    Flores-Cedillo, M L; Alvarado-Estrada, K N; Pozos-Guillén, A J; Murguía-Ibarra, J S; Vidal, M A; Cervantes-Uc, J M; Rosales-Ibáñez, R; Cauich-Rodríguez, J V

    2016-02-01

    Conventional approaches to bone regeneration rarely use multiwall carbon nanotubes (MWCNTs) but instead use polymeric matrices filled with hydroxyapatite, calcium phosphates and bioactive glasses. In this study, we prepared composites of MWCNTs/polycaprolactone (PCL) for bone regeneration as follows: (a) MWCNTs randomly dispersed on PCL, (b) MWCNTs aligned with an electrical field to determine if the orientation favors the growing of human dental pulp stem cells (HDPSCs), and (c) MWCNTs modified with β-glycerol phosphate (BGP) to analyze its osteogenic potential. Raman spectroscopy confirmed the presence of MWCNTs and BGP on PCL, whereas the increase in crystallinity by the addition of MWCNTs to PCL was confirmed by X-ray diffraction and differential scanning calorimetry. A higher elastic modulus (608 ± 4.3 MPa), maximum stress (42 ± 6.1 MPa) and electrical conductivity (1.67 × 10(-7) S/m) were observed in non-aligned MWCNTs compared with the pristine PCL. Cell viability at 14 days was similar in all samples according to the live/dead assay, but the 21 day cell proliferation, measured by MTT was higher in MWCNTs aligned with BGP. Von Kossa and Alizarin red showed larger amounts of mineral deposits on MWCNTs aligned with BGP, indicating that at 21 days, this scaffold promotes osteogenic differentiation of HDPSCs.

  6. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration.

    PubMed

    Flores-Cedillo, M L; Alvarado-Estrada, K N; Pozos-Guillén, A J; Murguía-Ibarra, J S; Vidal, M A; Cervantes-Uc, J M; Rosales-Ibáñez, R; Cauich-Rodríguez, J V

    2016-02-01

    Conventional approaches to bone regeneration rarely use multiwall carbon nanotubes (MWCNTs) but instead use polymeric matrices filled with hydroxyapatite, calcium phosphates and bioactive glasses. In this study, we prepared composites of MWCNTs/polycaprolactone (PCL) for bone regeneration as follows: (a) MWCNTs randomly dispersed on PCL, (b) MWCNTs aligned with an electrical field to determine if the orientation favors the growing of human dental pulp stem cells (HDPSCs), and (c) MWCNTs modified with β-glycerol phosphate (BGP) to analyze its osteogenic potential. Raman spectroscopy confirmed the presence of MWCNTs and BGP on PCL, whereas the increase in crystallinity by the addition of MWCNTs to PCL was confirmed by X-ray diffraction and differential scanning calorimetry. A higher elastic modulus (608 ± 4.3 MPa), maximum stress (42 ± 6.1 MPa) and electrical conductivity (1.67 × 10(-7) S/m) were observed in non-aligned MWCNTs compared with the pristine PCL. Cell viability at 14 days was similar in all samples according to the live/dead assay, but the 21 day cell proliferation, measured by MTT was higher in MWCNTs aligned with BGP. Von Kossa and Alizarin red showed larger amounts of mineral deposits on MWCNTs aligned with BGP, indicating that at 21 days, this scaffold promotes osteogenic differentiation of HDPSCs. PMID:26704552

  7. Human dignity and human tissue: a meaningful ethical relationship?

    PubMed

    Kirchhoffer, David G; Dierickx, Kris

    2011-09-01

    Human dignity has long been used as a foundational principle in policy documents and ethical guidelines intended to govern various forms of biomedical research. Despite the vast amount of literature concerning human dignity and embryonic tissues, the majority of biomedical research uses non-embryonic human tissue. Therefore, this contribution addresses a notable lacuna in the literature: the relationship, if any, between human dignity and human tissue. This paper first elaborates a multidimensional understanding of human dignity that overcomes many of the shortcomings associated with the use of human dignity in other ethical debates. Second, it discusses the relationship between such an understanding of human dignity and 'non-embryonic' human tissue. Finally, it considers the implications of this relationship for biomedical research and practice involving human tissue. The contribution demonstrates that while human tissue cannot be said to have human dignity, human dignity is nevertheless implicated by human tissue, making what is done with human tissue and how it is done worthy of moral consideration.

  8. Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system.

    PubMed

    Gupta, Phalguni; Collins, Kelly B; Ratner, Deena; Watkins, Simon; Naus, Gregory J; Landers, Daniel V; Patterson, Bruce K

    2002-10-01

    The virologic and cellular factors that are involved in transmission of human immunodeficiency virus type 1 (HIV-1) across the female genital tissue are poorly understood. We have recently developed a human cervical tissue-derived organ culture model to study heterosexual transmission of HIV-1 that mimics the in vivo situation. Using this model we investigated the role of phenotypic characteristics of HIV-1 and identified the cell types that are first infected during transmission. Our data indicate that the cell-free R5 HIV-1 was more efficiently transmitted than cell-free X4 HIV-1. Cell-free and cell-associated HIV-1 had comparable transmission efficiency regardless of whether the virus was of R5 or X4 type. We have demonstrated that memory CD4(+) T cells and not Langerhans cells were the first HIV-1 RNA-positive cells detected at the epithelial-submucosal junction 6 h after virus exposure. Multicolor laser confocal microscopy demonstrated a globular distribution of HIV-1 gag-pol mRNA in the cytoplasm, and the distribution of CD4 and the CD45RO isoform was irregular on the cellular membrane. At 96 h postinoculation, in addition to memory CD4(+) T cells, HIV-1 RNA-positive Langerhans cells and macrophages were also detected. The identification of CD4(+) T cells in the tissue at 6 h was confirmed by flow cytometric simultaneous immunophenotyping and ultrasensitive fluorescence in situ hybridization assay on immune cells isolated from disaggregated tissue. Furthermore, PMPA [9-[2-(phosphonomethoxy)propyl] adenine], an antiretroviral compound, and UC781, a microbicide, inhibited HIV-1 transmission across the mucosa, indicating the utility of the organ culture to screen topical microbicides for their ability to block sexual transmission of HIV-1.

  9. Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart.

    PubMed

    Knöfler, M; Meinhardt, G; Vasicek, R; Husslein, P; Egarter, C

    1998-12-11

    The basic helix-loop-helix (bHLH) factor Hand1 plays a role in the developing chicken heart and is required for trophoblast giant cell differentiation and cardiac looping of mouse embryonic development. Here, we report the cloning of the human Hand1 cDNA and gene from a heart-specific cDNA library and a genomic lambda-DNA library, respectively. We present the nucleotide sequence of a 1.75kb cDNA clone, encoding the presumptive 215 amino acid human Hand1 protein, and show homology comparison of the conserved bHLH region between different species. In vitro transcription-translation of Hand1 mRNA and analysis of protein size suggest that the Hand1 polypeptide is (post)translationally modified. By Southern blot analysis we demonstrate that the isolated genomic DNA clone harbours the entire Hand1 gene and describe molecular structure and sequences of the two 799 and 938bp exons and the single 1.56kb intron. The expression pattern of the mRNA in different human tissues revealed that Hand1 transcripts are restricted to the heart, suggesting that the protein could be required for cardiac-specific gene transcription and function in adults. Hand1 transcripts were undetectable in a non-tumorigenic villous trophoblast cell line, immunopurified cytotrophoblasts undergoing in vitro differentiation, and first trimester placental tissue, suggesting that the transcription factor is not involved in the development of villous and extravillous trophoblast cell lineages. Hand1 mRNA, however, was abundantly expressed in cytotrophoblastic Jeg-3 and BeWo cells, suggesting that Hand1 could be required for early trophoblast differentiation.

  10. Hyaluronan and Hyaluronan-Binding Proteins Accumulate in Both Human Type 1 Diabetic Islets and Lymphoid Tissues and Associate With Inflammatory Cells in Insulitis

    PubMed Central

    Bogdani, Marika; Johnson, Pamela Y.; Potter-Perigo, Susan; Nagy, Nadine; Day, Anthony J.; Bollyky, Paul L.

    2014-01-01

    Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that is present in pancreatic islets, but little is known about its involvement in the development of human type 1 diabetes (T1D). We have evaluated whether pancreatic islets and lymphoid tissues of T1D and nondiabetic organ donors differ in the amount and distribution of HA and HA-binding proteins (hyaladherins), such as inter-α-inhibitor (IαI), versican, and tumor necrosis factor–stimulated gene-6 (TSG-6). HA was dramatically increased both within the islet and outside the islet endocrine cells, juxtaposed to islet microvessels in T1D. In addition, HA was prominent surrounding immune cells in areas of insulitis. IαI and versican were present in HA-rich areas of islets, and both molecules accumulated in diabetic islets and regions exhibiting insulitis. TSG-6 was observed within the islet endocrine cells and in inflammatory infiltrates. These patterns were only observed in tissues from younger donors with disease duration of <10 years. Furthermore, HA and IαI amassed in follicular germinal centers and in T-cell areas in lymph nodes and spleens in T1D patients compared with control subjects. Our observations highlight potential roles for HA and hyaladherins in the pathogenesis of diabetes. PMID:24677718

  11. Optimization of the isolation and expansion method of human mediastinal-adipose tissue derived mesenchymal stem cells with virally inactivated GMP-grade platelet lysate.

    PubMed

    Siciliano, Camilla; Ibrahim, Mohsen; Scafetta, Gaia; Napoletano, Chiara; Mangino, Giorgio; Pierelli, Luca; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult multipotent cells currently employed in several clinical trials due to their immunomodulating, angiogenic and repairing features. The adipose tissue is certainly considered an eligible source of MSCs. Recently, putative adipose tissue derived MSCs (ADMSCs) have been isolated from the mediastinal depots. However, very little is known about the properties, the function and the potential of human mediastinal ADMSCs (hmADMSCs). However, the lack of standardized methodologies to culture ADMSCs prevents comparison across. Herein for the first time, we report a detailed step by step description to optimize the isolation and the expansion methodology of hmADMSCs using a virally inactivated good manufacturing practice (GMP)-grade platelet lysate, highlighting the critical aspects of the procedure and providing useful troubleshooting suggestions. Our approach offers a reproducible system which could provide standardization across laboratories. Moreover, our system is time and cost effective, and it can provide a reproducible source of adipose stem cells to enable future studies to unravel new insights regard this promising stem cell population. PMID:24306273

  12. Successful transportation of human corneal endothelial tissues without cool preservation in varying Indian tropical climatic conditions and in vitro cell expansion using a novel polymer

    PubMed Central

    Rao, Srinivas K; Sudhakar, John; Parikumar, Periyasamy; Natarajan, Sundaram; Insaan, Aditya; Yoshioka, Hiroshi; Mori, Yuichi; Tsukahara, Shigeo; Baskar, Subramani; Manjunath, Sadananda Rao; Senthilkumar, Rajappa; Thamaraikannan, Paramasivam; Srinivasan, Thangavelu; Preethy, Senthilkumar; Abraham, Samuel J K

    2014-01-01

    Background: Though the transplantation of human corneal endothelial tissue (CET) separated from cadaver cornea is in practice, its transportation has not been reported. We report the successful transportation of CET in varying Indian climatic conditions without cool preservation and the in vitro expansion of Human Corneal Endothelial Precursor Cells (HCEPCs) using a novel Thermo-reversible gelation polymer (TGP). Materials and Methods: CET from cadaver corneas (n = 67), unsuitable for transplantation, were used. In phase I, CET was transported in Basal Culture Medium (Group I) and TGP (Group II) and in Phase II, in TGP cocktail alone, from three hospitals 250-2500 km away, to a central laboratory. The transportation time ranged from 6 h to 72 h and the outdoor temperature between 20°C and 41°C. On arrival, CET were processed, cells were expanded upto 30 days in basal culture medium (Group A) and TGP scaffold (Group B). Cell viability and morphology were documented and Reverse transcription polymerase chain reaction (RT-PCR) characterization undertaken. Results: In Phase I, TGP yielded more viable cells (0.11 × 106 cells) than Group I (0.04 × 106 cells). In Phase II, the average cell count was 5.44 × 104 cells. During expansion, viability of HCEPCs spheres in TGP was maintained for a longer duration. The cells from both the groups tested positive for B-3 tubulin and negative for cytokeratins K3 and K12, thereby proving them to be HCEPCs. Conclusion: TGP preserves the CET during transportation without cool preservation and supports in vitro expansion, with a higher yield of HCEPCs, similar to that reported in clinical studies. PMID:24008800

  13. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.