Science.gov

Sample records for human central nervous

  1. [Viral infections of human central nervous system].

    PubMed

    Agut, Henri

    2016-01-01

    The viruses that can infect the central nervous system of humans are numerous and form a heterogeneous group with respect to their structural, functional and epidemiological properties. The pathophysiological mechanisms leading to associated neurological diseases, mainly meningitis and encephalitis, also are complex and often intertwined. Overall, neurological clinical symptoms correspond either to acute viral diseases associated with primary infections or to acute, subacute or chronic diseases associated with persistent viral infections. The frequent severity of the clinical situation requires in all cases the practice of virological diagnosis for which the PCR techniques applied to cerebrospinal fluid samples occupy a prominent place. The severity of clinical manifestations justifies the use of prophylactic vaccination when available and antiviral treatment as soon as the causative virus is identified or suspected.

  2. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  3. Detection of BMAA in the human central nervous system.

    PubMed

    Berntzon, L; Ronnevi, L O; Bergman, B; Eriksson, J

    2015-04-30

    Amyotrophic lateral sclerosis (ALS) is an extremely devastating neurodegenerative disease with an obscure etiology. The amino acid β-N-methylamino-l-alanine (BMAA) produced by globally widespread phytoplankton has been implicated in the etiology of human motor neuron diseases [corrected]. BMAA was recently proven to be present in Baltic Sea food webs, ranging from plankton to larger Baltic Sea organisms, some serving as important food items (fish) for humans. To test whether exposure to BMAA in a Baltic Sea setting is reflected in humans, blood and cerebrospinal fluid (CSF) from individuals suffering from ALS were analyzed, together with sex- and age-matched individuals not inflicted with ALS. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and multiple reaction monitoring (MRM), in conjunction with diagnostic transitions revealed BMAA in three (12%) of the totally 25 Swedish individuals tested, with no preference for those suffering from ALS. The three BMAA-positive samples were all retrieved from the CSF, while BMAA was not detected in the blood. The data show that BMAA, potentially originating from Baltic Sea phytoplankton, may reach the human central nervous system, but does not lend support to the notion that BMAA is resident specifically in ALS-patients. However, while dietary exposure to BMAA may be intermittent and, if so, difficult to detect, our data provide the first demonstration of BMAA in the central nervous system of human individuals ante mortem quantified with UHPLC-MS/MS, and therefore calls for extended research efforts.

  4. Central nervous system microangioarchitecture in the human foetus.

    PubMed

    Arisio, Riccardo; Bonissone, Mariagrazia; Piccoli, Ettore; Panzica, Giancarlo

    2002-01-01

    It is thought that arterioles penetrating the central nervous system behave as terminal arteries and lack for anastomosys. The purpose of our study was to define the angiogenesys in the fetal encephalon at different stages of development. To this purpose, we examinated 13 fetal and newborn encephalons between the 10th and 33rd week. To label blood vessels, we used an immunohistochemical procedure based on the detection of two antigens located within endothelial cells: CD31 and CD34. The cerebral vascularization modifies in quantity and in structure during pregnancy, with important topographic differences between cerebral cortex and striatal-limbic areas. We observed two microarchitectural patterns: 1. Rectangular mesh pattern, characterized by capillaries that join transversally to one or more branches that deepen orthogonally from the surface of the meninges; 2. Hexagonal mesh pattern, which surrounds small groups of neurons and develops with a honeycomb shape. The rectangular mesh pattern is mostly observed from the 13th to 26th week in the white matter, in the hippocampus and in the cortex. The hexagonal mesh pattern is typical of the basal nuclei, and of the cerebral cortex during the 10th-12th week and after the 26th-27th week. Until the 26th week the vascularization increases mainly in the hippocampus and in the basal nuclei. The cortex shows a vascularization increment, greater than in the limbic system, with a pattern prevalently hexagonal in areas were the neurons' number increases. Our data demonstrate that, in the human fetus, cerebral capillaries are not of terminal type. On the contrary, they show a rich anastomotic network that has different patterns in white matter (rectangular pattern) or in grey matter (hexagonal pattern). The functional meaning of this difference is unknown, but we can suppose that its role is to warrant availability of nutritional substances within regions where a high number of neurons is present. Recent findings in

  5. Central nervous system control of the laryngeal muscles in humans

    PubMed Central

    Ludlow, Christy L.

    2005-01-01

    Laryngeal muscle control may vary for different functions such as: voice for speech communication, emotional expression during laughter and cry, breathing, swallowing, and cough. This review discusses the control of the human laryngeal muscles for some of these different functions. Sensori-motor aspects of laryngeal control have been studied by eliciting various laryngeal reflexes. The role of audition in learning and monitoring ongoing voice production for speech is well known; while the role of somatosensory feedback is less well understood. Reflexive control systems involving central pattern generators may contribute to swallowing, breathing and cough with greater cortical control during volitional tasks such as voice production for speech. Volitional control is much less well understood for each of these functions and likely involves the integration of cortical and subcortical circuits. The new frontier is the study of the central control of the laryngeal musculature for voice, swallowing and breathing and how volitional and reflexive control systems may interact in humans. PMID:15927543

  6. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  7. Glial Biomarkers in Human Central Nervous System Disease

    PubMed Central

    Garden, Gwenn A.; Campbell, Brian M.

    2017-01-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. PMID:27228454

  8. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis.

    PubMed

    Rodgers, Jean; Stone, Trevor W; Barrett, Michael P; Bradley, Barbara; Kennedy, Peter G E

    2009-05-01

    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in

  9. Culturing and expansion of "clinical grade" precursors cells from the fetal human central nervous system.

    PubMed

    Gelati, Maurizio; Profico, Daniela; Projetti-Pensi, Massimo; Muzi, Gianmarco; Sgaravizzi, Giada; Vescovi, Angelo Luigi

    2013-01-01

    NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines. In this chapter, we illustrate some of the protocols routinely used into our GMP cell bank for the production of "clinical grade" human neural stem cell lines.

  10. Central nervous system toxicity.

    PubMed

    Ruha, Anne-Michelle; Levine, Michael

    2014-02-01

    Central nervous system toxicity caused by xenobiotic exposure is a common reason for presentation to the emergency department. Sources of exposure may be medicinal, recreational, environmental, or occupational; the means of exposure may be intentional or unintended. Toxicity may manifest as altered thought content resulting in psychosis or confusion; may affect arousal, resulting in lethargy, stupor, or coma; or may affect both elements of consciousness. Seizures may also occur. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System

    PubMed Central

    Silbereis, John C.; Pochareddy, Sirisha; Zhu, Ying; Li, Mingfeng; Sestan, Nenad

    2016-01-01

    Summary The human central nervous system follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction. PMID:26796689

  12. Human herpesvirus type 6 and human herpesvirus type 7 infections of the central nervous system.

    PubMed

    Dewhurst, Stephen

    2004-06-01

    In developing guidelines for the improved management of herpesvirus infections of the central nervous system (CNS), the International Herpes Management Forum (IHMF) has considered human herpesvirus (HHV) type 6 and type 7 disease. Although HHV-6 is generally asymptomatic, it has been associated with exanthema subitum, febrile convulsions and encephalitis in infants and immunocompromised adults and may play a role in multiple sclerosis, Guillain-Barre syndrome and acute disseminated encephalomyelitis. As HHV-6 is present in the brain tissue of healthy individuals, its role as an aetiological agent in CNS disorders is unclear. While polymerase chain reaction (PCR) is a method useful for diagnosis of other viral CNS infections, it has no value for diagnosing HHV-6. HHV-7 has not been shown to cause a specific disease but is associated with febrile convulsions and has been implicated as a cause of encephalitis. Ganciclovir and foscarnet, either alone or in combination, may be used for the management of HHV-6-related neurological disease. Although ganciclovir is unlikely to be effective against HHV-7-related CNS disease, foscarnet may be useful but prospective trials are needed.

  13. Central nervous system regulation of eating: Insights from human brain imaging.

    PubMed

    Farr, Olivia M; Li, Chiang-Shan R; Mantzoros, Christos S

    2016-05-01

    Appetite and body weight regulation are controlled by the central nervous system (CNS) in a rather complicated manner. The human brain plays a central role in integrating internal and external inputs to modulate energy homeostasis. Although homeostatic control by the hypothalamus is currently considered to be primarily responsible for controlling appetite, most of the available evidence derives from experiments in rodents, and the role of this system in regulating appetite in states of hunger/starvation and in the pathogenesis of overeating/obesity remains to be fully elucidated in humans. Further, cognitive and affective processes have been implicated in the dysregulation of eating behavior in humans, but their exact relative contributions as well as the respective underlying mechanisms remain unclear. We briefly review each of these systems here and present the current state of research in an attempt to update clinicians and clinical researchers alike on the status and future directions of obesity research.

  14. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review.

    PubMed

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-10-30

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve , and B. infantis ) and Lactobacillus (eg, L. helveticus , and L. rhamnosus ), with doses between 10⁸ and 10¹⁰ colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future.

  15. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review

    PubMed Central

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-01-01

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future. PMID:27413138

  16. Distribution of catechol-O-methyltransferase expression in human central nervous system.

    PubMed

    Hong, J; Shu-Leong, H; Tao, X; Lap-Ping, Y

    1998-08-24

    Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is a ubiquitous enzyme crucial to catechol metabolism. Two isoforms exist in the human central nervous system (CNS) and they are encoded by two transcripts (1.3 and 1.5 kb) in most human tissues. Using two alpha-32P-labeled probes, we found only the 1.5 kb transcript in all 16 regions of the human CNS using commercially available Northern blots. Spinal cord had the highest and amygdala had the lowest levels of expression. The other CNS regions shared a similar level of expression. The distributions of COMT gene expression relative to whole brain between both probes were significantly correlated. Our study shows that the expression of the 1.5kb transcript is crucial for COMT activity in all regions of the human CNS.

  17. Astrocytes As the Main Players in Primary Degenerative Disorders of the Human Central Nervous System

    PubMed Central

    Capani, Francisco; Quarracino, Cecilia; Caccuri, Roberto; Sica, Roberto E. P.

    2016-01-01

    Along the last years it has been demonstrated that non-neural cells play a major role in the pathogenesis of the primary degenerative disorders (PDDs) of the human central nervous system. Among them, astrocytes coordinate and participate in many different and complex metabolic processes, in close interaction with neurons. Moreover, increasing experimental evidence hints an early astrocytic dysfunction in these diseases. In this mini review we summarize the astrocytic behavior in PDDs, with special consideration to the experimental observations where astrocytic pathology precedes the development of neuronal dysfunction. We also suggest a different approach that could be consider in human investigations in Alzheimer’s and Parkinson’s disease. We believe that the study of PDDs with human brain samples may hold the key of a paradigmatic physiopathological process in which astrocytes might be the main players. PMID:26973519

  18. Astrocytes As the Main Players in Primary Degenerative Disorders of the Human Central Nervous System.

    PubMed

    Capani, Francisco; Quarracino, Cecilia; Caccuri, Roberto; Sica, Roberto E P

    2016-01-01

    Along the last years it has been demonstrated that non-neural cells play a major role in the pathogenesis of the primary degenerative disorders (PDDs) of the human central nervous system. Among them, astrocytes coordinate and participate in many different and complex metabolic processes, in close interaction with neurons. Moreover, increasing experimental evidence hints an early astrocytic dysfunction in these diseases. In this mini review we summarize the astrocytic behavior in PDDs, with special consideration to the experimental observations where astrocytic pathology precedes the development of neuronal dysfunction. We also suggest a different approach that could be consider in human investigations in Alzheimer's and Parkinson's disease. We believe that the study of PDDs with human brain samples may hold the key of a paradigmatic physiopathological process in which astrocytes might be the main players.

  19. Primary human herpesvirus-6 infection in the central nervous system can cause severe disease.

    PubMed

    Mannonen, Laura; Herrgård, Eila; Valmari, Pekka; Rautiainen, Paula; Uotila, Kari; Aine, Marjo-Riitta; Karttunen-Lewandowski, Pirkko; Sankala, Juhani; Wallden, Tiina; Koskiniemi, Marjaleena

    2007-09-01

    Human herpesvirus-6 (HHV-6) infection is common in infancy, and symptoms are usually mild. However, encephalitis and other neurologic complications have been reported. Primary HHV-6 infection has been rarely confirmed in the central nervous system. We studied 21 children with suspected HHV-6 infection, drawn from a prospective, large-scale study of neurologic infections in Finland. Human herpesvirus-6 polymerase chain reaction was performed on cerebrospinal fluid samples, and antibody tests were performed on serum and cerebrospinal fluid. We identified nine children, aged 3 to 24 months, who had HHV-6-specific nucleic acid in cerebrospinal fluid. Primary infection was confirmed by seroconversion of specific antibodies in six, whereas one had a fourfold increase, and one had a fourfold decrease, in the antibody titer supporting recent infection. Generalized and prolonged seizures appeared in six children, four had a rash, four had ataxia, and four had gastroenteritis. All but two had a high fever. At follow-up, four children had evident neurologic sequelae, ataxia, and developmental disability, and needed special education. Primary HHV-6 infection may invade the central nervous system, and can cause neurologic symptoms and potentially permanent disability in children aged

  20. Fighting the Monster: Applying the Host Damage Framework to Human Central Nervous System Infections

    PubMed Central

    Panackal, Anil A.; Williamson, Kim C.; van de Beek, Diederik; Boulware, David R.

    2016-01-01

    ABSTRACT The host damage-response framework states that microbial pathogenesis is a product of microbial virulence factors and collateral damage from host immune responses. Immune-mediated host damage is particularly important within the size-restricted central nervous system (CNS), where immune responses may exacerbate cerebral edema and neurological damage, leading to coma and death. In this review, we compare human host and therapeutic responses in representative nonviral generalized CNS infections that induce archetypal host damage responses: cryptococcal menigoencephalitis and tuberculous meningitis in HIV-infected and non-HIV-infected patients, pneumococcal meningitis, and cerebral malaria. Consideration of the underlying patterns of host responses provides critical insights into host damage and may suggest tailored adjunctive therapeutics to improve disease outcome. PMID:26814182

  1. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    PubMed Central

    Salazar, Ma Isabel; Pérez-García, Marissa; Terreros-Tinoco, Marisol; Castro-Mussot, María Eugenia; Diegopérez-Ramírez, Jaime; Ramírez-Reyes, Alma Griselda; Aguilera, Penélope; Cedillo-Barrón, Leticia; García-Flores, María Martha

    2013-01-01

    An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2. PMID:24302878

  2. Dengue virus type 2: protein binding and active replication in human central nervous system cells.

    PubMed

    Salazar, Ma Isabel; Pérez-García, Marissa; Terreros-Tinoco, Marisol; Castro-Mussot, María Eugenia; Diegopérez-Ramírez, Jaime; Ramírez-Reyes, Alma Griselda; Aguilera, Penélope; Cedillo-Barrón, Leticia; García-Flores, María Martha

    2013-01-01

    An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  3. Deciphering Human Cell-Autonomous Anti-HSV-1 Immunity in the Central Nervous System.

    PubMed

    Lafaille, Fabien G; Ciancanelli, Michael J; Studer, Lorenz; Smith, Gregory; Notarangelo, Luigi; Casanova, Jean-Laurent; Zhang, Shen-Ying

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is a common virus that can rarely invade the human central nervous system (CNS), causing devastating encephalitis. The permissiveness to HSV-1 of the various relevant cell types of the CNS, neurons, astrocytes, oligodendrocytes, and microglia cells, as well as their response to viral infection, has been extensively studied in humans and other animals. Nevertheless, human CNS cell-based models of anti-HSV-1 immunity are of particular importance, as responses to any given neurotropic virus may differ between humans and other animals. Human CNS neuron cell lines as well as primary human CNS neurons, astrocytes, and microglia cells cultured/isolated from embryos or cadavers, have enabled the study of cell-autonomous anti-HSV-1 immunity in vitro. However, the paucity of biological samples and their lack of purity have hindered progress in the field, which furthermore suffers from the absence of testable primary human oligodendrocytes. Recently, the authors have established a human induced pluripotent stem cells (hiPSCs)-based model of anti-HSV-1 immunity in neurons, oligodendrocyte precursor cells, astrocytes, and neural stem cells, which has widened the scope of possible in vitro studies while permitting in-depth explorations. This mini-review summarizes the available data on human primary and iPSC-derived CNS cells for anti-HSV-1 immunity. The hiPSC-mediated study of anti-viral immunity in both healthy individuals and patients with viral encephalitis will be a powerful tool in dissecting the disease pathogenesis of CNS infections with HSV-1 and other neurotropic viruses.

  4. Heterogeneity of D-Serine Distribution in the Human Central Nervous System

    PubMed Central

    Suzuki, Masataka; Imanishi, Nobuaki; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu

    2017-01-01

    D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation. PMID:28604057

  5. Activity of D-amino acid oxidase is widespread in the human central nervous system.

    PubMed

    Sasabe, Jumpei; Suzuki, Masataka; Imanishi, Nobuaki; Aiso, Sadakazu

    2014-01-01

    It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes.

  6. Activity of D-amino acid oxidase is widespread in the human central nervous system

    PubMed Central

    Sasabe, Jumpei; Suzuki, Masataka; Imanishi, Nobuaki; Aiso, Sadakazu

    2014-01-01

    It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes. PMID:24959138

  7. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway

    PubMed Central

    Ohka, Seii; Nihei, Coh-ichi; Yamazaki, Manabu; Nomoto, Akio

    2012-01-01

    In humans, paralytic poliomyelitis results from the invasion of the central nervous system (CNS) by circulating poliovirus (PV) via the blood–brain barrier (BBB). After the virus enters the CNS, it replicates in neurons, especially in motor neurons, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, neural pathway has been reported in humans, monkeys, and PV-sensitive human PV receptor (hPVR/CD155)-transgenic (Tg) mice. We demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerve of hPVR-Tg mice and that intramuscularly inoculated PV causes paralysis in a hPVR-dependent manner. We also showed that hPVR-independent axonal transport of PV exists in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Circulating PV after intravenous inoculation in mice cross the BBB at a high rate in a hPVR-independent manner. We will implicate an involvement of a new possible receptor for PV to permeate the BBB based on our recent findings. PMID:22529845

  8. Blast shockwaves propagate Ca(2+) activity via purinergic astrocyte networks in human central nervous system cells.

    PubMed

    Ravin, Rea; Blank, Paul S; Busse, Brad; Ravin, Nitay; Vira, Shaleen; Bezrukov, Ludmila; Waters, Hang; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Lee, Philip R; Fields, R Douglas; Bezrukov, Sergey M; Zimmerberg, Joshua

    2016-05-10

    In a recent study of the pathophysiology of mild, blast-induced traumatic brain injury (bTBI) the exposure of dissociated, central nervous system (CNS) cells to simulated blast resulted in propagating waves of elevated intracellular Ca(2+). Here we show, in dissociated human CNS cultures, that these calcium waves primarily propagate through astrocyte-dependent, purinergic signaling pathways that are blocked by P2 antagonists. Human, compared to rat, astrocytes had an increased calcium response and prolonged calcium wave propagation kinetics, suggesting that in our model system rat CNS cells are less responsive to simulated blast. Furthermore, in response to simulated blast, human CNS cells have increased expressions of a reactive astrocyte marker, glial fibrillary acidic protein (GFAP) and a protease, matrix metallopeptidase 9 (MMP-9). The conjoint increased expression of GFAP and MMP-9 and a purinergic ATP (P2) receptor antagonist reduction in calcium response identifies both potential mechanisms for sustained changes in brain function following primary bTBI and therapeutic strategies targeting abnormal astrocyte activity.

  9. Blast shockwaves propagate Ca2+ activity via purinergic astrocyte networks in human central nervous system cells

    PubMed Central

    Ravin, Rea; Blank, Paul S.; Busse, Brad; Ravin, Nitay; Vira, Shaleen; Bezrukov, Ludmila; Waters, Hang; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Lee, Philip R.; Fields, R. Douglas; Bezrukov, Sergey M.; Zimmerberg, Joshua

    2016-01-01

    In a recent study of the pathophysiology of mild, blast-induced traumatic brain injury (bTBI) the exposure of dissociated, central nervous system (CNS) cells to simulated blast resulted in propagating waves of elevated intracellular Ca2+. Here we show, in dissociated human CNS cultures, that these calcium waves primarily propagate through astrocyte-dependent, purinergic signaling pathways that are blocked by P2 antagonists. Human, compared to rat, astrocytes had an increased calcium response and prolonged calcium wave propagation kinetics, suggesting that in our model system rat CNS cells are less responsive to simulated blast. Furthermore, in response to simulated blast, human CNS cells have increased expressions of a reactive astrocyte marker, glial fibrillary acidic protein (GFAP) and a protease, matrix metallopeptidase 9 (MMP-9). The conjoint increased expression of GFAP and MMP-9 and a purinergic ATP (P2) receptor antagonist reduction in calcium response identifies both potential mechanisms for sustained changes in brain function following primary bTBI and therapeutic strategies targeting abnormal astrocyte activity. PMID:27162174

  10. Applications of human umbilical cord blood cells in central nervous system regeneration.

    PubMed

    Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia

    2010-03-01

    In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.

  11. Human class I major histocompatibility complex alleles determine central nervous system injury versus repair.

    PubMed

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Zoecklein, Laurie J; Papke-Norton, Louisa M; David, Chella; Rodriguez, Moses

    2016-11-17

    We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. Human class I A11(+) and B27(+) transgenic human beta-2 microglobulin positive (Hβ2m(+)) mice of the H-2 (b) background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, β2m(0)) and class II-deficient (mouse Aβ(0)) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. Following infection with TMEV, a picornavirus, the Aβ(0).β2m(0) mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hβ2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11(+) and B27(+) mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27(+) transgenic mice showed almost complete repair of the virus-induced brain injury, but A11(+) mice conversely showed persistent severe hippocampal and cortical injury. The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.

  12. Complexes of Amyloid-β and Cystatin C in the Human Central Nervous System

    PubMed Central

    Mi, Weiqian; Jung, Sonia S.; Yu, Haung; Schmidt, Stephen D.; Nixon, Ralph A.; Mathews, Paul M.; Tagliavini, Fabrizio; Levy, Efrat

    2009-01-01

    A role for cystatin C (CysC) in the pathogenesis of Alzheimer’s disease (AD) has been suggested by the genetic linkage of a CysC gene (CST3) polymorphism with late-onset AD, the co-localization of CysC with amyloid-β (Aβ) in AD brains, and binding of CysC to soluble Aβ in vitro and in mouse models of AD. This study investigates the binding between Aβ and CysC in the human central nervous system. While CysC binding to soluble Aβ was observed in AD patients and controls, a SDS-resistant CysC/Aβ complex was detected exclusively in brains of neuropathologically normal controls, but not in AD cases. The association of CysC with Aβ in brain from control individuals and in cerebrospinal fluid reveals an interaction of these two polypeptides in their soluble form. The association between Aβ and CysC prevented Aβ accumulation and fibrillogenesis in experimental systems, arguing that CysC plays a protective role in the pathogenesis of AD in humans and explains why decreases in CysC concentration caused by the CST3 polymorphism or by specific presenilin 2 mutations can lead to the development of the disease. Thus, enhancing CysC expression or modulating CysC binding to Aβ have important disease-modifying effects, suggesting a novel therapeutic intervention for AD. PMID:19584436

  13. Methods for microstimulation and recording of single neurons and evoked potentials in the human central nervous system.

    PubMed

    Lenz, F A; Dostrovsky, J O; Kwan, H C; Tasker, R R; Yamashiro, K; Murphy, J T

    1988-04-01

    An apparatus and technique are described for microstimulation and recording of both slow wave and single neuron (single unit) activities during functional stereotaxic procedures. This method facilitates microstimulation and evoked potential and single unit analysis which, in combination, provide optimum definition of stereotaxic targets in the treatment of functional disorders of the human central nervous system.

  14. Prevalence of chromosomally integrated human herpesvirus 6 in patients with human herpesvirus 6-central nervous system dysfunction.

    PubMed

    Hill, Joshua A; Sedlak, Ruth Hall; Zerr, Danielle M; Huang, Meei-Li; Yeung, Cecilia; Myerson, David; Jerome, Keith R; Boeckh, Michael J

    2015-02-01

    We identified 37 hematopoietic cell transplantation recipients with human herpesvirus 6 (HHV-6) central nervous system dysfunction and tested donor-recipient pairs for chromosomally integrated HHV-6 (ciHHV-6). One patient had ciHHV-6A with possible HHV-6A reactivation and encephalitis. There was no ciHHV-6 enrichment in this group, but larger studies are needed to determine if patients with ciHHV-6 are at increased risk for HHV-6-associated diseases or other complications.

  15. Serum antibodies against central nervous system proteins in human demyelinating disease.

    PubMed Central

    Newcombe, J; Gahan, S; Cuzner, M L

    1985-01-01

    An immunoblotting technique has been used to screen serum samples from patients with demyelinating disease for antibody directed against central nervous system proteins. Antibodies of the IgM, IgG and IgA class directed against one or more of the particulate fraction proteins tubulin, myelin basic protein, 69 K neurofilament protein, glial fibrillary acidic protein, myelin associated glycoprotein or Wolfgram protein were present in 94, 54 and 47%, respectively, of multiple sclerosis sera examined. IgM antibodies against tubulin and myelin basic protein predominated. A similar antibody spectrum was seen in a significant proportion of sera from patients with optic neuritis, subacute sclerosing panencephalitis and motor neurone disease, in which primary or secondary demyelination occurs. Antibodies of all three classes directed against the 169 K and 220 K neurofilament proteins and against some unidentified proteins of human peripheral nerve, kidney, liver, spleen and skeletal muscle were detected in sera from healthy subjects and patients with neurological disease. Images Fig. 1 Fig. 2 PMID:2579754

  16. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system.

    PubMed

    Huang, Yafei; Potter, Rachel; Sigurdson, Wendy; Santacruz, Anna; Shih, Shirley; Ju, Yo-El; Kasten, Tom; Morris, John C; Mintun, Mark; Duntley, Stephen; Bateman, Randall J

    2012-01-01

    The amyloid hypothesis predicts that increased production or decreased clearance of β-amyloid (Aβ) leads to amyloidosis, which ultimately culminates in Alzheimer disease (AD). To investigate whether dynamic changes in Aβ levels in the human central nervous system may be altered by aging or by the pathology of AD and thus contribute to the risk of AD. Repeated-measures case-control study. Washington University School of Medicine in St Louis, Missouri. Participants with amyloid deposition, participants without amyloid deposition, and younger normal control participants. In this study, hourly cerebrospinal fluid (CSF) Aβ concentrations were compared with age, status of amyloid deposition, electroencephalography, and video recording data. Linear increases were observed over time in the Aβ levels in CSF samples obtained from the younger normal control participants and the older participants without amyloid deposition, but not from the older participants with amyloid deposition. Significant circadian patterns were observed in the Aβ levels in CSF samples obtained from the younger control participants; however, circadian amplitudes decreased in both older participants without amyloid deposition and older participants with amyloid deposition. Aβ diurnal concentrations were correlated with the amount of sleep but not with the various activities that the participants participated in while awake. A reduction in the linear increase in the Aβ levels in CSF samples that is associated with amyloid deposition and a decreased CSF Aβ diurnal pattern associated with increasing age disrupt the normal physiology of Aβ dynamics and may contribute to AD.

  17. Application of synchrotron radiation for elemental microanalysis of human central nervous System tissue

    NASA Astrophysics Data System (ADS)

    Szczerbowska-Boruchowska, M.; Lankosz, M.; Ostachowicz, J.; Adamek, D.; Krygowska-Wajs, A.; Tomik, B.; Szczudlik, A.; Simionovici, A.; Bohic, S.

    2003-03-01

    The pathogenesis of two neurodegenerative diseases i.e. Parkinson's Disease (PD) and amyotrophic lateral sclerosis (ALS) are still not known. It is supposed that disturbance of metal ions homeostasis may promote degeneration and atrophy of neurones. As a preliminary study. the quantitative and topographic elemental analysis of selected parts of human brain and spinal cord was performed using synchrotron microbeam-X ray fluorescence (μ-SXRF) technique. The samples were taken during the autopsy from patients with PD, ALS and from patients died due to non-neurological conditions events. X-ray fluorescence imaging showed that increased concentration of selected elements are observed in neurons perikarial parts in compare with surrounding area. Moreover, comparable analysis showed significant differences in accumulation of selected elements between the pathological and control cases. The investigations indicate that micro-beam of synchrotron radiation can be satisfactory applied for analysis of central nervous System tissue providing useful information about distribution and contents of elements at the single cell level.

  18. Gap junctions in inherited human disorders of the central nervous system

    PubMed Central

    Scherer, Steven S.

    2011-01-01

    CNS glia and neurons express connexins, the proteins that form gap junctions in vertebrates. We review the connexins expressed by oligodendrocytes and astrocytes, and discuss their proposed physiologic roles. Of the 21 members of the human connexin family, mutations in three are associated with significant central nervous system manifestations. For each, we review the phenotype and discuss possible mechanisms of disease. Mutations in GJB1, the gene for connexin 32 (Cx32) cause the second most common form of Charcot-Marie-Tooth disease (CMT1X). Though the only consistent phenotype in CMT1X patients is a peripheral demyelinating neuropathy, CNS signs and symptoms have been found in some patients with CMT1X. Recessive mutations in GJC2, the gene for Cx47, are one cause of Pelizaeus-Merzbacher-like disease (PMLD), which is characterized by nystagmus within the first 6 months of life, cerebellar ataxia by 4 years, and spasticity by 6 years of age. MRI imaging shows abnormal myelination. A different recessive GJC2 mutation causes a form of hereditary spastic paraparesis, which is a milder phenotype than PMLD. Dominant mutations in GJA1, the gene for Cx43, cause oculodentodigital dysplasia (ODDD), a pleitropic disorder characterized by oculo-facial abnormalities including micropthalmia, microcornia and hypoplastic nares, syndactyly of the fourth to fifth fingers and dental abnormalities. Neurologic manifestations, including spasticity and gait difficulties, are often but not universally seen. Recessive GJA1 mutations cause Hallermann-Streiff syndrome, a disorder showing substantial overlap with ODDD. PMID:21871435

  19. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    ScienceCinema

    None

    2016-10-19

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  20. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    SciTech Connect

    2013-10-29

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  1. Central nervous system stimulants.

    PubMed

    George, A J

    2000-03-01

    Three major types of CNS stimulant are currently abused in sport: amphetamine, cocaine and caffeine. Each drug type has its own characteristic mechanism of action on CNS neurones and their associated receptors and nerve terminals. Amphetamine is widely abused in sports requiring intense anaerobic exercise where it prolongs the tolerance to anaerobic metabolism. It is addictive, and chronic abuse causes marked behavioural change and sometimes psychosis. Major sports abusing amphetamine are cycling, American football, ice-hockey and baseball. Cocaine increases tolerance to intense exercise, yet most of its chronic effects on energy metabolism are negative. Its greatest effects seem to be as a central stimulant and the enhancement of short-term anaerobic exercise. It is highly addictive and can cause cerebral and cardiovascular fatalities. Caffeine enhances fatty acid metabolism leading to glucose conservation, which appears to benefit long-distance endurance events such as skiing. Caffeine is also addictive, and chronic abuse can lead to cardiac damage. Social abuse of each of the three drugs is often difficult to distinguish from their abuse in sport.

  2. Identification of Central Nervous System Proteins in Human Blood Serum and Plasma.

    PubMed

    Miroshnichenko, Yu V; Petushkova, N A; Teryaeva, N B; Lisitsa, A V; Zgoda, V G; Belyaev, A Yu; Potapov, A A

    2015-11-01

    Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.

  3. [Structural and functional shifts in the central nervous system due to ionizing radiation; human efficiency].

    PubMed

    2012-01-01

    The article discusses the results of experiments with animals and medical hygienic and epidemiological evidence from the monitoring of health and efficiency of nuclear industry personnel started in the 1950s, as well as of high-power gamma- and nuclear energetic sources in research centers. Also, data about health disorders and disability among Chernobyl cleanup workers were analyzed. Morphological deviations in the central nervous system in animals immediately after and in delayed periods following exposure to different doses and CT data about cerebral structural changes in cleanup workers are presented. Dependence of the functional disturbances in and morbidity among personnel shortly after and in delayed periods on dose value and dose rate are scrutinized closely.

  4. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity.

    PubMed

    Shaw, C A; Tomljenovic, L

    2013-07-01

    We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer's and has been linked to this disease and to the Guamanian variant, ALS-PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome.

  5. [Isoforms of the human histamine H3 receptor: Generation, expression in the central nervous system and functional implications].

    PubMed

    García-Gálvez, Ana Maricela; Arias-Montaño, José Antonio

    2016-01-01

    Histamine plays a significant role as a neuromodulator in the human central nervous system. Histamine-releasing neurons are exclusively located in the tuberomammillary nucleus of the hypothalamus, project to all major areas of the brain, and participate in functions such as the regulation of sleep/wakefulness, locomotor activity, feeding and drinking, analgesia, learning, and memory. The functional effects of histamine are exerted through the activation of four G protein-coupled receptors (H1, H2, H3 and H4), and in the central nervous system the first three receptors are widely expressed. The H3 receptor (H3R) is found exclusively in neuronal cells, where it functions as auto- and hetero-receptor. One remarkable characteristic of the H3R is the existence of isoforms, generated by alternative splicing of the messenger RNA. For the human H3R, 20 isoforms have been reported; although a significant number lack those regions required for agonist binding or receptor signaling, at least five isoforms appear functional upon heterologous expression. In this work we review the evidence for the generation of human H3R isoforms, their expression, and the available information regarding the functionality of such receptors.

  6. [A study of selective neuronal vulnerability in the human central nervous system].

    PubMed

    Naudí, Alba; Jové, Mariona; Ayala, Victoria; Cabré, Rosanna; Portero-Otin, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2013-01-01

    The concept of 'selective neuronal vulnerability' refers to the differential sensitivity of neuronal populations in the nervous system to stresses that cause cell damage and lead to neurodegeneration. Because oxidative stress play a causal role in the physiological aging process, and it is often invoked as an aetiopathogenic and/or pathophysiological mechanism for neurodegeneration, in the present work we propose that the molecular bases of selective neuronal vulnerability is linked with cell adaptations related to oxidative stress. The grey substance of 5 different regions from healthy human subjects (n=7) were selected: i) to evaluate their membrane fatty acid profile by chromatographic methods, ii) to determine their membrane susceptibility to peroxidation, and iii) to recognise potential mechanisms involved in its regulation. The results showed significant inter-regional differences in the fatty acid profile, basically due to the content of mono- and highly polyunsaturated fatty acids; changes that, in turn, induce significant differences in theirs susceptibilities to peroxidation, as well as differences that can be ascribed to the desaturase activity. Thus, the cross-regional comparative approach seems to confirm the idea that the level of cell membrane unsaturation may be a key trait associated with selective neuronal vulnerability. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  7. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    PubMed Central

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  8. Expression of doublecortin in tumours of the central and peripheral nervous system and in human non-neuronal tissues.

    PubMed

    Bernreuther, Christian; Salein, Nora; Matschke, Jakob; Hagel, Christian

    2006-03-01

    Doublecortin is a microtubule-associated phosphoprotein involved in neuronal migration and differentiation expressed in migrating neuroblasts in the central nervous system. We systematically analysed doublecortin expression in 179 tumours of the central and 65 tumours of peripheral nervous system as well as in 74 different non-neuronal tissues to evaluate the specificity of doublecortin as a marker for neuronal differentiation in glioneuronal tumours. Glioneuronal tumours and oligodendrogliomas grade II and III uniformly showed a high intensity and frequency of doublecortin staining, whereas intermediate doublecortin expression was observed in astrocytic tumours of grade II-IV. In pilocytic astrocytomas and ependymomas only scattered doublecortin positive cells were detected. In the peripheral nervous system, doublecortin expression was found in neurofibroma but was absent in schwannoma. Double staining of tumour tissue revealed co-expression of doublecortin and neurofilament in cells of gangliocytomas and gangliogliomas and co-expression of doublecortin with S100 protein or GFAP in glial tumours, respectively. In a tissue array comprised of 74 different normal non-neuronal human tissues, doublecortin expression was demonstrated in epithelia of the kidney, liver, salivary glands and duodenum among others. Interestingly, doublecortin expression could not be shown in brain metastases of tumours originating from these tissues. Immunohistochemical data was further corroborated by Western blot analysis and reverse transcription polymerase chain reaction. In conclusion, doublecortin can be regarded as specific neuronal marker only in normal developing brain, but lacks specificity in glioneuronal and glial tumours and other non-neuronal human tissues where it is expressed in a wide variety of tumours and tissues.

  9. Intravenously injected human apolipoprotein A-I rapidly enters the central nervous system via the choroid plexus.

    PubMed

    Stukas, Sophie; Robert, Jerome; Lee, Michael; Kulic, Iva; Carr, Michael; Tourigny, Katherine; Fan, Jianjia; Namjoshi, Dhananjay; Lemke, Kalistyne; DeValle, Nicole; Chan, Jeniffer; Wilson, Tammy; Wilkinson, Anna; Chapanian, Rafi; Kizhakkedathu, Jayachandran N; Cirrito, John R; Oda, Michael N; Wellington, Cheryl L

    2014-11-12

    Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high-density lipoproteins but that contain apolipoprotein (apo) E rather than apoA-I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA-I; however, apoA-I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA-I enters the central nervous system is unknown. Steady-state levels of murine apoA-I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA-I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA-I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose-dependent manner in the brain. Recombinant, fluorescently tagged human apoA-I accumulates in the brain for 2 hours, after which it is eliminated with a half-life of 10.3 hours. In vitro, human apoA-I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. Following intravenous injection, recombinant human apoA-I rapidly localizes predominantly to the choroid plexus. Because apoA-I mRNA is undetectable in murine brain, our results suggest that plasma apoA-I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood-cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood-brain barrier may also contribute to a lesser extent. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  10. Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus

    PubMed Central

    Stukas, Sophie; Robert, Jerome; Lee, Michael; Kulic, Iva; Carr, Michael; Tourigny, Katherine; Fan, Jianjia; Namjoshi, Dhananjay; Lemke, Kalistyne; DeValle, Nicole; Chan, Jeniffer; Wilson, Tammy; Wilkinson, Anna; Chapanian, Rafi; Kizhakkedathu, Jayachandran N.; Cirrito, John R.; Oda, Michael N.; Wellington, Cheryl L.

    2014-01-01

    Background Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. Methods and Results Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. Conclusions Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent. PMID:25392541

  11. Association of primary central nervous system vasculitis with the presence of specific human leucocyte antigen gene variant.

    PubMed

    Kraemer, Markus; Becker, Jana; Horn, Peter A; Schwitalla, Jan Claudius; Keyvani, Kathy; Metz, Imke; Wegner, Christiane; Brück, Wolfgang; Schlamann, Marc; Heinemann, Falko M; Berlit, Peter

    2017-09-01

    The etiology and genetic susceptibility of primary central nervous system vasculitis (PCNSV) are still unclear. We analyzed the DNA of 25 Caucasian patients with PCNSV for human leucocyte antigen genes HLA-A, HLA-B, HLA-DRB1, and HLA-DQB1, respectively. HLA-frequencies of the 25 patients with PCNSV were compared with HLA-frequencies of matched Caucasian controls. No statistically significant associations were found for HLA-B, HLA-DR1 and HLA-DQB1 variant. In the PCNSV group, only the HLA-A*69 variant was found more often than expected statistically. The results of this study indicate a potential association of HLA marker with PCNSV in Caucasian patients. Further studies are needed to elucidate the role of genes within the human major histocompatibility complex in the pathogenesis of this angiopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis.

    PubMed

    Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G; Bollinger, Jim G; Hicks, Terry; Schneider, Theresa; Sullivan, Melissa; Paumier, Katrina; Holtzman, David M; Morris, John C; Benzinger, Tammie; Fagan, Anne M; Patterson, Bruce W; Bateman, Randall J

    2017-08-01

    Cerebrospinal fluid analysis and other measurements of amyloidosis, such as amyloid-binding positron emission tomography studies, are limited by cost and availability. There is a need for a more practical amyloid β (Aβ) biomarker for central nervous system amyloid deposition. We adapted our previously reported stable isotope labeling kinetics protocol to analyze the turnover kinetics and concentrations of Aβ38, Aβ40, and Aβ42 in human plasma. Aβ isoforms have a half-life of approximately 3 hours in plasma. Aβ38 demonstrated faster turnover kinetics compared with Aβ40 and Aβ42. Faster fractional turnover of Aβ42 relative to Aβ40 and lower Aβ42 and Aβ42/Aβ40 concentrations in amyloid-positive participants were observed. Blood plasma Aβ42 shows similar amyloid-associated alterations as we have previously reported in cerebrospinal fluid, suggesting a blood-brain transportation mechanism of Aβ. The stability and sensitivity of plasma Aβ measurements suggest this may be a useful screening test for central nervous system amyloidosis. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  13. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat

    PubMed Central

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Saletin, Jared M.

    2015-01-01

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the “embodied” reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. PMID:26180190

  14. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat.

    PubMed

    Goldstein-Piekarski, Andrea N; Greer, Stephanie M; Saletin, Jared M; Walker, Matthew P

    2015-07-15

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the "embodied" reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive.

  15. CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION

    PubMed Central

    Zunt, Joseph R.

    2009-01-01

    The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299

  16. Human T-cell lymphotropic virus type III infection of the central nervous system: a preliminary in situ analysis

    SciTech Connect

    Stoler, M.H.; Eskin, T.A.; Benn, S.; Angerer, R.C.; Angerer, L.M.

    1986-11-07

    Patients with acquired immunodeficiency syndrome (AIDS) are subject to a spectrum of central nervous system (CNS) disorders. Recent evidence implicates the human T-cell lymphotropic virus type III (HTLV-III) in the pathogenesis of some of these illnesses, although the cells infected by the virus have yet to be identified. Using in situ hybridization, the authors examined brain tissue from two patients with AIDS encephalopathy for the presence of HTLV-III RNA. In both cases, viral RNA was detected and concentrated in, though not limited to, the white matter. The CNS cells most frequently infected included macrophages, pleomorphic microglia, and multinucleated giant cells. Less frequently, cells morphologically consistent with astrocytes, oligodendroglia, and rarely neurons were also infected. The findings strengthen the association of HTLV-III with the pathogenesis of AIDS encephalopathy. In situ hybridization can be applied to routinely prepared biopsy tissue in the diagnosis of HTLV-III infection of the CNS.

  17. Central nervous system alterations caused by infection with the human respiratory syncytial virus.

    PubMed

    Bohmwald, Karen; Espinoza, Janyra A; González, Pablo A; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2014-11-01

    Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.

  18. Classical dynamin DNM1 and DNM3 genes attain maximum expression in the normal human central nervous system.

    PubMed

    Romeu, Antoni; Arola, Lluís

    2014-03-28

    Dynamin is a super-family of large GTPase proteins that polymerise during their biological activity. Dynamin polymers form around lipid tubes and contribute to the membrane fission and scission of nascent vesicles from parent membranes. Here we used the NCBI Gene Expression Omnibus (GEO) database and the BioGPS gene expression portal to study differential dynamin gene expression in normal human organs or tissues. From the GDS1096 and GDS596 dataset, we downloaded the relative expression levels of dynamin-related genes (presented as percentages), with respect to all of the other genes on the array (platform Affymetrix GPL96), which includes the best characterised human genes. The expression profiles of dynamin in the central nervous system (CNS) are clearly distinct from the expression profiles in the other organs or tissues studied. We found that the classical dynamin DNM1 and DNM3 genes reach their maximum expression levels (100% of maximal expression) in all normal human CNS tissues studied. This is in contrast to the expression profile in the other normal human organs or tissues studied, in which both dynamin DNM1 and DNM3 genes showed approximately 50% maximal expression. This data mining analysis supports the concept that there is a relationship between the synapse and the molecular function of dynamin, suggesting a new field of work in the study of neurodegenerative diseases.

  19. Primary central nervous system lymphoma.

    PubMed

    Pels, Hendrik; Schlegel, Uwe

    2006-07-01

    There is no class I evidence for any therapeutic option in primary central nervous system lymphoma (PCNSL). When possible, patients should be included in clinical trials. The role of surgery is restricted to stereotactic biopsy in order to gain material for histopathologic diagnosis. Radiotherapy alone is associated with a median survival of no more than 1.5 years; cure is exceptional. However, in patients aged younger than 60 years, cure is the therapeutic aim. Polychemotherapy based on high-dose methotrexate with deferred radiation results in long-term survival in most of these patients and possibly cure in a substantial fraction of these patients. With regard to chemotherapy in PCNSL, the following must be considered: 1) the most efficient drug in PCNSL is methotrexate at a dosage of at least 1.5 g/m(2) per single dose; 2) methotrexate alone will lead to complete remission in only some patients, whereas the combination of methotrexate with other drugs is more efficient; and 3) the value of additional intraventricular chemotherapy and the necessity of "consolidation" radiotherapy after response to chemotherapy are not yet defined. For patients aged older than 60 years, no curative regimen with acceptable toxicity has yet been established. The combination of radiotherapy with methotrexate-based chemotherapy leads to severe long-term neurotoxic sequelae, ie, cognitive dysfunction, in most older patients and in some patients aged younger than 60 years.

  20. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  1. A Comparison of the Anorexic Effects of Chicken, Porcine, Human and Bovine Insulin on the Central Nervous System of Chicks

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to determine if some naturally-occurring substitutions of amino acid residues of insulin could act differentially within the central nervous system (CNS) of neonatal chicks to control ingestive behavior. Intracerebroventricular (ICV) administration of chicken insuli...

  2. Galanin activated Gi/o-proteins in human and rat central nervous systems.

    PubMed

    Barreda-Gómez, G; Giralt, M T; Pazos, A; Rodríguez-Puertas, R

    2014-10-01

    The neuropeptide galanin (GAL) is involved in the control of hormone secretion, nociception, feeding behavior, attention, learning and memory. The anatomical localization of galanin receptors in the brain has been described using autoradiography and immunohistochemistry, but both techniques are limited by the availability of specific radioligands or antibodies. Functional autoradiography provides an alternative method by combining anatomical resolution and information of the activity mediated by G-protein coupled receptors. The present study analyzes the functional GAL receptors coupled to Gi/o-proteins in human and rat brain nuclei using [(35)S]GTPγS autoradiography. The results show the anatomical distribution of Gi/o-proteins activated by GAL receptors that trigger intracellular signaling mechanisms. The activity mediated by GAL receptors in human and rat brain showed a good correlation of the net stimulation in areas such as spinal cord, periaqueductal gray, putamen, CA3 layers of hippocampus, substantia nigra and diverse thalamic nuclei. The functional GAL receptors coupled to Gi/o-proteins showed a similar pattern for both species in most of the areas analyzed, but some discrete nuclei showed differences in the activity mediated by GAL, such as the ventroposteromedial thalamic nucleus, or areas that regulate learning and memory processes in the hippocampus. Taken into consideration the present results, the rat could be used as an experimental model for the study of the physiological role of GAL-mediated neurotransmission and the modulation of GAL receptors activity in the human CNS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Between destiny and disease: genetics and molecular pathways of human central nervous system aging

    PubMed Central

    Glorioso, Christin; Sibille, Etienne

    2010-01-01

    Aging of the human brain is associated with “normal” functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human postmortem brain microarray studies, which we hypothesize, point to a potential genetically-controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. PMID:21130140

  4. Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury.

    PubMed

    Cawsey, Thomas; Duflou, Johan; Weickert, Cynthia Shannon; Gorrie, Catherine Anne

    2015-09-15

    Endogenous neural progenitor cell niches have been identified in adult mammalian brain and spinal cord. Few studies have examined human spinal cord tissue for a neural progenitor cell response in disease or after injury. Here, we have compared cervical spinal cord sections from 14 individuals who died as a result of nontraumatic causes (controls) with 27 who died from injury with evidence of trauma to the central nervous system. Nestin immunoreactivity was used as a marker of neural progenitor cell response. There were significant increases in the percentage of ependymal cells that were nestin positive between controls and trauma cases. When sections from lumbar and thoracic spinal cord were available, nestin positivity was seen at all three spinal levels, suggesting that nestin reactivity is not simply a localized reaction to injury. There was a positive correlation between the percentage of ependymal cells that were nestin positive and post-injury survival time but not for age, postmortem delay, or glial fibrillary acidic protein (GFAP) immunoreactivity. No double-labelled nestin and GFAP cells were identified in the ependymal, subependymal, or parenchymal regions of the spinal cord. We need to further characterize this subset of ependymal cells to determine their role after injury, whether they are a population of neural progenitor cells with the potential for proliferation, migration, and differentiation for spinal cord repair, or whether they have other roles more in line with hypothalamic tanycytes, which they closely resemble.

  5. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies

    PubMed Central

    Lim, Eunjung; Mbowe, Omar; Lee, Angela S. W.; Davis, James

    2016-01-01

    Background Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. Objective To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. Methods A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Results Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. Discussion The results across studies were inconsistent, justifying the need for further research. PMID:27128692

  6. Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types.

    PubMed

    Dever, Seth M; Xu, Ruqiang; Fitting, Sylvia; Knapp, Pamela E; Hauser, Kurt F

    2012-06-01

    The μ-opioid receptor (MOR) is known to undergo extensive alternative splicing as numerous splice variants of MOR have been identified. However, the functional significance of MOR variants, as well as how splice variants other than MOR-1 might differentially regulate human immunodeficiency virus type-1 (HIV-1) pathogenesis in the central nervous system (CNS), or elsewhere, has largely been ignored. Our findings suggest that there are specific differences in the MOR variant expression profile among CNS cell types, and that the expression levels of these variants are differentially regulated by HIV-1. While MOR-1A mRNA was detected in astroglia, microglia, and neurons, MOR-1 and MOR-1X were only found in astroglia. Expression of the various forms of MOR along with the chimeric G protein qi5 in HEK-293T cells resulted in differences in calcium/NFAT signaling with morphine treatment, suggesting that MOR variant expression might underlie functional differences in MOR-effector coupling and intracellular signaling across different cell types. Furthermore, the data suggest that the expression of MOR-1 and other MOR variants may also be differentially regulated in the brains of HIV-infected subjects with varying levels of neurocognitive impairment. Overall, the results reveal an unexpected finding that MOR-1 may not be the predominant form of MOR expressed by some CNS cell types and that other splice variants of MOR-1, with possible differing functions, may contribute to the diversity of MOR-related processes in the CNS.

  7. Human neurocysticercosis: in vivo expansion of peripheral regulatory T cells and their recruitment in the central nervous system.

    PubMed

    Adalid-Peralta, Laura; Fleury, Agnes; García-Ibarra, Teresa M; Hernández, Marisela; Parkhouse, Michael; Crispín, José Carlos; Voltaire-Proaño, Jefferson; Cárdenas, Graciela; Fragoso, Gladis; Sciutto, Edda

    2012-02-01

    Human neurocysticercosis (NC) is caused by Taenia solium larvae lodged in the central nervous system. Most cases occur with no, or mild, neurological symptoms. However, in some patients, neuroinflammation is exacerbated, leading to severe forms of the disease. Considering the critical role of regulatory T cells (Tregs) in balancing inflammation in chronic diseases, their participation in restraining the inflammatory response in NC was explored in the present study. The frequency of Tregs and their relationship with the level of the proliferative response, the level of activated lymphocytes, and the cytokines expressed were determined in severe NC patients compared with those from healthy donors. Significantly increased peripheral Tregs (CD4(+)CD25(high) and CD4(+)CD25(high)FoxP3(+), CD4(+)CD25(high)CTLA4(+), and CD4(+)CD25(high) IL10(+)) and a significant decrease in activated (CD38(+) and CD69(+)) T cells were observed in 19 NC patients versus 10 healthy subjects. Significantly increased Tregs in NC are accompanied by a depressed specific, and non-specific, lymphocyte proliferative response, and they negatively correlate with activated CD4(+)CD69(+) lymphocytes. Treg frequencies were also determined in cerebral spinal fluid for 8 of the 19 NC patients. A positive significant correlation between peripheral and local Tregs was observed. Here, we report for the first time data that support the possible contribution of local and systemic Tregs in limiting neuroinflammation in NC.

  8. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies.

    PubMed

    Lim, Eunjung; Mbowe, Omar; Lee, Angela S W; Davis, James

    2016-01-01

    Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. The results across studies were inconsistent, justifying the need for further research.

  9. Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system.

    PubMed

    Fouquet, F; Zhou, J M; Ralston, E; Murray, K; Troalen, F; Magal, E; Robain, O; Dubois-Dalcq, M; Aubourg, P

    1997-01-01

    The gene mutated in X-linked adrenoleukodystrophy (ALD), a progressive demyelinating disease, codes for a protein (ALDP) involved in very-long-chain fatty acid (VLCFA) transport. The expression of ALDP and of two peroxisomal enzymes involved in beta-oxidation of VLCFA, acyl-CoA oxidase, and catalase was studied in human and mouse brain. The pattern of expression was similar in both species. While acyl-CoA oxidase and catalase are found in all types of CNS cells, including neurons and oligodendrocytes, ALDP expression is restricted mostly to the white matter and endothelial cells. ALDP is highly expressed in astrocytes and microglial cells in vivo and in regenerating oligodendrocytes in vitro. In contrast, in vivo, ALDP is detected in much fewer oligodendrocytes and quantitative Western blot analysis confirmed the lower abundance of ALDP in these cells than in astrocytes. Only oligodendrocytes localized in corpus callosum, internal capsules, and anterior commissure express ALDP at levels comparable to those seen in astrocytes. In ALD, demyelination is first detected in these white matter regions, suggesting that the ALD gene mutation selectively affects those oligodendrocytes strongly expressing ALDP. Because of their failure to express ALDP, microglia and astrocytes may also contribute to demyelination in ALD patients.

  10. Borrelia burgdorferi transcriptome in the central nervous system of non-human primates.

    PubMed

    Narasimhan, Sukanya; Caimano, Melissa J; Liang, Fang Ting; Santiago, Felix; Laskowski, Michelle; Philipp, Mario T; Pachner, Andrew R; Radolf, Justin D; Fikrig, Erol; Camaino, Melissa J

    2003-12-23

    Neurological symptoms are common manifestations of Lyme disease; however, the paucibacillary nature of the spirochete in this environment has precluded a molecular analysis of the spirochete in the CNS. We have now adapted differential expression analysis by using a custom-amplified library (DECAL) in conjunction with Borrelia burgdorferi whole-genome and subgenome arrays to examine in vivo gene expression by B. burgdorferi in a non-human primate (NHP) model of neuroborreliosis. The expression profile of B. burgdorferi was examined in the CNS and heart of steroid-treated and immunocompetent NHPs. Eighty-six chromosomal genes and 80 plasmid-encoded genes were expressed at similar levels in the CNS and heart tissue of both immunocompetent and steroid-treated NHPs. The expression of 66 chromosomal genes and 32 plasmid-encoded genes was increased in the CNS of both immunocompetent and steroid-treated NHPs. It is likely that the expression of these genes is governed by physiological factors specific to the CNS milieu. However, 83 chromosomal and 114 plasmid-encoded genes showed contrasting expression profiles in steroid-treated and immunocompetent NHPs. The effect of dexamethasone on the immune status of the host as well as on the host metabolic pathways could contribute to these differences in the B. burgdorferi transcriptome. Results obtained herein underscore the complex interplay of host factors on B. burgdorferi gene expression in vivo. The results provide a global snapshot of the spirochetal transcriptome in the CNS and should spur the design of experiments aimed at understanding the molecular basis of neuroborreliosis.

  11. [Functional anatomy of the central nervous system].

    PubMed

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  12. Cellular Mechanisms of Central Nervous Modulation.

    DTIC Science & Technology

    1983-06-30

    achieve selective disruption of the neuroglia in the central nervous system 4 of our experimental animal, the cockroach (Periplaneta americana). Such...RD-A147 878 CELLULAR MECHANISMIS OF CENTRAL NERVOUS MODULATION(U) i/i I CAMBRIDGE UNIV (ENGLAND) DEPT OF ZOOLOGY J E TRENERNE 30 JUN 83 DHJA37-8i-C...BOOBI UNCLASSFE F/G 6/16 NL bi L& 2. MICROCOPY RESOLUTION TEST CHART NATIONA BUJREAUJ OF STANDOW-S1963-A [.1 PI CELLULAR MECHANISMIS OF CENTRAL NERVOUS

  13. Cellular Mechanisms of Central Nervous Modulation.

    DTIC Science & Technology

    1981-12-31

    Schofield, P.K. (1981) Mechanism of ionic homeostasis in the central nervous system of an insect. J. exp. Biol., 95, 61-73. Treherne, J.E., Schofield...P.K. & Lane, N.J. (1982) Physiological and ultra- structural evidence for an extracellular anion matrix in the central nervous system of an insect...AD-R147 875 CELLULAR MECHANISM1S OF CENTRAL NERVOUS tODULATION(U) I/i CAMBRIDGE UNIV (ENGLAND) DEPT OF ZOOLOGY J E TREHERNE 31 DEC 81 DAJA37-Si-C

  14. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed.

  15. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  16. Gravity sensing in the central nervous system.

    PubMed

    Wiedemann, Meike; Hanke, Wolfgang

    2002-07-01

    For human based space research it is of high importance to understand the influence of gravity on the properties of the central nervous system (CNS). Until now it is not much known about how neuronal tissue can sense gravity. The aim of this study was to find out weather and how the CNS, as a complex system, can percept and react to changes in gravity. Neuronal tissue and especially the CNS fulfils all the requirements for excitable media. Consequently, self-organisation, pattern formation and propagating excitation waves as typical events of excitable media have been observed in such tissue. The spreading depression (SD), an excitation depression wave is the most obvious and best described of these phenomena in the CNS. In our experiments we showed that the properties of the SD and therefore the CNS in its properties as an excitable medium reacts very sensitive to changes in gravity.

  17. Central nervous system complications after liver transplantation.

    PubMed

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  18. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  19. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system.

    PubMed

    Khan, Muhammad Zahid; Nawaz, Waqas

    2016-10-01

    Human trace amines (TAs) are endogenous compounds, previously almost ignored in human pathology for many reasons (difficulty of their measurement in biological fluids, unknown receptors for elusive amines), are now considered to play a significant role in synaptic transmission within the central nervous system (CNS) acting as neuromodulators. The recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. Human trace amine receptors (including TAAR1 TAAR2 TAAR5 TAAR6 TAAR8 TAAR9) are expressed in the brain and play significant physiological and neuropathological roles by activation of trace amines. We herein discuss the recent findings that provide insights into the functional roles of human trace amines (including P-Octopamine, β phenylethylamine, Tryptamine, Tyramine, Synephrine, 3-Iodothyronamine, 3-Methoxytyramine, N-Methyltyramine, N-Methylphenethylamine) in brain. Furthermore, we discuss the known functions of human trace amine receptors in brain.

  20. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  1. Poliomyelitis: immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of the human disease.

    PubMed Central

    Esiri, M M

    1980-01-01

    The immunoperoxidase method has been used to demonstrate the presence of immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of poliomyelitis. These cells were found in considerable numbers in the areas of damage during the acute phase, and persisted at the same sites, though in smaller numbers, during the convalescent phase for at least 8 months. Most of the positively stained cells were plasma cells. IgA was the commonest heavy chain type demonstrated, with lesser amounts also of IgG and, during the acute phase, IgM. In the acute phase more lambda than kappa light chain was demonstrated but in the convalescent phase this ratio was reversed. More light chain than heavy chain was demonstrable during the acute phase. The significance of these results is briefly discussed. Images Fig. 2 PMID:6771081

  2. CENTRAL NERVOUS MECHANISMS IN CIRCULATION REGULATION AND FUNCTIONAL DERANGEMENT (HYPERTENSION).

    DTIC Science & Technology

    BLOOD CIRCULATION, *CENTRAL NERVOUS SYSTEM, * HYPERTENSION , AUTONOMIC NERVOUS SYSTEM, ELECTROENCEPHALOGRAPHY, ELECTROPHYSIOLOGY, CHEMORECEPTORS...PERCEPTION, CARDIOVASCULAR SYSTEM, PATHOLOGY, REFLEXES, BEHAVIOR, BLOOD PRESSURE , ANOXIA, BRAIN, ITALY.

  3. Neurotoxic effects of n-hexane on the human central nervous system: evoked potential abnormalities in n-hexane polyneuropathy.

    PubMed Central

    Chang, Y C

    1987-01-01

    An outbreak of n-hexane polyneuropathy as a result of industrial exposure occurred in printing factories in Taipei area from December 1983 to February 1985. Multimodality evoked potentials study was performed on 22 of the polyneuropathy cases, five of the subclinical cases, and seven of the unaffected workers. The absolute and interpeak latencies of patterned visual evoked potential (pVEP) in both the polyneuropathy and subclinical groups were longer than in the normal controls. The pVEP interpeak amplitude was also decreased in the polyneuropathy cases. Brainstem auditory evoked potentials (BAEP), showed no difference of wave I latency between factory workers and normal controls, but prolongation of the wave I-V interpeak latencies was noted, corresponding with the severity of the polyneuropathy. In somatosensory evoked potentials (SEPs), both the absolute latencies and central conduction time (CCT) were longer in subclinical and polyneuropathy cases than in the unaffected workers and normal controls. From this evoked potentials study, chronic toxic effects of n-hexane on the central nervous system were shown. PMID:3031221

  4. [Central nervous system malformations: neurosurgery correlates].

    PubMed

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  5. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  6. Development of Central Nervous System Radioprotectors.

    DTIC Science & Technology

    1982-05-01

    accompanied ionizing radiation exposure of the central nervous system (CNS). Implicit in this objective is the requirement that this.. drug be...CNS injury either 27?’ concentrate on the late consequences of radio therapeutic exposures , or involve large mammals which would not lend themselves to...assays in which the rats are anesthetized with ketamine at the time of exposure and assayed for sensitivity to anesthesia induced by sodium

  7. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  8. Rhabdoid tumors of the central nervous system.

    PubMed

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  9. Tuberculoma of the central nervous system.

    PubMed

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  10. Long-term expression of beta-glucuronidase by genetically modified human neural progenitor cells grafted into the mouse central nervous system.

    PubMed

    Buchet, Delphine; Serguera, Ché; Zennou, Véronique; Charneau, Pierre; Mallet, Jacques

    2002-03-01

    Mucopolysaccharidosis type VII (MPS VII) is an inherited disease caused by beta-glucuronidase (beta-glu) deficiency. This deficiency results in the lysosomal accumulation of glycosaminoglycans in all tissues and affects a wide range of organs, including the central nervous system (CNS). Gene transfer is a promising approach to therapy for MPS VII because it allows extensive delivery of the enzyme to the affected tissues. We studied neurotransplantation of primary human cells to supply beta-glucuronidase to the CNS. Human neural progenitor cells (HNPC) were amplified and cotransduced with two lentiviral vectors, one encoding the green fluorescent protein and the other the human beta-glu. We show that these cells strongly expressed both transgenes in culture. When grafted into the mouse striatum, HNPC differentiated into neurons and astrocytes and expressed the two transgenes for at least 6 months. This study therefore paves the way for the treatment of MPS VII by long-term delivery of the appropriate enzyme.

  11. MicroRNA-184 Modulates Human Central Nervous System Lymphoma Cells Growth and Invasion by Targeting iASPP.

    PubMed

    Liang, Xiao-Gong; Meng, Wen-Tong; Hu, Lian-Jie; Li, Lin; Xing, Hongyun; Xie, Gan; Wang, An-Qiong; Jia, Yong-Qian

    2017-09-01

    Central nervous system lymphoma (CNSL) remains a diagnostical and therapeutical challenge. MiRNAs post-transcriptionally regulate expression of targeted mRNAs through binding to their 3' UTR to inhibit their translation or promote their degradation. Oncoprotein inhibitory member of the ASPP family (iASPP), a key inhibitor of tumor suppressor p53, has been reported to play oncogenic role in cancers. Our present study was aimed to determine whether the miR-184/iASPP axis is involved in the proliferation and invasion of CNSL. A reduced level of miR-184 was observed in CNSL tissues. Exogenous miR-184 inhibited cell survival and invasion, as well as the tumor volumes, while miR-184 inhibition could reverse this process. The RNA and protein levels of iASPP were significantly inhibited by miR-184, and the 3' UTR of iASPP was shown to be a target of miR-184. The expression of iASPP was up-regulated in CNSL tissues, compared to that of the normal brain tissues. The inhibition of iASPP by shRNA iASPP significantly repressed CNSL cells' proliferation and invasion, and reduced the volume of the tumor. Besides, iASPP overexpression could partly restore the suppressive effect of miR-184 on CNSL cell proliferation and invasive capability. We also revealed that miR-184/iASPP axis regulated the proliferation and invasion via PI3K/Akt signaling pathway, which presents a novel potential therapy for intervention of CNSL. Taken together, our findings revealed the detailed role of the miR-184/iASPP axis in CNSL and this axis might modulate the proliferation and invasion of CNSL via regulating the PI3K/Akt signaling pathway. J. Cell. Biochem. 118: 2645-2653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Childhood Central Nervous System Germ Cell Tumors Treatment

    MedlinePlus

    ... Ependymoma Treatment Research Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Central Nervous System (CNS) Germ Cell Tumors Go to Health Professional Version Key Points ...

  13. Glycosaminoglycans of the porcine central nervous system†

    PubMed Central

    Liu, Zhenling; Masuko, Sayaka; Solakyildirim, Kemal; Pu, Dennis; Linhardt, Robert J.; Zhang, Fuming

    2010-01-01

    Glycosaminoglycans (GAG) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study on GAGs from porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord, were isolated and purified by defating, proteolysis, anion-exchange chromatography and methanol precipitation. The isolated GAG content in brain was 5-times higher than in spinal cord (0.35 mg/g, compared to 0.07 mg/g dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG. The average molecular weight of CS from brain and spinal cord was 35.5 and 47.1 kDa, respectively, and HS from brain and spinal cord was 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the composition of CS from brain and spinal cords are similar with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type-A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine but their composition of minor disaccharides differed. Analysis by 1H- and two-dimensional-NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance. PMID:20954748

  14. Mold Infections of the Central Nervous System

    PubMed Central

    McCarthy, Matthew; Rosengart, Axel; Schuetz, Audrey N.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2016-01-01

    The recent outbreak of exserohilum rostratum meningitis linked to epidural injections of methylprednisolone acetate has brought renewed attention to mold infections of the central nervous system (CNS).1 Although uncommon, these infections are often devastating and difficult to treat. This focused review of the epidemiologic aspects, clinical characteristics, and treatment of mold infections of the CNS covers a group of common pathogens: aspergillus, fusarium, and scedosporium species, molds in the order Mucorales, and dematiaceous molds. Infections caused by these pathogen groups have distinctive epidemiologic profiles, clinical manifestations, microbiologic characteristics, and therapeutic implications, all of which clinicians should understand. PMID:25006721

  15. Histoplasmosis of the central nervous system.

    PubMed Central

    Tan, V; Wilkins, P; Badve, S; Coppen, M; Lucas, S; Hay, R; Schon, F

    1992-01-01

    Histoplasma capsulatum infection of the central nervous system is extremely rare in the United Kingdom partly because the organism is not endemic. However, because the organism can remain quiescent in the lungs or the adrenal glands for over 40 years before dissemination, it increasingly needs to be considered in unexplained neurological disease particularly in people who lived in endemic areas as children. In this paper a rapidly progressive fatal myelopathy in an English man brought up in India was shown at necropsy to be due to histoplasmosis. The neurological features of this infection are reviewed. Images PMID:1640242

  16. Cloning, characterization, and functional studies of a human 40-kDa catecholamine-regulated protein: implications in central nervous system disorders

    PubMed Central

    Pontoriero, Giuseppe F.; Thomas, Nancy; Thomson, Christy A.; Skoblenick, Kevin; Pristupa, Zdenek B.; Mishra, Ram K.

    2009-01-01

    Catecholamine-regulated proteins (CRPs) have been shown to bind dopamine and other structurally related catecholamines; in particular, the 40-kDa CRP (CRP40) protein has been previously cloned and functionally characterized. To determine putative human homologs, BLAST analysis using the bovine CRP40 sequence identified a human established sequence tag (EST) with significant homology (accession #BQ224193). Using this EST, we cloned a recombinant human brain CRP40-like protein, which possessed chaperone activity. Radiolabeled dopamine binding studies with recombinant human CRP40 protein demonstrated the ability of this protein to bind dopamine with low affinity and high capacity. The full-length human CRP40 nucleotide sequence was elucidated (accession #DQ480334) with RNA ligase-mediated rapid amplification of complementary DNA ends polymerase chain reaction, while Northern blot hybridization suggested that human CRP40 is an alternative splice variant of the 70-kDa mitochondrial heat shock protein, mortalin. Human SH-SY5Y neuroblastoma cells treated with the antipsychotic drug, haloperidol, exhibited a significant increase in CRP40 messenger RNA expression compared to untreated control cells, while other dopamine agonists/antagonists also altered CRP40 expression and immunolocalization. In conclusion, these results show that we have cloned a splice variant of mortalin with a novel catecholamine binding function and that this chaperone-like protein may be neuroprotective in dopamine-related central nervous system disorders. PMID:19280369

  17. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-02-07

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.

  18. Metal toxicity in the central nervous system.

    PubMed Central

    Clarkson, T W

    1987-01-01

    The nervous system is the principal target for a number of metals. Inorganic compounds of aluminum, arsenic, lead, lithium, manganese, mercury, and thallium are well known for their neurological and behavioral effects in humans. The alkyl derivatives of certain metals--lead, mercury and tin--are specially neurotoxic. Concern over human exposure and in some cases, outbreaks of poisoning, have stimulated research into the toxic action of these metals. A number of interesting hypotheses have been proposed for the mechanism of lead toxicity on the nervous system. Lead is known to be a potent inhibitor of heme synthesis. A reduction in heme-containing enzymes could compromise energy metabolism. Lead may affect brain function by interference with neurotransmitters such as gamma-amino-isobutyric acid. There is mounting evidence that lead interferes with membrane transport and binding of calcium ions. Methylmercury produces focal damage to specific areas in the adult brain. One hypothesis proposes that certain cells are susceptible because they cannot repair the initial damage to the protein sythesis machinery. The developing nervous system is especially susceptible to damage by methylmercury. It has been discovered that microtubules are destroyed by this form of mercury and this effect may explain the inhibition of cell division and cell migration, processes that occur only in the developmental stages. These and other hypotheses will stimulate considerable experimental challenges in the future. PMID:3319566

  19. Human nervous system function emulator.

    PubMed

    Frenger, P

    2000-01-01

    This paper describes a modular, extensible, open-systems design for a multiprocessor network which emulates the major functions of the human nervous system. Interchangeable hardware/software components, a socketed software bus with plug-and-play capability and self diagnostics are included. The computer hardware is based on IEEE P996.1 bus cards. Its operating system utilizes IEEE 1275 standard software. Object oriented design techniques and programming are featured. A machine-independent high level script-based command language was created for this project. Neural anatomical structures which were emulated include the cortex, brainstem, cerebellum, spinal cord, autonomic and peripheral nervous systems. Motor, sensory, autoregulatory, and higher cognitive artificial intelligence, behavioral and emotional functions are provided. The author discusses how he has interfaced this emulator to machine vision, speech recognition/speech synthesis, an artificial neural network and a dexterous hand to form an android robotic platform.

  20. Progress in Central Nervous System Lymphomas

    PubMed Central

    Wang, Chia-Ching; Carnevale, Julia; Rubenstein, James L.

    2014-01-01

    Until recently, primary central nervous system lymphoma (PCNSL) was associated with a uniformly dismal prognosis. It is now reasonable to anticipate long-term survival and possibly cure for a significant proportion of patients diagnosed with PCNSL. Accumulated data generated over the past ten years has provided evidence that long-term progression-free survival (PFS) can reproducibly be attained in a significant fraction of PCNSL patients that receive dose-intensive chemotherapy consolidation, without whole brain radiotherapy. One consolidative regimen that has reproducibly demonstrated promise is the combination of infusional etoposide plus high-dose cytarabine (EA), administered in first complete remission after methotrexate, temozolomide and rituximab-based induction. Given evolving principles of management and the mounting evidence for reproducible improvements in survival rates in prospective clinical series, our goal in this review is to highlight and update principles in diagnosis, staging and management as well as to review data regarding the pathogenesis of central nervous system lymphomas, information that is likely to constitute a basis for the implementation of novel therapies that are requisite for further progress in this unique phenotype of non-Hodgkin lymphoma. PMID:24837460

  1. Central nervous system vasculitis in children.

    PubMed

    Cellucci, Tania; Benseler, Susanne M

    2010-09-01

    To review the current literature of childhood primary and secondary central nervous system (CNS) vasculitis and to evaluate the growing differential diagnosis of inflammatory and noninflammatory brain diseases. Primary angiitis of the central nervous system in children (cPACNS) is a reversible cause of severe neurological deficits and/or psychiatric symptoms. This disease is classified into subtypes based on distinct clinical and radiological features, treatment strategies, and disease trajectories. Also, the increased diagnostic yield from elective brain biopsies in children has improved our ability to diagnose angiography-negative cPACNS. Over the past few years, the differential diagnosis for cPACNS has rapidly expanded due to the characterization of novel inflammatory and noninflammatory brain diseases. Specifically, vasoconstrictive disorders and neuronal antibody-associated conditions have now been described in children and have overlapping clinical features with cPACNS. This review summarizes the recent data on diagnosis, treatment, and prognosis of cPACNS. It also addresses the evolving differential diagnosis for CNS vasculitis. Our improved understanding of these disorders allows a tailored diagnostic approach leading to rapid diagnosis and initiation of therapy in these potentially reversible conditions.

  2. Diagnosing central nervous system vasculitis in children.

    PubMed

    Cellucci, Tania; Benseler, Susanne M

    2010-12-01

    To review the current literature of childhood central nervous system vasculitis, and to discuss a tailored approach to diagnosis and treatment based on recent evidence. Primary angiitis of the central nervous system in children (cPACNS) is an increasingly recognized inflammatory brain disease with potentially devastating neurological consequences. The diagnostic approach should be tailored to the clinical presentation of the child with suspected cPACNS and should address the expanding spectrum of inflammatory and noninflammatory brain diseases with overlapping clinical features. New evidence has confirmed that elective brain biopsies in children have a higher diagnostic yield than in adults and improve our ability to diagnose angiography-negative cPACNS. Finally, observational studies have shown that early diagnosis and aggressive treatment lead to improved neurological outcomes and lower mortality rates in patients with cPACNS. This review summarizes the recent data on diagnosis, classification, treatment, and outcomes in cPACNS. Our improved understanding of cPACNS facilitates a tailored diagnostic approach that results in earlier diagnosis and initiation of therapy for this potentially reversible condition.

  3. Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis.

    PubMed

    Bravo, Beatriz; Gallego, Marta I; Flores, Ana I; Bornstein, Rafael; Puente-Bedia, Alba; Hernández, Javier; de la Torre, Paz; García-Zaragoza, Elena; Perez-Tavarez, Raquel; Grande, Jesús; Ballester, Alicia; Ballester, Sara

    2016-03-17

    Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs. We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates. Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4(+)IL17(+), CD11b(+)Ly6G(+) and CD11b(+)Ly6C(+) cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3

  4. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  5. Scaffolds for central nervous system tissue engineering

    NASA Astrophysics Data System (ADS)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  6. [Idiopathic hypersomnia of the central nervous system].

    PubMed

    Bové-Ribé, A

    Idiopathic hypersomnia of the central nervous system is a cause of excessive diurnal somnolence which affects 5-10% of the patients who attend sleep clinics for this reason. We describe three male patients who consulted for excessive diurnal somnolence. Nocturnal polysomnographic studies followed by tests for multiple latencies of sleep were done. In all cases there was confirmation of lengthening of the time of nocturnal sleep with normal phases of sleep and an increase in the number of sleep spindles in phase II. Similarly there was an average latency of sleep of less than 10 minutes and fewer than two phases of REM in the multiple latencies test. All patients improved with drugs stimulating vigil, two of them with centramine and the third with methilphenidate. We consider the clinical data the polysomnographic criteria which help to establish the diagnosis.

  7. Central nervous system nocardiosis in Queensland

    PubMed Central

    Rafiei, Nastaran; Peri, Anna Maria; Righi, Elda; Harris, Patrick; Paterson, David L.

    2016-01-01

    Abstract Nocardia infection of the central nervous system (CNS) is an uncommon but clinically important disease, often occurring in immunocompromised individuals and carrying a high mortality rate. We present 20 cases of microbiologically proven CNS nocardiosis diagnosed in Queensland from 1997 to 2015 and review the literature from 1997 to 2016. Over 50% of cases occurred in immunocompromised individuals, with corticosteroid use posing a particularly significant risk factor. Nine (45%) patients were immunocompetent and 3 had no comorbidities at time of diagnosis. Nocardia farcinica was the most frequently isolated species (8/20) and resistance to trimethoprim–sulfamethoxazole (TMP-SMX) was found in 2 isolates. Overall, 35% of our patients died within 1 year, with the majority of deaths occurring in the first month following diagnosis. Interestingly, of the 7 deaths occurring at 1 year, 6 were attributed to N farcinica with the seventh isolate being unspeciated, suggesting the virulence of the N farcinica strain. PMID:27861348

  8. BK Channels in the Central Nervous System

    PubMed Central

    Contet, C.; Goulding, S. P.; Kuljis, D. A.; Barth, A. L.

    2016-01-01

    Large conductance Ca2+- and voltage-activated K+ (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca2+ concentrations. In neurons, they regulate the timing and duration of K+ influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction. PMID:27238267

  9. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  10. Neuroactive steroids and central nervous system disorders.

    PubMed

    Wang, M; Bäckström, T; Sundström, I; Wahlström, G; Olsson, T; Zhu, D; Johansson, I M; Björn, I; Bixo, M

    2001-01-01

    Steroid hormones are vital for the cell life and affect a number of neuroendocrine and behavioral functions. In contrast to their endocrine actions, certain steroids have been shown to rapidly alter brain excitability and to produce behavioral effects within seconds to minutes. In this article we direct attention to this issue of neuroactive steroids by outlining several aspects of current interest in the field of steroid research. Recent advances in the neurobiology of neuroactive are described along with the impact of advances on drug design for central nervous system (CNS) disorders provoked by neuroactive steriods. The theme was selected in association with the clinical aspects and therapeutical potentials of the neuroactive steroids in CNS disorders. A wide range of topics relating to the neuroactive steroids are outlined, including steroid concentrations in the brain, premenstrual syndrome, estrogen and Alzheimer's disease, side effects of oral contraceptives, mental disorder in menopause, hormone replacement therapy, Catamenial epilepsy, and neuractive steroids in epilepsy treatment.

  11. Autonomic complications following central nervous system injury.

    PubMed

    Baguley, Ian J

    2008-11-01

    Severe sympathetic overactivity occurs in several conditions that are recognized as medical emergencies. Following central nervous system injury, a small proportion of individuals develop severe paroxysmal sympathetic and motor overactivity. These individuals have a high attendant risk of unnecessary secondary morbidity. Following acquired brain injury, the syndrome is known by a number of names including dysautonomia and sympathetic storm. Dysautonomia is currently a diagnosis of exclusion and often goes unrecognized. The evidence base for management is almost entirely anecdotal in nature; there has been little structured or prospective research. In contrast, the evidence base for autonomic dysreflexia following spinal cord injury is much stronger, with level 1 evidence for many treatment interventions. This review presents a current understanding of each condition and suggests simple management protocols. With the marked disparity in the literature for the two conditions, the main focus is on the literature for dysautonomia. The similarity between these two conditions and the other autonomic emergency conditions is discussed.

  12. [Tumors of the central nervous system].

    PubMed

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  13. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  14. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  15. Pathophysiological mechanisms of Flavivirus infection of the central nervous system.

    PubMed

    Pardigon, N

    2017-09-01

    Flaviviruses are important human pathogens. Transmitted by the bite of infected mosquitoes, Flaviviruses such as West Nile and Japanese encephalitis may reach the central nervous system where they can elicit severe diseases. Their ability to cross the blood-brain-barrier is still poorly understood. The newly emerging Zika Flavivirus on the other hand very rarely reaches the brain of adults, but can infect neural progenitors in the developing central nervous system of fetuses, eliciting devastating congenital malformations including microcephaly. This short review focuses on selected aspects of West Nile, Japanese encephalitis and Zika virus pathophysiological features such as neuroinvasion and neurovirulence, and highlights what we know about some possible mechanisms involved in Flaviviral neuropathogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  17. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  18. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  19. Central nervous system adaptation to exercise training

    NASA Astrophysics Data System (ADS)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  20. Central nervous system manifestations of neonatal lupus: a systematic review.

    PubMed

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  1. Bilastine and the central nervous system.

    PubMed

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  2. The human myelin basic protein gene is included within a 179-kilobase transcription unit: Expression in the immune and central nervous systems

    SciTech Connect

    Pribyl, T.M.; Campagnoni, C.W.; Kampf, K.; Kashima, T.; Handley, V.W.; Campagnoni, A.T. ); McMahon, J. )

    1993-11-15

    Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled the authors to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is [approx] 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcipts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.

  3. Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System

    PubMed Central

    Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A.; Newgreen, Donald F.; Pera, Martin F.

    2015-01-01

    Abstract The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named “caudal neural progenitors” (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube. Stem Cells 2015;33:1759–1770 PMID:25753817

  4. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system.

    PubMed

    Denham, Mark; Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A; Newgreen, Donald F; Pera, Martin F; Dottori, Mirella

    2015-06-01

    The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.

  5. Surfactant protein A is expressed in the central nervous system of rats with experimental autoimmune encephalomyelitis, and suppresses inflammation in human astrocytes and microglia.

    PubMed

    Yang, Xue; Yan, Jun; Feng, Juan

    2017-06-01

    The collectin surfactant protein‑A (SP‑A), a potent host defense molecule, is well recognized for its role in the maintenance of pulmonary homeostasis and the modulation of inflammatory responses. While previous studies have detected SP‑A in numerous extrapulmonary tissues, there is still a lack of information regarding its expression in central nervous system (CNS) and potential effects in neuroinflammatory diseases, such as multiple sclerosis (MS). The present study used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS, to investigate the expression of SP‑A in the CNS at different stages of disease progression. In addition, in vitro experiments with lipopolysaccharide (LPS)‑stimulated human astrocytes and microglia were performed to investigate the potential role of SP‑A in the modulation of CNS inflammatory responses. The results of the present study demonstrated widespread distribution of SP‑A in the rat CNS, and also identified specific expression patterns of SP‑A at different stages of EAE. In vitro, the current study revealed that treatment of human astrocytes and microglia with LPS promoted SP‑A expression in a dose‑dependent manner. Furthermore, exogenous SP‑A protein significantly decreased Toll‑like receptor 4 and nuclear factor‑κB expression, and reduced interleukin‑1β and tumor necrosis factor‑α levels. The results of the current study indicate a potential role for SP‑A in the modulation of CNS inflammatory responses.

  6. Human herpesvirus infections of the central nervous system: laboratory diagnosis based on DNA detection by nested PCR in plasma and cerebrospinal fluid samples.

    PubMed

    Rimério, Carla Aparecida Tavares; De Oliveira, Renato Souza; de Almeida Bonatelli, Murilo Queiroz; Nucci, Anamarli; Costa, Sandra Cecília Botelho; Bonon, Sandra Helena Alves

    2015-04-01

    Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the "gold standard," and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture.

  7. [Microbiological diagnosis of central nervous system infections].

    PubMed

    Codina, María Gema; de Cueto, Marina; Vicente, Diego; Echevarría, Juan Emilio; Prats, Guillem

    2011-02-01

    The infections of the central nervous system are associated with high morbidity and mortality. Several agents including bacteria, viruses, fungi and protozoa can invade the CNS. They are different clinical presentations of these infections: meningitis, encephalitis, brain and epidural abscesses and cerebrospinal fluid shunt infections. The clinical course could be acute, subacute or chronic depending on the infecting agent and the location of the infection. The travelling entails a risk of infection by exotic agents of meningo-encephalitis such as robovirus and arbovirus, which require new diagnostic and therapeutic methods. Despite some progress in the treatment of the CNS infections, the mortality is usually high. Rapid diagnosis and emergent interventions are necessary to improve the outcome of those patients, and early and targeted antimicrobial treatment and support measures are of paramount importance for a favourable clinical patient outcome. The antigen detection techniques and particularly those of genetic diagnosis by amplification (PCR and others) have advanced, and improved the diagnostic of those diseases. In this paper the clinical signs and symptoms and diagnostic procedures of CNS infections are presented.

  8. Histology of the central nervous system.

    PubMed

    Garman, Robert H

    2011-01-01

    The intent of this article is to assist pathologists inexperienced in examining central nervous system (CNS) sections to recognize normal and abnormal cell types as well as some common artifacts. Dark neurons are the most common histologic artifact but, with experience, can readily be distinguished from degenerating (eosinophilic) neurons. Neuron degeneration stains can be useful in lowering the threshold for detecting neuron degeneration as well as for revealing degeneration within populations of neurons that are too small to show the associated eosinophilic cytoplasmic alteration within H&E-stained sections. Neuron degeneration may also be identified by the presence of associated macroglial and microglial reactions. Knowledge of the distribution of astrocyte cytoplasmic processes is helpful in determining that certain patterns of treatment-related neuropil vacuolation (as well as some artifacts) represent swelling of these processes. On the other hand, vacuoles with different distribution patterns may represent alterations of the myelin sheath. Because brains are typically undersampled for microscopic evaluation, many pathologists are unfamiliar with the circumventricuar organs (CVOs) that represent normal brain structures but are often mistaken for lesions. Therefore, the six CVOs found in the brain are also illustrated in this article.

  9. Environmental effects on the central nervous system.

    PubMed Central

    Paulson, G W

    1977-01-01

    The central nervous system (CNS) is designed to respond to the environment and is peculiarly vulnerable to many of the influences found in the environment. Utilizing an anatomical classification (cortex, cerebellum, peripheral nerves) major toxins and stresses are reviewed with selections from recent references. Selective vulnerability of certain areas to particular toxins is apparent at all levels of the CNS, although the amount of damage produced by any noxious agent depends on the age and genetic substrate of the subject. It is apparent that the effects of certain well known and long respected environmental toxins such as lead, mercury, etc., deserve continued surveillance. In addition, the overwhelming impact on the CNS of social damages such as trauma, alcohol, and tobacco cannot be ignored by environmentalists. The effect of the hospital and therapeutic environment has become apparent in view of increased awareness of iatrogenic disorders. The need for particular laboratory tests, for example, examination of CSF and nerve conduction toxicity studies, is suggested. Epidemics such as the recent solvent neuropathies suggest a need for continued animal studies that are chronic, as well as acute evaluations when predicting the potential toxic effects of industrial compounds. PMID:202447

  10. Time Perception Mechanisms at Central Nervous System

    PubMed Central

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  11. Central nervous system tumors in Mexican children.

    PubMed

    De la Torre Mondragón, L; Ridaura Sanz, C; Reyes Mujica, M; Rueda Franco, F

    1993-08-01

    Five hundred and seventy primary central nervous system (CNS) tumors from the Department of Pathology at the National Institute of Pediatrics in Mexico City, collected from 1970 to 1989, were histologically reclassified in order to find out their relative incidence as well as their outstanding features. With this, we could establish a frame of reference for our local population, contributing to the epidemiological analysis of these entities. All the tumors were examined independently by two pathologists (C.R. and M.R.), using the classification of Rorke et al. Histological type, patient age and sex, and tumor location were analyzed. CNS tumors were the secondmost frequently encountered solid tumors, after lymphomas, and were increasing in incidence at a rate of 2.2 annually. Children in the age group 0-9 years were most often affected, and there was a predominance of male patients. Astrocytoma and medulloblastoma were the most common tumor types. The infratentorial region was the most frequent tumor location in the 2- to 9-year age group. By contrast, in the under 2-year-olds a supratentorial location was more frequent, and the incidence of germ cell tumors was proportionally high. In general, some histological types seemed to be associated with particular age groups. Although we found primitive neuroectodermal tumors to be the fifth most common at all ages (except for medulloblastoma), many other authors do not report a similar finding.

  12. Time Perception Mechanisms at Central Nervous System.

    PubMed

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  13. Primary central nervous system posttransplant lymphoproliferative disorders.

    PubMed

    Castellano-Sanchez, Amilcar A; Li, Shiyong; Qian, Jiang; Lagoo, Anand; Weir, Edward; Brat, Daniel J

    2004-02-01

    Posttransplant lymphoproliferative disorders (PTLDs) represent a spectrum ranging from Epstein-Barr virus (EBV)-driven polyclonal lymphoid proliferations to EBV+ or EBV- malignant lymphomas. Central nervous system (CNS) PTLDs have not been characterized fully. We reviewed the clinical, radiologic, and pathologic features of 12 primary CNS PTLDs to define them more precisely. Patients included 10 males and 2 females (median age, 43.4 years) who were recipients of kidney (n = 5), liver (n = 2), heart (n = 2), peripheral blood stem cells (n = 2), or bone marrow (n = 1). All received immunosuppressive therapy. CNS symptoms developed 3 to 131 months (mean, 31 months) after transplantation. By neuroimaging, most showed multiple (3 to 9) intra-axial, contrast-enhancing lesions. Histologic sections showed marked expansion of perivascular spaces by large, cytologically malignant lymphoid cells that were CD45+, CD20+, EBV+ and showed light chain restriction or immunoglobulin gene rearrangement. In distinction to PTLDs in other organ systems, CNS PTLDs were uniformly high-grade lymphomas that fulfilled the World Health Organization criteria for monomorphic PTLDs. Extremely short survival periods were noted for each CNS PTLD that followed peripheral blood stem cell transplantation. Survival of others with CNS PTLD varied; some lived more than 2 years.

  14. [Primary central nervous system lymphoma: report of one case].

    PubMed

    Zhao, Peng; Su, Rong-Gang

    2002-04-01

    One case of primary central nervous system lymphoma was reported. The patient received comprehensive therapy, mainly the surgical treatment, with the survival time 12 months, and local recurrence was considered as the major cause of death. The pathology, imagine examination, diagnosis and treatment of primary central nervous system lymphoma were discussed.

  15. SUMO represses transcriptional activity of the Drosophila SoxNeuro and human Sox3 central nervous system-specific transcription factors.

    PubMed

    Savare, Jean; Bonneaud, Nathalie; Girard, Franck

    2005-06-01

    Sry high mobility group (HMG) box (Sox) transcription factors are involved in the development of central nervous system (CNS) in all metazoans. Little is known on the molecular mechanisms that regulate their transcriptional activity. Covalent posttranslational modification by small ubiquitin-like modifier (SUMO) regulates several nuclear events, including the transcriptional activity of transcription factors. Here, we demonstrate that SoxNeuro, an HMG box-containing transcription factor involved in neuroblast formation in Drosophila, is a substrate for SUMO modification. SUMOylation assays in HeLa cells and Drosophila S2 cells reveal that lysine 439 is the major SUMO acceptor site. The sequence in SoxNeuro targeted for SUMOylation, IKSE, is part of a small inhibitory domain, able to repress in cis the activity of two adjacent transcriptional activation domains. Our data show that SUMO modification represses SoxNeuro transcriptional activity in transfected cells. Overexpression in Drosophila embryos of a SoxN form that cannot be targeted for SUMOylation strongly impairs the development of the CNS, suggesting that SUMO modification of SoxN is crucial for regulating its activity in vivo. Finally, we present evidence that SUMO modification of group B1 Sox factors was conserved during evolution, because Sox3, the human counterpart of SoxN, is also negatively regulated through SUMO modification.

  16. Adenovirus-mediated gene transfer and expression of human beta-glucuronidase gene in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice.

    PubMed

    Ohashi, T; Watabe, K; Uehara, K; Sly, W S; Vogler, C; Eto, Y

    1997-02-18

    Mucopolysaccharidosis type VII (Sly syndrome) is a lysosomal storage disease caused by inherited deficiency of the lysosomal enzyme beta-glucuronidase. A murine model of this disorder has been well characterized and used to study a number of forms of experimental therapies, including gene therapy. We produced recombinant adenovirus that expresses human beta-glucuronidase and administered this recombinant adenovirus to beta-glucuronidase-deficient mice intravenously. The beta-glucuronidase activities in liver and spleen were elevated to 40% and 20%, respectively, of the heterozygote enzymatic level at day 16. Expression persisted for at least 35 days. Pathological abnormalities of these tissues were also improved, and the elevated levels of urinary glycosaminoglycans were reduced in treated mice. However, the beta-glucuronidase activity in kidney and brain was not significantly increased. After administration of the recombinant adenovirus directly into the lateral ventricles of mutant mice, the beta-glucuronidase activity in crude brain homogenates increased to 30% of heterozygote activity. Histochemical demonstration of beta-glucuronidase activity in brain revealed that the enzymatic activity was mainly in ependymal cells and choroid. However, in some regions, the adenovirus-mediated gene expression was also evident in brain parenchyma associated with vessels and in the meninges. These results suggest that adenovirus-mediated gene delivery might improve the central nervous system pathology of mucopolysaccharidosis in addition to correcting visceral pathology.

  17. Adenovirus-mediated gene transfer and expression of human β-glucuronidase gene in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice

    PubMed Central

    Ohashi, Toya; Watabe, Kazuhiko; Uehara, Keiko; Sly, William S.; Vogler, Carole; Eto, Yoshikatsu

    1997-01-01

    Mucopolysaccharidosis type VII (Sly syndrome) is a lysosomal storage disease caused by inherited deficiency of the lysosomal enzyme β-glucuronidase. A murine model of this disorder has been well characterized and used to study a number of forms of experimental therapies, including gene therapy. We produced recombinant adenovirus that expresses human β-glucuronidase and administered this recombinant adenovirus to β-glucuronidase-deficient mice intravenously. The β-glucuronidase activities in liver and spleen were elevated to 40% and 20%, respectively, of the heterozygote enzymatic level at day 16. Expression persisted for at least 35 days. Pathological abnormalities of these tissues were also improved, and the elevated levels of urinary glycosaminoglycans were reduced in treated mice. However, the β-glucuronidase activity in kidney and brain was not significantly increased. After administration of the recombinant adenovirus directly into the lateral ventricles of mutant mice, the β-glucuronidase activity in crude brain homogenates increased to 30% of heterozygote activity. Histochemical demonstration of β-glucuronidase activity in brain revealed that the enzymatic activity was mainly in ependymal cells and choroid. However, in some regions, the adenovirus-mediated gene expression was also evident in brain parenchyma associated with vessels and in the meninges. These results suggest that adenovirus-mediated gene delivery might improve the central nervous system pathology of mucopolysaccharidosis in addition to correcting visceral pathology. PMID:9037045

  18. Flow cytometry of cerebrospinal fluid (CSF) lymphocytes: alterations of blood/CSF ratios of lymphocyte subsets in inflammation disorders of human central nervous system (CNS).

    PubMed

    Kleine, T O; Albrecht, J; Zöfel, P

    1999-03-01

    Flow cytometry was adapted to measure lymphocytes in human cerebrospinal fluid (CSF). The method was sufficiently precise, reproducible and accurate despite low cell counts. In lumbar CSF of controls with 500 to 3500 (10(3)/l) leukocytes, lymphocyte counts correlated with those in corresponding venous blood: blood/CSF ratios of approximately 2000 : 1 were found for total T cells (CD3+) and CD3+ HLA-DR-, CD3+4+, CD3+8+ subsets, ratios were increased for the lymphocyte subsets CD3+ HLA-DR+ < or = CD3+16+56+ < CD16+56+3- < CD8+3- < CD19+; CD8+4+ ratio was half of CD3+ ratio. Data indicate selective barriers (blood-brain and blood-CSF barriers) to blood lymphocyte subsets which favor the transfer of T subsets. Correlation of the subset ratios to the CD3+ ratio indicates distinct barrier properties which changed differently with acute and subacute inflammations and neuroimmunological diseases of central nervous system (CNS) in lumbar or ventricular CSF, but not with simple protein barrier disturbance. HLA DR+ T ratios were higher than HLA DR- T ratios only with controls and some neuroimmunological diseases. Lymphocyte barrier characteristics were related to protein leakage situated at the same barriers, indicating for the lymphocyte subsets selective transfer routes in control subjects and non-selective routes in patients with CNS inflammation where altered ratios revealed a mixture of both routes.

  19. Maternal repression of the human GRB10 gene in the developing central nervous system; evaluation of the role for GRB10 in Silver-Russell syndrome.

    PubMed

    Hitchins, M P; Monk, D; Bell, G M; Ali, Z; Preece, M A; Stanier, P; Moore, G E

    2001-02-01

    The GRB10 gene encodes a growth suppressor and maps to human chromosome 7p11.2-p13. Maternal duplication (matdup) of this region has recently been associated with Silver-Russell syndrome (SRS), which is characterised by pre- and postnatal growth restriction, craniofacial dysmorphism and lateral asymmetry. Maternal uniparental disomy for chromosome 7 (mUPD7) occurs in approximately 7% of SRS patients. Exposure of a recessive allele due to isodisomy has been ruled out in five mUPD7 cases, suggesting genomic imprinting as the basis for disease. Assuming SRS patients with matdup of 7p11.2-p13 and mUPD7 share a common aetiology, this would implicate a maternally expressed gene from this interval, which is involved in growth inhibition. Murine Grb10 was identified as a maternally expressed gene by subtractive hybridisation using normal and androgenetic mouse embryos. Grb10 maps to the homologous region of proximal mouse chromosome 11, for which mUPD incurs reduced birthweight. A role for GRB10 in SRS was evaluated by determining its imprinting status in multiple human foetal tissues using expressed polymorphisms, and by screening the coding region for mutations in 18 classic non-mUPD7 SRS patients. Maternal repression of GRB10 was observed specifically in the developing central nervous system including brain and spinal cord, with biallelic expression in peripheral tissues. This is in contrast to mouse Grb10, and represents the first example of opposite imprinting in human and mouse homologues. While a role for GRB10 in mUPD7 SRS cases can not be ruled out on the basis of imprinting status, no mutations were identified in the patients screened.

  20. Anatomical Organization of Urocortin 3-Synthesizing Neurons and Immunoreactive Terminals in the Central Nervous System of Non-Human Primates [Sapajus spp.

    PubMed Central

    Battagello, Daniella S.; Diniz, Giovanne B.; Candido, Paulo L.; da Silva, Joelcimar M.; de Oliveira, Amanda R.; Torres da Silva, Kelly R.; Lotfi, Claudimara F. P.; de Oliveira, José A.; Sita, Luciane V.; Casatti, Cláudio A.; Lovejoy, David A.; Bittencourt, Jackson C.

    2017-01-01

    Urocortin 3 (UCN3) is a neuropeptide member of the corticotropin-releasing factor (CRF) peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2) receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS), such as the medial preoptic nucleus, the rostral perifornical area (PFA), the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir) terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA) expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH) and the lateral septal nucleus (LS). Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates. PMID:28790894

  1. Expression of hydroxyindole-O-methyltransferase enzyme in the human central nervous system and in pineal parenchymal cell tumors.

    PubMed

    Fukuda, Takahiro; Akiyama, Nobutake; Ikegami, Masahiro; Takahashi, Hitoshi; Sasaki, Atsushi; Oka, Hidehiro; Komori, Takashi; Tanaka, Yuko; Nakazato, Youichi; Akimoto, Jiro; Tanaka, Masahiko; Okada, Yoshikazu; Saito, Saburo

    2010-05-01

    Pineal parenchymal tumor (PPT) cells usually show immunoreactivity for synaptophysin, neuron-specific enolase, neurofilament protein, class III beta-tubulin, tau protein, PGP9.5, chromogranin, serotonin, retinal S-antigen, and rhodopsin, but these markers are not specific for PPTs. Melatonin is produced and secreted mainly bypineal parenchymal cells; hydroxyindole-O-methyltransferase (HIOMT) catalyzes the final reaction in melatonin biosynthesis. We hypothesized that HIOMT could serve as a tumor marker of PPTs, and we investigated HIOMT localization and HIOMT expression in samples of normal human tissue and in PPTs, primitive neuroectodermal tumors, and medulloblastomas. In normal tissue, HIOMT was expressed in retinal cells, pineal parenchymal cells, neurons of the Edinger-Westphal nucleus, microglia, macrophages, thyroid follicular epithelium, principal and oxyphil cells of parathyroid gland, adrenal cortical cells, hepatic parenchymal cells, renal tubule epithelium, and enteroendocrine cells of stomach and duodenum. The HIOMT was also expressed in all 46 PPTs studied. The proportions of HIOMT-immunoreactive cells successively decreased in the following tumors: pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma. A few HIOMT-immunoreactive cells were observed in one of 6 primitive neuroectodermal tumors and 23 of 42 medulloblastomas. These results indicate that HIOMT immunohistochemistry may be useful for the diagnosis of PPTs and be a prognostic factor in PPTs.

  2. Gut commensalism, cytokines, and central nervous system demyelination.

    PubMed

    Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-08-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.

  3. Gut Commensalism, Cytokines, and Central Nervous System Demyelination

    PubMed Central

    Ochoa-Repáraz, Javier; Kasper, Lloyd H.

    2014-01-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination. PMID:25084177

  4. Central nervous system tuberculosis: pathophysiology and imaging findings.

    PubMed

    Patkar, Deepak; Narang, Jayant; Yanamandala, Rama; Lawande, Malini; Shah, Gaurang V

    2012-11-01

    With the onset of the human immunodeficiency virus pandemic, the incidence of tuberculosis, including central nervous system (CNS) tuberculosis, has increased in developed countries. It is no longer a disease confined to underdeveloped and developing countries. The imaging appearance has become more complex with the onset of multidrug-resistant tuberculosis. Imaging plays an important role in the early diagnosis of CNS tuberculosis and may prevent unnecessary morbidity and mortality. This article presents an extensive review of typical and atypical imaging appearances of intracranial tuberculosis, and discusses pathogenesis, patterns of involvement, and advances in imaging of intracranial tuberculosis.

  5. Aging, the Central Nervous System, and Mobility

    PubMed Central

    2013-01-01

    Background. Mobility limitations are common and hazardous in community-dwelling older adults but are largely understudied, particularly regarding the role of the central nervous system (CNS). This has limited development of clearly defined pathophysiology, clinical terminology, and effective treatments. Understanding how changes in the CNS contribute to mobility limitations has the potential to inform future intervention studies. Methods. A conference series was launched at the 2012 conference of the Gerontological Society of America in collaboration with the National Institute on Aging and the University of Pittsburgh. The overarching goal of the conference series is to facilitate the translation of research results into interventions that improve mobility for older adults. Results. Evidence from basic, clinical, and epidemiological studies supports the CNS as an important contributor to mobility limitations in older adults without overt neurologic disease. Three main goals for future work that emerged were as follows: (a) develop models of mobility limitations in older adults that differentiate aging from disease-related processes and that fully integrate CNS with musculoskeletal contributors; (b) quantify the contribution of the CNS to mobility loss in older adults in the absence of overt neurologic diseases; (c) promote cross-disciplinary collaboration to generate new ideas and address current methodological issues and barriers, including real-world mobility measures and life-course approaches. Conclusions. In addition to greater cross-disciplinary research, there is a need for new approaches to training clinicians and investigators, which integrate concepts and methodologies from individual disciplines, focus on emerging methodologies, and prepare investigators to assess complex, multisystem associations. PMID:23843270

  6. Congenital tumors of the central nervous system.

    PubMed

    Severino, Mariasavina; Schwartz, Erin S; Thurnher, Majda M; Rydland, Jana; Nikas, Ioannis; Rossi, Andrea

    2010-06-01

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into "definitely congenital" (present or producing symptoms at birth), "probably congenital" (present or producing symptoms within the first week of life), and "possibly congenital" (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease-free survival.

  7. Melatonin Metabolism in the Central Nervous System

    PubMed Central

    Hardeland, Rüdiger

    2010-01-01

    The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, at least in pineal gland and retina, to 5-methoxytryptamine. N1-acetyl-N2-formyl-5-methoxykynuramine is formed by pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its product, N1-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochondrial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines. PMID:21358968

  8. Could astrocytes be the primary target of an offending agent causing the primary degenerative diseases of the human central nervous system? A hypothesis.

    PubMed

    Sica, Roberto E

    2015-05-01

    Most of the named primary degenerative diseases of the human central nervous system have been attributed to a direct, primary damage of some particular population of neurons. Within the spectrum of these illnesses there are disorders like amyotrophic lateral sclerosis, fronto-temporal dementia, Alzheimer's dementia, Parkinson's disease, Huntington's dementia and cerebellar ataxias affecting exclusively the human species. In the last years it has been shown that non-neural cells, mainly astrocytes, have a crucial role in the starting and development of these diseases. We suggest that the causative agent of these illnesses gets home first within the astrocytes, rather than the neurons, making them sick by modifying the structure of some proteins; from these cells the abnormal process would start a trip to other astrocytes having the same genetic, metabolic, structural and functional profiles that the originally affected astrocytes have, going through the gap junctions which connect that particular population devoted to a particular set of neurons. This appears to be a likely hypothesis because the astrocytes related to a defined population of neurons have their own, private properties and characteristics needed to support one particular set of neurons performing a defined function, making them a different and unique population, a fact which would limit the spreading of the disease to those astrocytes, sparing other astrocyte populations which do not share those characteristics. If this were the mechanism underlying these illnesses, the neurons, which their health depends on those astrocytes, would be deprived of their patronage and would start all the changes that characterizes a programmed cell death, and the clinical manifestations of a defined pathology would consequently appear.

  9. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    PubMed

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis.

  10. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  11. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation.

    PubMed

    Grant, Christian; Barmak, Kate; Alefantis, Timothy; Yao, Jing; Jacobson, Steven; Wigdahl, Brian

    2002-02-01

    Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation

  12. Central Nervous System Control of Voice and Swallowing

    PubMed Central

    Ludlow, Christy L.

    2015-01-01

    This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238

  13. Embryonic Development of the Central Nervous System.

    PubMed

    de Lahunta, Alexander; Glass, Eric N; Kent, Marc

    2016-03-01

    Ultimately, it is only with an understanding of normal embryologic development that there can be an understanding of why and how a specific malformation develops. Knowing from where and when a specific part of the nervous system develops and what morphogens are at play will enable us to identify undescribed malformation as well as better define causality. The following article reviews the normal embryologic development of the mammalian nervous system and is intended to serve as a foundation for the understanding of the various malformations presented in this issue.

  14. Pathogen-inspired drug delivery to the central nervous system

    PubMed Central

    McCall, Rebecca L; Cacaccio, Joseph; Wrabel, Eileen; Schwartz, Mary E; Coleman, Timothy P; Sirianni, Rachael W

    2014-01-01

    For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents. PMID:25610755

  15. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    MedlinePlus

    ... the Central and Peripheral Nervous Systems Fact Sheet Table of Contents (click to jump to sections) What ... Information Page NINDS Epilepsy Information Page NINDS Familial Periodic Paralyses Information Page NINDS Farber's Disease Information Page ...

  16. [Microglial cells and development of the embryonic central nervous system].

    PubMed

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  17. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations - 2008 Curt Richter Award Winner.

    PubMed

    Pruessner, Jens C; Dedovic, Katarina; Pruessner, Marita; Lord, Catherine; Buss, Claudia; Collins, Louis; Dagher, Alain; Lupien, Sonia J

    2010-01-01

    The metabolic effects of stress are known to have significant health effects in both humans and animals. Most of these effects are mediated by the major stress hormonal axis in the body, the hypothalamic-pituitary-adrenal (HPA) axis. Within the central nervous system (CNS), the hippocampus, the amygdala and the prefrontal cortex as part of the limbic system are believed to play important roles in the regulation of the HPA axis. With the advent of structural and functional neuroimaging techniques, the role of different CNS structures in the regulation of the HPA axis can be investigated more directly. In the current paper, we summarize the findings obtained in our laboratory in the context of stress and HPA axis regulation. Our laboratory has developed and contributed to the development of manual and automated segmentation protocols from structural magnetic resonance imaging (MRI) scans for assessment of hippocampus, amygdala, medial temporal lobe and frontal lobe structures. Employing these protocols, we could show significant age-related changes in HC volumes, which were different between men and women, with pre-menopausal women showing smaller age-related volume decline compared to men. We could recently extent these findings by showing how estrogen therapy after menopause leads to higher volumes in the HC. Investigating possible neurotoxicity effects of steroids, we showed effects of long-term steroid exposure on HC volumes, and investigated variability of HC volumes in relation to HPA axis regulation in young and elderly populations. Here, we were able to follow-up from non-imaging studies showing that subjects low in self-esteem have higher cortisol stress responses, and the HC emerged as the critical link between these variables. Recently, we have made two more important discoveries with regard to HC volume: we could show that HC volume is as variable in young as it is in older adults, in subjects ranging in age from 18 to 80 years. Also, we have linked birth

  18. Uropharmacology: X. Central nervous system stimulants and depressants.

    PubMed

    Bissada, N K; Finkbeiner, A E; Welch, L T

    1979-04-01

    Several drugs that are utilized primarily for their effects on the central nervous system also affect lower urinary tract function. Most of these effects are produced by the action of these drugs on adrenergic and cholinergic receptors or by direct action of lower urinary tract musculature. Central nervous system stimulants and depressants which are known to affect the storage or evacuation role of the lower urinary tract are discussed.

  19. Central nervous system systemic lupus erythematosus mimicking progressive multifocal leucoencephalopathy.

    PubMed Central

    Kaye, B R; Neuwelt, C M; London, S S; DeArmond, S J

    1992-01-01

    The case is reported of a patient with central nervous system systemic lupus erythematosus (SLE) with features of progressive multifocal leucoencephalopathy (PML) seen clinically and by magnetic resonance imaging. A brain biopsy sample showed microinfarcts. The use of magnetic resonance imaging and IgG synthesis rates in evaluating central nervous system lupus, the co-occurrence of SLE and PML, and the differentiation of these entities by magnetic resonance imaging and by histology are considered. Images PMID:1444628

  20. Are astrocytes executive cells within the central nervous system?

    PubMed

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  1. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  2. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  3. Fungal Infections of the Central Nervous System: A Pictorial Review

    PubMed Central

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome. PMID:27403402

  4. HIV and aging: effects on the central nervous system.

    PubMed

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  5. HIV and Aging: Effects on the Central Nervous System

    PubMed Central

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J.

    2014-01-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer’s disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age. PMID:24715486

  6. Chemokines and their receptors in central nervous system disease.

    PubMed

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  7. Fungal Infections of the Central Nervous System: A Pictorial Review.

    PubMed

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome.

  8. Development-Inspired Reprogramming of the Mammalian Central Nervous System

    PubMed Central

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-01

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the exciting demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell-type into another not only turns fundamental principles of development on their head but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may impact regeneration and modeling of a system historically considered immutable and hardwired. PMID:24482482

  9. Development-inspired reprogramming of the mammalian central nervous system.

    PubMed

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  10. Interferons, Signal Transduction Pathways, and the Central Nervous System

    PubMed Central

    Nallar, Shreeram C.

    2014-01-01

    The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS. PMID:25084173

  11. Calcium pumps in the central nervous system.

    PubMed

    Mata, Ana M; Sepúlveda, M Rosario

    2005-09-01

    Two families of Ca2+ transport ATPases are involved in the maintenance of Ca2+ homeostasis in the nervous system, the plasma membrane Ca2+-ATPase that pumps Ca2+ to the extracellular medium and the intracellular sarco/endoplasmic reticulum Ca2+-ATPase that transports Ca2+ from the cytosol to the endoplasmic reticulum. Both types of calcium pumps show precise regulatory properties and they are localized in specific subcellular regions. In this review, we describe the functional and regulatory properties of both families of calcium pumps, their distribution in nerve cells, and their involvement in neurological disorders. The functional characterization of neuronal calcium pumps is very important in order to understand the biochemical processes involved in the maintenance of intracellular calcium in synaptic terminals.

  12. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  13. [Stem cell-based therapy in central nervous system diseases].

    PubMed

    Paczkowska, Edyta; Dabkowska, Elzbieta; Nowacki, Przemysław; Machaliński, Bogusław

    2009-01-01

    Much of the current research into stem cell biology is focused on its potential for regeneration of various tissues and organs. Stem cell-based therapy with autologous bone marrow stem cells could provide an attractive alternative to the classical therapeutic approach in the foreseeable future. The possibility of nervous tissue regeneration in neurodegenerative disorders of the central nervous system generates a special challenge for researchers and clinicians involved in that field of medicine. Very small embryonic-like stem cells (VSEL SCs), recently discovered in murine bone marrow and human umbilical cord blood, arouse great hope. VSEL SCs display several features typical for embryonic stem cells, such as a large nucleus surrounded by a narrow rim of cytoplasm, euchromatin, and expression of pluripotent markers (Oct-4, Nanog, SSEA-4). Application of these cells in regenerative medicine could have considerable advantages over strategies using embryonic stem cells, since ethical concerns might be naturally solved. Thus, these cells can become a recommended source of stem cells for cell therapy as compared to those isolated from developing embryos.

  14. Current approaches for drug delivery to central nervous system.

    PubMed

    Hossain, Sharif; Akaike, Toshihiro; Chowdhury, Ezharul Hoque

    2010-12-01

    Brain, the center of the nervous system in all vertebrate, plays the most vital role in every function of human body. However, many neurodegenerative diseases, cancer and infections of the brain become more prevalent as populations become older. In spite of the major advances in neuroscience, many potential therapeutics are still unable to reach the central nervous system (CNS) due to the blood-brain barrier (BBB) which is formed by the tight junctions within the capillary endothelium of the vertebrate brain. This results in the capillary wall behaving as a continuous lipid bilayer and preventing the passage of polar and lipid insoluble substances. Several approaches for delivering drugs to the CNS have been developed to enhance the capacity of therapeutic molecules to cross the BBB by modifying the drug itself, or by coupling it to a vector for receptor-mediated, carrier mediated or adsorption-mediated transcytosis. The current challenge is to develop drug delivery systems that ensure the safe and effective passage of drugs across the BBB. This review focuses on the strategies and approaches developed to enhance drug delivery to the CNS.

  15. Interactions between taurine and ethanol in the central nervous system.

    PubMed

    Olive, M F

    2002-01-01

    This purpose of this review will be to summarize the interactions between the endogenous amino acid taurine and ethyl alcohol (ethanol) in the central nervous system (CNS). Taurine is one of the most abundant amino acids in the CNS and plays an integral role in physiological processes such as osmoregulation, neuroprotection and neuromodulation. Both taurine and ethanol exert positive allosteric modulatory effects on neuronal ligand-gated chloride channels (i.e., GABA(A) and glycine receptors) as well as inhibitory effects on other ligand- and voltage-gated cation channels (i.e., NMDA and Ca(2+) channels). Behavioral evidence suggests that taurine can alter the locomotor stimulatory, sedating, and motivational effects of ethanol in a strongly dose-dependent manner. Microdialysis studies have revealed that ethanol elevates extracellular levels of taurine in numerous brain regions, although the functional consequences of this phenomenon are currently unknown. Finally, taurine and several related molecules including the homotaurine derivative acamprosate (calcium acetylhomotaurinate) can reduce ethanol self-administration and relapse to drinking in both animals and humans. Taken together, these data suggest that the endogenous taurine system may be an important modulator of effects of ethanol on the nervous system, and may represent a novel therapeutic avenue for the development of medications to treat alcohol abuse and alcoholism.

  16. Structural and functional features of central nervous system lymphatic vessels.

    PubMed

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  17. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model.

    PubMed

    Slavuljica, Irena; Kveštak, Daria; Huszthy, Peter Csaba; Kosmac, Kate; Britt, William J; Jonjić, Stipan

    2015-03-01

    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed.

  18. [Clinical Importance of Central Nervous System Dysfunction in Myopathy].

    PubMed

    Matsumura, Tsuyoshi

    2016-02-01

    Multidisciplinary treatments including mechanical ventilation and cardioprotective therapy have improved life expectancy in many neuromuscular disorders such as Duchenne muscular dystrophy. For these patients, central nervous system disturbances such as intellectual and/or developmental disability can hinder social activities and communications. In myotonic dystrophy, the personality and/or cognitive dysfunction affects medical consultation behavior and decreases the efficacy of medical treatments. Understanding central nervous system disturbances in myopathies and providing care keeping in mind the patient burden are critical for improving prognosis and quality of life.

  19. Interrelationships between the heart and central nervous system: localization of neuro-transmitters and imaging of their associated nuclei, including the raphe nuclei & the locus coeruleus, as well as the imaging of the heart and its representation areas in slices of the human central nervous system using the "Bi-Digital O-Ring Test" imaging method.

    PubMed

    Omura, Y

    1987-01-01

    Using microscopic slides of specific tissues from the human body or pure substances including neuro-transmitters such as serotonin, dopamine, norepinephrine, etc., as reference control substances in the Bi-Digital O-Ring Test Molecular Identification Method, the author was able to localize and image normal and abnormal internal organs, and to localize and trace the distribution of neurotransmitters in the different parts of the central nervous system. Using microscopic slides of different parts of the heart, we were able to image the outline of the heart as well as the SA node, AV node, tricuspid valve, mitral valve, aortic valve, pulmonary valve, coronary arteries, and aorta and its branches, including the vertebral arteries, without using any bulky or expensive imaging instruments. Using serotonin as a reference control substance on the different parts of the central nervous system, it was possible to demonstrate the 6 well-known raphe nuclei and the locus coeruleus (which contains serotonin & norepinephrine), as well as the distribution of serotonin in the cerebrum and the cerebellum, all of which closely resembled previously published well-known neuroanatomical structures and distributions of neurotransmitters. As an extension of this work, possible representations of different internal organs on the central nervous system were examined using microscopic slides of different internal organs as reference control substances. The results indicated that the entire heart is represented primarily in the medulla oblongata, and that the SA node and the upper half of the left atrium are represented in the caudal end of the pons; the right side of the heart (i.e. R-atrium, AV node, tricuspid valve, R-ventricle) is represented on the right side of the medulla oblongata, and the left side of the heart (i.e. lower half of the L-atrium, mitral valve, L-ventricle) is represented on the left side of the medulla oblongata, and the upper half of the left atrium is represented in

  20. Central nervous system infection during immunosuppression.

    PubMed

    Zunt, Joseph R

    2002-02-01

    Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy following transplantation increases susceptibility to CNS infection. Examination of the level and type of immunosuppression, in addition to the clinical and radiologic findings at the time of diagnosis can aid the clinician in determining the most likely etiology of infection. This article discusses how suppression of the host immune status modifies the presentation and diagnosis of selected CNS infections and the recommended treatment for these infections.

  1. Perioperative central nervous system injury in neonates

    PubMed Central

    McCann, M. E.; Soriano, S. G.

    2012-01-01

    Summary Anaesthetic-induced developmental neurotoxicity (AIDN) has been clearly established in laboratory animal models. The possibility of neurotoxicity during uneventful anaesthetic procedures in human neonates or infants has led to serious questions about the safety of paediatric anaesthesia. However, the applicability of animal data to clinical anaesthesia practice remains uncertain. The spectre of cerebral injury due to cerebral hypoperfusion, metabolic derangements, coexisting disease, and surgery itself further muddles the picture. Given the potential magnitude of the public health importance of this issue, the clinician should be cognisant of the literature and ongoing investigations on AIDN, and raise awareness of the risks of both surgery and anaesthesia. PMID:23242752

  2. Neurocysticercosis: fireflies in the central nervous system.

    PubMed

    Davidson, Petra N

    2010-03-01

    Neurocysticercosis (NCC) is caused by cysticerci spreading to spinal or brain tissue. NCC causes headaches, seizures, and focal neurological deficits. NCC is one of the main causes of epilepsy worldwide. NCC can cause death if it is not adequately treated. NCC is preventable through education of proper handwashing techniques proper food handling, and separation of human and pig living quarters (CDC 1998). The International League Against Epilepsy (ILAE), the World Health Organization (WHO), and other international health organizations are attempting to rid the world of NCC through education. Cysticerci create cavities in the brain and other body tissue where their tiny bodies grow sometimes into tapeworms two to seven meters in length and can live up to 25 years in the human body. On magnetic resonance imaging (MRI) wormholes appear Often times, if best practice is followed, the patient's entire body is scanned and more craters appear. Some authors have stated that cysticerci on a computed topography (CT) scan are similar to a starry sky or fireflies (Kapur et al. 2007).

  3. Pediatric central nervous system infections and inflammatory white matter disease.

    PubMed

    Silvia, Mary T; Licht, Daniel J

    2005-08-01

    This article reviews the immunology of the central nervous system and the clinical presentation, diagnosis, and treatment of children with viral or parainfectious encephalitis. The emphasis is on the early recognition of treatable causes of viral encephalitis (herpes simplex virus), and the diagnosis and treatment of acute disseminated encephalomyelitis are described in detail. Laboratory and imaging findings in the two conditions also are described.

  4. Thiophene Scaffold as Prospective Central Nervous System Agent: A Review.

    PubMed

    Deep, Aakash; Narasimhan, Balasubramanian; Aggarwal, Swati; Kaushik, Dhirender; Sharma, Arun K

    2016-01-01

    Heterocyclic compounds are extensively dispersed in nature and are vital for life. Various investigational approaches towards Structural Activity Relationship that focus upon the exploration of optimized candidates have become vastly important. Literature studies tell that for a series of compounds that are imperative in industrial and medicinal chemistry, thiophene acts as parent. Among various classes of heterocyclic compounds that have potential central nervous system activity, thiophene is the most important one. In the largely escalating chemical world of heterocyclic compounds showing potential pharmacological character, thiophene nucleus has been recognized as the budding entity. Seventeen Papers were included in this review article to define the central nervous system potential of thiophene. This review article enlightens the rationalized use and scope of thiophene scaffold as novel central nervous system activity such as anticonvulsant, acetylcholinesterase inhibitor, cyclin-dependent kinase 5 (cdk5/p25) inhibitors, CNS depressant, capability to block norepinephrine, serotonin and dopamine reuptake by their respective transporters etc. The Finding of this review confirm the importance of thiophene scaffold as potential central nervous system agents. From this outcome, ideas for future molecular modifications leading to the novel derivatives with better constructive pharmacological potential may be derived.

  5. Aberrant nerve fibres within the central nervous system.

    PubMed

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  6. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  7. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  8. Central nervous system depressant effect of Hoslundia opposita vahl.

    PubMed

    Olajide, O A; Awe, S O; Makinde, J M

    1999-08-01

    The chloroform extract of the dried root of Hoslundia opposita has been evaluated for effects on the central nervous system (CNS). The extract significantly potentiated the phenobarbitone sleeping time in mice and produced a 60% protection against leptazol-induced convulsion. Neuropharmacological screening revealed CNS depression. Copyright 1999 John Wiley & Sons, Ltd.

  9. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  10. Axon guidance in the vertebrate central nervous system.

    PubMed

    Lumsden, A; Cohen, J

    1991-08-01

    The development of connections in the central nervous system depends on the ability of the tips of growing axons to find their appropriate, often distant, target field. Factors that regulate axon outgrowth may be distinct from those that influence direction finding. Tissue culture methods have helped to distinguish between possible in vivo mechanisms and, in some cases, have identified candidate molecules.

  11. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  12. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  13. [Therapy of central nervous system listeriosis in sheep].

    PubMed

    Kümper, H

    1991-08-01

    Twenty-two sheep and 4 goats suffering from central nervous listeriosis were treated with a therapy that had proved to be successful in cattle. For one week they received daily subcutaneous injections of 50,000 IU Procaine Penicillin G per kg live weight and 5 to 10 mg Vitamin B1 per kg body weight. The base excess was tested by blood gas analysis, and it was compensated by intravenous infusion of Na-bicarbonate. Animals that could not eat or swallow received water and rumen liquid by stomach tube. Eight of 26 patients (31%) were healed. The prognosis of central nervous listeriosis depends mainly on the time of initial treatment and on the degree of general disturbances: More than 90% of the animals that were recumbent (16 of 17) or showed dysphagia (12 of 13) at the beginning of treatment died or had to be euthanized because of persistent central nervous disturbances. The correction of blood-pH was of no therapeutic benefit when the disease was already in progress. Treatment of central nervous listeriosis seems to be effective as long as the patients can stand and swallow. When patients received care at this early stage of disease, 77% (7 of 9) were healed and returned to the flock.

  14. Parasitic central nervous system infections in immunocompromised hosts.

    PubMed

    Walker, Melanie; Zunt, Joseph R

    2005-04-01

    Immunosuppression due to therapy after transplantation or associated with HIV infection increases susceptibility to various central nervous system (CNS) infections. This article discusses how immunosuppression modifies the presentation, diagnosis, and treatment of selected parasitic CNS infections, with a focus on toxoplasmosis, Chagas disease, neurocysticercosis, schistosomiasis, and strongyloidiasis.

  15. Parasitic Central Nervous System Infections in Immunocompromised Hosts

    PubMed Central

    Walker, Melanie; Zunt, Joseph R.

    2009-01-01

    Immunosuppression due to therapy after transplantation or associated with HIV infection increases susceptibility to various central nervous system (CNS) infections. This article discusses how immunosuppression modifies the presentation, diagnosis, and treatment of selected parasitic CNS infections, with a focus on toxoplasmosis, Chagas disease, neurocysticercosis, schistosomiasis, and strongyloidiasis. PMID:15824993

  16. Genomic scale profiling of autoimmune inflammation in the central nervous system: the nervous response to inflammation.

    PubMed

    Carmody, Ruaidhrí J; Hilliard, Brendan; Maguschak, Kimberly; Chodosh, Lewis A; Chen, Youhai H

    2002-12-01

    Using gene microarray technology, we found that inflammation in the central nervous system (CNS) not only induced the expression of many immune-related genes, but also significantly altered the gene expression profile of neural cells. Two unique groups of CNS genes were identified. The first group includes genes encoding ion channels, neural transmitters and growth factors. The second group includes genes that are important for nervous tissue regeneration. Additionally, a distinct pattern of gene expression was also identified in recovering animals. Thus, during autoimmune inflammation, the CNS actively responds to immune attacks by activating its own defense and repair genes.

  17. Blocking Action of Snake Venom Neurotoxins at Receptor Sites to Putative Central Nervous System Transmitters.

    DTIC Science & Technology

    SNAKES, *VENOMS, *PARASYMPATHOLYTIC AGENTS, PROBES, PRECURSORS, VERTEBRATES, NERVOUS SYSTEM, CENTRAL NERVOUS SYSTEM, TOXINS AND ANTITOXINS, CHOLINERGIC NERVES, NERVE TRANSMISSION, MOLLUSCA , EPINEPHRINE.

  18. Interaction of Plant Extracts with Central Nervous System Receptors

    PubMed Central

    Lundstrom, Kenneth; Pham, Huyen Thanh; Dinh, Long Doan

    2017-01-01

    Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort) targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the application of medicinal

  19. Evolution of flatworm central nervous systems: Insights from polyclads

    PubMed Central

    Quiroga, Sigmer Y.; Carolina Bonilla, E.; Marcela Bolaños, D.; Carbayo, Fernando; Litvaitis, Marian K.; Brown, Federico D.

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies. PMID:26500427

  20. Evolution of flatworm central nervous systems: Insights from polyclads.

    PubMed

    Quiroga, Sigmer Y; Carolina Bonilla, E; Marcela Bolaños, D; Carbayo, Fernando; Litvaitis, Marian K; Brown, Federico D

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.

  1. A high-throughput multicomponent screening method for diuretics, masking agents, central nervous system (CNS) stimulants and opiates in human urine by UPLC-MS/MS.

    PubMed

    Thörngren, John-Olof; Ostervall, Fredrik; Garle, Mats

    2008-07-01

    A simple and rapid multicomponent screening method of 130 substances for direct injections of urine samples has been developed. The fully automated method based on ultra-performance liquid chromatography (UPLC) and tandem mass spectrometry (MS/MS) is used for three different classes of doping agents: diuretics, central nervous system stimulants (CNS stimulants) and opiates. The samples are diluted with buffer containing internal standards (IS) by a pipetting robot system into 96-well plates. Samples are injected on a reversed phase sub 2-microm particle column connected to a fast polarity switching and rapid scanning tandem mass spectrometer with an electrospray interface. The software used to evaluate the results produced reports containing a small-sized window for each component and a data table list with flags to indicate any adverse analytical findings in the sample. The report can also be processed automatically using an application software, which interpret the data and indicate if there is a suspicious sample. One 96-well plate can be analyzed within 16 h.

  2. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury

    PubMed Central

    Ousman, Shalina S.; Frederick, Ariana; Lim, Erin-Mai F.

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act. PMID:28270745

  3. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury.

    PubMed

    Ousman, Shalina S; Frederick, Ariana; Lim, Erin-Mai F

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.

  4. Immunocytochemical Detection of Acetylcholine in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    Geffard, M.; McRae-Degueurce, A.; Souan, Marie Laure

    1985-07-01

    A specific antibody to acetylcholine was raised and used as a marker for cholinergic neurons in the rat central nervous system. The acetylcholine conjugate was obtained by a two-step immunogen synthesis procedure. An enzyme-linked immunosorbent assay was used to test the specificity and affinity of the antibody in vitro; the results indicated high affinity. A chemical perfusion mixture of allyl alcohol and glutaraldehyde was used to fix the acetylcholine in the nervous tissue. Peroxidase-antiperoxidase immunocytochemistry showed many acetylcholine-immunoreactive cells and fibers in sections from the medial septum region.

  5. Neuroinflammation of the central and peripheral nervous system: an update.

    PubMed

    Stüve, O; Zettl, U

    2014-03-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology.

  6. Neuroinflammation of the central and peripheral nervous system: an update

    PubMed Central

    Stüve, O; Zettl, U

    2014-01-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology. PMID:24384012

  7. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  8. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  9. The immunohistochemical expression profile of osteopontin in normal human tissues using two site-specific antibodies reveals a wide distribution of positive cells and extensive expression in the central and peripheral nervous systems.

    PubMed

    Kunii, Yasuto; Niwa, Shin-ichi; Hagiwara, Yoshiaki; Maeda, Masahiro; Seitoh, Tsutomu; Suzuki, Toshimitsu

    2009-09-01

    To elucidate the cellular distribution of osteopontin (OPN) in normal human tissues, we undertook immunohistochemistry using two site-specific OPN antibodies. The 10A16 monoclonal antibody was raised against the amino acid sequence just downstream of the thrombin cleavage site, while the O-17 polyclonal antibody was raised against the N-terminal peptide. Each antibody has been confirmed previously to react with both whole OPN and its relevant fragments. The expression pattern for these two antibodies was similar in distribution. In addition, we also identified expression in Ebner's gland, type II pneumocytes, Kupffer cells, cells of the endocrine organs, anterior lens capsule and ciliary body, synovial type A cells, mesothelia, adipocytes, and mast cells. Neurons and glia in the central nervous system and spinal cord, cranial and peripheral nerve sheaths, ganglion cells in the sympathetic ganglion, intestinal plexuses, retina, and choroid plexus also regularly exhibited OPN positivity. Testicular germ cells, pancreatic exocrine cells, and follicular dendritic cells reacted with 10A16 only, whereas lutein cells and taste bud cells exhibited O-17 reactivity alone. These minor differences were hypothesized to reflect the state of OPN in the cells; that is, whether OPN was in its whole molecule or fragmented form. In conclusion, we demonstrate that OPN is widely distributed in normal human cells, particularly those comprising the central and peripheral nervous systems.

  10. 3D in vitro modeling of the central nervous system.

    PubMed

    Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L

    2015-02-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.

  11. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.

    PubMed

    Wager, Travis T; Hou, Xinjun; Verhoest, Patrick R; Villalobos, Anabella

    2016-06-15

    Significant progress has been made in prospectively designing molecules using the central nervous system multiparameter optimization (CNS MPO) desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple-to-use design algorithm has expanded design space for CNS candidates and has further demonstrated the advantages of utilizing a flexible, multiparameter approach in drug discovery rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped to increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.

  12. [Dementia in Patients with Central Nervous System Mycosis].

    PubMed

    Morita, Akihiko; Ishihara, Masaki; Konno, Michiko

    2016-04-01

    Central nervous system (CNS) mycosis is a potentially life-threatening but treatable neurological emergency. CNS mycoses progress slowly and are sometimes difficult to distinguish from dementia. Though most patients with CNS mycosis have an underlying disease, such as human immunodeficiency virus (HIV) infection, cancer, diabetes mellitus, and/or use of immunosuppressants, cryptococcosis can occur in non-immunosuppressed persons. One of the major difficulties in accurate diagnosis is to detect the pathogen in patients' cerebrospinal fluid (CSF) cultures. Thus, the clinical diagnosis is often made by combining circumstantial evidence, including mononuclear cell-dominant pleocytosis with low glucose and protein elevation in the CSF, as well as positive results from an antigen-based assay and a (1-3)-beta-D-glucan assay using plasma and/or CSF. Polymerase chain reaction (PCR)-based diagnostics, which are not performed as routine examinations and are mostly performed as part of academic research in Japan, are sensitive tools for the early diagnosis of CNS mycosis. Mognetic resonance imaging (MRI) is useful to assess the complications of fungal meningitis, such as abscess, infarction, and hydrocephalus. Clinicians should realize the advantages and disadvantages of these diagnostic tools. Early and accurate diagnosis, including identification of the particular fungal species, enables optimal antifungal treatment that produces good outcomes in patients with CNS mycosis.

  13. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  14. Emerging Viral Infections of the Central Nervous System

    PubMed Central

    Tyler, Kenneth L.

    2010-01-01

    In this 2-part review, I will focus on emerging virus infections of the central nervous system (CNS). Part 1 will introduce the basic features of emerging infections, including their definition, epidemiology, and the frequency of CNS involvement. Important mechanisms of emergence will be reviewed, including viruses spreading into new host ranges as exemplified by West Nile virus (WNV), Japanese encephalitis (JE) virus, Toscana virus, and enterovirus 71 (EV71). Emerging infections also result from opportunistic spread of viruses into known niches, often resulting from attenuated host resistance to infection. This process is exemplified by transplant-associated cases of viral CNS infection caused by WNV, rabies virus, lymphocytic choriomeningitis, and lymphocytic choriomeningitis–like viruses and by the syndrome of human herpesvirus 6 (HHV6)–associated posttransplantation acute limbic encephalitis. The second part of this review begins with a discussion of JC virus and the occurrence of progressive multifocal leukoencephalopathy in association with novel immunomodulatory therapies and then continues with an overview of the risk of infection introduced by imported animals (eg, monkeypox virus) and examples of emerging diseases caused by enhanced competence of viruses for vectors and the spread of vectors (eg, chikungunya virus) and then concludes with examples of novel viruses causing CNS infection as exemplified by Nipah and Hendra viruses and bat lyssaviruses. PMID:19667214

  15. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  16. Herpes Simplex Virus Infections of the Central Nervous System.

    PubMed

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  17. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    PubMed Central

    Orth, Matthias; Bellosta, Stefano

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions. PMID:23119149

  18. Nanotechnologies for the study of the central nervous system.

    PubMed

    Ajetunmobi, A; Prina-Mello, A; Volkov, Y; Corvin, A; Tropea, D

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Role of Microglia in Central Nervous System Infections

    PubMed Central

    Rock, R. Bryan; Gekker, Genya; Hu, Shuxian; Sheng, Wen S.; Cheeran, Maxim; Lokensgard, James R.; Peterson, Phillip K.

    2004-01-01

    The nature of microglia fascinated many prominent researchers in the 19th and early 20th centuries, and in a classic treatise in 1932, Pio del Rio-Hortega formulated a number of concepts regarding the function of these resident macrophages of the brain parenchyma that remain relevant to this day. However, a renaissance of interest in microglia occurred toward the end of the 20th century, fueled by the recognition of their role in neuropathogenesis of infectious agents, such as human immunodeficiency virus type 1, and by what appears to be their participation in other neurodegenerative and neuroinflammatory disorders. During the same period, insights into the physiological and pathological properties of microglia were gained from in vivo and in vitro studies of neurotropic viruses, bacteria, fungi, parasites, and prions, which are reviewed in this article. New concepts that have emerged from these studies include the importance of cytokines and chemokines produced by activated microglia in neurodegenerative and neuroprotective processes and the elegant but astonishingly complex interactions between microglia, astrocytes, lymphocytes, and neurons that underlie these processes. It is proposed that an enhanced understanding of microglia will yield improved therapies of central nervous system infections, since such therapies are, by and large, sorely needed. PMID:15489356

  20. Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer’s Disease Mouse Models

    PubMed Central

    2015-01-01

    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389

  1. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... of anticonvulsant monotherapy for seizures of partial origin for antiepileptic drug products that are... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice...

  3. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  4. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  5. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  6. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  7. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  8. Central nervous system infection due to Mycobacterium haemophilum in a patient with acquired immunodeficiency syndrome.

    PubMed

    Buppajarntham, Aubonphan; Apisarnthanarak, Anucha; Rutjanawech, Sasinuj; Khawcharoenporn, Thana

    2015-03-01

    Mycobacterium haemophilum is an environmental organism that rarely causes infections in humans. We report a patient with acquired immunodeficiency syndrome who had central nervous system infection due to M. haemophilum. The diagnosis required brain tissue procurement and molecular identification method while the treatment outcome was unfavourable.

  9. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA...

  10. Hemichorea in a patient with HIV-associated central nervous system histoplasmosis.

    PubMed

    Estrada-Bellmann, Ingrid; Camara-Lemarroy, Carlos R; Flores-Cantu, Hazael; Calderon-Hernandez, Hector J; Villareal-Velazquez, Hector J

    2016-01-01

    Central nervous system histoplasmosis is a rare opportunistic infection with a heterogeneous clinical presentation. We describe the first case of human immunodeficiency virus-associated cerebral histoplasmosis presenting with hemichorea. The patient recovered after treatment with conventional amphotericin B and itraconazole.

  11. Generation of a central nervous system catheter-associated infection in mice with Staphylococcus epidermidis.

    PubMed

    Snowden, Jessica N

    2014-01-01

    Animal models are valuable tools for investigating the in vivo pathogenesis of Staphylococcus epidermidis infections. Here, we present the procedure for generating a central nervous system catheter-associated infection in a mouse, to model the central nervous system shunt infections that frequently complicate the treatment of hydrocephalus in humans. This model uses stereotactic guidance to place silicone catheters, pre-coated with S. epidermidis, into the lateral ventricles of mice. This results in a catheter-associated infection in the brain, with concomitant illness and inflammation. This animal model is a valuable tool for evaluating the pathogenesis of bacterial infection in the central nervous system, the immune response to these infections and potential treatment options.

  12. [Neurogenesis as a therapeutic strategy to regenerate central nervous system].

    PubMed

    Arias-Carrión, O; Drucker-Colín, R

    In the past few years, it has been demonstrated that the adult mammalian brain maintains the capacity to generate new neurons from neural stem/progenitor cells. These new neurons integrate into pre-existing systems through a process referred to as 'neurogenesis in the adult brain'. This discovery has modified our understanding of how the central nervous system functions in health and disease. Until today, a great effort has been made attempting to decipher the mechanisms regulating adult neurogenesis, which might help to induce neuronal endogenous cell replacement in various neurological diseases. In this revision, we will attempt to shed some light on the neurogenesis process with respect to diseases of the central nervous system and we will describe some therapeutic potentials in relation to neurodegenerative diseases.

  13. Central nervous system histoplasmosis in an immunocompetent pediatric patient.

    PubMed

    Esteban, Ignacio; Minces, Pablo; De Cristofano, Analía M; Negroni, Ricardo

    2016-06-01

    Neurohistoplasmosis is a rare disease, most prevalent in immunosuppressed patients, secondary to disseminated disease with a high mortality rate when diagnosis and treatment are delayed. We report a previously healthy 12 year old girl, from a bat infested region of Tucuman Province, Argentine Republic, who developed meningoencephalitis due to Histoplasma capsulatum. Eighteen months prior to admission the patient started with headaches and intermittent fever. The images of the central nervous system showed meningoencephalitis suggestive of tuberculosis. She received antibiotics and tuberculostatic medications without improvement. Liposomal amphotericin B was administered for six weeks. The patient's clinical status improved remarkably. Finally the culture of cerebral spinal fluid was positive for micelial form of Histoplasma capsulatum. The difficulties surrounding the diagnosis and treatment of neurohistoplasmosis in immunocompetent patients are discussed in this manuscript, as it also intends to alert to the presence of a strain of Histoplasma capsulatum with affinity for the central nervous system.

  14. Neurogenesis during development of the vertebrate central nervous system

    PubMed Central

    Paridaen, Judith TML; Huttner, Wieland B

    2014-01-01

    During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex. PMID:24639559

  15. Molecular Targets for Organophosphates in the Central Nervous System

    DTIC Science & Technology

    2006-04-01

    interest is the report that at the neuromuscular junction VX increases acetylcholine (ACh) release by a mechanism unrelated to cholinesterase...neurons of the central nervous system (CNS) are different from those modulating the release of ACh at the neuromuscular junction. Not only do the...solution, and when miniature postsynaptic currents (MPSCs) were recorded, the muscarinic blocker atropine (1 µM) was also added to the external

  16. Isolated central nervous system Whipple's disease: Two cases.

    PubMed

    Vural, Atay; Acar, Nazire Pinar; Soylemezoglu, Figen; Oguz, Kader K; Dericioğlu, Neşe; Saka, Esen

    2015-12-01

    Although it is an orphan disease, isolated central nervous system Whipple's disease is one of the "must be known" conditions in neurology because it belongs to the list of "treatable disorders". Here, we present two cases which highlight the importance of early diagnosis. Additionally, we provide a discussion on up to date diagnostic approach to this life-threatening disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Atypical presentation of pheochromocytoma: Central nervous system pseudovasculitis

    PubMed Central

    Rupala, Ketankumar; Mittal, Varun; Gupta, Rajiv; Yadav, Rajiv

    2017-01-01

    Pheochromocytoma has atypical presentation in 9%–10% of patients. Atypical presentations include myocardial infarction, renal failure, and rarely cerebrovascular events. Various etiologies for central nervous system (CNS) involvement in pheochromocytoma have been described in the literature. A rare association of CNS vasculitis-like features has been described with pheochromocytoma. We report a rare case of pheochromocytoma detected on evaluation for CNS vasculitis-like symptoms. PMID:28197038

  18. [Systemic lupus erythematosus and the central nervous system].

    PubMed

    Rojas, E; Orrea Solano, M

    1993-01-01

    The central nervous system (CNS) manifestations of the chronic autoimmune disease systemic lupus erythematous (SLE) are reviewed. SLE-CNS dysfunction is broadly divided into neurologic and psychiatric clinical categories. The distinct clinical entities within these broad categories are fully described. Diagnostic criteria employed to verify the presence of SLE-CNS dysfunction, including laboratory serum and cerebral spinal fluid analyses as well as radiologic and other multimodality diagnostic tools, are compared and contrasted with respect to sensitivity and specificity.

  19. Central nervous system involvement of polyarteritis nodosa: a case report.

    PubMed

    Altinok, D; Yildiz, Y T; Ruşen, E; Eryilmaz, M; Tacal, T

    2001-01-01

    Polyarteritis nodosa (PAN) is a necrotizing vasculitis involving small and medium-sized arteries and it affects multiple organ systems in the body Central nervous system (CNS) involvement appears less frequently, and usually develops after the disease is established. Although aneurysms are common in visceral arteries in PAN, intracranial aneurysms are uncommon and have been documented rarely. This case is reported to raise awareness among radiologists as it has characteristic and rare, if not specific, imaging findings of CNS involvement of PAN.

  20. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  1. Regulation of Neurotransmitter Responses in the Central Nervous System

    DTIC Science & Technology

    1990-02-05

    neurotransmitter systems was of general physiological relevance to mammalian central nervous system function and (2) that multiple CABA receptors may exist...pharmacologically distinct CABA receptors in mammalian tissues. Furthermore, the results predict it may be possible to develop more potent compounds which...present. Project co-ordination and scientific direction. E. Coupling Activities. S.J. Enna, Ph.D., invited speaker, First International CABA Receptor

  2. Autoimmune disorders affecting both the central and peripheral nervous system.

    PubMed

    Kamm, Christoph; Zettl, Uwe K

    2012-01-01

    Various case series of patients with autoimmune demyelinating disease affecting both the central and peripheral nervous system (CNS and PNS), either sequentially or simultaneously, have been reported for decades, but their frequency is considerably lower than that of the "classical" neurological autoimmune diseases affecting only either CNS or PNS, such as multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP) or Guillain-Barré-Syndrome (GBS), and attempts to define or even recognize the former as a clinical entity have remained elusive. Frequently, demyelination started with CNS involvement with subsequent PNS pathology, in some cases with a relapsing-remitting course. Three potential mechanisms for the autoimmune etiology of these conditions can be discussed: (I) They could be caused by a common autoimmunological reactivity against myelin antigens or epitopes present in both the central and peripheral nervous system; (II) They could be due to a higher general susceptibility to autoimmune disease, which in some cases may have been caused or exacerbated by immunomodulatory treatment, e.g. b-interferon; (III) Their co-occurrence might be coincidental. Another example of an autoimmune disease variably involving the central or peripheral nervous system or both is the overlapping and continuous clinical spectrum of Fisher syndrome (FS), as a variant of GBS, and Bickerstaff brainstem encephalitis (BBE). Recent data from larger patient cohorts with demonstration of common autoantibodies, antecedent infections, and results of detailed clinical, neuroimaging and neurophysiological investigations suggest that these three conditions are not separate disorders, but rather form a continuous spectrum with variable central and peripheral nervous system involvement. We herein review clinical and paraclinical data and therapeutic options of these disorders and discuss potential underlying common vs. divergent immunopathogenic mechanisms.

  3. [The interleukin-10 in the central nervous system].

    PubMed

    Kurowska, Ewelina; Majkutewicz, Irena

    2015-07-27

    Cytokines, including interleukin-10 (IL-10), are cell signaling molecules taking part in cell‑to‑cell communication, cell proliferation, differentiation, migration and apoptosis. Cytokines also have the ability to induce, regulate, and inhibit inflammation. Cytokines are produced mainly by activated peripheral immune cells, but due to dissemination of the concept of the central nervous system as an immunologically specialized zone, it is considered that cytokine signaling is one of the components of the immune system which can modulate brain functioning. IL-10 shows immunosuppressive properties, and since expression of this cytokine has been shown in the central nervous system, researchers have started to investigate the therapeutic possibilities of IL-10 action in the context of neurodegenerative diseases, which may involve neuroinflammation in their pathogenesis. Recent studies using cell cultures or animal models of neurodegenerative disorders have shown that the importance of IL-10 in the central nervous system goes beyond the anti-inflammatory activity of this cytokine. Involvement of IL-10 in neuroprotection, neurogenesis, regulation of the stress response and hippocampal synaptic plasticity connected with learning and memory is suggested.

  4. Radon exposure and tumors of the central nervous system.

    PubMed

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Space radiation risks to the central nervous system

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  6. Effect of hyperthermia on the central nervous system: a review.

    PubMed

    Sminia, P; van der Zee, J; Wondergem, J; Haveman, J

    1994-01-01

    Experimental data show that nervous tissue is sensitive to heat. Animal data indicate that the maximum tolerated heat dose after local hyperthermia of the central nervous system (CNS) lies in the range of 40-60 min at 42-42 x 5 degrees C or 10-30 min at 43 degrees C. No conclusions concerning the heat sensitivity of nervous tissue can be derived from clinical studies using localized hyperthermia. The choice whether or not to exceed the critical heat dose, as derived from laboratory studies, in clinical practice is very much dependent on the clinical situation such as the anatomical site and volume of the tissue involved, and prior therapy. Data on clinical application of whole body hyperthermia (WBH) show that nervous tissue can withstand a slightly higher heat dose than after localized heating, which might be the result of developing thermal resistance during treatment. Expression of thermotolerance was observed in the spinal cord of laboratory animals. After WBH in man at a maximum between 40 and 43 degrees C for 6 h-30 min CNS complications were reported, but other complications seemed to be more life-threatening. Most studies indicate that impairment of the CNS after WBH was not due to direct heat injury to the brain or spinal cord, but was secondary as a result of physiological changes. Heat, at least if applied shortly after X-rays, enhances the response of nervous tissue to radiation. Neurotoxicity of chemotherapeutic drugs does not seem to be a limiting complication in hyperthermia if combined with chemotherapy, but only few data are available. The limited clinical experience shows that safe hyperthermic treatment of CNS malignancies or tumours located close to the CNS seems feasible under appropriate technical conditions with adequate thermometry and taking the sensitivity of the surrounding normal nervous tissue into account.

  7. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

  8. Functional roles of neuropeptides in the insect central nervous system

    NASA Astrophysics Data System (ADS)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  9. Central- and autonomic nervous system coupling in schizophrenia

    PubMed Central

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  10. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  11. Central Nervous System Effects of Ginkgo Biloba, a Plant Extract.

    PubMed

    Itil, Turan M.; Eralp, Emin; Tsambis, Elias; Itil, Kurt Z.; Stein, Ulrich

    1996-01-01

    Extracts of Ginkgo biloba (EGb) are among the most prescribed drugs in France and Germany. EGb is claimed to be effective in peripheral arterial disorders and in "cerebral insufficiency." The mechanism of action is not yet well understood. Three of the ingredients of the extract have been isolated and found to be pharmacologically active, but which one alone or in combination is responsible for clinical effects is unknown. The recommended daily dose (3 x 40 mg extract) is based more on empirical data than on clinical dose-findings studies. However, despite these, according to double-blind, placebo-controlled clinical trials, EGb has therapeutic effects, at least, on the diagnostic entity of "cerebral insufficiency," which is used in Europe as synonymous with early dementia. To determine whether EGb has significant pharmacological effects on the human brain, a pharmacodynamic study was conducted using the Quantitative Pharmacoelectroencephalogram (QPEEG(R)) method. It was established that the pharmacological effects (based on a predetermined 7.5--13.0-Hz alpha frequency band in a computer-analyzed electroencephalogram = CEEG(R)) of EGb on the central nervous system (CNS) are significantly different than placebo, and the high and low doses could be discriminated from each other. The 120-mg, but particularly the 240-mg, single doses showed the most consistent CNS effects with an earlier onset (1 h) and longer duration (7 h). Furthermore, it was established that the electrophysiological effects of EGb in CNS are similar to those of well-known cognitive activators such as "nootropics" as well as tacrine, the only marketed "antidementia" drug currently available in the United States.

  12. Vulnerable periods and processes during central nervous system development.

    PubMed Central

    Rodier, P M

    1994-01-01

    The developing central nervous system (CNS) is the organ system most frequently observed to exhibit congenital abnormalities. While the developing CNS lacks a blood brain barrier, the characteristics of known teratogens indicate that differential doses to the developing vs mature brain are not the major factor in differential sensitivity. Instead, most agents seem to act on processes that occur only during development. Thus, it appears that the susceptibility of the developing brain compared to the mature one depends to a great extent on the presence of processes sensitive to disruption. Yet cell proliferation, migration, and differentiation characterize many other developing organs, so the difference between CNS and other organs must depend on other properties of the developing CNS. The most important of these is probably the fact that nervous system development takes much longer than development of other organs, making it subject to injury over a longer period. PMID:7925182

  13. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  14. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  15. [Extranuclear functions of protein sumoylation in the central nervous system].

    PubMed

    Martin, Stéphane

    2009-01-01

    Post-translational protein modifications play essential roles in many aspects of cellular functions and therefore in the maintenance of cell integrity. These protein modifications are involved at all stages of neuronal communication within the central nervous system. Sumoylation is a reversible post-translational protein modification that consists in the covalent labelling of a small protein called SUMO to lysine residues of selected target proteins. Sumoylation is a well characterized regulator of nuclear functions and has recently emerged as a key factor for numerous extranuclear processes. Furthermore, sumoylation has recently been shown to modulate synaptic transmission and is also implicated in a wide range of neurodegenerative diseases.

  16. [Necrotizing systemic sarcoidosis with pulmonary and central nervous system involvement].

    PubMed

    Ríos Fernández, R; Callejas-Rubio, J L; Guerrero Fernández, M; Serrano Falcón, M M; Ortego-Centeno, N

    2008-01-01

    Sarcoidosis is a multisystemic disease which diagnosis depends on the presence of nonnecrotizing granulomas in the biopsy. However there are variants such as necrotizing sarcoidal granulomas or nodular sarcoidosis which have atypical findings and make difficult the differential diagnosis with other infectious processes. We describe a case of a man who develops granulomas with extensive necrosis in a systemic sarcoidosis that affected the lung and the central nervous system. This finding made us to make the diagnosis of tuberculosis and delay the specific treatment.

  17. [Primary central nervous system lymphoma: pathogenesis and histomorphology].

    PubMed

    Méhes, Gábor

    2017-03-08

    Lymphoproliferative diseases of the central nervous system are rare, diagnostics and treatment are accordingly challenging. Since the introduction of the 2008 WHO lymphoma classification, primary CNS DLBCL - also covering the associated primary ocular (vitreoretinal) lymphoma - is a separate entity. The special localization is related with a series of newly recognized genetic, genomic and immunologic features directing to the strong interaction between transformed lymphoma cells, neural tissue components and the local immune response. Histological differentiation is frequently disabled by the limited sampling opportunities and requires the application of all available hematopathologic technologies including immunohistochemistry, cytology, liquor serology, flow cytometry, fluorescence in situ hybridization and polymerase chain reaction with sequencing.

  18. [Congenital anomalies of the central nervous system in autopsy specimens].

    PubMed

    Sobaniec-Lotowska, M; Ostapiuk, H; Sulkowski, S; Sobaniec, W; Sulik, M; Famulski, W

    1989-02-01

    On the basis of an analysis of 2398 autopsies of infants aged up to 1 year in 194 cases congenital anomalies of the central nervous system were found (8.1%). Most cases of these anomalies were noted in the group of newborns (85%) and the most frequent anomalies were: myelomeningocele (35.6%), multiple anomalies (20.1%), congenital hydrocephalus (17%), anencephaly (14.4%) and corpus callosum malformations (3.6%). Myelomeningocele, congenital hydrocephalus, anencephaly and true microcephaly were more frequent in girls, while multiple anomalies and corpus callosum malformations were more frequent in boys.

  19. Area 51: How do Acanthamoeba invade the central nervous system?

    PubMed

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This text provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book offers guidance in performing and interpreting MRI studies for specific clinical problems. Included are more than 800 images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and in clinical staging. The book summarizes the basic principles of MRI and describes the major equipment components and contrast agents. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  1. Vestigial expression in the Drosophila embryonic central nervous system.

    PubMed

    Guss, Kirsten A; Mistry, Hemlata; Skeath, James B

    2008-09-01

    The Drosophila central nervous system is an excellent model system in which to resolve the genetic and molecular control of neuronal differentiation. Here we show that the wing selector vestigial is expressed in discrete sets of neurons. We track the axonal trajectories of VESTIGIAL-expressing cells in the ventral nerve cord and show that these cells descend from neuroblasts 1-2, 5-1, and 5-6. In addition, along the midline, VESTIGIAL is expressed in ventral unpaired median motorneurons and cells that may descend from the median neuroblast. These studies form the requisite descriptive foundation for functional studies addressing the role of vestigial during interneuron differentiation.

  2. Inflammatory diseases of the central nervous system in dogs.

    PubMed

    Thomas, W B

    1998-08-01

    Inflammatory diseases of the central nervous system (CNS) are important causes of seizures in dogs. Specific diseases include canine distemper, rabies, cryptococcosis, coccidioidomycosis, toxoplasmosis, neosporosis, Rocky Mountain spotted fever, ehrlichiosis, granulomatous meningoencephalomyelitis, and pug dog encephalitis. Inflammatory disorders should be considered when a dog with seizures has persistent neurological deficits, suffers an onset of seizures at less than 1 or greater than 5 years of age, or exhibits signs of systemic illness. A thorough history, examination, and analysis of cerebrospinal fluid are important in the diagnosis of inflammatory diseases. However, even with extensive diagnostic testing, a specific etiology is identified in less than two thirds of dogs with inflammatory diseases of the CNS.

  3. Neurofeedback: an emerging technology for treating central nervous system dysregulation.

    PubMed

    Larsen, Stephen; Sherlin, Leslie

    2013-03-01

    Neurofeedback is a machine-mediated noninvasive treatment modality based on the analysis and "feeding back" of electroencephalogram brainwaves, which has shown efficacy with a variety of central nervous system-based problems. It has special application where patients have adverse reaction to psychopharmacologic treatments and psychotherapy, cognitive behavioral therapy, and dialectical behavior therapy have proved ineffective. Treatment modalities include active forms based on operant conditioning, involving a subject's response to stimuli. Neurofeedback is strong in clinical confirmations of efficacy (case studies) and has thus far limited controlled studies in the peer-reviewed journals. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Language disorders in children with central nervous system injury

    PubMed Central

    Dennis, Maureen

    2011-01-01

    Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297

  5. Central Nervous System Complications of Hemorrhagic and Coagulation Disorders.

    PubMed

    Filatova, Irina; Stratchko, Lindsay L; Kanekar, Sangam

    2016-08-01

    Hematologic disorders affect the central nervous system in a variety of ways, producing a wide range of neurologic disturbances. Early identification of these complications allows for early intervention and better outcome. Cross-sectional imaging plays an important role in identifying brain abnormalities and helps the clinician in deciding appropriate course of action and treatment. This article discuss in short the basics of hemostasis including the coagulation cascade and the application of basic laboratory tests in evaluation of hematologic function. Imaging features of various neurologic disorders associated with these clotting and bleeding diatheses are discussed in detail with illustrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.

  7. Invasion of the central nervous system in a porcine host by nipah virus.

    PubMed

    Weingartl, Hana; Czub, Stefanie; Copps, John; Berhane, Yohannes; Middleton, Deborah; Marszal, Peter; Gren, Jason; Smith, Greg; Ganske, Shelley; Manning, Lisa; Czub, Markus

    2005-06-01

    Nipah virus, a newly emerged zoonotic paramyxovirus, infects a number of species. Human infections were linked to direct contact with pigs, specifically with their body fluids. Clinical signs in human cases indicated primarily involvement of the central nervous system, while in pigs the respiratory system was considered the primary virus target, with only rare involvement of the central nervous system. Eleven 5-week-old piglets were infected intranasally, orally, and ocularly with 2.5 x 10(5) PFU of Nipah virus per animal and euthanized between 3 and 8 days postinoculation. Nipah virus caused neurological signs in two out of eleven inoculated pigs. The rest of the pigs remained clinically healthy. Virus was detected in the respiratory system (turbinates, nasopharynx, trachea, bronchus, and lung in titers up to 10(5.3) PFU/g) and in the lymphoreticular system (endothelial cells of blood and lymphatic vessels, submandibular and bronchiolar lymph nodes, tonsil, and spleen with titers up to 10(6) PFU/g). Virus presence was confirmed in the nervous system of both sick and apparently healthy animals (cranial nerves, trigeminal ganglion, brain, and cerebrospinal fluid, with titers up to 10(7.7) PFU/g of tissue). Nipah virus distribution was confirmed by immunohistochemistry. The study presents novel findings indicating that Nipah virus invaded the central nervous system of the porcine host via cranial nerves as well as by crossing the blood-brain barrier after initial virus replication in the upper respiratory tract.

  8. Central nervous system dysfunction in obesity-induced hypertension.

    PubMed

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  9. Diverse Roles of Neurotensin Agonists in the Central Nervous System

    PubMed Central

    Boules, Mona; Li, Zhimin; Smith, Kristin; Fredrickson, Paul; Richelson, Elliott

    2013-01-01

    Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD. PMID:23526754

  10. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  11. Interleukin-1β in Central Nervous System Injury and Repair

    PubMed Central

    Hewett, Sandra J.

    2015-01-01

    Summary Acute inflammation is a self-limiting, complex biological response mounted to combat pathogen invasion, to protect against tissue damage, and to promote tissue repair should it occur. However, unabated inflammation can be deleterious and contribute to injury and pathology. Interleukin-1β (IL-1β), a prototypical “pro-inflammatory” cytokine, is essential to cellular defense and tissue repair in nearly all tissues. With respect to brain, however, studies suggest that IL-1β has pleiotrophic effects. It acts as a neuromodulator in the healthy central nervous system (CNS), has been implicated in the pathogenic processes associated with a number of CNS maladies, but may also provide protection to the injured CNS. Here, we will review the physiological and pathophysiological functions of IL-1β in the central nervous system with regard to synaptic plasticity. With respect to disease, emphasis will be placed on stroke, epilepsy, Parkinson’s disease and Alzheimer’s disease where the ultimate injurious or reparative effects of IL-1β appear to depend on time, concentration and environmental milieu. PMID:26082912

  12. Role of metallothionein-III following central nervous system damage.

    PubMed

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes; Camats, Jordi; Molinero, Amalia; Campbell, Iain L; Palmiter, Richard D; Hidalgo, Juan

    2003-06-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area surrounding the lesioned tissue, along with signs of increased oxidative stress and apoptosis. There was also significant upregulation of cytokines/growth factors such as tumor necrosis factor-alpha, interleukin (IL)-1 alpha/beta, and IL-6 as measured by ribonuclease protection assay. Mt3-null mice did not differ from control mice in these responses, in sharp contrast to results obtained in Mt1- Mt2-null mice. In contrast, Mt3-null mice showed increased expression of several neurotrophins as well as of the neuronal sprouting factor GAP-43. Thus, unlike MT-I and MT-II, MT-III does not affect the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process.

  13. Mechanisms of immunological tolerance in central nervous system inflammatory demyelination.

    PubMed

    Mari, Elisabeth R; Moore, Jason N; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2015-08-01

    Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations.

  14. HIV Immune Recovery Inflammatory Syndrome and Central Nervous System Paracoccidioidomycosis.

    PubMed

    de Almeida, Sérgio Monteiro; Roza, Thiago Henrique

    2017-04-01

    The immune reconstitution inflammatory syndrome (IRIS) is a deregulated inflammatory response to invading microorganisms. It is manifested when there is an abrupt change in host immunity from an anti-inflammatory and immunosuppressive state to a pro-inflammatory state as a result of rapid depletion or removal of factors that promote immune suppression or inhibition of inflammation. The aim of this paper is to discuss and re-interpret the possibility of association of paracoccidioidomycosis (PCM) with IRIS in the central nervous system (CNS) in a case from Brazil published by Silva-Vergara ML. et al. (Mycopathologia 177:137-141, 6). An AIDS patient who was not receiving medical care developed pulmonary PCM successfully treated with itraconazole. The patient developed central nervous system PCM (NPCM) after starting the ARV therapy with recovery of immunity and control of HIV viral load, although it was not interpreted as IRIS by the authors, it fulfills the criteria for CNS IRIS. This could be the first case of NPCM associated with IRIS described. Although not frequent, IRIS must be considered in PCM patients and HIV, from endemic areas or patients that traveled to endemic areas, receiving ARV treatment and with worsening symptoms.

  15. Targeted Temperature Management in Pediatric Central Nervous System Disease

    PubMed Central

    Newmyer, Robert; Mendelson, Jenny; Pang, Diana; Fink, Ericka L.

    2015-01-01

    Opinion Statement Acute central nervous system conditions due to hypoxic-ischemic encephalopathy, traumatic brain injury (TBI), status epilepticus, and central nervous system infection/inflammation, are a leading cause of death and disability in childhood. There is a critical need for effective neuroprotective therapies to improve outcome targeting distinct disease pathology. Fever, defined as patient temperature > 38°C, has been clearly shown to exacerbate brain injury. Therapeutic hypothermia (HT) is an intervention using targeted temperature management that has multiple mechanisms of action and robust evidence of efficacy in multiple experimental models of brain injury. Prospective clinical evidence for its neuroprotective efficacy exists in narrowly-defined populations with hypoxic-ischemic injury outside of the pediatric age range while trials comparing hypothermia to normothermia after TBI have failed to demonstrate a benefit on outcome but consistently demonstrate potential use in decreasing refractory intracranial pressure. Data in children from prospective, randomized controlled trials using different strategies of targeted temperature management for various outcomes are few but a large study examining HT versus controlled normothermia to improve neurological outcome in cardiac arrest is underway. PMID:26042193

  16. Tuberculosis of the central nervous system in immunocompromised patients: HIV infection and solid organ transplant recipients.

    PubMed

    Nelson, Christina A; Zunt, Joseph R

    2011-11-01

    Central nervous system (CNS) tuberculosis (TB) is a devastating infection with high rates of morbidity and mortality worldwide and may manifest as meningitis, tuberculoma, abscess, or other forms of disease. Immunosuppression, due to either human immunodeficiency virus infection or solid organ transplantation, increases susceptibility for acquiring or reactivating TB and complicates the management of underlying immunosuppression and CNS TB infection. This article reviews how immunosuppression alters the clinical presentation, diagnosis, treatment, and outcome of TB infections of the CNS.

  17. Tuberculosis of the Central Nervous System in Immunocompromised Patients: HIV Infection and Solid Organ Transplant Recipients

    PubMed Central

    Nelson, Christina A.

    2011-01-01

    Central nervous system (CNS) tuberculosis (TB) is a devastating infection with high rates of morbidity and mortality worldwide and may manifest as meningitis, tuberculoma, abscess, or other forms of disease. Immunosuppression, due to either human immunodeficiency virus infection or solid organ transplantation, increases susceptibility for acquiring or reactivating TB and complicates the management of underlying immunosuppression and CNS TB infection. This article reviews how immunosuppression alters the clinical presentation, diagnosis, treatment, and outcome of TB infections of the CNS. PMID:21960714

  18. Central nervous system lipocalin-type prostaglandin D2-synthase is correlated with orexigenic neuropeptides, visceral adiposity and markers of the hypothalamic-pituitary-adrenal axis in obese humans.

    PubMed

    Elias, E; Benrick, A; Behre, C J; Ekman, R; Zetterberg, H; Stenlöf, K; Wallenius, V

    2011-06-01

    Lipocalin-type prostaglandin D2-synthase (L-PGDS) is the main producer of prostaglandin D2 (PGD2) in the central nervous system (CNS). Animal data suggest effects of central nervous L-PGDS in the regulation of food intake and obesity. No human data are available. We hypothesised that a role for CNS L-PGDS in metabolic function in humans would be reflected by correlations with known orexigenic neuropeptides. Cerebrospinal fluid (CSF) and serum samples were retrieved from 26 subjects in a weight loss study, comprising a 3-week dietary lead-in followed by 12-weeks of leptin or placebo treatment. At baseline, CSF L-PGDS was positively correlated with neuropeptide Y (NPY) (ρ = 0.695, P < 0.001, n = 26) and galanin (ρ = 0.651, P < 0.001) as well as visceral adipose tissue (ρ = 0.415, P = 0.035). Furthermore, CSF L-PGDS was inversely correlated with CSF leptin (ρ = -0.529, P = 0.005) and tended to correlate inversely with s.c. adipose tissue (ρ = -0.346, P = 0.084). As reported earlier, leptin treatment had no effect on weight loss and did not affect CSF L-PGDS or NPY levels compared to placebo. After weight loss, the change of CSF L-PGDS was significantly correlated with the change of CSF NPY levels (ρ = 0.604, P = 0.004, n = 21). Because of the correlation between baseline CSF L-PGDS levels and visceral adipose tissue, we examined associations with hypothalamic-pituitary-adrenal (HPA) axis components. Baseline CSF L-PGDS was correlated with corticotrophin-releasing hormone (ρ = 0.764, P < 0.001) and β-endorphin (ρ = 0.491, P < 0.001). By contrast, serum L-PGDS was not correlated with any of the measured variables either at baseline or after treatment. In summary, CSF L-PGDS was correlated with orexigenic neuropeptides, visceral fat distribution and central HPA axis mediators. The importance of these findings is unclear but could suggest a role for CSF L-PGDS in the regulation of visceral

  19. Applications of Nanotechnology to the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Blumling, James P., II

    Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution intruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details: (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound

  20. Signaling Mechanisms Regulating Myelination in the Central Nervous System

    PubMed Central

    AHRENDSEN, Jared T.; MACKLIN, Wendy B.

    2014-01-01

    The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis (MS), cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. In this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much more is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination. PMID:23558589

  1. Systemic delivery to central nervous system by engineered PLGA nanoparticles

    PubMed Central

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  2. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  3. GABA-ergic neurons in the leach central nervous system

    SciTech Connect

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10/sup -5/M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by /sup 3/H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites.

  4. Developmental and pathological angiogenesis in the central nervous system

    PubMed Central

    Vallon, Mario; Chang, Junlei; Zhang, Haijing

    2014-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood–brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases. PMID:24760128

  5. Neuroinvasion and Inflammation in Viral Central Nervous System Infections

    PubMed Central

    Schroten, Horst

    2016-01-01

    Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404

  6. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  7. [Imaging diagnosis of central nervous system malignant lymphoma].

    PubMed

    Kan, Shinichi

    2014-08-01

    With a typical case, imaging diagnosis of central nervous system malignant lymphoma is not difficult. High density on non contrast CT, periventricular location, homogenous contrast enhancement, iso- to hypointensity to gray matter on T(2) weighted MR imaging and high intensity on diffusion weighted MR imaging are characteristic findings. Hemorrhage is rare. When a patient is immunocompromised, irregular ring enhancement is noted on enhanced study. Intravascular lymphomatois is a rare type of lymphoma. A variety of imaging findings are reported. Differential diagnosis are many. Most difficult to distinguish is a tumefactive multiple sclerosis. Most of the reported cases of tumefactive multiple sclerosis are diagnosed by brain biopsy when the brain tumor, especially malignant lymphoma is suspected. CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) has been recently identified. However, there still remains whether CLIPPERS is an actual new disease entity or represents overlapping disease.

  8. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  9. Excitability tuning of axons in the central nervous system.

    PubMed

    Ohura, Shunsuke; Kamiya, Haruyuki

    2016-05-01

    The axon is a long neuronal process that originates from the soma and extends towards the presynaptic terminals. The pioneering studies on the squid giant axon or the spinal cord motoneuron established that the axon conducts action potentials faithfully to the presynaptic terminals with self-regenerative processes of membrane excitation. Recent studies challenged the notion that the fundamental understandings obtained from the study of squid giant axons are readily applicable to the axons in the mammalian central nervous system (CNS). These studies revealed that the functional and structural properties of the CNS axons are much more variable than previously thought. In this review article, we summarize the recent understandings of axon physiology in the mammalian CNS due to progress in the subcellular recording techniques which allow direct recordings from the axonal membranes, with emphasis on the hippocampal mossy fibers as a representative en passant axons typical for cortical axons.

  10. Primary large-cell lymphoma of the central nervous system

    SciTech Connect

    Amendola, B.E.; McClatchey, K.D.; Amendola, M.A.; Gebarski, S.S.

    1986-06-01

    Primary non-Hodgkin's lymphoma of the central nervous system (CNS) is a rare disease. Seven patients were seen and treated at the University of Michigan Medical Center between January 1969 and December 1983. All patients had histologically proven diagnoses of large cell lymphoma with clinical and radiologic evidence of involvement limited to the CNS. Five of seven patients received postoperative radiation therapy, two of whom have had apparent local control at 1- and 2-year follow-up. The two patients without postoperative radiation died of local recurrence 2 and 3 months following subtotal resection. These poor results suggest that adjuvant therapy may be required for improved control of this type of extranodal lymphoma.

  11. Central nervous system hypoxia in children due to near drowning

    SciTech Connect

    Fitch, S.J.; Gerald, B.; Magill, H.L.; Tonkin, I.L.D.

    1985-09-01

    Fourteen children who experienced acute, profound central nervous system hypoxia secondary to near drowning, aspiration, or respiratory arrest underwent CT examination. During the first week after the episode, the most frequent finding was a loss of gray-white matter differentiation. Other findings included effacement of sulci and cisterns, focal areas of edema in the cerebral cortex or basal ganglia, and hemorrhagic infarctions of the basal ganglia. Subsequent CT scans obtained from two weeks to five months after the hypoxic episode showed progression of cerebral loss from cortical infarction with gyral hemorrhage and enhancement to global parenchymal atrophy. The prognosis is poor in these patients: seven children experienced severe neurologic deficits and seven died.

  12. Role of radiology in central nervous system stimulation

    PubMed Central

    Pereira, E A C; Young, V E L; Hogarth, K M; Quaghebeur, G

    2015-01-01

    Central nervous system (CNS) stimulation is becoming increasingly prevalent. Deep brain stimulation (DBS) has been proven to be an invaluable treatment for movement disorders and is also useful in many other neurological conditions refractory to medical treatment, such as chronic pain and epilepsy. Neuroimaging plays an important role in operative planning, target localization and post-operative follow-up. The use of imaging in determining the underlying mechanisms of DBS is increasing, and the dependence on imaging is likely to expand as deep brain targeting becomes more refined. This article will address the expanding role of radiology and highlight issues, including MRI safety concerns, that radiologists may encounter when confronted with a patient with CNS stimulation equipment in situ. PMID:25715044

  13. Outcomes of persons with blastomycosis involving the central nervous system.

    PubMed

    Bush, Jonathan W; Wuerz, Terry; Embil, John M; Del Bigio, Marc R; McDonald, Patrick J; Krawitz, Sherry

    2013-06-01

    Blastomyces dermatitidis is a dimorphic fungus which is potentially life-threatening if central nervous system (CNS) dissemination occurs. Sixteen patients with proven or probable CNS blastomycosis are presented. Median duration of symptoms was 90 days; headache and focal neurologic deficit were the most common presenting symptoms. Magnetic resonance imaging (MRI) consistently demonstrated an abnormality, compared to 58% of computed tomography scans. Tissue culture yielded the pathogen in 71% of histology-confirmed cases. All patients who completed treatment of an amphotericin B formulation and extended azole-based therapy did not relapse. Initial nonspecific symptoms lead to delayed diagnosis of CNS blastomycosis. A high index of suspicion is necessary if there is history of contact with an area where B. dermatitidis is endemic. Diagnostic tests should include MRI followed by biopsy for tissue culture and pathology. Optimal treatment utilizes a lipid-based amphotericin B preparation with an extended course of voriconazole. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Central nervous system syndromes in solid organ transplant recipients.

    PubMed

    Wright, Alissa J; Fishman, Jay A

    2014-10-01

    Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.

  15. Cell fate control in the developing central nervous system

    SciTech Connect

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  16. Noncongenital central nervous system infections in children: radiology review.

    PubMed

    Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio

    2014-06-01

    Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.

  17. Central nervous system infections caused by varicella-zoster virus.

    PubMed

    Chamizo, Francisco J; Gilarranz, Raúl; Hernández, Melisa; Ramos, Diana; Pena, María José

    2016-08-01

    We carried out a clinical and epidemiological study of adult patients with varicella-zoster virus central nervous system infection diagnosed by PCR in cerebrospinal fluid. Twenty-six patients were included. Twelve (46.2 %) patients were diagnosed with meningitis and fourteen (53.8 %) with meningoencephalitis. Twelve (46.2 %) had cranial nerves involvement (mainly the facial (VII) and vestibulocochlear (VIII) nerves), six (23.1 %) had cerebellar involvement, fourteen (53.8 %) had rash, and four (15.4 %) developed Ramsay Hunt syndrome. Three (11.5 %) patients had sequelae. Length of stay was significantly lower in patients diagnosed with meningitis and treatment with acyclovir was more frequent in patients diagnosed with meningoencephalitis. We believe routine detection of varicella-zoster virus, regardless of the presence of rash, is important because the patient may benefit from a different clinical management.

  18. Zinc in the central nervous system: From molecules to behavior.

    PubMed

    Gower-Winter, Shannon D; Levenson, Cathy W

    2012-01-01

    The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.

  19. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  20. Choroid plexus in the central nervous system: biology and physiopathology.

    PubMed

    Strazielle, N; Ghersi-Egea, J F

    2000-07-01

    Choroid plexuses (CPs) are localized in the ventricular system of the brain and form one of the interfaces between the blood and the central nervous system (CNS). They are composed of a tight epithelium responsible for cerebrospinal fluid secretion, which encloses a loose connective core containing permeable capillaries and cells of the lymphoid lineage. In accordance with its peculiar localization between 2 circulating fluid compartments, the CP epithelium is involved in numerous exchange processes that either supply the brain with nutrients and hormones, or clear deleterious compounds and metabolites from the brain. Choroid plexuses also participate in neurohumoral brain modulation and neuroimmune interactions, thereby contributing greatly in maintaining brain homeostasis. Besides these physiological functions, the implication of choroid plexuses in pathological processes is increasingly documented. In this review, we focus on some of the novel aspects of CP functions in relation to brain development, transfer of neuro-humoral information, brain/immune system interactions, brain aging, and cerebral pharmaco-toxicology.

  1. Pyrimidine derivatives as potential agents acting on central nervous system.

    PubMed

    Kumar, Sanjiv; Deep, Aakash; Narasimhan, Balasubramanian

    2015-01-01

    Pyrimidine and its derivatives are present in many of the bioactive aromatic compounds that are of wide interest because of their diverse biological and clinical applications. The utility of pyrimidines as synthon for various biologically active compounds has given impetus to these studies. The review article aims to review the work reported on pharmacological activities of central nervous system (CNS) such as anticonvulsant and antidepressant, which created interest among researchers to synthesize variety of pyrimidine and their derivatives. The present study shows, objective of the work can be summarized as pyrimidine derivative constitute an important class of compounds for new drug development. These observations have been given novel idea for the development of new pyrimidine derivative that possess varied biological activities. This article aims to review the recent works on pyrimidine moiety together with the biological potential during the past year.

  2. Tuberculous Panophthalmitis with Lymphadenitis and Central Nervous System Tuberculoma

    PubMed Central

    Srichatrapimuk, Sirawat; Wattanatranon, Duangkamon

    2016-01-01

    Tuberculosis (TB) is a serious infectious disease that spreads globally. The ocular manifestations of TB are uncommon and diverse. TB panophthalmitis has been rarely reported. Here, we described a 38-year-old Thai man presenting with panophthalmitis of the right eye. Further investigation showed that he had concurrent TB lymphadenitis and central nervous system (CNS) tuberculoma, as well as HIV infection, with a CD4 cell count of 153 cells/mm3. Despite the initial response to antituberculous agents, the disease had subsequently progressed and enucleation was required. The pathological examination revealed acute suppurative granulomatous panophthalmitis with retinal detachment. Further staining demonstrated acid-fast bacilli in the tissue. Colonies of Mycobacterium tuberculosis were obtained from tissue culture. He was treated with antiretroviral agents for HIV infection and 12 months of antituberculous agents. Clinicians should be aware of the possibility of TB in the differential diagnosis of endophthalmitis and panophthalmitis, especially in regions where TB is endemic. PMID:27051539

  3. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  4. Enterovirus Infections of the Central Nervous System Review

    PubMed Central

    Rhoades, Ross E.; Tabor-Godwin, Jenna M.; Tsueng, Ginger; Feuer, Ralph

    2011-01-01

    Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes. PMID:21251690

  5. Therapeutics targeting the inflammasome after central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Keane, Robert W

    2016-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Because of the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase 1 and the processing of pro-interleukin 1β. In this article, we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stroke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury, and stroke.

  6. The expression of SEIPIN in the mouse central nervous system.

    PubMed

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  7. Intranasal delivery of biologics to the central nervous system.

    PubMed

    Lochhead, Jeffrey J; Thorne, Robert G

    2012-05-15

    Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.

  8. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    PubMed Central

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction. PMID:17952658

  9. Infiltration of central nervous system in adult acute myeloid leukaemia.

    PubMed Central

    Pippard, M J; Callender, S T; Sheldon, P W

    1979-01-01

    Out of 64 consecutive unselected patients with acute myeloid leukaemia studied during 1973-6, five developed clinical evidence of spread to the central nervous system (CNS). Neuroradiological examination showed cerebral deposits in three, in whom rapid symptomatic relief was obtained with radiotherapy. In two of these patients who developed solid intracranial deposits haematological remission could be reinduced or maintained; they were still alive 86 and 134 weeks later. When patients presented with spread to the CNS complicating generalised uncontrolled leukaemia they had short survivals. CNS infiltration may respond dramatically to appropriate treatment provided that it is not associated with generalised uncontrolled leukaemia, which has a poor prognosis. In view of this, routine "prophylaxis" of the CNS in adult acute myeloid leukaemia does not seem justified at present. Images FIG 1 FIG 2 FIG 3 PMID:283873

  10. Electrical stimuli in the central nervous system microenvironment.

    PubMed

    Thompson, Deanna M; Koppes, Abigail N; Hardy, John G; Schmidt, Christine E

    2014-07-11

    Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinson's disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue.

  11. Protective and Pathological Immunity during Central Nervous System Infections.

    PubMed

    Klein, Robyn S; Hunter, Christopher A

    2017-06-20

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.

  12. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    PubMed

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  13. Implication of coumarins towards central nervous system disorders.

    PubMed

    Skalicka-Woźniak, Krystyna; Orhan, Ilkay Erdogan; Cordell, Geoffrey A; Nabavi, Seyed Mohammad; Budzyńska, Barbara

    2016-01-01

    Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression.

  14. Central nervous system lymphoma: magnetic resonance imaging features at presentation.

    PubMed

    Schwingel, Ricardo; Reis, Fabiano; Zanardi, Veronica A; Queiroz, Luciano S; França, Marcondes C

    2012-02-01

    This paper aimed at studying presentations of the central nervous system (CNS) lymphoma using structural images obtained by magnetic resonance imaging (MRI). The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  15. Therapeutics Targeting the Inflammasome After Central Nervous System Injury

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Dietrich, W. Dalton; Keane, Robert W.

    2015-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Due to the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase-1 and the processing of pro-interleukin-1β. In this article we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stoke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury and stroke. PMID:26024799

  16. MicroRNAs in central nervous system development.

    PubMed

    Díaz, Néstor F; Cruz-Reséndiz, Mónica S; Flores-Herrera, Héctor; García-López, Guadalupe; Molina-Hernández, Anayansi

    2014-01-01

    During early and late embryo neurodevelopment, a large number of molecules work together in a spatial and temporal manner to ensure the adequate formation of an organism. Diverse signals participate in embryo patterning and organization synchronized by time and space. Among the molecules that are expressed in a temporal and spatial manner, and that are considered essential in several developmental processes, are the microRNAs (miRNAs). In this review, we highlight some important aspects of the biogenesis and function of miRNAs as well as their participation in ectoderm commitment and their role in central nervous system (CNS) development. Instead of giving an extensive list of miRNAs involved in these processes, we only mention those miRNAs that are the most studied during the development of the CNS as well as the most likely mRNA targets for each miRNA and its protein functions.

  17. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  18. Zinc in the central nervous system: From molecules to behavior

    PubMed Central

    Gower-Winter, Shannon D.; Levenson, Cathy W.

    2012-01-01

    The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer’s disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders. PMID:22473811

  19. [Histoplasmosis of the central nervous system in an immunocompetent patient].

    PubMed

    Osorio, Natalia; López, Yúrika; Jaramillo, Juan Camilo

    2014-01-01

    Histoplasmosis is a multifaceted condition caused by the dimorphic fungi Histoplasma capsulatum whose infective spores are inhaled and reach the lungs, the primary organ of infection. The meningeal form, considered one of the most serious manifestations of this mycosis, is usually seen in individuals with impaired cellular immunity such as patients with acquired immunodeficiency syndrome, systemic lupus erythematous or solid organ transplantation, and infants given their immunological immaturity. The most common presentation is self-limited and occurs in immunocompetent individuals who have been exposed to high concentrations of conidia and mycelia fragments of the fungi. In those people, the condition is manifested by pulmonary disorders and late dissemination to other organs and systems. We report a case of central nervous system histoplasmosis in an immunocompetent child.

  20. Xenacoelomorpha: a case of independent nervous system centralization?

    PubMed Central

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-01

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather ‘simple’ NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains). PMID:26598722

  1. Control of cutaneous blood flow by central nervous system

    PubMed Central

    Ootsuka, Youichirou; Tanaka, Mutsumi

    2015-01-01

    Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we ‘go pale with fright’. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control. PMID:27227053

  2. Temozolomide and radiation for aggressive pediatric central nervous system malignancies.

    PubMed

    Loh, Kenneth C; Willert, Jennifer; Meltzer, Hal; Roberts, William; Kerlin, Bryce; Kadota, Richard; Levy, Michael; White, Greg; Geddis, Amy; Schiff, Deborah; Martin, Laura; Yu, Alice; Kung, Faith; Spear, Matthew A

    2005-05-01

    This study describes the outcomes of children treated with combinations of temozolomide and radiation therapy for various aggressive central nervous system malignancies. Their age at diagnosis ranged from 1 to 15 years. Patients with focal disease were treated with concomitant temozolomide (daily 75 mg/m) and three-dimensional conformal radiotherapy in a dose that ranged from 50 to 54 Gy, followed by temozolomide (200 mg/m/d x 5 days/month in three patients, 150 mg/m x 5 days/ month in one patient). Patients with disseminated disease were treated with craniospinal radiation (39.6 Gy) before conformal boost. One patient received temozolomide (200 mg/m x 5 days/month) before craniospinal radiation, and one patient received temozolomide (daily 95 mg/m) concomitant with craniospinal radiation and a radiosurgical boost, followed by temozolomide (200 mg/m x 5 days/month). Three patients achieved a partial response during treatment, with two of these patients dying of progressive disease after treatment. One patient has no evidence of disease. Three patients achieved stable disease, with one of these patients dying of progressive disease after treatment. Toxicities observed included low-grade neutropenia, thrombocytopenia, and lymphopenia. The combination of temozolomide and radiotherapy appears to be well tolerated in a variety of treatment schemas for aggressive pediatric central nervous system malignancies. This information is of particular use in designing future studies, given the recent positive results in a randomized study examining the use of temozolomide concomitant with radiation in the treatment of adult glioblastoma.

  3. Central Nervous System Vasculitis: Still More Questions than Answers

    PubMed Central

    Alba, Marco A; Espígol-Frigolé, Georgina; Prieto-González, Sergio; Tavera-Bahillo, Itziar; García-Martínez, Ana; Butjosa, Montserrat; Hernández-Rodríguez, José; Cid, Maria C

    2011-01-01

    The central nervous system (CNS) may be involved by a variety of inflammatory diseases of blood vessels. These include primary angiitis of the central nervous system (PACNS), a rare disorder specifically targeting the CNS vasculature, and the systemic vasculitides which may affect the CNS among other organs and systems. Both situations are severe and convey a guarded prognosis. PACNS usually presents with headache and cognitive impairment. Focal symptoms are infrequent at disease onset but are common in more advanced stages. The diagnosis of PACNS is difficult because, although magnetic resonance imaging is almost invariably abnormal, findings are non specific. Angiography has limited sensitivity and specificity. Brain and leptomeningeal biopsy may provide a definitive diagnosis when disclosing blood vessel inflammation and are also useful to exclude other conditions presenting with similar findings. However, since lesions are segmental, a normal biopsy does not completely exclude PACNS. Secondary CNS involvement by systemic vasculitis occurs in less than one fifth of patients but may be devastating. A prompt recognition and aggressive treatment is crucial to avoid permanent damage and dysfunction. Glucocorticoids and cyclophosphamide are recommended for patients with PACNS and for patients with secondary CNS involvement by small-medium-sized systemic vasculitis. CNS involvement in large-vessel vasculitis is usually managed with high-dose glucocorticoids (giant-cell arteritis) or glucocorticoids and immunosuppressive agents (Takayasu’s disease). However, in large vessel vasculitis, where CNS symptoms are usually due to involvement of extracranial arteries (Takayasu’s disease) or proximal portions of intracranial arteries (giant-cell arteritis), revascularization procedures may also have an important role. PMID:22379458

  4. Metronidazole-induced central nervous system toxicity: a systematic review.

    PubMed

    Kuriyama, Akira; Jackson, Jeffrey L; Doi, Asako; Kamiya, Toru

    2011-01-01

    To assess patient and medication factors that contribute to metronidazole toxicity. We searched PUBMED from 1965 through April 7, 2011, and performed a hand search of bibliographies. Case reports or case series reporting metronidazole-induced central nervous toxicity. Two authors independently abstracted demographics, metronidazole indication, dose and duration, neurological manifestations, and outcomes as well as brain imaging findings. Among 64 patients, 48 (77%) had cerebellar dysfunction, 21 (33%) had altered mental status, and 8 (15%) had seizures. Patients' ages averaged 53.3 years (range, 12-87 years), and 64% were male. The median duration of metronidazole was 54 days, although 26% had taken it less than a week and 11% had taken it less than 72 hours. Among cases with outcome data, most patients either improved (n = 18 [29%]) or had complete resolution of their symptoms with discontinuation of metronidazole (n = 41 [65%]). There was no difference in resolution of symptom by age (P = 0.71) or sex (P = 0.34). The patients with cerebellar dysfunction were less likely to experience complete resolution than those with mental status changes or seizures (relative risk, 0.67; 95% confidence interval (CI), 0.49-0.92). Nearly all patients (n = 55 [86%]) underwent imaging of the brain: 44 (69%) underwent magnetic resonance imaging (MRI) and 12 (19%) underwent computed tomographic studies. All patients with cerebellar dysfunction had abnormalities on imaging: 93% (n = 39) had a cerebellar lesion, although numerous areas in the brain were affected. On follow-up MRIs, 25 patients (83%) had complete resolution of abnormalities. Metronidazole can rarely cause central nervous system toxicity; it does not seem to be a dose- or duration-related phenomenon. Most patients will have MRI abnormalities. Prognosis is excellent with metronidazole cessation.

  5. Chromosomal Imbalances in Primary Lymphomas of the Central Nervous System

    PubMed Central

    Rickert, Christian H.; Dockhorn-Dworniczak, Barbara; Simon, Ronald; Paulus, Werner

    1999-01-01

    Twenty-two primary central nervous system lymphomas of immunocompetent adults were studied by comparative genomic hybridization. All were high-grade diffuse large B cell lymphomas. Comparative genomic hybridization revealed an average of 5.5 chromosomal changes per tumor, with gains being more common than losses (3.5 vs. 2.0). The most frequent DNA copy number changes were gains on chromosomes 1, 12, 18 (41% each), 7 (23%), and 11 (18%) and losses involving chromosomes 6 (59%), 18, and 20 (18% each). Commonly involved regions were +12q (41%), +18q (36%), +1q (32%), and +7q (23%), as well as −6q (50%), −6p (18%), −17p, and −18p (14% each). High-level gains were found on 7 chromosomes, mainly involving chromosomes 18q (23%), 12q (18%), and 1q (14%). Minimal common regions of over- and underrepresentation were found on +1q25–31, −6q16–21, +7q11.2, +12p11.2–13, +12q12–14, +12q22–24.1, and +18q12.2–21.3. A significant correlation between loss of DNA copy numbers on chromosome 6q and shorter survival could be established (10.2 vs. 22.3 months; P < 0.05). Our findings suggest that chromosomal imbalances of primary central nervous system lymphomas are similar to those of diffuse large B cell lymphomas at other locations and are probably not related to cerebral presentation; however, they may be prognostically relevant. PMID:10550299

  6. The renin-angiotensin system and the central nervous system.

    PubMed

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  7. The 5'-flanking region of the human dopamine beta-hydroxylase gene promotes neuron subtype-specific gene expression in the central nervous system of transgenic mice.

    PubMed

    Morita, S; Kobayashi, K; Mizuguchi, T; Yamada, K; Nagatsu, I; Titani, K; Fujita, K; Hidaka, H; Nagatsu, T

    1993-03-01

    Dopamine beta-hydroxylase (DBH, EC 1.14.17.1) catalyzes the conversion of dopamine to norepinephrine, the third step of catecholamine biosynthesis. We have previously created transgenic mice harboring a chimeric gene consisting of the 4-kb DNA fragment of the human DBH gene promoter and the human phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) cDNA, to express PNMT in norepinephrine- and epinephrine-producing cells in the brain, sympathetic ganglia, and adrenal medullary chromaffin cells (Kobayashi et al., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 1631-1635). In this paper, we produced for the first time the antibody that specifically detects human PNMT, but not mouse PNMT, with the synthetic oligopeptide characteristic of the human PNMT sequence, and used this antibody to investigate the cells expressing human PNMT in transgenic mice. Immunohistochemical analysis of transgenic mice showed typical expression of human PNMT immunoreactivity in norepinephrinergic and epinephrinergic neurons in brain, as well as norepinephrine- and epinephrine-producing cells in the adrenal gland, indicating that the 4-kb 5'-flanking region is essential for the tissue-specific expression of the DBH gene. We also detected the ectopic expression in some DBH-immunonegative cells in the olfactory bulb of transgenic mice.

  8. Sympathetic nervous system behavior in human obesity.

    PubMed

    Davy, Kevin P; Orr, Jeb S

    2009-02-01

    The sympathetic nervous system (SNS) plays an essential role in the regulation of metabolic and cardiovascular homeostasis. Low SNS activity has been suggested to be a risk factor for weight gain and obesity development. In contrast, SNS activation is characteristic of a number of metabolic and cardiovascular diseases that occur more frequently in obese individuals. Until recently, the relation between obesity and SNS behavior has been controversial because previous approaches for assessing SNS activity in humans have produced inconsistent findings. Beginning in the early 1990s, many studies using state of the art neurochemical and neurophysiological techniques have provided important insight. The purpose of the present review is to provide an overview of our current understanding of the region specific alterations in SNS behavior in human obesity. We will discuss findings from our own laboratory which implicate visceral fat as an important depot linking obesity with skeletal muscle SNS activation. The influence of weight change on SNS behavior and the potential mechanisms and consequences of region specific SNS activation in obesity will also be considered.

  9. Degeneration in central and peripheral nervous systems produced by pure n-hexane: an experimental study.

    PubMed

    Schaumburg, H H; Spencer, P S

    1976-06-01

    Rats intoxicated with pure n-hexane, either by repetitive subcutaneous injection or by continuous inhalation, developed clinical and/or pathological evidence of peripheral neuropathy. Animals intoxicated by inhalation (400-600 ppm) developed clinical signs after forty-five days and displayed giant axonal swellings and fibre degeneration both in the central and peripheral nervous systems. The changes were most strking in tibial nerves supplying calf muscles and in selected areas of the cerebellum, medulla and spinal cord. In contrast to the usual picture associated with dying-back disease, the distal regions of proximal nerve fibres supplying calf muscles degenerated before equivalent regions of longer fibres supplying the hindfeet. The relevance of the central nervous changes to individuals recovering from toxic neuropathies and the need for a reduction of the present Threshold Limit Value (500 ppm) for human exposure are discussed.

  10. Do the Images of Neuronal Pathways in the Human Central Nervous System Show Feed-back? A Comparative Study in Fifteen Countries.

    ERIC Educational Resources Information Center

    Clement, Pierre; Mouelhi, Lassaad; Kochkar, Momahed; Valanides, Nicos; Nisiforou, Olia; Thiaw, Seyni Mame; Ndiaye, Valdiodio; Jeanbart, Paula; Horvath, Daniel; Ferreira, Claudia; Carvalho, Graca S.

    2010-01-01

    In the human brain, the neuronal pathways are networks which support our learning, memory and thought, and which work with permanent feedback. However, only 19% of illustrations of these neuronal pathways, in the 55 analysed school textbooks coming from 15 countries, were showing feedbacks. The neuronal pathways related to movements were generally…

  11. Expression and distribution of CD9 in myelin of the central and peripheral nervous systems.

    PubMed Central

    Nakamura, Y.; Iwamoto, R.; Mekada, E.

    1996-01-01

    CD9 is a member of the newly identified tetra-membrane-spanning protein family. We show here that CD9 is a constituent of myelin in the central and peripheral nervous systems. Expression of CD9 was detected in human cerebral white matter and sciatic nerve by Northern and Western blotting. Myelin in the central and peripheral nervous systems was strongly stained with a monoclonal antibody against human CD9 antigen in paraffin-embedded sections. CD9 was detected in adult nervous tissue but not in developing brain at less than 20 weeks of gestation. Immunohistochemical studies indicated that expression of CD9 is correlated with myelination and is somewhat delayed compared with expression of myelin basic protein, a major component protein of myelin. In the central nervous system, CD9 was detected along the outermost membrane of compact myelin but not inside compact myelin or the periaxonal region. Although the membrane-anchored form of heparin-binding epidermal-growth-factor-like growth factor (proHB-EGF), which is identical to the diphtheria toxin receptor, forms a complex with CD9 in some human and monkey cell lines, proHB-EGF was not detected in myelin immunocytochemically. The distribution of CD9 in the outer surface of myelin and its relatively late developmental appearance suggest that CD9 may interact with the extracellular matrix or cell adhesion molecules and participate in the maintenance of the entire myelin sheath. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701996

  12. The role of microbiome in central nervous system disorders.

    PubMed

    Wang, Yan; Kasper, Lloyd H

    2014-05-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.

  13. The role of microbiome in central nervous system disorders

    PubMed Central

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  14. Fast food, central nervous system insulin resistance, and obesity.

    PubMed

    Isganaitis, Elvira; Lustig, Robert H

    2005-12-01

    Rates of obesity and insulin resistance have climbed sharply over the past 30 years. These epidemics are temporally related to a dramatic rise in consumption of fast food; until recently, it was not known whether the fast food was driving the obesity, or vice versa. We review the unique properties of fast food that make it the ideal obesigenic foodstuff, and elucidate the mechanisms by which fast food intake contributes to obesity, emphasizing its effects on energy metabolism and on the central regulation of appetite. After examining the epidemiology of fast food consumption, obesity, and insulin resistance, we review insulin's role in the central nervous system's (CNS) regulation of energy balance, and demonstrate the role of CNS insulin resistance as a cause of leptin resistance and in the promotion of the pleasurable or "hedonic" responses to food. Finally, we analyze the characteristics of fast food, including high-energy density, high fat, high fructose, low fiber, and low dairy intake, which favor the development of CNS insulin resistance and obesity.

  15. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    PubMed

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  16. Surinabant, a selective cannabinoid receptor type 1 antagonist, inhibits Δ9-tetrahydrocannabinol-induced central nervous system and heart rate effects in humans.

    PubMed

    Klumpers, Linda E; Roy, Christine; Ferron, Geraldine; Turpault, Sandrine; Poitiers, Franck; Pinquier, Jean-Louis; van Hasselt, Johan G C; Zuurman, Lineke; Erwich, Frank A S; van Gerven, Joop M A

    2013-07-01

    Cannabinoid receptor type 1 (CB1 ) antagonists have been developed for the treatment of obesity and associated risk factors. Surinabant is a high affinity CB1 antagonist in vitro. The aim of this study was to assess the magnitude of inhibition by surinabant of CNS effects and heart rate induced by Δ(9) -tetrahydrocannabinol (THC) in humans. This was a double-blind, placebo-controlled, randomized, four period six sequence crossover study. Thirty healthy young male occasional cannabis users (<1 per week) were included. A single oral dose of surinabant (5, 20 or 60 mg) or placebo was administered followed 1.5 h later by four intrapulmonary THC doses (2, 4, 6 and 6 mg) or vehicle, administered at 1 h intervals. The wash-out period was 14-21 days. Subjective and objective pharmacodynamic (PD) measurements were performed. A population PK-PD model for THC and surinabant quantified PK and PD effects. Surinabant 20 and 60 mg inhibited all THC-induced PD effects in a similar range for both doses with inhibition ratios ranging from 68.3% (95% CI = 32.5, 104.2; heart rate) to 91.1% (95% CI = 30.3, 151.8; body sway). IC50 ranged from 22.0 ng ml(-1) [relative standard error (RSE) = 45.2%; body sway] to 58.8 ng ml(-1) (RSE = 44.2%; internal perception). Surinabant 5 mg demonstrated no significant effects. The dose-related inhibition by surinabant, without any effect of its own, suggests that this compound behaves as a CB1 receptor antagonist in humans at these concentrations. A single surinabant dose between 5 to 20 mg and above was able to antagonize THC-induced effects in humans. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  17. Surinabant, a selective cannabinoid receptor type 1 antagonist, inhibits Δ9-tetrahydrocannabinol-induced central nervous system and heart rate effects in humans

    PubMed Central

    Klumpers, Linda E; Roy, Christine; Ferron, Geraldine; Turpault, Sandrine; Poitiers, Franck; Pinquier, Jean-Louis; van Hasselt, Johan G C; Zuurman, Lineke; Erwich, Frank A S; van Gerven, Joop M A

    2013-01-01

    Aim Cannabinoid receptor type 1 (CB1) antagonists have been developed for the treatment of obesity and associated risk factors. Surinabant is a high affinity CB1 antagonist in vitro. The aim of this study was to assess the magnitude of inhibition by surinabant of CNS effects and heart rate induced by Δ9-tetrahydrocannabinol (THC) in humans. Methods This was a double-blind, placebo-controlled, randomized, four period six sequence crossover study. Thirty healthy young male occasional cannabis users (<1 per week) were included. A single oral dose of surinabant (5, 20 or 60 mg) or placebo was administered followed 1.5 h later by four intrapulmonary THC doses (2, 4, 6 and 6 mg) or vehicle, administered at 1 h intervals. The wash-out period was 14–21 days. Subjective and objective pharmacodynamic (PD) measurements were performed. A population PK–PD model for THC and surinabant quantified PK and PD effects. Results Surinabant 20 and 60 mg inhibited all THC-induced PD effects in a similar range for both doses with inhibition ratios ranging from 68.3% (95% CI = 32.5, 104.2; heart rate) to 91.1% (95% CI = 30.3, 151.8; body sway). IC50 ranged from 22.0 ng ml−1 [relative standard error (RSE) = 45.2%; body sway] to 58.8 ng ml−1 (RSE = 44.2%; internal perception). Surinabant 5 mg demonstrated no significant effects. Conclusions The dose-related inhibition by surinabant, without any effect of its own, suggests that this compound behaves as a CB1 receptor antagonist in humans at these concentrations. A single surinabant dose between 5 to 20 mg and above was able to antagonize THC-induced effects in humans. PMID:23278647

  18. Connexin32 expression in central and peripheral nervous systems

    SciTech Connect

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  19. Alzheimer’s Disease Aβ Vaccine Reduces Central Nervous System Aβ Levels in a Non-Human Primate, the Caribbean Vervet

    PubMed Central

    Lemere, Cynthia A.; Beierschmitt, Amy; Iglesias, Melitza; Spooner, Edward T.; Bloom, Jeanne K.; Leverone, Jodi F.; Zheng, Jessica B.; Seabrook, Timothy J.; Louard, Dora; Li, Diana; Selkoe, Dennis J.; Palmour, Roberta M.; Ervin, Frank R.

    2004-01-01

    Amyloid β (Aβ) protein immunotherapy lowers cerebral Aβ and improves cognition in mouse models of Alzheimer’s disease (AD). Here we show that Caribbean vervet monkeys (Chlorocebus aethiops, SK) develop cerebral Aβ plaques with aging and that these deposits are associated with gliosis and neuritic dystrophy. Five aged vervets were immunized with Aβ peptide over 10 months. Plasma and cerebral spinal fluid (CSF) samples were collected periodically from the immunized vervets and five aged controls; one monkey per group expired during the study. By Day 42, immunized animals generated plasma Aβ antibodies that labeled Aβ plaques in human, AD transgenic mouse and vervet brains; bound Aβ1–7; and recognized monomeric and oligomeric Aβ but not full-length amyloid precursor protein nor its C-terminal fragments. Low anti-Aβ titers were detected in CSF. Aβx-40 levels were elevated ∼2- to 5-fold in plasma and decreased up to 64% in CSF in immunized vervets. Insoluble Aβx-42 was decreased by 66% in brain homogenates of the four immunized animals compared to archival tissues from 13 age-matched control vervets. Aβ42-immunoreactive plaques were detected in frontal cortex in 11 of the 13 control animals, but not in six brain regions examined in each of the four immunized vervets. No T cell response or inflammation was observed. Our study is the first to demonstrate age-related Aβ deposition in the vervet monkey as well as the lowering of cerebral Aβ by Aβ vaccination in a non-human primate. The findings further support Aβ immunotherapy as a potential prevention and treatment of AD. PMID:15215183

  20. Evolution of bilaterian central nervous systems: a single origin?

    PubMed

    Holland, Linda Z; Carvalho, João E; Escriva, Hector; Laudet, Vincent; Schubert, Michael; Shimeld, Sebastian M; Yu, Jr-Kai

    2013-10-07

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates

  1. Evolution of bilaterian central nervous systems: a single origin?

    PubMed Central

    2013-01-01

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates

  2. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications.

    PubMed

    Edwards, Jeffrey G

    2014-01-01

    The function of TRPV1 in the peripheral nervous system is increasingly being investigated for its anti-inflammatory and antinociceptive properties in an effort to find a novel target to fight pain that is nonaddictive. However, in recent years, it was discovered that TRPV1 is also associated with a wide array of functions and behaviors in the central nervous system, such as fear, anxiety, stress, thermoregulation, pain, and, more recently, synaptic plasticity, the cellular mechanism that allows the brain to adapt to its environment. This suggests a new role for brain TRPV1 in areas such as learning and memory, reward and addiction, and development. This wide array of functional aspects of TRPV1 in the central nervous system (CNS) is in part due to its multimodal form of activation and highlights the potential pharmacological implications of TRPV1 in the brain. As humans also express a TRPV1 homologue, it is likely that animal research will be translational to humans and therefore worthy of exploration. This review outlines the basic expression patterns of TRPV1 in the CNS along with what is known regarding its signaling mechanisms and its role in the aforementioned brain functions. As TRPV1 involvement in synaptic plasticity has never been fully reviewed elsewhere, it will be a focus of this review. The chapter concludes with some of the potential pharmaceutical implications of further TRPV1 research.

  3. Morphine-treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: Impact on inflammation and oxidative stress in the Central Nervous System

    PubMed Central

    Dave, Rajnish S.; Khalili, Kamel

    2010-01-01

    HIV-1-infected opiate abusers often exhibit an accelerated form of HIV-1 associated dementia and enhanced neurological dysfunction. Productive HIV-1 infection of microglia and perivascular macrophages and the resultant secretion of neurotoxic molecules by these cells contribute to this phenomenon. In order to understand the role of morphine in this process, we performed a genome-wide association study at the microRNA (miRNA) and protein levels in human monocyte-derived macrophages (h-mdms). A total of 26 differentially expressed miRNA were identified (p < 0.01), of which hsa-miR-15b and hsa-miR-181b had the greatest increase and decrease in expression levels, respectively. Computational analysis predicted fibroblast growth factor-2 (FGF-2) as the strongest target gene for hsa-miR15b. Of note, we observed a decrease in FGF-2 protein expression in response to morphine. Both hsa-miR-15b and hsa-miR-181b have several predicted gene targets involved in inflammation and T-cell activation pathways. In this context, we observed induction of MCP-2 and IL-6 by morphine. Moreover, proteomic analysis revealed the induction of mitochondrial superoxide dismutase in response to morphine treatment. HIV-1 infection did not induce mitochondrial superoxide dismutase. Collectively, these observations demonstrate that morphine induces inflammation and oxidative stress in h-mdms thereby contributing to expansion of HIV-1 CNS reservoir expansion and disease progression. Of note, differentially expressed miRNAs (hsa-miR-15b and 181-b) may have a potential role in regulating these processes. PMID:20564181

  4. Isolation and distribution of endomorphins in the central nervous system.

    PubMed

    Zadina, James E

    2002-07-01

    Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2, EM-1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2) have the highest affinity and selectivity for the mu-opioid receptor (MOP-R) of all known mammalian opioids. They were isolated from bovine and human brain, and are structurally distinct from the other endogenous opioids. Both EM-1 and EM-2 have potent antinociceptive activity in a variety of animal models of acute, neuropathic and allodynic pain. They regulate cellular signaling processes in a manner consistent with MOP-R-mediated effects. The EMs are implicated in the natural modulation of pain by extensive data localizing EM-like immunoreactivity (EM-LI) near MOP-Rs in several regions of the nervous system known to regulate pain. These include the primary afferents and their terminals in the spinal cord dorsal horn, where EM-2 is well-positioned to modulate pain in its earliest stages of perception. In a nerve-injury model of chronic pain, a loss of spinal EM2-LI occurs concomitant with the onset of chronic pain. The distribution of the EMs in other areas of the nervous system is consistent with a role in the modulation of diverse functions, including autonomic, neuroendocrine and reward functions as well as modulation of responses to pain and stress. Unlike several other mu opioids, the threshold dose of EM-1 for analgesia is well below that for respiratory depression. In addition, rewarding effects of EM-1 can be separated from analgesic effects. These results indicate a favorable therapeutic profile of EM-1 relative to other mu opioids. Thus, the pharmacology and distribution of EMs provide new avenues both for therapeutic development and for understanding the neurobiology of opioids.

  5. Palmitoylethanolamide in homeostatic and traumatic central nervous system injuries.

    PubMed

    Esposito, Emanuela; Cuzzocrea, Salvatore

    2013-02-01

    The role of palmitoylethanolamide (PEA) in the regulation of complex systems involved in the inflammatory response, pruritus, neurogenic and neuropathic pain is well understood. Growing evidence indicates that this Nacylethanolamine also exerts neuroprotective effects within the central nervous system (CNS), i.e. in spinal cord and traumatic brain injuries and in age-related pathological processes. PEA is abundant in the CNS, and is produced by glial cells. Several studies show that administering PEA during the first few hours after injury significantly limits CNS damage, reduces loss of neuronal tissue and improves functional recovery. PEA appears to exert its protective effect by decreasing the development of cerebral edema, down-regulating the inflammatory cascade, and limiting cellular necrosis and apoptosis. All these are plausible mechanisms of neuroprotection. This review provides an overview of current knowledge of PEA effect on glial functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders. The diverse signaling mechanisms are also summarized.

  6. Central Nervous System Histoplasmosis in Acquired Immunodeficiency Syndrome.

    PubMed

    Nyalakonda, Harita; Albuerne, Marisol; Suazo Hernandez, Lia Patricia; Sarria, Juan C

    2016-02-01

    Involvement of the central nervous system (CNS) by Histoplasma capsulatum in AIDS is uncommon and not easily recognized. CNS histoplasmosis cases from our institution were identified by a retrospective chart review from 2004-2014. A thorough literature search was performed for additional cases and their characteristics were compared. Clinical findings, treatment and outcomes are discussed. A total of 5 cases from our institution were identified. They had a clinical presentation that included classic signs of meningitis, often with evidence of disseminated involvement, and was typically severe with important neurological impairment. These cases were treated with antifungal agents, including a lipid amphotericin B formulation and azole drugs, but eventually 3 experienced nonresolution of their disease likely because of lack of adherence to therapy and died from their infection. The clinical presentation, treatment and outcome of these cases did not significantly differ from cases found in the review of the literature. Clinicians practicing in endemic areas should be aware of this rare but serious form of histoplasmosis. The recognition of 5 cases of CNS histoplasmosis in AIDS patients from a single institution suggests that histoplasmosis should be included in the differential diagnosis of the CNS complications of AIDS. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  7. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    PubMed Central

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O’Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2016-01-01

    Purpose To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P = .02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement. PMID:25539370

  8. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    SciTech Connect

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O'Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  9. Mouse model for central nervous system Neospora caninum infections.

    PubMed

    Lindsay, D S; Lenz, S D; Cole, R A; Dubey, J P; Blagburn, B L

    1995-04-01

    Neospora caninum is a protozoan parasite that causes severe disease in transplacentally infected dogs and abortions in domestic ruminants. Rodent models of neosporosis rely on treatment of hosts with methylprednisolone acetate (MPA) to enhance infections. The present study reports the development of an inbred BALB/c mouse model that results in central nervous system neosporosis in the absence of MPA treatment. Seven of 12 BALB/c mice died 26-70 days after subcutaneous (s.c.) inoculation with tachyzoites of the NC-1 strain of N. caninum, and none of 12 BALB/c mice died after s.c. inoculation with tachyzoites of the NC-3 strain. None of 8 HSD:ICR mice (4 mice, NC-1 strain; 4 mice, NC-3 strain) developed clinical neosporosis or died after s.c. inoculation with tachyzoites. Control BALB/c (2) and HSD:ICR (2) mice s.c. inoculated with Hanks' balanced salt solution did not develop clinical signs of disease. Some mice in all N. caninum-inoculated groups had brain lesions, but significantly (P < 0.05) more BALB/c mice inoculated with the NC-1 strain had brain lesions.

  10. Imaging of opioid receptors in the central nervous system

    PubMed Central

    Henriksen, Gjermund

    2008-01-01

    In vivo functional imaging by means of positron emission tomography (PET) is the sole method for providing a quantitative measurement of μ-, κ and δ-opioid receptor-mediated signalling in the central nervous system. During the last two decades, measurements of changes to the regional brain opioidergic neuronal activation—mediated by endogenously produced opioid peptides, or exogenously administered opioid drugs—have been conducted in numerous chronic pain conditions, in epilepsy, as well as by stimulant- and opioidergic drugs. Although several PET-tracers have been used clinically for depiction and quantification of the opioid receptors changes, the underlying mechanisms for regulation of changes to the availability of opioid receptors are still unclear. After a presentation of the general signalling mechanisms of the opioid receptor system relevant for PET, a critical survey of the pharmacological properties of some currently available PET-tracers is presented. Clinical studies performed with different PET ligands are also reviewed and the compound-dependent findings are summarized. An outlook is given concluding with the tailoring of tracer properties, in order to facilitate for a selective addressment of dynamic changes to the availability of a single subclass, in combination with an optimization of the quantification framework are essentials for further progress in the field of in vivo opioid receptor imaging. PMID:18048446

  11. Building an RNA Sequencing Transcriptome of the Central Nervous System

    PubMed Central

    Dong, Xiaomin; You, Yanan; Wu, Jia Qian

    2015-01-01

    The composition and function of the central nervous system (CNS) is extremely complex. In addition to hundreds of subtypes of neurons, other cell types, including glia (astrocytes, oligodendrocytes, and microglia) and vascular cells (endothelial cells and pericytes) also play important roles in CNS function. Such heterogeneity makes the study of gene transcription in CNS challenging. Transcriptomic studies, namely the analyses of the expression levels and structures of all genes, are essential for interpreting the functional elements and understanding the molecular constituents of the CNS. Microarray has been a predominant method for large-scale gene expression profiling in the past. However, RNA-sequencing (RNA-Seq) technology developed in recent years has many advantages over microarrays, and has enabled building more quantitative, accurate, and comprehensive transcriptomes of the CNS and other systems. The discovery of novel genes, diverse alternative splicing events, and noncoding RNAs has remarkably expanded the complexity of gene expression profiles and will help us to understand intricate neural circuits. Here, we discuss the procedures and advantages of RNA-Seq technology in mammalian CNS transcriptome construction, and review the approaches of sample collection as well as recent progress in building RNA-Seq-based transcriptomes from tissue samples and specific cell types. PMID:26463470

  12. Primary central nervous system lymphoma mimicking pituitary apoplexy: case report.

    PubMed

    Quintero Wolfe, Stacey; Hood, Brian; Barker, Jennifer; Benveniste, Ronald J

    2009-01-01

    Lymphoma involving the pituitary gland is very rare and usually results from metastatic spread of systemic lymphoma. We present a case of primary central nervous system (CNS) large B cell lymphoma that manifested as pituitary apoplexy. A 45-year-old woman presented with headache, and then rapidly developed a third nerve palsy and bitemporal hemianopsia. Imaging suggested a pituitary macroadenoma, with spontaneous necrosis, extending into the suprasellar region, compressing the optic chiasm and invading the right cavernous sinus. The patient underwent transsphenoidal resection which revealed a vascular, firm tumor. An aggressive decompression of the optic chiasm was performed with complete resolution of both visual fields and third nerve palsy. Final pathology showed B cell lymphoma. Systemic work-up including bone marrow aspiration and CSF studies showed no other foci of lymphoma, and the patient was HIV-negative. Chemotherapy with methotrexate, vincristine, procarbazine, and dexamethasone was administered for primary CNS lymphoma. This is an uncommon diagnosis of which the clinician should be aware in order to tailor surgical intervention and provide early institution of proper therapy.

  13. Arginase and autoimmune inflammation in the central nervous system.

    PubMed

    Xu, Lingyun; Hilliard, Brendan; Carmody, Ruaidhrí J; Tsabary, Galit; Shin, Hyunshun; Christianson, David W; Chen, Youhai H

    2003-09-01

    Using a high throughput gene microarray technology that detects approximately 22 000 genes, we found that arginase I was the most significantly up-regulated gene in the murine spinal cord during experimental autoimmune encephalomyelitis (EAE). By Northern blot and arginase enzyme assay, we detected high levels of arginase I mRNA and protein, respectively, in the spinal cord of EAE mice, but not in the spinal cord of normal mice or mice that had recovered from EAE. In vitro, both microglia and astrocytes produced arginase and nitric oxide synthase, two enzymes that are involved in arginine metabolism. To explore the roles of arginase in EAE, we injected the arginase inhibitor amino-6-boronohexanoic acid (ABH) into mice during the inductive and effector phases of the disease. Compared with mice that received vehicle control, mice treated with ABH developed milder EAE with delayed onset, reduced disease score and expedited recovery. Spleen mononuclear cells from ABH-treated mice produced more nitric oxide and secreted less interferon-gamma and tumour necrosis factor-alpha as compared to control mice. These results indicate that arginase plays important roles in autoimmune inflammation in the central nervous system.

  14. Whole-central nervous system functional imaging in larval Drosophila.

    PubMed

    Lemon, William C; Pulver, Stefan R; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J

    2015-08-11

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

  15. Central nervous system-specific knockout of steroidogenic factor 1.

    PubMed

    Kim, Ki Woo; Zhao, Liping; Parker, Keith L

    2009-03-05

    Steroidogenic factor 1 (SF-1) is a nuclear receptor that plays important roles in the hypothalamus-pituitary-steroidogenic organ axis. Global knockout studies in mice revealed the essential in vivo roles of SF-1 in the ventromedial hypothalamic (VMH) nucleus, adrenal glands, and gonads. One limitation of global SF-1 knockout mice is their early postnatal death from adrenocortical insufficiency. To overcome limitations of the global knockout mice and to delineate the roles of SF-1 in the brain, we used Cre/loxP recombination technology to genetically ablate SF-1 specifically in the central nervous system (CNS). Mice with CNS-specific knockout of SF-1 mediated by nestin-Cre showed increased anxiety-like behavior, revealing a crucial role of SF-1 in a complex behavioral phenotype. Our studies with CNS-specific SF-1 KO mice also defined roles of SF-1 in regulating the VMH expression of target genes implicated in anxiety and energy homeostasis. Therefore, this review will focus on our recent studies defining the functional roles of SF-1 in the VMH linked to anxiety and energy homeostasis.

  16. Prolactin: Friend or Foe in Central Nervous System Autoimmune Inflammation?

    PubMed Central

    Costanza, Massimo; Pedotti, Rosetta

    2016-01-01

    The higher prevalence of multiple sclerosis (MS) in females, along with the modulation of disease activity observed during pregnancy and the post-partum period, has suggested a hormonal influence in MS. Even if prolactin (PRL) does not belong to the sex hormones family, its crucial role in female reproduction and lactation has prompted great efforts to understand if PRL could represent a gender factor in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), the animal model for this disease. Extensive literature has documented a remarkable immune-stimulating potential for this hormone, indicating PRL as a disease-promoting factor in MS and EAE. However, recent work has pointed out that PRL is endowed with important neuroprotective and remyelinating properties and has encouraged a reinterpretation of the involvement of this hormone in MS. In this review we summarize both the protective functions that PRL exerts in central nervous system tissue as well as the inflammatory activity of this hormone in the context of autoimmune responses against myelin. Last, we draw future lines of research that might help to better clarify the impact of PRL on MS pathology. PMID:27918427

  17. Pathway analysis of primary central nervous system lymphoma.

    PubMed

    Tun, Han W; Personett, David; Baskerville, Karen A; Menke, David M; Jaeckle, Kurt A; Kreinest, Pamela; Edenfield, Brandy; Zubair, Abba C; O'Neill, Brian P; Lai, Weil R; Park, Peter J; McKinney, Michael

    2008-03-15

    Primary central nervous system (CNS) lymphoma (PCNSL) is a diffuse large B-cell lymphoma (DLBCL) confined to the CNS. A genome-wide gene expression comparison between PCNSL and non-CNS DLBCL was performed, the latter consisting of both nodal and extranodal DLBCL (nDLBCL and enDLBCL), to identify a "CNS signature." Pathway analysis with the program SigPathway revealed that PCNSL is characterized notably by significant differential expression of multiple extracellular matrix (ECM) and adhesion-related pathways. The most significantly up-regulated gene is the ECM-related osteopontin (SPP1). Expression at the protein level of ECM-related SPP1 and CHI3L1 in PCNSL cells was demonstrated by immunohistochemistry. The alterations in gene expression can be interpreted within several biologic contexts with implications for PCNSL, including CNS tropism (ECM and adhesion-related pathways, SPP1, DDR1), B-cell migration (CXCL13, SPP1), activated B-cell subtype (MUM1), lymphoproliferation (SPP1, TCL1A, CHI3L1), aggressive clinical behavior (SPP1, CHI3L1, MUM1), and aggressive metastatic cancer phenotype (SPP1, CHI3L1). The gene expression signature discovered in our study may represent a true "CNS signature" because we contrasted PCNSL with wide-spectrum non-CNS DLBCL on a genomic scale and performed an in-depth bioinformatic analysis.

  18. Liposomal Conjugates for Drug Delivery to the Central Nervous System

    PubMed Central

    Helm, Frieder; Fricker, Gert

    2015-01-01

    Treatments of central nervous system (CNS) diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES) and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA) as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC) and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated) liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA) were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes. PMID:25835091

  19. Excitation of central nervous system neurons by nonuniform electric fields.

    PubMed Central

    McIntyre, C C; Grill, W M

    1999-01-01

    The goal of this study was to determine which neural elements are excited by microstimulation of the central nervous system. A cable model of a neuron including an axon, initial segment, axon hillock, soma, and simplified dendritic tree was used to study excitation with an extracellular point source electrode. The model reproduced a wide range of experimentally documented extracellular excitation patterns. The site of action potential initiation (API) was a function of the electrode position, stimulus duration, and stimulus polarity. The axon or initial segment was always the site of API at threshold. When the electrode was positioned near the cell body, the site of excitation was dependent on the stimulus amplitude. With the electrode in close proximity to the neuron, short-duration cathodic pulses produced lower thresholds with the electrode positioned over the axon than over the cell body, and long-duration stimuli produced opposite relative thresholds. This result was robust to alterations in either the maximum conductances or the intracellular resistivities of the model. The site of maximum depolarization was not always an accurate predictor of the site of API, and the temporal evolution of the changes in membrane potential played a strong role in determining the site of excitation. PMID:9929489

  20. Two rare cases of central nervous system opportunistic mycoses.

    PubMed

    Mlinarić Missoni, Emilija; Baršić, Bruno

    2012-12-01

    This article presents two cases of opportunistic mycoses (OMs) of the central nervous system (CNS) caused by Cryptococcus neoformans and Aspergillus nidulans, respectively. The patients were hospitalised in local hospitals between 2009 and 2011 because of unspecific symptoms (fever, headache, and/or weight lost). Duration of symptoms varied from 4 days to over 2 weeks. The patients were treated with antibiotics and symptomatically. OM was not suspected in any of them. The patients became critically ill with symptoms of CNS involvement and were transferred to the Intensive Care Unit (ICU) of the University Hospital for Infectious diseases (UHID) in Zagreb. None of the patients belonged to the high-risk population for developing OMs. They were not HIV-infected, had no transplantation of bone marrow or solid organ, and were not on severe immunosuppressive chemotherapy. Fungi were isolated from cerebrospinal fluid (CSF) samples and, in one patient, from aspirate of cerebral abscess. Isolation and mycological identification of all fungal isolates and in vitro antifungal susceptibility testing of these isolates were done at the Reference Centre for Mycological Diagnostics of Systemic and Disseminated Infections (RCMDSDI) in Zagreb. The patient with cryptococcal meningitis was treated with amphotericin B and fluconazole and the patient with cerebral aspergilloma with voriconazole.

  1. Deoxyribozymes: New Therapeutics to Treat Central Nervous System Disorders

    PubMed Central

    Grimpe, Barbara

    2011-01-01

    This mini-review focuses on a knockdown technology called deoxyribozymes, which has rarely been utilized in the field of neurobiology/neuroscience. Deoxyribozymes are catalytic DNA molecules, which are also entitled DNA enzyme or DNAzyme. This mini-review presents a description of their development, structure, function, and therapeutic application. In addition, information on siRNA, ribozymes, and antisense are given. Further information on two deoxyribozymes against c-Jun and xylosyltransferase (XT) mRNA are summarized of which the first is important to influence many neurological disorders and the last potentially treats spinal cord injuries (SCIs). In particular, insults to the central nervous system (CNS) such as SCI generate an inhibitory environment (lesion scar) at the injury site that prevents the endogenous and therapy-induced axonal regeneration and thereby limits repair strategies. Presently, there are no treatments available. Hence, deoxyribozymes provide an opportunity for new therapeutics that alter the inhibitory nature of the lesion scar and thus promote axonal growth in the injured spinal cord. When used cautiously and within the limits of its ability the deoxyribozyme technology holds promise to become a major contributing factor in repair strategies of the CNS. PMID:21977013

  2. Central nervous system and cervical spine abnormalities in Apert syndrome.

    PubMed

    Breik, Omar; Mahindu, Antony; Moore, Mark H; Molloy, Cindy J; Santoreneos, Stephen; David, David J

    2016-05-01

    Apert syndrome characterized by acrocephalosyndactyly is a rare autosomal dominant congenital malformation with a prevalence of 1/65,000 births. With an extensive range of phenotypic and developmental manifestations, its management requires a multidisciplinary approach. A variety of craniofacial, central nervous system (CNS), and cervical spine abnormalities have been reported in these patients. This study aimed to determine the incidence of these CNS abnormalities in our case series. Retrospective review of Australian Craniofacial Unit (ACFU) database for Apert patients was performed. Data collected that included demographics, place of origin, age at presentation, imaging performed, and images were reviewed and recorded. Where available, developmental data was also recorded. Ninety-four patients seen and managed at the ACFU had their CNS and cervical spine abnormalities documented. The main CNS abnormalities were prominent convolutional markings (67 %), ventriculomegaly (48 %), crowded foramen magnum (36 %), deficient septum pellucidum (13 %), and corpus callosum agenesis in 11 %. Major C-spine findings were present in 50.8 % of patients and included fusion of posterior elements of C5/C6 (50 %) and C3/4 (27 %). Multilevel fusion was seen in 20 %. Other abnormalities were C1 spina bifida occulta (7 %) and atlanto-axial subluxation (7 %). Multiple CNS and cervical spine (c-spine) abnormalities are common in Apert syndrome. The significance of these abnormalities remains largely unknown. Further research is needed to better understand the impact of these findings on growth, development, and treatment outcomes.

  3. Benzodiazepine Pharmacology and Central Nervous System–Mediated Effects

    PubMed Central

    Griffin, Charles E.; Kaye, Adam M.; Bueno, Franklin Rivera; Kaye, Alan D.

    2013-01-01

    Background Owing to the low therapeutic index of barbiturates, benzodiazepines (BZDs) became popular in this country and worldwide many decades ago for a wide range of conditions. Because of an increased understanding of pharmacology and physiology, the mechanisms of action of many BZDs are now largely understood, and BZDs of varying potency and duration of action have been developed and marketed. Although BZDs have many therapeutic roles and BZD-mediated effects are typically well tolerated in the general population, side effects and toxicity can result in morbidity and mortality for some patients. The elderly; certain subpopulations of patients with lung, liver, or kidney dysfunction; and patients on other classes of medication are especially prone to toxicity. Methods This review details the present knowledge about BZD mechanisms of action, drug profiles, clinical actions, and potential side effects. In addition, this review describes numerous types of BZD-mediated central nervous system effects. Conclusion For any patient taking a BZD, the prescribing physician must carefully evaluate the risks and benefits, and higher-risk patients require careful considerations. Clinically appropriate use of BZDs requires prudence and the understanding of pharmacology. PMID:23789008

  4. Microglioma, a histiocytic neoplasm of the central nervous system.

    PubMed

    Hulette, C M

    1996-03-01

    Neuropathologists have long suspected the existence of a tumor derived from the microglia, which are the resident immunocompetent cells of the central nervous system. Previously, definitive characterization of this rare putative tumor was hampered by the lack of precise immunohistochemical reagents. We herein report on a patient with microglioma, and we define the immunohistochemical characteristics of the tumor. The patient was a 50-year-old white woman who presented with a 1-year history of progressive paresthesia, visual difficulties, and cranial nerve abnormalities. The patient died in June 1972. At autopsy, the brain weighed 1540 grams and was remarkable for a diffusely infiltrating periventricular tumor, which extended from the rostral tip of the lateral ventricles through the spinal cord. Microscopically, the tumor cells had extremely long, slender, twisted nuclei, and the cells diffusely infiltrated the brain parenchyma so that the extent of the tumor was difficult to determine. Formalin-fixed, paraffin-embedded tissue blocks from the neuropathology archives were studied. The neoplastic cells stained intensely with CD68 (KP1) and Ricinus communis agglutinin-120 markers for microglia and also with HAM-56, a marker for macrophages. The tumor cells stained negative for glial fibrillary acidic protein. The recent availability of precise immunohistochemical reagents has clearly defined this rare neoplasm and has facilitated reliable distinction from lymphoma and gliomatosis cerebri.

  5. Neurocognitive impairment in Whipple disease with central nervous system involvement.

    PubMed

    Christidi, Foteini; Kararizou, Evangelia; Potagas, Constantin; Triantafyllou, Nikolaos I; Stamboulis, Eleftherios; Zalonis, Ioannis

    2014-03-01

    Young-onset dementias pose a major challenge to both clinicians and researchers. Cognitive decline may be accompanied by systemic features, leading to a diagnosis of "dementia plus" syndromes. Whipple disease is a rare systemic illness characterized by arthralgias, chronic diarrhea, weight loss, fever, and abdominal pain. Central nervous system involvement, including severe cognitive deterioration, may precede systemic manifestations, appear during the course of the disease, or even be the only symptom. We report a previously highly functional 48-year-old man whom we first suspected of having early-onset neurodegenerative dementia but then diagnosed with Whipple disease based on a detailed clinical and laboratory evaluation. Initial neuropsychological evaluation revealed marked impairment in the patient's fluid intelligence and severe cognitive deficits in his information processing speed, complex attention, memory, visuomotor and construction dexterities, problem solving, and executive functions. At neuropsychological follow-up 21 months later, his information processing speed had improved only slightly and deficits persisted in his other cognitive functions. Repeat brain magnetic resonance imaging at that time showed that he had responded to antibiotic treatment. Because Whipple disease can cause young-onset "dementia plus" syndromes that may leave patients with neurocognitive deficits even after apparently successful treatment, we recommend comprehensive neuropsychological assessment for early detection of residual and reversible cognitive processes and evaluation of treatment response.

  6. Mutational analysis of primary central nervous system lymphoma.

    PubMed

    Bruno, Aurélie; Boisselier, Blandine; Labreche, Karim; Marie, Yannick; Polivka, Marc; Jouvet, Anne; Adam, Clovis; Figarella-Branger, Dominique; Miquel, Catherine; Eimer, Sandrine; Houillier, Caroline; Soussain, Carole; Mokhtari, Karima; Daveau, Romain; Hoang-Xuan, Khê

    2014-07-15

    Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.

  7. Medulloblastomas and central nervous system primitive neuroectodermal tumors.

    PubMed

    McLean, Thomas W

    2003-12-01

    Significant advances in the treatment of medulloblastoma and primitive neuroectodermal tumors have been made in the past three decades. Maximal surgical resection is a mainstay of therapy. However, unlike many other central nervous system neoplasms, medulloblastoma and primitive neuroectodermal tumors are radiation and chemotherapy responsive. Despite this response, the prognosis for patients with these tumors remains variable and is relatively poor in infants and patients with metastatic disease. These tumors most commonly arise in children, thus most clinical trials emphasize the reduction of long-term sequelae, in addition to improving survival. All newly diagnosed patients who are eligible should be offered participation in a clinical trial. If a patient is ineligible or declines consent/assent for a clinical trial, the best current treatment approach is surgical resection, followed by radiation therapy (except for children younger than 3 years) with weekly vincristine. For high-risk patients, 36 Gy of craniospinal irradiation should be delivered plus a boost of 19.8 Gy to the posterior fossa/primary tumor bed and sites of bulk metastatic disease. For average-risk patients, the craniospinal irradiation dose may be lowered to 23.4 Gy plus 32.4 Gy to the posterior fossa/tumor bed. After radiation therapy, intensive multimodal chemotherapy should be used for all patients.

  8. Anticholinergics for overactive bladder therapy: central nervous system effects.

    PubMed

    Chancellor, Michael; Boone, Timothy

    2012-02-01

    The mainstay of pharmacological treatment of overactive bladder (OAB) is anticholinergic therapy using muscarinic receptor antagonists (tertiary or quaternary amines). Muscarinic receptors in the brain play an important role in cognitive function, and there is growing awareness that antimuscarinic OAB drugs may have adverse central nervous system (CNS) effects, ranging from headache to cognitive impairment and episodes of psychosis. This review discusses the physicochemical and pharmacokinetic properties of OAB antimuscarinics that affect their propensity to cause adverse CNS effects, as observed in phase III clinical trials and in specific investigations on cognitive function and sleep architecture. PubMed/MEDLINE was searched for "OAB" plus "muscarinic antagonists" or "anticholinergic drug." Additional relevant literature was identified by examining the reference lists of papers identified through the search. Preclinical and clinical trials in adults were assessed, focusing on the OAB antimuscarinics approved in the United States. The blood-brain barrier (BBB) plays a key role in protecting the CNS, but it is penetrable. The lipophilic tertiary amines, particularly oxybutynin, are more likely to cross the BBB than the hydrophilic quaternary amine trospium chloride, for which there are very few reports of adverse CNS effects. In fact, in 2008 the US product labels for oral oxybutynin were modified to include the potential for anticholinergic CNS events and a warning to monitor patients for adverse CNS effects. Even modest cognitive impairment in the elderly may negatively affect independence; therefore, selection of an antimuscarinic OAB drug with reduced potential for CNS effects is advisable. © 2011 Blackwell Publishing Ltd.

  9. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy.

  10. The Role of Central Nervous System Plasticity in Tinnitus

    PubMed Central

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The “neurophysiogical” model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions. The model assumes that plastic changes in the primary and non-primary auditory pathways contribute to tinnitus with the former perhaps sustaining them, and the latter contributing to perceived severity and emotionality. These plastic changes are triggered by peripheral injury, which results in new patterns of brain activity due to anatomic alterations in the connectivity of CNS neurons. These alterations may change the balance between excitatory and inhibitory brain processes, perhaps producing cascades of new neural activity flowing between brainstem and cortex in a self-sustaining manner that produces persistent perceptions of tinnitus. The bases of this model are explored with an attempt to distinguish phenomenological from mechanistic explanations. Learning outcomes (1) Readers will learn that the variables associated with the behavioral experience of tinnitus are as complex as the biological variables. (2) Readers will understand what the concept of neuroplastic brain change means, and how it is associated with tinnitus. (3) Readers will learn that there may be no one brain location associated with tinnitus, and it may result from interactions between multiple brain areas. (4) Readers will learn how disinhibition, spontaneous activity, neural synchronization, and tonotopic reorganization may contribute to tinnitus. PMID:17418230

  11. HCV-related central and peripheral nervous system demyelinating disorders.

    PubMed

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  12. Central nervous system imaging and congenital melanocytic naevi

    PubMed Central

    Kinsler, V; Aylett, S; Coley, S; Chong, W; Atherton, D

    2001-01-01

    AIM—To establish the prevalence of central nervous system (CNS) abnormalities on magnetic resonance imaging (MRI) in a population of children with congenital melanocytic naevi (CMN) over the head and/or spine, and to compare this with clinical findings.
METHODS—Forty three patients identified from outpatient clinics underwent MRI of the brain and/or spine. These were reported by a paediatric radiologist and findings compared with the clinical picture.
RESULTS—Nine patients had abnormal clinical neurology, seven had abnormal findings on MRI, and six had both abnormal clinical and radiological findings. Only three of the abnormal MRIs showed features of intracranial melanosis. Three others showed structural brain abnormalities: one choroid plexus papilloma, one cerebellar astrocytoma, and one posterior fossa arachnoid cyst; the first two of these have not previously been described in association with CMN. The last abnormal MRI showed equivocal changes requiring reimaging.
CONCLUSIONS—The prevalence of radiological CNS abnormality in this group of children was 7/43. Six of these developed abnormal clinical neurological signs within the first 18 months of life, but two did not do so until after the MRI. Two of the CNS lesions were operable; for this reason we support the routine use of early MRI in this group.

 PMID:11159293

  13. Central nervous system depressant action of flavonoid glycosides.

    PubMed

    Fernández, Sebastián P; Wasowski, Cristina; Loscalzo, Leonardo M; Granger, Renee E; Johnston, Graham A R; Paladini, Alejandro C; Marder, Mariel

    2006-06-13

    The pharmacological effects on the central nervous system (CNS) of a range of available flavonoid glycosides were explored and compared to those of the glycosides 2S-hesperidin and linarin, recently isolated from valeriana. The glycosides 2S-neohesperidin, 2S-naringin, diosmin, gossipyn and rutin exerted a depressant action on the CNS of mice following i.p. injection, similar to that found with 2S-hesperidin and linarin. We demonstrate in this work that these behavioural actions, as measured in the hole board, thiopental induced sleeping time and locomotor activity tests, are unlikely to involve a direct action on gamma-aminobutyric acid type A (GABA(A)) receptors. The corresponding aglycones were inactive, pointing to the importance of the sugar moieties in the glycosides in their CNS depressant action following systemic administration. The pharmacological properties of the flavonoid glycosides studied here, in addition to our previous results with hesperidin and linarin, opens a promising new avenue of research in the field.

  14. Intrinsic regenerative mechanisms of central nervous system neurons.

    PubMed

    Muramatsu, Rieko; Ueno, Masaki; Yamashita, Toshihide

    2009-10-01

    Injuries to the adult central nervous system (CNS), such as spinal cord injury and brain contusion, can cause permanent functional deficits if axonal connections are broken. Spontaneous functional recovery rarely occurs. It has been widely accepted that the extracellular environment of the CNS inhibits neuronal regeneration. However, it should be noted that another reason for injured neurons failing to regenerate is their weak intrinsic ability to do so. The regeneration of injured neurons is a process involving many intracellular phenomena, including cytoskeletal changes, gene and protein expression, and changes in the responsiveness to extracellular cues. The capacity of injured neurons to regenerate is modulated to some extent by changes in the expression of intracellular signaling molecules such as glycogen synthase kinase-3beta and cyclic adenosine 3',5'-monophosphate. Knowledge of these effects has guided the development of animal models for regenerative therapies of CNS injury. Enhancing the intrinsic regenerative machinery of injured axons in the adult CNS is a potentially powerful strategy for treating patients with a CNS injury.

  15. ABNORMALITIES PRODUCED IN THE CENTRAL NERVOUS SYSTEM BY ELECTRICAL INJURIES.

    PubMed

    Langworthy, O R

    1930-05-31

    The alternating and continuous circuits produced different types of lesions in the central nervous system. Hemorrhages were common after alternating current shocks and few hemorrhages were observed in the continuous circuit group. With both types of circuits at 1000 and 500 volts potential, severe abnormalities in the nerve cells were observed. These were more marked in the continuous circuit group. A uniformly staining, shrunken, pyknotic nucleus was taken as a criterion of nerve cell death. The Purkinje cells of the cerebellum were most susceptible to the current. Injured cells were studied in the dorsal nucleus of the vagus, in the somatic motor group, among the primary sensory neurones and in the olives. Changes in the histological structure of the cells in reference to recovery have been discussed. Injury to the cerebral and cerebellar cortices occurred on the dorsal surface close to the head electrode. Small cavities were produced, particularly in the cerebral cortex, as the result of the circuit contact. With the continuous and alternating circuits at 110 and 220 volts potential less severe changes were observed in the nerve cells although hemorrhages were common in the alternating circuit group. It must be assumed in these cases that death was due to respiratory block rather than actual death of the cells.

  16. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    PubMed Central

    Mitsdoerffer, Meike; Peters, Anneli

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS), which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease; however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines, and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs) were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function, and clinical significance. Mechanistic studies in patients are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE) recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation, and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs. PMID:27826298

  17. Role of Wnt Signaling in Central Nervous System Injury.

    PubMed

    Lambert, Catherine; Cisternas, Pedro; Inestrosa, Nibaldo C

    2016-05-01

    The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury.

  18. Current Management of Primary Central Nervous System Lymphoma

    SciTech Connect

    Schultz, Christopher J.; Bovi, Joseph

    2010-03-01

    Primary central nervous cell lymphoma (PCNSL) is an uncommon neoplasm of the brain, leptomeninges, and rarely the spinal cord. Initially thought to be characteristically associated with congenital, iatrogenic, or acquired immunosuppression, PCNSL is now recognized with increasing frequency in immunocompetent individuals. The role of surgery is limited to establishing diagnosis, as PCNSL is often multifocal with a propensity to involve the subarachnoid space. A whole-brain radiation volume has empirically been used to adequately address the multifocal tumor frequently encountered at the time of PCNSL diagnosis. Despite high rates of response after whole-brain radiotherapy (WBRT), rapid recurrence is common and long-term survival is the exception. Chemotherapy alone or in combination with WBRT has more recently become the treatment of choice. Most effective regimens contain high-dose methotrexate and or other agents that are capable of penetrating the blood-brain barrier. High response rates and improved survival with the use of chemotherapy has led to treatment strategies that defer or eliminate WBRT in hopes of lessening the risk of neurotoxicity attributed to WBRT. Unfortunately, elimination of WBRT is also associated with a higher rate of relapse. Combined chemotherapy and WBRT regimens are now being explored that use lower total doses of radiation and altered fractionation schedules with the aim of maintaining high rates of tumor control while minimizing neurotoxicity. Pretreatment, multifactor prognostic indices have recently been described that may allow selection of treatment regimens that strike an appropriate balance of risk and benefit for the individual PCNSL patient.

  19. Cerebrospinal fluid flow dynamics in the central nervous system.

    PubMed

    Sweetman, Brian; Linninger, Andreas A

    2011-01-01

    Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid-structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.

  20. Scar-modulating treatments for central nervous system injury.

    PubMed

    Shen, Dingding; Wang, Xiaodong; Gu, Xiaosong

    2014-12-01

    Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.

  1. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  2. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  3. Central nervous system disease in Langerhans cell histiocytosis.

    PubMed Central

    Grois, N.; Tsunematsu, Y.; Barkovich, A. J.; Favara, B. E.

    1994-01-01

    Diabetes insipidus and anterior pituitary dysfunction, are familiar central nervous system (CNS) complications of Langerhans cell histiocytosis (LCH) but the pathophysiology and biological behaviour of other forms of CNS involvement in LCH are poorly understood. In an attempt to improve our understanding of these rare complications, we studied 23 patients with LCH in whom neuroradiological abnormalities, with or without neurological dysfunction other than diabetes insipidus, developed during the course of disease. Neuroradiological abnormalities were of three basic types (a) poorly-defined changes in white matter, (b) well-defined changes in white and grey matter and (c) extra-parenchymal "tumoural" masses. There was a profusion of associated neurological signs and symptoms in most cases but some patients were asymptomatic. The neuropathological features were complex but infiltration of the CNS by histiocytes with xanthomatous change, particularly prominent in mass lesions, was common in the 13 cases in which biopsies were done. Patients with lytic lesions of the skull and diabetes insipidus are evidently most at risk of developing these rare manifestations of LCH. Therapeutic questions could not be answered from this study because no standard treatment had been given and outcome varied widely. Images Figure 7 Figure 1 Figure 2 Figure 3 PMID:8075002

  4. Neuronal central nervous system syndromes probably mediated by autoantibodies

    PubMed Central

    Chefdeville, Aude; Honnorat, Jérôme; Hampe, Christiane S.; Desestret, Virginie

    2016-01-01

    In the last few years, a rapidly growing number of autoantibodies targeting neuronal cell-surface antigens have been identified in patients presenting with neurological symptoms. Targeted antigens include ionotropic receptors such as N-methyl-D-aspartate receptor or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, metabotropic receptors such as mGluR1 and mGluR5, and other synaptic proteins, some of them belonging to the voltage-gated potassium channel complex. Importantly, the cell-surface location of these antigens makes them vulnerable to direct antibody-mediated modulation. Some of these autoantibodies, generally targeting ionotropic channels or their partner proteins, define clinical syndromes resembling models of pharmacological or genetic disruption of the corresponding antigen, suggesting a direct pathogenic role of the associated autoantibodies. Moreover, the associated neurological symptoms are usually immunotherapy-responsive, further arguing for a pathogenic effect of the antibodies. Some studies have shown that some patients’ antibodies may have structural and functional in vitro effects on the targeted antigens. Definite proof of the pathogenicity of these autoantibodies has been obtained for just a few through passive transfer experiments in animal models. In this review we present existing and converging evidence suggesting a pathogenic role of some autoantibodies directed against neuronal cell-surface antigens observed in patients with central nervous system disorders. We describe the main clinical symptoms characterizing the patients and discuss conflicting arguments regarding the pathogenicity of these antibodies. PMID:26918657

  5. Central nervous system infections in patients with severe burns.

    PubMed

    Calvano, Tatjana P; Hospenthal, Duane R; Renz, Evan M; Wolf, Steven E; Murray, Clinton K

    2010-08-01

    Central nervous system (CNS) infections develop in 3-9% of neurosurgical ICU patients and 0.4-2% of all patients hospitalized with head trauma. CNS infection incidence in burn patients is unknown and this study sets out to identify the incidence and risk factors associated with CNS infections. A retrospective electronic chart review was performed from 1 July 2003 to 30 June 2008 evaluating inpatient medical records along with cerebrospinal fluid (CSF) microbiological results for the presence of CNS infection. The presence of facial and head injuries and burns, along with intracranial interventions were reviewed for association with CNS infections. There were 1964 admissions with 2 patients (0.1%) found to have CNS infection; 1 each with MRSA and Acinetobacter baumannii. Both patients had facial burns and trauma to their head that required intracranial surgery. Of note, both patients had bacteremia with the same microorganisms isolated from their CSF and both survived. Of all patients, 29% had head or neck trauma and burns; 0.35% of those had a CNS infection. Scalp harvest for grafts or debridement of burned scalp was performed on 125 patients of which 9 had an invasive surgical procedure that involved penetration of the skull. The 2 infected patients were from these 9 intracranial surgical patients revealing a 22% infection rate. The incidence of CNS infections in patients with severe burns is extremely low at 0.1%. This rate was low even with head and face burns with trauma unless the patient underwent an intracranial procedure.

  6. Occupational exposure and risk of central nervous system demyelination.

    PubMed

    Valery, P C; Lucas, R M; Williams, D B; Pender, M P; Chapman, C; Coulthard, A; Dear, K; Dwyer, T; Kilpatrick, T J; McMichael, A J; van der Mei, I; Taylor, B V; Ponsonby, A-L

    2013-05-01

    Inconsistent evidence exists regarding the association between work-related factors and risk of multiple sclerosis (MS). We examined the association between occupational exposures and risk of a first clinical diagnosis of central nervous system demyelination (FCD), which is strongly associated with progression to MS, in a matched case-control study of 276 FCD cases and 538 controls conducted in Australia (2003-2006). Using a personal residence and work calendar, information on occupational history and exposure to chemicals and animals was collected through face-to-face interviews. Few case-control differences were noted. Fewer cases had worked as professionals (≥6 years) than controls (adjusted odds ratio (AOR) = 0.60, 95% confidence interval (CI): 0.37, 0.96). After further adjustment for number of children, cases were more likely to have ever been exposed to livestock than controls (AOR = 1.54, 95% CI: 1.03, 2.29). Among women, there was an increase in FCD risk associated with 10 or more years of exposure to livestock (AOR = 2.78, 95% CI: 1.22, 6.33) or 6 or more years of farming (AOR = 2.00, 95% CI: 1.23, 3.25; also adjusted for number of children). Similar findings were not evident among men. Thus, farming and exposure to livestock may be important factors in the development of FCD among women, with this finding further revealed after the confounding effect of parity or number of children is considered.

  7. Venous endothelial injury in central nervous system diseases

    PubMed Central

    2013-01-01

    The role of the venous system in the pathogenesis of inflammatory neurological/neurodegenerative diseases remains largely unknown and underinvestigated. Aside from cerebral venous infarcts, thromboembolic events, and cerebrovascular bleeding, several inflammatory central nervous system (CNS) diseases, such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and optic neuritis, appear to be associated with venous vascular dysfunction, and the neuropathologic hallmark of these diseases is a perivenous, rather than arterial, lesion. Such findings raise fundamental questions about the nature of these diseases, such as the reasons why their pathognomonic lesions do not develop around the arteries and what exactly are the roles of cerebral venous inflammation in their pathogenesis. Apart from this inflammatory-based view, a new hypothesis with more focus on the hemodynamic features of the cerebral and extracerebral venous system suggests that MS pathophysiology might be associated with the venous system that drains the CNS. Such a hypothesis, if proven correct, opens new therapeutic windows in MS and other neuroinflammatory diseases. Here, we present a comprehensive review of the pathophysiology of MS, ADEM, pseudotumor cerebri, and optic neuritis, with an emphasis on the roles of venous vascular system programming and dysfunction in their pathogenesis. We consider the fundamental differences between arterial and venous endothelium, their dissimilar responses to inflammation, and the potential theoretical contributions of venous insufficiency in the pathogenesis of neurovascular diseases. PMID:24228622

  8. Evolution of centralized nervous systems: Two schools of evolutionary thought

    PubMed Central

    Northcutt, R. Glenn

    2012-01-01

    Understanding the evolution of centralized nervous systems requires an understanding of metazoan phylogenetic interrelationships, their fossil record, the variation in their cephalic neural characters, and the development of these characters. Each of these topics involves comparative approaches, and both cladistic and phenetic methodologies have been applied. Our understanding of metazoan phylogeny has increased greatly with the cladistic analysis of molecular data, and relaxed molecular clocks generally date the origin of bilaterians at 600–700 Mya (during the Ediacaran). Although the taxonomic affinities of the Ediacaran biota remain uncertain, a conservative interpretation suggests that a number of these taxa form clades that are closely related, if not stem clades of bilaterian crown clades. Analysis of brain–body complexity among extant bilaterians indicates that diffuse nerve nets and possibly, ganglionated cephalic neural systems existed in Ediacaran organisms. An outgroup analysis of cephalic neural characters among extant metazoans also indicates that the last common bilaterian ancestor possessed a diffuse nerve plexus and that brains evolved independently at least four times. In contrast, the hypothesis of a tripartite brain, based primarily on phenetic analysis of developmental genetic data, indicates that the brain arose in the last common bilaterian ancestor. Hopefully, this debate will be resolved by cladistic analysis of the genomes of additional taxa and an increased understanding of character identity genetic networks. PMID:22723354

  9. [Chronic central nervous system histoplasmosis in an immunocompetent patient].

    PubMed

    Carod-Artal, F J; Venturini, M; Gomes, E; de Mello, M T

    2008-05-01

    Histoplasma capsulatum is an endemic fungus in America that may present as a lung self-limiting infection or be asymptomatic. Disseminated histoplasmosis can occur in cell-mediated immunity disorders and acquired immunodeficiency syndrome. Isolated central nervous system (CNS) histoplasmosis is uncommon, furthermore in immunocompetent patients. A 34 year old inmunocompetent male is reported. He presented with several pathogenic forms of neurohistoplasmosis: chronic meningitis, meningovascular histoplasmosis with stroke, acute myelopathy and chronic recurrent hydrocephalus. Other causes of chronic infectious meningitis were ruled out. Cerebrospinal flow (CSF) analysis showed an increased white cell count, hyperproteinorraquia and decrease of glucose levels. Brain magnetic resonance imaging (MRI) showed hydrocephalus and gadolinium enhancement of the meninges; a spinal cord MRI detected a cervical and thoracic myelopathy. A chronic unspecific inflammatory process and absence of granulomata were observed in a meninge biopsy. Electronic microscopy showed the presence of yeasts in the CSF. Histoplasma capsulatum was isolated in a specific culture from two consecutive CSF samples. The patient was treated with ev amphotericin B and fluconazol, plus 6 months of oral itraconazole. Isolated chronic CNS histoplasmosis may present as recurrent episodes of stroke, meningitis, myelopathy and hydrocephalus. CSF specific culture can help in the diagnosis.

  10. Maternal drug histories and central nervous system anomalies.

    PubMed Central

    Winship, K A; Cahal, D A; Weber, J C; Griffin, J P

    1984-01-01

    Prescription data for the three months before the last menstrual period and for the first trimester of pregnancy were obtained for 764 mothers whose children had a defect of the central nervous system and for an equal number of mothers of control babies born from the same doctors' practices. There was a statistically significant difference overall between the numbers of mothers who were prescribed drugs in the study and control groups during the trimester before the last menstrual period but no such difference was found for the first pregnancy trimester, nor was there a significant difference for any specific group of drugs. For a composite group of non-steroid anti-inflammatory drugs, salicylates, and sulphasalazine there was a significant difference for the trimester before the last menstrual period. There are arguments against such an artificial grouping, however, and when the individual drugs were considered the comparisons were no longer significant. The odds ratios for all medicines containing folic acid taken in the trimester before the last menstrual period were considerably less than unity, in contrast with nearly all other comparisons. This supports a suggested protective effect against neural tube defects of folic acid supplements begun before the onset of pregnancy but the odds ratios of these comparisons were not statistically significant. PMID:6150687

  11. Primary Central Nervous System Anaplastic Large T-cell Lymphoma

    PubMed Central

    Splavski, Bruno; Muzevic, Dario; Ladenhauser-Palijan, Tatjana; Jr, Brano Splavski

    2016-01-01

    Introduction: Primary central nervous system lymphoma (PCNSL) of T-cell origin is an exceptionally rare, highly malignant intracranial neoplasm. Although such a tumor typically presents with a focal mass lesion. Case report: Past medical history of a 26-year-old male patient with a PCNS lymphoma of T-cell origin was not suggestive of intracranial pathology or any disorder of other organs and organic systems. To achieve a gross total tumor resection, surgery was performed via osteoplastic craniotomy using the left frontal transcortical transventricular approach. Histological and immunohistochemical analyses of the tissue removed described tumor as anaplastic large cell lymphoma of T-cells (T-ALCL). Postoperative and neurological recovery was complete, while control imaging of the brain showed no signs of residual tumor at a six-month follow-up. The patient, who did not appear immunocompromized, was referred to a hematologist and an oncologist where corticosteroids, the particular chemotherapeutic protocol and irradiation therapy were applied. Conclusion: Since PCNS lymphoma is a potentially curable brain tumor, we believe that proper selection of the management options, including early radical tumor resection for solitary PCNS lymphoma, may be proposed as a major treatment of such a tumor in selected patients, resulting in a satisfactory outcome. PMID:27703297

  12. A case of disseminated central nervous system sparganosis

    PubMed Central

    Noiphithak, Raywat; Doungprasert, Gahn

    2016-01-01

    Background: Sparganosis is a very rare parasitic infection in various organs caused by the larvae of tapeworms called spargana. The larva usually lodges in the central nervous system (CNS) and the orbit. However, lumbar spinal canal involvement, as noted in the present case, is extremely rare. We report a rare case of disseminated CNS sparganosis involving the brain and spinal canal and review the literature. Case Description: A 54-year-old man presented with progressive low back pain and neurological deficit at the lumbosacral level for 2 months. Imaging indicated arachnoiditis and an abnormal lesion at the L4-5 vertebral level. The patient underwent laminectomy of the L4-5 with lesionectomy and lysis of adhesions between the nerve roots. Microscopic examination indicated sparganum infection. Further brain imaging revealed evidence of chronic inflammation in the left parieto-occipital area without evidence of live parasites. In addition, an ophthalmologist reported a nonactive lesion in the right conjunctiva. The patient recovered well after surgery, although he had residual back pain and bladder dysfunction probably due to severe adhesion of the lumbosacral nerve roots. Conclusion: CNS sparganosis can cause various neurological symptoms similar to those of other CNS infections. A preoperative enzyme-linked immunosorbent assay is helpful for diagnosis, especially in endemic areas. Surgical removal of the worm remains the treatment of choice. PMID:28031991

  13. Transcriptome analysis of the Octopus vulgaris central nervous system.

    PubMed

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e(-5). The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e(-5)) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%-46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology.

  14. Central Nervous System Agents for Ischemic Stroke: Neuroprotection Mechanisms

    PubMed Central

    Pandya, Rachna S.; Mao, Lijuan; Zhou, Hua; Zhou, Shuanhu; Zeng, Jiang; Popp, A. John; Wang, Xin

    2011-01-01

    Stroke is the third leading cause of mortality and disability in the United States. Ischemic stroke constitutes 85% of all stroke cases. However, no effective treatment has been found to prevent damage to the brain in such cases except tissue plasminogen activator with narrow therapeutic window, and there is an unmet need to develop therapeutics for neuroprotection from ischemic stroke. Studies have shown that mechanisms including apoptosis, necrosis, inflammation, immune modulation, and oxidative stress and mediators such as excitatory amino acids, nitric oxide, inflammatory mediators, neurotransmitters, reactive oxygen species, and withdrawal of trophic factors may lead to the development of the ischemic cascade. Hence, it is essential to develop neuroprotective agents targeting either the mechanisms or the mediators leading to development of ischemic stroke. This review focuses on central nervous system agents targeting these biochemical pathways and mediators of ischemic stroke, mainly those that counteract apoptosis, inflammation, and oxidation, and well as glutamate inhibitors which have been shown to provide neuroprotection in experimental animals. All these agents have been shown to improve neurological outcome after ischemic insult in experimental animals in vivo, organotypic brain slice/acute slice ex vivo, and cell cultures in vitro and may therefore aid in preventing long-term morbidity and mortality associated with ischemic stroke. PMID:21521165

  15. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system.

    PubMed

    Calcagno, Andrea; Di Perri, Giovanni; Bonora, Stefano

    2014-10-01

    HIV-positive patients may be effectively treated with highly active antiretroviral therapy and such a strategy is associated with striking immune recovery and viral load reduction to very low levels. Despite undeniable results, the central nervous system (CNS) is commonly affected during the course of HIV infection, with neurocognitive disorders being as prevalent as 20-50 % of treated subjects. This review discusses the pathophysiology of CNS infection by HIV and the barriers to efficacious control of such a mechanism, including the available data on compartmental drug penetration and on pharmacokinetic/pharmacodynamic relationships. In the reviewed articles, a high variability in drug transfer to the CNS is highlighted with several mechanisms as well as methodological issues potentially influencing the observed results. Nevirapine and zidovudine showed the highest cerebrospinal fluid (CSF) to plasma ratios, although target concentrations are currently unknown for the CNS. The use of the composite CSF concentration effectiveness score has been associated with better virological outcomes (lower HIV RNA) but has been inconsistently associated with neurocognitive outcomes. These findings support the CNS effectiveness of commonly used highly antiretroviral therapies. The use of antiretroviral drugs with increased CSF penetration and/or effectiveness in treating or preventing neurocognitive disorders however needs to be assessed in well-designed prospective studies.

  16. Microglia in central nervous system repair after injury.

    PubMed

    Jin, Xuemei; Yamashita, Toshihide

    2016-05-01

    Accumulating evidence suggests that immune cells perform crucial inflammation-related functions including clearing dead tissue and promoting wound healing. Thus, they provide a conducive environment for better neuronal regeneration and functional recovery after adult mammalian central nervous system (CNS) injury. However, activated immune cells can also induce secondary damage of intact tissue and inhibit post-injury CNS repair. The inflammation response is due to the microglial production of cytokines and chemokines for the recruitment of peripheral immune cell populations, such as monocytes, neutrophils, dendritic cells and T lymphocytes. Interestingly, microglia and T lymphocytes can be detected at the injured site in both the early and later stages after nerve injury, whereas other peripheral immune cells infiltrate the injured parenchyma of the brain and spinal cord only in the early post-injury phase, and subsequently disappear. This suggests that microglia and T cells may play crucial roles in the post-injury functional recovery of the CNS. In this review, we summarize the current studies on microglia that examined neuronal regeneration and the molecular signalling mechanisms in the injured CNS. Better understanding of the effects of microglia on neural regeneration will aid the development of therapy strategies to enhance CNS functional recovery after injury.

  17. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  18. Treatment of central nervous system manifestations in mitochondrial disorders.

    PubMed

    Finsterer, J

    2011-01-01

    Central nervous system (CNS) manifestations of mitochondrial disorders (MIDs) are accessible to therapy. Therapy of CNS abnormalities may be categorized as acting on the pathogenic cascade or on the genetic level, which is experimental. Treatment acting on the pathogenic cascade may be classified as non-specific, including antioxidants, electron donors/acceptors, lactate-lowering agents, alternative energy providers, cofactors, avoidance of mitochondrion-toxic drugs, and physiotherapy, or as specific, including drugs against epilepsy, movement disorders, migraine, spasticity, psychiatric abnormalities, hypopituitarism, or bulbar manifestations, ketogenic diet, deep brain stimulation, or artificial ventilation. Stroke-like episodes need to be delineated from ischaemic stroke and require special management. Potentially, mitochondrion-toxic drugs and drug cocktails need to be avoided, seizures should be consequently treated even with mitochondrion-toxic drugs if necessary, and as few drugs as possible should be given. Effective treatment acting on the pathogenic cascade may increase the quality of life and outcome in patients with MID and may prevent a therapeutic nihilism occasionally upcoming with MIDs.

  19. Neurological complications of chemotherapy to the central nervous system.

    PubMed

    Newton, Herbert B

    2012-01-01

    One of the most common complications of chemotherapeutic drugs is toxicity to the central nervous system (CNS). This toxicity can manifest in many ways, including encephalopathy syndromes and confusional states, seizure activity, headache, cerebrovascular complications and stroke, visual loss, cerebellar dysfunction, and spinal cord damage with myelopathy. For many drugs, the toxicity is related to route of administration and cumulative dose, and can vary from brief, transient episodes to more severe, chronic sequelae. However, the neurotoxicity can be idiosyncratic and unpredictable in some cases. Among the antimetabolite drugs, methotrexate, 5-fluorouracil, and cytosine arabinoside are most likely to cause CNS toxicity. Of the alkylating agent chemotherapeutic drugs, the nitrosoureas (e.g., BCNU) and cisplatin most frequently cause toxicity to the CNS, especially when given via the intra-arterial route. Ifosfamide is also likely to cause neurotoxicity at high intravenous doses. Other alkylating agents, such as busulfan, cyclophosphamide, procarbazine, and temozolomide, are better tolerated by the CNS at moderate doses. The retinoid drugs are known to cause severe headaches at high doses. l-Asparaginase can induce an encephalopathy syndrome, as well as cerebrovascular complications such as stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Clinical Proton MR Spectroscopy in Central Nervous System Disorders

    PubMed Central

    Alger, Jeffry R.; Barker, Peter B.; Bartha, Robert; Bizzi, Alberto; Boesch, Chris; Bolan, Patrick J.; Brindle, Kevin M.; Cudalbu, Cristina; Dinçer, Alp; Dydak, Ulrike; Emir, Uzay E.; Frahm, Jens; González, Ramón Gilberto; Gruber, Stephan; Gruetter, Rolf; Gupta, Rakesh K.; Heerschap, Arend; Henning, Anke; Hetherington, Hoby P.; Howe, Franklyn A.; Hüppi, Petra S.; Hurd, Ralph E.; Kantarci, Kejal; Klomp, Dennis W. J.; Kreis, Roland; Kruiskamp, Marijn J.; Leach, Martin O.; Lin, Alexander P.; Luijten, Peter R.; Marjańska, Małgorzata; Maudsley, Andrew A.; Meyerhoff, Dieter J.; Mountford, Carolyn E.; Nelson, Sarah J.; Pamir, M. Necmettin; Pan, Jullie W.; Peet, Andrew C.; Poptani, Harish; Posse, Stefan; Pouwels, Petra J. W.; Ratai, Eva-Maria; Ross, Brian D.; Scheenen, Tom W. J.; Schuster, Christian; Smith, Ian C. P.; Soher, Brian J.; Tkáč, Ivan; Vigneron, Daniel B.; Kauppinen, Risto A.

    2014-01-01

    A large body of published work shows that proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article. PMID:24568703

  1. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders

    PubMed Central

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered. PMID:25198705

  2. Superficial siderosis of the central nervous system: A case report

    PubMed Central

    GAO, JI-GUO; ZHOU, CHUN-KUI; LIU, JING-YAO

    2015-01-01

    Superficial siderosis of the central nervous system (SSCNS) is a rare syndrome resulting from hemosiderin deposits in neuronal tissues close to the cerebrospinal fluid. SSCNS is characterized by sensorineural deafness, cerebellar ataxia and signs of pyramidal tract dysfunction. The present study describes a patient with SSCNS that did not suffer from hearing loss, which is the most common symptom of SSCNS. The patient was a 48-year-old male, presenting with dizziness, ataxia and slurred speech. The patient’s ataxia was characterized by dizziness, nystagmus, dysarthria, abnormal finger-nose pointing and heel-knee-shin tests and a positive Chaddock sign. The patient had suffered from a pontine hemorrhage two years prior to the study. Audiometric tests showed normal hearing during the hospital stay and at the two-month follow-up examination. The diagnosis of SSCNS was made based on magnetic resonance images, which showed areas of linear hypointensity on the surface of the pons with mild cerebellar atrophy. However, a long-term follow-up is required to monitor the hearing of the patient. Improved understanding of SSCNS is important for clinicians to identify SSCNS patients who present without typical clinical symptoms. PMID:25780438

  3. Chemotherapy in newly diagnosed primary central nervous system lymphoma

    PubMed Central

    Hashemi-Sadraei, Nooshin; Peereboom, David M.

    2010-01-01

    Primary central nervous system lymphoma (PCNSL) accounts for only 3% of brain tumors. It can involve the brain parenchyma, leptomeninges, eyes and the spinal cord. Unlike systemic lymphoma, durable remissions remain uncommon. Although phase III trials in this rare disease are difficult to perform, many phase II trials have attempted to define standards of care. Treatment modalities for patients with newly diagnosed PCNSL include radiation and/or chemotherapy. While the role of radiation therapy for initial management of PCNSL is controversial, clinical trials will attempt to improve the therapeutic index of this modality. Routes of chemotherapy administration include intravenous, intraocular, intraventricular or intra-arterial. Multiple trials have outlined different methotrexate-based chemotherapy regimens and have used local techniques to improve drug delivery. A major challenge in the management of patients with PCNSL remains the delivery of aggressive treatment with preservation of neurocognitive function. Because PCNSL is rare, it is important to perform multicenter clinical trials and to incorporate detailed measurements of long-term toxicities. In this review we focus on different chemotherapeutic approaches for immunocompetent patients with newly diagnosed PCNSL and discuss the role of local drug delivery in addition to systemic therapy. We also address the neurocognitive toxicity of treatment. PMID:21789140

  4. Survival of European patients with central nervous system tumors.

    PubMed

    Sant, Milena; Minicozzi, Pamela; Lagorio, Susanna; Børge Johannesen, Tom; Marcos-Gragera, Rafael; Francisci, Silvia

    2012-07-01

    We present estimates of population-based 5-year relative survival for adult Europeans diagnosed with central nervous system tumors, by morphology (14 categories based on cell lineage and malignancy grade), sex, age at diagnosis and region (UK and Ireland, Northern, Central, Eastern and Southern Europe) for the most recent period with available data (2000-2002). Sources were 39 EUROCARE cancer registries with continuous data from 1996 to 2002. Survival time trends (1988 to 2002) were estimated from 24 cancer registries with continuous data from 1988. Overall 5-year relative survival was 85.0% for benign, 19.9% for malignant tumors. Benign tumor survival ranged from 90.6% (Northern Europe) to 77.4% (UK and Ireland); for malignant tumors the range was 25.1% (Northern Europe) to 15.6% (UK and Ireland). Survival decreased with age at diagnosis and was slightly better for women (malignant tumors only). For glial tumors, survival varied from 83.5% (ependymoma and choroid plexus) to 2.7% (glioblastoma); and for non-glioma tumors from 96.5% (neurinoma) to 44.9% (primitive neuroectoderm tumor/medulloblastoma). Survival differences between regions narrowed after adjustment for morphology and age, and were mainly attributable to differences in morphology mix; however UK and Ireland and Eastern Europe patients still had 40% and 30% higher excess risk of death, respectively, than Northern Europe patients (reference). Survival for benign tumors increased from 69.3% (1988-1990) to 77.1% (2000-2002); but survival for malignant tumors did not improve indicating no useful advances in treatment over the 14-year study period, notwithstanding major improvement in the diagnosis and treatment of other solid cancers. Copyright © 2011 UICC.

  5. Central nervous system-derived cells express a kappa B-binding activity that enhances human immunodeficiency virus type 1 transcription in vitro and facilitates TAR-independent transactivation by Tat.

    PubMed Central

    Taylor, J P; Pomerantz, R J; Raj, G V; Kashanchi, F; Brady, J N; Amini, S; Khalili, K

    1994-01-01

    The Tat protein of human immunodeficiency virus type 1 (HIV-1) is a potent activator of long terminal repeat-directed transcription. While in most cell types, activation requires interaction of Tat with the unusual transcription element TAR, astrocytic glial cells support TAR-independent transactivation of HIV-1 transcription by Tat. This alternative pathway of Tat activation is mediated by the viral enhancer, a kappa B domain capable of binding the prototypical form of the transcription factor nuclear factor kappa B (NF-kappa B) present in many cell types, including T lymphocytes. Tat transactivation mediated by the kappa B domain is sufficient to allow replication of TAR-deleted mutant HIV-1 in astrocytes. The present study demonstrates the existence of kappa B-specific binding factors present in human glial astrocytes that differ from prototypical NF-kappa B. The novel astrocyte-derived kappa B-binding activity is retained on an HIV-1 Tat affinity column, while prototypical NF-kappa B from Jurkat T cells is not. In vitro transcription studies demonstrate that astrocyte-derived kappa B-binding factors activate transcription of the HIV-1 long terminal repeat and that this activation is dependent on the kappa B domain. Moreover, TAR-independent transactivation of HIV-1 transcription is reproduced in vitro in an astrocyte factor-dependent manner which correlates with kappa B-binding activity. The importance of the central nervous system-enriched kappa B transcription factor in the regulation of HIV-1 expression is discussed. Images PMID:8189531

  6. Effects of Petroleum Ether Extract of Amorphophallus paeoniifolius Tuber on Central Nervous System in Mice

    PubMed Central

    Das, S. S.; Sen, Malini; Dey, Y. N.; De, S.; Ghosh, A. K.

    2009-01-01

    The central nervous system activity of the petroleum ether extract of Amorphophallus paeoniifolius tuber was examined in mice, fed normal as well as healthy conditions. The petroleum ether extract of Amorphophallus paeoniifolius tuber at the doses of 100, 300 and 1000 mg/kg showed significant central nervous system activity in mice. PMID:20376218

  7. Central Nervous System Blastomycosis in Children: A Case Report and Review of the Literature.

    PubMed

    Madigan, Theresa; Fatemi, Yasaman; Theel, Elitza S; Moodley, Amaran; Boyce, Thomas G

    2017-07-01

    We present a 7-year-old boy with chronic meningitis caused by Blastomyces dermatitidis. A review of the literature revealed 32 cases of central nervous system blastomycosis in children between 1983 and 2016, of which 18 represented parenchymal disease of the brain or spinal cord. Blastomycosis affecting the central nervous system is rare but should be considered in children with chronic meningitis.

  8. Childhood primary angiitis of the central nervous system: two biopsy-proven cases.

    PubMed

    Yaari, Roy; Anselm, Irina A; Szer, Ilona S; Malicki, Denise M; Nespeca, Mark P; Gleeson, Joseph G

    2004-11-01

    Primary angiitis of the central nervous system is a rare idiopathic vasculitis predominantly affecting the central nervous system. The literature includes 10 histologically confirmed cases in childhood. We identify two additional cases, one presenting with both uveitis and cerebrospinal fluid neutrophilic pleocytosis, which has not been reported previously, and demonstrate the importance of biopsy in suspected cases.

  9. Central nervous system pharmacokinetics of the Mdr1 P-glycoprotein substrate CP-615,003: intersite differences and implications for human receptor occupancy projections from cerebrospinal fluid exposures.

    PubMed

    Venkatakrishnan, Karthik; Tseng, Elaine; Nelson, Frederick R; Rollema, Hans; French, Jonathan L; Kaplan, Irina V; Horner, Weldon E; Gibbs, Megan A

    2007-08-01

    The central nervous system (CNS) distribution and transport mechanisms of the investigational drug candidate CP-615,003 (N-[3-fluoro-4-[2-(propylamino)ethoxy]phenyl]-4,5,6,7-tetrahydro-4-oxo-1H-indole-3-carboxamide) and its active metabolite CP-900,725 have been characterized. Brain distribution of CP-615,003 and CP-900,725 was low in rats and mice (brain-to-serum ratio < 0.2). Cerebrospinal fluid (CSF)-to-serum ratios of CP-615,003 were 6- to 8-fold lower than the plasma unbound fraction in rats and dogs. In vitro, CP-615,003 displayed quinidine-like efflux in MDR1-expressing Madin-Darby canine kidney II cells. The brain-to-serum ratio of CP-615,003 in mdr1a/1b (-/-) mice was approximately 7 times that in their wild-type counterparts, confirming that impaired CNS distribution was explained by P-gp efflux transport. In contrast, P-gp efflux did not explain the impaired CNS penetration of CP-900,725. Intracerebral microdialysis was used to characterize rat brain extracellular fluid (ECF) distribution. Interestingly, the ECF-to-serum ratio of the P-gp substrate CP-615,003 was 7-fold below the CSF-to-serum ratio, whereas this disequilibrium was not observed for CP-900,725. In a clinical study, steady-state CSF exposures were measured after administration of 100 mg of CP-615,003 b.i.d. The human CSF-to-plasma ratios of CP-615,003 and CP-900,725 were both approximately 10-fold below their ex vivo plasma unbound fractions, confirming impaired human CNS penetration. Preliminary estimates of CNS receptor occupancy from human CSF concentrations were sensitive to assumptions regarding the magnitude of the CSF-ECF gradient for CP-615,003 in humans. In summary, this case provides an example of intersite differences in CNS pharmacokinetics of a P-gp substrate and potential implications for projection of human CNS receptor occupancy of transporter substrates from CSF pharmacokinetic data when direct imaging-based approaches are not feasible.

  10. Central Nervous System Strongyloidiasis and Cryptococcosis in an HIV-Infected Patient Starting Antiretroviral Therapy

    PubMed Central

    Rodríguez, Mónica; Flores, Paúl; Ahumada, Víctor; Vázquez-Vázquez, Lorena; Alvarado-de la Barrera, Claudia; Reyes-Terán, Gustavo

    2012-01-01

    We report a case of Strongyloides stercoralis hyperinfection syndrome with central nervous system involvement, in a patient with late human immunodeficiency virus (HIV) infection starting antiretroviral therapy, in whom Strongyloides stercoralis larvae and Cryptococcus neoformans were isolated antemortem from cerebrospinal fluid. Our patient was not from an endemic region for the parasite, so strongyloidiasis was not originally suspected. For this reason, we conclude that Strongyloides stercoralis infection should be suspected in HIV-infected patients starting antiretroviral therapy in order to avoid potential fatal outcomes. PMID:22924046

  11. Autoantibodies in traumatic brain injury and central nervous system trauma.

    PubMed

    Raad, M; Nohra, E; Chams, N; Itani, M; Talih, F; Mondello, S; Kobeissy, F

    2014-12-05

    Despite the debilitating consequences and the widespread prevalence of brain trauma insults including spinal cord injury (SCI) and traumatic brain injury (TBI), there are currently few effective therapies for most of brain trauma sequelae. As a consequence, there has been a major quest for identifying better diagnostic tools, predictive models, and directed neurotherapeutic strategies in assessing brain trauma. Among the hallmark features of brain injury pathology is the central nervous systems' (CNS) abnormal activation of the immune response post-injury. Of interest, is the occurrence of autoantibodies which are produced following CNS trauma-induced disruption of the blood-brain barrier (BBB) and released into peripheral circulation mounted against self-brain-specific proteins acting as autoantigens. Recently, autoantibodies have been proposed as the new generation class of biomarkers due to their long-term presence in serum compared to their counterpart antigens. The diagnostic and prognostic value of several existing autoantibodies is currently being actively studied. Furthermore, the degree of direct and latent contribution of autoantibodies to CNS insult is still not fully characterized. It is being suggested that there may be an analogy of CNS autoantibodies secretion with the pathophysiology of autoimmune diseases, in which case, understanding and defining the role of autoantibodies in brain injury paradigm (SCI and TBI) may provide a realistic prospect for the development of effective neurotherapy. In this work, we will discuss the accumulating evidence about the appearance of autoantibodies following brain injury insults. Furthermore, we will provide perspectives on their potential roles as pathological components and as candidate markers for detecting and assessing CNS injury.

  12. Staphylococcus aureus Central Nervous System Infections in Children.

    PubMed

    Vallejo, Jesus G; Cain, Alexandra N; Mason, Edward O; Kaplan, Sheldon L; Hultén, Kristina G

    2017-10-01

    Central nervous system (CNS) infections caused by Staphylococcus aureus are uncommon in pediatric patients. We review the epidemiology, clinical features and treatment in 68 patients with a S. aureus CNS infection evaluated at Texas Children's Hospital. Cases of CNS infection in children with positive cerebrospinal fluid cultures or spinal epidural abscess (SEA) for S. aureus at Texas Children's Hospital from 2001 to 2013 were reviewed. Seventy cases of S. aureus CNS infection occurred in 68 patients. Forty-nine cases (70%) were secondary to a CNS device, 5 (7.1%) were postoperative meningitis, 9 (12.8%) were hematogenous meningitis and 7 (10%) were SEAs. Forty-seven (67.2%) were caused by methicillin-sensitive S. aureus (MSSA) and 23 (32.8%) by methicillin-resistant S. aureus (MRSA). Community-acquired infections were more often caused by MRSA that was clone USA300/pvl. Most patients were treated with nafcillin (MSSA) or vancomycin (MRSA) with or without rifampin. Among patients with MRSA infection, 50% had a serum vancomycin trough obtained with the median level being 10.6 μg/mL (range: 5.4-15.7 μg/mL). Only 1 death was associated with S. aureus infection. The epidemiology of invasive of S. aureus infections continues to evolve with MSSA accounting for most of the infections in this series. The majority of cases were associated with neurosurgical procedures; however, hematogenous S. aureus meningitis and SEA occurred as community-acquired infections in patients without predisposing factors. Patients with MRSA CNS infections had a favorable response to vancomycin, but the beneficial effect of combination therapy or targeting vancomycin trough concentrations of 15-20 μg/mL remains unclear.

  13. Congenital malformations of the central nervous system: clinical approach.

    PubMed

    Hadzagić-Catibusić, Feriha; Maksić, Hajrija; Uzicanin, Sajra; Heljić, Suada; Zubcević, Smail; Merhemić, Zulejha; Cengić, Adisa; Kulenović, Edina

    2008-11-01

    Central nervous system (CNS) malformations represent important factor of morbidity and mortality in children. The aim of the study was to determine the incidence, type and clinical features of CNS malformations in children who were admitted at the Neonatal and Child Neurology Department, Neonatal Intensive Care Unit and Paediatric Intensive Care Unit of Paediatric Clinic, University of Sarajevo Clinics Centre, from January 1st, 2002 to December 31st, 2006. There were total of 16520 admissions at the Paediatric Clinic over the studied period. CNS malformations, solitary or multiple, have been diagnosed in 100 patients (0,61%). The total number of various CNS malformations was 127. Lethal outcome was established in 9/100 cases (9%). The most frequent CNS malformations were neural tube defects 49/127 (38,6%). Hydrocephalus was seen in 34/127 (26,8%), microcephaly in 24/127 (18,9%), agenesis of corpus callosum in 10/127 (7,9%), Dandy Walker malformation in 6/127 (4,7%) and other CNS malformations in 4/127 (3,1%). In 20/100 of patients neural tube defect was associated with hydrocephalus (20%). CNS malformations were prenatally diagnosed in 13/100 of patients (13%). Primary prevention of CNS malformations can be improved in our country by better implementation of preconceptional folic acid therapy for all women of childbearing age. Secondary prevention by prenatal diagnosis requires advanced technical equipment and adequate education of physicians in the field of foetal ultrasonography. In our circumstances, prenatal diagnostics of CNS malformations is still not developed enough.

  14. The mechanical importance of myelination in the central nervous system.

    PubMed

    Weickenmeier, Johannes; de Rooij, Rijk; Budday, Silvia; Ovaert, Timothy C; Kuhl, Ellen

    2017-04-19

    Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Central nervous system regeneration: from leech to opossum

    PubMed Central

    Mladinic, M; Muller, K J; Nicholls, J G

    2009-01-01

    A major problem of neurobiology concerns the failure of injured mammalian spinal cord to repair itself. This review summarizes work done on two preparations in which regeneration can occur: the central nervous system of an invertebrate, the leech, and the spinal cord of an immature mammal, the opossum. The aim is to understand cellular and molecular mechanisms that promote and prevent regeneration. In the leech, an individual axon regrows successfully to re-establish connections with its synaptic target, while avoiding other neurons. Functions that were lost are thereby restored. Moreover, pairs of identified neurons become re-connected with appropriate synapses in culture. It has been shown that microglial cells and nitric oxide play key roles in leech CNS regeneration. In the opossum, the neonatal brain and spinal cord are so tiny that they survive well in culture. Fibres grow across spinal cord lesions in neonatal animals and in vitro, but axon regeneration stops abruptly between postnatal days 9 and 12. A comprehensive search has been made in spinal cords that can and cannot regenerate to identify genes and establish their locations. At 9 days, growth-promoting genes, their receptors and key transcription molecules are up-regulated. By contrast at 12 days, growth-inhibitory molecules associated with myelin are prominent. The complete sequence of the opossum genome and new methods for transfecting genes offer ways to determine which molecules promote and which inhibit spinal cord regeneration. These results lead to questions about how basic research on mechanisms of regeneration could be ‘translated’ into effective therapies for patients with spinal cord injuries. PMID:19525562

  16. Central nervous system activity of Illicium verum fruit extracts.

    PubMed

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. TH1/TH2 cytokines in the central nervous system.

    PubMed

    Sredni-Kenigsbuch, Dvora

    2002-06-01

    For the past 20 years it has become increasingly evident that cytokines play an important role in both the normal development of the brain, acting as neurotrophic factors, and in brain injuries. Although cytokines and their receptors are synthesized and expressed in the brain (normally at low levels), increased cytokine production levels are now associated with various neurological disorders. T lymphocytes are the cells responsible for coordinating the immune response and a major source of cytokines. Different cytokines induce different subsets of T cells or have different effects on proliferation within a particular subset. Recent studies suggest that the immune response is in fact regulated by the balance between Th1 and Th2 cytokines. These two pathways are often mutually exclusive, the one resulting in protection and the other in progression of disease. Various studies describe the function and production of proinflammatory cytokines in the central nervous system (CNS) and their role in health and disease. Inflammation is upregulated following activation of Th1 cells, whereas Th2 cells may play a significant role in downregulating Th1 proinflammatory responses in those instances in which there is overproduction of Th2 cytokines. Although both Th1 and Th2 cytokines may influence CNS functioning, most studies have so far dealt with proinflammatory cytokines, probably because they directly affect CNS cells and are thought to be implicated in CNS pathology. It is of interest that endogenous glucocorticoids also control Th1-Th2 balance, favoring Th2 cell development. This review presents the evidence that cytokines have important functions in the CNS, both during development and as a part of brain pathology. In particular, the author highlighted recent work that supports a major role for the so-called inflammatory cytokines, Th1, and the anti-inflammatory Th2 cytokines.

  18. Central nervous system regeneration: from leech to opossum.

    PubMed

    Mladinic, M; Muller, K J; Nicholls, J G

    2009-06-15

    A major problem of neurobiology concerns the failure of injured mammalian spinal cord to repair itself. This review summarizes work done on two preparations in which regeneration can occur: the central nervous system of an invertebrate, the leech, and the spinal cord of an immature mammal, the opossum. The aim is to understand cellular and molecular mechanisms that promote and prevent regeneration. In the leech, an individual axon regrows successfully to re-establish connections with its synaptic target, while avoiding other neurons. Functions that were lost are thereby restored. Moreover, pairs of identified neurons become re-connected with appropriate synapses in culture. It has been shown that microglial cells and nitric oxide play key roles in leech CNS regeneration. In the opossum, the neonatal brain and spinal cord are so tiny that they survive well in culture. Fibres grow across spinal cord lesions in neonatal animals and in vitro, but axon regeneration stops abruptly between postnatal days 9 and 12. A comprehensive search has been made in spinal cords that can and cannot regenerate to identify genes and establish their locations. At 9 days, growth-promoting genes, their receptors and key transcription molecules are up-regulated. By contrast at 12 days, growth-inhibitory molecules associated with myelin are prominent. The complete sequence of the opossum genome and new methods for transfecting genes offer ways to determine which molecules promote and which inhibit spinal cord regeneration. These results lead to questions about how basic research on mechanisms of regeneration could be 'translated' into effective therapies for patients with spinal cord injuries.

  19. Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation

    PubMed Central

    Papp, Stefanie; Moderzynski, Kristin; Kuehl, Svenja; Richardt, Ulricke; Fleischer, Bernhard

    2016-01-01

    Rickettsioses are emerging febrile diseases caused by obligate intracellular bacteria belonging to the family Rickettsiaceae. Rickettsia typhi belongs to the typhus group (TG) of this family and is the causative agent of endemic typhus, a disease that can be fatal. In the present study, we analyzed the course of R. typhi infection in C57BL/6 RAG1−/− mice. Although these mice lack adaptive immunity, they developed only mild and temporary symptoms of disease and survived R. typhi infection for a long period of time. To our surprise, 3 to 4 months after infection, C57BL/6 RAG1−/− mice suddenly developed lethal neurological disorders. Analysis of these mice at the time of death revealed high bacterial loads, predominantly in the brain. This was accompanied by a massive expansion of microglia and by neuronal cell death. Furthermore, high numbers of infiltrating CD11b+ macrophages were detectable in the brain. In contrast to the microglia, these cells harbored R. typhi and showed an inflammatory phenotype, as indicated by inducible nitric oxide synthase (iNOS) expression, which was not observed in the periphery. Having shown that R. typhi persists in immunocompromised mice, we finally asked whether the bacteria are also able to persist in resistant C57BL/6 and BALB/c wild-type mice. Indeed, R. typhi could be recultivated from lung, spleen, and brain tissues from both strains even up to 1 year after infection. This is the first report demonstrating persistence and reappearance of R. typhi, mainly restricted to the central nervous system in immunocompromised mice. PMID:26975992

  20. Idiopathic inflammatory-demyelinating diseases of the central nervous system.

    PubMed

    Cañellas, A Rovira; Gols, A Rovira; Izquierdo, J Río; Subirana, M Tintoré; Gairin, X Montalban

    2007-05-01

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Baló's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures.

  1. Canine Central Nervous System Neoplasm Phenotyping Using Tissue Microarray Technique.

    PubMed

    Spitzbarth, I; Heinrich, F; Herder, V; Recker, T; Wohlsein, P; Baumgärtner, W

    2017-05-01

    Tissue microarrays (TMAs) represent a useful technique for the simultaneous phenotyping of large sample numbers and are particularly suitable for histopathologic tumor research. In this study, TMAs were used to evaluate semiquantitatively the expression of multiple antigens in various canine central nervous system (CNS) neoplasms and to identify markers with potential discriminative diagnostic relevance. Ninety-seven canine CNS neoplasms, previously diagnosed on hematoxylin and eosin sections according to the World Health Organization classification, were investigated on TMAs, with each tumor consisting of 2 cylindrical samples from the center and the periphery of the neoplasm. Tumor cells were phenotyped using a panel of 28 monoclonal and polyclonal antibodies, and hierarchical clustering analysis was applied to group neoplasms according to similarities in their expression profiles. Hierarchical clustering generally grouped cases with similar histologic diagnoses; however, gliomas especially exhibited a considerable heterogeneity in their positivity scores. Multiple tumor groups, such as astrocytomas and oligodendrogliomas, significantly differed in the proportion of positive immunoreaction for certain markers such as p75(NTR), AQP4, GFAP, and S100 protein. The study highlights AQP4 and p75(NTR) as novel markers, helping to discriminate between canine astrocytoma and oligodendroglioma. Furthermore, the results suggest that p75(NTR) and proteolipid protein may represent useful markers, whose expression inversely correlates with malignant transformation in canine astrocytomas and oligodendrogliomas, respectively. Tissue microarray was demonstrated to be a useful and time-saving tool for the simultaneous immunohistochemical characterization of multiple canine CNS neoplasms. The present study provides a detailed overview of the expression patterns of different types of canine CNS neoplasms.

  2. Craniospinal irradiation using helical tomotherapy for central nervous system tumors.

    PubMed

    Schiopu, Sanziana R I; Habl, Gregor; Häfner, Matthias; Katayama, Sonja; Herfarth, Klaus; Debus, Juergen; Sterzing, Florian

    2017-01-17

    The aim of this study was to describe early and late toxicity, survival and local control in 45 patients with primary brain tumors treated with helical tomotherapy craniospinal irradiation (HT-CSI). From 2006 to 2014, 45 patients with central nervous system malignancies were treated with HT-CSI. The most common tumors were medulloblastoma in 20 patients, ependymoma in 10 patients, intracranial germinoma (ICG) in 7 patients, and primitive neuroectodermal tumor in 4 patients. Hematological toxicity during treatment included leukopenia Grades 1-4 (6.7%, 33.3%, 37.8% and 17.8%, respectively), anemia Grades 1-4 (44.4%, 22.2%, 22.2% and 0%, respectively) and thrombocytopenia Grades 1-4 (51.1%, 15.6%, 15.6% and 6.7%, respectively). The most common acute toxicities were nausea, vomiting, fatigue, loss of appetite, alopecia and neurotoxicity. No Grade 3 or higher late toxicity occurred. The overall 3- and 5-year survival rates were 80% and 70%, respectively. Survival for the main tumor entities included 3- and 5-year survival rates of 80% and 70%, respectively, for patients with medulloblastoma, 70% for both in patients with ependymoma, and 100% for both in patients with ICG. Relapse occurred in 11 patients (24.4%): 10 with local and 1 with multifocal relapse. One patient experienced a secondary cancer. M-status and the results of the re-evaluation at the end of treatment were significantly related to survival. Survival after HT-CSI was in line with the existing literature, and acute treatment-induced toxicity resolved quickly. Compared with conventional radiotherapy, HT offers benefits such as avoiding gaps and junctions, sparing organs, and better and more homogeneous dose distribution and coverage of the target volume.

  3. New Insights on NOX Enzymes in the Central Nervous System

    PubMed Central

    Nayernia, Zeynab; Jaquet, Vincent

    2014-01-01

    Abstract Significance: There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. Recent Advances: NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. Critical Issues: The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. Future Directions: Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications. Antioxid. Redox Signal. 20: 2815–2837. PMID:24206089

  4. EXOSOME-MEDIATED INFLAMMASOME SIGNALING AFTER CENTRAL NERVOUS SYSTEM INJURY

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Brand, Frank; Adamczak, Stephanie; Lee, Stephanie W.; Barcena, Jon Perez; Wang, Michael Y.; Bullock, M. Ross; Dietrich, W. Dalton; Keane, Robert W.

    2015-01-01

    Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following central nervous system (CNS) injury via activation of multi-protein complexes termed inflammasomes that regulate the activation of caspase-1 and the processing of the pro-inflammatory cytokines IL-1β and IL-18. We report here that the expression of components of the nucleotide-binding-and-oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from cerebrospinal fluid (CSF) of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knock down of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase-1 activation and processing of IL-1β after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. PMID:25628216

  5. Transcriptome Analysis of the Octopus vulgaris Central Nervous System

    PubMed Central

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Background Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. Results With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e−5. The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e−5) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%–46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. Conclusion This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology. PMID:22768275

  6. Citation classics in central nervous system inflammatory demyelinating disease.

    PubMed

    Kim, Jee-Eun; Park, Kang M; Kim, Yerim; Yoon, Dae Y; Bae, Jong S

    2017-06-01

    To identify and analyze the characteristics of the most influential articles about central nervous system (CNS) inflammatory demyelinating disease. The Institute for Scientific Information (ISI) Web of Science database and the 2014 Journal Citation Reports Science Edition were used to retrieve the top 100 cited articles on CNS inflammatory demyelinating disease. The citation numbers, journals, years of publication, authorships, article types, subjects and main issues were analyzed. For neuromyelitis optica (NMO), articles that were cited more than 100 times were regarded as a citation classic and described separately. The top 100 cited articles were published between 1972 and 2011 in 13 journals. The highest number of articles (n = 24) was published in Brain, followed by The New England Journal of Medicine (n = 21). The average number of citations was 664 (range 330-3,897), and 64% of the articles were from the United States and the United Kingdom. The majority of the top 100 cited articles were related to multiple sclerosis (n = 87), and only a few articles reported on other topics such as NMO (n = 9), acute disseminated encephalomyelitis (n = 2) and optic neuritis (n = 2). Among the top 100 cited articles, 77% were original articles. Forty-one citation classics were found for NMO. Our study provides a historical perspective on the research progress on CNS inflammatory demyelinating disease and may serve as a guide for important advances and trends in the field for associated researchers.

  7. Evolution of the Human Nervous System Function, Structure, and Development.

    PubMed

    Sousa, André M M; Meyer, Kyle A; Santpere, Gabriel; Gulden, Forrest O; Sestan, Nenad

    2017-07-13

    The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Opiate receptors and endorphins at the central nervous system level].

    PubMed

    Simon, E J

    1978-01-01

    Four years ago, sterospecific sites for the bending of opiates were discovered within the brain of animals and the human being. All of the properties of these sites are in conformity with the proposition that they are pharmacological receptors which have long been postulated for these drugs. The binding of morphine or of one of its derivatives to these sites should result in chemical or physical reactions leading to well known pharmacological responses. These reactions following the binding of drugs to the receptors are not yet known, but there is some evidence that cyclical nucleotides play a role. The affinity of a whole series of morphine derivatives, agonists and atagonists, is well correlated with their pharmacological effectiveness. In the presence of sodium salts, antagonists become more strongly bound and agonists less strongly than in the absence of sodium. The evidence is presented. This is explained by an equilibrium between two formations of the receptor: one characteristic of the absence of sodium and one of its presence. Receptors are found in the nervous system of all vertebrates and their distribution has been studied in the human brain. The regions with the highest concentration of receptors are those of the limbic system. A high level exists also in the "substantia gelatinosa" of the spinal cord, which is involved in the passage of painful messages. Study of the function of morphine receptors has led to the isolation, in animal brain, of a number of peptides with morphine properties named endorphines. The first two endorphines isolated were pentapeptides named encephalins. The properties of endorphines from the subject of several lecture in this course.

  9. Identification of TPO receptors on central nervous system-a preliminary report.

    PubMed

    Yang, Mo; Xia, Wen-Jie; Li, Karen; Pong, Nga-Hin; Chik, Ki-Wai; Li, Chi-Kong; Ng, Margaret H L; Ng, Ho-Keung; Fung, Kwok-Pui; Fok, Tai-Fai

    2004-08-01

    To identify the expression of thrombopoietin (TPO) receptors (c-mpl) on central nervous system (CNS) and to evaluate the role of TPO on neural cell proliferation and protection, immunohistochemical staining, RT-PCR, MTT, and annexin-V methods were used in this study. The results showed the expression of TPO receptor on human CNS and murine neural cells. C-mpl mRNA was identified in human cerebral hemispheres and cerebellum, and mouse neural cell line C17.2 by RT-PCR. C-mpl was also confirmed in human cerebral hemispheres by immunohistostaining with con-focal microscopy. Furthermore, TPO had a stimulating effect on the growth of in vitro neural cell C17.2 by MTT assay. The anti-apoptotic effect of TPO on C17.2 cells was also demonstrated by staining with annexin-V and PI. In conclusion, the first evidence showed the expression of TPO receptor c-mpl in central nervous system. Moreover, the effect of TPO on neural cell proliferation and anti-apoptosis was also demonstrated on in vitro neural cells.

  10. Central nervous insulin administration does not potentiate the acute glucoregulatory impact of concurrent mild hyperinsulinemia.

    PubMed

    Ott, Volker; Lehnert, Hendrik; Staub, Josefine; Wönne, Kathrin; Born, Jan; Hallschmid, Manfred

    2015-03-01

    Experiments in rodents suggest that hypothalamic insulin signaling essentially contributes to the acute control of peripheral glucose homeostasis. Against this background, we investigated in healthy humans whether intranasal (IN) insulin, which is known to effectively reach the brain compartment, impacts systemic glucose metabolism. Twenty overnight-fasted healthy, normal-weight men were IN administered 210 and 420 international units [IU] (10 and 20 IU every 15 min) of the insulin analog aspart (ins-asp) and placebo, respectively, during experimental sessions lasting 6 h. The use of ins-asp rather than human insulin enabled us to disentangle exogenous and endogenous insulin kinetics. IN insulin dose-dependently decreased plasma glucose concentrations while reducing C-peptide and attenuating endogenous insulin levels. However, we also observed a slight dose-dependent permeation of ins-asp into the circulation. In control experiments mimicking the systemic but not the central nervous uptake of the IN 210 IU dose via intravenous infusion of ins-asp at a dose of 0.12 IU/kg/24 h (n = 10), we obtained essentially identical effects on fasting plasma glucose concentrations. This pattern indicates that sustained IN insulin administration to the human brain to enhance central nervous insulin signaling does not acutely alter systemic glucose homeostasis beyond effects accounted for by concurrent mild hyperinsulinemia.

  11. Central diabetes insipidus in a cat with central nervous system B cell lymphoma.

    PubMed

    Simpson, Christopher J; Mansfield, Caroline S; Milne, Marjorie E; Hodge, Priscilla J

    2011-10-01

    A 6-year-old male neutered cat presented with blindness, lethargy, polydipsia, hyposthenuria and severe hypernatraemia. Central diabetes insipidus was demonstrated by means of a low measured anti-diuretic hormone (ADH) concentration in the face of hypernatraemia, and clinical response to supplementation with desmopressin. Magnetic resonance imaging of the brain showed a discrete mass in the region of the hypothalamus. The cat was euthanased and post-mortem histological examination demonstrated B cell lymphoma involving the brain, optic nerves, urinary bladder wall and diaphragm. To the authors' knowledge, this case report is the first to describe central diabetes insipidus caused by central nervous system lymphoma in the cat. Copyright © 2011 ISFM and AAFP. All rights reserved.

  12. Systematic Review of Central Post Stroke Pain: What Is Happening in the Central Nervous System?

    PubMed

    Akyuz, Gulseren; Kuru, Pinar

    2016-08-01

    Central poststroke pain (CPSP) is one of the most common central neuropathic pain syndromes seen after stroke. It is mainly related with vascular damage at certain brain territory and pain related to corresponding body areas. In the past, it was described as one of the definitive symptoms of thalamic lesion. However, recent findings suggest that it is not only seen after thalamic lesions but also seen after vascular lesions in any part of the central nervous system. Although there are certain hypotheses to explain physiopathologic mechanisms of CPSP, further evidence is needed. The majority of the cases are intractable and unresponsive to analgesic treatment. Electrical stimulation such as deep brain stimulation and repetitive transcranial magnetic stimulation seems to be effective in certain cases. In this systematic review, recent advancements related to CPSP mechanisms have been evaluated. Further investigations are needed in order to reveal the mystery of the pathophysiologic mechanisms of CPSP.

  13. The sympathetic nervous system alterations in human hypertension.

    PubMed

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-03-13

    Several articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as promoters and amplifiers of human hypertension. We expand on the role of the sympathetic nervous system in 2 increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves.

  14. Clinical features of multiple myeloma invasion of the central nervous system in Chinese patients.

    PubMed

    Qu, Xiao-yan; Fu, Wei-jun; Xi, Hao; Zhou, Fan; Wei, Wei; Hou, Jian

    2010-06-01

    Although neurologic manifestations often complicate the course of patients with multiple myeloma, direct central nervous system invasion is rare. This study explored the neurologic symptoms, signs, clinical features, therapy and prognosis of Chinese patients with central nervous system myeloma invasion. The diagnosis, therapy and prognosis were analyzed retrospectively in 11 Chinese multiple myeloma patients with central nervous system infiltration from a total of 625 patients who have been treated at Changzheng Hospital (Shanghai, China) between January 1993 and May 2009. Survival curve was constructed with the use of Kaplan-Meier estimates. There were 11 patients with central nervous system involvement from 625 multiple myeloma patients. The occurrence rate was 1.8%. Ten of the 11 patients had other extramedullary diseases. Symptoms included cerebral symptoms, cranial nerve palsies, and spinal cord or spinal nerve roots symptoms. Cerebrospinal fluid was abnormal in 7 patients, usually exhibiting pleocytosis and elevated protein content, plus positive cytologic findings. Specific magnetic resonance imaging findings suggestive of central nervous system invasion were found in 9 patients. After a median follow-up of 19 months, 3 patients were alive. The median overall survival for all patients was 23 months, while the median overall survival for patients after central nervous system invasion was merely 6 months. It is exceedingly rare for there to be central nervous system infiltration in multiple myeloma patients. When it occurs, the prognosis is extremely poor despite the use of aggressive local and systemic treatment including stem cell transplantation.

  15. Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis.

    PubMed

    Be, Nicholas A; Bishai, William R; Jain, Sanjay K

    2012-01-13

    Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children.

  16. Role of Mycobacterium tuberculosis pknD in the Pathogenesis of central nervous system tuberculosis

    PubMed Central

    2012-01-01

    Background Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. Results We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Conclusions Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children. PMID:22243650

  17. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  18. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Jayasena, T.; Poljak, A.; Braidy, N.; Zhong, L.; Rowlands, B.; Muenchhoff, J.; Grant, R.; Smythe, G.; Teo, C.; Raftery, M.; Sachdev, P.

    2016-10-01

    Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies.

  19. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System

    PubMed Central

    Jayasena, T.; Poljak, A.; Braidy, N.; Zhong, L.; Rowlands, B.; Muenchhoff, J.; Grant, R.; Smythe, G.; Teo, C.; Raftery, M.; Sachdev, P.

    2016-01-01

    Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies. PMID:27762282

  20. Mechanisms of spreading depolarization in vertebrate and insect central nervous systems

    PubMed Central

    Spong, Kristin E.; Andrew, R. David

    2016-01-01

    Spreading depolarization (SD) is generated in the central nervous systems of both vertebrates and invertebrates. SD manifests as a propagating wave of electrical depression caused by a massive redistribution of ions. Mammalian SD underlies a continuum of human pathologies from migraine to stroke damage, whereas insect SD is associated with environmental stress-induced neural shutdown. The general cellular mechanisms underlying SD seem to be evolutionarily conserved throughout the animal kingdom. In particular, SD in the central nervous system of Locusta migratoria and Drosophila melanogaster has all the hallmarks of mammalian SD. Locust SD is easily induced and monitored within the metathoracic ganglion (MTG) and can be modulated both pharmacologically and by preconditioning treatments. The finding that the fly brain supports repetitive waves of SD is relatively recent but noteworthy, since it provides a genetically tractable model system. Due to the human suffering caused by SD manifestations, elucidating control mechanisms that could ultimately attenuate brain susceptibility is essential. Here we review mechanisms of SD focusing on the similarities between mammalian and insect systems. Additionally we discuss advantages of using invertebrate model systems and propose insect SD as a valuable model for providing new insights to mammalian SD. PMID:27334953

  1. Nonclinical Pharmacokinetics of Oseltamivir and Oseltamivir Carboxylate in the Central Nervous System▿

    PubMed Central

    Hoffmann, Gerhard; Funk, Christoph; Fowler, Stephen; Otteneder, Michael B.; Breidenbach, Alexander; Rayner, Craig R.; Chu, Tom; Prinssen, Eric P.

    2009-01-01

    Oseltamivir, a potent and selective inhibitor of influenza A and B virus neuraminidases, is a prodrug that is systemically converted into the active metabolite oseltamivir carboxylate. In light of reported neuropsychiatric events in influenza patients, including some taking oseltamivir, and as part of a full assessment to determine whether oseltamivir could contribute to, or exacerbate, such events, we undertook a series of nonclinical studies. In particular, we investigated (i) the distribution of oseltamivir and oseltamivir carboxylate in the central nervous system of rats after single intravenous doses of oseltamivir and oseltamivir carboxylate and oral doses of oseltamivir, (ii) the active transport of oseltamivir and oseltamivir carboxylate in vitro by transporters located in the blood-brain barrier, and (iii) the extent of local conversion of oseltamivir to oseltamivir carboxylate in brain fractions. In all experiments, results showed that the extent of partitioning of oseltamivir and especially oseltamivir carboxylate to the central nervous system was low. Brain-to-plasma exposure ratios were approximately 0.2 for oseltamivir and 0.01 for oseltamivir carboxylate. Apart from oseltamivir being a good substrate for the P-glycoprotein transporter, no other active transport processes were observed. The conversion of the prodrug to the active metabolite was slow and limited in human and rat brain S9 fractions. Overall, these studies indicate that the potential for oseltamivir and oseltamivir carboxylate to reach the central nervous system in high quantities is low and, together with other analyses and studies, that their involvement in neuropsychiatric events in influenza patients is unlikely. PMID:19721074

  2. Synaptic Targets of Δ9-Tetrahydrocannabinol in the Central Nervous System

    PubMed Central

    Hoffman, Alexander F.; Lupica, Carl R.

    2013-01-01

    The availability of potent synthetic agonists for cannabinoid receptors has facilitated our understanding of cannabinoid actions on synaptic transmission in the central nervous system. Moreover, the ability of these compounds to inhibit neurotransmitter release at many central synapses is thought to underlie most of the behavioral effects of cannabinoid agonists. However, despite the widespread use and misuse of marijuana, and recognition of its potential adverse psychological effects in humans, comparatively few studies have examined the actions of its primary psychoactive constituent, Δ9-tetrahydrocannabinol (THC), at well-defined synaptic pathways. Here we examine the recent literature describing the effects of acute and repeated THC exposure on synaptic function in several brain regions and explore the importance of these neurobiological actions of THC in drug addiction. PMID:23209160

  3. Genetic and Epigenetic Regulation of the Brain-Derived Neurotrophic Factor in the Central Nervous System

    PubMed Central

    Martínez-Levy, Gabriela A.; Cruz-Fuentes, Carlos S.

    2014-01-01

    The BDNF is required for the development and proper function of the central nervous system, where it is involved in a variety of neural and molecular events relevant to cognition, learning, and memory processes. Although only a functional mature protein is synthesized, the human BDNF gene possesses an extensive structural complexity, including the presence of multiple promoters, splicing events, and 3´UTR poly-adenylation sites, resulting in an intricate transcriptional regulation and numerous messengers RNA. Recent data support specific cellular roles of these transcripts. Moreover, a central role of epigenetic modifications on the regulation of BDNF gene transcription is also emerging. The present essay aims to summarize the published information on the matter, emphasizing their possible implications in health and disease or in the treatment of different neurologic and psychiatric disorders. PMID:24910563

  4. [Cell and ex vivo gene therapy: advances in the treatment of central nervous system disorders].

    PubMed

    Mejía-Toiber, J; Castillo, C G; Giordano, M

    The direct application of different types of cells to the central nervous system (CNS) by means of transplants, so-called cell therapy, is an experimental approach that promotes the characterisation of the cell and molecular mechanisms involved in the development, plasticity and regeneration of damage to the CNS. Knowledge of the pathology and aetiology of neurodegenerative diseases, which are frequently related to the neurodegeneration of selected types of cells and/or deficiency of particular neurotransmitters, has led to research on means to obtain cell lines with specific characteristics. In some cases these cells become genetically transformed to produce large amounts of neurotransmitters or neurotrophic factors, the well-known ex vivo gene therapy, so that they can be used as therapeutic alternatives in pathologies affecting the CNS. For example, reports have been published of the beneficial effects of these therapies in studies with humans and in different models of neurodegenerative diseases, such as Huntington's disease and Parkinson's disease, and in epilepsy. The aim of this work is to review the different studies in which transplants of neuronal and non-neuronal cells have been used and which have served to further our knowledge of the CNS, of diseases that affect it and of possible therapeutic alternatives. Ex vivo cell therapy and gene therapy have helped to expand our knowledge about plasticity and the mechanisms and factors that promote cell integration within the central nervous system. Although behavioural improvements have been reported in animal and human models, further work is still required on these studies to clear up a number of dubious points. Ex vivo cell therapy and gene therapy in the nervous system constitute an important methodological tool with therapeutic possibilities that deserve further study.

  5. Neuroscience. Stout guards of the central nervous system.

    PubMed

    Mechoulam, R; Lichtman, A H

    2003-10-03

    Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy.

  6. Comparisons and homology in adult and developing vertebrate central nervous systems.

    PubMed

    Pritz, Michael B

    2005-01-01

    Comparisons of characters in both adult and developing vertebrate central nervous systems require an understanding of the concept of homology. This article begins with a definition of homology in adult animals and then discusses criteria and methodology used to make appropriate comparisons of characters at a variety of hierarchical levels. Crucial to such an analysis is the methodology employed by neurocladistics to ensure meaningful comparisons. Then, a similar approach is used to address these identical problems in embryos. Concerns unique to comparisons of developing central nervous systems are enumerated. In addition, a number of special features of central nervous system formation and organization in both adults and embryos are discussed within the framework of homology and neurocladistics. Lastly, the concept of field homology as applied to vertebrate central nervous system characters is addressed. Copyright (c) 2005 S. Karger AG, Basel.

  7. Sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus syndrome.

    PubMed

    Hsieh, Chih-Wei; Wu, Yu-Hung; Lin, Shuan-Pei; Peng, Chun-Chih; Ho, Che-Sheng

    2012-01-01

    SCALP syndrome is an acronym describing the coincidence of sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus (giant congenital melanocytic nevus). We present a fourth case of this syndrome.

  8. Securing the future of drug discovery for central nervous system disorders.

    PubMed

    Andersen, Peter Høngaard; Moscicki, Richard; Sahakian, Barbara; Quirion, Rémi; Krishnan, Ranga; Race, Tim; Phillips, Anthony

    2014-12-01

    Innovative partnerships among researchers, patients, regulators, payors and industry are needed to reinvigorate drug discovery for central nervous system disorders. Here, we summarize plans of the Collegium Internationale Neuro-Psychopharmacologicum (CINP) to achieve this goal.

  9. Associations between central nervous system serotonin, fasting glucose, and hostility in African American females.

    PubMed

    Boyle, Stephen H; Georgiades, Anastasia; Brummett, Beverly H; Barefoot, John C; Siegler, Ilene C; Matson, Wayne R; Kuhn, Cynthia M; Grichnik, Katherine; Stafford-Smith, Mark; Williams, Redford B; Kaddurah-Daouk, Rima; Surwit, Richard S

    2015-02-01

    Previous research has shown an association between hostility and fasting glucose in African American women. Central nervous system serotonin activity is implicated both in metabolic processes and in hostility related traits. The purpose of this study is to determine whether central nervous system serotonin influences the association between hostility and fasting glucose in African American women. The study consisted of 119 healthy volunteers (36 African American women, 27 White women, 21 White males, and 35 African American males, mean age 34 ± 8.5 years). Serotonin related compounds were measured in cerebrospinal fluid. Hostility was measured by the Cook-Medley Hostility Scale. Hostility was associated with fasting glucose and central nervous system serotonin related compounds in African American women only. Controlling for the serotonin related compounds significantly reduced the association of hostility to glucose. The positive correlation between hostility and fasting glucose in African American women can partly be explained by central nervous system serotonin function.

  10. Associations between Central Nervous System Serotonin, Fasting Glucose and Hostility in African American Females

    PubMed Central

    Boyle, Stephen H.; Georgiades, Anastasia; Brummett, Beverly H.; Barefoot, John C.; Siegler, Ilene C.; Matson, Wayne R.; Kuhn, Cynthia M.; Grichnik, Katherine; Stafford-Smith, Mark; Williams, Redford B.; Kaddurah-Daouk, Rima; Surwit, Richard S.

    2015-01-01

    Background Previous research has shown an association between hostility and fasting glucose in African American women. Central nervous system serotonin activity is implicated both in metabolic processes and in hostility related traits. Purpose To determine whether central nervous system serotonin influences the association between hostility and fasting glucose in African American women. Methods The study consisted of 119 healthy volunteers (36 African American women, 27 white women, 21 white males, and 35 African American males, mean age 34±8.5 years). Serotonin metabolites were measured in cerebrospinal fluid. Hostility was measured by the Cook-Medley Hostility Scale. Results Hostility was associated with fasting glucose and central nervous system serotonin metabolites in African American women only. Controlling for the serotonin metabolites significantly reduced the association of hostility to glucose. Conclusions The positive correlation between hostility and fasting glucose in African American women can partly be explained by central nervous system serotonin function. PMID:24806470

  11. Differences in cardiovascular and central nervous system responses to periods of mental work with a break.

    PubMed

    Liu, Xinxin; Iwakiri, Kazuyuki; Sotoyama, Midori; Iwanaga, Koichi

    2013-01-01

    The purpose of the present study was to examine how an inserted break influences the cardiovascular and central nervous system responses during periods of mental work. Twelve males conducted two 20-min periods of mental work with a 3-min break between them. Cardiovascular and central nervous system responses were measured continuously. In comparison to the baseline, cardiovascular responses increased continuously even after the inserted break, while, on the contrary, central nervous system activity did not significantly increase during the work periods but relaxed during the break. The work performance increased during the second work period. These results suggest that the inserted break proposed by VDT guidelines in Japan was effective in relaxing the central nervous system but was insufficient to prevent the increase in cardiovascular load. The results also imply that taking rests frequently is important not only to maintaining performance but also to preventing cumulative physiological workloads.

  12. Cerebral angiography as a guide for therapy in isolated central nervous system vasculitis

    SciTech Connect

    Stein, R.L.; Martino, C.R.; Weinert, D.M.; Hueftle, M.; Kammer, G.M.

    1987-04-24

    The authors present a case of isolated central nervous system vasculitis documented by cerebral arteriography in which remission, using a treatment regimen of prednisone and cyclophosphamide, was guided by serial arteriography during a 15-month period.

  13. Central nervous system herpes simplex virus infection in afebrile children with seizures.

    PubMed

    Majumdar, Indrajit; Hartley-McAndrew, Michelle E; Weinstock, Arie L

    2012-04-01

    Central nervous system herpes simplex virus infection is suspected in patients presenting with acute-onset seizures and lethargy. The potential neurologic sequelae from untreated herpes infection can prompt empirical acyclovir therapy, even in afebrile subjects. The objectives of this study were to determine the frequency of central nervous system herpes simplex virus infection in children presenting with afebrile seizures and to assess the need for empirical acyclovir therapy. Clinical and laboratory data of children with acute-onset afebrile seizures and children with central nervous system herpes simplex virus infection were compared. Polymerase chain reaction and viral cultures of the cerebrospinal fluid for herpes simplex virus infection were negative in all subjects with afebrile seizures; 32.7% of these subjects were empirically treated with acyclovir. In conclusion, central nervous system herpes simplex virus infection is uncommon in children presenting with afebrile seizures, and acyclovir therapy is rarely necessary in subjects with normal neurologic examination and cerebrospinal fluid analysis.

  14. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    PubMed

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  15. New model to determine the central nervous system reaction to peripheral trauma

    SciTech Connect

    Sjoelund, B.H.W.; Wallstedt, L.

    1988-01-01

    Monitoring the activity of the central nervous system with the /sup 14/C-2-deoxyglucose method of Sokoloff was utilized to explore the possibility to develop a model for the study of central nervous system reaction to peripheral trauma. Preliminary evidence indicates that the activation caused by tactile stimuli to one hindlimb nerve is that expected from earlier physiologic studies. However, an increase of stimulation intensity to recruit nociceptive (pain) fibers seems to abolish the changes, indicating that inhibitory systems have been activated.

  16. Superficial Siderosis of the Central Nervous System Originating from the Thoracic Spine: A Case Report

    PubMed Central

    Ryu, Sung Mo; Kim, Seung-Kook; Lee, Sun-Ho; Eoh, Whan

    2016-01-01

    Superficial siderosis of the central nervous system(SSCNS) is a rare disease characterized by hemosiderin deposition on the surface of the central nervous system. We report a case of SSCNS originating from the thoracic spine, presenting with neurological deficits including, sensorineuronal hearing loss, ataxia, and corticospinal and dorsal column tract signs. The patient underwent dural repair with an artificial dural patch. Clinical findings were elicited by neurological examination, imaging studies, and intraoperative findings, and these were addressed through literature review. PMID:27437021

  17. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia

    PubMed Central

    Strati, Paolo; Uhm, Joon H.; Kaufmann, Timothy J.; Nabhan, Chadi; Parikh, Sameer A.; Hanson, Curtis A.; Chaffee, Kari G.; Call, Timothy G.; Shanafelt, Tait D.

    2016-01-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  18. Magnetic Resonance Imaging of the Central Nervous System—An Update

    PubMed Central

    Brant-Zawadzki, Michael; Norman, David; Newton, T. Hans; Kucharczyk, Walter

    1985-01-01

    Magnetic resonance imaging has developed rapidly and now has superior ability to detect and to characterize disease in the central nervous system without any significant biologic hazard. It is becoming the screening method of choice in the diagnosis of neoplasm, ischemia, hemorrhage, infection and degenerative and demyelinating diseases involving the central nervous system. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9. PMID:3976220

  19. ADDME – Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective

    PubMed Central

    Tsaioun, Katya; Bottlaender, Michel; Mabondzo, Aloise

    2009-01-01

    The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity. PMID:19534730

  20. In Vivo Imaging of Histone Deacetylases (HDACs) in the Central Nervous System and Major Peripheral Organs

    PubMed Central

    2015-01-01

    Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging. PMID:25203558

  1. Interaction of Benzodiazepines with Central Nervous Glycine Receptors: Possible Mechanism of Action

    PubMed Central

    Young, Anne B.; Zukin, Stephen R.; Snyder, Solomon H.

    1974-01-01

    Interaction of 21 benzodiazepines with the glycine receptor in the brainstem and spinal cord of rat have been evaluated in terms of their displacement of [3H]strychinine binding. The rank order of potency of the 21 drugs in displacing specific [3H]strychinine binding correlates (p < 0.005) with their rank order of potency in a vareity of pharmacological and behavioral tests in humans and animals that predict clinical efficacy. There is a 50-fold variation in potency of the series of benzodiazepines with mean effective dose (ED50) values ranging from 19μM to > 1000 μM. Diazepam (Valium®) and chlordiazepoxide (Librium®) have ED50's of 26 μM and 200 μM, respectively, whereas the ED50 for glycine is 25 μM. The inhibitory effects of 10 of the agents in two other central nervous system membrane receptor assays, for the opiate receptor and the muscarinic cholinergic receptor, do not correlate with any of the in vivo pharmacologic and behavioral tests. The benzodiazepines may exert their antianxiety, anticonvulsant and muscle-relaxant effects by mimicking the effects of the neurotransmitter glycine at its central nervous system receptor sites. PMID:4152296

  2. [The effects of protein-energy malnutrition on the central nervous system in children].

    PubMed

    Cornelio-Nieto, J O

    2007-03-02

    Protein-energy malnutrition continues to affect millions of human beings in developing countries. Children suffer most from the shortage of nutrients because at early ages malnutrition has an important impact on the central nervous system. The changes that malnutrition triggers in the brains of these children will have severe consequences on their development and learning abilities. Reports of important alterations in the head circumference and brain growth of malnourished children have been published in the literature, together with accounts of changes in both the dendritic arborisation and the morphology of the dendritic spines, as well as in myelination. Computerised tomography brain scans and magnetic resonance imaging in children suffering from malnutrition show images that are compatible with cerebral atrophy. The lack of environmental stimulation associated with malnutrition worsens the damage to the central nervous system. All the alterations that are observed in such cases give rise to important compromise of the child's higher brain functions, which may well lead to permanent neuropsychological damage. Protein-energy malnutrition produces notable morphological changes in the brains of children in the developing world. These changes damage the intellectual potential of those who survive and limit their capacity to become part of the competitive world. Paediatric neurologists working in these areas of the world must make greater efforts to disseminate this problem and to make public institutions aware of the issue so that they do not desist in the fight against child malnutrition.

  3. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    PubMed

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs.

  4. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation--an International Primary Central Nervous System Lymphoma Study Group project.

    PubMed

    Bromberg, Jacoline E; Doorduijn, Jeanette K; Illerhaus, Gerald; Jahnke, Kristoph; Korfel, Agniezka; Fischer, Lars; Fritsch, Kristina; Kuittinen, Outti; Issa, Samar; van Montfort, Cees; van den Bent, Martin J

    2013-05-01

    Autologous stem cell transplantation has greatly improved the prognosis of systemic recurrent non-Hodgkin's lymphoma. However, no prospective data are available concerning the feasibility and efficacy of this strategy for systemic lymphoma relapsing in the central nervous system. We, therefore, we performed an international multicenter retrospective study of patients with a central nervous system recurrence of systemic lymphoma to assess the outcome of these patients in the era of stem cell transplantation. We collected clinical and treatment data on patients with a first central nervous system recurrence of systemic lymphoma treated between 2000 and 2010 in one of five centers in four countries. Patient- and treatment-related factors were analyzed and compared descriptively. Primary outcome measures were overall survival and percentage of patients transplanted. We identified 92 patients, with a median age of 59 years and a median Eastern Cooperative Oncology Group/World Health Organization performance status of 2, of whom 76% had diffuse large B-cell histology. The majority (79%) of these patients were treated with systemic chemotherapy with or without intravenous rituximab. Twenty-seven patients (29%) were transplanted; age and insufficient response to induction chemotherapy were the main reasons for not being transplanted in the remaining 65 patients. The median overall survival was 7 months (95% confidence interval 2.6-11.4), being 8 months (95% confidence interval 3.8-5.2) for patients ≤ 65 years old. The 1-year survival rate was 34.8%; of the 27 transplanted patients 62% survived more than 1 year. The Memorial Sloan Kettering Prognostic Index for primary central nervous system lymphoma was prognostic for both undergoing transplantation and survival. In conclusion, despite the availability of autologous stem cell transplantation for patients with central nervous system progression or relapse of systemic lymphoma, prognosis is still poor. Long-term survival

  5. Expression of protein kinase C genes during ontogenic development of the central nervous system

    SciTech Connect

    Sposi, N.M.; Bottero, L.; Testa, U.; Peschle, C.; Russo, G.

    1989-05-01

    The authors have analyzed the RNA expression of three protein kinase C (PKC) genes in (/alpha/, /beta/, and /gamma/) in human and murine central nervous systems during embryonic-fetal, perinatal, and adult life. Analysis of human brain poly(A)/sup +/ RNA indicates that expression of PKC /alpha/ and /beta/ genes can be detected as early as 6 weeks postconception, undergoes a gradual increase until 9 weeks postconception, and reaches its highest level in the adult stage,and that the PKC /gamma/ gene, although not expressed during embryonic and early fetal development, is abundantly expressed in the adult period. Similar developmental patterns were observed in human spinal cord and medulla oblongata. A detailed analysis of PKC gene expression during mammalian ontogeny was performed on poly(A)/sup +/ RNA from the brain cells of murine embryos at different stages of development and the brain cells of neonatal and adult mice. The ontogenic patterns were similar to those observed for human brain. Furthermore, they observed that the expression of PKC /gamma/ is induced in the peri- and postnatal phases. These results suggest that expression of PKC /alpha/, /beta/, and /gamma/ genes possibly mediates the development of central neuronal functions, and expression of PKC /gamma/ in particular may be involved in the development of peri- and postnatal functions.

  6. Muscle fibers in the central nervous system of nemerteans: spatial organization and functional role.

    PubMed

    Petrov, A A; Zaitseva, O V

    2012-08-01

    The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body-wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin-rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia-like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed.

  7. Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions

    PubMed Central

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M.; Mariani, John N.; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S.

    2015-01-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood–brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood–brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood–brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood–brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood–brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood–brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP

  8. [Metastasis tumors of the central nervous system: molecular biology].

    PubMed

    Bello, M Josefa; González-Gómez, P; Rey, J A

    2004-12-01

    Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.

  9. REVIEW ARTICLE: In vivo magnetic resonance imaging: insights into structure and function of the central nervous system

    NASA Astrophysics Data System (ADS)

    Natt, Oliver; Frahm, Jens

    2005-04-01

    Spatially resolved nuclear magnetic resonance (NMR) techniques provide structural, metabolic and functional insights into the central nervous system and allow for repetitive in vivo studies of both humans and animals. Complementing its prominent role in diagnostic imaging, magnetic resonance imaging (MRI) has evolved into an indispensable research tool in system-oriented neurobiology where contributions to functional genomics and translational medicine bridge the gap from molecular biology to animal models and clinical applications. This review presents an overview on some of the most relevant advances in MRI. An introduction covering the basic principles is followed by a discussion of technological improvements in instrumentation and imaging sequences including recent developments in parallel acquisition techniques. Because MRI is noninvasive in contrast to most other imaging modalities, examples focus on in vivo studies of the central nervous system in a variety of species ranging from humans to mice and insects.

  10. [Clinical and neuroimaging features of central nervous system impairments in acute intermittent porphyria].

    PubMed

    Yuan, Jing; Peng, Bin; You, Hui; Zhang, Wei

    2011-10-25

    To analyze the clinical and neuroimaging features of central nervous system impairments in acute intermittent porphyria, and explore the possible mechanisms. Six cases with intracranial lesions at our hospital from 1991 to 2011 and 13 cases reported in literatures were retrospectively reviewed. The clinical manifestations of central nervous system impairments included seizures, unconsciousness and cortical blindness, etc. EEG (electroencephalogram) showed slow wave or normal. CSF (cerebrospinal fluid) test indicated slightly higher or normal level of CSF protein. Neuroimaging studies showed two types of intracranial lesions. One type (n = 4) mainly affected the cortex and subcortical white matter, especially involving white matter. Another type (n = 2) affected the deep nuclei such as caudate, putamen and thalamus symmetrically. The symptoms of 13 cases reported in literature with central nervous system impairments included unconsciousness, hallucinations, seizures and cortical blindness. Their neuroimaging manifestations were similar with those of the patients at our hospital. Two additional cases showed predominantly cerebral cortex lesions with no involvement of white matter. Acute intermittent porphyria can affect central nervous system, peripheral nervous system and autonomic nervous system. The neuroimaging features of brain may be lesions located in cortex, subcortical white matter and deep nuclei with different mechanisms. A correct diagnosis and a treatment decision should be made during an early stage.

  11. Experimental therapies for repair of the central nervous system: stem cells and tissue engineering.

    PubMed

    Forraz, N; Wright, K E; Jurga, M; McGuckin, C P

    2013-07-01

    Several stem cell-based therapeutic tools are currently being investigated for the regeneration of central nervous system (CNS) injuries. This review focuses on innovative approaches for CNS tissue repair via the use of implantable cellular devices. These devices are supported by biopharmaceuticals and conventional physiotherapy for the restoration of lost neuronal circuits and CNS function. This paper further reviews new and promising tools currently in pre-clinical and clinical tests for the treatment of CNS diseases where substantial loss of cellular and extracellular components of neural tissue has occurred such as stroke, encephalopathy and traumatic neural injuries. We also discuss selected 3D bioscaffolds co-cultured with clinically applicable human mesenchymal stem cells. Recent advances in neural tissue engineering and stem cell differentiation methods have shown promise for their clinical application in treating yet incurable CNS deficits.

  12. Overview of the Effect and Epidemiology of Parasitic Central Nervous System Infections in African Children

    PubMed Central

    Mallewa, Macpherson; Wilmshurst, Jo M.

    2014-01-01

    Infections of the central nervous system are a significant cause of neurologic dysfunction in resource-limited countries, especially in Africa. The prevalence is not known and is most likely underestimated because of the lack of access to accurate diagnostic screens. For children, the legacy of subsequent neurodisability, which affects those who survive, is a major cause of the burden of disease in Africa. Of the parasitic infections with unique effect in Africa, cerebral malaria, neurocysticercosis, human African trypanosomiasis, toxoplasmosis, and schistosomiasis are largely preventable conditions, which are rarely seen in resource-equipped settings. This article reviews the current understandings of these parasitic and other rarer infections, highlighting the specific challenges in relation to prevention, diagnosis, treatment, and the complications of coinfection. PMID:24655400

  13. Thioredoxin System Regulation in the Central Nervous System: Experimental Models and Clinical Evidence

    PubMed Central

    Silva-Adaya, Daniela; Gonsebatt, María E.; Guevara, Jorge

    2014-01-01

    The reactive oxygen species produced continuously during oxidative metabolism are generated at very high rates in the brain. Therefore, defending against oxidative stress is an essential task within the brain. An important cellular system against oxidative stress is the thioredoxin system (TS). TS is composed of thioredoxin, thioredoxin reductase, and NADPH. This review focuses on the evidence gathered in recent investigations into the central nervous system, specifically the different brain regions in which the TS is expressed. Furthermore, we address the conditions that modulate the thioredoxin system in both, animal models and the postmortem brains of human patients associated with the most common neurodegenerative disorders, in which the thioredoxin system could play an important part. PMID:24723994

  14. Targeted delivery of nano-therapeutics for major disorders of the central nervous system.

    PubMed

    Gao, Huile; Pang, Zhiqing; Jiang, Xinguo

    2013-10-01

    Major central nervous system (CNS) disorders, including brain tumors, Alzheimer’s disease, Parkinson’s disease, and stroke, are significant threats to human health. Although impressive advances in the treatment of CNS disorders have been made during the past few decades, the success rates are still moderate if not poor. The blood–brain barrier (BBB) hampers the access of systemically administered drugs to the brain. The development of nanotechnology provides powerful tools to deliver therapeutics to target sites. Anchoring them with specific ligands can endow the nano-therapeutics with the appropriate properties to circumvent the BBB. In this review, the potential nanotechnology-based targeted drug delivery strategies for different CNS disorders are described. The limitations and future directions of brain-targeted delivery systems are also discussed.

  15. Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence.

    PubMed

    Silva-Adaya, Daniela; Gonsebatt, María E; Guevara, Jorge

    2014-01-01

    The reactive oxygen species produced continuously during oxidative metabolism are generated at very high rates in the brain. Therefore, defending against oxidative stress is an essential task within the brain. An important cellular system against oxidative stress is the thioredoxin system (TS). TS is composed of thioredoxin, thioredoxin reductase, and NADPH. This review focuses on the evidence gathered in recent investigations into the central nervous system, specifically the different brain regions in which the TS is expressed. Furthermore, we address the conditions that modulate the thioredoxin system in both, animal models and the postmortem brains of human patients associated with the most common neurodegenerative disorders, in which the thioredoxin system could play an important part.

  16. Distribution of prosaposin mRNA in the central nervous system of the pigeon (Columba livia).

    PubMed

    Islam, M R; Abdullah, J M; Atoji, Y

    2013-08-01

    Bioassay and immunohistochemical studies have detected the presence of prosaposin in the central nervous system (CNS) of mammals. Here, first time, we have determined the partial cDNA sequence of pigeon prosaposin and mapped the distribution of its mRNA in the pigeon CNS. The predicted amino acid sequence of pigeon prosaposin showed 93 and 60% identity to chicken and human prosaposin, respectively. In situ hybridization, autoradiograms showed that the prosaposin mRNA expression was found in the olfactory bulb, prepiriform cortex, Wulst, mesopallium, nidopallium, hippocampal formation, thalamus, tuberis nucleus, pre-tectal nucleus, nucleus mesencephalicus lateralis, pars dorsalis, nucleus isthmi, pars parvocellularis and magnocellularis, Edinger-Westphal nucleus, optic tectum, cerebellar cortex and nuclei, vestibular nuclei and gray matter of the spinal cord. These results suggest that the cDNA sequence of pigeon prosaposin is comparable to other vertebrates, and the general distribution pattern of prosaposin mRNA resembles those are found in mammals.

  17. Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System

    PubMed Central

    Farrelly, L.A.; Dill, B.D.; Molina, H.; Birtwistle, M.R.; Maze, I.

    2016-01-01

    Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover—the complete loss of old, and replacement by new, nucleosomal histones—is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human “bomb pulse labeling”) for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of “neuroepigenetic” plasticity. PMID:27423867

  18. Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system.

    PubMed

    Mendez, Oscar A; Koshy, Anita A

    2017-07-01

    Toxoplasma gondii is one of the world's most successful parasites, in part because of its ability to infect and persist in most warm-blooded animals. A unique characteristic of T. gondii is its ability to persist in the central nervous system (CNS) of a variety of hosts, including humans and rodents. How, what, and why T. gondii encysts in the CNS has been the topic of study for decades. In this review, we will discuss recent work on how T. gondii is able to traverse the unique barrier surrounding the CNS, what cells of the CNS play host to T. gondii, and finally, how T. gondii infection may influence global and cellular physiology of the CNS.

  19. Central nervous system compromise in primary Sjögren's syndrome.

    PubMed

    Anaya, Juan-Manuel; Villa, Luis A; Restrepo, Lucas; Molina, Jose F; Mantilla, Rubén D; Vargas, Sergio

    2002-08-01

    Central nervous system (CNS) involvement in primary Sjögren's syndrome (SS) is poorly understood, and its frequency as well as its manifestations are subjects of controversy. The current study was undertaken to determine the prevalence and the clinical and immunogenetic characteristics of CNS compromise in a well defined group of patients with primary SS. In this retrospective study, patients fulfilled the European classification criteria. Among 120 patients with primary SS, 3 (2.5%) had CNS compromise (multiple sclerosis-like illness, complicated migraine, and optic neuritis with epilepsy). The CNS involvement coincided with the onset of sicca symptoms in 1 case. All 3 patients carried the human leukocyte antigen (HLA) DQB1*0303 allele and tested positive for anti-Ro antibodies, but not for anti-cardiolipin antibodies. Although rare, CNS compromise in primary SS can be the presenting manifestation of the disease in a few cases, and may be severe and varied.

  20. Blood to brain transport of interleukin links the immune and central nervous systems

    SciTech Connect

    Banks, W.A.; Kastin, A.J. Tulane Univ. School of Medicine, New Orleans, LA )

    1991-01-01

    Interleukins (IL) are naturally occurring proteins that regulate, and thus link, both the immune system and the central nervous system (CNS). Since proteins are assumed not to be able to cross the blood-brain barrier (BBB), it is controversial how this linkage could occur. The authors show here that after iv injection of {sup 125}I-hIL-1{alpha}, radioactivity in the brain eluted on HPLC in the position of the labeled cytokine. In addition, entry was inhibited by unlabeled hIL-1{alpha}. The authors demonstration of a saturable, carrier-mediated system that transports recombinant human IL-1{alpha} in intact form from the blood into the CNS indicates a direct immune-CNS connection.

  1. Congenic autoimmune murine models of central nervous system disease in connective tissue disorders.

    PubMed

    Alexander, E L; Murphy, E D; Roths, J B; Alexander, G E

    1983-08-01

    Congenic mice of the MRL/Mp strain spontaneously develop an autoimmune connective tissue disease that shares immunological and histopathological features with systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome. The autoimmune disorder in these mice is accelerated markedly by the recessive gene lpr. By 6 months of age, MRL/Mp-lpr/lpr mice developed prominent mononuclear cell infiltrates restricted to the choroid plexus and meninges, whereas congeneric MRL/Mp- +/+ mice (which lack the lpr gene) showed delayed but widespread inflammatory infiltrates involving cerebral vessels and meninges, with sparing of the choroid plexus. These distinctive patterns of cerebral inflammation, which are comparable in many respects to those seen in human connective tissue disease, provide some of the first animal models of relevant central nervous system histopathological processes associated with underlying connective tissue disease.

  2. Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

    PubMed

    Latorre, Julius Gene S; Schmidt, Elena B

    2015-09-01

    No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids. These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions. Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation. The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.

  3. Molecular imaging as a guide for the treatment of central nervous system disorders.

    PubMed

    Kim, Euitae; Howes, Oliver D; Kapur, Shitij

    2013-09-01

    Molecular imaging techniques have a number of advantages for research into the pathophysiology and treatment of central nervous system (CNS) disorders. Firstly, they provide a noninvasive means of characterizing physiological processes in the living brain, enabling molecular alterations to be linked to clinical changes. Secondly, the pathophysiological target in a given CNS disorder can be measured in animal models and in experimental human models in the same way, which enables translational research. Moreover, as molecular imaging facilitates the detection of functional change which precedes gross pathology, it is particularly useful for the early diagnosis and treatment of CNS disorders. This review considers the application of molecular imaging to CNS disorders focusing on its potential to inform the development and evaluation of treatments. We focus on schizophrenia, Parkinson's disease, depression, and dementia as major CNS disorders. We also review the potential of molecular imaging to guide new drug development for CNS disorders.

  4. Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System.

    PubMed

    Farrelly, L A; Dill, B D; Molina, H; Birtwistle, M R; Maze, I

    2016-01-01

    Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover-the complete loss of old, and replacement by new, nucleosomal histones-is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human "bomb pulse labeling") for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of "neuroepigenetic" plasticity.

  5. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    PubMed Central

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  6. [Ultrastructural basis of trophic interactions in the central nervous system].

    PubMed

    Kositsyn, N S

    1978-05-01

    Cytological aspects of metabolic processes between capillaries and nerve cells, as well as between different elements of neurons were studied electron microscopically. The sensomotor cortex, hippocampus, anterior tubercles of corpora quadrigemina, geniculate body were studied in rats, adult cats and 4-day-old kittens. Metabolic ultrastructure was demonstrated by means of vesicles formed by micropinocytosis, in the endothelial wall of the capillary, in the synaptic plaques, in the growth cones. Coincidence of pinocytic processes with active synaptic zones, especially in the developing nervous system, was revealed. The phenomena of intraneuronal metabolism by means of cytoplasmic fragments (clasmatosis) in the area of synapses were described. Endogenic (formed in the zone of the lamellar apparatus) and exogenic (pinocytic) trophic vesicles were compared. In young animals the exchange of the trophic vesicles was demonstrated to precede the synaptic transmission, while in adult animals it seemed to supplement a short-lasting synaptic interconnection.

  7. Evolution and regeneration of the planarian central nervous system.

    PubMed

    Umesono, Yoshihiko; Agata, Kiyokazu

    2009-04-01

    More than 100 years ago, early workers realized that planarians offer an excellent system for regeneration studies. Another unique aspect of planarians is that they occupy an interesting phylogenetic position with respect to the nervous system in that they possess an evolutionarily primitive brain structure and can regenerate a functional brain from almost any tiny body fragment. Recent molecular studies have revisited planarian regeneration and revealed key information about the cellular and molecular mechanisms underlying brain regeneration in planarians. One of our great advances was identification of a gene, nou-darake, which directs the formation of a proper extrinsic environment for pluripotent stem cells to differentiate into brain cells in the planarian Dugesia japonica. Our recent findings have provided mechanistic insights into stem cell biology and also evolutionary biology.

  8. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  9. Antibody staining of the central nervous system in adult Drosophila.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-02-01

    The Drosophila nervous system provides a valuable model for studying various aspects of brain development and function. The postembryonic Drosophila brain is especially useful, because specific neuron types derive from specific progenitors at specific times. Elucidating the means by which diverse neuron types derive from a limited number of progenitors can contribute significantly to our understanding of the genetic and molecular mechanisms involved in developmental neurobiology. Antibody-labeling techniques are particularly useful for examining the Drosophila brain. These methods generally use primary antibodies specific to a protein or a structure of interest and a fluorescently labeled or enzyme-coupled secondary antibody to detect the primary antibodies. Immunofluorescence methods allow for simultaneous probing for multiple antigens using different fluorophores, as well as high-resolution confocal examination of deep structures. This protocol describes general procedures for antibody labeling of neural tissue from Drosophila, as well as visualization techniques for fluorescent and enzyme-linked probes.

  10. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  11. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system

    PubMed Central

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M.; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M.

    2017-01-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro. CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06–27.17; odds ratio=6.86, 95% confidence interval, 1.86–25.26, respectively). CCR7 expression in the upper fourth quartile correlated with

  12. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  13. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  14. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2015-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  15. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system

    PubMed Central

    Mueller, Bernhard K; Yamashita, Toshihide; Schaffar, Gregor; Mueller, Reinhold

    2006-01-01

    During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues. PMID:16939972

  16. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System

    PubMed Central

    Kaliszewski, Michael; Kennedy, Austin K.; Blaes, Shelby L.; Shaffer, Robert S.; Knott, Andrew B.; Song, Wenjun; Hauser, Henry A.; Bossy, Blaise; Huang, Ting-Ting; Bossy-Wetzel, Ella

    2016-01-01

    Superoxide dismutase 1 (SOD1) knockout (Sod1−/−) mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS), and post-translational modification (PTM) of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123). The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1) in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1−/− mice, K123 mutation or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer (GCL) and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells and Schaffer collateral fibers of the cornus ammonis field 1 (CA1) region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus (CP) and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer (RGCL) and axons of retinal ganglion cells (RGCs), the inner nuclear layer (INL) and cone photoreceptors of the outer nuclear layer (ONL). In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system. PMID:28066183

  17. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System.

    PubMed

    Kaliszewski, Michael; Kennedy, Austin K; Blaes, Shelby L; Shaffer, Robert S; Knott, Andrew B; Song, Wenjun; Hauser, Henry A; Bossy, Blaise; Huang, Ting-Ting; Bossy-Wetzel, Ella

    2016-01-01

    Superoxide dismutase 1 (SOD1) knockout (Sod1(-/-)) mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS), and post-translational modification (PTM) of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123). The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1) in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1(-/-) mice, K123 mutation or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer (GCL) and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells and Schaffer collateral fibers of the cornus ammonis field 1 (CA1) region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus (CP) and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer (RGCL) and axons of retinal ganglion cells (RGCs), the inner nuclear layer (INL) and cone photoreceptors of the outer nuclear layer (ONL). In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system.

  18. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2016-11-10

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  19. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

    PubMed

    Afshar, Maryam; Birnbaum, Daniel; Golden, Carla

    2014-06-01

    The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    PubMed

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.