Science.gov

Sample records for human cells irradiated

  1. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  2. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation.

    PubMed

    Lee, Jienny; Cho, Jae Youl; Lee, Sang Yeol; Lee, Kyung-Woo; Lee, Jongsung; Song, Jae-Young

    2014-01-01

    Ultraviolet-B (UVB) irradiation is one of major factors which induce cellular damages in the epidermis. We investigated protective effects and mechanisms of vanillin, a main constituent of vanilla beans, against UVB-induced cellular damages in keratinocyte stem cells (KSC). Here, vanillin significantly attenuated UVB irradiation-induced cytotoxicity. The vanillin effects were also demonstrated by the results of the senescence-associated β-galactosidase and alkaline comet assays. In addition, vanillin induced production of pro-inflammatory cytokines. Attempts to elucidate a possible mechanism underlying the vanillin-mediated effects revealed that vanillin significantly reduced UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2 (Chk2), tumor suppressor protein 53 (p53), p38/mitogen-activated protein kinase (p38), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), S6 ribosomal protein (S6RP), and histone 2A family member X (H2A.X). UVB-induced activation of p53 luciferase reporter was also significantly inhibited by vanillin. In addition, while ATM inhibitor had no effect on the vanillin effects, mouse double minute 2 homolog (MDM2) inhibitor significantly attenuated suppressive effects of vanillin on UVB-induced activation of p53 reporter in KSC. Taken together, these findings suggest that vanillin protects KSC from UVB irradiation and its effects may occur through the suppression of downstream step of MDM2 in UVB irradiation-induced p53 activation.

  3. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells.

    PubMed

    Turchan, William T; Shapiro, Ronald H; Sevigny, Garrett V; Chin-Sinex, Helen; Pruden, Benjamin; Mendonca, Marc S

    2016-08-01

    Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion

  4. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  5. sup 51 Cr loss and lactate dehydrogenase (LDH) release in irradiated human tumor cells

    SciTech Connect

    Ts'ao, C.; Molteni, A.; Hinz, J. )

    1991-03-11

    Much of what is known about tumor cell radiosensitivity in vitro derives from the colony formation assay. Other endpoints of cytotoxicity in irradiated tumor cells are rarely examined. The purpose of this study was to determine whether loss of {sup 51}Cr from prelabeled cells and release of LDH could be used to quantify radiation injury in two cultured human tumor cell lines: a prostate carcinoma and a melanoma. Bovine aortic endothelial cells (EC) known to release {sup 51}Cr and LDH following irradiation, were cotested. Radioactivity and LDH activity in the culture medium were determined after 0-40 Gy of {sup 60}CO {gamma} rays. Proliferation of irradiated tumor cells was also studied. EC exhibited a time- and radiation dose-dependent increase in {sup 51}Cr and LDH release. Both tumor cell lines showed a time-dependent increase in {sup 51}Cr release, but this baseline release was not elevated after irradiation. LDH release from the prostate cancer cell line was observed within 8 hr after 40 Gy, and at 48 hr by 10 Gy. Irradiated melanoma cells, in contrast, never release excess LDH into the culture medium. Melanoma cells continued to proliferate after 10 Gy, while proliferation of prostate cancer cells was totally arrested by this dose of exposure. While {sup 51}Cr loss and LDH release appear to be sensitive indicators of radiation-induced damage in EC, they have limited value in the assessment of radiation-induced cytotoxicity in human prostate cancer and melanoma cells.

  6. Irradiation affects cellular properties and Eph receptor expression in human melanoma cells

    PubMed Central

    Mosch, Birgit; Pietzsch, Doreen; Pietzsch, Jens

    2012-01-01

    X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. PMID:22568947

  7. Long-term cognitive effects of human stem cell transplantation in the irradiated brain

    PubMed Central

    Acharya, Munjal M.; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L.

    2016-01-01

    Purpose Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Materials and methods Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Results Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Conclusions Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function. PMID:24882389

  8. Chromosomal Instability in the progeny of human irradiated cells

    NASA Astrophysics Data System (ADS)

    Testard, I.; Boissière, A.; Martins, L. M.; Sabatier, L.

    Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. Recent studies show that some alterations can appear many cell generations after the initial radiation exposure as a delayed genomic instability. This delayed instability is characterized by the accumulation of cell alterations leading to cell transformation, delayed cell death and mutations. Chromosome instability was shown in vitro in different model systems (Sabatier et al., 1992; Marder and Morgan, 1993; Kadhim et al., 1994 and Holmberg et al., 1993, 1995). All types of radiation used induce chromosome instability; however, heavy ions cause the most damage. The period of chromosome instability followed by the formation of clones with unbalanced karyotypes seems to be shared by cancer cells. The shortening of telomere sequences leading to the formation of telomere fusions is an important factor in the appearance of this chromosome instability.

  9. IER5 promotes irradiation- and cisplatin-induced apoptosis in human hepatocellular carcinoma cells

    PubMed Central

    Yang, Chuanjie; Wang, Yanling; Hao, Chun; Yuan, Zengqiang; Liu, Xiaodan; Yang, Fen; Jiang, Huiqing; Jiang, Xiaoyu; Zhou, Pingkun; Ding, Kuke

    2016-01-01

    Purpose: To elucidate the mechanisms of the immediate-early response gene 5 (IER5) effect on the apoptosis induced by irradiation and cisplatin (CDDP) in human hepatocellular carcinoma (HepG2) cells. Methods: We generated IER5 overexpression stable cells (HepG2/IER5) using Lipofectamine 2000 transfection HepG2 cells. Cell apoptosis was induced by irradiation and cisplatin treatments, and cell proliferation (viability) and apoptosis were evaluated by MTT and flow cytometry assays. Protein expression was determined by Western blot. Results: The growth of the IER5 overexpression cells was significantly inhibited after six days of 60Co γ-irradiation exposure (p<0.01) compared with the cell growth of vector control cells. Furthermore, the HepG2/IER5 cells were arrested at the G2/M phases. We also found that the expression of phospho-Akt was reduced, and the levels of cleaved caspase-3 and PARP were increased after the treatment of HepG2/IER5 cells with γ-irradiation and cisplatin. Conclusion: Our results suggest that the overexpression of IER5 can inhibit cell growth and enhance the cell apoptosis induced by exposure to radiation or cisplatin. The overexpression of IER5 can be utilized as a targeting strategy to improve the outcomes of radiotherapy used for the treatment of patients with liver cancer. PMID:27186303

  10. Proton beam irradiation stimulates migration and invasion of human U87 malignant glioma cells

    PubMed Central

    Zaboronok, Alexander; Isobe, Tomonori; Yamamoto, Tetsuya; Sato, Eisuke; Takada, Kenta; Sakae, Takeji; Tsurushima, Hideo; Matsumura, Akira

    2014-01-01

    Migration and invasion of malignant glioma play a major role in tumor progression and can be increased by low doses of gamma or X-ray irradiation, especially when the migrated tumor cells are located at a distance from the main tumor mass or postoperative cavity and are irradiated in fractions. We studied the influence of proton beam irradiation on migration and invasion of human U87 malignant glioma (U87MG) cells. Irradiation at 4 and 8 Gy increased cell migration by 9.8% (±4, P = 0.032) and 11.6% (±6.6, P = 0.031) and invasion by 45.1% (±16.5, P = 0.04) and 40.5% (±12.7, P = 0.041), respectively. After irradiation at 2 and 16 Gy, cell motility did not differ from that at 0 Gy. We determined that an increase in proton beam irradiation dose to over 16 Gy might provide tumor growth control, although additional specific treatment might be necessary to prevent the potentially increased motility of glioma cells during proton beam therapy. PMID:24187331

  11. Cell growth kinetics of the human cell line Colo-205 irradiated with photons and astatine-211 alpha-particles.

    PubMed

    Palm, S; Andersson, H; Bäck, T; Claesson, I; Delle, U; Hultborn, R; Jacobsson, L; Köpf, I; Lindegren, S

    2000-01-01

    Cell growth kinetics following Astatine-211 (211At, alpha-particle emitter) and photon irradiation were studied for the human colorectal cell line Colo-205. A growth assay using 96-well plates was chosen. The growth kinetics could be simulated by assuming certain fractions of cells with various proliferative capacities, i.e. from none up to 5 cell doublings, in addition to the defined survivors with remaining unlimited clonogenic capacity. No significant difference in cell growth characteristics was seen between 211At and photon irradiation. The cell doubling time, as calculated from the increment in optical density, was compared with the results from BrdU experiments in the early phases of growth (Tpot = 18.5 +/- 0.6 h for LDR (low dose rate) photon irradiated and 20.3 +/- 0.8 hours for sham-irradiated cells 40-45 hours post-irradiation) confirming the transient accelerated growth of irradiated cells. No statistically significant difference in growth was found between LDR, MDR (medium dose rate) and HDR (high dose rate) photon irradiation.

  12. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    SciTech Connect

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  13. Gamma Irradiation Does Not Induce Detectable Changes in DNA Methylation Directly following Exposure of Human Cells

    PubMed Central

    Lahtz, Christoph; Bates, Steven E.; Jiang, Yong; Li, Arthur X.; Wu, Xiwei; Hahn, Maria A.; Pfeifer, Gerd P.

    2012-01-01

    Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 (137Cs) radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA) in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis) or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells. PMID:23024770

  14. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  15. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  16. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells

    NASA Astrophysics Data System (ADS)

    Le, M.; Mothersill, C. E.; Seymour, C. B.; Ahmad, S. B.; Armstrong, A.; Rainbow, A. J.; McNeill, F. E.

    2015-08-01

    The luminescence intensity of 340+/- 5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to 90Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1× {{10}4} cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8× {{10}3}+/- 2.5× {{10}3} counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for 90Y activities 14 to 703 μCi where a positive relationship between photoemission and 90Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1× {{10}4} cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  17. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  18. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro

    PubMed Central

    XIE, DONG; SUN, YAN; WANG, LINGZHEN; LI, XIAOLING; ZANG, CHUANNONG; ZHI, YUNLAI; SUN, LIRONG

    2016-01-01

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light-emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL-60 human leukemia cells, and to explore the underlying mechanisms. HL-60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B-cell lymphoma 2 (Bcl-2) were detected using cell counting kit-8, multicaspase assays, propidium iodide staining and reverse transcription-quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8–60 J/m2) inhibited the proliferation of HL-60 cells in a dose-dependent manner. UV LED at 8–30 J/m2 induced dose-dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl-2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL-60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl-2 mRNA expression were shown to be involved in UV LED-induced apoptosis. PMID:26820261

  19. In vitro analysis of low-level laser irradiation on human osteoblast-like cells proliferation

    NASA Astrophysics Data System (ADS)

    Bloise, Nora; Saino, Enrica; Bragheri, Francesca; Minzioni, Paolo; Cristiani, Ilaria; Imbriani, Marcello; Visai, Livia

    2011-07-01

    The objective of this study was to examine the in vitro effect of a single or a multiple doses of low-level laser irradiation (LLLI) on proliferation of the human osteosarcoma cell line, SAOS-2. SAOS-2 cells were divided in five groups and exposed to LLLI (659 nm diode laser; 11 mW power output): group I as a control (dark), group II exposed to a single laser dose of 1 J/cm2, group III irradiated with a single dose of 3 J/cm2, and group IV and V exposed for three consecutive days to 1 or 3 J/cm², respectively. Cellular proliferation was assessed daily up to 7 days of culturing. The obtained results showed an increase in proliferative capacity of SAOS-2 cells during the first 96 h of culturing time in once-irradiated cells, as compared to control cells. Furthermore, a significantly higher proliferation in the group IV and V was detected if compared to a single dose or to control group after 96 h and 7 days. In conclusion, the effect of the single dose on cell proliferation was transitory and repeated irradiations were necessary to observe a strong enhancement of SAOS-2 growth. As a future perspective, we would like to determine the potential of LLLI as a new approach for promoting bone regeneration onto biomaterials.

  20. Microarray Analysis of Human Liver Cells irradiated by 80MeV/u Carbon Ions

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Tian, Xiaoling; Kong, Fuquan; Li, Qiang; Jin, Xiaodong; Dai, Zhongying; Zhang, Hong; Yang, Mingjian; Zhao, Kui

    Objective Biological effect of heavy ion beam has the important significance for cancer therapy and space exploring owing its high LET and RBE, low OER, especially forming Bragg spike at the end of the tracks of charged particles. More serious damage for cells are induced by heavy ions and difficult repair than other irradiation such as X-ray and ν-ray . To explore the molecular mechanism of biological effect caused by heavy ionizing radiation (HIR) and to construct the gene expression profile database of HIR-induced human liver cells L02 by microarray analysis. Methods In this study, L02 cells were irradiated by 80MeV/u carbon ions at 5 Gy delivered by HIRFL (Heavy Ion Research Facility in Lanzhou) at room temperature. Total RNAs of cells incubated 6 hours and 24hours after irradiation were extracted with Trizol. Unirradiated cells were used as a control. RNAs were transcripted into cDNA by reverse transcription and labelled with cy5-dCTP and cy3-dCTP respectively. A human genome oligonucleotide set consisting of 5 amino acid-modified 70-mer probes and representing 21,329 well-characterized Homo sapiens genes was selected for microarray analysis and printed on amino-silaned glass slides. Arrays were fabricated using an OmniGrid microarrayer. Only genes whose alteration tendency was consistent in both microarrays were selected as differentially expressed genes. The Affymetrix's short oligonucleotide (25-mer) HG U133A 2.0 array analyses were performed per the manufacturer's instructions. Results Of the 21,329 genes tested, 37 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5 at 6hrs after irradiation. There were 19 genes showing up-regulation in radiated L02 cells, whereas 18 genes showing down-regulation; At 24hrs after irradiation, 269 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5. There were 67 genes showing up-regulation in radiated L02 cells, whereas 202 genes showing down

  1. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  2. Effects of Platinum Nanocolloid in Combination with Gamma Irradiation on Normal Human Esophageal Epithelial Cells.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2016-05-01

    Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC. PMID:27483929

  3. Effects of Platinum Nanocolloid in Combination with Gamma Irradiation on Normal Human Esophageal Epithelial Cells.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2016-05-01

    Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC.

  4. Characteristic studies of non-homologous end joining in human cells irradiated with high LET radiation

    NASA Astrophysics Data System (ADS)

    Okayasu, R.; Okada, M.; Okabe, A.; Takakura, K.

    We studied the repair process of G0/G1 phase normal (HFL III) and non homologous end joining (NHEJ) deficient human fibroblasts (180 BR) exposed to X-rays and high LET carbon ions (70 keV/μ m) using a modified fusion-based premature chromosome condensation (PCC) technique. We have succeeded in increasing the sensitivity of the PCC method by adding a potent DNA double strand break repair inhibitor, wortmannin, during the incubation period of this assay. With x-ray exposure (2 Gy or less), the rejoining of G1 chromosome breaks in 180BR cells are significantly slower and less efficient than that in normal cells. On the other hand, the difference in rejoining kinetics between 180BR and normal cells with high LET carbon exposure is much smaller than that with x-ray exposure. These results seem to reflect the radiation cell survival responses using the same cell lines. We also studied the auto-phosphorylation status of DNA dependent protein kinase catalytic subunit (DNA-PKcs) protein in cells exposed to high and low LET radiation. Our immuno-staining results using an antibody to detect an auto-phosphorylation site of DNA-PKcs further reveal the difficulty in NHEJ for cells exposed to high LET radiation. The peak time for the auto-phosphorylation in x-irradiated normal human cells is one hour post-irradiation, but the peak in the same cells irradiated with high LET carbon beams shifted to two hours post-irradiation, reflecting much slower NHEJ processing associated with the high LET radiation. These data help understand the mechanism underlying the biological effect induced by heavy ion particles in the space environment.

  5. Blue-light irradiation regulates proliferation and differentiation in human skin cells.

    PubMed

    Liebmann, Joerg; Born, Matthias; Kolb-Bachofen, Victoria

    2010-01-01

    Sunlight influences the physiology of the human skin in beneficial as well as harmful ways, as has been shown for UV light. However, little is known about the effects of other wavelengths of solar irradiation. In this study we irradiated human keratinocytes and skin-derived endothelial cells with light-emitting-diode devices of distinct wavelengths to study the effects on cell physiology. We found that light at wavelengths of 632-940 nm has no effect, but irradiation with blue light at 412-426 nm exerts toxic effects at high fluences. Light at 453 nm is nontoxic up to a fluence of 500 J/cm(2). At nontoxic fluences, blue light reduces proliferation dose dependently by up to 50%, which is attributable to differentiation induction as shown by an increase of differentiation markers. Experiments with BSA demonstrate that blue-light irradiation up to 453 nm photolytically generates nitric oxide (NO) from nitrosated proteins, which is known to initiate differentiation in skin cells. Our data provide evidence for a molecular mechanism by which blue light may be effective in treating hyperproliferative skin conditions by reducing proliferation due to the induction of differentiation. We observed a photolytic release of NO from nitrosated proteins, indicating that they are light acceptors and signal transducers up to a wavelength of 453 nm.

  6. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    SciTech Connect

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  7. Monitoring PAI-1 and VEGF Levels in 6 Human Squamous Cell Carcinoma Xenografts During Fractionated Irradiation

    SciTech Connect

    Bayer, Christine; Kielow, Achim; Schilling, Daniela; Maftei, Constantin-Alin; Zips, Daniel; Yaromina, Ala; Baumann, Michael; Molls, Michael; Multhoff, Gabriele

    2012-11-01

    Purpose: Previous studies have shown that the plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are regulated by hypoxia and irradiation and are involved in neoangiogenesis. The aim of this study was to determine in vivo whether changes in PAI-1 and VEGF during fractionated irradiation could predict for radiation resistance. Methods and Materials: Six xenografted tumor lines from human squamous cell carcinomas (HSCC) of the head and neck were irradiated with 0, 3, 5, 10, and 15 daily fractions of 2 Gy. The PAI-1 and VEGF antigen levels in tumor lysates were determined by enzyme-linked immunosorbent assay kits. The amounts of PAI-1 and VEGF were compared with the dose to cure 50% of tumors (TCD{sub 50}). Colocalization of PAI-1, pimonidazole (hypoxia), CD31 (endothelium), and Hoechst 33342 (perfusion) was examined by immunofluorescence. Results: Human PAI-1 and VEGF (hVEGF) expression levels were induced by fractionated irradiation in UT-SCC-15, UT-SCC-14, and UT-SCC-5 tumors, and mouse VEGF (msVEGF) was induced only in UT-SCC-5 tumors. High hVEGF levels were significantly associated with radiation sensitivity after 5 fractions (P=.021), and high msVEGF levels were significantly associated with radiation resistance after 10 fractions (P=.007). PAI-1 staining was observed in the extracellular matrix, the cytoplasm of fibroblast-like stroma cells, and individual tumor cells at all doses of irradiation. Colocalization studies showed PAI-1 staining close to microvessels. Conclusions: These results indicate that the concentration of tumor-specific and host-specific VEGF during fractionated irradiation could provide considerably divergent information for the outcome of radiation therapy.

  8. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation.

    PubMed

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C

    2015-04-28

    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  9. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  10. Particle irradiation induces FGF2 expression in normal human lens cells

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.

    2000-01-01

    Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.

  11. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells

    PubMed Central

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H.; Sareen, Dhruv

    2015-01-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. Significance The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. PMID:26185257

  12. Characterization of Treefoil Peptide Genes in Iron-Ion or X-Irradiated Human Cells

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Harrison, G. H.; Xu, J. F.; Zhou, X. F.

    1999-01-01

    The gastrointestinal (GI) tract is especially sensitive to ionizing radiation, probably because of its high rate of cell turn over. Most of the data in the literature concerns the histological/anatomical description of damage rather than functional studies. In fact, previous reports in humans have shown that, at doses of 2 Gy or more, functional abnormalities appear indicating that in radiation sensitive tissues the effects of radiation are not limited to cell death. GI functions are controlled in particular by GI peptides. One hypothesis is that ionizing radiation may modulate the synthesis and release of these peptides and consequently may contribute largely to abnormalities in GI function. However, no previous studies have been concerned with GI-specific gene expression in irradiated GI tissues. The family of human trefoil peptides comprises three members thus far, all of which are expressed in specific regions of the GI tract. In addition, two trefoil peptides, pS2 (TFFI) and HITF (TFF2) are expressed in breast tissue. Their exact function in GI and breast tissues is unclear but mucosal integrity, repair, mucin secretion and responsiveness to hormones have been shown. We recently isolated and characterized pS2 as a novel p53- and estrogen receptor-independent gene whose MRNA expression in several cells lines was found to be delayed 4 to 7 days after irradiation with X-rays, fission neutrons or 1 GeV/n Fe-ions. The aim of the present study was to determine whether pS2 and HITF have a similar induction kinetics in irradiated gastric and breast cell lines, and whether they have the phorbol ester (TPA) responsive element (TRE).

  13. Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin.

    PubMed

    Baier, Jürgen; Maisch, Tim; Maier, Max; Landthaler, Michael; Bäumler, Wolfgang

    2007-06-01

    UVA light produces deleterious biological effects in which singlet oxygen plays a major role. These effects comprise a significant risk of carcinogenesis in the skin and cataract formation of the eye lens. Singlet oxygen is generated by UVA light absorption in endogenous molecules present in the cells. To elucidate the primary processes and sources of singlet oxygen in tissue, it is a major goal to uncover the hidden process of singlet oxygen generation, in particular in living tissue. When exposing keratinocytes or human skin in vivo to UVA laser light (355 nm) at 6 J/cm2, we measured the luminescence of singlet oxygen at 1,270 nm. This is a positive and direct proof of singlet oxygen generation in cells and skin by UVA light. Moreover, a clear signal of singlet oxygen luminescence was detected in phosphatidylcholine suspensions (water or ethanol) irradiated by UVA. Oxidized products of phosphatidylcholine are the likely chromophores because phosphatidylcholine itself does not absorb at 355 nm. The signal intensity was reduced by mannitol or super oxide dismutase. Additionally, the monochromatic UVA irradiation at 355 nm leads to upregulation of the key cytokine IL-12. This affects the balance of UV radiation on the immune system, which is comparable to effects of broadband UVA irradiation. PMID:17363921

  14. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells.

    PubMed

    Ejiri, Kenichiro; Aoki, Akira; Yamaguchi, Yoko; Ohshima, Mitsuhiro; Izumi, Yuichi

    2014-07-01

    In periodontal therapy, the use of low-level diode lasers has recently been considered to improve wound healing of the gingival tissue. However, its effects on human gingival epithelial cells (HGECs) remain unknown. The aim of the present study was to examine whether high-frequency low-level diode laser irradiation stimulates key cell responses in wound healing, proliferation and migration, in primary cultured HGECs in vitro. HGECs were derived from seven independent gingival tissue specimens. Cultured HGECs were exposed to a single session of high-frequency (30 kHz) low-level diode laser irradiation with various irradiation time periods (fluence 5.7-56.7 J/cm(2)). After 20-24 h, cell proliferation was evaluated by WST-8 assay and [(3)H]thymidine incorporation assay, and cell migration was monitored by in vitro wound healing assay. Further, phosphorylation of the mitogen-activated protein kinase (MAPK) pathways after irradiation was investigated by Western blotting. The high-frequency low-level irradiation significantly increased cell proliferation and [(3)H]thymidine incorporation at various irradiation time periods. Migration of the irradiated cells was significantly accelerated compared with the nonirradiated control. Further, the low-level diode laser irradiation induced phosphorylation of MAPK/extracellular signal-regulated protein kinase (ERK) at 5, 15, 60, and 120 min after irradiation. Stress-activated protein kinases/c-Jun N-terminal kinase and p38 MAPK remained un-phosphorylated. The results show that high-frequency low-level diode laser irradiation promotes HGEC proliferation and migration in association with the activation of MAPK/ERK, suggesting that laser irradiation may accelerate gingival wound healing.

  15. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. PMID:23845763

  16. Increased proapoptotic activity of electron beam irradiated doxorubicin and epirubicin in multidrug-resistant human leukemic cells.

    PubMed

    Paszel-Jaworska, A; Totoń, E; Dettlaff, K; Kaczmarek, A; Bednarski, W; Oszczapowicz, I; Jelińska, A; Rybczyńska, M

    2016-10-25

    This study evaluated the effect of electron beam irradiation on the cytotoxic activity of anthracycline antibiotics such as doxorubicin (DOX), epirubicin (EPI), and dunorubicin (DAU) in human acute lymphoblastic leukemia cell line CCRF-CEM and its multidrug-resistant variant CCRF-VCR1000 cell line characterized by the overexpression of ABCB1 gene. Drugs were irradiated at doses of 10 and 25 kGy. Data from EPR studies proved that the highest concentration of free radicals was found in DOX and that the number of stable free radicals is always greater after irradiation. In in vitro studies, a higher cytotoxic activity of irradiated DOX and EPI in multidrug-resistant CCRF-VCR1000 cells was observed. This tendency was maintained during the storage at 4 °C for 90 days. Changes in CCRF-CEM cells' viability were not dependent on the irradiation status and its dose and were only drug-concentration dependent in all measurement time points. It was proved that increased potency of 25 kGy e-beam irradiated drugs results from their enhanced proapoptotic activity. Apoptotic cell death observed in CCRF-VCR1000 cells treated with irradiated drugs was caspase-8, -9, and -3 dependent and related to the increased Bax/Bcl-2 ratio. No significant differences in the effects of irradiated and non-irradiated drugs on p53 and NFκB transcription factor level and their translocation to the nucleus were noted. Increased activity of the irradiated drugs was not dependent on ABCB1 level.

  17. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-02-22

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.

  18. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    SciTech Connect

    Chen Wenshu; Yu Yichu; Lee Yijang; Chen, J.-H.; Hsu, H.-Y.; Chiu, S.-J.

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.

  19. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells

    NASA Astrophysics Data System (ADS)

    Santacruz-Gomez, K.; Silva-Campa, E.; Melendrez-Amavizca, R.; Teran Arce, F.; Mata-Haro, V.; Landon, P. B.; Zhang, C.; Pedroza-Montero, M.; Lal, R.

    2016-03-01

    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several

  20. Changes in telomere length distribution in low-dose X-ray-irradiated human umbilical vein endothelial cells.

    PubMed

    Guan, Jing-Zhi; Guan, Wei Ping; Maeda, Toyoki; Makino, Naoki

    2014-11-01

    Ionizing radiation (IR) is known to be a cause of telomere dysfunction in tumor cells; however, very few studies have investigated X-ray-related changes in telomere length and the telomerase activity in normal human cells, such as umbilical vein endothelial cells (HUVECs). The loss of a few hundred base pairs from a shortened telomere has been shown to be important with respect to cellular senescence, although it may not be detected according to traditional mean telomere length [assessed as the terminal restriction fragment (TRF)] analyses. In the present study, a continuous time window from irradiation was selected to examine changes in the telomere length, including the mean TRF length, percentage of the telomere length, telomerase activity, apoptotic rate, and survival rate in HUVECs from the first day to the fourth day after the administration of a 0.5-Gy dose of irradiation. The mean TRF length in the irradiated HUVECs showed shorter telomere length in first 3 days, but they were not statistically significant. On the other hand, according to the percentage analysis of the telomere length, a decreasing tendency was noted in the longer telomere lengths (9.4-4.4 kb), with a significant increase in the shortest telomeres (4.4-2.3 kb) among the irradiated cells versus the controls from the first day to the third after irradiation; no significant differences were noted on the fourth day. These results suggest that the shortest telomeres are sensitive to the late stage of radiation damage. The proliferation of irradiated cells was suppressed after IR in contrast to the non-irradiated cells. The apoptotic rate was elevated initially both in IR- and non-IR-cells, but that of IR-cells was maintained at an elevated level thereafter in contrast to that of non-IR-cells decreasing promptly. Therefore, a 0.5-Gy dose of IR induces persistent apoptosis leading to an apparent growth arrest of the normal HUVECs.

  1. Exploratory Study of the Prognostic Value of Microenvironmental Parameters During Fractionated Irradiation in Human Squamous Cell Carcinoma Xenografts

    SciTech Connect

    Yaromina, Ala; Kroeber, Theresa; Meinzer, Andreas; Boeke, Simon; Thames, Howard; Baumann, Michael; Zips, Daniel

    2011-07-15

    Purpose: To explore the prognostic value of microenvironmental parameters for local tumor control determined before and during fractionated irradiation. Methods and Materials: Six human squamous cell carcinoma (hSCC) lines were transplanted subcutaneously into the right hind leg of nude mice. Tumors were irradiated with 30 fractions within 6 weeks. Local tumor control was determined 120 days after irradiation. Radiation response was quantified as dose to cure 50% of tumors (TCD{sub 50}). In parallel, untreated and irradiated tumors were excised after injection of pimonidazole (hypoxia marker) and Hoechst 33342 (perfusion marker) for histological evaluation. Results: Pimonidazole hypoxia decreased during fractionated irradiation in the majority of tumor lines. Fraction of perfused vessels and vascular area showed modest changes during fractionated irradiation. Histological parameters before treatment and after three and five fractions did not significantly correlate with TCD{sub 50} after irradiation with 30 fractions within 6 weeks (p > 0.05). Hypoxic volume and perfused vessels after 10 fractions showed a significant association with local tumor control after fractionated irradiation (p = 0.018 and p = 0.019, respectively). None of these parameters remained statistically significant when the p value was adjusted for multiple comparisons. Conclusions: The results from this exploratory study suggest that determination of microenvironmental parameters during treatment provides better prognostic information for the outcome after fractionated radiotherapy than pretreatment parameters, which warrants further investigation and confirmation in experimental and clinical studies.

  2. Irradiation of Human Prostate Cancer Cells Increases Uptake of Antisense Oligodeoxynucleotide

    SciTech Connect

    Anai, Satoshi; Brown, Bob D.; Nakamura, Kogenta; Goodison, Steve; Hirao, Yoshihiko; Rosser, Charles J. . E-mail: charles.rosser@urology.ufl.edu

    2007-07-15

    Purpose: To investigate whether irradiation before antisense Bcl-2 oligodeoxynucleotide (ODN) administration enhances tissue uptake, and whether periodic dosing enhances cellular uptake of fluorescently labeled ODN relative to constant dosing. Methods and Materials: PC-3-Bcl-2 cells (prostate cancer cell line engineered to overexpress Bcl-2) were subjected to increasing doses of irradiation (0-10 Gy) with or without increasing concentrations of fluorescently labeled antisense Bcl-2 ODN (G4243). The fluorescent signal intensity was quantified as the total grain area with commercial software. In addition, PC-3-Bcl-2 subcutaneous xenograft tumors were treated with or without irradiation in combination with various dosing schemas of G4243. The uptake of fluorescent G4243 in tumors was quantitated. Results: The uptake of G4243 was increased in prostate cancer cells exposed to low doses of irradiation both in vitro and in vivo. Irradiation before G4243 treatment resulted in increased fluorescent signal intensity in xenograft tumors compared with those irradiated after G4243 treatment. A single weekly dose of G4243 produced higher G4243 uptake in xenograft tumors than daily dosing, even when the total dose administered per week was held constant. Conclusions: These findings suggest that ionizing radiation increases the uptake of therapeutic ODN in target tissues and, thus, has potential to increase the efficacy of ODN in clinical applications.

  3. The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect

    PubMed Central

    Wang, Min; Keogh, Adrian; Treves, Susan; Idle, Jeffrey R.

    2016-01-01

    The two human cell lines HepG2 from hepatoma and HMCL-7304 from striated muscle were γ-irradiated with doses between 0 and 4 Gy. Abundant γH2AX foci were observed at 4 Gy after 4 h of culture post-irradiation. Sham-irradiated cells showed no γH2AX foci and therefore no signs of radiation-induced double-strand DNA breaks. Flow cytometry indicated that 41.5% of HepG2 cells were in G2/M and this rose statistically significantly with increasing radiation dose reaching a plateau at ∼47%. Cell lysates from both cell lines were subjected to metabolomic analysis using Gas Chromatography-Mass Spectrometry (GCMS). A total of 46 metabolites could be identified by GCMS in HepG2 cell lysates and 29 in HMCL-7304 lysates, most of which occurred in HepG2 cells. Principal Components Analysis (PCA) showed a clear separation of sham, 1, 2 and 4 Gy doses. Orthogonal Projection to Latent Structures-Discriminant Analysis (OPLS-DA) revealed elevations in intracellular lactate, alanine, glucose, glucose 6-phosphate, fructose and 5-oxoproline, which were found by univariate statistics to be highly statistically significantly elevated at both 2 and 4 Gy compared with sham irradiated cells. These findings suggested upregulation of cytosolic aerobic glycolysis (the Warburg effect), with potential shunting of glucose through aldose reductase in the polyol pathway, and consumption of reduced Glutathione (GSH) due to γ-irradiation. In HMCL-7304 myotubes, a putative Warburg effect was also observed only at 2 Gy, albeit a lesser magnitude than in HepG2 cells. It is anticipated that these novel metabolic perturbations following γ-irradiation of cultured cells will lead to a fuller understanding of the mechanisms of tissue damage following ionizing radiation exposure. PMID:26823999

  4. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    SciTech Connect

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  5. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  6. Sialyl Lewis X mimetics attenuate E-selectin-mediated adhesion of leukocytes to irradiated human endothelial cells.

    PubMed

    Hallahan, D E; Kuchibhotla, J; Wyble, C

    1997-01-01

    Ionizing radiation causes histological changes in normal tissues that resemble those resulting from the inflammatory response. Inflammation is a multistep process requiring expression of adhesion molecules on the surface of endothelial cells which results in leukocyte extravasation. E-selectin is an adhesion molecule that mediates leukocyte "rolling" on the endothelium and is required for the inflammatory response. We quantified E-selectin expression and selectin-dependent adhesion of leukocytes to human endothelial cells after X irradiation to determine whether E-selectin participates in the radiation-mediated inflammation-like response. Immunofluorescence staining of irradiated endothelial cells demonstrated expression of E-selectin on the cell surface similar to that elicited by treatment with interleukin-1 (IL-1). Radiation-mediated expression of E-selectin was dependent on dose and time and occurred at doses as low as 0.5 Gy. Furthermore, the increased adhesion of leukocytes to irradiated endothelial cells was prevented by an E-selectin-blocking antibody. Sialyl Lewis X is one of the molecules on the surface of leukocytes that adheres to E-selectin. The anti-inflammatory agents glycyrrhizin and carminic acid, which are structural analogues of sialyl Lewis X, attenuated adhesion of leukocytes to endothelial cells treated with X rays or IL-1. These data implicate a new class of anti-inflammatory agents in the prevention of adhesions of leukocytes to the irradiated vascular endothelium. PMID:8989368

  7. Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells

    SciTech Connect

    Bischof, Marc; Abdollahi, Amir; Gong Ping; Stoffregen, Clemens; Lipson, Kenneth E.; Debus, Juergen; Weber, Klaus J.; Huber, Peter E. . E-mail: p.huber@dkfz.de

    2004-11-15

    Purpose: This is the first preclinical report evaluating a trimodal therapy consisting of irradiation, chemotherapy, and antiangiogenesis in the context of a multimodal anticancer strategy. The combination of the folate antimetabolite pemetrexed, SU5416, a receptor tyrosine kinase inhibitor of VEGFR2, and irradiation was investigated in human endothelial cells and tumor cell lines. Methods and materials: Primary isolated human umbilical vein endothelial cells (HUVEC), human dermal microvascular endothelial cells (HDMEC), and human glioblastoma (U87) and prostate cancer cells (PC3) were exposed to pemetrexed (2 h) alone and in combination with SU5416 (2 h). When combined with irradiation up to 8 Gy, fixed concentrations of pemetrexed (1.06 {mu}M) and SU5416 (1.0 {mu}M) were used. Proliferation and clonogenic assays were conducted with endothelial and tumor cells. The migration/invasion ability of endothelial cells and the ability to produce tubular structures were tested in Matrigel and tube formation assays. Apoptosis was measured by sub-G1 DNA and caspase-3 flow cytometry. To investigate underlying cell signaling, immunocytochemistry was used to detect Akt survival signaling involvement. Results: Triple combination using only a low-toxicity drug exposure of pemetrexed and SU5416 results in greater response than each treatment alone or than each combination of two modalities in all tested endothelial and tumor cell models. Triple combination substantially inhibits proliferation, migration/invasion, tube formation, and clonogenic survival. Triple combination also induced the highest rate of apoptosis in HDMEC and HUVEC as indicated by sub-1 G1 and caspase-3 assessment. Interestingly, triple combination therapy also reduces proliferation and clonogenic survival significantly in U87 and PC3 tumor cell lines. SU5416 potently inhibited Akt phosphorylation which could be induced by radiation and radiochemotherapy in human endothelial cells. Conclusions: Our findings

  8. Let dependence of cell death, mutation induction and chromatin damage in human cells irradiated with accelerated carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Watanabe, M.; Kanai, T.; Kase, Y.; Yatagai, F.; Kato, T.; Matsubara, S.

    We investigated the LET dependence of cell death, mutation induction and chromatin break induction in human embryo (HE) cells irradiated by accelerated carbon-ion beams. The results showed that cell death, mutation induction and induction of non-rejoining chromatin breaks detected by the premature chromosome condensation (PCC) technique had the same LET dependence. Carbon ions of 110 to 124keV/mum were the most effective at all endpoints. However, the number of initially induced chromatin breaks was independent of LET. About 10 to 15 chromatin breaks per Gy per cell were induced in the LET range of 22 to 230 keV/mum. The deletion pattern of exons in the HPRT locus, analyzed by the polymerase chain reaction (PCR), was LET-specific. Almost all the mutants induced by 124 keV/mum carbon-ion beams showed deletion of the entire gene, while all mutants induced by 230keV/mum carbon-ion beams showed no deletion. These results suggest that the difference in the density distribution of carbon-ion track and secondary electron with various LET is responsible for the LET dependency of biological effects.

  9. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells.

    PubMed

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  10. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  11. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    SciTech Connect

    Sak, Ali; Stuschke, Martin; Groneberg, Michael; Kuebler, Dennis; Poettgen, Christoph; Eberhardt, Wilfried E.E.

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of the plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation during

  12. Post-Irradiated Human Submandibular Glands Display High Collagen Deposition, Disorganized Cell Junctions, and an Increased Number of Adipocytes.

    PubMed

    Nam, Kihoon; Maruyama, Christina L; Trump, Bryan G; Buchmann, Luke; Hunt, Jason P; Monroe, Marcus M; Baker, Olga J

    2016-06-01

    Salivary glands are vital for maintaining oral health. Head and neck radiation therapy is one of the most common causes of salivary gland hypofunction. Little is known about the structural changes that occur in salivary glands after radiation therapy. The aim of this study is to understand the structural changes that occur in post-irradiated human (submandibular gland [SMG]) as compared with untreated ones. We determined changes in epithelial polarity, presence of collagen deposition, and alteration in adipose tissue. We used formalin-fixed paraffin-embedded human SMG from two female subjects exposed to head and neck irradiation. We utilized hematoxylin and eosin staining and Masson's Trichrome staining. The immunostained tissue sections were examined using confocal microscopy. The number and size of adipocytes per tissue section were calculated using ImageJ, Prism, and SPSS software. Post-irradiated human SMG displayed high collagen deposition, disorganized cell junctions, and an increased number of adipocytes as compared with non-irradiated controls. These findings are important to improve our understanding of the individual risk and variation in radiation-related salivary gland dysfunction.

  13. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells.

    PubMed

    Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão

    2015-12-01

    A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.

  14. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  15. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  16. Human Neural Stem Cell Transplantation Provides Long-Term Restoration of Neuronal Plasticity in the Irradiated Hippocampus

    PubMed Central

    Acharya, Munjal M.; Rosi, Susanna; Jopson, Timothy; Limoli, Charles L.

    2016-01-01

    For the majority of CNS malignancies, radiotherapy provides the best option for forestalling tumor growth, but is frequently associated with debilitating and progressive cognitive dysfunction. Despite the recognition of this serious side effect, satisfactory long-term solutions are not currently available and have prompted our efforts to explore the potential therapeutic efficacy of cranial stem cell transplants. We have demonstrated that intrahippocampal transplantation of human neural stem cells (hNSCs) can provide long-lasting cognitive benefits using an athymic rat model subjected to cranial irradiation. To explore the possible mechanisms underlying the capability of engrafted cells to ameliorate radiation-induced cognitive dysfunction we analyzed the expression patterns of the behaviorally induced activity-regulated cytoskeleton-associated protein (Arc) in the hippocampus at 1 and 8 months postgrafting. While immunohistochemical analyses revealed a small fraction (4.5%) of surviving hNSCs in the irradiated brain that did not express neuronal or astroglial makers, hNSC transplantation impacted the irradiated microenvironment of the host brain by promoting the expression of Arc at both time points. Arc is known to play key roles in the neuronal mechanisms underlying long-term synaptic plasticity and memory and provides a reliable marker for detecting neurons that are actively engaged in spatial and contextual information processing associated with memory consolidation. Cranial irradiation significantly reduced the number of pyramidal (CA1) and granule neurons (DG) expressing behaviorally induced Arc at 1 and 8 months postirradiation. Transplantation of hNSCs restored the expression of plasticity-related Arc in the host brain to control levels. These findings suggest that hNSC transplantation promotes the long-term recovery of host hippocampal neurons and indicates that one mechanism promoting the preservation of cognition after irradiation involves trophic

  17. Stimulatory effects of hydroxyl radical generation by Ga-Al-As laser irradiation on mineralization ability of human dental pulp cells.

    PubMed

    Matsui, Satoshi; Tsujimoto, Yasuhisa; Matsushima, Kiyoshi

    2007-01-01

    The present study was conducted to investigate the effects of Ga-Al-As laser irradiation on the mineralization ability of human dental pulp (HDP) cells. HDP cells in vitro were irradiated once with a Ga-AL-As laser at 0.5 W for 500 s and at 1.0 W for 500 s in order to investigate free radicals as one mechanism for transmission of laser photochemical energy to cells. Production of the hydroxyl radical (*OH) was measured using the ESR spin-trapping method and was found to be increased by laser irradiation. The DMPO-OH was not detected in the presence of dimethyl sulfoxide (DMSO), a *OH scavenger. The formation of calcification nodule was also investigated by von Kossa staining. The number of calcified nodules was increased by 1.0 W-laser irradiation. Alkaline phosphatase (ALP) activity was higher in the 1.0 W-laser irradiation group. Expression of mRNAs for heat shock protein 27, bone morphogenetic proteins (BMPs) and ALP were greater in the 1.0 W-laser irradiation group. Expression of BMPs in the conditioned medium was also higher in the 1.0 W-laser irradiation group. In particular, DMSO decreased the number of calcified nodule produced by 1.0 W-laser irradiation. These results supposed that the mineralization of HDP cells is stimulated by laser irradiation, and that *OH generated by laser irradiation is a trigger for promotion of HDP cell mineralization.

  18. Use of irradiated human amnion as a matrix for limbal stem cell culture.

    PubMed

    Landa-Solís, Carlos; Vázquez-Maya, Leticia; Martínez-Pardo, María Esther; Brena-Molina, Ana M; Ruvalcaba, Erika; Gómez, Ricardo; Ibarra, Clemente; Velasquillo, Cristina

    2013-03-01

    Several ocular diseases affect the corneal surface; the development of effective technologies for the treatment of corneal lesions has brought about an improvement in the quality of life of affected patients. The aim of this study is to culture and characterize limbal stem cells cultured on gamma ((60)Co) radiosterilized human amnion (RHA). Limbal stem cells were isolated from ten preserved samples of corneal transplant. The cells were cultured since primary culture until expanded cells on RHA and stained with monoclonal antibodies to establish their immunophenotype, after which cytokeratin 12 and Vimentin were positive by immunohistochemistry. The immunophenotype remained constant since primary culture until expanded cells in RHA. The RHA and cells construct were structurally integrated. Immunohistochemistry was cytokeratin 12, Vimentin positive, and cytokeratin 19 negative. In vitro limbal cells maintain a constant epithelial transition immunophenotype in culture up to primary culture until expanded cells on RHA.

  19. Persistent decrease in viability as a function of X irradiation of human bladder carcinoma cells in G1 or S phase.

    PubMed

    Leonhardt, E A; Trinh, M; Forrester, H B; Dewey, W C

    1998-04-01

    A persistent decrease in viability after treatment with a variety of mutagenic agents has been observed previously, but the dependence of the decrease on the phase of the cell cycle in which the cells are treated has not been fully explored. Synchronous human bladder carcinoma cells (EJ30-15) were obtained by mitotic selection (88-96% in or near mitosis). As monitored by microscopy and pulse labeling with [3H]dThd, approximately 98% of the cells were in G1 phase when they were irradiated after 3 h of incubation, and approximately 80% were in S phase when they were irradiated after 14 h of incubation. The initial plating efficiencies demonstrated no difference in cell survival when cells were irradiated in G1 or S phase, with normalized clonogenic survival and standard error of 60+/-6% for 3 Gy and 13+/-2% for 6 Gy. However, when the cell populations were allowed to incubate and were replated 5 to 33 days later (5.5 to 36 doublings), a difference between the populations irradiated in G1 and S phase became clear. Cells that were irradiated with 6 Gy regained and maintained the high plating efficiencies (67.9+/-3.6%) of the unirradiated populations much sooner when they were irradiated in S phase compared with irradiation in G1 phase, i.e. 11 days (12 cell doublings) for S phase compared to approximately 20 days (22 cell doublings) for G1 phase. During these periods when the plating efficiencies were increasing, the populations irradiated in G1 phase were multiplying at rates lower than those for the populations irradiated in S phase. Furthermore, after 6 Gy, more giant cells and multinucleated cells were seen in the populations irradiated in G1 phase than in the populations irradiated in S phase. These results indicate that, although the clonogenic survival was the same for cells irradiated in G1 or S phase, the residual damage in progeny of the irradiated cells persisted longer (approximately 20 days compared to 11 days) when cells were irradiated in G1 phase than

  20. In Vitro Study of Er:YAG and Er, Cr:YSGG Laser Irradiation on Human Gingival Fibroblast Cell Line.

    PubMed

    Talebi-Ardakani, Mohammad Reza; Torshabi, Maryam; Karami, Elahe; Arbabi, Elham; Rezaei Esfahrood, Zeinab

    2016-04-01

    The ultimate goal of the periodontal treatments is a regeneration of periodontium. Recently, laser irradiations are commonly used to improve wound repair. Because of many controversies about the effects of laser on soft tissue regeneration, more in vitro studies are still needed. The aim of the present in vitro study was to compare the effects of different doses of Er:YAG (erbium-doped:yttrium, aluminum, garnet) and Er, Cr:YSGG (erbium, chromium-doped: yttrium, scandium, gallium, garnet) laser treatment on human gingival fibroblasts (HGF) proliferation. In this randomized single-blind controlled in vitro trial, HGF cells were irradiated using Er:YAG and Er, Cr:YSGG laser for 10 and 30 seconds or remained unexposed as a control group. After a culture period of 24 and 48 hours, HGF cell proliferation was evaluated by MTT assay. The data were subjected to one-sided analysis of variance and Tukey multiple comparison tests. Our results showed Er:YAG application for 10 and 30 seconds as well as Er, Cr:YSGG irradiation for 10 and 30 seconds induced statistically significant (P<0.05) proliferation of HGF cells as compared with the control at 24 hours up to 18.39%, 26.22%, 21.21%, and 17.06% respectively. In 48 hour incubations, Er:YAG and Er, Cr:YSGG irradiation for 10 and 30 seconds significantly increased cellular proliferation up to 22.9%, 32.24%, 30.52% and 30.02% respectively (P<0.05). This study demonstrates that Er:YAG and Er, Cr:YSGG laser significantly increased HGF cell proliferation compared to the control specimens. This higher proliferation can lead to increased wound repair in clinical conditions. PMID:27309266

  1. Prooxidant and antioxidant behaviour of usnic acid from lichens under UVB-light irradiation--studies on human cells.

    PubMed

    Kohlhardt-Floehr, Cornelia; Boehm, Fritz; Troppens, Stefan; Lademann, Jürgen; Truscott, T George

    2010-10-01

    Natural compounds which can behave as antioxidants and protect against UV-radiation may well have medical and cosmetic value. Usnic acid, which can be obtained from lichens offer such a potential. The latter is one of the best known and reviewed compounds present in lichens and exhibits many properties of value such as antibiotic, antitumor and UV-filter-effects. We report studies of the potential antioxidant and prooxidant activity of usnic acid extracted from Xanthoparmelia farinosa (Vainio) using a human lymphocyte cell line (Jurkat-cells) under UV-B-irradiation. Cell survival and cell metabolism were determined using different conditions such as usnic acid concentration and UVB dose. Compared to the controls the cells incubated with usnic acid in concentrations of 1 x 10(-8) and 1 x 10(-6) M showed a higher cell survival and a normal metabolism under low doses of UVB-light up to 0.1 J/cm(2). When both higher UVB doses (up to 14 J/cm(2)) and higher concentrations of usnic acid (1 x 10(-4) M) where used, the opposite effect was observed. It is concluded that these effects are due to bifunctional (a switch of) anti-oxidative-pro-oxidative behaviour of usnic acid under UV-B-irradiation.

  2. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    PubMed Central

    Bisson, Francis; Rochefort, Éloise; Lavoie, Amélie; Larouche, Danielle; Zaniolo, Karine; Simard-Bisson, Carolyne; Damour, Odile; Auger, François A.; Guérin, Sylvain L.; Germain, Lucie

    2013-01-01

    A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes. PMID:23443166

  3. Effects of ultraviolet-visible irradiation in the presence of melanin isolated from human black or red hair upon Ehrlich ascites carcinoma cells

    SciTech Connect

    Menon, I.A.; Persad, S.; Ranadive, N.S.; Haberman, H.F.

    1983-07-01

    The present study is an attempt to investigate the possibility that ultraviolet irradiation in the presence of pheomelanin may be more harmful to cells than the irradiation in the presence of eumelanin. The effects of UV-visible irradiation upon Ehrlich ascites carcinoma cells in the presence of the melanin isolated from human black hair (eumelanin) or from red hair (pheomelanin) were investigated. Irradiation of these cells was found to produce cell lysis, as observed by leakage of 51Cr from labeled cells and intracellular lactic dehydrogenase from the cells and decrease in cell viability demonstrated by the trypan blue exclusion test. The three parameters were quantitatively parallel to one another under various experimental conditions, namely different periods of irradiation and irradiation in the presence of different concentrations of melanin. The above effects were more pronounced when the irradiation was carried out in the presence of melanin from red hair than in the presence of black-hair melanin. In the absence of either melanin, the irradiation did not produce any significant effect in cell viability or cell lysis. Irradiation of the cells in the presence of red-hair melanin also decreased the transplantability of these cells. These observations clearly show that irradiation of cells in the presence of pheomelanin could produce cytotoxic effects. The present experimental design may have application in the development of in vitro models for the study of UV radiation-induced cutaneous carcinogenesis. The reactions of pheomelanin may be related to the susceptibility of ''Celtic'' skin to UV radiation-induced skin damage and carcinogenesis.

  4. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial-mesenchymal transition and cancer-stem cell trait as biological end points.

    PubMed

    Narang, Himanshi; Kumar, Amit; Bhat, Nagesh; Pandey, Badri N; Ghosh, Anu

    2015-10-01

    Proton beam therapy is a cutting edge modality over conventional gamma radiotherapy because of its physical dose deposition advantage. However, not much is known about its biological effects vis-a-vis gamma irradiation. Here we investigated the effect of proton- and gamma- irradiation on cell cycle, death, epithelial-mesenchymal transition (EMT) and "stemness" in human non-small cell lung carcinoma cells (A549). Proton beam (3MeV) was two times more cytotoxic than gamma radiation and induced higher and longer cell cycle arrest. At equivalent doses, numbers of genes responsive to proton irradiation were ten times higher than those responsive to gamma irradiation. At equitoxic doses, the proton-irradiated cells had reduced cell adhesion and migration ability as compared to the gamma-irradiated cells. It was also more effective in reducing population of Cancer Stem Cell (CSC) like cells as revealed by aldehyde dehydrogenase activity and surface phenotyping by CD44(+), a CSC marker. These results can have significant implications for proton therapy in the context of suppression of molecular and cellular processes that are fundamental to tumor expansion.

  5. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  6. Identification of Key Proteins in Human Epithelial Cells Responding to Bystander Signals From Irradiated Trout Skin

    PubMed Central

    Smith, Richard; Wang, Jiaxi; Seymour, Colin; Mothersill, Carmel; Howe, Orla

    2015-01-01

    Radiation-induced bystander signaling has been found to occur in live rainbow trout fish (Oncorhynchus mykiss). This article reports identification of key proteomic changes in a bystander reporter cell line (HaCaT) grown in low-dose irradiated tissue-conditioned media (ITCM) from rainbow trout fish. In vitro explant cultures were generated from the skin of fish previously exposed to low doses (0.1 and 0.5 Gy) of X-ray radiation in vivo. The ITCM was harvested from all donor explant cultures and placed on recipient HaCaT cells to observe any change in protein expression caused by the bystander signals. Proteomic methods using 2-dimensional (2D) gel electrophoresis and mass spectroscopy were employed to screen for novel proteins expressed. The proteomic changes measured in HaCaT cells receiving the ITCM revealed that exposure to 0.5 Gy induced an upregulation of annexin A2 and cingulin and a downregulation of Rho-GDI2, F-actin-capping protein subunit beta, microtubule-associated protein RP/EB family member, and 14-3-3 proteins. The 0.1 Gy dose also induced a downregulation of Rho-GDI2, hMMS19, F-actin-capping protein subunit beta, and microtubule-associated protein RP/EB family member proteins. The proteins reported may influence apoptotic signaling, as the results were suggestive of an induction of cell communication, repair mechanisms, and dysregulation of growth signals. PMID:26673684

  7. Multifactorial analysis of human blood cell responses to clinical total body irradiation

    NASA Technical Reports Server (NTRS)

    Yuhas, J. M.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups.

  8. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  9. Proton Irradiation Alters Expression of FGF-2 In Human Lens Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.

    1999-01-01

    We are investigating a role for proton radiation-induced changes in FGF-2 gene expression as part of the mechanism(s) underlying lens cell injury. Radiation injury to the human lens is associated with the induction of cataract following exposure to protons.

  10. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells.

    PubMed

    Dehghani Soltani, Samereh; Babaee, Abdolreza; Shojaei, Mohammad; Salehinejad, Parvin; Seyedi, Fatemeh; JalalKamali, Mahshid; Nematollahi-Mahani, Seyed Noureddin

    2016-02-01

    Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm(2). Irradiation of the hUCM cells shows a significant (p < 0.05) increase in cell number as compared to controls after 40 h. In addition, cell proliferation on days 7, 14, and 21 in irradiated groups were significantly (p < 0.001) higher than that in the non-irradiated groups. The present study clearly demonstrates the ability of red and green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.

  11. Organelle-specific injury to melanin-containing cells in human skin by pulsed laser irradiation

    SciTech Connect

    Murphy, G.F.; Shepard, R.S.; Paul, B.S.; Menkes, A.; Anderson, R.R.; Parrish, J.A.

    1983-12-01

    Physical models predict that ultraviolet laser radiation of appropriately brief pulses can selectively alter melanin-containing cellular targets in human skin. Skin of normal human volunteers was exposed to brief (20 nanosecond) 351-nm wave length pulses from a XeF excimer laser, predicting that those cells containing the greatest quantities of melanized melanosomes (lower half of the epidermis) would be selectively damaged. Transmission electron microscopy revealed the earliest cellular alteration to be immediate disruption of melanosomes, both within melanocytes and basal keratinocytes. This disruption was dose dependent and culminated in striking degenerative changes in these cells. Superficial keratinocytes and Langerhans cells were not affected. It was concluded that the XeF excimer laser is capable of organelle-specific injury to melanosomes. These findings may have important clinical implications in the treatment of both benign and malignant pigmented lesions by laser radiations of defined wave lengths and pulse durations.

  12. Evaluation of Potential Ionizing Irradiation Protectors and Mitigators Using Clonogenic Survival of Human Umbilical Cord Blood Hematopoietic Progenitor Cells

    PubMed Central

    Goff, Julie P.; Shields, Donna S.; Wang, Hong; Skoda, Erin M.; Sprachman, Melissa M.; Wipf, Peter; Garapati, Venkata Krishna; Atkinson, Jeffrey; London, Barry; Lazo, John S.; Kagan, Valerian; Epperly, Michael W.; Greenberger, Joel S.

    2013-01-01

    We evaluated the use of colony formation (CFU-GM, BFU-E, and CFU-GEMM) by human umbilical cord blood (CB) hematopoietic progenitor cells for testing novel small molecule ionizing irradiation protectors and mitigators. Each of 11 compounds was added before (protection) or after (mitigation) ionizing irradiation including: GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor (LY294002), TPP-imidazole fatty acid, (TPP-IOA), the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propanolol, and the ATP sensitive potassium channel blocker (glyburide). The drugs XJB-5-131, JP4-039, and MMS-350 were radiation protectors for CFU-GM. JP4-039 was also a radiation protector for CFU-GEMM. The drugs, XJB-5-131, JP4-039, and MMS-350 were radiation mitigators for BFU-E, MMS-350 and JP4-039 were mitigators for CFU-GM, and MMS350 was a mitigator for CFU-GEMM. In contrast, other drugs that were effective in murine assays: TTP-IOA, LY294002, MCF201-89, BEB55, propranolol, isoproterenol, methoxamine, and glyburide showed no significant protection or mitigation in human CB assays. These data support testing of new candidate clinical radiation protectors and mitigators using human CB clonogenic assays early in the drug discovery process, reducing the need for animal experiments. PMID:23933481

  13. Comprehensive and computational analysis of genes in human umbilical vein endothelial cells responsive to X-irradiation.

    PubMed

    Furusawa, Yukihiro; Zhao, Qing-Li; Hattori, Yuichi; Tabuchi, Yoshiaki; Iwasaki, Toshiyasu; Nomura, Takaharu; Kondo, Takashi

    2016-06-01

    Radiation exposure such as A-bomb or radiation therapy is considered a major health-risk factor for cardiovascular disease. In order to understand the molecular mechanisms underlying the inflammatory reaction frequently encountered in the vascular system after exposure to ionizing radiation, we carried out a global scale microarray and computational gene expression analyses on human umbilical endothelial cells (HUVECs) exposed to X-ray (2.5 Gy). The gene ontology analysis revealed that the down-regulated genes were associated with cell cycle regulation, whereas the up-regulated genes were associated with inflammatory responses, in particular, the type 1 interferon response. The computational analysis using ingenuity pathway analysis also identified a gene network containing the interferon response factor 7 (IRF7) and its transcriptional targets such as interferon-induced transcripts (IFITs) and Mx1, which have been known to be associated with inflammation in endothelial cells. The up-regulated genes and the gene network identified here may explain the inflammatory response induced by X-irradiation. These findings uncover part of the molecular basis of the mechanism(s) of the inflammatory disorder in response to X-irradiation in HUVECs. The dataset is publicly available at the Gene Expression Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo/) with accession number GSE76484. PMID:27275413

  14. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells

    PubMed Central

    Quinet, Annabel; Martins, Davi Jardim; Vessoni, Alexandre Teixeira; Biard, Denis; Sarasin, Alain; Stary, Anne; Menck, Carlos Frederico Martins

    2016-01-01

    Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase. PMID:27095204

  15. Bystander Effects Induced by Continuous Low-Dose-Rate {sup 125}I Seeds Potentiate the Killing Action of Irradiation on Human Lung Cancer Cells In Vitro

    SciTech Connect

    Chen, H.H. Jia, R.F.; Yu, L.; Zhao, M.J.; Shao, C.L.; Cheng, W.Y.

    2008-12-01

    Purpose: To investigate bystander effects of low-dose-rate (LDR) {sup 125}I seed irradiation on human lung cancer cells in vitro. Methods and Materials: A549 and NCI-H446 cell lines of differing radiosensitivity were directly exposed to LDR {sup 125}I seeds irradiation for 2 or 4 Gy and then cocultured with nonirradiated cells for 24 hours. Induction of micronucleus (MN), {gamma}H2AX foci, and apoptosis were assayed. Results: After 2 and 4 Gy irradiation, micronucleus formation rate (MFR) and apoptotic rate of A549 and NCI-H446 cells were increased, and the MFR and apoptotic rate of NCI-H446 cells was 2.1-2.8 times higher than that of A549 cells. After coculturing nonirradiated bystander cells with {sup 125}I seed irradiated cells for 24 hours, MFR and the mean number of {gamma}H2AX foci/cells of bystander A549 and NCI-H446 cells were similar and significantly higher than those of control (p <0.05), although they did not increase with irradiation dose. However, the proportion of bystander NCI-H446 cells with MN numbers {>=}3 and {gamma}H2AX foci numbers 15-19 and 20-24 was higher than that of bystander A549 cells. In addition, dimethyl sulfoxide (DMSO) treatment could completely suppress the bystander MN of NCI-H446 cells, but it suppressed only partly the bystander MN of A549 cells, indicating that reactive oxygen species are involved in the bystander response to NCI-H446 cells, but other signaling factors may contribute to the bystander response of A549 cells. Conclusions: Continuous LDR irradiation of {sup 125}I seeds could induce bystander effects, which potentiate the killing action on tumor cells and compensate for the influence of nonuniform distribution of radiation dosage on therapeutic outcomes.

  16. ESA IBER-2 Molecular and Cellular Changes in Human Endothelial Cells in Response to Nickel Ion Irradiation (CORALS project)

    NASA Astrophysics Data System (ADS)

    Moreels, M.; Quintens, R.; De Vos, W.; Beck, M.; Tabury, K.; Suetens, A.; Abouelaradat, K.; Dieriks, B.; Ernst, E.; Lee, R.; Lambert, C.; Van Oostveldt, P.; Baatout, S.

    2013-02-01

    On Earth, most radiation exposures (medical and natural background) consist of low-linear energy transfer (LET) photons. In space, astronauts are exposed to higher doses and to more varied types of radiation. Cosmic radiation mainly consists of high-energy protons and high-Z and -energy (HZE) particles. These high-LET particles are predicted to account for most of the radiation induced health effects. In this regard, further analysis of the biological effects of HZE particles is essential. In the present study, endothelial cells were irradiated with different doses of nickel ions produced in the synchrotron at GSI (Darmstadt, Germany). After different time points, RNA was extracted for genome-wide analysis and supernatants were collected for multiplex cytokine assay. DNA double strand breaks were detected using γH2AX staining. Our results demonstrated that nickel irradiation induced molecular and cellular changes in human endothelial cells. Further analysis is ongoing to confirm the obtained data and to further explore the biological effects after nickel ion exposure.

  17. Erythropoietin inhibits gamma-irradiation-induced apoptosis by upregulation of Bcl-2 and decreasing the activation of caspase 3 in human UT-7/erythropoietin cell line.

    PubMed

    Liu, Yuan-Yuan; She, Zhen-Jue; Yao, Ming-Hui

    2010-05-01

    1. Erythropoietin (EPO) can reverse radiotherapy-induced anaemia by stimulating bone marrow cells to produce erythrocytes. However, there are limited studies that address the mechanisms by which EPO exerts its beneficial effects in radiotherapy-induced anaemia. In the present study, we used a human bone marrow-derived EPO-dependent leukaemia cell line UT-7/EPO that progressed further in erythroid development to evaluate the anti-apoptotic effects of EPO on irradiated human erythroid progenitor. 2. The UT-7/EPO cells exposed to gamma-irradiation were cultured in the presence or absence of EPO at a concentration of 7 U/mL. The cell viability, cell apoptosis and the expression of apoptosis-related proteins Bcl-2, Bax and caspase 3 were examined. 3. The results showed that EPO protected the viability of human UT-7/EPO cells exposed to gamma-irradiation. EPO significantly inhibited gamma-irradiation-induced apoptosis in human UT-7/EPO cells: a significant decrease in the percentage of apoptotic cells was observed (62, 69 and 62% at 24, 48 and 72 h, respectively). Furthermore, EPO significantly increased the expression of Bcl-2 protein and the relative Bcl-2/Bax ratio, and decreased the activation of caspase 3 and formation of the p17 and p12 cleavage in similar conditions. 4. In conclusion, EPO exerts anti-apoptotic effects on irradiated human UT-7/EPO cells through upregulation of Bcl-2 protein and the relative Bcl-2/Bax ratio, and by decreasing the activation of caspase 3. These findings may contribute to our understanding of the beneficial function of EPO in radiotherapy-induced anaemia.

  18. NFkappaB signaling related molecular alterations in human neuroblastoma cells after fractionated irradiation.

    PubMed

    Madhusoodhanan, Rakhesh; Natarajan, Mohan; Veeraraghavan, Jamunarani; Herman, Terence S; Jamgade, Ambarish; Singh, Nisha; Aravindan, Natarajan

    2009-07-01

    Radiotherapy has been used as an adjunctive local-control modality for high-risk neuroblastoma. However, relapse due to radioresistance affects the success of radiotherapy. Ascertaining the fractionated radiation (FIR) modulated molecular targets is imperative in targeted molecular therapy. Accordingly, we investigated the (i) expression of genes representing six functional pathways; (ii) NFkappaB DNA-binding activity and (iii) expression of radioresponsive molecules after single dose (10 Gy) radiation (SDR) and FIR (2 Gy x 5) in human neuroblastoma cells. Alterations in gene expression were analyzed using QPCR-profiling, NFkappaB activity using electrophoretic mobility shift assay (EMSA) and pIkappaBalpha using immunoblotting. Modulations in TNFalpha, IL-1alpha, pAKT, IAP1, IAP2, XIAP, survivin, MnSOD, BID, Bak, MyD88 and Vegfc were determined using quantitative real-time PCR (Q-PCR) and immunoblotting. Compared to SDR, FIR significantly induced the expression of 25 genes and completely suppressed another 30 genes. Furthermore, FIR induced NFkappaB-DNA-binding activity and IkappaBalpha phosphorylation. Similarly, we observed an induced expression of IAP1, IAP2, XIAP, Survivin, IL-1alpha, MnSOD, Bid, Bak, MyD88, TNFalpha and pAKT in cells exposed to FIR. The results of the study clearly show distinct differences in the molecular response of cells between SDR and FIR. We identified several potential targets confining to NFkappaB signaling cascade that may affect radio-resistance after FIR. PMID:19436149

  19. Evaluation of potential ionizing irradiation protectors and mitigators using clonogenic survival of human umbilical cord blood hematopoietic progenitor cells.

    PubMed

    Goff, Julie P; Shields, Donna S; Wang, Hong; Skoda, Erin M; Sprachman, Melissa M; Wipf, Peter; Garapati, Venkata Krishna; Atkinson, Jeffrey; London, Barry; Lazo, John S; Kagan, Valerian; Epperly, Michael W; Greenberger, Joel S

    2013-11-01

    We evaluated the use of colony formation (colony-forming unit-granulocyte macrophage [CFU-GM], burst-forming unit erythroid [BFU-E], and colony-forming unit-granulocyte-erythroid-megakaryocyte-monocytes [CFU-GEMM]) by human umbilical cord blood (CB) hematopoietic progenitor cells for testing novel small molecule ionizing irradiation protectors and mitigators. The following compounds were added before (protection) or after (mitigation) ionizing irradiation: GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor LY29400, triphenylphosphonium-imidazole fatty acid, the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propranolol, and the adenosine triphosphate-sensitive potassium channel blocker (glyburide). The drugs XJB-5-131, JP4-039, and MMS-350 were radiation protectors for CFU-GM. JP4-039 was also a radiation protector for CFU-GEMM. The drugs XJB-5-131, JP4-039, and MMS-350 were radiation mitigators for BFU-E, MMS-350 and JP4-039 were mitigators for CFU-GM, and MMS350 was a mitigator for CFU-GEMM. In contrast, other drugs were effective in murine assays; TTP-IOA, LY294002, MCF201-89, BEB55, propranolol, isoproterenol, methoxamine, and glyburide but showed no significant protection or mitigation in human CB assays. These data support the testing of new candidate clinical radiation protectors and mitigators using human CB clonogenic assays early in the drug discovery process, thus reducing the need for animal experiments.

  20. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  1. Hyperfractionation versus single dose irradiation in human acute lymphocytic leukemia cells: application to TBI for marrow transplantation.

    PubMed

    Shank, B

    1993-04-01

    A major purpose of total body irradiation (TBI) for bone marrow transplantation in leukemia patients is to help eradicate all leukemia cells; the ideal regimen has not yet been determined. To answer basic questions regarding leukemic cell survival kinetics, a human acute lymphoblastic leukemia (ALL) cell line (Reh), with the common ALL antigen (CALLA-positive), has been used to assess in vitro the efficacy of one widely used hyperfractionated TBI (HTBI) regimen versus single dose TBI (SDTBI). The regimen studied in this model was 1.2-1.25 Gy/fraction, 3 fractions/day, 5 h apart each day, for 5 days (11-12 fractions) for a total dose of 13.2-15.0 Gy. It was found that: (i) cell survival was consistent with the linear-quadratic model for early responding tissues (alpha/beta = 7.0 Gy). (ii) The change in shape of the 'effective' cell survival curve for three fractions/day was consistent with the hypothesis that there was complete repair between fractions. (iii) Cell regrowth between fractions was minimal (< or = 5%). (iv) Division delay between fractions (2.9 h/Gy) could explain the small contribution to the survival curve of regrowth between fractions. (v) For a full HTBI course to 15 Gy, cell survival was predicted to be approximately 5 x 10(-5), compared with approximately 10(-3) for a low dose rate (0.04-0.07 Gy/min) SDTBI to 10 Gy; the latter projected from the initial slope of the high dose rate, single dose survival curve. PMID:8327730

  2. Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: proteomic analysis.

    PubMed

    Ogita, Mayumi; Tsuchida, Sachio; Aoki, Akira; Satoh, Mamoru; Kado, Sayaka; Sawabe, Masanori; Nanbara, Hiromi; Kobayashi, Hiroaki; Takeuchi, Yasuo; Mizutani, Koji; Sasaki, Yoshiyuki; Nomura, Fumio; Izumi, Yuichi

    2015-09-01

    Erbium-doped yttrium aluminum garnet (Er:YAG) laser treatment has demonstrated favorable wound healing effect after periodontal therapy. One of the reasons may be the positive biological effect of the low-level laser on the irradiated tissues, although the mechanism remains unclear. The aim of this study was to investigate the effect of low-level Er:YAG laser irradiation on cell proliferation and laser-induced differential expression of proteins in human gingival fibroblasts (HGFs) by proteomic analysis. In the first experiment, HGFs were exposed to low-level Er:YAG laser irradiation and the laser-induced cell proliferation and damage were evaluated on day 3. In the second experiment, proteomic analysis was performed on day 1 after irradiation. The peptides prepared from HGFs were analyzed by a hybrid ion trap-Fourier transform mass spectrometer, Mascot search engine, and UniProtKB database. A significant increase in cell proliferation without cell damage after irradiation was observed. Among the total identified 377 proteins, 59 proteins, including galectin-7, which was associated with the process of wound healing, were upregulated and 15 proteins were downregulated in laser-treated HGFs. In the third experiment, the increase in messenger RNA (mRNA) and protein expression of galectin-7 in the irradiated HGFs was validated by various analytical techniques. In addition, the effect of recombinant human galectin-7 on the modulation of HGFs proliferation was confirmed. The results indicate that low-level Er:YAG laser irradiation can promote HGF proliferation and induce a significant change in protein expression and the upregulation of galectin-7 expression may partly contribute to the increase in cell proliferation.

  3. Estimating the effectiveness of human-cell irradiation by protons of a therapeutic beam of the joint institute for nuclear research phasotron using cytogenetic methods

    NASA Astrophysics Data System (ADS)

    Zaytseva, E. M.; Govorun, R. D.; Mitsin, G. V.; Molokanov, A. G.

    2011-11-01

    The effectiveness of the impact of therapeutic proton beams in human cells with respect to the criterion of formation of chromosome aberrations in human-blood lymphocytes is estimated. The physical characteristics of radiation (proton LET at the input of the object and in the region of the modified Bragg peak) and the role of the biological factor (the differences in the radiosensitivity of nondividing cells corresponding to the irradiation of normal tissues along the proton-beam path and tumor tissues) are taken into account. The relative biological effectiveness of protons is ˜1 at the beam input of the object and ˜1.2 in the Bragg peak region. Taking into account the higher radiosensitivity of dividing cells in the G 2 phase of the cell cycle, the irradiation effectiveness increases to ˜1.4.

  4. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  5. Effect of polyphenols on reactive oxygen species production and cell growth of human dermal fibroblasts after irradiation with ultraviolet-A light.

    PubMed

    Shirai, Akihiro; Onitsuka, Masayoshi; Maseda, Hideaki; Omasa, Takeshi

    2015-01-01

    Ultraviolet-A (UV-A) can damage microbes by generating reactive oxygen species (ROS), singlet oxygen, superoxides, hydrogen peroxide and hydroxyl radicals. These species readily react with lipids, proteins, DNA and other constituents of cells, leading to oxidative deterioration and the eventual death of the microbe. However, the oxidative ability of these reactive species also harms the viability of mammalian cells such as fibroblasts and keratinocytes, as they cause both acute and chronic damage, photo-aging, and photo-carcinogenesis. This study describes a UV-A treatment that does not affect the viability or growth of human neonate dermal fibroblasts, as determined by examining the post-irradiation cell density after the addition of polyphenols as antioxidants. The results demonstrate the possible wide applicability of UV-A sterilization. The potency of polyphenols for attenuating UV-A-induced ROS generation in cells was tested using (+)-catechin hydrate, (-)- epigallocatechin gallate hydrate, morin hydrate, quercetin hydrate and resveratrol. The lowest concentration of polyphenols required to reduce ROS by 50% in cells upon exposure to a dose of 15 J cm(-2) was determined and defined as its IC50. Pre-treatment with morin hydrate at its IC50 allowed cells irradiated with 5.0 J cm(-2) UV-A to recover to the level of the specific growth rate of cells incubated without UV-A irradiation. However, the growth rate of cells exposed to 15 J cm(-2) UV-A irradiation was scarcely influenced by co-incubation with morin hydrate; this dose of UV-A also suppressed cell growth completely in the absence of morin hydrate, although co-incubation resulted in no decrease in cell viability. This study demonstrates the potential of polyphenols for protecting both the viability of cells and their ability to proliferate from damage caused by UV-A-irradiation.

  6. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells.

    PubMed

    Cunha, Micaela; Testa, Etienne; Komova, Olga V; Nasonova, Elena A; Mel'nikova, Larisa A; Shmakova, Nina L; Beuve, Michaël

    2016-03-01

    The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects. PMID:26708100

  7. Caffeine sensitization of cultured mammalian cells and human lymphocytes irradiated with gamma rays and fast neutrons: a study of relative biological effectiveness in relation to cellular repair

    SciTech Connect

    Hannan, M.A.; Gibson, D.P.

    1985-10-01

    The sensitizing effects of caffeine were studied in baby hamster kidney (BHK-21) cells and human lymphocytes following irradiation with gamma rays and fast neutrons. Caffeine sensitization occurred only when log-phase BHK cells and mitogen-stimulated lymphocytes were exposed to the two radiations. Noncycling (confluent) cells of BHK resulted in a shouldered survival curve following gamma irradiation while a biphasic curve was obtained with the log-phase cells. Survival in the case of lymphocytes was estimated by measurement of (TH)thymidine uptake. The relative biological effectiveness (RBE) of fast neutrons was found to be greater at survival levels corresponding to the resistant portions of the survival curves (shoulder or resistant tail). In both cell types, no reduction in RBE was observed when caffeine was present, because caffeine affected both gamma and neutron survival by the same proportion.

  8. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    SciTech Connect

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi; Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.

  9. Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells

    NASA Astrophysics Data System (ADS)

    Reindl, Judith; Drexler, Guido A.; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Drexler, Sophie E.; Dollinger, Günther; Friedl, Anna A.

    2015-12-01

    Many proteins involved in detection, signalling and repair of DNA double-strand breaks (DSB) accumulate in large number in the vicinity of DSB sites, forming so called foci. Emerging evidence suggests that these foci are sub-divided in structural or functional domains. We use stimulated emission depletion (STED) microscopy to investigate localization of mediator protein 53BP1 and recombination factor Rad51 after irradiation of cells with low linear energy transfer (LET) protons or high LET carbon ions. With a resolution better than 100 nm, STED microscopy and image analysis using a newly developed analyzing algorithm, the reduced product of the differences from the mean, allowed us to demonstrate that with both irradiation types Rad51 occupies spherical regions of about 200 nm diameter. These foci locate within larger 53BP1 accumulations in regions of local 53BP1 depletion, similar to what has been described for the localization of Brca1, CtIP and RPA. Furthermore, localization relative to 53BP1 and size of Rad51 foci was not different after irradiation with low and high LET radiation. As expected, 53BP1 foci induced by low LET irradiation mostly contained one Rad51 focal structure, while after high LET irradiation, most foci contained >1 Rad51 accumulation.

  10. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1.

    PubMed

    Shimura, Tsutomu; Kunugita, Naoki

    2016-06-01

    Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells. PMID:27078622

  11. Antibody-dependent cellular cytotoxicity-mediated serotherapy against murine neuroblastoma. II. In vitro and in vivo treatment using effector cells from normal and X-irradiated humans.

    PubMed

    Byfield, J E; Zerubavel, R; Fonkalsrud, E W

    1983-01-01

    Human peripheral lymphocytes (HLc) have been studied in vitro as possible effector cells in an antibody-dependent cellular cytotoxicity (ADCC) reaction. HLc were found to be active against murine neuroblastoma cells (MNB) inoculated into the flank of syngeneic mice. Both the time of onset of tumor appearance and the mean survival time of tumor-bearing host mice were beneficially influenced. Occasional animals could be cured of up to 10(5) tumor cells (1--10 cells of MNB are lethal). This level of tumor cytotoxicity approaches that of tolerance-dose chemotherapy and is without demonstrable side-effects. HLc from patients who had just received = 3,000 rads fractionated therapeutic X-irradiation were equally effective as HLc from control non-irradiated donors when assayed at equivalent HLc : tumor cell ratios. HLc could also inhibit MNB tumor cell growth in the ascitic form, confirming in vivo activity. Overall, HLc appeared almost as active as rat spleen cells in mediating a useful anti-tumor ADCC. This approach may ultimately prove useful in man, especially in the peritoneal cavity, and is currently limited only by the need to develop appropriate antisera. It is proposed and emphasized that such antisera need not necessarily be directed at tumor-specific antigens. Organ-specific antibodies such are already known to develop spontaneously in some human auto-immune diseases might be equally useful and are a naturally occurring potential source of appropriately expressed genetic material.

  12. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    PubMed

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature.

  13. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    PubMed

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature. PMID:1962281

  14. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells

    PubMed Central

    Hirakawa, Hirokazu; Fujisawa, Hiroshi; Masaoka, Aya; Noguchi, Miho; Hirayama, Ryoichi; Takahashi, Momoko; Fujimori, Akira; Okayasu, Ryuichi

    2015-01-01

    Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors. PMID:25582113

  15. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  16. Measurement of DNA damage induced by irradiation with gamma-rays from a TRIGA Mark II research reactor in human cells using Fast Micromethod.

    PubMed

    Hassanein, Hamdy; Müller, Claudia I; Schlösser, Dietmar; Kratz, Karl-Ludwig; Senyuk, Olga F; Schröder, Heinz C

    2002-06-01

    The Fast Micromethod is a novel quick and convenient microplate assay for determination of DNA single-strand breaks. This method measures the rate of unwinding of cellular DNA upon exposure to alkaline conditions using a fluorescent dye which preferentially binds to double-stranded DNA. Here we applied this method to determine the levels of DNA single-strand breaks in HeLa cells induced by y-irradiation deriving from fission isotopes and activation products at the TRIGA Mark II research reactor in Mainz. An increased strand scission factor (SSF) value, which is indicative for DNA damage, was found at doses of 1 Gy and higher. A similar increase in SSF value, which further increased in a dose-dependent manner, was found in human peripheral blood mononuclear cells after irradiation with 6 MV X-rays from a linear accelerator to give a total exposure of 0.5 to 10 Gy.

  17. Measurement of DNA damage induced by irradiation with gamma-rays from a TRIGA Mark II research reactor in human cells using Fast Micromethod.

    PubMed

    Hassanein, Hamdy; Müller, Claudia I; Schlösser, Dietmar; Kratz, Karl-Ludwig; Senyuk, Olga F; Schröder, Heinz C

    2002-06-01

    The Fast Micromethod is a novel quick and convenient microplate assay for determination of DNA single-strand breaks. This method measures the rate of unwinding of cellular DNA upon exposure to alkaline conditions using a fluorescent dye which preferentially binds to double-stranded DNA. Here we applied this method to determine the levels of DNA single-strand breaks in HeLa cells induced by y-irradiation deriving from fission isotopes and activation products at the TRIGA Mark II research reactor in Mainz. An increased strand scission factor (SSF) value, which is indicative for DNA damage, was found at doses of 1 Gy and higher. A similar increase in SSF value, which further increased in a dose-dependent manner, was found in human peripheral blood mononuclear cells after irradiation with 6 MV X-rays from a linear accelerator to give a total exposure of 0.5 to 10 Gy. PMID:12064446

  18. Epidermal Growth Factor Receptor Is a Critical Mediator of Ultraviolet B Irradiation-Induced Signal Transduction in Immortalized Human Keratinocyte HaCaT Cells

    PubMed Central

    Xu, Yiru; Voorhees, John J.; Fisher, Gary J.

    2006-01-01

    Epidermal growth factor receptor (EGFR) is a critical mediator of several types of epithelial cancers. Skin cancer arising from exposure to ultraviolet B irradiation (UVB) from the sun is a prominent form of human cancer. Recent data indicate that in addition to cognate ligands, EGFR is activated by UVB irradiation. We used pharmacological and genetic approaches to investigate the function of EGFR in mediating UVB-induced signal transduction in human skin keratinocyte HaCaT cells. Pharmacological inhibition of EGFR tyrosine kinase significantly inhibited UVB-mediated induction of ERK, p38, and JNK MAP kinases, and their effectors, transcription factors c-Fos and c-Jun. Inhibition of UVB activation of EGFR also suppressed activation of AKT-, PKC-, and PKA-dependent signal transduction pathways. B82 mouse L cells devoid of EGFR were used to further investigate EGFR dependence of UVB-induced signal transduction. UVB failed to induce ERK, and JNK activation was reduced 60% in B82 cells compared to B82K+ cells, which express EGFR. In addition, UVB induced both c-Fos and c-Jun proteins in B82K+ cells, whereas neither were induced in B82 cells. Taken together, these data demonstrate that EGFR is required for UVB-mediated induction of multiple signaling pathways that are known to mediate tumor formation in skin. PMID:16936259

  19. Skin anti-photoaging properties of ginsenoside Rh2 epimers in UV-B-irradiated human keratinocyte cells.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Choi, Woo-Yong; Lim, Chang-Jin

    2014-09-01

    Ginseng, one of the most widely used herbal medicines, has a wide range of therapeutic and pharmacological applications. Ginsenosides are the major bioactive ingredients of ginseng, which are responsible for various pharmacological activities of ginseng. Ginsenoside Rh2, known as an antitumour ginsenoside, exists as two different stereoisomeric forms, 20(S)-ginsenoside Rh2 [20(S)-Rh2] and 20(R)-ginsenoside Rh2 [20(R)-Rh2]. This work aimed to assess and compare skin anti-photoaging activities of 20(S)-Rh2 and 20(R)-Rh2 in UV-B-irradiated HaCat cells. 20(S)-Rh2, but not 20(R)-Rh2, was able to suppress UV-B-induced ROS production in HaCat cells. Both stereoisomeric forms could not modulate cellular survival and NO level in UV-B-irradiated HaCat cells. Both 20(S)-Rh2 and 20(R)-Rh2 exhibited suppressive effects on UV-B-induced MMP-2 activity and expression in HaCat cells. In brief, the two stereoisomers of ginsenoside Rh2, 20(S)-Rh2 and 20(R)-Rh2, possess skin anti-photoaging effects but possibly in different fashions. PMID:25116621

  20. Single-cell Raman spectroscopy of irradiated tumour cells

    NASA Astrophysics Data System (ADS)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  1. Analysis of a photosensitive lesion induced by sunlamp UV greater than 315 nm exposure of 254-nm-irradiated human cells.

    PubMed

    Rosenstein, B S

    1988-11-01

    Normal human skin fibroblasts were exposed to 0-10 J m-2 of 254 nm UV, incubated 0-16 h and then treated with 0-150 kJ m-2 of sunlamp UV greater than 315 nm. For each treatment, the cells were subjected to alkaline elution in order to measure the yield of single strand breaks (ssb) produced. It was found that treatment of 254-nm-irradiated cells with sunlamp UV greater than 315 nm resulted in the production of a higher level of ssb than that produced by separate exposures. Hence, lesions are produced by the 254 nm irradiation that are photolyzed through exposure to sunlamp UV greater than 315 nm. Approximately 50% of these lesions are removed following a 2-4 h incubation of the 254-nm-irradiated cells and nearly complete removal is achieved by 16 h. In addition, the profiles for elutions performed at pH 12.8 with cells exposed to the combined treatment were indicative of the presence of alkali labile sites. The repair kinetics of this lesion and alkaline lability of the photolysis product suggest that this photosensitive lesion may represent pyrimidine(6-4)pyrimidone photoproducts. Hence, this approach may represent a relatively simple and sensitive assay for the measurement of this DNA damage.

  2. Induction of Chromosomal Aberrations in Human Cells after Irradiation with Filtered and Unfiltered Beams of 1 Gev/amu Iron Ions

    NASA Astrophysics Data System (ADS)

    Wilson, P.; Williams, A.; Nagasawa, H.; Peng, Y.; Chatterjee, A.; Bedford, J.

    To determine whether shielding materials that might be utilized for radiation protection of astronauts would affect the RBE of HZE particles such as those of concern for deep space missions we irradiated non cycling G0 monolayer cultures of contact inhibited normal human fibroblasts with 1 Gev amu iron ions with and without filtration with various thicknesses of Aluminum Al or polyethylene CH 2 and then measured the frequencies of chromosome-type aberrations dicentrics and excess fragments in the first post-irradiation mitosis Irradiations were carried out at the NRSL facility at Brookhaven National Laboratory For doses ranging up to 4 to 6 Gy the dose response for the total of these aberrations per cell was not significantly affected by beam filtrations up to 5 4 cm Al or up to 11 cm polyethylene relative to the unfiltered beam Neither was the dose response significantly different for unfiltered beams of 300 or 600 Mev amu iron ions relative to the 1 Gev amu iron ions The studies with 1 Gev amu iron ions were repeated four different times over a period of four years in each case with coded samples so the individual scoring aberrations would not know the irradiation conditions employed Comparison of the same effects in parallel experiments using 137 Cs gamma-rays allowed us to estimate that the RBE for aberration induction by these HZE iron ions for these acute high dose-rate exposures was approximately

  3. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors.

    PubMed

    Katsukawa, Mitsuko; Nakajima, Yusuke; Fukumoto, Akiko; Doi, Daisuke; Takahashi, Jun

    2016-06-01

    Cell replacement therapy holds great promise for Parkinson's disease (PD), but residual undifferentiated cells and immature neural progenitors in the therapy may cause tumor formation. Although cell sorting could effectively exclude these proliferative cells, from the viewpoint of clinical application, there exists no adequate coping strategy in the case of their contamination. In this study, we analyzed a component of proliferative cells in the grafts of human-induced pluripotent stem cell-derived neural progenitors and investigated the effect of radiation therapy on tumor formation. In our differentiating protocol, analyses of neural progenitors (day 19) revealed that the proliferating cells expressed early neural markers (SOX1, PAX6) or a dopaminergic neuron progenitor marker (FOXA2). When grafted into the rat striatum, these immature neurons gradually became postmitotic in the brain, and the rosette structures disappeared at 14 weeks. However, at 4-8 weeks, the SOX1(+)PAX6(+) cells formed rosette structures in the grafts, suggesting their tumorigenic potential. Therefore, to develop a fail-safe therapy against tumor formation, we investigated the effect of radiation therapy. At 4 weeks posttransplantation, when KI67(+) cells comprised the highest ratio, radiation therapy with (137)Cs Gammacell Exactor for tumor-bearing immunodeficient rats showed a significant decrease in graft volume and percentage of SOX1(+)KI67(+) cells in the graft, thus demonstrating the preventive effect of gamma-ray irradiation against tumorigenicity. These results give us critical criteria for the safety of future cell replacement therapy for PD. PMID:27059007

  4. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors.

    PubMed

    Katsukawa, Mitsuko; Nakajima, Yusuke; Fukumoto, Akiko; Doi, Daisuke; Takahashi, Jun

    2016-06-01

    Cell replacement therapy holds great promise for Parkinson's disease (PD), but residual undifferentiated cells and immature neural progenitors in the therapy may cause tumor formation. Although cell sorting could effectively exclude these proliferative cells, from the viewpoint of clinical application, there exists no adequate coping strategy in the case of their contamination. In this study, we analyzed a component of proliferative cells in the grafts of human-induced pluripotent stem cell-derived neural progenitors and investigated the effect of radiation therapy on tumor formation. In our differentiating protocol, analyses of neural progenitors (day 19) revealed that the proliferating cells expressed early neural markers (SOX1, PAX6) or a dopaminergic neuron progenitor marker (FOXA2). When grafted into the rat striatum, these immature neurons gradually became postmitotic in the brain, and the rosette structures disappeared at 14 weeks. However, at 4-8 weeks, the SOX1(+)PAX6(+) cells formed rosette structures in the grafts, suggesting their tumorigenic potential. Therefore, to develop a fail-safe therapy against tumor formation, we investigated the effect of radiation therapy. At 4 weeks posttransplantation, when KI67(+) cells comprised the highest ratio, radiation therapy with (137)Cs Gammacell Exactor for tumor-bearing immunodeficient rats showed a significant decrease in graft volume and percentage of SOX1(+)KI67(+) cells in the graft, thus demonstrating the preventive effect of gamma-ray irradiation against tumorigenicity. These results give us critical criteria for the safety of future cell replacement therapy for PD.

  5. Bystander Effects Induced by Medium From Irradiated Cells: Similar Transcriptome Responses in Irradiated and Bystander K562 Cells

    SciTech Connect

    Herok, Robert; Konopacka, Maria; Polanska, Joanna; Swierniak, Andrzej; Rogolinski, Jacek; Jaksik, Roman; Hancock, Ronald; Rzeszowska-Wolny, Joanna

    2010-05-01

    Purpose: Cells exposed to ionizing radiation release factors that induce deoxyribonucleic acid damage, chromosomal instability, apoptosis, and changes in the proliferation rate of neighboring unexposed cells, phenomena known as bystander effects. This work analyzes and compares changes in global transcript levels induced by direct irradiation and by bystander effects in K562 (human erythroleukemia) cells. Methods and Materials: Cells were X-irradiated with 4 Gy or transferred into culture medium collected from cells 1 h after irradiation (irradiation-conditioned medium). Global transcript profiles were assessed after 36 h of growth by use of Affymetrix microarrays (Affymetrix, Santa Clara, CA) and the kinetics of change of selected transcripts by quantitative reverse transcriptase-polymerase chain reaction. Results: The level of the majority (72%) of transcripts changed similarly (increase, decrease, or no change) in cells grown in irradiation-conditioned medium or irradiated, whereas only 0.6% showed an opposite response. Transcript level changes in bystander and irradiated cells were significantly different from those in untreated cells grown for the same amount of time and were confirmed by quantitative reverse transcriptase-polymerase chain reaction for selected genes. Signaling pathways in which the highest number of transcripts changed in both conditions were found in the following groups: neuroactive ligand-receptor, cytokine-cytokine receptor interaction, Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) and Mitogen-Activated Protein Kinase (MAPK) In control cells more transcripts were downregulated than in irradiated and bystander cells with transcription factors YBX1 and STAT5B, heat shock protein HSPA1A, and ribonucleic acid helicase DDX3X as examples. Conclusions: The transcriptomes of cells grown in medium from X-irradiated cells or directly irradiated show very similar changes. Signals released by irradiated cells may cause

  6. Immunocytochemical studies on the effect of 405-nm low-power laser irradiation on human-derived A-172 glioblastoma cells.

    PubMed

    Ang, Foong Yee; Fukuzaki, Yumi; Yamanoha, Banri; Kogure, Shinichi

    2012-09-01

    The application of low-power laser irradiation (LLI) affects the cell cycle and cell proliferation in various kinds of cells. LLI at a wavelength of 808 nm and a power of 30 mW has been found to significantly decrease the proliferation rate of cells of the human-derived glioblastoma cell line A-172. To determine if this effect of LLI is specific to 808-nm LLI, the present study was designed to reveal the effects of 405-nm LLI under the same experimental conditions. A-172 glioblastoma cells were cultured in 96-well plates according to the conventional protocol. Two different schedules of 405-nm LLI (27 mW) were tested: longer periods of 20, 40 and 60 min and shorter periods of 1, 2, 3, 5, 10 and 15 min. Cells on a digital image displayed on a computer monitor were counted and the proliferation ratio was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) staining. Annexin-V-FLUOS staining and acridine-orange/ethidium-bromide staining were in an immunocytochemical assay to determine if cells were viable or dead (due to apoptosis or necrosis). Cell counting and MTT staining showed that longer 405-nm LLI significantly suppressed the proliferation of A-172 cells at 48 h after LLI (p < 0.05 or p < 0.01) and that the effect of LLI tended to be dose-dependent with morphological changes including cell death. At 90 min after LLI, shorter 405-nm LLI caused necrotic as well as apoptotic cell death, and these effects depended on irradiation time, power and energy density. Detailed analysis revealed that this lethal effect occurred after LLI and was not sustainable. It is concluded that 405-nm LLI has a lethal effect on human-derived glioblastoma A-172 cells, that is different from the suppressive effect without morphological changes induced by 808-nm LLI.

  7. Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after x-irradiation.

    PubMed

    Zampetti-Bosseler, F; Scott, D

    1981-05-01

    We recently showed (Scott and Zampetti-Bosseler 1980) that X-ray sensitive mouse lymphoma cells sustain more chromosome damage, mitotic delay and spindle defects than X-ray resistant cells. We proposed that (a) chromosome aberrations contribute much more to lethality than spindle defects, and (b) that DNA lesions are less effectively repaired in the sensitive cells and give rise to more G2 mitotic delay and chromosome aberrations. Our present results on human fibroblasts with reported differential sensitivity to ionizing radiation (i.e. normal donors and patients with ataxia telangiectasia and retinoblastoma) support the first hypothesis since we observed a positive correlation between chromosome aberration frequencies and cell killing and no induced spindle defects. Our second hypothesis is however not substantiated since X-ray sensitive fibroblasts from the ataxia patient suffered less mitotic delay than cells from normal donors. A common lesion for mitotic delay and chromosome aberrations can still be assumed by adopting the hypothesis of Painter and Young (1981) that the defect in ataxia cells is not in repair but in a failure of DNA damage to initiate mitotic delay. In contrast to other reports, we found the retinoblastoma cells to be of normal radiation sensitivity (cell killing and aberration).

  8. Study on the effect of polyhydroxylated fullerene, C60(OH)36, on X-ray irradiated human peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Nowak, Katarzyna; Krokosz, Anita; Rodacka, Aleksandra; Puchala, Mieczyslaw

    2014-04-01

    The effect of polyhydroxylated fullerene (fullerenol), C60(OH)36, on human peripheral blood mononuclear cells (PBMCs) exposed to X-rays was studied. PBMCs untreated and treated for 1 h with C60(OH)36 at the concentrations 75 and 150 mg/l were exposed to high doses of ionizing radiation (10, 30 and 50 Gy). After 24 and 48 h of post-irradiation incubation the viability and granularity of lymphocytes were determined applying the flow cytometry (FC) method. Moreover, after 24 h of incubation the membrane fluidity was investigated by measuring the fluorescence anisotropy of a 1,6-diphenyl-1,3,5-hexatriene (DPH) probe. Additionally, DNA damage of PBMCs after exposure to X-rays at the doses 0, 5, 10 and 15 Gy in the absence and presence of fullerenol (75 mg/l) was determined using the comet assay under alkaline conditions. Results show that the effects of fullerenol C60(OH)36 on X-irradiated human PBMCs are very small or inexistent. It was suggested that this action of C60(OH)36 may be related to its interactions with the surface of plasma membrane but not inside PBMCs.

  9. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    SciTech Connect

    Shanley, J.D.

    1986-12-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication.

  10. A SU-8 dish for cell irradiation

    NASA Astrophysics Data System (ADS)

    Arteaga-Marrero, N.; Auzelyte, V.; Olsson, M. G.; Pallon, J.

    2007-10-01

    The objective of the CELLION project is radiation research at low doses. The main cell responses to low dose irradiation are bystander effects, genomic instability and adaptive responses. In order to study these effects it is convenient to make the cells addressable in space and time through locking the cell position. A new alternative dish has been developed for irradiation procedures at the Lund Nuclear Probe. The versatile dish can be used both to cultivate and to hold the cells during the irradiation procedure. The irradiation dish is made of an epoxy-based photopolymer named SU-8 chosen by its flexibility, non-toxicity and biological compatibility to cell attachment. It has been fabricated using a UV lithographic technique. The irradiation dish forms a 2 × 2 mm 2 grid which contains 400 squares. Each square has 80 μm side and is separated from neighbouring ones by 20 μm wide walls. The location of each square is marked by a row letter and column number patterned outside the grid. The Cell Irradiation Facility at the Lund Nuclear Probe utilizes protons to irradiate living cells. A post-cell detection set up is used to control the applied dose, detecting the number of protons after passing through the targeted cell. The transmission requirement is fulfilled by our new irradiation dish. So far, the dish has been used to perform non-targeted irradiation of Hepatoma cells. The cells attach and grow easily on the SU-8 surface. In addition, the irradiation procedure can be performed routinely and faster since the cells are incubated and irradiated in the same surface.

  11. Effects of diode 808 nm GaAlAs low-power laser irradiation on inhibition of the proliferation of human hepatoma cells in vitro and their possible mechanism.

    PubMed

    Liu, Yi-Hsiang; Cheng, Chiung-Chi; Ho, Chin-Chin; Pei, Ren-Jeng; Lee, Karen Ying; Yeh, Kun-Tu; Chan, You; Lai, Yih-Shyong

    2004-01-01

    Low-power laser irradiation (LPLI) has come into a wide range of use in medical field. Considering basic research, LPLI can enhance DNA synthesis and increases proliferation rate of human cells. But only a few data about the effects of LPLI on human liver or hepatoma cells are available. The cytoskeleton plays important roles in cell function and therefore is implicated in the pathogenesis of many human liver diseases, including malignant tumors. In our previous study, we found the stability of cytokeratin molecules in human hepatocytes was related to the intact microtubule network that was influenced by colchicine. In this study, we are going to search the effect of LPLI on proliferation of human hepatoma cell line HepG2 and J-5 cells. In addition, the stability of cytokeratin and synemin (one of the intermediate filament-associated proteins) were analyzed under the action of LPLI to evaluate the possible mechanism of LPLI effects on proliferation of human hepatoma cells. In experiment, HepG2 and J-5 cells were cultured in 24-well plate for 24 hours. After irradiation by 130 mW diode 808 nm GaAlAs continue wave laser in different time intervals, the cell numbers were counted. Western blot and immunofluorescent staining examined the expression and distribution of PCNA, cytokeratin and synemin. The cell number counting and PCNA expression were evaluated to determine the proliferation. The organization and expression of cytokeratin and synemin were studied to identify the stability of cytoskeleton affected by LPLI. The results revealed that proliferation of HepG2 and J-5 cells was inhibited by LPLI since the cell number and PCNA expression was reduced. Maximal effect was achieved with 90 and 120 seconds of exposure time (of energy density 5.85 J/cm2 and 7.8 J/cm2, respectively) for HepG2 and J-5, respectively. The decreased ratio of cell number by this dose of irradiation was 72% and 66% in HepG2 and J-5 cells, respectively. Besides that, the architecture of

  12. Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)

    SciTech Connect

    Little, John B.

    2013-09-17

    This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

  13. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    PubMed Central

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  14. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation.

    PubMed

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy.

  15. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation.

    PubMed

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  16. Irradiation-Induced Regulation of Plasminogen Activator Inhibitor Type-1 and Vascular Endothelial Growth Factor in Six Human Squamous Cell Carcinoma Lines of the Head and Neck

    SciTech Connect

    Artman, Tuuli; Schilling, Daniela; Multhoff, Gabriele

    2010-02-01

    Purpose: It has been shown that plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are involved in neo-angiogenesis. The aim of this study was to investigate the irradiation-induced regulation of PAI-1 and VEGF in squamous cell carcinomas of the head and neck (SCCHN) cell lines of varying radiation sensitivity. Methods and Materials: Six cell lines derived from SCCHN were investigated in vitro. The colorimetric AlamarBlue assay was used to detect metabolic activity of cell lines during irradiation as a surrogate marker for radiation sensitivity. PAI-1 and VEGF secretion levels were measured by enzyme-linked immunosorbent assay 24, 48, and 72 h after irradiation with 0, 2, 6, and 10 Gy. The direct radioprotective effect of exogenous PAI-1 was measured using the clonogenic assay. For regulation studies, transforming growth factor-beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), hypoxia-inducible factor-2alpha (HIF-2alpha), or both HIF-1alpha and HIF-2alpha were downregulated using siRNA. Results: Although baseline levels varied greatly, irradiation led to a comparable dose-dependent increase in PAI-1 and VEGF secretion in all six cell lines. Addition of exogenous stable PAI-1 to the low PAI-1-expressing cell lines, XF354 and FaDu, did not lead to a radioprotective effect. Downregulation of TGF-beta1 significantly decreased VEGF secretion in radiation-sensitive XF354 cells, and downregulation of HIF-1alpha and HIF-2alpha reduced PAI-1 and VEGF secretion in radiation-resistant SAS cells. Conclusions: Irradiation dose-dependently increased PAI-1 and VEGF secretion in all SCCHN cell lines tested regardless of their basal levels and radiation sensitivity. In addition, TGF-beta1 and HIF-1alpha could be partly responsible for VEGF and PAI-1 upregulation after irradiation.

  17. Effect of radiation quality on mutagenic joining of enzymatically-induced DNA double-strand breaks in previously irradiated human cells.

    PubMed

    Li, Zhentian; Wang, Huichen; Wang, Ya; Murnane, John P; Dynan, William S

    2014-11-01

    Previous work has shown that high charge and energy particle irradiation of human cells evokes a mutagenic repair phenotype, defined by increased mutagenic repair of new double-strand breaks that are introduced enzymatically, days or weeks after the initial irradiation. The effect was seen originally with 600 MeV/u (56)Fe particles, which have a linear energy transfer (LET) value of 174 keV/μm, but not with X rays or γ rays (LET ≤ 2 keV/μm). To better define the radiation quality dependence of the phenomenon, we tested two ions with intermediate LET values, 1,000 MeV/u (48)Ti (LET = 108 keV/μm) and 300 MeV/u (28)Si (LET = 69 keV/μm). These experiments used a previously validated assay, where a rare-cutting nuclease introduces double-strand breaks in two reporter transgene cassettes, which are located on different chromosomes. Deletions of a block of sequence in one of the cassettes, or translocations between cassettes, are measured independently using a multicolor fluorescence assay. The results showed that (48)Ti was a potent, but transient, inducer of mutagenic repair, based on increased frequency of nuclease-induced translocations. The (48)Ti ions did not affect the frequency of nuclease-induced deletions. The (28)Si ions had no measurable effect on either endpoint. There was a close correlation between the induction of the mutagenic repair phenomenon and the frequency of micronuclei in the targeted population (R(2) = 0.74), whereas there was no apparent correlation with radiation-induced cell inactivation. Together, these results better define the radiation quality dependence of the mutagenic repair phenomenon and establish its correlation, or lack of correlation, with other endpoints.

  18. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  19. Electron irradiation of modern solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.

    1977-01-01

    A number of modern solar cell types representing 1976 technology (as well as some older types) were irradiated with 1 MeV electrons (and a limited number with 2 MeV electrons and 10 MeV protons). After irradiation, the cells were annealed, with I-V curves measured under AMO at 30 C. The purpose was to provide data to be incorporated in the revision of the solar cell radiation handbook. Cell resistivities ranged from 2 to 20 ohm-cm, and cell thickness from 0.05 to 0.46 mm. Cell types examined were conventional, shallow junction, back surface field (BSF), textured, and textured with BSF.

  20. The involvement of topoisomerase I in the induction of DNA-protein crosslinks and DNA single-strand breaks in cells of ultraviolet-irradiated human and frog cell lines.

    PubMed

    Rosenstein, B S; Subramanian, D; Muller, M T

    1997-12-01

    Exposure of GM 4390 human skin fibroblasts and ICR 2A frog cells to 10 kJ m(-2) of ultraviolet B (UVB) radiation resulted in the formation of DNA-protein crosslinks (DPCs) and DNA single-strand breaks (SSBs). However, upon incubation, there were rapid increases in the yields of both DPCs and SSBs. An enhancement in these DNA alterations was detected within 12 min after irradiation and their levels continued to rise by 5-8-fold within 15 h after exposure to UV radiation. Using an antibody-based assay that measures covalent complex formation between topoisomerase (topo) I and genomic DNA, it was found that topo I is one of the proteins involved in these DPCs induced by UV radiation. The levels and rate of increase of topo I-DNA covalent complexes were similar to the UV-radiation-dependent formation of DPCs and SSBs. A UV-radiation-sensitive mutant frog cell line, DRP 153, was also examined and was found to be deficient in this induction of DPCs and SSBs by UV radiation. When these cells were transfected with the human SUVCC3 gene, the resulting transformant displayed kinetics for the induction of DPCs and SSBs similar to the human and parental frog cells. However, human topo I was not defected in the transformed frog cells, indicating that SUVCC3 does not encode topo I. It is likely that SUVCC3 encodes an associated enzymatic activity which permits normal stimulation of topo I-DNA covalent complexes in UV-irradiated cells. PMID:9399703

  1. Human tonsillar IgE biosynthesis in vitro. I. Enhancement of IgE and IgG synthesis in the presence of pokeweed mitogen by T-cell irradiation

    SciTech Connect

    Ohta, K.; Manzara, T.; Harbeck, R.J.; Kirkpatrick, C.H.

    1982-02-01

    A study of the events regulating human IgE biosynthesis in vitro was undertaken with tonsillar lymphocytes. IgG synthesis was also studied to evaluate the specificity of our observations. T-cell irradiation significantly enhanced synthesis of IgE by pokeweed mitogen (PWM)-stimulated B cells from 12 of 18 donors and IgG in all 18 donors. This enhancement was the result of de novo immunoglobulin synthesis, since the amount of IgE and IgG spontaneously released from lysed and lysed-and-cultured mononuclear cells was significantly less than that detected in the cell cultures, and the augmentation was completely ablated by the treatment of the cells with cycloheximide or mitomycin C. Enhancement was also dependent on the presence of PWM; T-cell irradiation did not enhance IgE synthesis in unstimulated cultures. Moreover, this enhancement was also observed in the co-cultures of B cells and allogeneic irradiated T cells. These observations suggest that radiosensitive T cells exert a suppressive activity that contributes to regulation of human IgE and IgG synthesis and that the suppressor function as well as the helper function can overcome allogeneic disparities.

  2. The effect of irradiation at low doses on human embryos and fetuses

    SciTech Connect

    Romanova, L.K.; Zhorova, E.S.

    1994-05-01

    Data about the biological effect of irradiation at low dose on prenatal human development have been reviewed. The effect of irradiation is observed either immediately after it or in the progeny, as consequences of irradiation affecting the embryo or fetus. Human embryos and fetuses are most sensitive to ionizing irradiation during the peaks of proliferative activity and cell differentiation. The concept has been formulated that any dose of irradiation, however low, can inflict damage to the embryo or fetus. Problems and perspectives of studies in this field are discussed.

  3. Influence of age, irradiation and humanization on NSG mouse phenotypes

    PubMed Central

    Knibbe-Hollinger, Jaclyn S.; Fields, Natasha R.; Chaudoin, Tammy R; Epstein, Adrian A.; Makarov, Edward; Akhter, Sidra P.; Gorantla, Santhi; Bonasera, Stephen J.; Gendelman, Howard E.; Poluektova, Larisa Y.

    2015-01-01

    ABSTRACT Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization. PMID:26353862

  4. [Effect of irradiation with dental polymerized lamps on human Langerhans cells: a study made on human skin transplanted to nude mice].

    PubMed

    Bonding, N

    1992-04-01

    Light polymerized composite resin materials are now widely used in dentistry. Most resins are polymerized by light sources which have a powerful emission of visible light and a small emission in the ultraviolet light A spectrum (UV-A 320-400 mm). Possible eye damage, induced by such light, has been investigated, but the effects on the oral mucosa, which is directly exposed to the light, have been examined in only one animal study. Langerhans cells (LC) are dendritic non-epithelial cells which form a network within stratified epithelia. LC have features of macrophages, functions as antigen-presenting cells, and play an important role in the immune system associated with skin and oral mucosa. Pilot studies on human skin transplanted to nude mice showed that radiation with small therapeutic doses from a dental light curing unit (DLU) having only a small fraction of UV-light can reduce or deplete the OKT6 surface marker of LC in human epithelium. Further investigation of the photobiologic mechanisms involved spectral analyses of the emmission from the lamps and construction of a suitable light source for establishing an action spectrum for LC in the UV-A range. The action spectrum for LC in the UV-A range was obtained by exposing human skin, grafted to nude mice, to monochromatic light with a band pass of 5-10 nm. Criterion for threshold doses was total depletion of LC, visualized by staining with known LC-markers, monoclonal antibodies OKT6, DAKO-Vimentin, DAKO-HLA-DR and DAKO-S-100. The action spectrum for LC consisted of a biphasic curve, with a non-linear, strong wave-length dependency.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1412043

  5. Physiological activity of irradiated green tea polyphenol on the human skin.

    PubMed

    An, Bong-Jeun; Kwak, Jae-Hoon; Son, Jun-Ho; Park, Jung-Mi; Lee, Jin-Young; Park, Tae Soon; Kim, So-Yeun; Kim, Yeoung-Sun; Jo, Cheorun; Byun, Myung-Woo

    2005-01-01

    Physiological activity of irradiated green tea polyphenol on the human skin was investigated for further industrial application. The green tea polyphenol was separated and irradiated at 40 kGy by y-ray. For an anti-wrinkle effect, the collagenase inhibition effect was higher in the irradiated sample (65.3%) than that of the non-irradiated control (56.8%) at 200 ppm of the concentration (p < 0.05). Collagen biosynthesis rates using a human fibroblast were 19.4% and 16.3% in the irradiated and the non-irradiated polyphenols, respectively. The tyrosinase inhibition effect, which is related to the skin-whitening effect, showed a 45.2% and 42.9% in the irradiated and the non-irradiated polyphenols, respectively, at a 100 ppm level. A higher than 90% growth inhibition on skin cancer cells (SK-MEL-2 and G361) was demonstrated in both the irradiated and the non-irradiated polyphenols. Thus, the irradiation of green tea polyphenol did not change and even increased its anti-wrinkle, skin-whitening and anticancer effects on the human skin. The results indicated that irradiated green tea polyphenol can be used as a natural ingredient with excellent physiological functions for the human skin through cosmetic or food composition.

  6. An observed effect of ultraviolet radiation emitted from beta-irradiated HaCaT cells upon non-beta-irradiated bystander cells.

    PubMed

    Le, Michelle; McNeill, Fiona E; Seymour, Colin; Rainbow, Andrew J; Mothersill, Carmel E

    2015-03-01

    Previous research has shown that beta radiation can induce ultraviolet (UV) photon emission in human keratinocyte cells. Spectral analysis using a filter-based method in the ultraviolet range demonstrated that the strongest externally measureable photon emission was induced by beta radiation in the UVA range. In the current study, the potential biological implications of this UV photon emission from beta-irradiated cells were investigated. HaCaT human keratinocyte cells were irradiated with tritium ((3)H) and the photon emission induced was concurrently measured at the strongest externally measurable wavelength, 340 ± 5 nm, using a combination filter-photomultiplier tube system. Unirradiated reporter HaCaT cell cultures were also placed directly above (3)H-irradiated cells so that they would receive the induced secondary photons emitted from beta-irradiated cells, and the clonogenic survival in reporter cells was then assessed. Maximum photon emission (1207.04 ± 107.65 counts per second) was observed during irradiation of 2,000 cells/cm(2) with (3)H and the maximum reporter cell death (23.2 ± 0.9% reduction in survival) was observed under the same conditions. The measured photon emission from beta-irradiated cells and reporter cell death were strongly correlated (r = 0.977, P < 0.01). Placement of a polyethylene terephthalate filter, designed to eliminate >90% of UV wavelengths below 390 nm, between the directly irradiated and reporter cell layers was effective in nearly abolishing both 340 nm photon detection and reporter cell death in treated groups. Concurrent treatment of reporter cells with lomefloxacin during exposure to the secondary photons resulted in significantly increased cell killing, indicating a potential synergistic effect, while melanin treatment resulted in decreased reporter cell killing regardless of irradiation. These results suggest that secondary photons in the UV spectral range induced by beta irradiation play a role in inducing a

  7. Electron irradiation of tandem junction solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.; Scott-Monck, J. A.

    1979-01-01

    The electrical behavior of 100 micron thick tandem junction solar cells manufactured by Texas Instruments was studied as a function of 1 MeV electron fluence, photon irradiation, and 60 C annealing. These cells are found to degrade rapidly with radiation, the most serious loss occurring in the blue end of the cell's spectral response. No photon degradation was found to occur, but the cells did anneal a small amount at 60 C.

  8. NFkappaB activity and transcriptional responses in human breast adenocarcinoma cells after single and fractionated irradiation.

    PubMed

    Madhusoodhanan, Rakhesh; Natarajan, Mohan; Veeraraghavan, Jamunarani; Herman, Terence S; Aravindan, Natarajan

    2009-05-01

    Radiotherapy is considered mandatory for breast cancer patients undergoing conservative surgery and for women at high risk of recurrence. However, relapse due to radio-resistance affects the success of radiotherapy. Ascertaining the fractionated radiation (FIR) modulated molecular targets is important to make tumors more susceptible to molecular targeted therapy. Accordingly, we investigated the (i) expression of 84 genes representing six functional pathways; (ii) NFkappaB DNA binding activity and; (iii) expression of radio-responsive molecules after single dose (10Gy) radiation (SDR) and FIR (2Gyx5). MCF-7 cells exposed to SDR or FIR were analyzed for alterations in gene expression using QPCR-profiling. NFkappaB DNA binding activity was analyzed using EMSA and pIkappaB using immunoblotting. Expression of TNFalpha, IL-1alpha, pAKT, IAP1, IAP2, XIAP, survivin, MnSOD, BID and Bak were determined using QPCR and/or immunoblotting. Compared to SDR, FIR significantly induced 60 genes and completely suppressed 14 genes. Furthermore, FIR induced NFkappaB-DNA binding activity and IkappaBalpha phosphorylation. Like-wise, FIR induced the expression of IAP1, IAP2, XIAP Survivin, MnSOD, TNFalpha, pAKT and IL-1alpha. The results of the study clearly show distinct differences in the molecular response of cells between SDR and FIR exposures. We identified several potential targets that may affect radio-resistance following FIR. PMID:19276662

  9. Effect of in vitro irradiation and cell cycle-inhibitory drugs on the spontaneous human IgE synthesis in vitro

    SciTech Connect

    Del Prete, G.F.; Vercelli, D.; Tiri, A.; Maggi, E.; Rossi, O.; Romagnani, S.; Ricci, M.

    1987-01-01

    The in vitro effects of radiation, diterpine forskolin (FK), and hydrocortisone (HC) on the in vitro spontaneous IgE synthesis by peripheral blood B-lymphocytes from atopic patients were investigated. Without affecting cell viability, in vitro irradiation inhibited in a dose-dependent fashion de novo IgE synthesis in vitro by B cells from all patients examined with a mean 40% reduction of in vitro IgE product after treatment with 100 rads. In contrast, the in vitro IgE production by the U266 myeloma cell line was unaffected, even by irradiation with 1600 rads. The addition to B cell cultures from atopic patients of FK consistently resulted in a dose-dependent inhibition of the spontaneous IgE production in vitro. The addition to cultures of 10(-5) and 10(-6) molar concentrations of HC was also usually inhibitory, whereas lower HC concentrations were uneffective or even enhanced the spontaneous in vitro IgE synthesis. When 10(-6) molar concentrations of both HC and FK were combined in culture, a summation inhibitory effect on the spontaneous IgE synthesis was observed. In contrast, neither FK nor HC had inhibitory effect on the in vitro spontaneous IgE synthesis by the U266 myeloma cell line. The spontaneous in vitro IgE synthesis by B cells from patients with Hodgkin's disease, demonstrating high levels of serum IgE, was strongly reduced or virtually abolished after patients underwent total nodal irradiation to prevent the spread of the disease. In addition, the in vitro spontaneous IgE synthesis by B cells from atopic patients was markedly decreased or abolished by in vivo administration of betamethasone.

  10. Morphological changes in neutron irradiated red blood cells.

    PubMed

    Nelson, A C; Wyle, H R

    1985-01-01

    Living human red blood cells (erythrocytes) were irradiated with a beam of thermal neutrons having a thermal neutron flux of 9.4 X 10(9) neutrons/cm2 per sec corresponding to a dose rate of 5 Gray per hour. The neutron beam was obtained from the thermal neutron facility at the MIT Nuclear Reactor and contained some gamma-ray contamination which contributes approximately 8% of the dose effect. Approximately 92% of the dose effect is due to the neutron radiation. Populations of neutron irradiated red blood cells were examined under scanning electron microscopy to observe morphological changes due to the radiation dose. The thermal neutron doses ranged from zero for controls to 75 Gray, and cell populations were examined at various post-irradiation time periods of 10, 48, and 96 h. A four-stage discoid to spheroid shape transformation of the damaged red blood cells was characterized, and the time dependence of each transformation stage was determined for both unirradiated and irradiated cells. The radiation dose caused an initial dose-dependent shift from Stage 1 to Stage 2 with an associated increase in the transformation rate constants. The thermal neutron doses delivered are considered to be in the low dose range for radiation effects on red blood cells, yet the pronounced effects indicate a high relative biological effectiveness (RBE) for thermal neutrons.

  11. An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00424a Click here for additional data file.

    PubMed Central

    Hopkins, S. L.; Siewert, B.; Askes, S. H. C.; Veldhuizen, P.; Zwier, R.; Heger, Michal

    2016-01-01

    Traditionally, ultraviolet light (100–400 nm) is considered an exogenous carcinogen while visible light (400–780 nm) is deemed harmless. In this work, a LED irradiation system for in vitro photocytotoxicity testing is described. The LED irradiation system was developed for testing photopharmaceutical drugs, but was used here to determine the basal level response of human cancer cell lines to visible light of different wavelengths, without any photo(chemo)therapeutic. The effects of blue (455 nm, 10.5 mW cm–2), green (520 nm, 20.9 mW cm–2), and red light (630 nm, 34.4 mW cm–2) irradiation was measured for A375 (human malignant melanoma), A431 (human epidermoid carcinoma), A549 (human lung carcinoma), MCF7 (human mammary gland adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), and U-87 MG (human glioblastoma-grade IV) cell lines. In response to a blue light dose of 19 J cm–2, three cell lines exhibited a minimal (20%, MDA-MB-231) to moderate (30%, A549 and 60%, A375) reduction in cell viability, compared to dark controls. The other cell lines were not affected. Effective blue light doses that produce a therapeutic response in 50% of the cell population (ED50) compared to dark conditions were found to be 10.9 and 30.5 J cm–2 for A375 and A549 cells, respectively. No adverse effects were observed in any of the six cell lines irradiated with a 19 J cm–2 dose of 520 nm (green) or 630 nm (red) light. The results demonstrate that blue light irradiation can have an effect on the viability of certain human cancer cell types and controls should be used in photopharmaceutical testing, which uses high-energy (blue or violet) visible light activation. PMID:27098927

  12. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.

    PubMed

    Bantseev, Vladimir; Youn, Hyun-Yi

    2006-12-01

    Mitochondria provide energy generated by oxidative phosphorylation and at the same time play a central role in apoptosis and aging. As a byproduct of respiration, the electron transport chain is known to be the major intracellular site for the generation of reactive oxygen species (ROS). Exposure to solar and occupational ultraviolet (UV) radiation, and thus production of ROS and subsequent cell death, has been implicated in a large spectrum of skin and ocular pathologies, including cataract. Retinal pigment epithelial cell apoptosis generates photoreceptor dysfunction and ultimately visual impairment. The purpose of this article was to characterize in vitro changes following oxidative stress with UV-B radiation in (a) ocular lens optics and cellular function in terms of mitochondrial dynamics of bovine lens epithelium and superficial cortical fiber cells and (b) human retinal pigment epithelial (ARPE-19) cells. Cultured bovine lenses and confluent cultures of ARPE-19 cells were irradiated with broadband UV-B radiation at energy levels of 0.5 and 1.0 J/cm(2). Lens optical function (spherical aberration) was monitored daily up to 14 days using an automated laser scanning system that was developed at the University of Waterloo. This system consists of a single collimated scanning helium-neon laser source that projects a thin (0.05 mm) laser beam onto a plain mirror mounted at 45 degrees on a carriage assembly. This mirror reflects the laser beam directly up through the scanner table surface and through the lens under examination. A digital camera captures the actual position and slope of the laser beam at each step. When all steps have been made, the captured data for each step position is used to calculate the back vertex distance for each position and the difference in that measurement between beams. To investigate mitochondrial movement, the mitochondria-specific fluorescent dye Rhodamine 123 was used. Time series were acquired with a Zeiss 510 (configuration Meta

  13. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  14. Controversial effects of low level laser irradiation on the proliferation of human osteoblasts

    NASA Astrophysics Data System (ADS)

    Bölükbaşı Ateş, Gamze; Ak, Ayşe.; Garipcan, Bora; Yüksel, Šahru; Gülsoy, Murat

    2015-03-01

    Low level laser irradiation (LLLI) is the application of red or near infrared lasers irradiating between 600-1100 nm with an output power of 1-500 mW. Several researches indicate that LLLI modulates cellular mechanisms and leads to enhance proliferation. Although the biological mechanisms are not fully understood, it is known that the effects depend on several parameters such as wavelength, irradiation duration, energy level, beam type and energy density. The aim of this study is to investigate the effect of low level laser irradiation at varying energy densities with two different wavelengths (635 nm and 809 nm) on the proliferation of human osteoblasts in vitro. The cells are seeded on 96 well plates (105cells/well) and after 24 h incubation cells are irradiated at energy densities 0.5 J/cm2, 1 J/cm2 and 2 J/cm2. Cell viability test is applied after 24 h, 48 h and 72 h in order to examine effects of laser irradiation on osteoblast proliferation. 635 nm light irradiation did not appear to have significant effect on the proliferation of osteoblasts as compared to the control. On the other hand, 809 nm laser irradiation caused significant (p ≤ 0.01) biostimulation effect on the osteoblast cell cultures at 48 h and 72 h. In conclusion, irradiation of both wavelengths did not cause any cytotoxic effects. 809 nm light irradiation can promote proliferation of human osteoblasts in vitro. On the other hand, 635 nm light irradiation has no positive effect on osteoblast proliferation. As a result, LLLI applied using different wavelengths on the same cell type may lead to different biological effects.

  15. Laryngeal acinic cell carcinoma following thyroid irradiation

    SciTech Connect

    Reibel, J.F.; McLean, W.C.; Cantrell, R.W.

    1981-01-01

    Only three examples of acinic cell carcinoma of the larynx or trachea are found in the recent literature. A case of acinic cell carcinoma of the subglottic larynx and trachea was diagnosed and treated at the University of Virginia Medical Center. To our knowledge this is the first such case with a prior history of radiation to the neck. The patient is a 56-year-old woman who was irradiated for hyperthyroidism 46 years ago. When seen she also had parathyroid hyperplasia and multiple thyroid adenomas, conditions that frequently follow irradiation of the thyroid in children. These findings in this case support the concept that radiation may be responsible for inducing this tumor, which otherwise rarely occurs in this location. The use of electron microscopy was extremely useful in the diagnosis of this tumor. She was treated with total laryngectomy and right neck dissection and is now free of disease one year after surgery.

  16. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.

    PubMed

    Yoshida, Ayaka; Yoshino, Fumihiko; Makita, Tetsuya; Maehata, Yojiro; Higashi, Kazuyoshi; Miyamoto, Chihiro; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Takahashi, Osamu; Lee, Masaichi Chang-il

    2013-12-01

    In recent years, it has become well known that the production of reactive oxygen species (ROS) induced by blue-light irradiation causes adverse effects of photo-aging, such as age-related macular degeneration of the retina. Thus, orange-tinted glasses are used to protect the retina during dental treatment involving blue-light irradiation (e.g., dental resin restorations or tooth bleaching treatments). However, there are few studies examining the effects of blue-light irradiation on oral tissue. For the first time, we report that blue-light irradiation by quartz tungsten halogen lamp (QTH) or light-emitting diode (LED) decreased cell proliferation activity of human gingival fibroblasts (HGFs) in a time-dependent manner (<5 min). Additionally, in a morphological study, the cytotoxic effect was observed in the cell organelles, especially the mitochondria. Furthermore, ROS generation induced by the blue-light irradiation was detected in mitochondria of HGFs using fluorimetry. In all analyses, the cytotoxicity was significantly higher after LED irradiation compared with cytotoxicity after QTH irradiation. These results suggest that blue light irradiation, especially by LED light sources used in dental aesthetic treatment, might have adverse effects on human gingival tissue. Hence, this necessitates the development of new dental aesthetic treatment methods and/or techniques to protect HGFs from blue light irradiation during dental therapy.

  17. Impact of blue LED irradiation on proliferation and gene expression of cultured human keratinocytes

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Sticht, Carsten; Dweep, Harsh; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2015-03-01

    Blue light is known for its anti-microbial, anti-proliferative and anti-inflammatory effects. Furthermore, it is already used for the treatment of neonatal jaundice and acne. However, little is known about the exact mechanisms of action on gene expression level. The aim of this study was to assess the impact of blue LED irradiation on the proliferation and gene expression in immortalized human keratinocytes (HaCaT) in vitro. Furthermore its safety was assessed. XTT-tests revealed a decrease in cell proliferation in blue light irradiated cells depending on the duration of light irradiation. Moreover, gene expression analysis demonstrated deregulated genes already 3 hours after blue light irradiation. 24 hours after blue light irradiation the effects seemed to be even more pronounced. The oxidative stress response was significantly increased, pointing to increased ROS production due to blue light, as well as steroid hormone biosynthesis. Downregulated pathways or biological processes were connected to anti-inflammatory response. Interestingly, also the melanoma pathway contained significantly downregulated genes 24 hours after blue light irradiation, which stands in accordance to literature that blue light can also inhibit proliferation in cancer cells. First tests with melanoma cells revealed a decrease in cell proliferation after blue light irradiation. In conclusion, blue light irradiation might open avenues to new therapeutic regimens; at least blue light seems to have no effect that induces cancer growth or formation.

  18. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line

    PubMed Central

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-01-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced skin damage and photoaging in a mouse model. HR-1 strain hairless male mice were divided into three groups: An untreated control group, a UVB-irradiated vehicle group and a UVB-irradiated SME group. The UVB-irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60–120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase-1 (MMP-1), and the binding of activator protein-1 (AP-1) to the MMP-1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP-1 fluorescent assay and a chromatin immune-precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB-exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB-treated mice with SME administration. SME pretreatment also significantly inhibited the UVB-induced upregulation in the expression and activity of MMP-1 in the cultured HaCaT keratinocytes, and the UVB-enhanced association of AP-1 with the MMP-1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin. PMID:27573915

  19. A mechanism of cell apoptosis by light irradiation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-02-01

    Light irradiation can modulate various biological processes. For instance, low-power laser irradiation (LPLI) can induce cell proliferation and differentiation. It has been used to treat diseases of regeneration limitation and to promote wound healing. The biological mechanism of light irradiation remains unclear. Our previous studies have shown that low fluence LPLI induced the proliferation of human lung adenocarcinoma cells (ASTC-a-1) through PKC channel, while high fluence LPLI induced caspase-3 activation and cell apoptosis. The mechanisms of the initiation and regulation of apoptosis are complex and diverse. There are two main pathways to initiate and regulate cell apoptosis, one is the death receptor pathway (receptor/caspase-8/caspase-3), and the other is the mitochondria pathway (mitochondria/ caspase-9/caspase-3). Using fluorescent imaging techniques, we observed a temporal sequence of events during apoptosis induced by high fluence LPLI and PDT. Both the high fluence LPLI and PDT triggers mitochondrial ROS production resulting in dissipation of ΔΨ m and activation of caspase-3. Our results also show the two treatments do not activate caspase-8. These results suggest that caspase-3 activation induced by high fluence LPLI or PDT is initiated directly from mitochondria ROS generation and dissipation of ΔΨ m, and independent of the cell death pathway involving caspase-8 activation. Because the progression of the apoptosis induced by high fluence LPLI is the same as that of PDT, we concluded that light is absorbed directly either by endogenous porphyrins or by the cytochromes in mitochondrion, resulting in initial ROS generation. During light irradiation induced apoptosis, apoptotic signals are initiated from mitochondrial ROS production due to photosensitization.

  20. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  1. Characterizing the radioresponse of pluripotent and multipotent human stem cells.

    PubMed

    Lan, Mary L; Acharya, Munjal M; Tran, Katherine K; Bahari-Kashani, Jessica; Patel, Neal H; Strnadel, Jan; Giedzinski, Erich; Limoli, Charles L

    2012-01-01

    The potential capability of stem cells to restore functionality to diseased or aged tissues has prompted a surge of research, but much work remains to elucidate the response of these cells to genotoxic agents. To more fully understand the impact of irradiation on different stem cell types, the present study has analyzed the radioresponse of human pluripotent and multipotent stem cells. Human embryonic stem (ES) cells, human induced pluripotent (iPS) cells, and iPS-derived human neural stem cells (iPS-hNSCs) cells were irradiated and analyzed for cell survival parameters, differentiation, DNA damage and repair and oxidative stress at various times after exposure. While irradiation led to dose-dependent reductions in survival, the fraction of surviving cells exhibited dose-dependent increases in metabolic activity. Irradiation did not preclude germ layer commitment of ES cells, but did promote neuronal differentiation. ES cells subjected to irradiation exhibited early apoptosis and inhibition of cell cycle progression, but otherwise showed normal repair of DNA double-strand breaks. Cells surviving irradiation also showed acute and persistent increases in reactive oxygen and nitrogen species that were significant at nearly all post-irradiation times analyzed. We suggest that stem cells alter their redox homeostasis to adapt to adverse conditions and that radiation-induced oxidative stress plays a role in regulating the function and fate of stem cells within tissues compromised by radiation injury.

  2. Effects of water-filtered infrared A irradiation on human fibroblasts.

    PubMed

    Jung, Tobias; Höhn, Annika; Piazena, Helmut; Grune, Tilman

    2010-01-01

    Infrared radiation is a substantial part of the solar energy output reaching the earth surface. Therefore, exposure of humans to infrared radiation is common. However, whether and how infrared (IR) or infrared A acts on human skin cells is still under debate. Recently the generation of reactive oxygen species by water-filtered infrared A (wIRA) irradiation was postulated. wIRA shows a spectral distribution similar to that of solar irradiation at the earth's surface. Thus, the need for protection of human skin from both solar- and artificially generated infrared A irradiation was concluded. Here we demonstrate that in human dermal fibroblasts this reactive oxygen species generation is dependent on heat formation by infrared A and can be reproduced by thermal exposure. On the other hand wIRA irradiation had no detectable effect if the temperature in the cells was kept constant, even if irradiance exceeded the extraterrestrial solar irradiance in the IR range by a factor of about 4 and the maximum at noontime in the tropics by a factor up to about 6. This could be demonstrated by the measurement of oxidant formation using H(2)DCFDA and the determination of protein carbonyls. In additional experiments we could show that during thermal exposure the mitochondria contribute significantly to oxidant production. Further experiments revealed that the major absorbance of infrared is due to absorption of the energy by cellular water.

  3. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    SciTech Connect

    Dai, Jiawen; Itahana, Koji; Baskar, Rajamanickam

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  4. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  5. Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes.

    PubMed

    Tsuboi, R; Sato, C; Oshita, Y; Hama, H; Sakurai, T; Goto, K; Ogawa, H

    1995-09-01

    The effect of ultraviolet B (UVB) irradiation on endothelin-1 (ET-1) and ET receptor expression was examined using cultured normal human keratinocytes. Keratinocytes secreted ET-1 in the medium at a level of 2.1 pg/day/10(5) cells. UVB irradiation up to 10 mJ/cm2 increased ET-1 secretion 3-fold, and potentiated expression of mRNA for ET-1. Both ETA and ETB receptor mRNAs were detected in keratinocytes, and their expression was up-regulated by 5 mJ/cm2 UVB irradiation.

  6. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers.

    PubMed

    Ayubianmarkazi, Nader; Karimi, Mohammadreza; Koohkan, Shima; Sanasa, Armand; Foroutan, Tahereh

    2015-11-01

    Bacterial biofilms have been identified as the primary etiological factor for the development and progression of peri-implantitis. Lasers have been shown to remove bacterial plaque from titanium surfaces effectively and can restore its biocompatibility without damaging these surfaces. Therefore, the aim of this study was to evaluate the responses (i.e., the cell viability and morphology) of human osteoblast-like SaOs-2 cells to sandblasted, large grit, and acid-etched (SLA) titanium surfaces irradiated by CO2 lasers at two different power outputs. A total of 24 SLA disks were randomly radiated by CO2 lasers at either 6 W (group 1, 12 disks) or 8 W (group 2, 12 disks). Non-irradiated disks were used as a control group (four disks). The cell viability rates of the SaOs-2 cells in the control and study groups (6 and 8 W) were 0.33 ± 0.00, 0.24 ± 0.11, and 0.2372 ± 0.09, respectively (P < 0.6). Cells with cytoplasmic extensions and spreading morphology were most prominent in the control group (141.00 ± 29.00), while in the study groups (6 and 8 W), the number of cells with such morphology was 60.40 ± 26.00 and 35.20 ± 5.40, respectively (P < 0.005). Within the limits of this study, it may be concluded that the use of CO2 lasers with the aforementioned setting parameters could not be recommended for decontamination of SLA titanium surfaces.

  7. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium-aluminum-garnet (Er:YAG) lasers.

    PubMed

    Ayobian-Markazi, Nader; Fourootan, Tahereh; Zahmatkesh, Atieh

    2014-01-01

    Erbium:yttrium-aluminum-garnet (Er:YAG) laser treatment is an effective option for the removal of bacterial plaques. Many studies have shown that Er:YAG lasers cannot re-establish the biocompatibility of titanium surfaces. The aim of this study was to evaluate the responses of the human osteoblast-like cell line, SaOs-2, to sand-blasted and acid-etched (SLA) titanium surface irradiation using different energy settings of an Er:YAG laser by examining cell viability and morphology. Forty SLA titanium disks were irradiated with an Er:YAG laser at a pulse energy of either 60 or 100 mJ with a pulse frequency of 10 Hz under water irrigation and placed in a 24-well plate. Human osteoblast-like SaOs-2 cells were seeded onto the disks in culture media. Cells were then kept in an incubator with 5% carbon dioxide at 37 °C. Each experimental group was divided into two smaller groups to evaluate cell morphology by scanning electron microscope and cell viability using 3-4,5-dimethylthiazol 2,5-diphenyltetrazolium bromide test. In both the 60 and the 100 mJ experimental groups, spreading morphologies, with numerous cytoplasmic extensions, were observed prominently. Similarly, a majority of cells in the control group exhibited spreading morphologies with abundant cytoplasmic extensions. There were no significant differences among the laser and control groups. The highest cell viability rate was observed in the 100 mJ laser group. No significant differences were observed between the cell viability rates of the two experimental groups (p = 1.00). In contrast, the control group was characterized by a significantly lower cell viability rate (p < 0.001). Treatments with an Er:YAG laser at a pulse energy of either 60 or 100 mJ do not reduce the biocompatibility of SLA titanium surfaces. In fact, modifying SLA surfaces with Er:YAG lasers improved the biocompatibility of these surfaces.

  8. In vitro neutron irradiation of glioma and endothelial cultured cells.

    PubMed

    Menichetti, L; Gaetano, L; Zampolli, A; Del Turco, S; Ferrari, C; Bortolussi, S; Stella, S; Altieri, S; Salvadori, P A; Cionini, L

    2009-07-01

    To fully develop its potential boron neutron capture therapy (BNCT) requires the combination of a suitable thermal/epithermal neutron flux together with a selective intake of (10)B-boron nuclei in the target tissue. The latter condition is the most critical to be realized as none of the boron carriers used for experimental or clinical purposes proved at the moment an optimal selectivity for cancer cells compared to normal cells. In addition to complex physical factors, the assessment of the intracellular concentration of boron represent a crucial parameter to predict the dose delivered to the cancer cells during the treatment. Nowadays the dosimetry calculation and then the prediction of the treatment effectiveness are made using Monte Carlo simulations, but some of the model assumption are still uncertain: the radiobiological dose efficacy and the probability of tumour cell survival are crucial parameters that needs a more reliable experimental approach. The aim of this work was to evaluate the differential ability of two cell lines to selectively concentrate the boron-10 administered as di-hydroxyboryl-phenylalanine (BPA)-fructose adduct, and the effect of the differential boron intake on the damage produced by the irradiation with thermal neutrons; the two cell lines were selected to be representative one of normal tissues involved in the active/passive transport of boron carriers, and one of the tumour. Recent in vitro studies demonstrated how BPA is taken by proliferating cells, however the mechanism of BPA uptake and the parameters driving the kinetics of influx and the elimination of BPA are still not clarified. In these preliminary studies we analysed the survival of F98 and human umbilical vein endothelial cells (HUVEC) cells line after irradiation, using different thermal fluencies at the same level of density population and boron concentration in the growing medium prior the irradiation. This is first study performed on endothelium model obtained by a

  9. Humanized Chronic Graft-versus-Host Disease in NOD-SCID il2rγ-/- (NSG) Mice with G-CSF-Mobilized Peripheral Blood Mononuclear Cells following Cyclophosphamide and Total Body Irradiation.

    PubMed

    Fujii, Hisaki; Luo, Zhi-Juan; Kim, Hye Jin; Newbigging, Susan; Gassas, Adam; Keating, Armand; Egeler, R Maarten

    2015-01-01

    Chronic graft-versus-host disease (cGvHD) is the major source of late phase morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Humanized acute GvHD (aGvHD) in vivo models using NOD-SCID il2rγ-/- (NSG) mice are well described and are important tools for investigating pathogenicity of human cells in vivo. However, there have been only few reported humanized cGvHD mouse models. We evaluated if prolonged inflammation driven by low dose G-CSF-mobilized human PBMCs (G-hPBMCs) would lead to cGvHD following cyclophosphamide (CTX) administration and total body irradiation (TBI) in NSG mice. Engraftment was assessed in peripheral blood (PB) and in specific target organs by either flow cytometry or immunohistochemistry (IHC). Tissue samples were harvested 56 days post transplantation and were evaluated by a pathologist. Some mice were kept for up to 84 days to evaluate the degree of fibrosis. Mice that received CTX at 20mg/kg did not show aGvHD with stable expansion of human CD45+ CD3+ T-cells in PB (mean; 5.8 to 23.2%). The pathology and fibrosis scores in the lung and the liver were significantly increased with aggregation of T-cells and hCD68+ macrophages. There was a correlation between liver pathology score and the percentage of hCD68+ cells, suggesting the role of macrophage in fibrogenesis in NSG mice. In order to study long-term survival, 6/9 mice who survived more than 56 days showed increased fibrosis in the lung and liver at the endpoint, which suggests the infiltrating hCD68+ macrophages may be pathogenic. It was shown that the combination of CTX and TBI with a low number of G-hPBMCs (1x106) leads to chronic lung and liver inflammation driven by a high infiltration of human macrophage and mature human T cells from the graft, resulting in fibrosis of lung and liver in NSG mice. In conclusion this model may serve as an important pre-clinical model to further current understanding of the roles of human macrophages in cGvHD.

  10. Dosimetric Analyses of Single Particle Microbeam in Cell Irradiation Experiment

    NASA Astrophysics Data System (ADS)

    Xu, Yong Jian; Jiang, Jiang; Chen, Lianyun; Zhan, Furu; Yu, Zengliang

    2008-12-01

    Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.

  11. Effect of ultrasonic irradiation on mammalian cells and chromosomes in vitro

    NASA Technical Reports Server (NTRS)

    Roseboro, J. A.; Buchanan, P.; Norman, A.; Stern, R.

    1978-01-01

    Human peripheral blood and HeLa cells were irradiated in vitro at the ultrasonic frequency of 65 kHz. The whole blood and HeLa cell suspensions were exposed to continuous and pulsed ultrasonic power levels of 0.12, 0.16, 0.72, 1.12 and 2.24 W for a period of one minute. The method of ultrasonic irradiation was carried out with the whole blood or HeLa cell suspensions coupled directly to a cylindrical transducer while heating of the cell suspensions in excess of 41 C was avoided. Irradiated and unirradiated peripheral blood lymphocyte chromosome cultures were prepared and scored for selected numerical and morphological aberrations. There was no significant difference in the frequency of chromosomal aberrations between irradiated and unirradiated cells.

  12. UVA system for human cornea irradiation

    NASA Astrophysics Data System (ADS)

    Pereira, Fernando R. A.; Stefani, Mario; Otoboni, José A.; Richter, Eduardo H.; Rossi, Giuliano; Mota, Alessandro D.; Ventura, Liliane

    2009-02-01

    According to recent studies, an increase in corneal stiffness is a promising alternative for avoiding ectasias and for stagnating keratoconus of grades 1 and 2. The clinical treatment consists essentially of instilling Riboflavin (vitamin B2), in the cornea and then irradiating the corneal tissue, with UVA (365nm) radiation at 3mW/cm2 for 30min. This procedure provides collagen cross-linking in the corneal surface, increasing its stiffness. This work presents a system for UVA irradiation of the corneas at a peak wavelength of 365nm with adjustable power up to 5mW. The system has closed loop electronics to control the emitted power with 20% precision from the sated power output. The system is a prototype for performing corneal cross-linking and has been clinically tested. The closed loop electronics is a differential from the equipments available on the market.

  13. Susceptibility of irradiated bovine aortic endothelial cells to injury

    SciTech Connect

    Zhou, M.H.; Dong, Q.; Ts'ao, C.

    1988-11-01

    Using cultured bovine aortic endothelial cells (BAEC), the authors attempted to determine whether prior irradiation would alter the susceptibility of these cells to three known injurious stimuli and, if so, whether the alteration would be related to radiation dose. BAEC were irradiated with 0, 5, or 10 Gy of gamma rays and, on the third postirradiation day, exposed to fibrin, nicotine, or bacterial endotoxin (lipopolysaccharide, LPS). Release of prelabeled 51Cr, representing cell lysis, cell detachment, or a combination of the two, was determined. Significant differences between irradiated and control cells were determined by using paired Student's t-tests. Irradiation did not appear to have altered the sensitivity of BAEC to fibrin-induced injury. Cells irradiated with 10 Gy of gamma rays, but generally not those irradiated with half this dose, showed a heightened susceptibility to nicotine. Contrary to the nicotine results, irradiated cells showed less cell detachment and lysis after exposure to LPS. These results suggest that the susceptibility of irradiated BAEC to harmful stimuli depends largely on the nature of the stimulus as well as the radiation dose.

  14. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line.

    PubMed

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-10-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)‑induced skin damage and photoaging in a mouse model. HR‑1 strain hairless male mice were divided into three groups: An untreated control group, a UVB‑irradiated vehicle group and a UVB‑irradiated SME group. The UVB‑irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60‑120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase‑1 (MMP‑1), and the binding of activator protein‑1 (AP‑1) to the MMP‑1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP‑1 fluorescent assay and a chromatin immune‑precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB‑exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB‑treated mice with SME administration. SME pretreatment also significantly inhibited the UVB‑induced upregulation in the expression and activity of MMP‑1 in the cultured HaCaT keratinocytes, and the UVB‑enhanced association of AP‑1 with the MMP‑1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin. PMID:27573915

  15. Spatio-temporal cell dynamics in tumour spheroid irradiation

    NASA Astrophysics Data System (ADS)

    Kempf, H.; Bleicher, M.; Meyer-Hermann, M.

    2010-10-01

    Multicellular tumour spheroids are realistic in vitro systems in radiation research that integrate cell-cell interaction and cell cycle control by factors in the medium. The dynamic reaction inside a tumour spheroid triggered by radiation is not well understood. Of special interest is the amount of cell cycle synchronisation which could be triggered by irradiation, since this would allow follow-up irradiations to exploit the increased sensitivity of certain cell cycle phases. In order to investigate these questions we need to support irradiation experiments with mathematical models. In this article a new model is introduced combining the dynamics of tumour growth and irradiation treatments. The tumour spheroid growth is modelled using an agent-based Delaunay/Voronoi hybrid model in which the cells are represented by weighted dynamic vertices. Cell properties like full cell cycle dynamics are included. In order to be able to distinguish between different cell reactions in response to irradiation quality we introduce a probabilistic model for damage dynamics. The overall cell survival from this model is in agreement with predictions from the linear-quadratic model. Our model can describe the growth of avascular tumour spheroids in agreement to experimental results. Using the probabilistic model for irradiation damage dynamics the classic ‘four Rs’ of radiotherapy can be studied in silico. We found a pronounced reactivation of the tumour spheroid in response to irradiation. A majority of the surviving cells is synchronized in their cell cycle progression after irradiation. The cell synchronisation could be actively triggered and should be exploited in an advanced fractionation scheme. Thus it has been demonstrated that our model could be used to understand the dynamics of tumour growth after irradiation and to propose optimized fractionation schemes in cooperation with experimental investigations.

  16. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  17. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  18. The effects of lipid A on gamma-irradiated human peripheral blood lymphocytes in vitro

    NASA Astrophysics Data System (ADS)

    Dubničková, M.; Kuzmina, E. A.; Chausov, V. N.; Ravnachka, I.; Boreyko, A. V.; Krasavin, E. A.

    2016-03-01

    The modulatory effects of lipid A (diphosphoryl lipid A (DLA) and monophosphoryl lipid A (MLA)) on apoptosis induction and DNA structure damage (single and double-strand breaks (SSBs and DSBs, respectively)) in peripheral human blood lymphocytes are studied for 60Co gamma-irradiation. It is shown that in the presence of these agents the amount of apoptotic cells increases compared with the irradiated control samples. The effect is most strongly pronounced for DLA. In its presence, a significant increase is observed in the number of radiation-induced DNA SSBs and DSBs. Possible mechanisms are discussed of the modifying influence of the used agents on radiation-induced cell reactions

  19. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts

    PubMed Central

    Weissmann, Robert; Kacprowski, Tim; Peper, Michel; Esche, Jennifer; Jensen, Lars R.; van Diepen, Laura; Port, Matthias; Kuss, Andreas W.; Scherthan, Harry

    2016-01-01

    Abstract Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios. PMID:27356049

  20. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts.

    PubMed

    Weissmann, Robert; Kacprowski, Tim; Peper, Michel; Esche, Jennifer; Jensen, Lars R; van Diepen, Laura; Port, Matthias; Kuss, Andreas W; Scherthan, Harry

    2016-08-01

    Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.

  1. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells

    SciTech Connect

    Heisel, M.A.; Laug, W.E.; Stowe, S.M.; Jones, P.A.

    1984-06-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation.

  2. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells.

    PubMed

    Heisel, M A; Laug, W E; Stowe, S M; Jones, P A

    1984-06-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation.

  3. Single proton counting at the RIKEN cell irradiation facility

    SciTech Connect

    Mäckel, V. Puttaraksa, N.; Kobayashi, T.; Yamazaki, Y.

    2015-08-15

    We present newly developed tapered capillaries with a scintillator window, which enable us to count single protons at the RIKEN cell irradiation setup. Their potential for performing single proton irradiation experiments at our beamline setup is demonstrated with CR39 samples, showing a single proton detection fidelity of 98%.

  4. Effects of storage on irradiated red blood cells: An in-vitro and in-vivo study. Master's thesis

    SciTech Connect

    Knoll, S.E.

    1991-08-01

    Irradiation of red blood cell units has recently become a topic of special concern as the result of increasing reports of graft versus host disease in immunocompetent blood transfusion recipients. This study was designed to evaluate the potassium elevations observed in stored irradiated red blood cells and to evaluate the in vivo survival of stored irradiated red blood cells using a dog model. In the in vitro study ten units of human CPDA-1 packed red blood cells were made into paired aliquots; one aliquot of each pair was irradiated with 3000 rads of gamma radiation and the potassium content measured at points throughout 35 days of storage. A significant increase in potassium levels in the irradiated aliquots was observed from the first day after irradiation and continued through the entire storage period.

  5. Irradiation Decreases the Neuroendocrine Biomarker Pro-Opiomelanocortin in Small Cell Lung Cancer Cells In Vitro and In Vivo

    PubMed Central

    Meredith, Suzanne L.; Bryant, Jennifer L.; Babur, Muhammad; Riddell, Philip W.; Behrouzi, Roya; Williams, Kaye J.; White, Anne

    2016-01-01

    Background Small cell lung cancer (SCLC) is an extremely aggressive disease, commonly displaying therapy-resistant relapse. We have previously identified neuroendocrine and epithelial phenotypes in SCLC tumours and the neuroendocrine marker, pro-opiomelanocortin (POMC), correlated with worse overall survival in patients. However, the effect of treatment on these phenotypes is not understood. The current study aimed to determine the effect of repeated irradiation treatment on SCLC cell phenotype, focussing on the neuroendocrine marker, POMC. Results Human SCLC cells (DMS 79) were established as subcutaneous xenograft tumours in CBA nude mice and then exposed to repeated 2Gy irradiation. In untreated animals, POMC in the blood closely mirrored tumour growth; an ideal characteristic for a circulating biomarker. Following repeated localised irradiation in vivo, circulating POMC decreased (p< 0.01), in parallel with a decrease in tumour size, but remained low even when the tumours re-established. The excised tumours displayed reduced and distinctly heterogeneous expression of POMC compared to untreated tumours. There was no difference in the epithelial marker, cytokeratin. However, there were significantly more N-cadherin positive cells in the irradiated tumours. To investigate the tumour response to irradiation, DMS79 cells were repeatedly irradiated in vitro and the surviving cells selected. POMC expression was reduced, while mesenchymal markers N-cadherin, β1-integrin, fibroblast-specific protein 1, β-catenin and Zeb1 expression were amplified in the more irradiation-primed cells. There were no consistent changes in epithelial marker expression. Cell morphology changed dramatically with repeatedly irradiated cells displaying a more elongated shape, suggesting a switch to a more mesenchymal phenotype. Conclusions In summary, POMC biomarker expression and secretion were reduced in SCLC tumours which regrew after irradiation and in repeatedly irradiation (irradiation

  6. [Ways of apoptosis development in human lymphocytes, induced by UV-irradiation].

    PubMed

    Nakvasina, M A; Trubitsyna, M S; Solov'eva, E V; Artiukhov, V G

    2012-01-01

    The level of DNA damage and cytochrome c content in human lymphocytes in the dynamics of apoptosis induced by UV-light (240-390 nm) at doses of 151, 1510 and 3020 J/m2 is studied. DNA fragmentation is revealed in 20 h after UV-irradiation of lymphocytes at doses mentioned above. It is shown that DNA damages (single strand breaks) appear immediately after UV-irradiation of lymphocytes at doses of 1510 and 3020 J/m2 (comets of C1 type) and reach their maximum 6 h after cell modification (comets of C2 and C3 types). It is concluded that p53-dependent and receptor caspase pathways are involved in apoptosis development in the human lymphocytes, modified after UV-irradiation. PMID:23035529

  7. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells.

    PubMed

    Imani, Roghayeh; Veranič, Peter; Iglič, Aleš; Kreft, Mateja Erdani; Pazoki, Meysam; Hudoklin, Samo

    2015-03-01

    The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.

  8. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells.

    PubMed

    Imani, Roghayeh; Veranič, Peter; Iglič, Aleš; Kreft, Mateja Erdani; Pazoki, Meysam; Hudoklin, Samo

    2015-03-01

    The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended. PMID:25385056

  9. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  10. Blue light irradiation suppresses dendritic cells activation in vitro.

    PubMed

    Fischer, Michael R; Abel, Manuela; Lopez Kostka, Susanna; Rudolph, Berenice; Becker, Detlef; von Stebut, Esther

    2013-08-01

    Blue light is a UV-free irradiation suitable for treating chronic skin inflammation, for example, atopic dermatitis, psoriasis, and hand- and foot eczema. However, a better understanding of the mode of action is still missing. For this reason, we investigated whether dendritic cells (DC) are directly affected by blue light irradiation in vitro. Here, we report that irradiation neither induced apoptosis nor maturation of monocyte-derived and myeloid DC. However, subsequent DC maturation upon LPS/IFNγ stimulation was impaired in a dose-dependent manner as assessed by maturation markers and cytokine release. Moreover, the potential of this DC to induce cytokine secretion from allogeneic CD4 T cells was reduced. In conclusion, unlike UV irradiation, blue light irradiation at high and low doses only resulted in impaired DC maturation upon activation and a reduced subsequent stimulatory capacity in allogeneic MLRs with strongest effects at higher doses. PMID:23879817

  11. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    SciTech Connect

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development.

  12. Bystander responses in low dose irradiated cells treated with plasma from gamma irradiated blood

    NASA Astrophysics Data System (ADS)

    Acheva, A.; Georgieva, R.; Rupova, I.; Boteva, R.; Lyng, F.

    2008-02-01

    There are two specific low-dose radiation-induced responses that have been the focus of radiobiologists' interest in recent years. These are the bystander effect in non-irradiated cells and the adaptive response to a challenge dose after prior low dose irradiation. In the present study we have investigated if plasma from irradiated blood can act as a 'challenge dose' on low dose irradiated reporter epithelial cells (HaCaT cell line). The main aim was to evaluate the overall effect of low dose irradiation (0.05 Gy) of reporter cells and the influence of bystander factors in plasma from 0.5 Gy gamma irradiated blood on these cells. The effects were estimated by clonogenic survival of the reporter cells. We also investigated the involvement of reactive oxygen species (ROS) as potential factors involved in the bystander signaling. Calcium fluxes and mitochondrial membrane potential (MMP) depolarization were also examined as a marker for initiation of apoptosis in the reporter cells. The results show that there are large individual differences in the production of bystander effects and adaptive responses between different donors. These may be due to the specific composition of the donor plasma. The observed effects generally could be divided into two groups: adaptive responses and additive effects. ROS appeared to be involved in the responses of the low dose pretreated reporter cells. In all cases there was a significant decrease in MMP which may be an early event in the apoptotic process. Calcium signaling also appeared to be involved in triggering apoptosis in the low dose pretreated reporter cells. The heterogeneity of the bystander responses makes them difficult to be modulated for medical uses. Specific plasma characteristics that cause these large differences in the responses would need to be identified to make them useful for radiotherapy.

  13. Time-resolved fluorimetric probing of DNA structure in irradiated human lymphocytes

    NASA Astrophysics Data System (ADS)

    Maves, Shelley R.; Greenstock, Clive L.

    2005-02-01

    An in situ technique has been developed that detects genomic conformational changes in irradiated human cells. Cells are treated on ice with detergent, mild alkali and ethidium bromide (EB) and the resulting intact nuclei are examined using kinetic spectrofluorimetry. In the nuclei of unirradiated lymphocytes the fluorescence decay profile is tri-exponential with a long-lived component (˜23 ns) attributable to EB intercalated within double-stranded DNA, an intermediate life-time component (˜6 ns) indicative of a loosely bound DNA biomolecular-EB complex, and a short-lived component (˜2 ns) corresponding to unbound EB. Irradiated fresh human lymphocytes show three similar components but their relative contributions are changed. Results from a typical donor, show that after 1 Gy the intermediate component decreased with a concomitant increase in the long-lived component while the short-lived component remained essentially unchanged. Fresh whole blood from healthy donors was irradiated at doses of 0.1-1 Gy, and the samples analyzed with or without post-irradiation incubation at 37 °C for 24 h prior to lymphocyte extraction. For doses of 1.0 Gy in the absence of incubation there is good agreement between multiple samples of the same individual, or among the six donors, as compared with the results from irradiated isolated lymphocytes. Whole blood incubation was unreliable but results from one individual at 0.1 and 1.0 Gy were similar to those observed without incubation. Fluorescence lifetime analysis can detect DNA structural/topological damage in irradiated human lymphoid cells, and it may have potential application to in vivo bio-dosimetry and bio-monitoring.

  14. Post-irradiation-examination of irradiated fuel outside the hot cell

    SciTech Connect

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran; R. Paul Lind; Marc Babcock; Laurence C. Brower; Julie Jacobs; Pamela K. Hoggan

    2007-09-01

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  15. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  16. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Yeshitla, Samrawit; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2016-01-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  17. Electron irradiation effects in epitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Pearsall, N. M.; Robson, N.; Sambell, A. J.; Anspaugh, B.; Cross, T. A.

    1991-01-01

    Performance data for InP-based solar cells after irradiation with 1-MeV electrons up to a fluence of 1 x 1016 e/cm2 are presented. Three InP cell structures are considered. Two of these have epitaxially grown active regions, these being a homojunction design and in ITO/InP structure. These are compared with ITO/InP cells without the epitaxial base region. The cell parameter variations, the influence of illumination during irradiation, and the effect on cell spectral response and capacitance measurements are discussed. Substantial performance recovery after thermal annealing at 90 C is reported.

  18. No irradiation required: The future of humanized immune system modeling in murine hosts.

    PubMed

    McIntosh, Brian E; Brown, Matthew E

    2015-04-01

    Immunocompromised mice are an essential tool for human xenotransplantation studies, including human haematopoietic stem cell (HSC) biology research. Over the past 35 years, there have been many advances in the development of these mouse models, offering researchers increasingly sophisticated options for creating clinically relevant mouse-human chimeras. This addendum article will focus on our recent development of the "NSGW" mouse, which, among other beneficial traits, is genetically modified to obviate the need for myeloablative irradiation of the animals. Thus, the complicating haematopoietic, gastrointestinal, and neurological side effects associated with irradiation are avoided and investigators without access to radiation sources are enabled to pursue engraftment studies with human HSCs. We will also discuss the topics of transgenics, knock-ins, and other mutants with an overarching goal of enhancing chimerism in these animal models. PMID:27171577

  19. Effect of Low Dose Gamma Irradiation together with Lipid A on Human Leukocytes Activities In Vitro

    NASA Astrophysics Data System (ADS)

    Belyakova, E.; Dubnickova, M.; Boreyko, A.

    2010-01-01

    The influence of gamma irradiation and of Lipid A from Escherichia coli on phagocytosis, lyzosyme and peroxidase activities of human leukocytes, in vitro was investigated. Leukocytes samples were irradiated with 1 and 5 Gy, respectively. The number of irradiated leukocytes was decreased in the irradiated samples. Only samples with additive Lipid A were not damaged by irradiation. The Lipid A had positive influence on biological activities of the irradiated leukocytes.

  20. Photomodification of human immunocompetent blood cells

    SciTech Connect

    Krylenkov, V.A.; Ogurtsov, R.P.; Osmanov, M.A.; Kholmogorov, V.E.

    1987-10-01

    In this paper, processes of photomodification of lymphoid cells in human blood, developing immediately after exposure to visible radiation and also in the late stages after irradiation, were investigated by methods of spontaneous and immune rosette formation and the blast transformation test, combined with treatment with the antioxidant alpha-tocopherol and the radioactive assessment of spontaneous and stimulated DNA synthesis by tritium-thymidine-labelled cells.

  1. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and

  2. Testicular function following irradiation of the human prepubertal testis.

    PubMed

    Shalet, S M; Beardwell, C G; Jacobs, H S; Pearson, D

    1978-12-01

    Testicular function was studied in ten men, aged between 17 and 36 years, who had received irradiation for a nephroblastoma during childhood. The dose of scattered irradiation to the testes ranged from 268 to 983 rad. Eight subjects had either oligo- or azoospermia (0 to 5.6 million/ml), seven of whom had an elevated serum follicle-stimulating hormone (FSH) level. One subject showed evidence of Leydig cell dysfunction with a raised serum luteinizing hormone level (LH) and a low plasma testosterone concentration. A second group of eight prepubertal males, aged between 8 and 14 years, were studied. These had also been irradiated for abdominal malignancies during childhood and received a similar dose of irradiation to the testis as the first group studied. The plasma testosterone levels were within the normal range for prepubertal boys in all eight. The mean gonadotrophin levels were not significantly different from the mean levels of normal prepubertal males. Thus irradiation-induced damage to the germinal epithelium in prepubertal boys produces raised FSH levels after puberty but not before it. We conclude, therefore, that inhibition has a minor role in the control of the prepubertal hypothalamic-pituitary testicular axis and its contribution to gonadal control of gonadotrophin secretion changes with sexual maturation.

  3. Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumour cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.

    1999-01-01

    PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.

  4. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  5. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  6. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.

    PubMed

    Sankaranarayanan, Krishnaswami; Taleei, Reza; Rahmanian, Shirin; Nikjoo, Hooshang

    2013-01-01

    While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation

  7. Short course prophylactic cranial irradiation for small cell lung cancer

    SciTech Connect

    Feld, R.; Clamon, G.H.; Blum, R.; Moran, E.; Weiner, R.; Kramer, B.; Evans, W.K.; Herman, J.G.; Hoffman, F.; Burmeister, L.

    1985-10-01

    Ninety-one patients with small cell carcinoma of the lung were given a shortened, intensive course of prophylactic cranial irradiation consisting of 2,000 rad in five fractions. The CNS relapse rate was 21%, but in only one of 91 patients was the brain the first and only site of relapse. Acute toxicities consisting of headache (16%) and nausea and vomiting (15%) were observed. Results are compared with previous results from other studies of cranial irradiation.

  8. The influence of low-power helium-neon laser irradiation on function of selected peripheral blood cells.

    PubMed

    Wasik, M; Gorska, E; Modzelewska, M; Nowicki, K; Jakubczak, B; Demkow, U

    2007-11-01

    The effects of low-level laser light irradiation are debatable and the mechanisms of its action are still unclear. This study was conducted to test the effects of low-level laser irradiation on human blood cells: erythrocytes, granulocytes, and lymphocytes. Whole blood obtained by phlebotomy was irradiated at 632.8 nm by using energy fluences 0.6 J/cm2. An analysis of blood gases revealed an increase in PO2 and SaO2 (P<0.001) in irradiated blood. No shifts in PCO2 and pH were recorded. Spontaneous synthesis of DNA in T and B blood lymphocytes decreased significantly after laser irradiation (P<0.02 and P<0.04, respectively). Phytohemagglutinin (PHA)-induced proliferation of T cells and SAC proliferation of B cells, expressed as a stimulation index, were statistically higher in the samples of irradiated than in non-irradiated blood (P<0.01). Chemiluminescence of fMLP-stimulated granulocytes from irradiated blood increased in comparison with non-irradiated samples (P<0.001). No changes of spontaneous and stimulated chemiluminescence kinetics in irradiated samples were observed. These results reveal the influence of photodynamic reactions on the ability of blood to transport oxygen and on immunomodulatory effects on leukocytes. PMID:18204188

  9. [Knockdown of Puma protects cord blood CD34(+) cells against γ- irradiation].

    PubMed

    Zhao, Lei; Zhang, Hong-Yan; Pang, Ya-Kun; Gu, Hai-Hui; Xu, Jing; Yuan, Wei-Ping; Cheng, Tao

    2014-04-01

    Puma (P53 upregulated modulator of apoptosis) is a BCL-2 homology 3 (BH3)-only BCL-1 family member and a critical mediator of P53-dependent and -independent apoptosis. Puma plays an essential role in the apoptosis of hematopoietic stem cells exposed to irradiation without an increased risk of malignancies. This study was purposed to develop an effective lentiviral vector to target Puma in human hematopoietic cells and to investigate the effect of Puma gene knockdown on the biological function of human cord blood CD34(+) cells. SF-LV-shPuma-EGFP and control vectors were constructed, and packaged with the pSPAX2/pMD2.G packaging plasmids via 293T cells to produce pseudo-type lentiviruses. SF-LV-shPuma-EGFP or control lentiviruses were harvested within 72 hours after transfection and then were used to transduce human cord blood CD34(+) cells. GFP(+) transduced cells were sorted by flow cytometry (FCM) for subsequent studies. Semi-quantitative real time RT PCR, Western blot, FCM with Annexin V-PE/7-AAD double staining, Ki67 staining, colony forming cell assay (CFC), CCK-8 assay and BrdU incorporation were performed to determine the expression of Puma and its effect on the cord blood CD34(+) cells. The results showed that Puma was significantly knocked down in cord blood CD34(+) cells and the low expression of Puma conferred a radio-protective effect on the cord blood CD34(+) cells. This effect was achieved through reduced apoptosis and sustained quiescence after irradiation due to Puma knockdown. It is concluded that knockdown of puma gene in CD34(+) hematopoietic stem cells of human cord blood possesses the radioprotective effect, maintains the cells in silence targeting Puma in human hematopoietic cells may have a similar effect with that on mouse hematopoietic cells as previously shown, and our lentiviral targeting system for Puma provides a valuable tool for future translational studies with human cells.

  10. Induction of proteins and mRNAs after uv irradiation of human epidermal keratinocytes

    SciTech Connect

    Kartasova, T.; Ponec, M.; van de Putte, P.

    1988-02-01

    uv sensitivity of cultured human epidermal keratinocytes was analyzed at different growth conditions and compared with the sensitivity of dermal fibroblasts derived from the same skin specimen. No significant differences in survival curves were found between these two cell types, although keratinocytes grown under standard conditions were slightly more resistant to uv irradiation than fibroblasts. The extracellular concentration of calcium appeared to be critical not only in the regulation of keratinocyte proliferation and differentiation, but also in the uv sensitivity of these cells: keratinocytes grown under conditions which favor cell proliferation (low calcium concentration) are more resistant to uv irradiation than those grown under conditions favoring differentiation (high calcium concentration). Two-dimensional protein gel electrophoresis was used to detect a possible effect of uv irradiation on the accumulation of specific mRNAs in the cytoplasm and/or on the synthesis of specific proteins. Proteins were pulse labeled in vivo with (/sup 35/S)methionine or synthesized in vitro in rabbit reticulocyte lysates on mRNA isolated from keratinocytes that were irradiated with different uv doses at different periods of time prior to isolation. Alterations in expression were demonstrated for several proteins in both in vivo and in vitro experiments.

  11. Ionising irradiation alters the dynamics of human long interspersed nuclear elements 1 (LINE1) retrotransposon.

    PubMed

    Tanaka, Atsushi; Nakatani, Youko; Hamada, Nobuyuki; Jinno-Oue, Atsushi; Shimizu, Nobuaki; Wada, Seiichi; Funayama, Tomoo; Mori, Takahisa; Islam, Salequl; Hoque, Sheikh Ariful; Shinagawa, Masahiko; Ohtsuki, Takahiro; Kobayashi, Yasuhiko; Hoshino, Hiroo

    2012-09-01

    It is important to identify the mechanism by which ionising irradiation induces various genomic alterations in the progeny of surviving cells. Ionising irradiation activates mobile elements like retrotransposons, although the mechanism of its phenomena consisting of transcriptions and insertions of the products into new sites of the genome remains unclear. In this study, we analysed the effects of sparsely ionising X-rays and densely ionising carbon-ion beams on the activities of a family of active retrotransposons, long interspersed nuclear elements 1 (L1). We used the L1/reporter knock-in human glioma cell line, NP-2/L1RP-enhanced GFP (EGFP), that harbours full-length L1 tagged with EGFP retrotransposition detection cassette (L1RP-EGFP) in the chromosomal DNA. X-rays and carbon-ion beams similarly increased frequencies the transcription from L1RP-EGFP and its retrotransposition. Short-sized de novo L1RP-EGFP insertions with 5'-truncation were induced by X-rays, while full-length or long-sized insertions (>5 kb, containing ORF1 and ORF2) were found only in cell clones irradiated by the carbon-ion beams. These data suggest that X-rays and carbon-ion beams induce different length of de novo L1 insertions, respectively. Our findings thus highlight the necessity to investigate the mechanisms of mutations caused by transposable elements by ionising irradiation.

  12. Influence of three laser wavelengths on human fibroblasts cell culture.

    PubMed

    Crisan, Bogdan; Soritau, Olga; Baciut, Mihaela; Campian, Radu; Crisan, Liana; Baciut, Grigore

    2013-02-01

    Although experimental studies in vitro and vivo have been numerous, the effect of laser wavelength irradiation on human fibroblast cell culture is poorly understood. This emphasizes the need of additional cellular and molecular research into laser influence with low energy and power. The aim of this study was to assess the influence of three different laser wavelengths on the human skin fibroblasts cell culture. We wanted to evaluate if near infrared lasers had any influence in healing of wounds by stimulating mitochondrial activity of fibroblasts. The cells were irradiated using 830-, 980- and 2,940-nm laser wavelengths. The irradiated cells were incubated and their mitochondrial activity was assessed by the MTT assay at 24, 48 and 72 h. Simultaneously, an apoptosis assay was assessed on the irradiated fibroblasts. It can be concluded that laser light of the near-infrared region (830 and 980 nm) influences fibroblasts mitochondrial activity compared to the 2,940-nm wavelength which produces apoptosis.

  13. Inhibition of matrix metalloproteinase-1 and type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells.

    PubMed

    Kim, Han Hyuk; Kim, Dong Hee; Oh, Myeong Hwan; Park, Kwang Jun; Heo, Jun Hyeok; Lee, Min Won

    2015-01-01

    The aim of this study was to investigate the effect of Quercus mongolica (QM) which induce anti-photoaging process of skin in vitro. Bioassay-guided isolation of 80 % Me2CO extract of the leaves of QM led to the isolation and identification of six known phenolic compounds: pedunculagin (1), (-)-epigallocatechin (2), (+)-catechin (3), quercetin 3-O-(6″-O-galloyl)-β-D-glucopyranoside (4), kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (5) and kaempferol 3-O-(6″-galloyl)-β-D-glucopyranoside (6). The effects of compounds 1-6 on expression of matrix metalloproteinase-1 (MMP-1) and type-I procollagen were further evaluated. Among them, compound 1 showed potent inhibitory effect on MMP-1 and the increased type-I procollagen synthesis in ultraviolet B-induced human fibroblast. These results suggest that pedunculagin, an ellagitannin, is a potential candidate for the prevention and treatment of skin aging.

  14. Increased efficiency of immunotherapy using irradiated tumor cells.

    PubMed

    Wu, J M; Fitzgerald, J; Sonis, S; Ravikumar, T; Wilson, R

    1987-01-01

    The efficacy of irradiated tumor cells combined with chemotherapy or non-specific immunostimulation with complete Freund's adjuvant was tested in a model of minimal residual tumor-bearing syngeneic mice. Male C57BL/6J mice were innoculated in the right rear leg with live tumor cells from a methylcholanthrene induced fibrosarcoma. The tumor was resected when it reached 0.7 cm in diameter and animals were treated with doses of irradiated tumor cells (XTC) from the primary tumor ranging in number from 1 X 10(3) to 9 X 10(3). Best survival was noted using 5 X 10(3) XTC combined with irradiated tumor cells of liver or pulmonary metastases origin, complete Freund's adjuvant or cytoxan. The combination of irradiated tumor cells of metastatic origin did not enhance the therapeutic effect of XTC alone. Freund's adjuvant was not of benefit in enhancing the efficacy of XTC. However, improved survival was noted when chemotherapy in the form of cytoxan was used to supplement XTC. Our data suggests that XTC is more efficacious as a mode of immunotherapy than are live tumor cells. The dose of XTC used is critical in determining its effect. Chemotherapy appears to enhance the benefit of XTC.

  15. Effects of Electron-Beam Irradiation on Buccal-Cell DNA

    PubMed Central

    Castle, Philip E.; Garcia-Closas, Montserrat; Franklin, Tracie; Chanock, Stephen; Puri, Vinita; Welch, Robert; Rothman, Nathaniel; Vaught, Jim

    2003-01-01

    Buccal cells were collected from 29 participants, by use of mouthwash rinses, and were split into equal aliquots, with one aliquot irradiated by electron-beam (E-beam) irradiation equivalent to the sterilizing dosage used by the U.S. Postal Service and the other left untreated. Aliquots were extracted and tested for DNA yields (e.g., TaqMan assay for quantifying human genomic DNA), genomic integrity, and amplification-based analysis of genetic variants (e.g., single-nucleotide polymorphisms [SNPs] and single tandem repeats [STRs]). Irradiated aliquots had lower median DNA yields (3.7 μg/aliquot) than untreated aliquots (7.6 μg/aliquot) (P<.0005) and were more likely to have smaller maximum DNA fragment size, on the basis of genomic integrity gels, than untreated aliquots (P<.0005). Irradiated aliquots showed poorer PCR amplification of a 989-bp β-globin target (97% for weak amplification and 3% for no amplification) than untreated aliquots (7% for weak amplification and 0% for no amplification) (P<.0005), but 536-bp and 268-bp β-globin targets were amplified from all aliquots. There was no detectable irradiation effect on SNP assays, but there was a significant trend for decreased detection of longer STRs (P=.01) in irradiated versus untreated aliquots. We conclude that E-beam irradiation reduced the yield and quality of buccal-cell specimens, and, although irradiated buccal-cell specimens may retain sufficient DNA integrity for some amplified analyses of many common genomic targets, assays that target longer DNA fragments (>989 bp) or require whole-genome amplification may be compromised. PMID:12917795

  16. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  17. Development of human epithelial cell systems for radiation risk assessment.

    PubMed

    Yang, C H; Craise, L M

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells. PMID:11538024

  18. METAPHIX-1 non destructive post irradiation examinations in the irradiated elements cell at Phenix

    SciTech Connect

    Breton, Laurent; Masson, M.; Garces, E.; Desjardins, S.; Fontaine, B.; Lacroix, B.; Martella, T.; Loubet, L.; Ohta, H.; Yokoo, T.; Ougier, M.; Glatz, J.P.

    2007-07-01

    Central Research Institute of Electric Power Industry (CRIEPI) has been developing minor actinide (MA) transmutation technology in homogeneous loading mode by use of metal fuel fast reactors in cooperation with Institute for Transuranium Elements (ITU) and Commissariat a l'Energie Atomique (CEA). Fast reactor metal fuel pins of Uranium- Plutonium-Zirconium (U-Pu-Zr) alloy containing 2 wt% MAs and 2 wt% rare earth elements (REs), 5 wt% MAs, and 5 wt% MAs and 5 wt% REs were irradiated in the PHENIX French fast reactor as METAPHIX experiments. In these METAPHIX experiments, three rigs each consisting of three metal fuel experimental pins and sixteen oxide fuel driver pins were irradiated. The target burnup of the three rigs is 2.4 at%, 7 at% and 11 at% which corresponds to 120, 360 and 600 equivalent full power days (EFPD) in terms of irradiation periods, respectively. The low burnup rig of 2.4 at%, METAPHIX-1, was discharged from the core in August 2004. After cooling, the non-destructive post irradiation examinations (PIEs) of the rig (visual examination, measurement of rig length and deformation) and of the metal fuel pins (visual examination, measurement of pin length and deformation, {gamma}-spectrometry and neutron radiography) were conducted in the Irradiated Elements Cell (IEC) at PHENIX. (authors)

  19. Effect of recombinant human granulocyte colony-stimulating factor on granulocytopenia in mice induced by irradiation

    SciTech Connect

    Fushiki, M.; Ono, K.; Sasai, K.; Shibamoto, Y.; Tsutsui, K.; Nishidai, T.; Takahashi, M.; Abe, M. )

    1990-02-01

    We report the effect of human granulocyte colony-stimulating factor (hG-CSF) on the recovery from granulocytopenia induced by irradiation. Female 9-week old C3H/He mice were used. The irradiation schedule was as follows: Group 1 and 2 received whole-body irradiation of 1 Gy and 5 Gy, respectively, on day 0; Group 3 and 4 received whole-body irradiation of 0.5 and 1.0 Gy, respectively, for 5 consecutive days; Group 5 received upper hemibody irradiation of 3 Gy for 5 consecutive days. Daily subcutaneous injections of G-CSF (3 x 10(5) Unit/mouse) or 0.3 ml of saline to each group were started from the day after the first irradiation and continued for 18 days. Mice were sampled randomly from each group, and the total number of leukocytes, erythrocytes of peripheral blood, nucleated cells in femur, and spleen weight were counted and measured, respectively, on day 0, 3, 5, 7, 9, 12, and 18. The leukocyte counts decreased with an increase in radiation doses. In Group 1 and 2 mice, G-CSF enhanced the leukocyte count more than saline. In Group 3 mice, the recovery of leukocytopenia was facilitated by G-CSF, but in Group 4 mice, G-CSF had no effect on the leukocyte count decrease or on leukocytopenia recovery. In Group 5 mice, G-CSF greatly affected leukocytopenia recovery. Increase in spleen weight paralleled the peripheral leukocyte count. Daily administration of recombinant hG-CSF accelerated the granulocytopenia recovery which was induced by irradiation, and it may be a useful therapeutic agent for treating myelosuppressive cases.

  20. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways.

    PubMed

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage. PMID:26613333

  1. Whole tumor antigen vaccination using dendritic cells: comparison of RNA electroporation and pulsing with UV-irradiated tumor cells.

    PubMed

    Benencia, Fabian; Courrèges, Maria C; Coukos, George

    2008-01-01

    Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions. PMID:18445282

  2. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells.

    PubMed

    Lam, R K K; Han, Wei; Yu, K N

    2015-12-01

    We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased significantly. PMID:26524645

  3. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells.

    PubMed

    Lam, R K K; Han, Wei; Yu, K N

    2015-12-01

    We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased significantly.

  4. Expression profiling of cancer-related genes in human keratinocytes following non-lethal ultraviolet B irradiation.

    PubMed

    Murakami, T; Fujimoto, M; Ohtsuki, M; Nakagawa, H

    2001-10-01

    Ultraviolet B irradiation initiates and promotes skin cancers, photo-aging, and immune suppression. In order to elucidate the effect of these processes at the level of gene expression, we used cDNA microarray technology to examine the effect of ultraviolet B irradiation on 588 cancer-related genes in human keratinocytes at 1, 6, and 24 h post-irradiation with a mildly cytotoxic dose of ultraviolet B (170 mJ/cm(2)). The viability of the irradiated keratinocytes was 75% at 24 h post-irradiation. Various cytokeratins and transcription factors were up-regulated within 1 h post-irradiation. After 6 h, expression of a variety of genes related to growth regulation (e.g. p21(WAF1), notch 4, and smoothened), apoptosis (e.g. caspase 10, hTRIP, and CRAF1), DNA repair (ERCC1, XRCC1), cytokines (e.g. IL-6, IL-13, TGF-beta, and endothelin 2), and cell adhesion (e.g. RhoE, and RhoGDI) were altered in human keratinocytes. These data suggest the changes in a cascade of gene expression in human keratinocytes occurring within 24 h after UVB exposure. Although the roles of these cellular genes after UVB-irradiation remain to be elucidated, microarray analysis may provide a new view of gene expression in epidermal keratinocytes following UVB exposure.

  5. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  6. Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth.

    PubMed

    Girdhani, Swati; Lamont, Clare; Hahnfeldt, Philip; Abdollahi, Amir; Hlatky, Lynn

    2012-07-01

    The energy deposition characteristics of proton radiation have attracted considerable attention in light of its implications for carcinogenesis risk in space travel, as well for application to cancer treatment. In space, it is the principle component of the galactic cosmic radiation to which astronauts will be exposed. For treatment, an increasing number of proton facilities are being established to exploit the physical advantages of this radiation type. However, the possibility that there may also be biologically based advantages to proton exposure has not been considered in either context. We demonstrate here that high-energy proton irradiation can inhibit expression of major pro-angiogenic factors and multiple angiogenesis-associated processes, including invasion and endothelial cell proliferation, which is prominent in cancer progression. Dose-dependent suppression of angiogenic signaling was demonstrated for both cancer and nontransformed cells. Pan-genomic microarray analysis and RT-PCR revealed that post-irradiation (0.5, 1.0 and 2.0 Gy), critical pro-angiogenic signaling factors including: vascular endothelial growth factor (VEGF), interleukin 6 and 8 (IL-6, IL-8) and hypoxia-inducible factor-1 alpha (HIF-1A), were significantly downregulated. Co-culture studies demonstrated that endothelial cell proliferation and invasion were inhibited by culturing with irradiated cancer or fibroblast cells, which suggests that proton irradiation may, in addition to direct action, contribute to angiogenesis suppression through modulation of paracrine signalings from targeted cells. Addition of recombinant IL-8 or VEGF partially restored these functions in vitro, while in vivo, an attenuated tumor growth rate was demonstrated for proton-irradiated human lung cancer cells. Taken together, these findings provide novel pre-clinical evidence that proton irradiation may, in addition to its physical targeting advantages, have important biological ramifications that should be a

  7. Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth.

    PubMed

    Girdhani, Swati; Lamont, Clare; Hahnfeldt, Philip; Abdollahi, Amir; Hlatky, Lynn

    2012-07-01

    The energy deposition characteristics of proton radiation have attracted considerable attention in light of its implications for carcinogenesis risk in space travel, as well for application to cancer treatment. In space, it is the principle component of the galactic cosmic radiation to which astronauts will be exposed. For treatment, an increasing number of proton facilities are being established to exploit the physical advantages of this radiation type. However, the possibility that there may also be biologically based advantages to proton exposure has not been considered in either context. We demonstrate here that high-energy proton irradiation can inhibit expression of major pro-angiogenic factors and multiple angiogenesis-associated processes, including invasion and endothelial cell proliferation, which is prominent in cancer progression. Dose-dependent suppression of angiogenic signaling was demonstrated for both cancer and nontransformed cells. Pan-genomic microarray analysis and RT-PCR revealed that post-irradiation (0.5, 1.0 and 2.0 Gy), critical pro-angiogenic signaling factors including: vascular endothelial growth factor (VEGF), interleukin 6 and 8 (IL-6, IL-8) and hypoxia-inducible factor-1 alpha (HIF-1A), were significantly downregulated. Co-culture studies demonstrated that endothelial cell proliferation and invasion were inhibited by culturing with irradiated cancer or fibroblast cells, which suggests that proton irradiation may, in addition to direct action, contribute to angiogenesis suppression through modulation of paracrine signalings from targeted cells. Addition of recombinant IL-8 or VEGF partially restored these functions in vitro, while in vivo, an attenuated tumor growth rate was demonstrated for proton-irradiated human lung cancer cells. Taken together, these findings provide novel pre-clinical evidence that proton irradiation may, in addition to its physical targeting advantages, have important biological ramifications that should be a

  8. Implications of irradiating the subventricular zone stem cell niche.

    PubMed

    Capilla-Gonzalez, Vivian; Bonsu, Janice M; Redmond, Kristin J; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2016-03-01

    Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as neurological deficits. While likely multi-factorial, the effect may in part be associated with the impact of radiation on the neurogenic niches. In the adult mammalian brain, the neurogenic niches are localized in the subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus of the hippocampus, where the neural stem cells (NSCs) reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term olfactory memory and a reduced capacity to respond to brain damage in animal models, as well as compromised tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review, we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation dose to the SVZ and both tumor control and toxicity.

  9. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Tanner, Judith; Butz, Tilman

    2007-07-01

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone γH2AX. Our concern was to test the feasibility of γH2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as "biological track detectors" for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of γH2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si 3N 4 window showed a homogenous Hsp70 expression pattern.

  10. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  11. Sample Targeting During Single-Particle Single-Cell Irradiation

    SciTech Connect

    Bigelow, A.W.; Randers-Pehrson, G.; Michel, K.A.; Brenner, D.J.; Dymnikov, A.D.

    2003-08-26

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  12. Effects of Electron Beam and Microwave Irradiation on Human Blood Proteins

    SciTech Connect

    Martin, Diana I.; Craciun, Gabriela D.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.; Stan, Dana E.; Radu, Roxana R.; Margaritescu, Irina D.; Chirita, Doru I.

    2007-04-23

    The effects of separated and combined accelerated electron beam (EB) of 6.23 MeV and microwave (MW) of 2.45GHz irradiation on proteins in samples of human serum, human plasma and human integral blood are presented. Also, it was studied the effect of separate and combined EB and MW irradiation on proteins irradiated in samples of human integral blood, without and in the presence of a synthetic compound solution (S.C.S.) which is expected to exhibit various biological actions, such as to diminish or to increase the irradiation effects.

  13. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  14. Effects of X-ray irradiation on human spermatogenesis

    NASA Technical Reports Server (NTRS)

    Thorslund, T. W.; Paulsen, C. A.

    1972-01-01

    Direct cell kill and inhibition of mitosis have been suggested as mechanisms to explain the occurrence of absolute sterility following the irradiation of the testes. In order to obtain information on the existence and dose dependency of the mechanisms for man, a controlled study was initiated. Sixty-four men received a single midorgan dose to both of their testes ranging from 7.5 to 400r (f = .95). It was deduced from resulting pre-sterile period and sterile period data that both cell kill and mitosis halting mechanisms were operating. The maximum observed sterile period was 501 days with eventual recovery observed in each individual where the follow-up was complete. Thus man appears to be highly radiosensitive in regard to temporary sterility but quite radioresistant in regard to permanent sterility.

  15. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  16. Irradiation Can Selectively Kill Tumor Cells while Preserving Erythrocyte Viability in a Co-Culture System

    PubMed Central

    Liu, Yun-Qing; Tang, Li-Hui; Wang, Yin; Wang, Lie-Ju; Zhang, Feng-Jiang; Yan, Min

    2015-01-01

    An understanding of how to safely apply intraoperative blood salvage (IBS) in cancer surgery has not yet been obtained. Here, we investigated the optimal dose of 137Cs gamma-ray irradiation for killing human hepatocarcinoma (HepG2), gastrocarcinoma (SGC7901), and colonic carcinoma (SW620) tumor cells while preserving co-cultured erythrocytes obtained from 14 healthy adult volunteers. HepG2, SGC7901, or SW620 cells were mixed into the aliquots of erythrocytes. After the mixed cells were treated with 137Cs gamma-ray irradiation (30, 50, and 100 Gy), tumor cells and erythrocytes were separated by density gradient centrifugation in Percoll with a density of 1.063 g/ml. The viability, clonogenicity, DNA synthesis, tumorigenicity, and apoptosis of the tumor cells were determined by MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, subcutaneous xenograft implantation into immunocompromised mice, and annexin V/7-AAD staining, respectively. The ATP concentration, 2,3-DPG level, free Hb concentration, osmotic fragility, membrane phosphatidylserine externalization, blood gas variables, reactive oxygen species levels, and superoxide dismutase levels in erythrocytes were analyzed. We found that 137Cs gamma-ray irradiation at 50 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SGC7901, and SW620 cells without markedly damaging the oxygen-carrying ability or membrane integrity or increasing the oxidative stress of erythrocytes in vitro. These results demonstrated that 50 Gy irradiation in a standard 137Cs blood irradiator might be a safe and effective method of inactivating HepG2, SGC7901, and SW620 cells mixed with erythrocytes, which might help to safely allow IBS in cancer surgery. PMID:26018651

  17. Irradiation Can Selectively Kill Tumor Cells while Preserving Erythrocyte Viability in a Co-Culture System.

    PubMed

    Gong, Ming; Yang, Jin-Ting; Liu, Yun-Qing; Tang, Li-Hui; Wang, Yin; Wang, Lie-Ju; Zhang, Feng-Jiang; Yan, Min

    2015-01-01

    An understanding of how to safely apply intraoperative blood salvage (IBS) in cancer surgery has not yet been obtained. Here, we investigated the optimal dose of 137Cs gamma-ray irradiation for killing human hepatocarcinoma (HepG2), gastrocarcinoma (SGC7901), and colonic carcinoma (SW620) tumor cells while preserving co-cultured erythrocytes obtained from 14 healthy adult volunteers. HepG2, SGC7901, or SW620 cells were mixed into the aliquots of erythrocytes. After the mixed cells were treated with 137Cs gamma-ray irradiation (30, 50, and 100 Gy), tumor cells and erythrocytes were separated by density gradient centrifugation in Percoll with a density of 1.063 g/ml. The viability, clonogenicity, DNA synthesis, tumorigenicity, and apoptosis of the tumor cells were determined by MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, subcutaneous xenograft implantation into immunocompromised mice, and annexin V/7-AAD staining, respectively. The ATP concentration, 2,3-DPG level, free Hb concentration, osmotic fragility, membrane phosphatidylserine externalization, blood gas variables, reactive oxygen species levels, and superoxide dismutase levels in erythrocytes were analyzed. We found that 137Cs gamma-ray irradiation at 50 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SGC7901, and SW620 cells without markedly damaging the oxygen-carrying ability or membrane integrity or increasing the oxidative stress of erythrocytes in vitro. These results demonstrated that 50 Gy irradiation in a standard 137Cs blood irradiator might be a safe and effective method of inactivating HepG2, SGC7901, and SW620 cells mixed with erythrocytes, which might help to safely allow IBS in cancer surgery. PMID:26018651

  18. In vitro infectivity of irradiated Plasmodium berghei sporozoites to cultured hepatoma cells

    SciTech Connect

    Sigler, C.I.; Leland, P.; Hollingdale, M.R.

    1984-07-01

    The invasion of gamma-irradiated Plasmodium berghei sporozoites into cultured hepatoma cells and their transformation into trophozoites was similar to invasion and transformation of non-irradiated sporozoites. However, trophozoites from irradiated sporozoites did not further develop into schizonts, but persisted within the cells for up to 3 days. Sporozoite surface protective antigen was present in trophozoites from irradiated and non-irradiated sporozoites, suggesting that hepatocyte antigen processing may contribute to the induction of anti-malarial immunity.

  19. Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice with Experimental Brain Tumors

    PubMed Central

    Balyasnikova, Irina V; Prasol, Melanie S; Ferguson, Sherise D; Han, Yu; Ahmed, Atique U; Gutova, Margarita; Tobias, Alex L; Mustafi, Devkumar; Rincón, Esther; Zhang, Lingjiao; Aboody, Karen S; Lesniak, Maciej S

    2014-01-01

    Treatment options of glioblastoma multiforme are limited due to the blood–brain barrier (BBB). In this study, we investigated the utility of intranasal (IN) delivery as a means of transporting stem cell–based antiglioma therapeutics. We hypothesized that mesenchymal stem cells (MSCs) delivered via nasal application could impart therapeutic efficacy when expressing TNF-related apoptosis-inducing ligand (TRAIL) in a model of human glioma. 111In-oxine, histology and magnetic resonance imaging (MRI) were utilized to track MSCs within the brain and associated tumor. We demonstrate that MSCs can penetrate the brain from nasal cavity and infiltrate intracranial glioma xenografts in a mouse model. Furthermore, irradiation of tumor-bearing mice tripled the penetration of 111In-oxine–labeled MSCs in the brain with a fivefold increase in cerebellum. Significant increase in CXCL12 expression was observed in irradiated xenograft tissue, implicating a CXCL12-dependent mechanism of MSCs migration towards irradiated glioma xenografts. Finally, MSCs expressing TRAIL improved the median survival of irradiated mice bearing intracranial U87 glioma xenografts in comparison with nonirradiated and irradiated control mice. Cumulatively, our data suggest that IN delivery of stem cell–based therapeutics is a feasible and highly efficacious treatment modality, allowing for repeated application of modified stem cells to target malignant glioma. PMID:24002694

  20. Generation of lipid neutrophil chemoattractant by irradiated bovine aortic endothelial cells.

    PubMed

    Matzner, Y; Cohn, M; Hyam, E; Razin, E; Fuks, Z; Buchanan, M R; Haas, T A; Vlodavsky, I; Eldor, A

    1988-04-15

    Radiation injury to blood vessels is associated with an acute inflammatory process. We investigated the capacity of cultured bovine aortic endothelial cells (BAEC) to produce chemotactic factors after radiation injury. BAEC in serum-free media were irradiated with a cobalt-60 Gammacell 220 and the cell supernatants were assayed for chemotactic activity for human neutrophils in a Boyden chamber. There was a rapid release of chemotactic activity into the BAEC supernatants which was dependent both on the dose of radiation (5 to 40 Gy) and the time between irradiation and sample collection. In contrast, isolation of BAEC lysates by freeze-thawing was not associated with the presence of similar chemotactic activity. The chemotactic activity released from the irradiated BAEC was not destroyed by boiling nor by treatment with trypsin. The release of the chemotactic activity was, however, inhibited by the addition of a lipoxygenase inhibitor but not by the addition of a cyclooxygenase inhibitor before the irradiation. The chemotactic activity was recovered from the cell supernatants in the lipid phase after extraction with chloroform/methanol. Furthermore, the chloroform/methanol extracts co-eluted with authentic leukotriene B4 when the BAEC were prelabeled with [14C] arachidonic acid. However, we were unable to detect endogenous leukotriene B4 with RIA. Instead, the only detectable endogenous lipid present in the supernatants was 13-hydroxyoctadecadienoic acid which is derived from linoleic acid via the lipoxygenase pathway. 13-Hydroxyoctadecadienoic acid, however, had no chemotactic activity. These findings suggest that endothelial cells rapidly release a chemotactic agent after irradiation, the release of which is associated with a lipoxygenase pathway. The release of this chemotactic activity may account in part for the acute inflammatory response that is observed after ionizing irradiation.

  1. Artificial sunlight irradiation induces ultraweak photon emission in human skin fibroblasts.

    PubMed

    Niggli, H J

    1993-05-01

    Photons participate in many atomic and molecular interactions and changes in the physical universe. In recent years sophisticated detection procedures for the measurement of ultraweak photons in a variety of different cells have been performed leading to the conclusion that plant, animal and human cells emit ultraweak photons. Using an extremely low-noise, high-sensitive photon-counting system, which allows maximal exploitation of the potential capabilities of a photomultiplier tube, ultraweak photons were quantitated in human skin fibroblasts. It was found that light from an artificial sunlight source induces ultraweak photon emission in these cells. However, the results demonstrate that this induction is significantly lower in normal fibroblasts compared with those obtained from a donor suffering from xeroderma pigmentosum disease group A, a disease characterized by deficient repair of DNA. The largest increase in ultraweak photon emission after UV exposure was measured in mitomycin-C-induced post-mitotic xeroderma pigmentosum cells which showed 10-20 times higher ultraweak photon intensities than mitotic UV-irradiated normal cells. These data suggest that xeroderma pigmentosum cells tend to lose the capacity of efficient storage of ultraweak photons, indicating the existence of an efficient intracellular photon trapping system within human cells. PMID:8350193

  2. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  3. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes

    PubMed Central

    Ascenso, Andreia; Pedrosa, Tiago; Pinho, Sónia; Pinho, Francisco; de Oliveira, José Miguel P. Ferreira; Cabral Marques, Helena; Oliveira, Helena; Simões, Sandra; Santos, Conceição

    2016-01-01

    Lycopene has been reported as the antioxidant most quickly depleted in skin upon UV irradiation, and thus it might play a protective role. Our goal was to investigate the effects of preexposure to lycopene on UV-B-irradiated skin cells. Cells were exposed for 24 h to 10 M lycopene, and subsequently irradiated and left to recover for another 24 h period. Thereafter, several parameters were analyzed by FCM and RT-PCR: genotoxicity/clastogenicity by assessing the cell cycle distribution; apoptosis by performing the Annexin-V assay and analyzing gene expression of apoptosis biomarkers; and oxidative stress by ROS quantification. Lycopene did not significantly affect the profile of apoptotic, necrotic and viable cells in nonirradiated cells neither showed cytostatic effects. However, irradiated cells previously treated with lycopene showed an increase in both dead and viable subpopulations compared to nonexposed irradiated cells. In irradiated cells, lycopene preexposure resulted in overexpression of BAX gene compared to nonexposed irradiated cells. This was accompanied by a cell cycle delay at S-phase transition and consequent decrease of cells in G0/G1 phase. Thus, lycopene seems to play a corrective role in irradiated cells depending on the level of photodamage. Thus, our findings may have implications for the management of skin cancer. PMID:26664697

  4. The sensitivity of human mesenchymal stem cells to ionizing radiation

    SciTech Connect

    Chen, M.-F.; Lin, C.-T.; Chen, W.-C.; Yang, C.-T.; Chen, C.-C.; Liao, S.-K.; Liu, J.M.; Lu, C.-H.; Lee, K.-D. . E-mail: kdlee@adm.cgmh.org.tw

    2006-09-01

    Purpose: Recent studies have shown that mesenchymal stem cells (MSCs) obtained from bone marrow transplantation patients originate from the host. This clinical observation suggests that MSCs in their niches could be resistant to irradiation. However, the biologic responses of bone marrow MSCs to irradiation have rarely been described in the literature. Methods and Materials: In this study, human bone marrow-derived, clonally expanded MSCs were used to investigate their sensitivity to irradiation in vitro, and the cellular mechanisms that may facilitate resistance to irradiation. The human lung cancer cell line A549 and the breast cancer cell line HCC1937 were used as controls for radiosensitivity; the former line has been shown to be radioresistant and the latter radiosensitive. We then examined their in vitro biologic changes and sensitivities to radiation therapy. Results: Our results suggest that MSCs are characterized as resistant to irradiation. Several cellular mechanisms were demonstrated that may facilitate resistance to irradiation: ATM protein phosphorylation, activation of cell-cycle checkpoints, double-strand break repair by homologous recombination and nonhomologous end joining (NHEJ), and the antioxidant capacity for scavenging reactive oxygen species. Conclusions: As demonstrated, MSCs possess a better antioxidant reactive oxygen species-scavenging capacity and active double-strand break repair to facilitate their radioresistance. These findings provide a better understanding of radiation-induced biologic responses in MSCs and may lead to the development of better strategies for stem cell treatment and cancer therapy.

  5. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    SciTech Connect

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-04-30

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virus 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells.

  6. c-MET inhibition enhances the response of the colorectal cancer cells to irradiation in vitro and in vivo

    PubMed Central

    JIA, YITAO; DAI, GUANGYAO; WANG, JINXI; GAO, XING; ZHAO, ZHAOLONG; DUAN, ZHIHUI; GU, BIN; YANG, WEIGUANG; WU, JIANHUA; JU, YINGCHAO; WANG, MINGXIA; LI, ZHONGXIN

    2016-01-01

    The aim of the present study was to investigate the effect of hepatocyte growth factor receptor (c-MET) inhibition on the viability of colon cancer cells and xenografts exposed to irradiation using short hairpin (sh)RNA or the c-MET inhibitor PHA665752. The underlying mechanisms were also investigated. Human colorectal adenocarcinoma HT-29 cells were infected with a lentivirus expressing shRNAs against c-MET and were irradiated at 0, 2, 4, 6 and 8 Gy. The viability of the cells was assessed by alamarBlue® assays. Mice bearing human colon carcinoma SW620 xenografts were randomly selected to receive 2.5% dimethyl sulfoxide (DMSO), 25 mg/kg PHA665752 intraperitoneally once every 2 days for 3 weeks, irradiation at 10 Gy, or 25 mg/kg PHA665752 intraperitoneally once every 2 days for 3 weeks followed 24 h later by irradiation at 10 Gy. The mean tumor volume (MTV) was measured. The apoptotic rate of cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays, and double stranded break marker antibody γ-H2AX and hypoxia inducible factor (HIF)-1α expression was examined by immunohistochemistry. alamarBlue assays revealed that c-MET downregulation by shRNA markedly accentuated the irradiation-induced reduction in the viability of HT-29 cells compared with HT-29 cells irradiated at the same doses (P<0.05). A combination of irradiation and PHA665752 caused an additional reduction in the MTV (382.8±42.4 mm3; P<0.01 vs. irradiation and PHA665752, 998.0±180.6 and 844.8±190.0 mm3, respectively). TUNEL assays revealed that irradiation and PHA665752 alone caused significant apoptosis of the SW620 cells in the tumor xenografts (P<0.01 vs. DMSO). The apoptotic index in the tumor xenografts of mice treated with a combination of irradiation and PHA665752 was significantly increased compared with mice treated with either agent alone (P<0.01). The combination of irradiation and PHA665752 was also associated with a marked increase in

  7. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  8. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  9. Dosimetry and verification of Co total body irradiation with human phantom and semiconductor diodes.

    PubMed

    Allahverdi, Mahmoud; Geraily, Ghazale; Esfehani, Mahbod; Sharafi, Aliakbar; Haddad, Peyman; Shirazi, Alireza

    2007-10-01

    Total Body Irradiation (TBI) is a form of radiotherapy used for patients prior to bone marrow or stem cell transplant to destroy any undetectable cancer cells. The dosimetry characteristics of a (60)Co unit for TBI were studied and a simple method for the calculation of the prescribed dose for TBI is presented. Dose homogeneity was verified in a human phantom. Dose measurements were made in water phantom (30 × 30 × 30 cm(3)), using farmer ionization chamber (0.6 cc, TM30010, PTW) and a parallel plate ionization chamber (TM23343, PTW). Point dose measurements for AP/PA irradiation were measured in a human phantom using silicon diodes (T60010L, PTW). The lung dose was measured with an ionization chamber (0.3 cc, TM31013). The validity of the proposed algorithm was checked at TBI distance using the human phantom. The accuracy of the proposed algorithm was within 3.5%. The dose delivered to the mid-lobe of the lung was 14.14 Gy and it has been reduced to 8.16 Gy by applying the proper shield. Dose homogeneity was within ±7% for all measured points. The results indicate that a good agreement between the total prescribed and calculated midplane doses can be achieved using this method. Therefore, it could be possible to use calculated data for TBI treatments.

  10. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  11. Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes

    SciTech Connect

    Haas, A.F.; Isseroff, R.R.; Wheeland, R.G.; Rood, P.A.; Graves, P.J. )

    1990-06-01

    Helium-neon (HeNe) laser irradiation is known to stimulate wound healing. We investigated whether the biostimulatory effects of HeNe irradiation result from enhancement of keratinocyte proliferation or motility. HeNe effects on keratinocyte motility were evaluated by irradiating a wounded culture with 0.8 J/cm2 3 times over a 20-h period. At 20 h post-irradiation, videocinemicroscopy and sequential quantitative measurements of the leading edge were taken over a 6-h period. There was a significant difference in migration of the leading edge in irradiated wounds compared to non-irradiated wounded controls (12.0 microns/h vs 4.0 microns/h, p less than 0.0001). To determine if the increase in migration observed in irradiated cultures resulted from a proliferative effect of HeNe irradiation, subconfluent human keratinocyte cultures were irradiated with single or multiple doses of different fluences of HeNe irradiation (0.4 to 7.2 J/cm2) and evaluated 72 h post-irradiation. Irradiated and non-irradiated keratinocyte cultures grown on a microporous membrane surface were co-cultured with irradiated and non-irradiated fibroblasts to determine if HeNe irradiation induced a paracrine effect on keratinocyte proliferation. No significant increase in keratinocyte proliferation was demonstrated in any of these treatments. The biostimulatory effects of HeNe irradiation may now be extended to include enhancement of keratinocyte motility in vitro; this may contribute to the efficacy of HeNe irradiation in wound healing.

  12. Irradiation at 660 nm modulates different genes central to wound healing in wounded and diabetic wounded cell models

    NASA Astrophysics Data System (ADS)

    Houreld, Nicolette N.

    2014-02-01

    Wound healing is a highly orchestrated process and involves a wide variety of cellular components, chemokines and growth factors. Laser irradiation has influenced gene expression and release of various growth factors, cytokines and extracellular matrix proteins involved in wound healing. This study aimed to determine the expression profile of genes involved in wound healing in wounded and diabetic wounded fibroblast cells in response to irradiation at a wavelength of 660 nm. Human skin fibroblast cells (WS1) were irradiated with a diode laser (wavelength 660 nm; fluence 5 J/cm2; power output 100 mW; power density 11 mW/cm2; spot size 9.1 cm2; exposure duration 7 min 35 s). Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used as a template in real-time qualitative polymerase chain reaction (qPCR). Eighty four genes involved in wound healing (extracellular matrix and cell adhesion; inflammatory cytokines and chemokines; growth factors; and signal transduction) were evaluated in wounded and diabetic wounded cell models. Forty eight hours post-irradiation, 6 genes were significantly upregulated and 8 genes were down-regulated in irradiated wounded cells, whereas 1 gene was up-regulated and 33 genes down-regulated in irradiated diabetic wounded cells. Irradiation of stressed fibroblast cells to a wavelength of 660 nm and a fluence of 5 J/cm2 modulated the expression of different genes involved in wound healing in different cell models. Modulation of these genes leads to the effects of laser irradiation seen both in vivo and in vitro, and facilitates the wound healing process.

  13. Co-culturing with High-Charge and Energy Particle Irradiated Cells Increases Mutagenic Joining of Enzymatically Induced DNA Double-Strand Breaks in Nonirradiated Cells.

    PubMed

    Li, Zhentian; Doho, Gregory; Zheng, Xuan; Jella, Kishore Kumar; Li, Shuyi; Wang, Ya; Dynan, William S

    2015-09-01

    Cell populations that have been exposed to high-charge and energy (HZE) particle radiation, and then challenged by expression of a rare-cutting nuclease, show an increased frequency of deletions and translocations originating at the enzyme cut sites. Here, we examine whether this effect also occurs in nonirradiated cells that have been co-cultured with irradiated cells. Human cells were irradiated with 0.3-1.0 Gy of either 600 MeV/u (56)Fe or 1,000 MeV/u (48)Ti ions or with 0.3-3.0 Gy of 320 kV X rays. These were co-cultured with I-SceI-expressing reporter cells at intervals up to 21 days postirradiation. Co-culture with HZE-irradiated cells led to an increase in the frequency of I-SceI-stimulated translocations and deletions in the nonirradiated cells. The effect size was similar to that seen previously in directly irradiated populations (maximum effect in bystander cells of 1.7- to 4-fold depending on ion and end point). The effect was not observed when X-ray-irradiated cells were co-cultured with nonirradiated cells, but was correlated with an increase in γ-H2AX foci-positive cells in the nonirradiated population, suggesting the presence of genomic stress. Transcriptional profiling of a directly irradiated cell population showed that many genes for cytokines and other secretory proteins were persistently upregulated, but their induction was not well correlated with functional effects on repair in co-cultured cells, suggesting that this transcriptional response alone is not sufficient to evoke the effect. The finding that HZE-irradiated cells influence the DNA double-strand break repair fidelity in their nonirradiated neighbors has implications for risk in the space radiation environment.

  14. Chromosomal aberrations induced by in vitro irradiation: comparisons between human sperm and lymphocytes

    SciTech Connect

    Brandriff, B.F.; Gordon, L.A.; Ashworth, L.K.; Carrano, A.V.

    1988-01-01

    Types and frequencies of structural aberrations in human sperm and lymphocyte chromosomes from one donor were compared after in vitro irradiation with 100, 200, and 400 rad in order to determine if cells with dramatically different chromatin configurations are similarly affected and to investigate the feasibility of using lymphocytes as surrogates for germ cells in risk estimation. Sperm chromosomes were analyzed after fusion with eggs from the golden hamster. Total frequencies of induced aberrations were similar in the two cell types. However, the relative frequencies of rejoined lesions (dicentrics), compared with unrejoined lesions (chromosome breaks and acentric fragments), were different. At the three doses tested, a constant ratio of 5 dicentrics in lymphocytes for every dicentric in sperm was induced. Conversely, for every chromosome break or acentric fragment induced in lymphocytes, 1.7 such events were induced in sperm at the three doses tested.

  15. Cell sheets image validation of phase-diversity homodyne OCT and effect of the light irradiation on cells

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2016-04-01

    Optical coherence tomography (OCT) is one of powerful 3D tissue imaging tools with no fluorescence staining. We have reported that Phase-Diversity Homodyne OCT developed in Hitachi could be useful for non-invasive regeneration tissue evaluation test. The OCT enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air), whereas conventional OCT was not used for cell imaging because of low resolution (10~20 μm). Furthermore, the OCT has advantage over other 3D imaging devices in cost because the light source and the objective were originally used as an optical pickup of compact disc. In this report, we aimed to assess effectiveness and safety of Phase-Diversity Homodyne OCT cell imaging. Effectiveness of OCT was evaluated by imaging a living cell sheet of human oral mucosal epithelial cells. OCT images were compared with reflection confocal microscopy (RCM) images, because confocal optical system is the highest resolution (<1 μm) 3D in vivo imaging technique. Similar nuclei images were confirmed with OCT and RCM, which suggested the OCT has enough resolution to image nuclei inside a cell sheet. Degree of differentiation could be estimated using OCT images, which becomes possible because the size of cells depends on distribution of differentiation. Effect of the OCT light irradiation on cells was studied using NIH/3T3 cells. Light irradiation, the exposure amount of which is equivalent to OCT, had no impact on cell shape, cell viability, and proliferation rate. It suggested that the light irradiation has no cell damage under the condition.

  16. Adenylate pool and energy charge in human lymphocytes and granulocytes irradiated at 632 nm (HeNe laser)

    NASA Astrophysics Data System (ADS)

    Bolognani, Lorenzo; Venturelli, T.; Volpi, N.; Zirilli, O.

    1995-05-01

    Aim of this report was to investigate the adenylate pool and the energy charge in human white blood cells exposed to increasing time (15, 30 and 60 min) of HeNe laser treatment. EDTA treated human blood diluted 1:1 with 0.88% KCl was added (1:5) with NaCl-dextran solution to allow sedimentation of red blood cells. 6 ml of the white cells floating in the supernatant were layered on 3 ml of Lymphoprep in plastic tubes and each tube was centrifuged (from 50 to 5000 X g for 5 min). Granulocytes were concentrated in the lower phase, whilst lymphocytes were in the intermediated phase. After further purification cytological homogeneity was tested by a cell counter. Granulocytes and lymphocytes were irradiated at +22°C with HeNe (Space, Valfivre equipment). On these population ATP was tested by luminometric procedure, the adenylate pool was separated by HPLC (Jasco) on neutralyzed perchloric extracts. ATP concentration increased in lymphocytes (+63.9%, p < 0.01) and in granulocytes (+25.0%, p < 0.05) after 60 min irradiation. The adenylate pool (tested by HPLC) does not change significatively in lymphocytes or granulocytes after 30 min irradiation, whilst in 60 min irradiated lymphocytes and granulocytes a significative increment was observed in nucleotide concentration. No changes were observed in energy charge according to Atkinson.

  17. Total body irradiation selectively induces murine hematopoietic stem cell senescence.

    PubMed

    Wang, Yong; Schulte, Bradley A; LaRue, Amanda C; Ogawa, Makio; Zhou, Daohong

    2006-01-01

    Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This latter effect has been attributed to damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the defect in HSC self-renewal. It was found that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a sustained quantitative and qualitative reduction of LKS+ HSCs. In addition, LKS+ HSCs from irradiated mice exhibited an increased expression of the 2 commonly used biomarkers of cellular senescence, p16(Ink4a) and SA-beta-gal. In contrast, no such changes were observed in irradiated LKS- hematopoietic progenitor cells. These results provide the first direct evidence demonstrating that IR exposure can selectively induce HSC senescence. Of interest, the induction of HSC senescence was associated with a prolonged elevation of p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) mRNA expression, while the expression of p27(Kip1) and p18(Ink4c) mRNA was not increased following TBI. This suggests that p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) may play an important role in IR-induced senescence in HSCs.

  18. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    SciTech Connect

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  19. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    SciTech Connect

    Grosse, Nicole; Fontana, Andrea O.; Hug, Eugen B.; Lomax, Antony; Coray, Adolf; Augsburger, Marc; Paganetti, Harald; Sartori, Alessandro A.; Pruschy, Martin

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  20. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  1. Caffeine enhanced measurement of mutagenesis by low levels of [gamma]-irradiation in human lymphocytes

    SciTech Connect

    Puck, T.P.; Johnson, R.; Waldren, C.A. ); Morse, H. )

    1993-09-01

    The well-known action of caffeine in synergizing mutagenesis (including chromosome aberrations) of agents like ionizing radiation by inhibition of cellular repair processes has been incorporated into a rapid procedure for detection of mutagenicity with high sensitivity. Effects of 5-10 rads of [gamma]-irradiation, which approximate the human lifetime dose accumulation from background radiation, can be detected in a two-day procedure using an immortalized human WBC culture. Chromosomally visible lesions are scored on cells incubated for 2 h after irradiation in the presence and absence of 1.0 mg/ml of caffeine. An eightfold amplification of scorable lesions is achieved over the action of radiation alone. This approach provides a closer approximation to absolute mutagenicity unmitigated by repair processes, which can vary in different situations. It is proposed that mutagenesis testing of this kind, using caffiene or other repair-inhibitory agents, be employed to identify mutagens in their effective concentrations to which human populations may be exposed; to detect agents such as caffeine that may synergize mutagenic actions and pose epidemiologic threats; and to discover effective anti-mutagens. Information derived from the use of such procedures may help prevent cancer and newly acquired genetic disease.

  2. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    PubMed

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc. PMID:27434783

  3. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion.

    PubMed

    Hao, L; Lawrence, J; Chian, K S

    2004-10-01

    In order to acquire the surface properties favouring osseo-integration at the implant and bone interface, human foetal osteoblast cells (hFOB) were used in an in vitro test to examine changes in cell adhesion on a magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic after CO(2) laser treatment. The surface roughness, microstructure, crystal size and surface energy of untreated and CO(2) laser-treated MgO-PSZ were fully characterised. The in vitro cell evaluation revealed a more favourable cell response on the CO(2) laser-treated MgO-PSZ than on the untreated sample. After 24-h cell incubation, no cell was observed on the MgO-PSZ, whereas a few cells attached on the CO(2) laser-treated MgO-PSZandshowedwellspreadandgood attachment. Moreover, the cell coverage density indicating cell proliferation generally increases with CO(2) laser power densities applied in the experiments. The enhancement of the surface energy of the MgO-PSZ, especially its polar component caused by the CO(2) laser treatment, was found to play a significant role in the initial cell attaching, thus enhancing the cell growth. Moreover, the change in topography induced by the CO(2) laser treatment was identified as one of the factors influencing the hFOB cell response.

  4. [Chromosome aberrations in human lymphocytes at a various duration of cultivation after irradiation].

    PubMed

    Riabchenko, N I; Antoshchina, M M; Nasonova, V A; Fesenko, E V; Gotlib, V Ia

    2004-01-01

    Human peripheral blood lymphocytes were exposed to 60Co gamma-rays (a dose of 3 Gy) and cultivated during seven days in the presence of PHA and BrdU. It was shown that the metaphases of the first and second mitosises occurred during cultivation of the irradiated and unirradiated lymphocytes, being evidence about of irregularity of the coming into division of various fractions of lymphocytes. The time of cultivation did not influence a rate of aberrations in metaphases of the first and second mitosises of the irradiated lymphocytes. During the first and the subsequent mitosises the number of exchange chromosome aberrations decreased and reached a control level in metaphases of the fourth and fifth mitosises. The number of paired fragments at second and third mitosises increased a little and started to decrease only in metaphases of the fourth and fifth mitosises. The decrease in chromosome aberrations with prolongation of the cultivation of lymphocytes after irradiating is a consequence of elimination of cells with chromosome damages during sequential mitotic divisions.

  5. Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts.

    PubMed

    Fideler, B M; Vangsness, C T; Lu, B; Orlando, C; Moore, T

    1995-01-01

    Sixty 10-mm bone-patellar tendon-bone allografts from young human donors were placed into four test groups, a control fresh-frozen group and three fresh-frozen irradiated groups. The irradiated groups were exposed to 2.0, 3.0, or 4.0 Mrad of gamma irradiation. The specimens were tested to tensile failure. The initial biomechanical strength of fresh-frozen allografts was reduced up to 15% when compared with fresh-frozen controls after 2.0 Mrad of irradiation. Maximum force, strain energy, modulus, and maximum stress demonstrated a statistically significant reduction after 2.0 Mrad of irradiation (P < 0.01). Stiffness, elongation, and strain were reduced but not with statistical significance. A 10% to 24% and 19% to 46% reduction in all biomechanical properties were found after 3.0 (P < 0.005) and 4.0 (P < 0.0005) Mrad of irradiation, respectively. After irradiation with a 4.0 Mrad dose, the ultimate load was below that of reported values for the human anterior cruciate ligament. It is clinically important to observe and document changes in human ligaments that result from currently used doses of gamma irradiation. The results from this study provide important information regarding the initial biomechanical properties of fresh-frozen human bone-patellar tendon-bone allografts after bacterial sterilization with gamma irradiation. The current accepted dose for sterilization is between 1.5 and 2.5 Mrad. There appeared to be a dose-dependent effect of irradiation on all the biomechanical parameters studied. Four of seven parameters were found to be reduced after 2.0 Mrad of irradiation. Reductions were found in all parameters after 3.0 and 4.0 Mrad of irradiation.

  6. Protective effects of polyvinylpyrrolidone-wrapped fullerene against intermittent ultraviolet-A irradiation-induced cell injury in HaCaT cells.

    PubMed

    Saitoh, Yasukazu; Ohta, Hiroaki; Hyodo, Sayuri

    2016-10-01

    To identify compounds that suppress UV irradiation-induced oxidative stress in the skin, various types of antioxidants have been studied. Polyvinylpyrrolidone-entrapped fullerene (C60/PVP) is known as a powerful antioxidant that exerts a cytoprotective effect against UV irradiation-induced cell injury in human skin cells and skin models. However, the effects of the alternate attractive C60/PVP feature, persistent antioxidant ability, on cytoprotection have rarely been ascertained. In this study we therefore investigated the efficacies of C60/PVP using an intermittently repeated UVA irradiation model wherein human keratinocytes were repeatedly exposed to UVA five times every 1h and compared the cytoprotective effects with those provided by ascorbic acid-2-O-phosphate-disodium salt (APS) and α-tocopherol (α-Toc). Our results demonstrated that C60/PVP yielded prominent cytoprotective effects against intermittently repeated UVA irradiation-induced injuries in a dose-dependent manner and suppressed intracellular superoxide anion radical (O2(-)) generation both during and after the repeated UVA irradiation. Additionally, C60/PVP also repressed the intermittent UVA irradiation-induced apoptosis via suppression of chromatin condensation and caspase-3/7 activation. Furthermore, the observed cytoprotective effects were superior to the effects of the typical antioxidants APS and α-Toc. These data suggest that C60/PVP might function as a potent cosmetic antioxidant against the effects of repeated and prolonged UVA irradiation through its persistent antioxidative property. PMID:27522271

  7. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    SciTech Connect

    Cornforth, Michael N.

    2013-05-03

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  8. Establishment, characterization, and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line.

    PubMed

    Cheng, Min; Ma, Juan; Chen, Yongyan; Zhang, Jianhua; Zhao, Weidong; Zhang, Jian; Wei, Haiming; Ling, Bin; Sun, Rui; Tian, Zhigang

    2011-01-01

    Natural killer (NK) cells play important roles in adoptive cellular immunotherapy against certain human cancers. This study aims to establish a new human NK cell line and to study its role for adoptive cancer immunotherapy. Peripheral blood samples were collected from 54 patients to establish the NK cell line. A new human NK cell line, termed as NKG, was established from a Chinese male patient with rapidly progressive non-Hodgkin's lymphoma. NKG cells showed LGL morphology and were phenotypically identified as CD56(bright) NK cell with CD16(-), CD27(-), CD3(-), αβTCR(-), γδTCR(-), CD4(-), CD8(-), CD19(-), CD161(-), CD45(+), CXCR4(+), CCR7(+), CXCR1(-), and CX3CR1(-). NKG cells showed high expression of adhesive molecules (CD2, CD58, CD11a, CD54, CD11b, CD11c), an array of activating receptors (NKp30, NKp44, NKp46, NKG2D, NKG2C), and cytolysis-related receptors and molecules (TRAIL, FasL, granzyme B, perforin, IFN-γ). The cytotoxicity of NKG cells against tumor cells was higher than that of the established NK cell lines NK-92, NKL, and YT. NKG cell cytotoxicity depended on the presence of NKG2D and NKp30. When irradiated with 8 Gy, NKG cells were still with high cytotoxicity and activity in vitro and with safety in vivo, but without proliferation. Further, the irradiated NKG cells exhibited strong cytotoxicity against human primary ovarian cancer cells in vitro, and against human ovarian cancer in a mouse xenograft model. The adoptive transfer of NKG cells significantly inhibited the ovarian tumor growth, decreased the mortality rate and prolonged the survival, even in cases of advanced diseases. A number of NKG cells were detected in the ovarian tumor tissues during cell therapy. In use of the new human NK cell line, NKG would a promising cellular candidate for adoptive immunotherapy of human cancer. PMID:21669033

  9. Squamous cell carcinoma arising in previously burned or irradiated skin

    SciTech Connect

    Edwards, M.J.; Hirsch, R.M.; Broadwater, J.R.; Netscher, D.T.; Ames, F.C.

    1989-01-01

    Squamous cell carcinoma (SCC) arising in previously burned or irradiated skin was reviewed in 66 patients treated between 1944 and 1986. Healing of the initial injury was complicated in 70% of patients. Mean interval from initial injury to diagnosis of SCC was 37 years. The overwhelming majority of patients presented with a chronic intractable ulcer in previously injured skin. The regional relapse rate after surgical excision was very high, 58% of all patients. Predominant patterns of recurrence were in local skin and regional lymph nodes (93% of recurrences). Survival rates at 5, 10, and 20 years were 52%, 34%, and 23%, respectively. Five-year survival rates in previously burned and irradiated patients were not significantly different (53% and 50%, respectively). This review, one of the largest reported series, better defines SCC arising in previously burned or irradiated skin as a locally aggressive disease that is distinct from SCC arising in sunlight-damaged skin. An increased awareness of the significance of chronic ulceration in scar tissue may allow earlier diagnosis. Regional disease control and survival depend on surgical resection of all known disease and may require radical lymph node dissection or amputation.

  10. UVB irradiation and distribution of arachidonic acid (20:4) and stearic acid (18:0) in human keratinocytes.

    PubMed

    Punnonen, K; Jansén, C T

    1989-04-01

    Human keratinocytes (NCTC 2544) in culture were labeled with either 14C-arachidonic acid or 14C-stearic acid and then exposed to UVB irradiation (9 or 90 mJ/cm2). Exposure of the keratinocytes to UVB irradiation resulted in considerable rearrangement of the membrane fatty acids. Following UVB irradiation the percentage amounts of 14C-arachidonic acid and 14C-stearic acid were significantly decreased in phospholipids, in phosphatidylethanolamine and in phosphatidylcholine. The liberation of stearic acid from phospholipids was accompanied by accumulation of radiolabel into the culture medium, but in 14C-arachidonic acid-labeled cells the amount of radiolabel in the culture medium was not changed following UVB irradiation despite liberation of arachidonic acid from phospholipids. It seems evident that, following UVB irradiation, the rate of reincorporation of liberated 14C-arachidonic acid, a polyunsaturated fatty acid, is higher and thus different from that of a saturated fatty acid, 14C-stearic acid. The present study suggests that exposure of keratinocytes to UVB irradiation is followed by liberation of both saturated and unsaturated fatty acids and also considerable reacylation of the unsaturated fatty acids.

  11. [Therapeutic Effects of Multipotent Mesenchymal Stromal Cells after Irradiation].

    PubMed

    Kalmykova, N V; Alexandrova, S A

    2016-01-01

    Multipotent mesenchymal stromal cells (MSC) are now considered to be a perspective multifunctional treatment option for radiation side effects. At present.a great number of sufficient evidence has been collected in favor of therapeutic effects of MSCs in acute radiation reactions. It has been shown that MSC-based products injected locally or systemically have therapeutic effects on irradiated organs and tissues. This review presents summarized experimental and clinical data about protective and regenerative effects of MSCs on different radiation-injured organs and tissues; the main probable therapeutic mechanisms of their action are also discussed. PMID:27534063

  12. Cytosine arabinoside enhancement of gamma irradiation induced mutations in human T-lymphocytes

    SciTech Connect

    O'Neill, J.P.; Sullivan, L.M.; Hunter, T.C.; Nicklas, J.A. )

    1991-01-01

    The frequency of 6-thioguanine resistant (TGr) mutants induced in human G0 phase T-lymphocytes by 200 cGy of gamma irradiation is greatly enhanced by incubation with cytosine arabinoside (ara-C) after irradiation. The mutant frequency increased with increasing incubation time in ara-C for up to 2 hr. This mutation induction required a phenotypic expression time of 5-8 days mass culture growth, similar to that found with mutants induced by 300 cGy of irradiation alone. Southern blot analysis of 40 isolated mutant clones revealed 8 independent mutations by T-cell receptor (TCR) gene rearrangement patterns. Four of these eight showed hprt gene structural alterations (0.50). An alternative method to allow phenotypic expression was developed to minimize the isolation of hprt/TCR sibling mutants. The use of in situ expression in the microtiter dish wells resulted in the isolation of 17 independent mutations in 19 mutant clones. Ten of these 17 mutations showed hprt structural alterations (0.59). The high fraction of mutations involving structural alterations detected by Southern blot analysis is consistent with the known induction of chromosome aberrations by irradiation plus ara-C treatment. We propose that both the increase in Mf and the increase in the incidence of hprt gene structural alterations are due to the accumulation of strand breaks in repairing regions of DNA under these conditions of ara-C induced inhibition of repair. We further propose that upon release of the ara-C inhibition, these repairing regions can interact to yield both gene mutations and chromosome aberrations.

  13. Dose-dependent microRNA expression in human fibroblasts after LET irradiation

    NASA Astrophysics Data System (ADS)

    Maes, Olivier Charles; An, Jin; Wu, Honglu; Wang, Eugenia; Sarojini, Harshini

    Humans are exposed to various levels of radiation during spaceflight voyages. In cells, exposure to linear energy transfer (LET) radiation causes cellular damage and triggers responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small ( 22- nucleotide) non-coding RNAs, which regulate gene expression generally by either degrading the messager RNA or inhibiting translation. Their implication in specific cellular response pathways is largely unknown. Here, we investigated the role of radiation-dependent changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray exposure in human fibroblasts, and correlated their predicted targets with the cells' genomics and proteomics profiles. A differential miRNA expression pattern was observed between low and high doses of irradiation, with early (0.5 and 2 hrs) significant changes mostly after a high dose and, late (6 and 24 hrs) significant changes after both low and high doses of irradiation. The results suggest that miRNAs may act as ‘hub' regulators of signaling pathways initially to derepress their target genes for cellular responses such as DNA repair, followed by up-regulation to suppress apoptosis, and finally down-regulation to reestablish cellular normalcy. Functional attributions are made to key microRNAs, potentially regulating known radiation biomarkers as well as radiation-responsive mechanisms of cell cycle checkpoint, proliferation and apoptosis. In summary, radiation-responsive miRNAs may have functional roles in the regulation of cell death or survival, and may become biodosimeters for radiation dose exposure. Specific microRNAs may exert a hormetic effect after low-dose radiation, and prove useful in future applications for radiation adaptive therapy and in the prevention and treatment of radiation-induced damage. The confirmation of specific miRNAs as biodosimetry markers with therapeutic applications will be necessary in future functional

  14. Chromosome aberration yields and apoptosis in human lymphocytes irradiated with Fe-ions of differing LET

    NASA Astrophysics Data System (ADS)

    Lee, R.; Nasonova, E.; Ritter, S.

    In the present paper the relationship between cell cycle delays induced by Fe-ions of differing LET and the aberration yield observable in human lymphocytes at mitosis was examined. Cells of the same donor were irradiated with 990 MeV/n Fe-ions (LET = 155 keV/μm), 200 MeV/n Fe-ions (LET = 440 keV/μm) and X-rays and aberrations were measured in first cycle mitoses harvested at different times after 48 84 h in culture and in prematurely condensed G2-cells (PCCs) collected at 48 h using calyculin A. Analysis of the time-course of chromosomal damage in first cycle metaphases revealed that the aberration frequency was similar after X-ray irradiation, but increased two and seven fold after exposure to 990 and 200 MeV/n Fe-ions, respectively. Consequently, RBEs derived from late sampling times were significantly higher than those obtained at early times. The PCC-data suggest that the delayed entry of heavily damaged cells into mitosis results especially from a prolonged arrest in G2. Preliminary data obtained for 4.1 MeV/n Cr-ions (LET = 3160 keV/μm) revealed, that these delays are even more pronounced for low energy Fe-like particles. Additionally, for the different radiation qualities, BrdU-labeling indices and apoptotic indices were determined at several time-points. Only the exposure to low energy Fe-like particles affected the entry of lymphocytes into S-phase and generated a significant apoptotic response indicating that under this particular exposure condition a large proportion of heavily damaged cells is rapidly eliminated from the cell population. The significance of this observation for the estimation of the health risk associated with space radiation remains to be elucidated.

  15. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  16. Radiosensitization of human bronchogenic carcinoma cells by interferon beta

    SciTech Connect

    Gould, M.N.; Kakria, R.C.; Olson, S.; Borden, E.C.

    1984-01-01

    The effects of interferons on the radiosensitivity of in vitro human bronchogenic carcinoma cells was investigated. Human fibroblast-derived interferon (IFN-beta) was found to sensitize cells to gamma irradiation while either HuIFN-alpha or mouse IFN-alpha/beta did not. The observed radiosensitization was supra-additive and resulted in a decrease in the shoulder width of the radiation dose-cell survival curve but did not affect the slope. The degree of radiosensitization of the various IFNs tested paralleled the antiproliferative effects of these IFNs on this cell line.

  17. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation.

    PubMed

    Beck, Michaël; Rombouts, Charlotte; Moreels, Marjan; Aerts, An; Quintens, Roel; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Ernst, Eric; Dieriks, Birger; Lee, Ryonfa; De Vos, Winnok H; Lambert, Charles; Van Oostveldt, Patrick; Baatout, Sarah

    2014-10-01

    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/µm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by γ-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment. This was accompanied by a downregulation in the expression of a multitude of genes involved in the regulation of the cell cycle and an upregulation in the expression of genes involved in cell cycle checkpoints. In addition, genes involved in DNA damage response, oxidative stress, apoptosis and cell-cell signaling (cytokines) were found to be upregulated. An in silico analysis of the involved genes suggested that the transcription factors, E2F and nuclear factor (NF)-κB, may be involved in these cellular responses. PMID:25118949

  18. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  19. Whole-body UVB irradiation during allogeneic hematopoietic cell transplantation is safe and decreases acute graft-versus-host disease.

    PubMed

    Kreutz, Marina; Karrer, Sigrid; Hoffmann, Petra; Gottfried, Eva; Szeimies, Rolf-Markus; Hahn, Joachim; Edinger, Matthias; Landthaler, Michael; Andreesen, Reinhard; Merad, Miriam; Holler, Ernst

    2012-01-01

    Depletion of host Langerhans cells (LCs) prevents cutaneous graft-versus-host disease (GvHD) in mice. We analyzed whether UVB irradiation is tolerated during the course of human allogeneic hematopoietic cell transplantation and whether depletion of LCs by broadband UVB could improve GvHD outcome. A total of 17 patients received six whole-body UVB irradiations with 75% of the individually determined minimal erythemal dose after conditioning with a reduced intensity protocol. LCs, dermal dendritic cells (DCs), and macrophages were analyzed before and after UVB irradiation by immunohistochemical analysis. Circulating blood cells and serum factors were analyzed in parallel. In striking contrast to previous data, our irradiation protocol was well tolerated in all patients. UVB treatment decreased the number of LCs and also affected dermal DCs. UVB-treated patients also had significantly higher 25-hydroxyvitamin D3 serum levels and higher numbers of circulating CD4+ FoxP3+ regulatory T cells. Strikingly, nine out of nine patients with complete LC depletion (<1 LC per field) developed only grade I GvHD or no GvHD up to day 100. Our results strongly suggest that prophylactic UVB irradiation post transplant is safe and should be further explored as a clinical strategy to prevent acute (skin) GvHD.

  20. Stimulation of Hepatoma Cell Invasiveness and Metastatic Potential by Proteins Secreted From Irradiated Nonparenchymal Cells

    SciTech Connect

    Zhou Leyuan; Wang Zhiming; Gao Yabo; Wang Lingyan; Zeng Zhaochong

    2012-11-01

    Purpose: To determine whether factors secreted by irradiated liver nonparenchymal cells (NPCs) may influence invasiveness and/or metastatic potential of hepatocellular carcinoma (HCC) cells and to elucidate a possible mechanism for such effect. Methods and Materials: Primary rat NPCs were cultured and divided into irradiated (10-Gy X-ray) and nonirradiated groups. Forty-eight hours after irradiation, conditioned medium from irradiated (SR) or nonirradiated (SnonR) cultures were collected and added to sublethally irradiated cultures of the hepatoma McA-RH7777 cell line. Then, hepatoma cells were continuously passaged for eight generations (RH10Gy-SR and RH10Gy-SnonR). The invasiveness and metastatic potential of McA-RH7777, RH10Gy-SnonR, and RH10Gy-SR cells were evaluated using an in vitro gelatinous protein (Matrigel) invasion and an in vivo metastasis assay. In addition, SR and SnonR were tested using rat cytokine antibody arrays and enzyme-linked immunosorbent assay (ELISA). Results: In vitro gelatinous protein invasion assay indicated that the numbers of invading cells was significantly higher in RH10Gy-SR (40 {+-} 4.74) than in RH10Gy-SnonR (30.6 {+-} 3.85) cells, and lowest in McA-RH7777 (11.4 {+-} 3.56) cells. The same pattern was observed in vivo in a lung metastasis assay, as evaluated by number of metastatic lung nodules seen with RH10Gy-SR (28.83 {+-} 5.38), RH10Gy-SnonR (22.17 {+-} 4.26), and McA-RH7777 (8.3 {+-} 3.8) cells. Rat cytokine antibody arrays and ELISA demonstrated that metastasis-promoting cytokines (tumor necrosis factor-{alpha} and interleukin-6), circulating growth factors (vascular endothelial growth factor and epidermal growth factor), and metalloproteinases (MMP-2 and MMP-9) were upregulated in SR compared with SnonR. Conclusions: Radiation can increase invasiveness and metastatic potential of sublethally irradiated hepatoma cells, and soluble mediators released from irradiated NPCs promote this potential. Increased secretion of

  1. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  2. Effects of ion irradiation on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cheng, Jeremy

    The solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical to electrical energy. It is usually based around an oxide conducting ceramic electrolyte that requires temperatures above 800°C to operate. There are many advantages to lowering this operation temperature such as more gas sealing options and more efficient startup. One of the key limitations is in the transport of ions across the electrolyte. The most common electrolyte material used is Yttria-Stabilized Zirconia (YSZ). The ionic conductivity can be greatly affected by grain boundaries, dislocations, and point defects. In this study, dislocations were introduced by heavy ion irradiation. Irradiation with Xe+ or Ar+ produced a large number of point defects and dislocations via a mechanism similar to Frank partial dislocation formation. The dislocation density was on the order of 1012/cm2 and the Burgers vector was 1/2<110>. Heat treatment at temperatures from 800-1400°C changed the defect structure, eliminated point defects, and allowed dislocations to react and grow. Thin films of YSZ were deposited on silicon substrates using pulsed laser deposition (PLD). Films deposited on a metallized substrate were polycrystalline while films deposited directly onto conductive silicon could be epitaxially grown. Ion irradiation caused the film conductivity to drop by a factor of 2-3 due to additional point defects in the film. Heat treatment removed these point defects allowing the conductivity to recover. A novel method was developed to produce freestanding YSZ membranes without a silicon substrate by using the Focused Ion Beam (FIB). Thick, single-crystal YSZ pieces were thinned using in-situ X-Ray Energy Dispersive Spectroscopy (EDS) for end point detection. The final membranes were single crystal, less than 350nm thick, and pinhole free. IV curves and impedance measurements were made after irradiation and heat treatment. The conductivity showed similar trends to the PLD deposited thin

  3. Chromosome aberrations induced in human lymphocytes after partial-body irradiation

    SciTech Connect

    Fong, L.; Lai-Lei Ting; Po-Ming Wang

    1995-10-01

    Chromosomal aberrations in peripheral blood lymphocytes obtained from two patients before and after they received one fraction of partial-body irradiation for palliative treatment were analyzed. Blood samples were taken 30 min and 24 h after radiation treatment. The yield of dicentrics obtained from case A 30 min after a partial-body (about 21%) treatment with 8 Gy was 0.066/cell, while the yield obtained 24 h radiation treatment was 0.071/cell. The fraction of irradiated lymphocytes that reached metaphase at 52 h was 0.08 as evaluated by mixing cultures of in vitro irradiated and unirradiated blood. The yield of dicentrics for blood from case B 30 min after 6 Gy partial-body (about 24%) irradiation was 0.655/cell, while the yield 24 h after irradiation was 0.605/cell. The fraction of irradiated cells was 0.29. Estimation of doses and irradiated fractions for the two cases using the method proposed by Dolphin and the Qdr method is discussed. Although there was no significant difference between the mean yields of dicentrics per cell obtained 30 min and 24 h after radiation treatment, the data obtained at 24 h seemed more useful for the purpose of dose estimation. When a higher dose (8 Gy) was delivered to a smaller percentage of the body, underestimation of the dose was encountered. 18 refs., 4 tabs.

  4. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  5. Survival and antigenic profile of irradiated malarial sporozoites in infected liver cells

    SciTech Connect

    Suhrbier, A.; Winger, L.A.; Castellano, E.; Sinden, R.E. )

    1990-09-01

    Exoerythrocytic (EE) stages of Plasmodium berghei derived from irradiated sporozoites were cultured in vitro in HepG2 cells. They synthesized several antigens, predominantly but not exclusively those expressed by normal early erythrocytic schizonts. After invasion, over half the intracellular sporozoites, both normal and irradiated, appeared to die. After 24 h, in marked contrast to the normal parasites, EE parasites derived from irradiated sporozoites continued to break open, shedding their antigens into the cytoplasm of the infected host cells. Increasing radiation dosage, which has previously been shown to reduce the ability of irradiated sporozoites to protect animals, correlated with reduced de novo antigen synthesis by EE parasites derived from irradiated sporozoites.

  6. Proliferation and differentiation of neural stem cells irradiated with X-rays in logarithmic growth phase.

    PubMed

    Isono, Mayu; Otsu, Masahiro; Konishi, Teruaki; Matsubara, Kana; Tanabe, Toshiaki; Nakayama, Takashi; Inoue, Nobuo

    2012-07-01

    Exposure of the fetal brain to ionizing radiation causes congenital brain abnormalities. Normal brain formation requires regionally and temporally appropriate proliferation and differentiation of neural stem cells (NSCs) into neurons and glia. Here, we investigated the effects of X-irradiation on proliferating homogenous NSCs prepared from mouse ES cells. Cells irradiated with X-rays at a dose of 1Gy maintained the capabilities for proliferation and differentiation but stopped proliferation temporarily. In contrast, the cells ceased proliferation following irradiation at a dose of >5Gy. These results suggest that irradiation of the fetal brain at relatively low doses may cause congenital brain abnormalities as with relatively high doses.

  7. Molecular imaging of low-power laser irradiation induced cell proliferation

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Wang, Fang; Da, Xing

    2006-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Studying the signaling pathways involved in the laser irradiation is important for understanding these processes. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. Protein kinase Cs (PKCs) have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In present study, to monitor the direct interaction between Ras and Raf and PKCs activation after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. Our results show that the direct interaction between Ras and Raf is monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope, and that the increasing dynamics of PKCs activity is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved ASTC-a-1 cells expressing CKAR reporter using the similar way. Taken together, LPLI induces the ASTC-a-1 cell proliferation by activated Ras directly interacting with Raf and by specifically activating PKCs.

  8. Total Body Irradiation in the "Hematopoietic" Dose Range Induces Substantial Intestinal Injury in Non-Human Primates.

    PubMed

    Wang, Junru; Shao, Lijian; Hendrickson, Howard P; Liu, Liya; Chang, Jianhui; Luo, Yi; Seng, John; Pouliot, Mylene; Authier, Simon; Zhou, Daohong; Allaben, William; Hauer-Jensen, Martin

    2015-11-01

    The non-human primate has been a useful model for studies of human acute radiation syndrome (ARS). However, to date structural changes in various parts of the intestine after total body irradiation (TBI) have not been systematically studied in this model. Here we report on our current study of TBI-induced intestinal structural injury in the non-human primate after doses typically associated with hematopoietic ARS. Twenty-four non-human primates were divided into three groups: sham-irradiated control group; and total body cobalt-60 (60Co) 6.7 Gy gamma-irradiated group; and total body 60Co 7.4 Gy gamma-irradiated group. After animals were euthanized at day 4, 7 and 12 postirradiation, sections of small intestine (duodenum, proximal jejunum, distal jejunum and ileum) were collected and fixed in 10% formalin. The intestinal mucosal surface length, villus height and crypt depths were assessed by computer-assisted image analysis. Plasma citrulline levels were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Total bone marrow cells were counted and hematopoietic stem/progenitor cells in bone marrow were analyzed by flow cytometer. Histopathologically, all segments exhibited conspicuous disappearance of plicae circulares and prominent atrophy of crypts and villi. Intestinal mucosal surface length was significantly decreased in all intestinal segments on day 4, 7 and 12 after irradiation (P < 0.02-P < 0.001). Villus height was significantly reduced in all segments on day 4 and 7 (P = 0.02-0.005), whereas it had recovered by day 12 (P > 0.05). Crypt depth was also significantly reduced in all segments on day 4, 7 and 12 after irradiation (P < 0.04-P < 0.001). Plasma citrulline levels were dramatically reduced after irradiation, consistent with intestinal mucosal injury. Both 6.7 and 7.4 Gy TBI reduced total number of bone marrow cells. And further analysis showed that the number and function of CD45(+)CD34(+) hematopoietic stem/progenitors in bone

  9. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  10. Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system.

    PubMed

    Yamada, Ayumi; Masutani, Chikahide; Hanaoka, Fumio

    2002-10-21

    Cockayne syndrome (CS) is a human hereditary disorder characterized by UV sensitivity, developmental abnormalities and premature aging. CS cells display a selective deficiency in transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) that preferentially removes lesions from transcribed strands. Following UV irradiation, the recovery of RNA synthesis is abnormally delayed in CS cells in conjunction with TCR deficiency. To date, TCR has been detected in cultured cells, but not in cell-free systems. In this study, we constructed an assay system using isolated nuclei. RNA synthesis catalyzed by RNA polymerases (pol I and II) was measured in nuclei prepared from UV-irradiated cells. In nuclei isolated from HeLa and xeroderma pigmentosum (XP) group C cells, RNA synthesis was relatively resistant to UV irradiation. In contrast, RNA synthesis by pol I and, in particular, pol II in CS-B nuclei was significantly inhibited upon UV irradiation. Our data support the utility of this assay system for the in vitro detection of the recovery of RNA synthesis in cultured cells. PMID:12379475

  11. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  12. Tropomyosin heterogeneity in human cells

    SciTech Connect

    Giometti, C.S.; Anderson, N.L.

    1984-11-25

    Tropomyosin preparations from human platelets, human peripheral blood leukocytes from normal individuals and from a patient with chronic lymphocytic leukemia, human lymphoblastoid cells (GM607), human epithelial cells, and human skin fibroblasts have all been found to contain more than one protein when analyzed by two-dimensional gel electrophoresis. Although the lymphoid cell preparations consistently contain two proteins of almost identical molecular weight (M/sub r/ = 30,000), the platelet, epithelial cell, and fibroblast preparations contain two or more major proteins with molecular weights between 31,000 and 36,000, in addition to a major protein at 30,000. All of these proteins have characteristics in common with tropomyosin including slightly acidic isoelectric point, stability to heat and organic solvents, association with the cytoskeleton, and reactivity with antibody against skeletal muscle tropomyosin. The nonmuscle tropomyosin-like proteins were compared with tropomyosins from human skeletal, cardiac, and smooth muscle by peptide mapping after partial proteolysis. The results showed one of the nonmuscle proteins to be identical to the major smooth muscle tropomyosin in human uterus (myometrium) and another to be similar but not identical to skeletal muscle ..cap alpha..-tropomyosin. The remainder of the proteins with tropomyosin characteristics was unique to nonmuscle cells. In all, nine distinct human proteins with characteristics of tropomyosin are described. Charge variants of two of these proteins have been described previously. 43 references, 7 figures, 2 tables.

  13. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  14. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    SciTech Connect

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei; Wang, Na-Na; Nesa, Effat un; Wang, Jian-Bo; Wang, Cong; Jia, Yi-Bin; Wang, Kai; Tian, Hui; Cheng, Yu-Feng

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.

  15. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation.

    PubMed

    Heidenreich, Erich; Eisler, Herfried; Lengheimer, Theresia; Dorninger, Petra; Steinboeck, Ferdinand

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.

  16. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells

    SciTech Connect

    Schildkopf, Petra; Frey, Benjamin; Mantel, Frederick; Ott, Oliver J.; Weiss, Eva-Maria; Sieber, Renate; Janko, Christina; Sauer, Rolf; Fietkau, Rainer; Gaipl, Udo S.

    2010-01-01

    Colorectal cancer is the second leading cause of death in developed countries. Tumor therapies should on the one hand aim to stop the proliferation of tumor cells and to kill them, and on the other hand stimulate a specific immune response against residual cancer cells. Dying cells are modulators of the immune system contributing to anti-inflammatory or pro-inflammatory responses, depending on the respective cell death form. The positive therapeutic effects of temperature-controlled hyperthermia (HT), when combined with ionizing irradiation (X-ray), were the origin to examine whether combinations of X-ray with HT can induce immune activating tumor cell death forms, also characterized by the release of the danger signal HMGB1. Human colorectal tumor cells with differing radiosensitivities were treated with combinations of HT (41.5 {sup o}C for 1 h) and X-ray (5 or 10 Gy). Necrotic cell death was prominent after X-ray and could be further increased by HT. Apoptosis remained quite low in HCT 15 and SW480 cells. X-ray and combinations with HT arrested the tumor cells in the radiosensitive G2 cell cycle phase. The amount of released HMGB1 protein was significantly enhanced after combinatorial treatments in comparison to single ones. We conclude that combining X-ray with HT may induce anti-tumor immunity as a result of the predominant induction of inflammatory necrotic tumor cells and the release of HMGB1.

  17. Localized plasma irradiation through a micronozzle for individual cell treatment

    NASA Astrophysics Data System (ADS)

    Shimane, Ryutaro; Kumagai, Shinya; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru; Sasaki, Minoru

    2014-11-01

    A micronozzle device was fabricated for the localized plasma treatment of a cell. The device was attached to the tips of two ϕ1.5 mm capillary tubes injecting and evacuating the discharging plasma gas. At the bottom of the channel where the discharging gas flows, nozzle holes (ϕ2-30 µm) were prepared. Controlling the injecting and evacuating gas flows made the pressure in the channel negative or positive relative to the atmosphere. The cells were trapped or released through the nozzle holes. When the cells were trapped, the nozzle hole also defined the area of plasma treatment. An atmospheric-pressure microplasma was generated (He: 0.3 L/min, power: 30 W) for localized treatment. The test specimen was a plant cell, lily pollen (length: 100-140 µm). No burning of the pollen was observed during the 10 min plasma treatment. Only part of the surface reacted with the plasma irradiation. The depth of removal was about 1.5 µm.

  18. In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation

    NASA Technical Reports Server (NTRS)

    Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.

    2002-01-01

    One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.

  19. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells.

    PubMed

    Hirai, Takahisa; Saito, Soichiro; Fujimori, Hiroaki; Matsushita, Keiichiro; Nishio, Teiji; Okayasu, Ryuichi; Masutani, Mitsuko

    2016-09-01

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. PMID:27425251

  20. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  1. UVA and UVB Irradiation Differentially Regulate microRNA Expression in Human Primary Keratinocytes

    PubMed Central

    Kraemer, Anne; Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Volkmer, Beate; Atkinson, Michael J.; Moertl, Simone; Greinert, Ruediger

    2013-01-01

    MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis. PMID:24391759

  2. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin

    PubMed Central

    Stege, Helger; Roza, Len; Vink, Arie A.; Grewe, Markus; Ruzicka, Thomas; Grether-Beck, Susanne; Krutmann, Jean

    2000-01-01

    Ultraviolet-B (UVB) (290–320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40–45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection. PMID:10660687

  3. Role of interleukin in human natural killer cell proliferation

    SciTech Connect

    London, L.; Perussia, B.; Trinchieri, G.

    1986-03-01

    Human NK cells, defined by the antibody B73.1, can be induced to proliferate in vitro in the presence of an IL-2 containing conditioned medium (CM) and an irradiated lymphoblastoid line, Daudi. Proliferating NK cells maintain phenotypic and functional characteristics of resting NK cells while newly expressing surface activation antigens (HLA-DR, transferrin receptor, and IL-2 receptor recognized by anti-TAC antibody). A goat anti-IL-2 antiserum and the anti-TAC monoclonal antibody completely block /sup 3/H-TdR incorporation in NK cells stimulated with CM alone or with irradiated Daudi cells. Inhibition is also observed when the antibodies are added up to day 4 of culture, indicating that IL-2 is required for both initiation and maintenance of proliferation. Human recombinant IL-2, either alone or with irradiated lymphoblastoid cells, replaces the CM in initiating /sup 3/H-TdR incorporation. In limiting dilution analysis the frequency of B73.1 (+) cells responding to rIL-2 is approximately 1/2000 and it is increased ten to thirty fold with the addition of irradiated Daudi cells to the cultures. Cultures stimulated with rIL-2 in the presence of colchicine, show a significant proportion of B73.1 + cells entering cycle each day during the first 3 days. These data show that a significant proportion of resting NK cells are capable of responding to IL-2 and that this response can occur over a period of several days after initiation of cultures.

  4. Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism.

    PubMed

    Lv, Xin; Yao, Li; Zhang, Jianli; Han, Ping; Li, Cuiyun

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding regulatory RNAs, which are involved in the post-transcriptional regulation of gene expression. miRNA (miR)-155, which has previously been reported to be overexpressed in lung cancer, is correlated with poor patient prognosis. The present study aimed to investigate the effects of miR‑155 on the radiosensitivity of human non‑small cell lung cancer (NSCLC) cells. To explore the roles of miRNAs in the regulation of irradiation sensitivity of human lung cancer cells, the expressions of miR‑155 in response to irradiation, have been studied by RT‑qPCR, and the putative direct target of miR‑155 was identified by western blot and luciferase assays. The results of the present study revealed that the expression of miR‑155 was induced by irradiation, thus suggesting a positive correlation between miR‑155 and radiosensitivity. Furthermore, overexpression of miR‑155 rendered lung cancer cells resistant to irradiation. In addition, hexokinase 2 (HK2) was identified as an indirect target of miR‑155; exogenous overexpression of miR‑155 upregulated the expression of HK2, whereas inhibition of miR‑155 by antisense miRNA suppressed HK2 expression. In addition, HK2‑modulated glucose metabolism was significantly upregulated by overexpression of miR‑155. Notably, inhibition of miR‑155 sensitized lung cancer cells to irradiation via suppression of glucose metabolism. In conclusion, the present study reported a novel function for miR‑155 in the regulation of NSCLC cell radiosensitivity, thus suggesting that miR‑155 may be considered a therapeutic target for the development of anticancer drugs. PMID:27315591

  5. Local proliferation and extrahepatic recruitment of liver macrophages (Kupffer cells) in partial-body irradiated rats

    SciTech Connect

    Bouwens, L.; Knook, D.L.; Wisse, E.

    1986-06-01

    The relative significance of local proliferation and extrahepatic recruitment of Kupffer cells was investigated by partial-body irradiation before the induction of macrophage hyperplasia by zymosan. There was no difference in growth of the Kupffer cells population between nonirradiated rats and rats irradiated with the liver shielded, whereas irradiation of the liver with the rest of the body (bone marrow) shielded resulted in strong inhibition of growth (-61%). Splenectomy combined with bone marrow irradiation inhibited growth to a lesser extent as compared to liver irradiation (-38%). Monocyte and other leukocyte numbers were strongly reduced in peripheral blood and their accumulation in the liver was completely prevented by bone marrow irradiation. Our results demonstrate that local proliferation of resident Kupffer cells represents the predominant source for their increased number during hyperplasia.

  6. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  7. A fully autologous co-culture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use.

    PubMed

    Jubin, K; Martin, Y; Lawrence-Watt, D J; Sharpe, J R

    2011-12-01

    Autologous keratinocytes can be used to augment cutaneous repair, such as in the treatment of severe burns and recalcitrant ulcers. Such cells can be delivered to the wound bed either as a confluent sheet of cells or in single-cell suspension. The standard method for expanding primary human keratinocytes in culture uses lethally irradiated mouse 3T3 fibroblasts as feeder cells to support keratinocyte attachment and growth. In an effort to eliminate xenobiotic cells from clinical culture protocols where keratinocytes are applied to patients, we investigated whether human autologous primary fibroblasts could be used to expand keratinocytes in culture. At a defined ratio of a 6:1 excess of keratinocytes to fibroblasts, this co-culture method displayed a population doubling rate comparable to culture with lethally irradiated 3T3 cells. Furthermore, morphological and molecular analysis showed that human keratinocytes expanded in co-culture with autologous human fibroblasts were positive for proliferation markers and negative for differentiation markers. Keratinocytes expanded by this method thus retain their proliferative phenotype, an important feature in enhancing rapid wound closure. We suggest that this novel co-culture method is therefore suitable for clinical use as it dispenses with the need for lethally irradiated 3T3 cells in the rapid expansion of autologous human keratinocytes.

  8. Anti-photoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Kim, Min-Ji; Woo, Seon Wook; Kim, Myung-Suk; Park, Ji-Eun; Hwang, Jae-Kwan

    2014-12-01

    Chronic exposure to ultraviolet (UV) irradiation causes sunburn, inflammatory responses, skin cancer, and photoaging. Photoaging, in particular, generates reactive oxygen species (ROS) that stimulate mitogen-activated protein kinase (MAPK) signaling and transcription factors. UV irradiation also activates matrix metalloproteinases (MMPs) expression and inactivates collagen synthesis. Aaptamine, a marine alkaloid isolated from the marine sponge, has been reported to have antitumor, antimicrobial, antiviral, and antioxidant activities. However, the photo-protective effects of aaptamine have not been elucidated. In this study, our data demonstrated that aaptamine deactivated UVB-induced MAPK and activator protein-1 signaling by suppressing ROS, resulting in attenuating the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes. In conclusion, we suggest that aaptamine represents a novel and effective strategy for treatment and prevention of photoaging.

  9. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    SciTech Connect

    Song, Chang W.; Lee, Yoon-Jin; Griffin, Robert J.; Park, Inhwan; Koonce, Nathan A.; Hui, Susanta; Kim, Mi-Sook; Dusenbery, Kathryn E.; Sperduto, Paul W.; Cho, L. Chinsoo

    2015-09-01

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 days and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.

  10. Surface Treatment of Polymers by Ion Beam Irradiation to Control the Human Osteoblast Adhesion: Fluence and Current Density Study

    SciTech Connect

    Guibert, G.; Mikhailov, S.; Rossel, T.; Weder, G.; Betschart, B.; Meunier, C.

    2009-03-10

    In the biomaterial field, the modification of surfaces are used to create polymers with high performances, preserving their bulk properties and creating specific interactions between the designed surfaces and the cells or tissues. The polymers were irradiated with a 900 keV Helium beam to modify their surface properties. Cell cultivation on the samples was done using human osteoblasts cells (hFOB 1.19). For PTFE, PS and PEEK polymers, the cell adhesion occurs after reached some threshold values of fluences. For PET or PMMA polymers, the cells adhere on the non irradiated samples, however the fluence value modifies the cell density. For PMMA and PTFE both, the fluence and the current density influence the cell adhesion. By modifying the appropriate parameters on each material, the control of the cell adhesion is possible. Indeed the surface treatment must be selected and adapted according to the further application: for biosensors, tissue engineering, tissue regeneration, neural probes, drug delivery, bio-actuators etc.

  11. Surface Treatment of Polymers by Ion Beam Irradiation to Control the Human Osteoblast Adhesion: Fluence and Current Density Study

    NASA Astrophysics Data System (ADS)

    Guibert, G.; Rossel, T.; Weder, G.; Betschart, B.; Meunier, C.; Mikhailov, S.

    2009-03-01

    In the biomaterial field, the modification of surfaces are used to create polymers with high performances, preserving their bulk properties and creating specific interactions between the designed surfaces and the cells or tissues. The polymers were irradiated with a 900 keV Helium beam to modify their surface properties. Cell cultivation on the samples was done using human osteoblasts cells (hFOB 1.19). For PTFE, PS and PEEK polymers, the cell adhesion occurs after reached some threshold values of fluences. For PET or PMMA polymers, the cells adhere on the non irradiated samples, however the fluence value modifies the cell density. For PMMA and PTFE both, the fluence and the current density influence the cell adhesion. By modifying the appropriate parameters on each material, the control of the cell adhesion is possible. Indeed the surface treatment must be selected and adapted according to the further application: for biosensors, tissue engineering, tissue regeneration, neural probes, drug delivery, bio-actuators etc.

  12. Effect of gamma irradiation on the wear behaviour of human tooth enamel

    NASA Astrophysics Data System (ADS)

    Qing, Ping; Huang, Shengbin; Gao, Shanshan; Qian, Linmao; Yu, Haiyang

    2015-06-01

    Radiotherapy is a frequently used treatment for oral cancer. Extensive research has been conducted to detect the mechanical properties of dental hard tissues after irradiation at the macroscale. However, little is known about the influence of irradiation on the tribological properties of enamel at the micro- or nanoscale. Therefore, this study aimed to investigate the effect of gamma irradiation on the wear behaviour of human tooth enamel in relation to prism orientation. Nanoscratch tests, surface profilometer and scanning electron microscope (SEM) analysis were used to evaluate the friction behaviour of enamel slabs before and after treatment with identical irradiation procedures. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were performed to analyse the changes in crystallography and chemical composition induced by irradiation. Surface microhardness (SMH) alteration was also evaluated. The results showed that irradiation resulted in different scratch morphologies, friction coefficients and remnant depth and width at different loads. An inferior nanoscratch resistance was observed independent of prism orientation. Moreover, the variation of wear behaviours was closely related to changes in the crystallography, chemical composition and SMH of the enamel. Together, these measures indicated that irradiation had a direct deleterious effect on the wear behaviour of human tooth enamel.

  13. Effect of gamma irradiation on the wear behaviour of human tooth enamel

    PubMed Central

    Qing, Ping; Huang, Shengbin; Gao, ShanShan; Qian, LinMao; Yu, HaiYang

    2015-01-01

    Radiotherapy is a frequently used treatment for oral cancer. Extensive research has been conducted to detect the mechanical properties of dental hard tissues after irradiation at the macroscale. However, little is known about the influence of irradiation on the tribological properties of enamel at the micro- or nanoscale. Therefore, this study aimed to investigate the effect of gamma irradiation on the wear behaviour of human tooth enamel in relation to prism orientation. Nanoscratch tests, surface profilometer and scanning electron microscope (SEM) analysis were used to evaluate the friction behaviour of enamel slabs before and after treatment with identical irradiation procedures. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were performed to analyse the changes in crystallography and chemical composition induced by irradiation. Surface microhardness (SMH) alteration was also evaluated. The results showed that irradiation resulted in different scratch morphologies, friction coefficients and remnant depth and width at different loads. An inferior nanoscratch resistance was observed independent of prism orientation. Moreover, the variation of wear behaviours was closely related to changes in the crystallography, chemical composition and SMH of the enamel. Together, these measures indicated that irradiation had a direct deleterious effect on the wear behaviour of human tooth enamel. PMID:26099692

  14. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    PubMed

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  15. Human satellite cells have regenerative capacity and are genetically manipulable.

    PubMed

    Marg, Andreas; Escobar, Helena; Gloy, Sina; Kufeld, Markus; Zacher, Joseph; Spuler, Andreas; Birchmeier, Carmen; Izsvák, Zsuzsanna; Spuler, Simone

    2014-10-01

    Muscle satellite cells promote regeneration and could potentially improve gene delivery for treating muscular dystrophies. Human satellite cells are scarce; therefore, clinical investigation has been limited. We obtained muscle fiber fragments from skeletal muscle biopsy specimens from adult donors aged 20 to 80 years. Fiber fragments were manually dissected, cultured, and evaluated for expression of myogenesis regulator PAX7. PAX7+ satellite cells were activated and proliferated efficiently in culture. Independent of donor age, as few as 2 to 4 PAX7+ satellite cells gave rise to several thousand myoblasts. Transplantation of human muscle fiber fragments into irradiated muscle of immunodeficient mice resulted in robust engraftment, muscle regeneration, and proper homing of human PAX7+ satellite cells to the stem cell niche. Further, we determined that subjecting the human muscle fiber fragments to hypothermic treatment successfully enriches the cultures for PAX7+ cells and improves the efficacy of the transplantation and muscle regeneration. Finally, we successfully altered gene expression in cultured human PAX7+ satellite cells with Sleeping Beauty transposon-mediated nonviral gene transfer, highlighting the potential of this system for use in gene therapy. Together, these results demonstrate the ability to culture and manipulate a rare population of human tissue-specific stem cells and suggest that these PAX7+ satellite cells have potential to restore gene function in muscular dystrophies.

  16. Human satellite cells have regenerative capacity and are genetically manipulable

    PubMed Central

    Marg, Andreas; Escobar, Helena; Gloy, Sina; Kufeld, Markus; Zacher, Joseph; Spuler, Andreas; Birchmeier, Carmen; Izsvák, Zsuzsanna; Spuler, Simone

    2014-01-01

    Muscle satellite cells promote regeneration and could potentially improve gene delivery for treating muscular dystrophies. Human satellite cells are scarce; therefore, clinical investigation has been limited. We obtained muscle fiber fragments from skeletal muscle biopsy specimens from adult donors aged 20 to 80 years. Fiber fragments were manually dissected, cultured, and evaluated for expression of myogenesis regulator PAX7. PAX7+ satellite cells were activated and proliferated efficiently in culture. Independent of donor age, as few as 2 to 4 PAX7+ satellite cells gave rise to several thousand myoblasts. Transplantation of human muscle fiber fragments into irradiated muscle of immunodeficient mice resulted in robust engraftment, muscle regeneration, and proper homing of human PAX7+ satellite cells to the stem cell niche. Further, we determined that subjecting the human muscle fiber fragments to hypothermic treatment successfully enriches the cultures for PAX7+ cells and improves the efficacy of the transplantation and muscle regeneration. Finally, we successfully altered gene expression in cultured human PAX7+ satellite cells with Sleeping Beauty transposon–mediated nonviral gene transfer, highlighting the potential of this system for use in gene therapy. Together, these results demonstrate the ability to culture and manipulate a rare population of human tissue-specific stem cells and suggest that these PAX7+ satellite cells have potential to restore gene function in muscular dystrophies. PMID:25157816

  17. Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing.

    PubMed

    Richena, M; Rezende, C A

    2016-08-01

    Morphological changes in hair surface are undesirable, since they cause shine loss, roughness increase and split ends. These effects occur more frequently in the cuticle, which is the outermost layer of the hair strand, and thus the most exposed to the environmental damages. Sunlight irradiation contributes significantly to these morphological alterations, which motivates the investigation of this effect on hair degradation. In this work, the influence of irradiation and hand-washing steps on the morphology of pigmented and non-pigmented hair cuticle was investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). To simulate daily conditions, where hair is hand-washed and light exposed, samples of dark brown and gray hair underwent three different conditions: 1) irradiation with a mercury lamp for up to 600h; 2) irradiation with the mercury lamp combined with washes with a sodium lauryl sulphate solution; and 3) only washing. A new preparation procedure was applied for TEM samples to minimize natural variations among different hair strands: a single hair strand was cut into two neighbouring halves and only one of them underwent irradiation and washing. The non-exposed half was used as a control, so that the real effects caused by the controlled irradiation and washing procedures could be highlighted in samples that had very similar morphologies initially. More than 25images/sample were analysed using FESEM (total of 300 images) and ca. 150images/sample were obtained with TEM (total of 900 images). The results presented herein show that the endocuticle and the cell membrane complex (CMC) are the cuticle structures more degraded by irradiation. Photodegradation alone results in fracturing, cavities (Ø≈20-200nm) and cuticle cell lifting, while the washing steps were able to remove cuticle cells (≈1-2 cells removed after 60 washes). Finally, the combined action of irradiation and washing caused the most severe

  18. Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing.

    PubMed

    Richena, M; Rezende, C A

    2016-08-01

    Morphological changes in hair surface are undesirable, since they cause shine loss, roughness increase and split ends. These effects occur more frequently in the cuticle, which is the outermost layer of the hair strand, and thus the most exposed to the environmental damages. Sunlight irradiation contributes significantly to these morphological alterations, which motivates the investigation of this effect on hair degradation. In this work, the influence of irradiation and hand-washing steps on the morphology of pigmented and non-pigmented hair cuticle was investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). To simulate daily conditions, where hair is hand-washed and light exposed, samples of dark brown and gray hair underwent three different conditions: 1) irradiation with a mercury lamp for up to 600h; 2) irradiation with the mercury lamp combined with washes with a sodium lauryl sulphate solution; and 3) only washing. A new preparation procedure was applied for TEM samples to minimize natural variations among different hair strands: a single hair strand was cut into two neighbouring halves and only one of them underwent irradiation and washing. The non-exposed half was used as a control, so that the real effects caused by the controlled irradiation and washing procedures could be highlighted in samples that had very similar morphologies initially. More than 25images/sample were analysed using FESEM (total of 300 images) and ca. 150images/sample were obtained with TEM (total of 900 images). The results presented herein show that the endocuticle and the cell membrane complex (CMC) are the cuticle structures more degraded by irradiation. Photodegradation alone results in fracturing, cavities (Ø≈20-200nm) and cuticle cell lifting, while the washing steps were able to remove cuticle cells (≈1-2 cells removed after 60 washes). Finally, the combined action of irradiation and washing caused the most severe

  19. Porcine sensitized lymph node cells (immunotherapy) and attenuated irradiation for infiltrative transitional cells carcinoma of bladder.

    PubMed

    Cockett, A T; de Sant'agnese, P A; Hamlin, D J; Keys, H M

    1982-06-01

    Thirty-four patients wih infiltrative bladder carcinoma, Stage B2C or higher were treated with immunotherapy and irradiation. Seventeen patients are alive, and 17 have succumbed to their disease. Eight patients underwent cystectomy after immunotherapy and irradiation; 6 of 8 are alive and well at the present time. The technique of immunotherapy is outlined. New methodology for sequential CT scans and scheduled bladder biopsies is mentioned. The 17 patients have survived twelve to sixty-nine months after immunotherapy and irradiation. Downstaging is demonstrated based on sequential CT scans of the bony pelvis and histologic biopsy. The biopsies reveal eosinophilia and multinucleated giant cells, a specific response to immunotherapy. A prospective randomized study will be initiated.

  20. Biological studies using mammalian cell lines and the current status of the microbeam irradiation system, SPICE

    NASA Astrophysics Data System (ADS)

    Konishi, T.; Ishikawa, T.; Iso, H.; Yasuda, N.; Oikawa, M.; Higuchi, Y.; Kato, T.; Hafer, K.; Kodama, K.; Hamano, T.; Suya, N.; Imaseki, H.

    2009-06-01

    The development of SPICE (single-particle irradiation system to cell), a microbeam irradiation system, has been completed at the National Institute of Radiological Sciences (NIRS). The beam size has been improved to approximately 5 μm in diameter, and the cell targeting system can irradiate up to 400-500 cells per minute. Two cell dishes have been specially designed: one a Si 3N 4 plate (2.5 mm × 2.5 mm area with 1 μm thickness) supported by a 7.5 mm × 7.5 mm frame of 200 μm thickness, and the other a Mylar film stretched by pressing with a metal ring. Both dish types may be placed on a voice coil stage equipped on the cell targeting system, which includes a fluorescent microscope and a CCD camera for capturing cell images. This microscope system captures images of dyed cell nuclei, computes the location coordinates of individual cells, and synchronizes this with the voice coil motor stage and single-particle irradiation system consisting of a scintillation counter and a beam deflector. Irradiation of selected cells with a programmable number of protons is now automatable. We employed the simultaneous detection method for visualizing the position of mammalian cells and proton traversal through CR-39 to determine whether the targeted cells are actually irradiated. An immuno-assay was also performed against γ-H2AX, to confirm the induction of DNA double-strand breaks in the target cells.

  1. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  2. The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Schultz, E.; Cassens, R. G.

    1996-01-01

    The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P>0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P>0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P<0.05) over this time. At later time periods, satellite cell number increased (P<0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.

  3. Thermal annealing of GaAs concentrator solar cells. [during electron irradiation

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Brinker, D. J.

    1989-01-01

    The thermal annealing of GaAs concentrator cells after electron irradiation is reported. Results are given for cells annealed at 150, 200, and 250 C. Isochronal annealing was done for 20 min intervals up to 350 C. For cells irradiated with electrons of energies between 0.7 and 2.3 MeV, the recovery decreases with increasing electron energy. Isothermal and isochronal annealing produce the same recovery. Cells irradiated to 3 x 10 to the 15th or 1 x 10 to the 16th e/sq cm recover to similar unannealed fractions. Significant annealing is seen starting at 150 C, although very long times are required.

  4. Apoptosis of murine BW 5147 thymoma cells induced by dexamethasone and gamma-irradiation.

    PubMed

    Kruman, I I; Matylevich, N P; Beletsky, I P; Afanasyev, V N; Umansky, S R

    1991-08-01

    The mode and the kinetics of the death of T-thymoma cells upon dexamethasone treatment and gamma-irradiation (10Gy) have been studied using flow cytometry and biochemical analysis. It has been shown that the hormone and gamma-irradiation induce cell death by apoptosis. In both cases the cells are initially blocked in G2/M and die only after overcoming the blockage and cytokinesis. A short exposure to dexamethasone results in a cytostatic effect, whereas a cytotoxic effect is absent. Reducing serum concentration to 2% causes more rapid death both following gamma-irradiation and dexamethasone. These results are discussed in relation to cell death and proliferation.

  5. Proton irradiation of conventional and lithium solar cells - 11-37 MeV

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Carter, J. R.

    1974-01-01

    Conventional n/p and lithium solar cells were irradiated with 11- to 37-MeV protons. The energy dependence of the solar cell degradation, calculated from electrical parameters and lifetime measurements, is shown to be very slight. Damage coefficients for the n/p cells are calculated. Annealing characteristics of both the lithium cells and the n/p cells are presented.

  6. Perspectives on human stem cell research.

    PubMed

    Jung, Kyu Won

    2009-09-01

    Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together.

  7. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  8. Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460.

    PubMed

    Kubo, Nobuteru; Noda, Shin-ei; Takahashi, Akihisa; Yoshida, Yukari; Oike, Takahiro; Murata, Kazutoshi; Musha, Atsushi; Suzuki, Yoshiyuki; Ohno, Tatsuya; Takahashi, Takeo; Nakano, Takashi

    2015-03-01

    The present study investigated the ability of carboplatin and paclitaxel to sensitize human non-small-cell lung cancer (NSCLC) cells to carbon-ion beam irradiation. NSCLC H460 cells treated with carboplatin or paclitaxel were irradiated with X-rays or carbon-ion beams, and radiosensitivity was evaluated by clonogenic survival assay. Cell proliferation was determined by counting the number of viable cells using Trypan blue. Apoptosis and senescence were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and senescence-associated β-galactosidase (SA-β-gal) staining, respectively. The expression of cleaved caspase-3, Bax, p53 and p21 was analyzed by western blotting. Clonogenic survival assays demonstrated a synergistic radiosensitizing effect of carboplatin and paclitaxel with carbon-ion beams; the sensitizer enhancement ratios (SERs) at the dose giving a 10% survival fraction (D10) were 1.21 and 1.22, respectively. Similarly, carboplatin and paclitaxel showed a radiosensitizing effect with X-rays; the SERs were 1.41 and 1.29, respectively. Cell proliferation assays validated the radiosensitizing effect of carboplatin and paclitaxel with both carbon-ion beam and X-ray irradiation. Carboplatin and paclitaxel treatment combined with carbon-ion beams increased TUNEL-positive cells and the expression of cleaved caspase-3 and Bax, indicating the enhancement of apoptosis. The combined treatment also increased SA-β-gal-positive cells and the expression of p53 and p21, indicating the enhancement of senescence. In summary, carboplatin and paclitaxel radiosensitized H460 cells to carbon-ion beam irradiation by enhancing irradiation-induced apoptosis and senescence.

  9. Single shot cell irradiations with laser-driven protons

    SciTech Connect

    Humble, N.; Schmid, T. E.; Zlobinskaya, O.; Wilkens, J. J.; Allinger, K.; Hilz, P.; Ma, W.; Reinhardt, S.; Bin, J.; Kiefer, D.; Schreiber, J.; Drexler, G. A.; Friedl, A.

    2013-07-26

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  10. Potentially-lethal damage and radioprotection in human cells exposed to californium-252

    SciTech Connect

    Schroy, C.B.; Goud, S.N.; Magura, C.; Feola, J.M.; Maruyama, Y.

    1986-01-01

    Cultured human T-1E cells were irradiated with californium-252 neutrons and gamma rays. When 2 mm caffeine was present in the medium for 47 h after irradiation cell survival (assayed by colony formation) was decreased significantly. When 2 m dimethylsulfoxide was present during the irradiations radioprotection was observed using the same assay. The caffeine data indicate that potentially-lethal lesions exist in cells after californium exposure and that these lesions can be made lethal when they would otherwise be repaired. The DMSO data indicate that radioprotection from californium exposure can be achieved and that scanvengable free radicals play an important role in Cf-252 lethality.

  11. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells

    PubMed Central

    Shen, Hongmei; Yu, Hui; Liang, Paulina H.; Cheng, Haizi; XuFeng, Richard; Yuan, Youzhong; Zhang, Peng; Smith, Clayton A.

    2012-01-01

    Ultimate success of hematopoietic stem cell transplantation (HSCT) depends not only on donor HSCs themselves but also on the host environment. Total body irradiation is a component in various host conditioning regimens for HSCT. It is known that ionizing radiation exerts “bystander effects” on nontargeted cells and that HSCs transplanted into irradiated recipients undergo proliferative exhaustion. However, whether irradiated recipients pose a proliferation-independent bystander effect on transplanted HSCs is unclear. In this study, we found that irradiated mouse recipients significantly impaired the long-term repopulating ability of transplanted mouse HSCs shortly (∼ 17 hours) after exposure to irradiated hosts and before the cells began to divide. There was an increase of acute cell death associated with accelerated proliferation of the bystander hematopoietic cells. This effect was marked by dramatic down-regulation of c-Kit, apparently because of elevated reactive oxygen species. Administration of an antioxidant chemical, N-acetylcysteine, or ectopically overexpressing a reactive oxygen species scavenging enzyme, catalase, improved the function of transplanted HSCs in irradiated hosts. Together, this study provides evidence for an acute negative, yet proliferation-independent, bystander effect of irradiated recipients on transplanted HSCs, thereby having implications for HSCT in both experimental and clinical scenarios in which total body irradiation is involved. PMID:22374698

  12. Survival of thyroid cells: in vivo irradiation and in situ repair

    SciTech Connect

    Mulcahy, R.T.; Gould, M.N.; Clifton, K.H.

    1980-12-01

    The survival of rat thyroid cell irradiated in vivo and removed immediately for transplantation survival assay was compared with results obtained previously for thyroid cells irradiated in vitro and with the survival of thyroid cells irradiated and left in situ for 24 h before transplantation survival assay. The D/sub 0/ for thyroid cells irradiated in vivo and removed immediately for assay is 195 rad; N is 4 and D/sub q/ is 270 rad. These parameters are not significantly different from those obtained when thyroid cells are irradiated in vitro. When these parameters are compared to those of thyroid cells irradiated and left in situ for 24 h, the latter have a greater N and D/sub q/, but there is no significant difference in D/sub 0/. These data provide further evidence for a form of repair of potentially lethal damage which is dependent on the tissue environment (in situ repair, ISR) as previously described for irradiated rat mammary gland cells.

  13. Blue light stress in retinal neuronal (R28) cells is dependent on wavelength range and irradiance.

    PubMed

    Knels, Lilla; Valtink, Monika; Roehlecke, Cora; Lupp, Amelie; de la Vega, Jamlec; Mehner, Mirko; Funk, Richard H W

    2011-08-01

    The aim of our study was to elucidate the role of wavelength and irradiance in blue light retinal damage. We investigated the impact of blue light emitted from light-emitting diode (LED) modules with peaks at either 411nm (half bandwidth 17nm) or 470nm (half bandwidth 25nm) at defined irradiances of 0.6, 1.5 and 4.5W/m(2) for 411nm and 4.5W/m(2) for 470nm on retinal neuronal (R28) cells in vitro. We observed a reduction in metabolic activity and transmembrane potential of mitochondria when cells were irradiated at 411nm at higher irradiances. Furthermore, production of mitochondrial superoxide radicals increased significantly when cells were irradiated with 411nm light at 4.5W/m(2) . In addition, such irradiation caused an activation of the antioxidative glutathion system. Using vital staining, flow cytometry and western blotting, we were able to show that apoptosis only took place when cells were exposed to 411nm blue light at higher irradiances; necrosis was not observed. Enhanced caspase-3 cleavage product levels confirmed that this effect was dependent on light irradiance. Significant alterations of the above-mentioned parameters were not observed when cells were irradiated with 471nm light despite a high irradiance of 4.5W/m(2) , indicating that the cytotoxic effect of blue light is highly dependent on wavelength. The observed phenomena in R28 cells at 411nm (4.5W/m(2) ) point to an apoptosis pathway elicited by direct mitochondrial damage and increased oxidative stress. Thus, light of 411nm should act via impairment of mitochondrial function by compromising the metabolic situation of these retinal neuronal cells.

  14. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body.

    PubMed

    Kambe, Naotomo; Hiramatsu, Hidefumi; Shimonaka, Mika; Fujino, Hisanori; Nishikomori, Ryuta; Heike, Toshio; Ito, Mamoru; Kobayashi, Kimio; Ueyama, Yoshito; Matsuyoshi, Norihisa; Miyachi, Yoshiki; Nakahata, Tatsutoshi

    2004-02-01

    The transplantation of primitive human cells into sublethally irradiated immune-deficient mice is the well-established in vivo system for the investigation of human hematopoietic stem cell function. Although mast cells are the progeny of hematopoietic stem cells, human mast cell development in mice that underwent human hematopoietic stem cell transplantation has not been reported. Here we report on human mast cell development after xenotransplantation of human hematopoietic stem cells into nonobese diabetic severe combined immunodeficient (NOD/SCID)/gamma(c)(null) (NOG) mice with severe combined immunodeficiency and interleukin 2 (IL-2) receptor gamma-chain allelic mutation. Supported by the murine environment, human mast cell clusters developed in mouse dermis, but they required more time than other forms of human cell reconstitution. In lung and gastric tract, mucosal-type mast cells containing tryptase but lacking chymase located on gastric mucosa and in alveoli, whereas connective tissue-type mast cells containing both tryptase and chymase located on gastric submucosa and around major airways, as in the human body. Mast cell development was also observed in lymph nodes, spleen, and peritoneal cavity but not in the peripheral blood. Xenotransplantation of human hematopoietic stem cells into NOG mice can be expected to result in a highly effective model for the investigation of human mast cell development and function in vivo.

  15. Measurements of solar ultraviolet irradiance with respect to the human body surface

    NASA Astrophysics Data System (ADS)

    Stick, Carsten; Harms, Volker; Pielke, Liane

    1994-07-01

    Solar UV irradiance is measured in Westerland, Germany (54.9 degree(s) N, 8.3 degree(s) E) in the immediate vicinity of the North Sea shoreline. Measurements have been done since July 1993, focussing on the biologically effective UV radiation and the human body geometry. A grid double monochromator radiometer (DM 150, Bentham Instruments Comp., Reading, England) is used to measure the spectral resolution of 1 nm. Weighting the spectral irradiance by the action spectrum for the erythema is more appropriate for determining the biological effectiveness than simply dividing the UV radiation into the UV-A and UV-B wavebands. The erythemal irradiance shows a close relation to the sun angle during the course of a day. The exposure times, calculated from the irradiance and the minimal erythemal doses, suggest that people might underestimate the risk of getting sunburnt before noon. Diffuse radiation scattered from the sky contribute about 70% of the erythemal irradiance at a 45 degree(s) sun angle. A receiver oriented directly to the sun, i.e. 45 degree(s) inclined, receives an additional 30% of the erythemal irradiance measured by a horizontally adjusted cosine response sensor. The relative irradiance of curved surfaces like the skin is determined by UV- B-sensitive paper placed around a cylinder. This device detected UV radiation reflected by the sea, which hardly is measured by horizontally adjusted receivers.

  16. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin.

    PubMed

    Jung, Ji-Yong; Oh, Jang-Hee; Kim, Yeon Kyung; Shin, Mi Hee; Lee, Dayae; Chung, Jin Ho

    2012-03-01

    Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation.

  17. Myeloid leukemia risk assessment and dynamics of the granulocytopoietic system in acutely and continuously irradiated humans: modeling approach.

    PubMed

    Smirnova, O A

    2015-05-01

    A dynamic modeling approach to the risk assessment of radiogenic myeloid leukemia is proposed. A basic tool of this approach is a biologically motivated mathematical model of the granulocytopoietic system, which is capable of predicting the dynamics of blood granulocytes and bone marrow granulocytopoietic cells in acutely and chronically irradiated humans. The performed modeling studies revealed that the dose dependence of the scaled maximal concentration of bone marrow granulocytopoietic cells with radiation-induced changes, which make a cell premalignant, and the dose dependence of the scaled integral of the concentration of these cells over the period of the response of the granulocytopoietic system to acute irradiation conform to the dose dependence of excess relative risk for myeloid leukemia among atomic bomb survivors in a wide range of doses and in a range of comparatively low doses, respectively. Additionally, the dose dependence of the scaled integral of the concentration of these cells over the period of the response of the granulocytopoietic system to continuous irradiation with the dose rate and durations, which were used in brachytherapy, conforms to the dose dependence of excess relative risk for leukemia among the respective groups of exposed patients. These modeling findings demonstrate the potential to use the proposed modeling approach for predicting the excess relative risk for myeloid leukemia among humans exposed to various radiation regimes. Obviously, this is especially important in the assessment of the risks for radiogenic myeloid leukemia among people residing in contaminated areas after an accident or explosion of a radiological device, among astronauts on long-term space missions, as well as among patients treated with radiotherapy. PMID:25811147

  18. Migration of Langerhans cells and gammadelta dendritic cells from UV-B-irradiated sheep skin.

    PubMed

    Dandie, G W; Clydesdale, G J; Radcliff, F J; Muller, H K

    2001-02-01

    Depletion of dendritic cells from UV-B-irradiated sheep skin was investigated by monitoring migration of these cells towards regional lymph nodes. By creating and cannulating pseudoafferent lymphatic vessels draining a defined region of skin, migrating cells were collected and enumerated throughout the response to UV-B irradiation. In the present study, the effects of exposing sheep flank skin to UV-B radiation clearly demonstrated a dose-dependent increase in the migration of Langerhans cells (LC) from the UV-B-exposed area to the draining lymph node. The range of UV-B doses assessed in this study included 2.7 kJ/m2, a suberythemal dose; 8 kJ/m2, 1 minimal erythemal dose (MED); 20.1 kJ/m2; 40.2 kJ/m2; and 80.4 kJ/m2, 10 MED. The LC were the cells most sensitive to UV-B treatment, with exposure to 8 kJ/m2 or greater reproducibly causing a significant increase in migration. Migration of gammadelta+ dendritic cells (gammadelta+ DC) from irradiated skin was also triggered by exposure to UV-B radiation, but dose dependency was not evident within the range of UV-B doses examined. This, in conjunction with the lack of any consistent correlation between either the timing or magnitude of migration peaks of these two cell types, suggests that different mechanisms govern the egress of LC and gammadelta+ DC from the skin. It is concluded that the depression of normal immune function in the skin after exposure to erythemal doses of UV-B radiation is associated with changes in the migration patterns of epidermal dendritic cells to local lymph nodes. PMID:11168622

  19. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis.

    PubMed

    Yen, Hong-Wei; Zhang, Zhiyong

    2011-10-01

    A yeast, Rhodotorula glutinis, is regarded as a potential microbial oil producer, due to its high lipid content. The flask results of this study indicated that irradiation could increase the growth of R. glutinis compared to that of a batch without irradiation. Further 5-l fermenter results confirmed that irradiation could greatly enhance the cells' growth rate and total lipid productivity. The maximum lipid productivity obtained in the fed-batch operation with 3 LED (light emitting diode) lamps was 0.39 g/l h as compared to 0.34 g/l h in the batch with 3 LED lamps and 0.19 g/l h in the batch without irradiation. Conclusively, the irradiation could significantly increase the cells' growth rate, which, in turn, could be applied to the commercialized production of biodiesel from single cell oils. PMID:21757336

  20. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  1. The observation of structural defects in neutron-irradiated lithium-doped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sargent, G. A.

    1971-01-01

    Electron microscopy has been used to observe the distribution and morphology of lattice defects introduced into lithium-doped silicon solar cells by neutron irradiation. Upon etching the surface of the solar cells after irradiation, crater-like defects are observed that are thought to be associated with the space charge region around vacancy clusters. Thermal annealing experiments showed that the crater defects were stable in the temperature range 300 to 1200 K in all of the lithium-doped samples. Some annealing of the crater defects was observed to occur in the undoped cells which were irradiated at the lowest doses.

  2. Non-thermal DNA damage of cancer cells using near-infrared irradiation.

    PubMed

    Tanaka, Yohei; Tatewaki, Naoto; Nishida, Hiroshi; Eitsuka, Takahiro; Ikekawa, Nobuo; Nakayama, Jun

    2012-08-01

    Previously, we reported that near-infrared irradiation that simulates solar near-infrared irradiation with pre- and parallel-irradiational cooling can non-thermally induce cytocidal effects in cancer cells. To explore these effects, we assessed cell viability, DNA damage response pathways, and the percentage of mitotic cancer cells after near-infrared treatment. Further, we evaluated the anti-cancer effects of near-infrared irradiation compared with doxorubicin in xenografts in nude mice by measuring tumor volume and assessing protein phosphorylation by immunoblot analysis. The cell viability of A549 lung adenocarcinoma cells was significantly decreased after three rounds of near-infrared irradiation at 20 J/cm(2). Apoptotic cells were observed in near-infrared treated cells. Moreover, near-infrared treatment increased the phosphorylation of ataxia-telangiectasia mutated (ATM) at Ser(1981), H2AX at Ser(139), Chk1 at Ser(317), structural maintenance of chromosome (SMC) 1 at Ser(966), and p53 at Ser(15) in A549 cells compared with control. Notably, near-infrared treatment induced the formation of nucleic foci of γH2AX. The percentage of mitotic A549 cells, as measured by histone H3 phosphorylation, decreased significantly after three rounds of near-infrared irradiation at 20 J/cm(2). Both near-infrared and doxorubicin inhibited the tumor growth of MDA-MB435 melanoma cell xenografts in nude mice and increased the phosphorylation of p53 at Ser(15), Chk1 at Ser(317), SMC1 at Ser(966), and H2AX at Ser(139) compared with control mice. These results indicate that near-infrared irradiation can non-thermally induce cytocidal effects in cancer cells as a result of activation of the DNA damage response pathway. The near-infrared irradiation schedule used here reduces discomfort and side effects. Therefore, this strategy may have potential application in the treatment of cancer.

  3. Evaluation of cell behavior on modified polypropylene with swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; Ibañez, Irene L.; García Bermúdez, Gerardo; Durán, Hebe; del Grosso, Mariela F.; Salguero, Noelia; Mazzei, Rubén

    2012-02-01

    Ion beam irradiation is a well known means to change the physico-chemical properties of polymers, and induced bio and citocompatibility in controlled conditions and in selected areas of surface. However, the enhancement of cell adhesion on a modified substrate does not mean that the surface is adequate for functional cells. The purpose of the present work is to study proliferation, changes in cytoskeleton and cell morphology on substrates as a function of irradiation parameters. We irradiated polypropylene with sulfur (S) ion-beam at energies of 110 MeV with fluences between 1 × 10 6 and 2 × 10 10 ions cm -2. NIH 3T3 cells were cultured on each sample. Cell morphology was observed using phase contrast microscopy and cytoskeleton proteins with fluorescence microscopy. The analysis show different cellular responses as a functions of irradiation parameter, strongly suggests that different underlying substratum can result in distinct types of cytoskeleton reorganization.

  4. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    NASA Astrophysics Data System (ADS)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  5. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells.

    PubMed

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated (13)C-ions at the Grand Accélérateur National d'Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy).

  6. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  7. The human lung mast cell.

    PubMed Central

    Wasserman, S I

    1984-01-01

    Mast cells are present in human lung tissue, pulmonary epithelium, and free in the bronchial lumen. By virtue of their location and their possession of specific receptors for IgE and complement fragments, these cells are sentinel cells in host defense. The preformed granular mediators and newly generated lipid mediators liberated upon activation of mast cells by a variety of secretagogues supply potent vasoactive-spasmogenic mediators, chemotactic factors, active enzymes, and proteoglycans to the local environment. These factors acting together induce an immediate response manifest as edema, smooth muscle constriction, mucus production, and cough. Later these mediators and those provided from plasma and leukocytes generate a tissue infiltrate of inflammatory cells and more prolonged vasoactive-bronchospastic responses. Acute and prolonged responses may be homeostatic and provide for defense of the host, but if excessive in degree or duration may provide a chronic inflammatory substrate upon which such disorders as asthma and pulmonary fibrosis may ensue. PMID:6428878

  8. Biomodulatory effects of laser irradiation on dental pulp cells in vitro

    NASA Astrophysics Data System (ADS)

    Milward, Michael R.; Hadis, Mohammed A.; Cooper, Paul R.; Gorecki, Patricia; Carroll, James D.; Palin, William M.

    2015-03-01

    Low level laser/light therapy (LLLT) or photobiomodulation is a biophysical approach that can be used to reduce pain, inflammation and modulate tissue healing and repair. However, its application has yet to be fully realized for dental disease treatment. The aim of this study was to assess the modulation of dental pulp cell (DPC) responses using two LLLT lasers with wavelengths of 660nm and 810nm. Human DPCs were isolated and cultured in phenol-red-free α- MEM/10%-FCS at 37°C in 5% CO2. Central wells of transparent-based black walled 96-microplates were seeded with DPCs (passages 2-4; 150μL; 25,000 cell/ml). At 24h post-seeding, cultures were irradiated using a Thor Photomedicine LLLT device (THOR Photomedicine, UK) at 660nm (3, 6 or 13s to give 2, 5 and 10J/cm2) or 810nm (for 1, 2 or 5s to deliver 5, 10 and 20J/cm2). Metabolic activity was assessed via a modified MTT assay 24h post-irradiation. Statistical differences were identified using analysis of variance and post-hoc Tukey tests (P=0.05) and compared with nonirradiated controls. Significantly higher MTT activity was obtained for both lasers (P<0.05) using the high and intermediate radiant exposure (5-20J/cm2). The MTT response significantly decreased (P<0.05) at lower radiant exposures with no statistical significance from control (P>0.05). Consequently, enhanced irradiation parameters was apparent for both lasers. These parameters should be further optimised to identify the most effective for therapeutic application.

  9. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling.

    PubMed

    Quan, Taihao; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2004-09-01

    Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.

  10. Green tea extract reduces induction of p53 and apoptosis in UVB-irradiated human skin independent of transcriptional controls.

    PubMed

    Mnich, Christian D; Hoek, Keith S; Virkki, Leila V; Farkas, Arpad; Dudli, Christa; Laine, Elisabeth; Urosevic, Mirjana; Dummer, Reinhard

    2009-01-01

    Ultraviolet (UV) irradiation plays a pivotal role in human skin carcinongenesis. Preclinically, systemically and topically applied green tea extract (GTE) has shown reduction of UV-induced (i) erythema, (ii) DNA damage, (iii) formation of radical oxygen species and (iv) downregulation of numerous factors related to apoptosis, inflammation, differentiation and carcinogenesis. In humans, topical GTE has so far only been tested in limited studies, with usually very high GTE concentrations and over short periods of time. Both chemical stability of GTE and staining properties of highly concentrated green tea polyphenols limit the usability of highly concentrated green tea extracts in cosmetic products. The present study tested the utility of stabilized low-dose GTE as photochemopreventive agents under everyday conditions. We irradiated with up to 100 mJ/cm(2) of UVB light skin patches which were pretreated with either OM24-containing lotion or a placebo lotion. Biopsies were taken from both irradiated and un-irradiated skin for both immunohistochemistry and DNA microarray analysis. We found that while OM24 treatment did not significantly affect UV-induced erythema and thymidine dimer formation, OM24 treatment significantly reduced UV-induced p53 expression in keratinocytes. We also found that OM24 treatment significantly reduced the number of apoptotic keratinocytes (sunburn cells and TUNEL-positive cells). Carefully controlled DNA microarray analyses showed that OM24 treatment does not induce off-target changes in gene expression, reducing the likelihood of unwanted side-effects. Topical GTE (OM24) reduces UVB-mediated epithelial damage already at low, cosmetically usable concentrations, without tachyphylaxis over 5 weeks, suggesting GTE as suitable everyday photochemopreventive agents.

  11. Ultraviolet-C Irradiation: A Novel Pasteurization Method for Donor Human Milk

    PubMed Central

    Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E.; Geddes, Donna T.

    2013-01-01

    Background Holder pasteurization (milk held at 62.5°C for 30 minutes) is the standard treatment method for donor human milk. Although this method of pasteurization is able to inactivate most bacteria, it also inactivates important bioactive components. Therefore, the objective of this study was to investigate ultraviolet irradiation as an alternative treatment method for donor human milk. Methods Human milk samples were inoculated with five species of bacteria and then UV-C irradiated. Untreated and treated samples were analysed for bacterial content, bile salt stimulated lipase (BSSL) activity, alkaline phosphatase (ALP) activity, and fatty acid profile. Results All five species of bacteria reacted similarly to UV-C irradiation, with higher dosages being required with increasing concentrations of total solids in the human milk sample. The decimal reduction dosage was 289±17 and 945±164 J/l for total solids of 107 and 146 g/l, respectively. No significant changes in the fatty acid profile, BSSL activity or ALP activity were observed up to the dosage required for a 5-log10 reduction of the five species of bacteria. Conclusion UV-C irradiation is capable of reducing vegetative bacteria in human milk to the requirements of milk bank guidelines with no loss of BSSL and ALP activity and no change of FA. PMID:23840820

  12. Increased long-term expression of pentraxin 3 in irradiated human arteries and veins compared to internal controls from free tissue transfers

    PubMed Central

    2013-01-01

    Background Clinical studies have shown that radiotherapy increases the risk of cardiovascular disease at irradiated sites years after exposure. However, there is a lack of biological explanations in humans. We therefore examined human blood vessels exposed to radiotherapy and studied C-reactive protein (CRP) and pentraxin 3 (PTX3), a new marker for adverse cardiovascular outcome dependent on TNF- alpha (TNFα) or interleukin-1beta (IL-1β) expression. Methods Pairs of irradiated and non-irradiated human conduit arteries and veins were harvested from the same patient during autologous free tissue transfer for cancer-reconstruction at a median time of 48 weeks after radiotherapy. Differential gene expression was studied using qRT-PCR, confirmed by immunohistochemistry and cellular origins determined by immunofluorescence. Results Gene expression in irradiated arteries compared to non-irradiated showed a consistent up-regulation of PTX3 in all patients and in a majority of veins (p < 0.001). Both TNFα and IL-1β were increased in irradiated compared to non-irradiated arteries (p < 0.01) and IL-1β correlated to the PTX3 expression (p = 0.017). Immunohistochemical and immunofluorescence staining confirmed an increased expression of PTX3 in endothelial cells, macrophages and smooth muscle cells. Conclusions The sustained expression of PTX3 in arteries and veins tie biological evidence in humans to clinical studies and encourage further exploration of innate immunity in the pathogenesis of a radiation-induced vasculopathy. PMID:24060373

  13. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  14. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  15. Single-cell irradiation from [211At] astatine-labeled C215 monoclonal antibody: improved estimates of radiosensitivity from measurements on cellular uptake and retention.

    PubMed

    Palm, Stig; Bäck, Tom; Claesson, Ingela; Delle, Ulla; Hultborn, Ragnar; Lindegren, Sture; Jacobsson, Lars

    2003-01-01

    New data on the biological effect of 211At-C215 monoclonal antibody in a slowly rotating, widely dispersed single-cell suspension of the human cancer cell line Colo-205 is presented. Cell growth curves of each experiment were used to calculate an apparent cell survival after irradiation. Uptake measurements provided the data needed to calculate the average number of 211At decays per cell in the cell suspension. The results from each experiment were then fit to a mono-exponential function. From the exponential fit, an average of 35 +/- 2 (SD) astatine-211 decays per cell are required for 37% apparent cell survival (D0). PMID:12820374

  16. Single-cell irradiation from [211At] astatine-labeled C215 monoclonal antibody: improved estimates of radiosensitivity from measurements on cellular uptake and retention.

    PubMed

    Palm, Stig; Bäck, Tom; Claesson, Ingela; Delle, Ulla; Hultborn, Ragnar; Lindegren, Sture; Jacobsson, Lars

    2003-01-01

    New data on the biological effect of 211At-C215 monoclonal antibody in a slowly rotating, widely dispersed single-cell suspension of the human cancer cell line Colo-205 is presented. Cell growth curves of each experiment were used to calculate an apparent cell survival after irradiation. Uptake measurements provided the data needed to calculate the average number of 211At decays per cell in the cell suspension. The results from each experiment were then fit to a mono-exponential function. From the exponential fit, an average of 35 +/- 2 (SD) astatine-211 decays per cell are required for 37% apparent cell survival (D0).

  17. UV irradiance on the human skin: Effects of orientation and sky obstructions

    NASA Astrophysics Data System (ADS)

    Koepke, Peter; Hess, Michael; Bretl, Sebastian; Seefeldner, Meinhard

    2009-03-01

    Modification factors (MF) are presented that allow the transfer of the UV index (UVI) into actual values of the UV irradiance on the human skin. The UVI is the general information on solar UV irradiance and valid for a horizontal surface under a sky without obstructions. The human skin, however, may be tilted and present in an environment whereby the sun or sky is obstructed, such as within a street canyon, or under a sunshade or trees. These MFs are nearly independent of atmospheric conditions and thus can be used to determine the UV irradiances that are vital for sun burn, skin cancer, and vitamin D production, from the readily available actual UVI, which vary with the atmospheric conditions.

  18. Intrinsic and extrinsic heterogeneity in the responses of parent and clonal human colon carcinoma xenografts to photon irradiation

    SciTech Connect

    Leith, J.T.; Bliven, S.F.; Lee, E.S.; Glicksman, A.S.; Dexter, D.L.

    1984-09-01

    Responses to photon irradiation of xenografted human colon tumors derived from the heterogeneous DLD-1 line or its derivative A and D subpopulations were determined using excision assay and tumor regrowth delay assays. Differential responses among the three xenografted carcinomas were demonstrated. Clone A tumors treated with up to 17.5 Gy showed no actual regression below pretreatment volume. In contrast, clone D tumors were sensitive to doses as low as 3.5 Gy, and tumor volumes were reduced by 65% with a dose of 17.5 Gy. The responses of DLD-1 tumors were intermediate between the clone A and clone D tumor responses. Data indicate that the DLD-1 tumors were the most resistant, with clone A of intermediate sensitivity, clone D being the most sensitive tumor. In addition to the interclonal diversity among xenograft lines, intraclonal variation was also observed with clone A (but not clone D or DLD-1) tumors. A biphasic survival curve of cells from clone A xenografts irradiated in air-breathing hosts clearly indicated a minority (approximately 3%) subpopulation of hypoxic cells. Similar results indicating a small percentage of hypoxic cells in clone A solid tumors were obtained from the tumor regrowth delay studies. Also, excision assay data from experiments in which the heterografted carcinomas were irradiated under anoxic conditions support the interpretation that clone A tumors contain a small fraction of hypoxic cells. This study indicates that: (a) heterogeneity in vivo to ionizing radiation exists in the DLD-1 system; and (b) intraclonal variation occurs in vivo due to extrinsic (e.g., environmental hypoxia) factors, such that the intrinsic radioresistance of a subpopulation (clone A) of a heterogeneous human tumor can be further increased.

  19. Effect of deoxyribonucleosides on the hypersensitivity of human peripheral blood lymphocytes to UV-B and UV-C irradiation.

    PubMed

    Green, M H; Waugh, A P; Lowe, J E; Harcourt, S A; Cole, J; Arlett, C F

    1994-07-01

    We have previously shown that non-cycling (unstimulated) human lymphocytes from normal donors show extreme hypersensitivity to UV-B irradiation, and are killed by an excisable lesion which is not a pyrimidine dimer or 6-4 photoproduct. In this paper we show that addition of the 4 deoxyribonucleosides to the medium, each at 10(-5) M, substantially increased the survival of non-cycling normal human T-lymphocytes following UV-B irradiation and substantially reduced the frequency of excision-related strand breaks in human mononuclear cells. Addition of ribonucleosides to the medium did not enhance excision-break rejoining. The survival of fibroblasts, of cycling T-lymphocytes and of unstimulated xeroderma pigmentosum T-lymphocytes was not enhanced by deoxyribonucleosides. This suggests that the hypersensitivity is due to reduced rejoining of excision breaks as a consequence of low intracellular deoxyribonucleotide pools and that it can be redressed by supplementation of the medium with deoxyribonucleosides or upregulation of ribonucleotide reductase following mitogen stimulation. We suggest that UV-B forms an additional DNA lesion which is not a pyrimidine dimer or 6-4 photoproduct, which is relatively common, and at which incision is particularly efficient. In fibroblasts, repair of this lesion is completed with high efficiency, whereas in normal unstimulated T-lymphocytes, rapid incision exacerbates the effects of the reduced rate of strand rejoining and leads to cell death. PMID:7517007

  20. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts.

    PubMed

    Afnan, Quadri; Adil, Mushtaq Dar; Nissar-Ul, Ashraf; Rafiq, Ahmad Rather; Amir, Hussian Faridi; Kaiser, Peerzada; Gupta, Vijay Kumar; Vishwakarma, Ram; Tasduq, Sheikh Abdullah

    2012-05-15

    Glycyrrhizic acid (GA), a triterpenoid saponin glycoside from the roots and rhizomes of licorice is used in traditional and modern medicine for the treatment of numerous medical conditions including skin diseases and beauty care product. In the present study, we investigated the effect of GA against ultraviolet B (UVB) irradiation-induced photoaging in human dermal fibroblasts (HDFs) and its possible mechanism of action. HDFs were subjected to photoaging by sub-toxic dose of UVB (10 mj/cm(2)) irradiation. Cell viability, matrix metalloproteinase 1 (MMP1), pro-collagen 1, cellular and nuclear morphology, cell cycle, intracellular reactive oxygen species (ROS), caspase 3 and hyaluronidase inhibition assays were performed. Western blotting was used to evaluate the expression of NF-kappa B (NF-κB) and cytochrome-C proteins. GA treatment significantly inhibited photoaging. It achieved this by reducing ROS, NF-κB, cytochrome c, caspase 3 levels and inhibiting hyaluronidase enzyme. The main mechanism seems to be, most likely by blocking MMP1 activation by modulating NF-κB signaling. These findings may be useful for development of natural and safe photoprotective agents against UVB irradiation. PMID:22516896

  1. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain.

    PubMed

    Baulch, Janet E; Acharya, Munjal M; Allen, Barrett D; Ru, Ning; Chmielewski, Nicole N; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L; Benke, Sarah N; Parihar, Vipan K; Limoli, Charles L

    2016-04-26

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  2. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain

    PubMed Central

    Baulch, Janet E.; Acharya, Munjal M.; Allen, Barrett D.; Ru, Ning; Chmielewski, Nicole N.; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L.; Benke, Sarah N.; Parihar, Vipan K.; Limoli, Charles L.

    2016-01-01

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  3. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  4. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    SciTech Connect

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H.; Mougey, E.H.

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  5. Epidermal changes in human skin following irradiation with either UVB or UVA

    SciTech Connect

    Pearse, A.D.; Gaskell, S.A.; Marks, R.

    1987-01-01

    We have demonstrated previously that following UVB irradiation to normal volunteers there is an increase in epidermal and stratum corneum thickness and an increase in the thymidine autoradiographic labeling index. These changes are coupled with alterations in epidermal glucose-6-phosphate dehydrogenase and succinic dehydrogenase activities, despite the absence of erythema clinically. The use of a sunscreen did not completely prevent these changes. In this study, we have examined the effects of repeated irradiation of human skin with either UVB or UVA alone in order to compare the changes produced in the epidermis and to ascertain whether UVA irradiation could cause these. Irradiation with either UVB or UVA alone was found to increase the mean epidermal thickness, the mean stratum corneum thickness, and mean keratinocyte height significantly. Glucose-6-phosphate dehydrogenase activity was significantly increased throughout the epidermis, and succinic dehydrogenase activity was significantly decreased. The autoradiographic labeling index was significantly increased following UVB irradiation but not following UVA irradiation. These results demonstrate that UVA alone can have a direct effect on epidermal morphology and metabolism, suggesting that protection of skin from UV radiation should include adequate protection from UVA.

  6. Protective activity of C-geranylflavonoid analogs from Paulownia tomentosa against DNA damage in 137Cs irradiated AHH-1 cells.

    PubMed

    Moon, Hyung-In; Jeong, Min Ho; Jo, Wol Soon

    2014-09-01

    Radiotherapy is an important form of treatment for a wide range of cancers, but it can damage DNA and cause adverse effects. We investigated if the diplacone analogs of P. tomentosa were radio-protective in a human lymphoblastoid cell line (AHH-1). Four geranylated flavonoids, diplacone, 3'-O-methyl-5'-hydroxydiplacone, 3'-O-methyl-5'-O-methyldiplacone and 3'-O-methyldiplacol, were tested for their antioxidant and radio-protective effects. Diplacone analogs effectively scavenged free radicals and inhibited radiation-induced DNA strand breaks in vitro. They significantly decreased levels of reactive oxygen species and cellular DNA damage in 2 Gy-irradiated AHH-1 cells. Glutathione levels and superoxide dismutase activity in irradiated AHH-1 cells increased significantly after treatment with these analogs. The enhanced biological anti-oxidant activity and radioprotective activity of diplacone analogs maintained the survival of irradiated AHH-1 cells in a clonogenic assay. These data suggest that diplacone analogs may protect healthy tissue surrounding tumor cells during radiotherapy to ensure better control of radiotherapy and allow higher doses of radiotherapy to be employed. PMID:25918796

  7. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation

    NASA Astrophysics Data System (ADS)

    Lipiec, Ewelina; Bambery, Keith R.; Heraud, Phil; Hirschmugl, Carol; Lekki, Janusz; Kwiatek, Wojciech M.; Tobin, Mark J.; Vogel, Christian; Whelan, Donna; Wood, Bayden R.

    2014-09-01

    Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectra of single human prostate adenocarcinoma PC-3 cells, irradiated with a defined number of 2 MeV protons generated by a proton microbeam along with non-irradiated control cells, were analysed using multivariate methods. A number of different Principal Component Analysis (PCA) models were tested and the spectral ranges associated with nucleic acids, proteins and lipids were analysed separately. The results show a dose dependent shift of the Osbnd Psbnd O asymmetric stretching mode from 1234 cm-1 to 1237 cm-1, consistent with local disorder in the B-DNA conformation along with a change in intensity of the Osbnd Psbnd O symmetric stretching band at 1083 cm-1 indicative of chromatin fragmentation - the natural consequence of a high number of DNA Double Strand Breaks (DSBs). 2D mapping of characteristic functional groups at the diffraction limit shows evidence of lipid deposition and chromatin condensation in cells exposed to protons indicative of cell apoptosis following irradiation. These studies lay the foundation for understanding the macromolecular changes that occur to cells in response to radiation therapy, which has important implications in the treatment of tumours.

  8. dl-. cap alpha. -tocopheryl succinate enhances the effect of. gamma. -irradiation on neuroblastoma cells in culture

    SciTech Connect

    Sarri, A.; Prasad, K.N.

    1984-01-01

    The effect of dl-..cap alpha..-tocopheryl (vitamin E) succinate in modifying the radiation response of mouse neuroblastoma (NBP/sub 2/) and mouse fibroblast (L-cells) cells in culture was studied on the criterion of growth inhibition (due to cell death and inhibition of cell division). Results show that vitamin E succinate markedly enhanced the effect of /sub 60/CO-..gamma..-irradiation on NB cells, but it did not significantly modify the effect of irradiation on mouse fibroblasts. Sodium succinate plus ethanol (0.25% final concentration) did not modify the radiation response of NB cells or fibroblasts. Butylated hydroxyanisole, a lipid soluble antioxidant, also enhanced the effect of irradiation on NB cells, indicating that the effect of vitamin E in modifying the radiation response may be mediated, in part, by antioxidation mechanisms.

  9. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  10. DNA damage response induced by HZE particles in human cells

    NASA Astrophysics Data System (ADS)

    Chen, David; Aroumougame, Asaithamby

    Convincing evidences indicate that high-linear energy transfer (LET) ionizing radiation (IR) induced complex DNA lesions are more difficult to repair than isolated DNA lesions induced by low-LET IR; this has been associated with the increased RBE for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in high energy charged-particle irradiated human cells. We have employed an in situ method to directly monitor induction and repair of clustered DNA lesions at the single-cell level. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages determined the cellular ability to repair these damages. Importantly, examination of metaphase cells derived from HZE particle irradiated cells revealed that the extent of chromosome aberrations directly correlated with the levels of unrepaired clustered DNA lesions. In addition, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We found that complex DNA lesions induced by HZE particles were even more difficult to be repaired in organotypic 3D culture, resulting enhanced cell killing and chromosome aberrations. Our data suggest that DNA repair capability in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. As the organotypic 3D model mimics human lung, it opens up new experimental approaches to explore the effect of radiation in vivo and will have important implications for evaluating radiation risk in human tissues.

  11. Species-Specific Metastasis of Human Tumor Cells in the Severe Combined Immunodeficiency Mouse Engrafted with Human Tissue

    NASA Astrophysics Data System (ADS)

    Shtivelman, Emma; Namikawa, Reiko

    1995-05-01

    We have attempted to model human metastatic disease by implanting human target organs into the immunodeficient C.B-17 scid/scid (severe combined immunodeficiency; SCID) mouse, creating SCID-hu mice. Preferential metastasis to implants of human fetal lung and human fetal bone marrow occurred after i.v. injection of human small cell lung cancer (SCLC) cells into SCID-hu mice; the homologous mouse organs were spared. Clinically more aggressive variant SCLC cells metastasized more efficiently to human fetal lung implants than did cells from classic SCLC. Metastasis of variant SCLC to human fetal bone marrow was enhanced in SCID-hu mice exposed to γ-irradiation or to interleukin 1α. These data indicate that the SCID-hu mice may provide a model in which to study species- and tissue-specific steps of the human metastatic process.

  12. Use of spleen organ cultures to monitor hemopoietic progenitor cell regeneration following irradiation and marrow transplantation

    SciTech Connect

    von Melchner, H.; Metcalf, D.; Mandel, T.E.

    1980-11-01

    After lethal irradiation of C57BL mice followed by the injection of 10/sup 7/ marrow cells, total cellularity and progenitor cell levels exceeded pretreatment levels within 12 days in the spleen, but regeneration remained incomplete in the marrow. The exceptional regenerative capacity of progenitor populations in the spleen was observed in organ cultures of spleen slices prepared 24 h after irradiation and transplantation, excluding continuous repopulation from the marrow as a significant factor in splenic regeneration.

  13. Stromal cell migration precedes hemopoietic repopulation of the bone marrow after irradiation

    SciTech Connect

    Werts, E.D.; Gibson, D.P.; Knapp, S.A.; DeGowin, R.L.

    1980-01-01

    Circulation of hemopoietic stem cells into an irradiated site has been thoroughly documented, but migration of stromal cells to repair radiation damage has not. We determined the radiosensitivity of mouse bone marrow stroma and evaluated stromal and hemopoietic repopulation in x-irradiated marrow. The D/sub 0/ for growth of colonies of marrow stromal cells (MSC) was 215 to 230 rad. Total-body irradiation (TB) obliterated marrow stromal and hemopoietic cells within 3 days. In contrast, 1 day after 1000 rad leg irradiation (LI), MSC rose to 80% of normal, but fell to 34% by 3 days and recovered to 72% by 30 days. However, femoral nucleated cells diminished to 20% by 3 days and recovered to 74% of normal by 30 days. Likewise, differentiated marrow cells and hemopoietic stem cells were initially depleted. With 1000 rad LI followed 3 h later by 1000 rad to the body while shielding the leg, MSC and femoral nucleated cells recovered to values intermediate between 1000 rad TB and 1000 rad LI. We concluded that: (1) the D/sub 0/ for MSC was 215 to 230 rad, (2) stromal repopulation preceded hemopoietic recovery, and (3) immigration of stromal cells from an unirradiated sanctuary facilitated hemopoietic repopulation of a heavily irradiated site.

  14. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light

    PubMed Central

    Gooley, Joshua J; Rajaratnam, Shantha M; Brainard, George C; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2013-01-01

    In humans, circadian responses to light are thought to be mediated primarily by melanopsin-containing retinal ganglion cells, not rods or cones. Melanopsin cells are intrinsically blue-light sensitive, but also receive input from visual photoreceptors. We therefore tested in humans whether cone photoreceptors contribute to the regulation of circadian and neuroendocrine light responses. Dose-response curves for melatonin suppression and circadian phase resetting were constructed in subjects exposed to blue (460 nm) or green (555 nm) light near the onset of nocturnal melatonin secretion. At the beginning of the intervention, 555 nm light was just as effective as 460 nm light at suppressing melatonin, suggesting a significant contribution from the three-cone visual system (lambdamax 555 nm). During light exposure, however, the spectral sensitivity to 555 nm light decayed exponentially relative to 460 nm light. For phase-resetting responses, the effects of exposure to low irradiance 555 nm light were too large relative to 460 nm light to be explained solely by the activation of melanopsin. Our findings suggest that cone photoreceptors contribute substantially to non-visual responses at the beginning of a light exposure and at low irradiances, whereas melanopsin appears to be the primary circadian photopigment in response to long-duration light exposure and at high irradiances. These results are consistent with a non-redundant role for visual photoreceptors and melanopsin in mediating human non-visual photoreception and suggest that light therapy for circadian rhythm sleep disorders and other indications might be optimized by stimulating both the melanopsin- and cone-driven photoreceptor systems. PMID:20463367

  15. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  16. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  17. An integrated on-line irradiation and in situ live cell imaging system

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO2, O2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  18. Conditioned medium from irradiated bovine pulmonary artery endothelial cells stimulates increased protein synthesis by irradiated bovine lung fibroblasts in vitro

    SciTech Connect

    Flavin, M.P.; Parton, L.A.; Bowman, C.M. )

    1990-09-01

    Pulmonary fibrosis, a potentially fatal consequence of radiation exposure, occurs by unknown mechanisms. The hypothesis that endothelial cells, injured by radiation, could alter the biochemical function of lung fibroblasts, was tested by exposing cultures of bovine pulmonary artery endothelial cells to 0 or 5 Gy radiation and then incubating them in fresh medium for 48 h. This endothelial cell conditioned medium (ECCM) was then applied to irradiated or nonirradiated cultures of bovine lung fibroblasts. Forty-eight hours later the fibroblasts were analyzed for their ability to synthesize DNA and protein. The ECCM from injured cells stimulated fibroblast protein synthesis twofold to threefold in irradiated fibroblasts without increasing DNA synthesis. It also stimulated a significant but less marked increase in protein synthesis in nonirradiated fibroblasts. Two-dimensional gel electrophoresis revealed this increased synthesis to be expressed in less than 10% of the 1100 separable fibroblast proteins. This study shows that endothelial cells injured by radiation produce factors that stimulate injured fibroblasts to markedly increase their synthesis of certain intracellular proteins, while not stimulating fibroblast replication.

  19. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.

    PubMed

    Hou, Yanping; Luo, Haiping; Liu, Guangli; Zhang, Renduo; Li, Jiayi; Fu, Shiyu

    2014-09-01

    Methanogenesis inhibition is essential for the improvement of hydrogen (H2) yield and energy recovery in the microbial electrolysis cell (MEC). In this study, ultraviolet (UV) irradiation was proposed as an efficient method for methanogenesis control in a single chamber MEC. With 30 cycles of operation with UV irradiation in the MEC, high H2 concentrations (>91%) were maintained, while without UV irradiation, CH4 concentrations increased significantly and reached up to 94%. In the MEC, H2 yields ranged from 2.87 ± 0.03 to 3.70 ± 0.11 mol H2/mol acetate with UV irradiation and from 3.78 ± 0.12 to 0.03 ± 0.004 mol H2/mol acetate without UV irradiation. Average energy efficiencies from the UV-irradiated MEC were 1.5 times of those without UV irradiation. Energy production from the MEC without UV irradiation was a negative energy yield process because of large amount of CH4 produced over time, which was mainly attributable to cathodic hydrogenotrophic methanogenesis. Our results clearly showed that UV irradiation could effectively inhibit methanogenesis and improve MEC performance to produce H2.

  20. WISP-1 contributes to fractionated irradiation-induced radioresistance in esophageal carcinoma cell lines and mice.

    PubMed

    Li, Wen-Feng; Zhang, Li; Li, Hai-Ying; Zheng, Si-Si; Zhao, Liang

    2014-01-01

    Cancer cells that survive fractionated irradiation can be radioresistant and cause tumor recurrence. However, the molecular mechanisms underlying the development of radioresistance in cancer cells remain elusive. The aim of this study was to investigate the role of WISP-1 in the development of radioresistance in esophageal carcinoma during fractionated irradiation. Radioresistant esophageal cancer cells were generated from normal esophageal cancer cells via fractionated irradiation, and expression levels of related proteins were determined by Western blot. Radiosensitivity of cells was established by clonogenic cell survival assays, and cell cycle distribution was evaluated by flow cytometry. Protein distributions were determined by immunofluorescence, and cell toxicity was evaluated by cell counting kit-8 assays. In vivo validations were performed in a xenograft transplantation mouse model. Our data indicate that WISP-1 plays an important role in the development of radioresistance in esophageal cancer cells during fractionated irradiation. The overexression of WISP-1 in esophageal cancer cells was associated with radioresistance. Depletion of extracellular WISP-1 by antibody neutralizing reversed radioresistance and directly induced mitotic catastrophe resulting in cell death. WISP-1 may be a candidate therapeutic target in the treatment of recurrent esophageal carcinoma after radiotherapy.

  1. A Novel 785-nm Laser Diode-Based System for Standardization of Cell Culture Irradiation

    PubMed Central

    Oliveira, Camila F.; Guimarães, Orlando C.C.; Costa, Carlos A. de Souza; Kurachi, Cristina; Bagnato, Vanderlei S.

    2013-01-01

    Abstract Objective: The purpose of this study was to develop a novel device that concatenates alignment of infrared lasers and parallel procedure of irradiation. The purpose of this is to seek standardization of in vitro cell irradiation, which allows analysis and credible comparisons between outcomes of different experiments. Background data: Experimental data obtained from infrared laser therapies have been strongly dependent upon the irradiation setup. Although further optical alignment is difficult to achieve, in contact irradiation it usually occurs. Moreover, these methods eventually use laser in a serial procedure, extending the time to irradiate experimental samples. Methods: A LASERTable (LT) device was designed to provide similar infrared laser irradiation in 12 wells of a 24 well test plate. It irradiated each well by expanding the laser beam until it covers the well bottom, as occurs with unexpanded irradiation. To evaluate the effectiveness of this device, the spatial distribution of radiation was measured, and the heating of plain culture medium was monitored during the LT operation. The irradiation of LT (up to 25 J/cm2 – 20 mW/cm2; 1.250 sec) was assessed on odontoblast-like cells adhered to the bottom of wells containing 1 mL of plain culture medium. Cell morphology and metabolism were also evaluated. Results: Irradiation with LT presented a Gaussian-like profile when the culture medium was not heated >1°C. It was also observed that the LT made it 10 times faster to perform the experiment than did serial laser irradiation. In addition, the data of this study revealed that the odontoblast-like cells exposed to low-level laser therapy (LLLT) using the LT presented higher metabolism and normal morphology. Conclusions: The experimental LASERTable assessed in this study provided parameters for standardization of infrared cell irradiation, minimizing the time spent to irradiate all samples. Therefore, this device is a helpful tool that can be

  2. Mechanism study of low-energy laser irradiation-induced lung adenocarcinoma cell proliferation by FRET in living cell

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Xiao-Chuan; Xing, Da

    2004-07-01

    Low-energy laser irradiation (LELI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. The Ras/Raf/MEK (mitogen-activated protein kinase)ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that govern proliferation, differentiation and cell survival. Recent studies suggested that Ras/Raf/MEK/ERK pathway is involved in the LELI-induced cell proliferation. Here, we utilized fluorescence resonance energy transfer (FRET) technique to investigate the effect of LELI on Ras/Raf signaling pathway in living cells. Raichu-Ras reporter plasmid was utilized which consisted of fusions of H-ras, the Ras-binding domain of Raf(RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP), so that intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) were transfected with the plasmid (pRaichu-Ras) and then were treated by LELI. The living cell imaging showed the increase of FRET at different time points after LELI at the dose of 1.8 J/cm2, which corresponds to the Ras/Raf activation assayed by Western Blotting. Furthermore, this dose of LELI enhanced the proliferation of ASTC-a-1 cells. Taken together, these in vivo imaging data provide direct evidences with temporal or spatial resolution that Ras/Raf/MEK/ pathway plays an important role in LELI-promoted cell proliferation.

  3. The role of meiotic cohesin REC8 in chromosome segregation in {gamma} irradiation-induced endopolyploid tumour cells

    SciTech Connect

    Erenpreisa, Jekaterina; Cragg, Mark S.; Salmina, Kristine; Hausmann, Michael; Scherthan, Harry

    2009-09-10

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.

  4. Irradiation and measurements of fluorinated ethylene-propylene-A on silicon solar cells in vacuum

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Broder, J. D.

    1975-01-01

    Silicon monoxide (SiO) coated silicon solar cells covered with fluorinated ethylene-propylene-A (FEP-A) were irradiated by 1-MeV electrons in vacuum. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells while in vacuum after each dose increment, immediately after the irradiation, and again after a minimum elapsed time of 16 hr. The results indicated no apparent loss in transmission due to irradiation of FEP-A and no delamination from the SiO surface while the cells were in vacuum, but embrittlement of FEP-A occurred at the accumulated dose.

  5. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  6. Culture of human endothelial cells.

    PubMed

    Gallicchio, M A

    2001-01-01

    Endothelial cells line the luminal surface of all blood vessels in the body. The endothelial surface in adult humans is composed of approximately l-6×l0(13) cells and covers an area of 1-7 m(2). Endothelium serves many functions, including fluid and solute exchange through cell contraction, provision of an antithrombogenic surface through tissue plasminogen activator (tPA) and prostacyclin release, synthesis of angiogenic factors such as adenosine, allowance of leukocyte trafficking through adhesion molecule synthesis, presentation of antigens to the immune system, maintenance of vascular tone through nitric oxide and endothelin synthesis, and metabolism of circulating molecules through the release of enzymes such as lipoprotein lipase. PMID:21340938

  7. Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death.

    PubMed Central

    French, L E; Wohlwend, A; Sappino, A P; Tschopp, J; Schifferli, J A

    1994-01-01

    Clusterin is a serum glycoprotein endowed with cell aggregating, complement inhibitory, and lipid binding properties, and is also considered as a specific marker of dying cells, its expression being increased in various tissues undergoing programmed cell death (PCD). However, no study has so far directly shown that cells expressing clusterin in these tissues are actually apoptotic as defined by morphological and biochemical criteria. We have studied cellular clusterin gene expression in vitro using three different models of PCD: (a) ultraviolet B (UV-B) irradiation of human U937, HeLa, and A431 cell lines, (b) in vitro aging of human peripheral blood neutrophils (PMNs), and (c) dexamethasone-induced cell death of the human lymphoblastoid cell line CEM-C7. In all three models, the classical morphological and biochemical features of PCD observed did not correlate with an increase, but with either a marked decrease or an absence of clusterin gene expression as assessed by Northern blot analysis. In situ hybridization of U937 and A431 cells after UV-B irradiation revealed, in addition, that only morphologically normal cells that are surviving continue to express the clusterin gene. Our results demonstrate that in the human myeloid, lymphoid, and epithelial cell types studied, clusterin gene expression is not a prerequisite to their death by apoptosis. In addition, and most interestingly, in situ hybridization of U937 and A431 cells revealed that only surviving cells express the clusterin gene after the induction of PCD, thus providing novel evidence suggesting that clusterin may be associated with cell survival within tissues regressing as a consequence of PCD. Images PMID:8113419

  8. Release of platelet activating factor (PAF) and eicosanoids in UVC-irradiated corneal stromal cells.

    PubMed

    Sheng, Y; Birkle, D L

    1995-05-01

    Ultraviolet (UV) irradiation provokes acute inflammation of the eye, and can be used to model processes that occur in response to damage to the anterior segment. This study characterized ultraviolet-C (UVC, 254 nm) irradiation-induced PAF synthesis, and arachidonic acid (20:4) and eicosanoid release in rabbit corneal stromal cells maintained in vitro. PAF was measured by radioimmunoassay (RIA) after exposing cultured corneal stromal cells to UVC irradiation (20 min, 2, 5, 10 mW/cm2). 14C-20:4-labeled stromal cells were also stimulated with UVC and radiolabeled phospholipids, neutral lipids and eicosanoids were measured. Synthesis of cell-associated and secreted PAF from corneal stromal cells was increased by UV irradiation. UV irradiation (254 nm, 5mW/cm2) enhanced 20:4 release from triacylglycerols, phosphatidylinositol, phosphatidylserine and phosphatidylethanolamine, and increased levels of 20:4-diacylglycerol and unesterified 20:4. The released 20:4 entered both the cyclooxygenase and lipoxygenase pathways after UVC irradiation. The PAF antagonist, BN52021 (10 microM) reduced UVC irradiation-induced stimulation of prostaglandin production, but failed to inhibit UVC-induced 20:4 release and synthesis of lipoxygenase products. Furthermore, exogenous PAF (1 microM) stimulated prostaglandin production, but did not increase the synthesis of lipoxygenase products from radiolabeled 20:4. The effects of PAF on prostaglandin synthesis were inhibited by BN52021. These findings indicate that responses to injury in cultured corneal stromal cells include PAF synthesis, release of 20:4 from glycerolipids, accumulation of diacylglycerol and synthesis of eicosanoids. The data further suggest that during UVC irradiation in vitro, PAF is not a primary or initial mediator of 20:4 release and synthesis of lipoxygenase products, but may mediate UVC-induced prostaglandin synthesis. PMID:7648859

  9. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    SciTech Connect

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-07-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment.

  10. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  11. Scavenging of hydroxyl radicals generated in human plasma following X-ray irradiation.

    PubMed

    Hosokawa, Yoichiro; Sano, Tomoaki

    2015-11-01

    There are various antioxidant materials that scavenge free radicals in human plasma. It is possible that the radical-scavenging function causes a radiation protective effect in humans. This study estimated the hydroxyl (OH) radical-scavenging activity induced by X-ray irradiation in human plasma. The test subjects included 111 volunteers (75 males and 36 females) ranging from 22 to 35 years old (average, 24.0). OH radicals generated in irradiated human plasma were measured by electron spin resonance (ESR). The relationships between the amount of the OH radical and chemical and biological parameters [total protein, total cholesterol, triglycerides and hepatitis B surface (HBs) antibodies] were estimated in the plasma of the 111 volunteers by a multivariate analysis. The presence of HBs antibodies had the greatest influence on OH radical-scavenging activity. One volunteer who did not have the HBs antibody was given an inoculation of the hepatitis B vaccine. There was a remarkable decrease in the amount of OH radical generated from plasma after the HBs antibody was produced. The results indicate that the HBs antibody is an important factor for the scavenging of OH radicals initiated by X-ray irradiation in the human body.

  12. Study of damage to red blood cells exposed to different doses of γ-ray irradiation

    PubMed Central

    Xu, Deyi; Peng, Mingxi; Zhang, Zhe; Dong, Guofei; Zhang, Yiqin; Yu, Hongwei

    2012-01-01

    Background. The aims of this research were to study alterations in the ultrastructure of red blood cells, the changes in concentrations of plasma electrolytes and the killing effect of lymphocytes in samples of blood exposed to different doses of γ-ray irradiation. Materials and methods. Blood samples were treated with different doses of γ-ray irradiation and then preserved for different periods. Specimens were prepared for standard electron microscopy and transmission electron microscopy. At the same time, changes in the concentrations of Na+, K+ and Cl− and pH values in the plasma as well as Fas and FasL expression of lymphocytes before and after irradiation were determined. Results. The proportions of reversibly and irreversibly transformed cells, for example, echinocytes, sphero-echinocytes, and degenerated forms, increased with increasing doses of irradiation and storage period, while the number of discocyte shaped red blood cells decreased. The change in K+ concentration was greater than that of Na+ or Cl− after irradiation and was dosage-dependent. Plasma pH was influenced by different doses of radiation and storage time. After exposure to 137Cs γ-irradiation, the expression of both Fas and FasL in lymphocytes differed significantly from that in the control group: the expression was positively correlated with irradiation dose (r=0.95, 0.96), but no significant difference in the Fas/FasL ratio was observed (P>0.05). Discussion. We conclude that the ultrastructure of red blood cells is not changed obviously by irradiation with some doses of γ-rays and various periods of storage. However, irradiation does have some dose-dependent and time-dependent adverse effects on the erythrocytes. PMID:22682338

  13. Annealing of GaAs solar cells damaged by electron irradiation

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Measurements of thermal annealing of GaAlAs/GaAs solar cells damaged by 1 MeV electron irradiation are reported, and the magnitude of the short-circuit current recovery is discussed. The damaged cells are annealed in a vacuum at 200 C. A cell irradiated at 10 to the 13th power electrons per sq cm recovers all its lost short-circuit current after 15 hours of annealing. Possible application of the annealing process to solar cells in space is also considered.

  14. Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections.

    PubMed

    Shiurba, R A; Spooner, E T; Ishiguro, K; Takahashi, M; Yoshida, R; Wheelock, T R; Imahori, K; Cataldo, A M; Nixon, R A

    1998-01-01

    Formalin fixation, the chemical process in which formaldehyde binds to cells and tissues, is widely used to preserve human brain specimens from autolytic decomposition. Ultrastructure of cellular and mitochondrial membranes is markedly altered by vesiculation, but this does not interfere with diagnostic evaluation of neurohistology by light microscopy. Serious difficulties are encountered, however, when immunocytochemical staining is attempted. Antigens that are immunoreactive in unfixed frozen sections and protein extracts appear to be concealed or destroyed in formalin-fixed tissues. In dilute aqueous solution, formaldehyde is in equilibrium with methylene glycol and its polymeric hydrates, the balance by far in favor of methylene glyco. Carbonylic formaldehyde is a reactive electrophilic species well known for crosslinking functional groups in tissue proteins, nucleic acids, and polysaccharides. Some of its methylene crosslinks are readily hydrolyzed. Others are stable and irreversible. During immunostaining reactions, intra- and inter-molecular links between macromolecules limit antibody permeation of tissue sections, alter protein secondary structure, and reduce accessibility of antigenic determinants . Accordingly, immunoreactivity is diminished for many antigens. Tissues are rapidly penetrated by methylene glycol, but formaldehyde binding to cellular constituents is relatively slow, increasing progressively until equilibrium is reached. In addition, prolonged storage in formalin may result in acidification of human brain specimens. Low pH favors dissociation of methylene glycol into formaldehyde, further reducing both classical staining and antigen detectability. Various procedures have been devised to counter the antigen masking effects of formaldehyde. Examples include pretreatment of tissue sections with proteases, formic acid, or ultrasound. Recently, heating of mounted sections in ionic salt solution by microwave energy was found to restore many

  15. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo

    SciTech Connect

    Kyoizumi, Seishi; McCune, J.M.; Namikawa, Reiko

    1994-01-01

    We have developed techniques by which normal functional elements of human bone marrow can be implanted into immunodeficient C.B-17 scid/scid (SCID) mice. Afterward, long-term multilineage human hematopoiesis is sustained in vivo. We evaluated the effect of irradiation on the function of human bone marrow with this in vivo model. After whole-body X irradiation of the engrafted animals, it was determined that the D{sub 0} value of human committed progenitor cells within the human marrow was 1.00 {+-} 0.09 (SEM) Gy for granulocyte-macrophage colony-forming units (CFU-GM) and 0.74 {+-} 0.12 Gy for erythroidburst-forming units (BFU-E). The effects of irradiation on the hematopoietic elements were reduced when the radioprotective agent WR-2721 was administered prior to irradiation. After low-dose irradiation, recovery of human granulocyte colony-stimulating factor (G-CSF). This small animal model may prove amenable for the analysis of the risk of the exposure of humans to irradiation as well as for the development of new modalities for the prevention and treatment of radiation-induced hematopoietic damage. 41 refs., 5 figs., 1 tab.

  16. Human glomerular epithelial cell proteoglycans

    SciTech Connect

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M. )

    1990-04-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate.

  17. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the

  18. Effect of irradiation on testicular cells of opossum.

    PubMed

    Prasad, N; Prasad, R; Bushong, S C; North, L B

    1977-07-01

    Five months old male opossums were exposed to 5000 rd wholebody 60Co gamma-radiation. Testes tissues from animals sacrificed at 16, 40 and 90 hours post-irradiation and from nonirradiated animales were used for enzymatic and histological studies. Electrophoretic pattern of lactate dehydrogenase and glucose-6-phosphate dehydrogenase was slightly disturbed in early hours in irradiated animals, but it did not persist beyond 40 hours postirradiation. Histological study indicates 31% survival of type A spermatogonia suggesting high radioresistance of testes tissue in comparison to other animals.

  19. Proliferation-independent growth factor modulation of the radiation sensitivity of human prostate cells

    SciTech Connect

    Howard, S.P.; Groch, K.M.; Lindstrom, M.J.

    1995-08-01

    The survival of human prostatic epithelial cells irradiated in different physiological states is reported. Exponentially growing cells and contact-inhibited cells grown and irradiated in the presence of the growth factors epidermal growth factor (EGF) and bovine pituitary extract (bPE) had overlapping radiation dose-cell survival curves. However, when EGF and bPE were removed from exponentially growing cells before irradiation, an increase in radiosensitivity was observed if the cells were replated into medium containing growth factors (EGF and bPE) immediately after irradiation. Treating cells with the nonspecific growth factor receptor antagonist suramin had similar effects as did growth factor deprivation. In contrast, when growth factor-deprived cells were maintained in this same medium for 12 h postirradiation, an increase in radiation survival was observed. This increase in survival is attributed to the repair of potentially lethal damage (PLD). Both the increase in radiosensitivity induced by deprivation of growth factor before irradiation and the repair of PLD caused by deprivation of growth factor after irradiation were independent of changes in cellular proliferation. 22 refs., 1 fig., 2 tab.

  20. Visualisation of cell cycle modifications by X-ray irradiation of single HeLa cells using fluorescent ubiquitination-based cell cycle indicators.

    PubMed

    Kaminaga, K; Noguchi, M; Narita, A; Sakamoto, Y; Kanari, Y; Yokoya, A

    2015-09-01

    To explore the effects of X-ray irradiation on mammalian cell cycle dynamics, single cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci) technique were tracked. HeLa cells expressing Fucci were used to visualise cell cycle modifications induced by irradiation. After cultured HeLa-Fucci cells were exposed to 5 Gy X-rays, fluorescent cell images were captured every 20 min for 48 h using a fluorescent microscope. Time dependence of the fluorescence intensity of S/G2 cells was analysed to examine the cell cycle dynamics of irradiated and non-irradiated control cells. The results showed that irradiated cells could be divided into two populations: one with similar cell cycle dynamics to that of non-irradiated cells, and another displaying a prolonged G2 phase. Based on these findings, it is proposed in this article that an underlying switch mechanism is involved in cell cycle regulation and the G2/M checkpoint of HeLa cells.

  1. Effects of nerve growth factor on X-irradiated reaggregation cultures of rat brain cells.

    PubMed

    Dimberg, Y; Aspberg, A; Tottmar, O

    1993-12-01

    The effects of exogenously added nerve growth factor (NGF) on reaggregation cultures of foetal rat brain cells after X-irradiation with 2 Gy were studied. Irradiation caused decreased protein and DNA levels, which was not prevented by NGF. The activities of the cholinergic marker enzymes choline acetyl transferase and acetylcholine esterase were increased in irradiated cultures. However, no difference in the activities of these enzymes was found between irradiated and unirradiated NGF-treated cultures. Irradiation did not affect the activity of the marker enzyme for oligodendrocytes (2',3'-cyclic nucleotide 3'-phosphodiesterase), but caused an increase in the astrocyte marker (glutamine synthetase) activity. This effect on astrocytes was prevented by NGF. PMID:7903341

  2. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines.

    PubMed

    Kollmann, T R; Kim, A; Zhuang, X; Hachamovitch, M; Goldstein, H

    1994-08-16

    Investigation of human hematopoietic maturation has been hampered by the lack of in vivo models. Although engraftment of irradiated C.B-17 scid/scid (SCID) mice with human progenitor cells occurred after infusion with human pediatric bone marrow cells, significant engraftment of the mouse bone marrow with human cells was dependent upon continuous treatment with exogenous human cytokines. Furthermore, despite cytokine treatment, only minimal peripheral engraftment of these mice with human cells was observed. In the present study, after infusion of irradiated SCID mice with pre-cultured human fetal bone marrow cells (BM-SCID-hu mice), their bone marrow became significantly engrafted with human precursor cells and their peripheral lymphoid compartment became populated with human B cells and monocytes independently of the administration of extraneous human cytokines. Examination of the bone marrow of the BM-SCID-hu mice for human cytokine mRNA gene expression demonstrated human leukemia inhibitory factor mRNA and interleukin 7 mRNA in nine of nine BM-SCID-hu mice and macrophage-colony-stimulating factor mRNA in seven of eight BM-SCID-hu mice. This was an intriguing observation because these cytokines regulate different stages of human hematopoiesis. Since engraftment occurs in the absence of exogenous cytokine treatment, the BM-SCID-hu mouse model described should provide a useful in vivo system for studying factors important in the maturation of human myeloid and lymphoid cells in the bone marrow and the behavior of the mature human cells after dissemination into the peripheral lymphoid tissue.

  3. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines.

    PubMed Central

    Kollmann, T R; Kim, A; Zhuang, X; Hachamovitch, M; Goldstein, H

    1994-01-01

    Investigation of human hematopoietic maturation has been hampered by the lack of in vivo models. Although engraftment of irradiated C.B-17 scid/scid (SCID) mice with human progenitor cells occurred after infusion with human pediatric bone marrow cells, significant engraftment of the mouse bone marrow with human cells was dependent upon continuous treatment with exogenous human cytokines. Furthermore, despite cytokine treatment, only minimal peripheral engraftment of these mice with human cells was observed. In the present study, after infusion of irradiated SCID mice with pre-cultured human fetal bone marrow cells (BM-SCID-hu mice), their bone marrow became significantly engrafted with human precursor cells and their peripheral lymphoid compartment became populated with human B cells and monocytes independently of the administration of extraneous human cytokines. Examination of the bone marrow of the BM-SCID-hu mice for human cytokine mRNA gene expression demonstrated human leukemia inhibitory factor mRNA and interleukin 7 mRNA in nine of nine BM-SCID-hu mice and macrophage-colony-stimulating factor mRNA in seven of eight BM-SCID-hu mice. This was an intriguing observation because these cytokines regulate different stages of human hematopoiesis. Since engraftment occurs in the absence of exogenous cytokine treatment, the BM-SCID-hu mouse model described should provide a useful in vivo system for studying factors important in the maturation of human myeloid and lymphoid cells in the bone marrow and the behavior of the mature human cells after dissemination into the peripheral lymphoid tissue. Images PMID:7914701

  4. Effects of intraoperative electron irradiation in the dog on cell turnover in intact and surgically-anastomosed aorta and intestine

    SciTech Connect

    Sindelar, W.F.; Morrow, B.M.; Travis, E.L.; Tepper, J.; Merkel, A.B.; Kranda, K.; Terrill, R.

    1983-04-01

    Adults dogs were subjected to laparotomy and intraoperative electron irradiation after division and reanastomosis of aorta or after construction of a blind loop of small intestine having a transverse suture line and an end-to-side anastomosis. Dogs received intraoperative irradiation of both intact and anastomosed aorta or intestine in doses of 0, 2000, 3000, or 4500 rad. Animals were sacrificed at seven days or three months following treatment. At 24 hours prior to sacrifice, dogs received 5 mCi tritiated thymidine intravenously. Irradiated and non-irradiated segments of aorta and small intestine, including intact and anastomotic regions, were analyzed for tritiated thymidine incorporation and were subjected to autoradiography. Incorporation studies showed diminution in tritiated thymidine uptake by irradiated portions of aorta and small intestine, in both intact and anastomotic regions. Autoradiograms revealed that irradiated areas of intact or anastomotic aorta or intestine had diminished labeling of stromal cells, suggesting a lowered cell proliferative capacity of irradiated tissue compared to non-irradiated portions. Inflammatory cells showed similar labeling indices in irradiated and non-irradiated tissues, both intact and surgically-manipulated, suggesting that irradiation does not significantly affect a subsequent local inflammatory response. Radiation-induced decreases in tritiated thymidine incoporation in irradiated aorta and small intestine were generally more marked at seven days than at three months following irradiation, suggesting that radiation-induced depression of cell turnover rates decreases with time.

  5. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    PubMed

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-06-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.

  6. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line

    PubMed Central

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  7. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  8. Release of P and K from yeast cells irradiated by vacuum UV below 170 nm.

    PubMed

    Matsumoto, S; Ito, T; Ito, A; Tsuchiya, K; Chiba, R; Kitao, K

    1984-01-01

    Yeast cells were irradiated with monochromatic synchrotron radiation (SR) under wet conditions in the wavelength region from 160 to 185 nm at INS-SOR, Tokyo. By the particle-induced X-ray emission (PIXE) method applied to whole cells several elements were found to be released from the irradiated cells at the wavelengths shorter than 170 nm. The most drastic release occurred with phosphorus, followed potassium. Sulphur and calcium were not released over the whole wavelength region studied. It was also revealed that the release of these elements paralleled the cell inactivation. The cause of these element releases upon vaccuum-UV irradiation was inferred in relation to the dissociation of H2O molecules located in the vicinity of the cell surface region. PMID:6387774

  9. Skin allografts in lethally irradiated animals repopulated with syngeneic hemopoietic cells

    SciTech Connect

    Schwadron, R.B.

    1983-01-01

    Total body irradiation and repopulation with syngeneic hemopoietic cells can be used to induce tolerance to major histocompatibility complex (MHC) mismatched heart and kidney grafts in rats and mice. However, this protocol does not work for MHC mismatched skin grafts in rats or mice. Furthermore, LEW rats that accept WF cardiac allografts after irradiation and repopulation reject subsequent WF skin grafts. Treatment of skin allograft donors with methotrexate prior to grafting onto irradiated and reconstituted mice resulted in doubling of the mean survival time. Analysis of which antigens provoked skin graft rejection by irradiation and reconstituted animals revealed the importance of I region antigens. Cardiac allograft acceptance by irradiated and reconstituted animals is mediated by suppressor cells found in the spleen. Adoptively tolerant LEW rats accepted WF skin grafts in 50% of grafted animals. Analysis of this phenomenon revealed that the adoptive transfer procedure itself was important in achieving skin allograft acceptance by these animals. In general, it seems that the lack of ability of irradiated and reconstituted animals to accept fully MHC disparate skin grafts results from the inability of these animals to suppress lymph node effector cells against I region antigen seen on highly immunogenic allogeneic Langerhans cells in the skin.

  10. Busulfan Conditioning Enhances Engraftment of Hematopoietic Donor-derived Cells in the Brain Compared With Irradiation

    PubMed Central

    Wilkinson, Fiona L; Sergijenko, Ana; Langford-Smith, Kia J; Malinowska, Marcela; Wynn, Rob F; Bigger, Brian W

    2013-01-01

    Hematopoietic stem cell gene therapy for neurological disorders relies on transmigration of donor-derived monocytes to the brain, where they can engraft as microglia and deliver therapeutic proteins. Many mouse studies use whole-body irradiation to investigate brain transmigration pathways, but chemotherapy is generally used clinically. The current evidence for transmigration to the brain after chemotherapy is conflicting. We compared hematopoietic donor cell brain engraftment after bone marrow (BM) transplants in busulfan- or irradiation-conditioned mice. Significantly more donor-derived microglial cells engrafted posttransplant in busulfan-conditioned brain compared with the irradiated, in both the short and long term. Although total Iba-1+ microglial content was increased in irradiated brain in the short term, it was similar between groups over long-term engraftment. MCP-1, a key regulator of monocyte transmigration, showed long-term elevation in busulfan-conditioned brain, whereas irradiated brains showed long-term elevation of the proinflammatory chemokine interleukin 1α (IL-1α), with increased in situ proliferation of resident microglia, and significant increases in the relative number of amoeboid activated microglia in the brain. This has implications for the choice of conditioning regimen to promote hematopoietic cell brain engraftment and the relevance of irradiation in mouse models of transplantation. PMID:23423338

  11. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    SciTech Connect

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun . E-mail: shun.wong@sw.ca

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.

  12. Development of a focused charged particle microbeam for the irradiation of individual cells

    NASA Astrophysics Data System (ADS)

    Barberet, Ph.; Balana, A.; Incerti, S.; Michelet-Habchi, C.; Moretto, Ph.; Pouthier, Th.

    2005-01-01

    An irradiation facility, able to expose cellular and subcellular targets to a precise number of particles, has been developed at CENBG for applications in radiobiology. The development of this facility was based on an existing horizontal focused microbeam developed in the early 90's for material analysis. The focusing properties of the line allow the delivering of proton or alpha particle beams in the 1-3.5MeV energy range with a spatial resolution down to about 1μm under vacuum. For irradiation of living cells, a removable stage has been developed to extract the beam into air while preserving the analytical capabilities of the microbeam line under vacuum. This stage includes a high resolution epifluorescence microscope for online visualization of the cells and a motorized stage for cell positioning. Single particle control is ensured by a fast electrostatic deflector triggered by the signal induced by the particles through a transmission detector just before reaching the target. A dedicated software, based on an object-oriented architecture, has been designed to control the entire experiment. This includes semiautomatic calibration procedures (necessary to achieve the micron precision) and semiautomatic irradiation procedures used for targeting a large number of individual cells. In air irradiation of solid track detectors has permitted us to estimate that 99.5% of the particles are delivered on the target at a distance lower than 5μm from the beam center when an alpha particles beam is used. The targeting precision of the overall irradiation procedure, which reflects the alignment precision of the beam center with the target center, has been estimated to be within ±2μm. First experiments involving cells in culture have permitted to estimate an irradiation rate of 2000 cells per hour. This article presents the overall experimental facility and the tests performed for its validation for the irradiation of individual cells in their culture medium.

  13. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    SciTech Connect

    Higo, Morihiro; Uzawa, Katsuhiro . E-mail: uzawak@faculty.chiba-u.jp; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-07-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC.

  14. Irradiation with a low-level diode laser induces the developmental endothelial locus-1 gene and reduces proinflammatory cytokines in epithelial cells.

    PubMed

    Fujimura, Takeki; Mitani, Akio; Fukuda, Mitsuo; Mogi, Makio; Osawa, Kazuhiro; Takahashi, Shinko; Aino, Makoto; Iwamura, Yuki; Miyajima, Shinichi; Yamamoto, Hiromitsu; Noguchi, Toshihide

    2014-05-01

    We demonstrated previously that low-level diode laser irradiation with an indocyanine green-loaded nanosphere coated with chitosan (ICG-Nano/c) had an antimicrobial effect, and thus could be used for periodontal antimicrobial photodynamic therapy (aPDT). Since little is known about the effects of aPDT on periodontal tissue, we here investigated the effect of low-level laser irradiation, with and without ICG-Nano/c, on cultured epithelial cells. Human oral epithelial cells were irradiated in a repeated pulse mode (duty cycle, 10 %; pulse width, 100 ms; peak power output, 5 W). The expression of the developmental endothelial locus 1 (Del-1), interleukin-6 (IL-6), IL-8, and the intercellular adhesion molecule-1 (ICAM-1) were evaluated in Ca9-22 cells stimulated by laser irradiation and Escherichia coli-derived lipopolysaccharide (LPS). A wound healing assay was carried out on SCC-25 cells irradiated by diode laser with or without ICG-Nano/c. The mRNA expression of Del-1, which is known to have anti-inflammatory activity, was significantly upregulated by laser irradiation (p < 0.01). Concurrently, LPS-induced IL-6 and IL-8 expression was significantly suppressed in the LPS + laser group (p < 0.01). ICAM-1 expression was significantly higher in the LPS + laser group than in the LPS only or control groups. Finally, compared with the control, the migration of epithelial cells was significantly increased by diode laser irradiation with or without ICG-Nano/c. These results suggest that, in addition to its antimicrobial effect, low-level diode laser irradiation, with or without ICG-Nano/c, can suppress excessive inflammatory responses via a mechanism involving Del-1, and assists in wound healing.

  15. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  16. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  17. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  18. Surface nanomorphology of human dental enamel irradiated with an Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Ţălu, Ş.; Contreras–Bulnes, R.; Morozov, I. A.; Rodríguez-Vilchis, L. E.; Montoya-Ayala, G.

    2016-02-01

    To determine the effects of Er:YAG laser irradiation on the surface nanomorphology of human dental enamel. Materials and methods: five samples of human dental enamel were divided into five groups: (a) I and II were irradiated with Er:YAG & water irrigation (12.7 J cm-2 and 25.5 J cm-2, respectively); (b) III and IV were Er:YAG laser irradiated & no water irrigation (12.7 J cm-2 and 25.5 J cm-2, respectively); (c) V or control (no laser irradiation). Nanomorphological changes were observed on 1 μm  ×  1 μm areas by AFM (contact mode and air). The partition functions and multifractal spectra were calculated. The graphical results showed that the larger the spectrum width Δα (Δα  =  α max  -  α min) of the multifractal spectra f(α) the more non-uniform the surface nanomorphology. One way analysis of variance (ANOVA) was performed (P  <  0.05) to distinguish significant differences between the groups. All the investigated surfaces exhibited multifractal behavior. The computational algorithm indicated that the multifractal spectra differ significantly from each other for the different groups. AFM (atomic force microscopy), the statistical surface roughness parameters, and multifractal analysis provided useful information about the surface nanomorphology and optimal surface characteristics. This approach could be extended to other enamel surfaces in order to characterize its structural 3D microrelief.

  19. Ultraviolet microbeam irradiations of cultured newt lung epithelial cells during mitosis

    SciTech Connect

    Cypher, C.

    1983-01-01

    The mechanism of chromosome movement is unknown. The structural environment for this movement is a birefringent, spindle-shaped array of microtubules. Microbeams of ultraviolet light were used to disrupt the mitotic spindles of newt lung epithelial cells to localize force production within spindles and to evaluate the role of microtubules in force generation or transduction. Time-lapse cinephotomicrographic records of cells were made using phase and polarization microscopy. Irradiation effects were correlated with spindle microtubule structure by immuno-gold antitubulin staining. The results demonstrate the pervasive effects of local irradiations upon spindle structure. The spindle compaction observed after irradiations suggests that each half-spindle is under a compressive force. Since the irradiations locally disassemble microtubules, the results suggest that the birefringent microtubules oppose this compressive force.

  20. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia

    SciTech Connect

    Brauner, R.; Czernichow, P.; Cramer, P.; Schaison, G.; Rappaport, R.

    1983-07-07

    To assess the effect of testicular irradiation on testicular endocrine function, we studied 12 boys with acute lymphoblastic leukemia who had been treated with direct testicular irradiation 10 months to 8 1/2 years earlier. Insufficient Leydig-cell function, manifested by a low response of plasma testosterone to chorionic gonadotropin or an increased basal level of plasma luteinizing hormone (or both), was observed in 10 patients, 7 of whom were pubertal. Two of these patients had a compensated testicular endocrine insufficiency with only high plasma concentrations of luteinizing hormone. Testosterone secretion was severely impaired in three pubertal boys studied more than four years after testicular irradiation. A diminished testicular volume indicating tubular atrophy was found in all pubertal patients, including three who had not received cyclophosphamide or cytarabine. These data indicate that testosterone insufficiency is a frequent complication of testicular irradiation, although some patients continue to have Leydig-cell activity for several years after therapy.

  1. Reaction of cells to local, regional, and general low-intensive laser irradiation

    NASA Astrophysics Data System (ADS)

    Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.

    1993-07-01

    Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.

  2. Stem cell differentiation and human liver disease

    PubMed Central

    Zhou, Wen-Li; Medine, Claire N; Zhu, Liang; Hay, David C

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation. This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells. Such an approach has the potential to improve our understanding of human biology and treating disease. In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases. In recent years, efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own. In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology. PMID:22563188

  3. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland.

    PubMed

    Onizawa, Katsuhiro; Muramatsu, Takashi; Matsuki, Miwako; Ohta, Kazumasa; Matsuzaka, Kenichi; Oda, Yutaka; Shimono, Masaki

    2009-03-01

    We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

  4. Cancer Cell Radiobiological Studies Using In-House-Developed α-Particle Irradiator.

    PubMed

    Nilsson, Jenny; Bauden, Monika Posaric; Nilsson, Jonas M; Strand, Sven-Erik; Elgqvist, Jörgen

    2015-11-01

    An α-particle irradiator, enabling high-precision irradiation of cells for in vitro studies, has been constructed. The irradiation source was a (241)Am source, on which well inserts containing cancer cells growing in monolayer were placed. The total radioactivity, uniformity, and α-particle spectrum were determined by use of HPGe detector, Gafchromic dosimetry film, and PIPS detector measurements, respectively. Monte Carlo simulations were used for dosimetry. Three prostate cancer (LNCaP, DU145, PC3) and three pancreatic cancer (Capan-1, Panc-1, BxPC-3) cell lines were irradiated by α-particles to the absorbed doses 0, 0.5, 1, and 2 Gy. For reference, cells were irradiated using (137)Cs to the absorbed doses 0, 1, 2, 4, 6, 8, and 10 Gy. Radiation sensitivity was estimated using a tetrazolium salt-based colorimetric assay with absorbance measurements at 450 nm. The relative biological effectiveness for α-particles relative to γ-irradiation at 37% cell survival for the LNCaP, DU145, PC3, Capan-1, Panc-1, and BxPC-3 cells was 7.9 ± 1.7, 8.0 ± 0.8, 7.0 ± 1.1, 12.5 ± 1.6, 9.4 ± 0.9, and 6.2 ± 0.7, respectively. The results show the feasibility of constructing a desktop α-particle irradiator as well as indicate that both prostate and pancreatic cancers are good candidates for further studies of α-particle radioimmunotherapy. PMID:26560194

  5. Cancer Cell Radiobiological Studies Using In-House-Developed α-Particle Irradiator.

    PubMed

    Nilsson, Jenny; Bauden, Monika Posaric; Nilsson, Jonas M; Strand, Sven-Erik; Elgqvist, Jörgen

    2015-11-01

    An α-particle irradiator, enabling high-precision irradiation of cells for in vitro studies, has been constructed. The irradiation source was a (241)Am source, on which well inserts containing cancer cells growing in monolayer were placed. The total radioactivity, uniformity, and α-particle spectrum were determined by use of HPGe detector, Gafchromic dosimetry film, and PIPS detector measurements, respectively. Monte Carlo simulations were used for dosimetry. Three prostate cancer (LNCaP, DU145, PC3) and three pancreatic cancer (Capan-1, Panc-1, BxPC-3) cell lines were irradiated by α-particles to the absorbed doses 0, 0.5, 1, and 2 Gy. For reference, cells were irradiated using (137)Cs to the absorbed doses 0, 1, 2, 4, 6, 8, and 10 Gy. Radiation sensitivity was estimated using a tetrazolium salt-based colorimetric assay with absorbance measurements at 450 nm. The relative biological effectiveness for α-particles relative to γ-irradiation at 37% cell survival for the LNCaP, DU145, PC3, Capan-1, Panc-1, and BxPC-3 cells was 7.9 ± 1.7, 8.0 ± 0.8, 7.0 ± 1.1, 12.5 ± 1.6, 9.4 ± 0.9, and 6.2 ± 0.7, respectively. The results show the feasibility of constructing a desktop α-particle irradiator as well as indicate that both prostate and pancreatic cancers are good candidates for further studies of α-particle radioimmunotherapy.

  6. Gamma irradiation of the fetus damages the developing hemopoietic microenvironment rather than the hemopoietic progenitor cells

    SciTech Connect

    Yang, F.T.; Lord, B.I.; Hendry, J.H.

    1995-03-01

    Hemopoiesis is the product of two components: the hemopoietic tissue and the regulatory stromal microenvironment in which it resides. Plutonium-239, incorporated during fetal development in mice, is known to cause deficient hemopoiesis. A predetermined equivalent {gamma}-ray dose has now been used in combination with cross-transplantation experiments to separate these two components and define where the damage arises. It was confirmed that 1.8 Gy {gamma} irradiation at midterm gestation caused a 40% reduction in the hemopoietic stem (spleen colony-forming) cell population of their offspring which persisted to at least 24 weeks of age. Spleen colony formation after sublethal doses of {gamma} rays reflected this reduced complement of endogenous stem cells. The regulatory hemopoietic microenvironment, measured as fibroblastoid colony-forming cells, was similarly depleted. Normal growth of the CFU-S population after transplantation into standard recipients showed that the quality of the stem cell population in the offspring of irradiated mothers was not affected. By contrast, when used as recipients of a bone marrow transplant from either normal or irradiated offspring, the offspring of irradiated mothers were unable to support normal growth: there was a twofold difference in the number of CFU-S per femur for at least 100 days after transplantation. There were 70% fewer CFU-F in the femur 1 month after bone marrow transplantation when the offspring of irradiated mothers were used as transplant recipients compared to when normal offspring were used. This not only confirmed their reduced capacity to host normal stem cells but also indicated that CFU-F in the transplant were unable to compensate for the poor microenvironment in the irradiated offspring hosts. It is concluded that irradiation at midterm gestation damages the developing regulatory microenvironment but not the hemopoietic stem cell population that it hosts. 12 refs., 1 fig., 4 tabs.

  7. Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele.

    PubMed

    da Costa, Renata Maria Augusto; Riou, Lydia; Paquola, Apuã; Menck, Carlos Frederico Martins; Sarasin, Alain

    2005-02-17

    Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) syndromes are characterized by deficiency in nucleotide excision repair pathway, but with distinguished clinical manifestations. While XP patients exhibit a high frequency of skin cancer, TTD patients are not cancer prone. The relation between lack of DNA repair and their clinical manifestations was investigated through analysis of the transcriptional profile of 12,600 transcripts in two isogenic cell lines with different capabilities of DNA repair. These cell lines result from a stable transfection of the XPB-TTD allele into XP complementation group B fibroblasts, from an XP patient who also have clinical abnormalities corresponding to Cockayne's syndrome (CS). The microarray assays performed under normal growth conditions showed the expression of distinct groups of genes in each cell line. The UVC-transcription modulation of these cells revealed the changes in 869 transcripts. Some of these transcripts had similar modulation pattern in both cells, although with eventually different time patterns for induction or repression. However, some different 'UVC signature' for each cell line was also found, that is, transcripts that were specifically UV regulated depending on the DNA repair status of the cell. These results provide a detailed portrait of expression profiles that may potentially unravel the causes of the different phenotypes of XP/CS and TTD patients. PMID:15608684

  8. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenasee

    SciTech Connect

    Westerman, M.P.; Wald, N.; Diloy-Puray, M.

    1980-03-01

    X radiation of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells causes distinct shortening of their survival time. This is accompanied by significant lowering of reduced glutathione content and is not observed in similarly prepared and treated normal cells. The damage is most likely related to irradiation-induced formation of activated oxygen products and to their subsequent effects on the cells. Neither methemoglobin increases nor Heinz body formation were observed, suggesting that hemolysis occurred prior to these changes. The study provides a model for examining the effects of irradiation and activated oxygen on red cells and suggests that patients with G6PD deficiency who receive irradiation could develop severe hemolysis in certain clinical settings.

  9. Low-level visible light (LLVL) irradiation promotes proliferation of mesenchymal stem cells.

    PubMed

    Lipovsky, Anat; Oron, Uri; Gedanken, Aharon; Lubart, Rachel

    2013-07-01

    Low-level visible light irradiation was found to stimulate proliferation potential of various types of cells in vitro. Stem cells in general are of significance for implantation in regenerative medicine. The aim of the present study was to investigate the effect of low-level light irradiation on the proliferation of mesenchymal stem cells (MSCs). MSCs were isolated from the bone marrow, and light irradiation was applied at energy densities of 2.4, 4.8, and 7.2 J/cm(2). Illumination of the MSCs resulted in almost twofold increase in cell number as compared to controls. Elevated reactive oxygen species and nitric oxide production was also observed in MSCs cultures following illumination with broadband visible light. The present study clearly demonstrates the ability of broadband visible light illumination to promote proliferation of MSCs in vitro. These results may have an important impact on wound healing.

  10. Automatic system for single ion/single cell irradiation based on Cracow microprobe

    NASA Astrophysics Data System (ADS)

    Veselov, O.; Polak, W.; Lekki, J.; Stachura, Z.; Lebed, K.; Styczeń, J.; Ugenskiene, R.

    2006-05-01

    Recently, the Cracow ion microprobe has found its new application as a single ion hit facility (SIHF), allowing precise irradiations of living cells by a controlled number of ions. The instrument enables a broad field of research, such as survival studies, adaptive response investigations, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. This work presents principles of construction and operation of the SIHF based on the Cracow microprobe. We discuss some crucial features of optical, positioning, and blanking systems, including self-developed software responsible for semiautomatic cell recognition, for precise positioning of cells, and for controlling the irradiation process. We also show some tests carried out to determine the efficiency of the whole system and of its segments. In addition, we present results of the first irradiation measurements performed with living cells.

  11. Metabolic changes in humans following total body irradiation. Report for February 1960-October 1961

    SciTech Connect

    Not Available

    1988-11-29

    These studies are designed to obtain new information about the metabolic effects of total body and partial body irradiation so as to have a better understanding of the acute and subacute effects of irradiation in the human. The initial studies are pointed toward the elucidation of biological indicators of radiation effects in humans. The major parameters being investigated at present are urinary amino aciduria and alterations in immunological patterns. Certain other parameters such as creatine and creatinine excretion and hematological effects are also being followed. The long-term program envisions carrying out the various observations at dose levels of 100 rad and gradually increasing the dose to 150, 200, 250 and 300 rad. Eventually doses up to 600 rad are anticipated. Also comparison of effects of radiomimetic drugs with total body radiation will be studied.

  12. Single-particle irradiation of mammalian cells at the radiological research accelerator facility: induction of chromosomal changes

    NASA Astrophysics Data System (ADS)

    Geard, C. R.; Brenner, D. J.; Randers-Pehrson, G.; Marino, S. A.

    1991-03-01

    Ionizing radiations have been shown to be able to induce the death of mammalian cells and initiate mutagenic or carcinogenic change. While all three end points are related through chromosomal changes, the latter in particular is of profound concern to human populations. We have undertaken a series of studies wherein mammalian cells were irradiated with low fluences of charged particles (protons, deuterons, helium ions) of defined LET from 10 to about 200 keV per micrometer. Frequencies of induced chromosomal changes were related to fluence at each LET, such that the induction of chromosomal changes per cell per charged particle could be estimated. However, for human exposures from densely ionizing radiation, such as the alpha particles from radon daughters, effects are dominated by the traversal of cells by single particles. Conventional experiments inevitably result in cells being exposed to a distribution (Poisson) of particle traversals. As the effect is unlikely to be a linear function of the number of traversals, a preferred approach would be to irradiate cells with exactly one (or any known number) of particles. To this end we are developing a dedicated beam line (microbeam) on a 4.2 MV Van de Graaff accelerator such that individual particles will vertically traverse individual living mammalian cells positioned by a microscope-based imaging system under computer control. "Conventional" low-fluence and "single-particle" studies will be compared, allowing critical evaluations of the potential of individual high LET charged particles to initiate change. This will have particular relevance both to consideration of the human health risks of radon daughter alpha particles and of basic mechanisms of chromosome aberration formation.

  13. Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation

    PubMed Central

    McFarland, Hugh I.; Berkson, Julia D.; Lee, Jay P.; Elkahloun, Abdel G.; Mason, Karen P.; Rosenberg, Amy S.

    2015-01-01

    Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (Dd) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic “signature of rescue” identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated Dd skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic Dd expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. PMID:26122582

  14. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Wuerth, Lena; Brons, Stephan; Mohr, Angela; Lindel, Katja; Weber, Klaus; Haberer, Thomas; Debus, Juergen; Combs, Stephanie E.

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  15. Biological effects of pulsed near-ultraviolet laser irradiation in mouse lymphoma cells (EL-4)

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Vasiliu, Virgil; Popescu, Lucretia; Mihailescu, Ion N.; Dima, Stefan V.; Murg, Brindusa; Popa, Alexandru

    1996-05-01

    Murine lymphoma EL-4 cells were exposed to different pulsed near-ultraviolet laser doses (337.1 nm), generated by light, to investigate some effects of this radiation on tumor cells using biophysical, biochemical, and cytogenetic methods. Our results reveal a good correlation between the growth rate of EL-4 cells and the interrogation irradiation, from 89.7% at 1.5 kJ/m2 to 17.8% at 4.5 kJ/m2. Nucleic acid synthesis was found to be inhibited at any laser irradiation dose. The morphological changes induced by laser irradiation of EL-4 cells and revealed by phase contrast and scanning electron microscopy (SEM) indicate a partial or total (depending on dose) loss of cellular microvillosities, the appearance of different kinds of buds and bleaching all over the cellular membrane, and also numerous necrotic lesions. By reversion of irradiated EL-4 cells, the presence of cells having morphological characteristics of lymphoid dendritic cells was observed by phase contrast and SEM. The cytogenetic analysis showed the presence of different chromosomal abnormalities: chromatidin and chromosomal fractures, rings, chromosomal markers, polyploids, and premature chromatid condensation. Our experimental results suggest the existence of morphological lesions as well as biochemical and genetic lesions induced by pulsed near-ultraviolet laser doses in mouse lymphoma EL-4 cells.

  16. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.

    PubMed

    Hu, Wan-Ping; Wang, Jeh-Jeng; Yu, Chia-Li; Lan, Cheng-Che E; Chen, Gow-Shing; Yu, Hsin-Su

    2007-08-01

    Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation. PMID:17446900

  17. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.

    PubMed

    Hu, Wan-Ping; Wang, Jeh-Jeng; Yu, Chia-Li; Lan, Cheng-Che E; Chen, Gow-Shing; Yu, Hsin-Su

    2007-08-01

    Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation.

  18. Expression profiling of human melanocytes in response to UV-B irradiation

    PubMed Central

    López, Saioa; Smith-Zubiaga, Isabel; Alonso, Santos

    2015-01-01

    A comprehensive gene expression analysis of human melanocytes was performed assessing the transcriptional profile of dark melanocytes (DM) and light melanocytes (LM) at basal conditions and after UV-B irradiation at different time points (6, 12 and 24 h), and in culture with different keratinocyte-conditioned media (KCM + and KCM −). The data, previously published in [1], have been deposited in NCBI's Gene Expression Omnibus (GEO accession number: GSE70280). PMID:26697372

  19. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    SciTech Connect

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.

  20. [The dependence of the level of chromosome aberrations in human lymphocytes on the duration of their cultivation under ultraviolet irradiation].

    PubMed

    Rushkovskiĭ, S R; Bezrukov, V F; Bariliak, I R

    1998-01-01

    The effect of duration of cultivation of lymphocytes of human UV-irradiated peripheral blood on the chromosomal aberration rate was studied. Under prolonged cultivation the more irradiated blood samples revealed higher level of chromosomal aberrations. The existence of UV-induced delayed chromosomal instability is supposed that may be found under prolonged cultivation. The mechanisms of this phenomenon are discussed.

  1. A mouse model replicating hippocampal sparing cranial irradiation in humans: A tool for identifying new strategies to limit neurocognitive decline.

    PubMed

    Tomé, Wolfgang A; Gökhan, Şölen; Brodin, N Patrik; Gulinello, Maria E; Heard, John; Mehler, Mark F; Guha, Chandan

    2015-01-01

    Cancer patients undergoing cranial irradiation are at risk of developing neurocognitive impairments. Recent evidence suggests that radiation-induced injury to the hippocampi could play an important role in this cognitive decline. As a tool for studying the mechanisms of hippocampal-dependent cognitive decline, we developed a mouse model replicating the results of the recent clinical RTOG 0933 study of hippocampal sparing whole-brain irradiation. We irradiated 16-week-old female C57BL/6J mice to a single dose of 10 Gy using either whole-brain irradiation (WBRT) or hippocampal sparing irradiation (HSI). These animals, as well as sham-irradiated controls, were subjected to behavioral/cognitive assessments distinguishing between hippocampal-dependent and hippocampal-independent functions. Irradiation was well tolerated by all animals and only limited cell death of proliferating cells was found within the generative zones. Animals exposed to WBRT showed significant deficits compared to sham-irradiated controls in the hippocampal-dependent behavioral task. In contrast, HSI mice did not perform significantly different from sham-irradiated mice (control group) and performed significantly better when compared to WBRT mice. This is consistent with the results from the RTOG 0933 clinical trial, and as such this animal model could prove a helpful tool for exploring new strategies for mitigating cognitive decline in cancer patients receiving cranial irradiation. PMID:26399509

  2. A mouse model replicating hippocampal sparing cranial irradiation in humans: A tool for identifying new strategies to limit neurocognitive decline

    PubMed Central

    Tomé, Wolfgang A.; Gökhan, Şölen; Brodin, N. Patrik; Gulinello, Maria E.; Heard, John; Mehler, Mark F.; Guha, Chandan

    2015-01-01

    Cancer patients undergoing cranial irradiation are at risk of developing neurocognitive impairments. Recent evidence suggests that radiation-induced injury to the hippocampi could play an important role in this cognitive decline. As a tool for studying the mechanisms of hippocampal-dependent cognitive decline, we developed a mouse model replicating the results of the recent clinical RTOG 0933 study of hippocampal sparing whole-brain irradiation. We irradiated 16-week-old female C57BL/6J mice to a single dose of 10 Gy using either whole-brain irradiation (WBRT) or hippocampal sparing irradiation (HSI). These animals, as well as sham-irradiated controls, were subjected to behavioral/cognitive assessments distinguishing between hippocampal-dependent and hippocampal-independent functions. Irradiation was well tolerated by all animals and only limited cell death of proliferating cells was found within the generative zones. Animals exposed to WBRT showed significant deficits compared to sham-irradiated controls in the hippocampal-dependent behavioral task. In contrast, HSI mice did not perform significantly different from sham-irradiated mice (control group) and performed significantly better when compared to WBRT mice. This is consistent with the results from the RTOG 0933 clinical trial, and as such this animal model could prove a helpful tool for exploring new strategies for mitigating cognitive decline in cancer patients receiving cranial irradiation. PMID:26399509

  3. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo.

    PubMed

    Kyoizumi, S; McCune, J M; Namikawa, R

    1994-01-01

    We have developed techniques by which normal functional elements of human bone marrow can be implanted into immunodeficient C.B-17 scid/scid (SCID) mice. Afterward, long-term multilineage human hematopoiesis is sustained in vivo. We evaluated the effect of irradiation on the function of human bone marrow with this in vivo model. After whole-body X irradiation of the engrafted animals, it was determined that the D0 value of human committed progenitor cells within the human marrow was 1.00 +/- 0.09 (SEM) Gy for granulocyte-macrophage colony-forming units (CFU-GM) and 0.74 +/- 0.12 Gy for erythroid burst-forming units (BFU-E). The effects of irradiation on the hematopoietic elements were reduced when the radioprotective agent WR-2721 was administered prior to irradiation. After low-dose irradiation, recovery of human myelopoiesis was accelerated by treatment with human granulocyte colony-stimulating factor (G-CSF). This small animal model may prove amenable for the analysis of the risk of the exposure of humans to radiation as well as for the development of new modalities for the prevention and treatment of radiation-induced hematopoietic damage. PMID:7505456

  4. Gamma irradiation and red cell haemolysis: a study at the Universiti Kebangsaan Malaysia Medical Centre.

    PubMed

    Yousuf, Rabeya; Mobin, Mohd Herman; Leong, Chooi Fun

    2015-08-01

    Gamma-irradiation of blood components is regarded a safe procedure used for prevention of transfusion associated graft-versus-host disease. However, reports showed that irradiation can cause erythrocyte haemolysis and damage to the RBC membrane. In University Kebangsaan Malaysia Medical Centre (UKMMC), a number of suspected transfusion reactions (TR) featured unusual isolated episodes of red-coloured-urine or haemoglobinuria among paediatric patients without clinical features of acute haemolytic TR. Haemolysis of irradiated red cells was suspected as a cause. This study was conducted to evaluate haemolytic changes of RBC components following irradiation. A prospective, pre- and post- irradiation comparative study was conducted on 36 paired RBC-components in the blood-bank, UKMMC in the year 2013. Samples were tested for plasma-Hb, percent-haemolysis, plasma-potassium (K⁺) and lactate dehydrogenase (LDH) level. Post-irradiation mean plasma-Hb and percent-haemolysis were significantly higher than pre-irradiation values at 0.09 ±0.06g/dl VS 0.10 ± 0.06g/dl and 0.19 ± 0.13% VS 0.22 ± .13% respectively, while plasma-K⁺ and LDH values did not show significant difference. However, the mean percent-haemolysis level was still within recommended acceptable levels for clinical use, supporting that irradiated RBC units were safe and of acceptable quality for transfusion. There was no conclusive reason for isolated haemoglobinuria following transfusion of irradiated red-cell products. Further research is suggested to investigate the other possible causes.

  5. Repair of chromosome damage induced by X-irradiation during G/sub 2/ phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G/sub 2/ phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or ..beta..-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G/sub 2/ phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H/sub 2/O/sub 2/, or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G/sub 2/ phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  6. Induction of T-cell apoptosis by human herpesvirus 6.

    PubMed Central

    Inoue, Y; Yasukawa, M; Fujita, S

    1997-01-01

    The mechanisms of cell death in CD4+ T cells mediated by human herpesvirus 6 (HHV-6) were investigated. The frequency of cell death in the human CD4+ T-cell line JJHAN, which had been inoculated with HHV-6 variant A or B, appeared to be augmented by tumor necrosis factor alpha (TNF-alpha). Agarose gel electrophoresis of DNA from HHV-6-inoculated cells showed DNA fragmentation in multiples of the oligonucleosome length unit. The degree of DNA fragmentation increased when HHV-6-inoculated cells were cultured in the presence of TNF-alpha. Flow cytometry and Scatchard analysis of TNF receptors revealed an increase in the number of the p55 form of TNF receptors on JJHAN cells after HHV-6 inoculation. It also appeared that treatment with anti-Fas monoclonal antibody (MAb) induced marked apoptosis in HHV-6-inoculated cells. Transmission electron microscopy showed characteristics of apoptosis, such as chromatin condensation and fragmentation of nuclei, but virus particles were hardly detected in apoptotic cells. Two-color flow cytometric analysis using anti-HHV-6 MAb and propidium iodide revealed that DNA fragmentation was present predominantly in uninfected cells but not in productively HHV-6-infected cells. In addition, JJHAN cells incubated with UV light-irradiated and ultracentrifuged culture supernatant of HHV-6-infected cells appeared to undergo apoptosis. The present study demonstrated that both HHV-6 variants A and B induce apoptosis in CD4+ T cells by indirect mechanisms, as reported recently in human immunodeficiency virus type 1 infection. PMID:9094650

  7. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    PubMed

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  8. Silicon solar cell characterization at low temperatures and low illumination as a function of particulate irradiation

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Peacock, C. L., Jr.

    1983-01-01

    Various configurations of back surface reflector silicon solar cells including small (2 x 2) cm and large (approx. 6 x 6) cm cells with conventional and wraparound contacts were subjected to 1 MeV electron irradiation and characterized under both Earth orbital and deep space conditions of temperatures and illuminations. Current-Voltage (I-V) data were generated from +65 C to -150 C and at incident illuminations from 135.3 mW/sq cm to 5.4 mW/sq cm for these cells. Degradation in cell performance which is manifested only under deep space conditions is emphasized. In addition, the effect of particle irradiation on the high temperature and high intensity and low temperature and low intensity performance of the cells is described. The cells with wraparound contacts were found to have lower efficiencies at Earth orbital conditions than the cells with conventional contacts.

  9. Transfection-mediated cell synchronization: acceleration of G1-S phase transition by gamma irradiation.

    PubMed

    Jung, E J; Flemington, E K

    2001-11-01

    We have previously provided evidence that the uptake of DNA into cells is cell cycle specific following transfection. We show here that, immediately after transfection, successfully transfected cells are greatly enriched for cells in early G1 or G0 phase and that, upon removal of the DNA precipitates, cells progress through G1 and enter S phase in a synchronous fashion. We also demonstrate that this approach can be utilized in meaningful cell-cycle experiments, and we show that gamma irradiation accelerates the G1-S phase transition in a cell line with a functionally inactive p53 protein. PMID:11730009

  10. Genotoxicity and cytotoxicity of sevoflurane in two human cell lines in vitro with ionizing radiation

    PubMed Central

    Quesada, Samuel; Armero, David; Martin-Gíl, Rocio; Olivares, Amparo; Achel, Daniel

    2014-01-01

    Objective: To determine the in vitro toxicity of different concentrations of sevoflurane in cells exposed to X-ray. Methods: The genotoxic effects of sevofluorane were studied by means of the micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes. Subsequently, its cytotoxic effects on PNT2 (normal prostate) cells was determined using the cell viability test (MTT) and compared with those induced by different doses of X-rays. Results: A dose- and time-dependent cytotoxic effect of sevofluorane on PNT2 cells was determined (p >0.001) and a dose-dependent genotoxic effect of sevofluorane was established (p >0.001). Hovewer, at volumes lower than 30 μL of sevofluorane at 100%, a non-toxic effect on PNT2 cells was shown. Conclusion: Sevofluorane demonstrates a genotoxic capacity as determined in vitro by micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes. PMID:25386035

  11. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    PubMed Central

    Ermakov, Aleksei V.; Konkova, Marina S.; Kostyuk, Svetlana V.; Izevskaya, Vera L.; Veiko, Natalya N.

    2013-01-01

    The term “cell-free DNA” (cfDNA) was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA). Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DN