Variables, Decisions, and Scripting in Construct
2009-09-01
grounded in sociology and cognitive science which seeks to model the processes and situations by which humans interact and share information...Construct is an embodiment of constructuralism (Carley 1986), a theory which posits that human social structures and cognitive structures co-evolve so that...human cognition reflects human social behavior, and that human social behavior simultaneously influences cognitive processes. Recent work with
Visualization and Rule Validation in Human-Behavior Representation
ERIC Educational Resources Information Center
Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.
2008-01-01
Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…
Avian Models for Human Cognitive Neuroscience: A Proposal.
Clayton, Nicola S; Emery, Nathan J
2015-06-17
Research on avian cognitive neuroscience over the past two decades has revealed the avian brain to be a better model for understanding human cognition than previously thought, despite differences in the neuroarchitecture of avian and mammalian brains. The brain, behavior, and cognition of songbirds have provided an excellent model of human cognition in one domain, namely learning human language and the production of speech. There are other important behavioral candidates of avian cognition, however, notably the capacity of corvids to remember the past and plan for the future, as well as their ability to think about another's perspective, and physical reasoning. We review this work and assess the evidence that the corvid brain can support such a cognitive architecture. We propose potential applications of these behavioral paradigms for cognitive neuroscience, including recent work on single-cell recordings and neuroimaging in corvids. Finally, we discuss their impact on understanding human developmental cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Human Behavior Modeling in Network Science
2010-03-01
in Network Science bringing three distinct research areas together, communication networks, information networks, and social /cognitive networks. The...researchers. A critical part of the social /cognitive network effort is the modeling of human behavior. The modeling efforts range from organizational...behavior to social cognitive trust to explore and refine the theoretical and applied network relationships between and among the human
Cognitive Empathy and Emotional Empathy in Human Behavior and Evolution
ERIC Educational Resources Information Center
Smith, Adam
2006-01-01
This article presents 7 simple models of the relationship between cognitive empathy (mental perspective taking) and emotional empathy (the vicarious sharing of emotion). I consider behavioral outcomes of the models, arguing that, during human evolution, natural selection may have acted on variation in the relationship between cognitive empathy and…
Simulating motivated cognition
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1991-01-01
A research effort to develop a sophisticated computer model of human behavior is described. A computer framework of motivated cognition was developed. Motivated cognition focuses on the motivations or affects that provide the context and drive in human cognition and decision making. A conceptual architecture of the human decision-making approach from the perspective of information processing in the human brain is developed in diagrammatic form. A preliminary version of such a diagram is presented. This architecture is then used as a vehicle for successfully constructing a computer program simulation Dweck and Leggett's findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior.
THE INTERNAL ORGANIZATION OF COMPUTER MODELS OF COGNITIVE BEHAVIOR.
ERIC Educational Resources Information Center
BAKER, FRANK B.
IF COMPUTER PROGRAMS ARE TO SERVE AS USEFUL MODELS OF COGNITIVE BEHAVIOR, THEIR CREATORS MUST FACE THE NEED TO ESTABLISH AN INTERNAL ORGANIZATION FOR THEIR MODEL WHICH IMPLEMENTS THE HIGHER LEVEL COGNITIVE BEHAVIORS ASSOCIATED WITH THE HUMAN CAPACITY FOR SELF-DIRECTION, AUTOCRITICISM, AND ADAPTATION. PRESENT COMPUTER MODELS OF COGNITIVE BEHAVIOR…
Modeling driver behavior in a cognitive architecture.
Salvucci, Dario D
2006-01-01
This paper explores the development of a rigorous computational model of driver behavior in a cognitive architecture--a computational framework with underlying psychological theories that incorporate basic properties and limitations of the human system. Computational modeling has emerged as a powerful tool for studying the complex task of driving, allowing researchers to simulate driver behavior and explore the parameters and constraints of this behavior. An integrated driver model developed in the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture is described that focuses on the component processes of control, monitoring, and decision making in a multilane highway environment. This model accounts for the steering profiles, lateral position profiles, and gaze distributions of human drivers during lane keeping, curve negotiation, and lane changing. The model demonstrates how cognitive architectures facilitate understanding of driver behavior in the context of general human abilities and constraints and how the driving domain benefits cognitive architectures by pushing model development toward more complex, realistic tasks. The model can also serve as a core computational engine for practical applications that predict and recognize driver behavior and distraction.
Evolution of cooperative behavior in simulation agents
NASA Astrophysics Data System (ADS)
Stroud, Phillip D.
1998-03-01
A simulated automobile factory paint shop is used as a testbed for exploring the emulation of human decision-making behavior. A discrete-events simulation of the paint shop as a collection of interacting Java actors is described. An evolutionary cognitive architecture is under development for building software actors to emulate humans in simulations of human- dominated complex systems. In this paper, the cognitive architecture is extended by implementing a persistent population of trial behaviors with an incremental fitness valuation update strategy, and by allowing a group of cognitive actors to share information. A proof-of-principle demonstration is presented.
A Set of Functional Brain Networks for the Comprehensive Evaluation of Human Characteristics.
Sung, Yul-Wan; Kawachi, Yousuke; Choi, Uk-Su; Kang, Daehun; Abe, Chihiro; Otomo, Yuki; Ogawa, Seiji
2018-01-01
Many human characteristics must be evaluated to comprehensively understand an individual, and measurements of the corresponding cognition/behavior are required. Brain imaging by functional MRI (fMRI) has been widely used to examine brain function related to human cognition/behavior. However, few aspects of cognition/behavior of individuals or experimental groups can be examined through task-based fMRI. Recently, resting state fMRI (rs-fMRI) signals have been shown to represent functional infrastructure in the brain that is highly involved in processing information related to cognition/behavior. Using rs-fMRI may allow diverse information about the brain through a single MRI scan to be obtained, as rs-fMRI does not require stimulus tasks. In this study, we attempted to identify a set of functional networks representing cognition/behavior that are related to a wide variety of human characteristics and to evaluate these characteristics using rs-fMRI data. If possible, these findings would support the potential of rs-fMRI to provide diverse information about the brain. We used resting-state fMRI and a set of 130 psychometric parameters that cover most human characteristics, including those related to intelligence and emotional quotients and social ability/skill. We identified 163 brain regions by VBM analysis using regression analysis with 130 psychometric parameters. Next, using a 163 × 163 correlation matrix, we identified functional networks related to 111 of the 130 psychometric parameters. Finally, we made an 8-class support vector machine classifiers corresponding to these 111 functional networks. Our results demonstrate that rs-fMRI signals contain intrinsic information about brain function related to cognition/behaviors and that this set of 111 networks/classifiers can be used to comprehensively evaluate human characteristics.
Oxytocin, vasopressin, and the neurogenetics of sociality.
Donaldson, Zoe R; Young, Larry J
2008-11-07
There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
Cognitive Factors Affecting Freeze-like Behavior in Humans.
Alban, Michael W; Pocknell, Victoria
2017-01-01
Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.
Augmenting team cognition in human-automation teams performing in complex operational environments.
Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura
2007-05-01
There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.
Marmosets: A Neuroscientific Model of Human Social Behavior
Freiwald, Winrich A; Leopold, David A; Mitchell, Jude F; Silva, Afonso C; Wang, Xiaoqin
2016-01-01
The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species’ reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets’ behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets’ social cognition and communication are more similar to that of humans. For example, marmosets are amongst only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this review, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior and communication, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and communication. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in nearly all neuropsychiatric disorders. PMID:27100195
Personality from a cognitive-biological perspective
NASA Astrophysics Data System (ADS)
Neuman, Yair
2014-12-01
The term "personality" is used to describe a distinctive and relatively stable set of mental traits that aim to explain the organism's behavior. The concept of personality that emerged in human psychology has been also applied to the study of non-human organisms from birds to horses. In this paper, I critically review the concept of personality from an interdisciplinary perspective, and point to some ideas that may be used for developing a cognitive-biological theory of personality. Integrating theories and research findings from various fields such as cognitive ethnology, clinical psychology, and neuroscience, I argue that the common denominator of various personality theories are neural systems of threat/trust management and their emotional, cognitive, and behavioral dimensions. In this context, personality may be also conceived as a meta-heuristics both human and non-human organisms apply to model and predict the behavior of others. The paper concludes by suggesting a minimal computational model of personality that may guide future research.
Interaction-Dominant Dynamics in Human Cognition: Beyond 1/f[superscript [alpha
ERIC Educational Resources Information Center
Ihlen, Espen A. F.; Vereijken, Beatrix
2010-01-01
It has been suggested that human behavior in general and cognitive performance in particular emerge from coordination between multiple temporal scales. In this article, we provide quantitative support for such a theory of interaction-dominant dynamics in human cognition by using wavelet-based multifractal analysis and accompanying multiplicative…
Cognition in action: imaging brain/body dynamics in mobile humans.
Gramann, Klaus; Gwin, Joseph T; Ferris, Daniel P; Oie, Kelvin; Jung, Tzyy-Ping; Lin, Chin-Teng; Liao, Lun-De; Makeig, Scott
2011-01-01
We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method.
Simulating human behavior for national security human interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.
2007-01-01
This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humansmore » were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.« less
Implicit social cognition: From measures to mechanisms
Nosek, Brian A.; Hawkins, Carlee Beth; Frazier, Rebecca S.
2011-01-01
Most of human cognition occurs outside of conscious awareness or conscious control. Some of these implicit processes influence social perception, judgment and action. The last fifteen years of research in implicit social cognition can be characterized as the Age of Measurement because of a proliferation of measurement methods and research evidence demonstrating their practical value for predicting human behavior. Implicit measures assess constructs that are distinct, but related, to self-report assessments, and predict variation in behavior that is not accounted for by those explicit measures. The present state of knowledge provides a foundation for the next age of implicit social cognition – clarification of the mechanisms underlying implicit measurement and how the measured constructs influence behavior. PMID:21376657
NASA Astrophysics Data System (ADS)
Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Simonsen, L. C.; Antonsen, E.
2018-02-01
Deep Space Gateway missions provide testing grounds to identify the risk of both behavioral performance and cognitive perturbations caused by stressors of spaceflight such as radiation, fluid shifts, sleep deprivation, chronic stress, and others.
Personality from a cognitive-biological perspective.
Neuman, Yair
2014-12-01
The term "personality" is used to describe a distinctive and relatively stable set of mental traits that aim to explain the organism's behavior. The concept of personality that emerged in human psychology has been also applied to the study of non-human organisms from birds to horses. In this paper, I critically review the concept of personality from an interdisciplinary perspective, and point to some ideas that may be used for developing a cognitive-biological theory of personality. Integrating theories and research findings from various fields such as cognitive ethnology, clinical psychology, and neuroscience, I argue that the common denominator of various personality theories are neural systems of threat/trust management and their emotional, cognitive, and behavioral dimensions. In this context, personality may be also conceived as a meta-heuristics both human and non-human organisms apply to model and predict the behavior of others. The paper concludes by suggesting a minimal computational model of personality that may guide future research. Copyright © 2014 Elsevier B.V. All rights reserved.
Editorial: Cognitive Architectures, Model Comparison and AGI
NASA Astrophysics Data System (ADS)
Lebiere, Christian; Gonzalez, Cleotilde; Warwick, Walter
2010-12-01
Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human performance. Significant methodological challenges arise, however, when trying to extend approaches used to compare model and human performance from tightly controlled laboratory tasks to complex tasks involving more open-ended behavior. This paper describes a model comparison challenge built around a dynamic control task, the Dynamic Stocks and Flows. We present and discuss distinct approaches to evaluating performance and comparing models. Lessons drawn from this challenge are discussed in light of the challenge of using cognitive architectures to achieve Artificial General Intelligence.
Simulating Human Cognition in the Domain of Air Traffic Control
NASA Technical Reports Server (NTRS)
Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.
Cognitive-Developmental and Behavior-Analytic Theories: Evolving into Complementarity
ERIC Educational Resources Information Center
Overton, Willis F.; Ennis, Michelle D.
2006-01-01
Historically, cognitive-developmental and behavior-analytic approaches to the study of human behavior change and development have been presented as incompatible alternative theoretical and methodological perspectives. This presumed incompatibility has been understood as arising from divergent sets of metatheoretical assumptions that take the form…
Moral dimensions of human-wildlife conflict.
Lute, Michelle L; Navarrete, Carlos David; Nelson, Michael Paul; Gore, Meredith L
2016-12-01
Despite increasing support for conservation globally, controversy over specific conservation policies persists among diverse stakeholders. Investigating the links between morals in relation to conservation can help increase understanding about why humans support or oppose policy, especially related to human-wildlife conflict or human conflict over wildlife. Yet the moral dimension of human-wildlife conflict has mostly gone unconsidered and unmeasured; thus, policy and programmatic efforts to reduce controversy may be missing a key part of the equation. We conducted a web-based survey (n = 1239 respondents) in Michigan (U.S.A.) to investigate cognitive and emotional influences on the value-behavior relationship. Respondents were identified by their interest and involvement in Michigan wolf management. The survey consisted of questions about values, emotions, cognitions, and behaviors relative to wolves in Michigan. We used path analysis to explore whether emotions and cognitions mediated the relationship between value and behavior. Most respondents attributed intrinsic value to wolves (n = 734) and all life (n = 773) and engaged in behaviors that benefited wolf populations and ecosystems regardless of stakeholder group (e.g., environmentalist, farmer). Attributing intrinsic value to wolves was positively related to favorable emotions toward wolves and cognitive assessments that hunting and trapping of wolves is unacceptable. Despite similarities in attribution of intrinsic value, groups differed in emotions and cognitions about wolf hunting. These differences provide a useful way to predict stakeholder behavior. Our findings may inform interventions aimed at increasing support for wolf management policies and positive interactions among stakeholders and wildlife. Leveraging agreement over intrinsic value may foster cooperation among stakeholders and garner support for controversial conservation policy. © 2016 Society for Conservation Biology.
Human Neuroimaging of Oxytocin and Vasopressin in Social Cognition
Zink, Caroline F; Meyer-Lindenberg, Andreas
2012-01-01
The neuropeptides oxytocin and vasopressin have increasingly been identified as modulators of human social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction, such as autism. Identifying the human brain regions that are impacted by oxytocin and vasopressin in a social context is essential to fully characterize the role of oxytocin and vasopressin in complex human social cognition. Advances in human non-invasive neuroimaging techniques and genetics have enabled scientists to begin to elucidate the neurobiological basis of the influence of oxytocin and vasopressin on human social behaviors. Here we review the findings to-date from investigations of the acute and chronic effects of oxytocin and vasopressin on neural activity underlying social cognitive processes using “pharmacological fMRI” and “imaging genetics”, respectively. PMID:22326707
Acquiring neural signals for developing a perception and cognition model
NASA Astrophysics Data System (ADS)
Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert
2012-06-01
The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.
Cyberpsychology: a human-interaction perspective based on cognitive modeling.
Emond, Bruno; West, Robert L
2003-10-01
This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.
How Has the Internet Reshaped Human Cognition?
Loh, Kep Kee; Kanai, Ryota
2016-10-01
Throughout our evolutionary history, our cognitive systems have been altered by the advent of technological inventions such as primitive tools, spoken language, writing, and arithmetic systems. Thirty years ago, the Internet surfaced as the latest technological invention poised to deeply reshape human cognition. With its multifaceted affordances, the Internet environment has profoundly transformed our thoughts and behaviors. Growing up with Internet technologies, "Digital Natives" gravitate toward "shallow" information processing behaviors characterized by rapid attention shifting and reduced deliberations. They engage in increased multitasking behaviors that are linked to increased distractibility and poor executive control abilities. Digital natives also exhibit higher prevalence of Internet-related addictive behaviors that reflect altered reward-processing and self-control mechanisms. Recent neuroimaging investigations have suggested associations between these Internet-related cognitive impacts and structural changes in the brain. Against mounting apprehension over the Internet's consequences on our cognitive systems, several researchers have lamented that these concerns were often exaggerated beyond existing scientific evidence. In the present review, we aim to provide an objective overview of the Internet's impacts on our cognitive systems. We critically discuss current empirical evidence about how the Internet environment has altered the cognitive behaviors and structures involved in information processing, executive control, and reward-processing. © The Author(s) 2015.
Chew, Boon-How; Fernandez, Aaron; Shariff-Ghazali, Sazlina
2018-01-01
Psychological aspects of a person, such as the personal value and belief systems, cognition and emotion, form the basis of human health behaviors, which, in turn, influence self-management, self-efficacy, quality of life, disease control and clinical outcomes in people with chronic diseases such as diabetes mellitus. However, psychological, psychosocial and behavioral interventions aimed at these groups of patients have yielded inconsistent effects in terms of clinical outcomes in clinical trials. This might have been due to differing conceptualization of health behavioral theories and models in the interventions. Assimilating different theories of human behavior, this narrative review attempts to demonstrate the potential modulatory effects of intrinsic values on cognitive and affective health-directed interventions. Interventions that utilize modification of cognition alone via education or that focuses on both cognitive and emotional levels are hardly adequate to initiate health-seeking behavior and much less to sustain them. People who are aware of their own personal values and purpose in life would be more motivated to practice good health-related behavior and persevere in them.
Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin
2014-01-01
Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT2C receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT2 receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms. PMID:24196946
ERIC Educational Resources Information Center
Hayes, Steven C.; Bunting, Kara; Herbst, Scott; Bond, Frank W.; Barnes-Holmes, Dermot
2006-01-01
Behavior analysis in general and applied behavior analysis in particular requires a well developed, empirically supported, and useful approach to human language and cognition in order to fulfill its mission of providing a relatively adequate comprehensive account of complex human behavior. This article introduces a series of articles in which the…
Tan, Huan; Liang, Chen
2011-01-01
This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.
Human Fetal Behavior: 100 Years of Study.
ERIC Educational Resources Information Center
Kisilevsky, B. S.; Low, J. A.
1998-01-01
Reviews literature on human fetal behavior. Includes descriptions of coupling of body movements and fetal heart rate and behavior maturation from conception to term. Discusses use of stimulus-induced behavior to examine sensory and cognitive development, and spontaneous and stimulus-induced behavior to assess fetal well-being. Notes research focus…
Cognitive functioning and its influence on sexual behavior in normal aging and dementia.
Hartmans, Carien; Comijs, Hannie; Jonker, Cees
2014-05-01
Motivational aspects, emotional factors, and cognition, all of which require intact cognitive functioning may be essential in sexual functioning. However, little is known about the association between cognitive functioning and sexual behavior. The aim of this article is to review the current evidence for the influence of cognitive functioning on sexual behavior in normal aging and dementia. A systematic literature search was conducted in PubMed, Ovid, Cochrane, and PsycINFO databases. The databases were searched for English language papers focusing on human studies published relating cognitive functioning to sexual behavior in the aging population. Keywords included sexual behavior, sexuality, cognitive functioning, healthy elderly, elderly, aging and dementia. Eight studies fulfilled our inclusion criteria. Of these studies, five included dementia patients and/or their partners, whereas only three studies included healthy older persons. Although not consistently, results indicated a trend that older people who are not demented and continue to engage in sexual activity have better overall cognitive functioning. Cognitive decline and dementia seem to be associated with diminished sexual behavior in older persons. The association between cognitive functioning and sexual behavior in the aging population is understudied. The results found are inconclusive. Copyright © 2013 John Wiley & Sons, Ltd.
Simulating Activities: Relating Motives, Deliberation and Attentive Coordination
NASA Technical Reports Server (NTRS)
Clancey, William J.; Clancy, Daniel (Technical Monitor)
2002-01-01
Activities are located behaviors, taking time, conceived as socially meaningful, and usually involving interaction with tools and the environment. In modeling human cognition as a form of problem solving (goal-directed search and operator sequencing), cognitive science researchers have not adequately studied "off-task" activities (e.g., waiting), non-intellectual motives (e.g., hunger), sustaining a goal state (e.g., playful interaction), and coupled perceptual-motor dynamics (e.g., following someone). These aspects of human behavior have been considered in bits and pieces in past research, identified as scripts, human factors, behavior settings, ensemble, flow experience, and situated action. More broadly, activity theory provides a comprehensive framework relating motives, goals, and operations. This paper ties these ideas together, using examples from work life in a Canadian High Arctic research station. The emphasis is on simulating human behavior as it naturally occurs, such that "working" is understood as an aspect of living. The result is a synthesis of previously unrelated analytic perspectives and a broader appreciation of the nature of human cognition. Simulating activities in this comprehensive way is useful for understanding work practice, promoting learning, and designing better tools, including human-robot systems.
Functional relations and cognitive psychology: Lessons from human performance and animal research.
Proctor, Robert W; Urcuioli, Peter J
2016-02-01
We consider requirements for effective interdisciplinary communication and explore alternative interpretations of "building bridges between functional and cognitive psychology." If the bridges are intended to connect radical behaviourism and cognitive psychology, or functional contextualism and cognitive psychology, the efforts are unlikely to be successful. But if the bridges are intended to connect functional relationships and cognitive theory, no construction is needed because the bridges already exist within cognitive psychology. We use human performance and animal research to illustrate the latter point and to counter the claim that the functional approach is unique in offering a close relationship between science and practice. Effective communication will be enhanced and, indeed, may only occur if the goal of functional contextualism extends beyond just "the advancement of functional contextual cognitive and behavioral science and practice" to "the advancement of cognitive and behavioral science and practice" without restriction. © 2015 International Union of Psychological Science.
Modeling a flexible representation machinery of human concept learning.
Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta
2008-01-01
It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.
[Significance of emotion-focused concepts to cognitive-behavioral therapy].
Lammers, C-H
2006-09-01
Emotions are the central process of motivation and play a key role in adaptive behavior in humans. Although cognitive-behavioral therapy stresses the importance of changing both cognition and behavior, there is growing emphasis on direct therapeutic work on emotions and emotional processing, as problematic emotional processes are at the core of nearly all psychic disorders. This type of work is the goal of emotion-focused psychotherapy, which centers on direct change of problematic emotions, especially those which are usually suppressed resp. overregulated by the patient. This paper examines the basic phobic/emotional conflict, the problematic emotional processes arising from this conflict, and the importance to cognitive-behavioral therapy of their potentially integrative role.
Prefrontal Cortex and Social Cognition in Mouse and Man
Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi
2015-01-01
Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701
Coordination dynamics in a socially situated nervous system
Coey, Charles A.; Varlet, Manuel; Richardson, Michael J.
2012-01-01
Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing requisite computational/representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via concepts such as “common-coding” and “co-representation” and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization and control of human social interactions, there is good reason to question whether they should be accorded explanatory primacy. Alternatively, we propose that a full appreciation of the role of neural processes in social interactions requires appropriately situating them in their context of embodied-embedded constraints. To this end, we introduce concepts from dynamical systems theory and review research demonstrating that the organization of human behavior, including social behavior, can be accounted for in terms of self-organizing processes and lawful dynamics of animal-environment systems. Ultimately, we hope that these alternative concepts can complement the recent advances in cognitive neuroscience and thereby provide opportunities to develop a complete and coherent account of human social interaction. PMID:22701413
Paule, Merle G; Green, Leonard; Myerson, Joel; Alvarado, Maria; Bachevalier, Jocelyne; Schneider, Jay S; Schantz, Susan L
2012-03-01
A variety of behavioral instruments are available for assessing important aspects of cognition in both animals and humans and, in many cases, the same instruments can be used in both. While nonhuman primates are phylogenetically closest to humans, rodents, pigeons and other animals also offer behaviors worthy of note. Delay Discounting procedures are as useful as any in studies of impulsivity and may have utility in shedding light on processes associated with drug abuse. Specific memory tests such as Visual Paired Comparisons tasks (similar to the Fagan test of infant intelligence) can be modified to allow for assessment of different aspects of memory such as spatial memory. Use of these and other specific memory tasks can be used to directly monitor aspects of cognitive development in infant animals, particularly in nonhuman primates such as monkeys, and children and to draw inferences with respect to possible neuroanatomical substrates sub-serving their functions. Tasks for assessing working memory such as Variable Delayed Response (VDR), modified VDR and Spatial Working Memory tasks are now known to be affected in Parkinson's disease (PD). These and other cognitive function tasks are being used in a monkey model of PD to assess the ability of anti-Parkinson's disease therapies to ameliorate these cognitive deficits without diminishing their therapeutic effects on motor dysfunction. Similarly, in a rat model of the cognitive deficits associated with perinatal exposure to polychlorinated biphenyls (PCBs), clear parallels with children can be seen in at least two areas of executive function: cognitive flexibility and response inhibition. In the rat model, discrimination reversal tasks were utilized to assess cognitive flexibility, a function often assessed in humans using the Wisconsin Card Sorting Task. Response inhibition was assessed using performance in a Differential Reinforcement of Low Response Rates (DRL) task. As the data continue to accumulate, it becomes more clear that our attempts to adapt animal-appropriate tasks for the study of important aspects of human cognition have proven to be very fruitful. Published by Elsevier Inc.
Developmental Cognitive Neuroscience of Adolescent Sexual Risk and Alcohol Use
Ryman, Sephira G.; Gillman, Arielle S.; Weiland, Barbara J.; Thayer, Rachel E.; Bryan, Angela D.
2018-01-01
Human adolescents engage in very high rates of unprotected sex. This behavior has a high potential for unintended, serious, and sustained health consequences including HIV/AIDS. Despite these serious health consequences, we know little about the neural and cognitive factors that influence adolescents’ decision-making around sex, and their potential overlap with behaviorally co-occurring risk behaviors, including alcohol use. Thus, in this review, we evaluate the developmental neuroscience of sexual risk and alcohol use for human adolescents with an eye to relevant prevention and intervention implications. PMID:26290051
Understanding cognition, choice, and behavior.
Corcoran, K J
1995-09-01
Bandura (1995) suggests that a "crusade against the causal efficacy of human thought" exists. The present paper disputes that claim, suggesting that the quest which does exist involves an understanding of self-efficacy. Examined are Bandura's shifting definitions of self-efficacy, his misunderstandings of others' work, and implications of some of his attempts to defend the construct. In the remainder of the paper Rotter's Social Learning Theory is discussed as a model of human choice behavior which recognizes the contributions of both cognitive and behavioral traditions within psychology, and has proven to be of great heuristic value.
Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior.
Sokolov, Alexander N; Pavlova, Marina A; Klosterhalfen, Sibylle; Enck, Paul
2013-12-01
Cocoa products and chocolate have recently been recognized as a rich source of flavonoids, mainly flavanols, potent antioxidant and anti-inflammatory agents with established benefits for cardiovascular health but largely unproven effects on neurocognition and behavior. In this review, we focus on neuromodulatory and neuroprotective actions of cocoa flavanols in humans. The absorbed flavonoids penetrate and accumulate in the brain regions involved in learning and memory, especially the hippocampus. The neurobiological actions of flavanols are believed to occur in two major ways: (i) via direct interactions with cellular cascades yielding expression of neuroprotective and neuromodulatory proteins that promote neurogenesis, neuronal function and brain connectivity, and (ii) via blood-flow improvement and angiogenesis in the brain and sensory systems. Protective effects of long-term flavanol consumption on neurocognition and behavior, including age- and disease-related cognitive decline, were shown in animal models of normal aging, dementia, and stroke. A few human observational and intervention studies appear to corroborate these findings. Evidence on more immediate action of cocoa flavanols remains limited and inconclusive, but warrants further research. As an outline for future research on cocoa flavanol impact on human cognition, mood, and behavior, we underscore combination of functional neuroimaging with cognitive and behavioral measures of performance. Copyright © 2013. Published by Elsevier Ltd.
PFIESTERIA PISCICIDA-INDUCED COGNITIVE EFFECTS: VISUAL SIGNAL DETECTION PERFORMANCE AND REVERSAL.
Humans exposed to Pfiesteria piscicida report cognitive impairment. In a rat model, we showed that exposure to Pfiesteria impaired learning a new task, but not performance of previously-learned behavior. In this study, we characterized the behavioral effects of Pfiesteria in rats...
Dopaminergic control of cognitive flexibility in humans and animals
Klanker, Marianne; Feenstra, Matthijs; Denys, Damiaan
2013-01-01
Striatal dopamine (DA) is thought to code for learned associations between cues and reinforcers and to mediate approach behavior toward a reward. Less is known about the contribution of DA to cognitive flexibility—the ability to adapt behavior in response to changes in the environment. Altered reward processing and impairments in cognitive flexibility are observed in psychiatric disorders such as obsessive compulsive disorder (OCD). Patients with this disorder show a disruption of functioning in the frontostriatal circuit and alterations in DA signaling. In this review we summarize findings from animal and human studies that have investigated the involvement of striatal DA in cognitive flexibility. These findings may provide a better understanding of the role of dopaminergic dysfunction in cognitive inflexibility in psychiatric disorders, such as OCD. PMID:24204329
The Brain Prize 2014: complex human functions.
Grigaityte, Kristina; Iacoboni, Marco
2014-11-01
Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.
Why Primates? The Importance of Nonhuman Primates for Understanding Human Infancy
ERIC Educational Resources Information Center
Weiss, Daniel J.; Santos, Laurie R.
2006-01-01
We introduce the thematic collection by noting some striking similarities in the cognitive abilities of human infants and nonhuman primates. What are the implications of these similarities for our comprehension of human infant cognition? After providing a brief historical and conceptual background on comparative behavioral research, we discuss how…
Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.
Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra
2017-05-15
Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive-emotional processing. Hence, the serotonin depletion model and the spatial judgement task can increase our understanding of the basic mechanisms underlying both human neuropsychiatric disorders and animal welfare. Copyright © 2017 Elsevier Inc. All rights reserved.
Modeling aspects of human memory for scientific study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Thomas P.; Watson, Patrick; McDaniel, Mark A.
Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closermore » to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.« less
Schrepf, Andrew; Lutgendorf, Susan K.; Pyter, Leah M.
2015-01-01
Cancer patients suffer high levels of affective and cognitive disturbances, which have been attributed to diagnosis-related distress, impairment of quality of life, and side effects of primary treatment. An inflammatory microenvironment is also a feature of the vast majority of solid tumors. However, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and cognitive disturbances. In this review, we summarize the burgeoning evidence from rodent cancer models that solid tumors alter neurobiological pathways and subsequent behavioral processes with relevance to affective and cognitive disturbances reported in human cancer populations. We consider, in parallel, the evidence from human clinical cancer research demonstrating that affective and cognitive disturbances are common in some malignancies prior to diagnosis and treatment. We further consider the underlying neurobiological pathways, including altered neuroinflammation, tryptophan metabolism, prostaglandin synthesis and associated neuroanatomical changes, that are most strongly implicated in the rodent literature and supported by analogous evidence from human cancer populations. We focus on the implications of these findings for behavioral researchers and clinicians, with particular emphasis on methodological issues and areas of future research. PMID:25958011
Lieberman, Harris R; Kramer, F Matthew; Montain, Scott J; Niro, Philip
2007-05-01
Limited opportunities to study human cognitive performance in non-laboratory, ambulatory situations exist. However, advances in technology make it possible to extend behavioral assessments to the field. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device acquires minute-by-minute information on an individual's physical activity and can distinguish sleep from waking, the most basic aspect of behavior. Our laboratory developed a series of wrist-worn devices, not much larger than a watch, which assess reaction time, vigilance and memory. The devices concurrently assess motor activity with greater temporal resolution than standard actigraphs. They also continuously monitor multiple environmental variables including temperature, humidity, sound, and light. These monitors have been employed during training and simulated military operations to collect behavioral and environmental information that would typically be unavailable under such circumstances. Development of the vigilance monitor, and how each successive version extended capabilities of the device are described. Data from several studies are presented, including studies conducted in harsh field environments during a simulated infantry assault, an officer training course. The monitors simultaneously documented environmental conditions, patterns of sleep and activity and effects of nutritional manipulations on cognitive performance. They provide a new method to relate cognitive performance to real world environmental conditions and assess effects of various interventions on human behavior in the field. They can also monitor cognitive performance in real time, and if it is degraded, attempt to intervene to maintain
2004-01-01
Cognitive Task Analysis Abstract As Department of Defense (DoD) leaders rely more on modeling and simulation to provide information on which to base...capabilities and intent. Cognitive Task Analysis (CTA) Cognitive Task Analysis (CTA) is an extensive/detailed look at tasks and subtasks performed by a...Domain Analysis and Task Analysis: A Difference That Matters. In Cognitive Task Analysis , edited by J. M. Schraagen, S.
Snigdha, Shikha; Milgram, Norton W; Willis, Sherry L; Albert, Marylin; Weintraub, S; Fortin, Norbert J; Cotman, Carl W
2013-07-01
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Snigdha, Shikha; Milgram, Norton W.; Willis, Sherry L.; Albert, Marylin; Weintraub, S.; Fortin, Norbert J.; Cotman, Carl W.
2013-01-01
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer’s disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer’s disease. PMID:23434040
Examining Multiple Stages of Protective Behavior of Information System End-Users
ERIC Educational Resources Information Center
Burns, Mary B.
2012-01-01
The adage, "old habits die hard", is especially relevant when humans learn new protective behaviors (i.e., dental flossing, IS security behaviors). The foundation that underlies many social-cognitive theories used in IS research is that intention to change predicts actual behavior change. Despite intentions to change, humans do not…
History of Cognitive-Behavioral Therapy (CBT) in Youth
Benjamin, Courtney L.; Puleo, Connor M.; Settipani, Cara A.; Brodman, Douglas M.; Edmunds, Julie M.; Cummings, Colleen M.
2011-01-01
Synopsis CBT represents a combination of behavioral and cognitive theories of human behavior and psychopathology, and a melding of emotional, familial, and peer influences. The numerous intervention strategies that comprise CBT reflect its complex and integrative nature and include such topics as extinction, habituation, modeling, cognitive restructuring, problem-solving, and the development of coping strategies, mastery, and a sense of self-control. CBT targets multiple areas of potential vulnerability (e.g., cognitive, behavioral, affective) with developmentally-guided strategies and traverses multiple intervention pathways. Although CBT is often considered the “first line treatment” for many psychological disorders in youth, additional work is necessary to address treatment non-responders and to facilitate the dissemination of efficacious CBT approaches. PMID:21440849
Exposure to unpredictable maternal sensory signals influences cognitive development across species.
Davis, Elysia Poggi; Stout, Stephanie A; Molet, Jenny; Vegetabile, Brian; Glynn, Laura M; Sandman, Curt A; Heins, Kevin; Stern, Hal; Baram, Tallie Z
2017-09-26
Maternal care is a critical determinant of child development. However, our understanding of processes and mechanisms by which maternal behavior influences the developing human brain remains limited. Animal research has illustrated that patterns of sensory information is important in shaping neural circuits during development. Here we examined the relation between degree of predictability of maternal sensory signals early in life and subsequent cognitive function in both humans ( n = 128 mother/infant dyads) and rats ( n = 12 dams; 28 adolescents). Behaviors of mothers interacting with their offspring were observed in both species, and an entropy rate was calculated as a quantitative measure of degree of predictability of transitions among maternal sensory signals (visual, auditory, and tactile). Human cognitive function was assessed at age 2 y with the Bayley Scales of Infant Development and at age 6.5 y with a hippocampus-dependent delayed-recall task. Rat hippocampus-dependent spatial memory was evaluated on postnatal days 49-60. Early life exposure to unpredictable sensory signals portended poor cognitive performance in both species. The present study provides evidence that predictability of maternal sensory signals early in life impacts cognitive function in both rats and humans. The parallel between experimental animal and observational human data lends support to the argument that predictability of maternal sensory signals causally influences cognitive development.
NASA Astrophysics Data System (ADS)
Yang, G.; Lin, Y.; Bhattacharya, P.
2007-12-01
To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.
Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat
2018-01-01
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.
City rats: insight from rat spatial behavior into human cognition in urban environments.
Yaski, Osnat; Portugali, Juval; Eilam, David
2011-09-01
The structure and shape of the urban environment influence our ability to find our way about in the city. Understanding how the physical properties of the environment affect spatial behavior and cognition is therefore a necessity. However, there are inherent difficulties in empirically studying complex and large-scale urban environments. These include the need to isolate the impact of specific urban features and to acquire data on the physical activity of individuals. In the present study, we attempted to overcome the above obstacles and examine the relation between urban environments and spatial cognition by testing the spatial behavior of rats. This idea originated from the resemblance in the operative brain functions and in the mechanisms and strategies employed by humans and other animals when acquiring spatial information and establishing an internal representation, as revealed in past studies. Accordingly, we tested rats in arenas that simulated a grid urban layout (e.g. Manhattan streets) and an irregular urban layout (e.g. Jerusalem streets). We found that in the grid layout, rat movement was more structured and extended over a greater area compared with their restricted movement in the irregular layout. These movement patterns recall those of humans in respective urban environments, illustrating that the structure and shape of the environment affect spatial behavior similarly in humans and rats. Overall, testing rats in environments that simulate facets of urban environments can provide new insights into human spatial cognition in urban environments.
Collins, Michael G.; Juvina, Ion; Gluck, Kevin A.
2016-01-01
When playing games of strategic interaction, such as iterated Prisoner's Dilemma and iterated Chicken Game, people exhibit specific within-game learning (e.g., learning a game's optimal outcome) as well as transfer of learning between games (e.g., a game's optimal outcome occurring at a higher proportion when played after another game). The reciprocal trust players develop during the first game is thought to mediate transfer of learning effects. Recently, a computational cognitive model using a novel trust mechanism has been shown to account for human behavior in both games, including the transfer between games. We present the results of a study in which we evaluate the model's a priori predictions of human learning and transfer in 16 different conditions. The model's predictive validity is compared against five model variants that lacked a trust mechanism. The results suggest that a trust mechanism is necessary to explain human behavior across multiple conditions, even when a human plays against a non-human agent. The addition of a trust mechanism to the other learning mechanisms within the cognitive architecture, such as sequence learning, instance-based learning, and utility learning, leads to better prediction of the empirical data. It is argued that computational cognitive modeling is a useful tool for studying trust development, calibration, and repair. PMID:26903892
Terada, Kazunori; Yamada, Seiji
2017-01-01
Humans use two distinct cognitive strategies separately to understand and predict other humans' behavior. One is mind-reading, in which an internal state such as an intention or an emotional state is assumed to be a source of a variety of behaviors. The other is behavior-reading, in which an actor's behavior is modeled based on stimulus-response associations without assuming internal states behind the behavior. We hypothesize that anthropomorphic features are key for an observer switching between these two cognitive strategies in a competitive situation. We provide support for this hypothesis through two studies using four agents with different appearances. We show that only a human agent was thought to possess both the ability to generate a variety of behaviors and internal mental states, such as minds and emotions (Study 1). We also show that humans used mixed (opposing) strategies against a human agent and exploitative strategies against the agents with mechanical appearances when they played a repeated zero-sum game (Study 2). Our findings show that humans understand that human behavior is varied; that humans have internal states, such as minds and emotions; that the behavior of machines is governed by a limited number of fixed rules; and that machines do not possess internal mental states. Our findings also suggest that the function of mind-reading is to trigger a strategy for use against agents with variable behavior and that humans exploit others who lack behavioral variability based on behavior-reading in a competitive situation. PMID:28736536
Dissociation of Active Working Memory and Passive Recognition in Rhesus Monkeys
ERIC Educational Resources Information Center
Basile, Benjamin M.; Hampton, Robert R.
2013-01-01
Active cognitive control of working memory is central in most human memory models, but behavioral evidence for such control in nonhuman primates is absent and neurophysiological evidence, while suggestive, is indirect. We present behavioral evidence that monkey memory for familiar images is under active cognitive control. Concurrent cognitive…
Menzel, Charles R.; Parrish, Audrey E.; Perdue, Bonnie M.; Sayers, Ken; Smith, J. David; Washburn, David A.
2016-01-01
Primate Cognition is the study of cognitive processes, which represent internal mental processes involved in discriminations, decisions, and behaviors of humans and other primate species. Cognitive control involves executive and regulatory processes that allocate attention, manipulate and evaluate available information (and, when necessary, seek additional information), remember past experiences to plan future behaviors, and deal with distraction and impulsivity when they are threats to goal achievement. Areas of research that relate to cognitive control as it is assessed across species include executive attention, episodic memory, prospective memory, metacognition and self-control. Executive attention refers to the ability to control what sensory stimuli one attends to and how one regulates responses to those stimuli, especially in cases of conflict. Episodic memory refers to memory for personally experienced, autobiographical events. Prospective memory refers to the formation and implementation of future-intended actions, such as remembering what needs to be done later. Metacognition consists of control and monitoring processes that allow individuals to assess what information they have and what information they still need, and then if necessary to seek information. Self-control is a regulatory process whereby individuals forego more immediate or easier to obtain rewards for more delayed or harder to obtain rewards that are objectively more valuable. The behavioral complexity shown by nonhuman primates when given tests to assess these capacities indicates psychological continuities with human cognitive control capacities. However, more research is needed to clarify the proper interpretation of these behaviors with regard to possible cognitive constructs that may underlie such behaviors. PMID:27284790
An Update on Maternal Use of Antiepileptic Medications in Pregnancy and Neurodevelopment Outcomes
Gerard, Elizabeth E.; Meador, Kimford J.
2015-01-01
Antiepileptic drugs (AEDs) are prescribed commonly to women of childbearing age. In utero exposure to some AEDs can have significant cognitive and behavioral consequences for the unborn child. Recently, prospective studies of women taking AEDs during pregnancy have added significantly to our understanding of cognitive and behavioral teratogenic risks posed by fetal AED exposure. Valproate is clearly associated with impaired cognitive development as well as an increased risk of disorders such as autism and autism spectrum disorder. Exposure to carbamazepine, lamotrigine, levetiracetam, or phenytoin monotherapy is associated with more favorable cognitive and behavioral outcomes than valproate, but more data are required to clarify if these AEDs have more subtle effects on cognition and behavior. There are insufficient data on the developmental effects of other AEDs in humans. Further, the underlying mechanisms of cognitive teratogenesis are poorly understood, including the genetic factors that affect susceptibility to AEDs. PMID:27617120
Social modulation of cognition: Lessons from rhesus macaques relevant to education.
Monfardini, Elisabetta; Reynaud, Amélie J; Prado, Jérôme; Meunier, Martine
2017-11-01
Any animal, human or non-human, lives in a world where there are others like itself. Individuals' behaviors are thus inevitably influenced by others, and cognition is no exception. Long acknowledged in psychology, social modulations of cognition have been neglected in cognitive neuroscience. Yet, infusing this classic topic in psychology with brain science methodologies could yield valuable educational insights. In recent studies, we used a non-human primate model, the rhesus macaque, to identify social influences representing ancient biases rooted in evolution, and neuroimaging to shed light on underlying mechanisms. The behavioral and neural data garnered in humans and macaques are summarized, with a focus on two findings relevant to human education. First, peers' mistakes stand out as exceptional professors and seem to have devoted areas and neurons in the primates' brain. Second, peers' mere presence suffices to enhance performance in well-learned tasks, possibly by boosting activity in the brain network involved in the task at hand. These findings could be translated into concrete pedagogical interventions in the classroom. Copyright © 2016 Elsevier Ltd. All rights reserved.
Behavioral Dynamics in the Cooperative Control of Mixed Human/Robotic Teams
2015-01-05
models of cognitive and social psychology play a major role in the work. A particular objective is to develop a fundamental understanding of how...dynamics. In addition to exploring cognitive and social psychological aspects of decision making, research is focused on formal approaches to...SUBJECT TERMS human-machine interactions, two-alternative-forced-choice (TAFC), cognitive and social psychological aspects of decision making, action
Human Cognition and 1/f Scaling
ERIC Educational Resources Information Center
Van Orden, Guy C.; Holden, John G.; Turvey, Michael T.
2005-01-01
Ubiquitous 1/f scaling in human cognition and physiology suggests a mind-body interaction that contradicts commonly held assumptions. The intrinsic dynamics of psychological phenomena are interaction dominant (rather than component dominant), and the origin of purposive behavior lies with a general principle of self-organization (rather than a…
The Aristotelian conception of habit and its contribution to human neuroscience
Bernacer, Javier; Murillo, Jose Ignacio
2014-01-01
The notion of habit used in neuroscience is an inheritance from a particular theoretical origin, whose main source is William James. Thus, habits have been characterized as rigid, automatic, unconscious, and opposed to goal-directed actions. This analysis leaves unexplained several aspects of human behavior and cognition where habits are of great importance. We intend to demonstrate the utility that another philosophical conception of habit, the Aristotelian, may have for neuroscientific research. We first summarize the current notion of habit in neuroscience, its philosophical inspiration and the problems that arise from it, mostly centered on the sharp distinction between goal-directed actions and habitual behavior. We then introduce the Aristotelian view and we compare it with that of William James. For Aristotle, a habit is an acquired disposition to perform certain types of action. If this disposition involves an enhanced cognitive control of actions, it can be considered a “habit-as-learning”. The current view of habit in neuroscience, which lacks cognitive control and we term “habit-as-routine”, is also covered by the Aristotelian conception. He classifies habits into three categories: (1) theoretical, or the retention of learning understood as “knowing that x is so”; (2) behavioral, through which the agent achieves a rational control of emotion-permeated behavior (“knowing how to behave”); and (3) technical or learned skills (“knowing how to make or to do”). Finally, we propose new areas of research where this “novel” conception of habit could serve as a framework concept, from the cognitive enrichment of actions to the role of habits in pathological conditions. In all, this contribution may shed light on the understanding of habits as an important feature of human action. Habits, viewed as a cognitive enrichment of behavior, are a crucial resource for understanding human learning and behavioral plasticity. PMID:25404908
Testing Adaptive Toolbox Models: A Bayesian Hierarchical Approach
ERIC Educational Resources Information Center
Scheibehenne, Benjamin; Rieskamp, Jorg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox…
A Cognitive Neuroscience Perspective on Embodied Language for Human-Robot Cooperation
ERIC Educational Resources Information Center
Madden, Carol; Hoen, Michel; Dominey, Peter Ford
2010-01-01
This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…
The Behavioral and Social Sciences.
ERIC Educational Resources Information Center
Simon, Herbert A.
1980-01-01
This article reviews some recent technical progress in the social sciences and three frontier areas including evolutionary theory as related to sociobiology, the theory of human rational choice, and cognitive science. These areas offer explanations for broad areas of human behavior. (Author/SA)
Molecular networks and the evolution of human cognitive specializations.
Fontenot, Miles; Konopka, Genevieve
2014-12-01
Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nutritional interventions protect against age-related deficits in behavior: from animals to humans
USDA-ARS?s Scientific Manuscript database
Aged rats show impaired performance on motor and cognitive tasks. Similar changes in behavior occur in humans with age, and the development of methods to retard or reverse these age-related neuronal and behavioral deficits could increase healthy aging and decrease health care costs. In the present s...
The Humanism of Rational Emotive Behavior Therapy and Other Cognitive Behavior Therapies.
ERIC Educational Resources Information Center
Ellis, Albert
1996-01-01
Describes aspects of rational emotive behavior therapy (REBT). REBT shows how people can both create and uncreate many of their emotional disturbances. It is a theory of personality which avoids devotion to any kind of magic and supernaturalism and emphasizes unconditional self-acceptance, antiabsolutism, uncertainty, and human fallibility. (RJM)
Single-Dose Testosterone Administration Impairs Cognitive Reflection in Men.
Nave, Gideon; Nadler, Amos; Zava, David; Camerer, Colin
2017-10-01
In nonhumans, the sex steroid testosterone regulates reproductive behaviors such as fighting between males and mating. In humans, correlational studies have linked testosterone with aggression and disorders associated with poor impulse control, but the neuropsychological processes at work are poorly understood. Building on a dual-process framework, we propose a mechanism underlying testosterone's behavioral effects in humans: reduction in cognitive reflection. In the largest study of behavioral effects of testosterone administration to date, 243 men received either testosterone or placebo and took the Cognitive Reflection Test (CRT), which estimates the capacity to override incorrect intuitive judgments with deliberate correct responses. Testosterone administration reduced CRT scores. The effect remained after we controlled for age, mood, math skills, whether participants believed they had received the placebo or testosterone, and the effects of 14 additional hormones, and it held for each of the CRT questions in isolation. Our findings suggest a mechanism underlying testosterone's diverse effects on humans' judgments and decision making and provide novel, clear, and testable predictions.
Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.
Schuck, Nicolas W; Cai, Ming Bo; Wilson, Robert C; Niv, Yael
2016-09-21
Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented, and this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Research progress on Drosophila visual cognition in China.
Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang
2010-03-01
Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.
Veksler, Vladislav D.; Buchler, Norbou; Hoffman, Blaine E.; Cassenti, Daniel N.; Sample, Char; Sugrim, Shridat
2018-01-01
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting. PMID:29867661
Beran, Michael J; Menzel, Charles R; Parrish, Audrey E; Perdue, Bonnie M; Sayers, Ken; Smith, J David; Washburn, David A
2016-09-01
Primate Cognition is the study of cognitive processes, which represent internal mental processes involved in discriminations, decisions, and behaviors of humans and other primate species. Cognitive control involves executive and regulatory processes that allocate attention, manipulate and evaluate available information (and, when necessary, seek additional information), remember past experiences to plan future behaviors, and deal with distraction and impulsivity when they are threats to goal achievement. Areas of research that relate to cognitive control as it is assessed across species include executive attention, episodic memory, prospective memory, metacognition, and self-control. Executive attention refers to the ability to control what sensory stimuli one attends to and how one regulates responses to those stimuli, especially in cases of conflict. Episodic memory refers to memory for personally experienced, autobiographical events. Prospective memory refers to the formation and implementation of future-intended actions, such as remembering what needs to be done later. Metacognition consists of control and monitoring processes that allow individuals to assess what information they have and what information they still need, and then if necessary to seek information. Self-control is a regulatory process whereby individuals forego more immediate or easier to obtain rewards for more delayed or harder to obtain rewards that are objectively more valuable. The behavioral complexity shown by nonhuman primates when given tests to assess these capacities indicates psychological continuities with human cognitive control capacities. However, more research is needed to clarify the proper interpretation of these behaviors with regard to possible cognitive constructs that may underlie such behaviors. WIREs Cogn Sci 2016, 7:294-316. doi: 10.1002/wcs.1397 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Primate beta oscillations and rhythmic behaviors.
Merchant, Hugo; Bartolo, Ramón
2018-03-01
The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.
Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior
NASA Astrophysics Data System (ADS)
Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.
2006-05-01
Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.
Detecting Underlying Stance Adopted When Human Construe Behavior of Entities
NASA Astrophysics Data System (ADS)
Terada, Kazunori; Ono, Kouhei; Ito, Akira
Whether or not humans can construe the behaviors of entities depends on their psychological stance. The philosopher Dennett proposed human cognitive strategies (three stances) in which humans construe the behavior of other animated objects, including other humans, artifacts, and physical phenomena:‘intentional’, ‘design’ and ‘physical’ stances. Detecting the psychological stance taken toward entities is difficult, because such mental state attribution is a subjective cognitive process and hard to measure. In the present study, we proposed a novel method for detecting underlying stance adopted when human construe behavior of entities. In our method the subject was asked to select the most suitable action sequence shown in three movies each of which representing Dennett’s three stances. To valid our method we have conducted an experiment in which the subjects were presented thirty short videos and asked to compare them to the three movies. The result indicated that the subjects did not focused on prior knowledge about the entity but could focused on motion characteristics per se, owing to simple and typical motion of an abstract shaped object.
Statistical and methodological considerations for the interpretation of intranasal oxytocin studies
Walum, Hasse; Waldman, Irwin D.; Young, Larry J.
2015-01-01
Over the last decade, oxytocin (OT) has received focus in numerous studies associating intranasal administration of this peptide with various aspects of human social behavior. These studies in humans are inspired by animal research, especially in rodents, showing that central manipulations of the OT system affect behavioral phenotypes related to social cognition, including parental behavior, social bonding and individual recognition. Taken together, these studies in humans appear to provide compelling, but sometimes bewildering evidence for the role of OT in influencing a vast array of complex social cognitive processes in humans. In this paper we investigate to what extent the human intranasal OT literature lends support to the hypothesis that intranasal OT consistently influences a wide spectrum of social behavior in humans. We do this by considering statistical features of studies within this field, including factors like statistical power, pre-study odds and bias. Our conclusion is that intranasal OT studies are generally underpowered and that there is a high probability that most of the published intranasal OT findings do not represent true effects. Thus the remarkable reports that intranasal OT influences a large number of human social behaviors should be viewed with healthy skepticism, and we make recommendations to improve the reliability of human OT studies in the future. PMID:26210057
Culture shapes the evolution of cognition.
Thompson, Bill; Kirby, Simon; Smith, Kenny
2016-04-19
A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual-if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption.
The selfish goal meets the selfish gene.
Neuberg, Steven L; Schaller, Mark
2014-04-01
The connection between selfish genes and selfish goals is not merely metaphorical. Many goals that shape contemporary cognition and behavior are psychological products of evolutionarily fundamental motivational systems and thus are phenotypic manifestations of genes. An evolutionary perspective can add depth and nuance to our understanding of "selfish goals" and their implications for human cognition and behavior.
NASA Astrophysics Data System (ADS)
Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi
2012-06-01
This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.
Emotion, Cognition, and Behavior
NASA Astrophysics Data System (ADS)
Dolan, R. J.
2002-11-01
Emotion is central to the quality and range of everyday human experience. The neurobiological substrates of human emotion are now attracting increasing interest within the neurosciences motivated, to a considerable extent, by advances in functional neuroimaging techniques. An emerging theme is the question of how emotion interacts with and influences other domains of cognition, in particular attention, memory, and reasoning. The psychological consequences and mechanisms underlying the emotional modulation of cognition provide the focus of this article.
ERIC Educational Resources Information Center
Udell, Monique A. R.; Wynne, C. D. L.
2008-01-01
Dogs likely were the first animals to be domesticated and as such have shared a common environment with humans for over ten thousand years. Only recently, however, has this species' behavior been subject to scientific scrutiny. Most of this work has been inspired by research in human cognitive psychology and suggests that in many ways dogs are…
Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter
2017-01-01
Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior.
Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J.; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter
2017-01-01
Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior. PMID:28203215
Using robots to understand animal cognition.
Frohnwieser, Anna; Murray, John C; Pike, Thomas W; Wilkinson, Anna
2016-01-01
In recent years, robotic animals and humans have been used to answer a variety of questions related to behavior. In the case of animal behavior, these efforts have largely been in the field of behavioral ecology. They have proved to be a useful tool for this enterprise as they allow the presentation of naturalistic social stimuli whilst providing the experimenter with full control of the stimulus. In interactive experiments, the behavior of robots can be controlled in a manner that is impossible with real animals, making them ideal instruments for the study of social stimuli in animals. This paper provides an overview of the current state of the field and considers the impact that the use of robots could have on fundamental questions related to comparative psychology: namely, perception, spatial cognition, social cognition, and early cognitive development. We make the case that the use of robots to investigate these key areas could have an important impact on the field of animal cognition. © 2016 Society for the Experimental Analysis of Behavior.
Linking brain, mind and behavior.
Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard
2009-08-01
Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.
ERIC Educational Resources Information Center
Pociask, Fredrick D.; Morrison, Gary
2004-01-01
Human working memory can be defined as a component system responsible for the temporary storage and manipulation of information related to higher level cognitive behaviors, such as understanding and reasoning (Baddeley, 1992; Becker & Morris, 1999). Working memory, while able to manage a complex array of cognitive activities, presents with an…
COREBA (cognition-oriented emergent behavior architecture)
NASA Astrophysics Data System (ADS)
Kwak, S. David
2000-06-01
Currently, many behavior implementation technologies are available for modeling human behaviors in Department of Defense (DOD) computerized systems. However, it is commonly known that any single currently adopted behavior implementation technology is not so capable of fully representing complex and dynamic human decision-making and cognition behaviors. The author views that the current situation can be greatly improved if multiple technologies are integrated within a well designed overarching architecture that amplifies the merits of each of the participating technologies while suppressing the limitations that are inherent with each of the technologies. COREBA uses an overarching behavior integration architecture that makes the multiple implementation technologies cooperate in a homogeneous environment while collectively transcending the limitations associated with the individual implementation technologies. Specifically, COREBA synergistically integrates Artificial Intelligence and Complex Adaptive System under Rational Behavior Model multi-level multi- paradigm behavior architecture. This paper will describe applicability of COREBA in DOD domain, behavioral capabilities and characteristics of COREBA and how the COREBA architectural integrates various behavior implementation technologies.
Unifying the field: developing an integrative paradigm for behavior therapy.
Eifert, G H; Forsyth, J P; Schauss, S L
1993-06-01
The limitations of early conditioning models and treatments have led many behavior therapists to abandon conditioning principles and replace them with loosely defined cognitive theories and treatments. Systematic theory extensions to human behavior, using new concepts and processes derived from and built upon the basic principles, could have prevented the divisive debates over whether psychological dysfunctions are the results of conditioning or cognition and whether they should be treated with conditioning or cognitive techniques. Behavior therapy could also benefit from recent advances in experimental cognitive psychology that provide objective behavioral methods of studying dysfunctional processes. We suggest a unifying paradigm for explaining abnormal behavior that links and integrates different fields of study and processes that are frequently believed to be incompatible or antithetical such as biological vulnerability variables, learned behavioral repertoires, and that also links historical and current antecedents of the problem. An integrative paradigmatic behavioral approach may serve a unifying function in behavior therapy (a) by promoting an understanding of the dysfunctional processes involved in different disorders and (b) by helping clinicians conduct functional analyses that lead to theory-based, individualized, and effective treatments.
Chimpanzees and Bonobos Exhibit Divergent Spatial Memory Development
ERIC Educational Resources Information Center
Rosati, Alexandra G.; Hare, Brian
2012-01-01
Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can…
Reading: Cognitive Input and Output.
ERIC Educational Resources Information Center
Kopp, Harriet Green
Descriptions of language learning and reading behaviors are presented, in this paper, within the context of a model of cognitive processing that reflects a continuum for the logical procession of language skills in human maturation and learning. Portions of the paper differentiate silent and oral reading in terms of cognitive load, which is a…
Learning and Cognition: The Cognitive Revolution in American Psychology.
ERIC Educational Resources Information Center
Inoue, Yukiko
Cognitive psychology has replaced behaviorism as the dominant school of thought in American psychology regarding learning and development. This paper investigates changes in the field that have led to this major shift. The different methods used by behaviorists and human information processing (HIP) psychology are described. The metaphor of the…
Human factors in software development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, B.
1986-01-01
This book presents an overview of ergonomics/human factors in software development, recent research, and classic papers. Articles are drawn from the following areas of psychological research on programming: cognitive ergonomics, cognitive psychology, and psycholinguistics. Topics examined include: theoretical models of how programmers solve technical problems, the characteristics of programming languages, specification formats in behavioral research and psychological aspects of fault diagnosis.
Emotion, Emotional Expression, and the Cognitive-Physiological Interaction: A Readout View.
ERIC Educational Resources Information Center
Buck, Ross
A basic tenet of this paper is that, from the time of the ancient Greeks, Western thought has distinguished between rational processes unique to humans and the processes governing animal behavior. A model of motivation, emotion, and the cognitive/physiological interaction that can be applied to both animals and humans is presented. The special…
Behavioral Health Support of NASA Astronauts for International Space Station Missions
NASA Technical Reports Server (NTRS)
Sipes, Walter
2000-01-01
Two areas of focus for optimizing behavioral health and human performance during International Space Station missions are 1) sleep and circadian assessment and 2) behavioral medicine. The Mir experience provided the opportunity to examine the use and potential effectiveness of tools and procedures to support the behavioral health of the crew. The experience of NASA has shown that on-orbit performance can be better maintained if behavioral health, sleep, and circadian issues are effectively monitored and properly addressed. For example, schedules can be tailored based upon fatigue level of crews and other behavioral and cognitive indicators to maximize performance. Previous research and experience with long duration missions has resulted in the development and upgrade of tools used to monitor fatigue, stress, cognitive function, and behavioral health. Self-assessment and objective tools such as the Spaceflight Cognitive Assessment Tool have been developed and refined to effectively address behavioral medicine countermeasures in space.
Cognitive Invariants of Geographic Event Conceptualization: What Matters and What Refines?
NASA Astrophysics Data System (ADS)
Klippel, Alexander; Li, Rui; Hardisty, Frank; Weaver, Chris
Behavioral experiments addressing the conceptualization of geographic events are few and far between. Our research seeks to address this deficiency by developing an experimental framework on the conceptualization of movement patterns. In this paper, we report on a critical experiment that is designed to shed light on the question of cognitively salient invariants in such conceptualization. Invariants have been identified as being critical to human information processing, particularly for the processing of dynamic information. In our experiment, we systematically address cognitive invariants of one class of geographic events: single entity movement patterns. To this end, we designed 72 animated icons that depict the movement patterns of hurricanes around two invariants: size difference and topological equivalence class movement patterns endpoints. While the endpoint hypothesis, put forth by Regier (2007), claims a particular focus of human cognition to ending relations of events, other research suggests that simplicity principles guide categorization and, additionally, that static information is easier to process than dynamic information. Our experiments show a clear picture: Size matters. Nonetheless, we also find categorization behaviors consistent with experiments in both the spatial and temporal domain, namely that topology refines these behaviors and that topological equivalence classes are categorized consistently. These results are critical steppingstones in validating spatial formalism from a cognitive perspective and cognitively grounding work on ontologies.
Modeling users' activity on Twitter networks: validation of Dunbar's number
NASA Astrophysics Data System (ADS)
Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro
2012-02-01
Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the ``economy of attention'' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.
Social work perspectives on human behavior.
Wodarski, J S
1993-01-01
This manuscript addresses recent developments in human behavior research that are relevant to social work practice. Specific items addressed are biological aspects of behavior, life span development, cognitive variables, the self-efficacy learning process, the perceptual process, the exchange model, group level variables, macro level variables, and gender and ethnic-racial variables. Where relevant, specific applications to social work practice are provided.
Building machines that adapt and compute like brains.
Kriegeskorte, Nikolaus; Mok, Robert M
2017-01-01
Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural-level models, understand their relationships, and test both types of models with both brain and behavioral data.
Artistic creativity and dementia.
Miller, Zachary A; Miller, Bruce L
2013-01-01
Artistic ability and creativity are defining characteristics of human behavior. Behavioral neurology, as a specialty, believes that even the most complex behaviors can be modeled and understood as the summation of smaller cognitive functions. Literature from individuals with specific brain lesions has helped to map out these smaller regions of cognitive abilities. More recently, models based on neurodegenerative conditions, especially from the frontotemporal dementias, have allowed for greater nuanced investigations into the various functional anatomies necessary for artistic behavior and possibly the underlying networks that promote creativity. © 2013 Elsevier B.V. All rights reserved.
Culture shapes the evolution of cognition
Thompson, Bill; Kirby, Simon; Smith, Kenny
2016-01-01
A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual—if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption. PMID:27044094
Group rational-emotive and cognitive-behavioral therapy.
Ellis, A
1992-01-01
The theory of rational-emotive therapy (RET) and of cognitive-behavioral therapy (CBT) is briefly explained and is applied to group therapy. It is shown how RET and CBT therapy groups deal with transference, countertransference, levels of group intervention, process versus content orientation, identifying underlying group process themes, here-and-now activation, working with difficult group members, activity levels of therapist and group members, and other group problems. Although they particularly concentrate on people's tendencies to construct and create their own "emotional" difficulties, RET and CBT group procedures fully acknowledge the interactions of human thoughts, feelings, and actions and active-directively employ a variety of cognitive, emotive, and behavioral group therapy techniques.
Developing Cognitive Models for Social Simulation from Survey Data
NASA Astrophysics Data System (ADS)
Alt, Jonathan K.; Lieberman, Stephen
The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.
Cascade of neural processing orchestrates cognitive control in human frontal cortex
Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2016-01-01
Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070
MoCog1: A computer simulation of recognition-primed human decision making, considering emotions
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1992-01-01
The successful results of the first stage of a research effort to develop a versatile computer model of motivated human cognitive behavior are reported. Most human decision making appears to be an experience-based, relatively straightforward, largely automatic response to situations, utilizing cues and opportunities perceived from the current environment. The development, considering emotions, of the architecture and computer program associated with such 'recognition-primed' decision-making is described. The resultant computer program (MoCog1) was successfully utilized as a vehicle to simulate earlier findings that relate how an individual's implicit theories orient the individual toward particular goals, with resultant cognitions, affects, and behavior in response to their environment.
MoCog1: A computer simulation of recognition-primed human decision making
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1991-01-01
The results of the first stage of a research effort to develop a 'sophisticated' computer model of human cognitive behavior are described. Most human decision making is an experience-based, relatively straight-forward, largely automatic response to internal goals and drives, utilizing cues and opportunities perceived from the current environment. The development of the architecture and computer program (MoCog1) associated with such 'recognition-primed' decision making is discussed. The resultant computer program was successfully utilized as a vehicle to simulate earlier findings that relate how an individual's implicit theories orient the individual toward particular goals, with resultant cognitions, affects, and behavior in response to their environment.
Udell, Monique A.R; Wynne, C.D.L
2008-01-01
Dogs likely were the first animals to be domesticated and as such have shared a common environment with humans for over ten thousand years. Only recently, however, has this species' behavior been subject to scientific scrutiny. Most of this work has been inspired by research in human cognitive psychology and suggests that in many ways dogs are more human-like than any other species, including nonhuman primates. Behavior analysts should add their expertise to the study of dog behavior, both to add objective behavioral analyses of experimental data and to effectively integrate this new knowledge into applied work with dogs. PMID:18422021
Error-associated behaviors and error rates for robotic geology
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin
2004-01-01
This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.
1990-12-01
personality of other cognitive entities in the world. POPLAR is a step towards an AI system whose behavior is psychologically justified and can provide the...natural language capability (i.e. the ver- bal behavior of 1) and 5) are not addressed). Nor do we tackle in any complete ard principled manner the...human cognitive behavior . This property makes POPLAR 1.3 personality-oriented, i.e. provision is made in the present model for introducing personality
The evolution of music and human social capability
Schulkin, Jay; Raglan, Greta B.
2014-01-01
Music is a core human experience and generative processes reflect cognitive capabilities. Music is often functional because it is something that can promote human well-being by facilitating human contact, human meaning, and human imagination of possibilities, tying it to our social instincts. Cognitive systems also underlie musical performance and sensibilities. Music is one of those things that we do spontaneously, reflecting brain machinery linked to communicative functions, enlarged and diversified across a broad array of human activities. Music cuts across diverse cognitive capabilities and resources, including numeracy, language, and space perception. In the same way, music intersects with cultural boundaries, facilitating our “social self” by linking our shared experiences and intentions. This paper focuses on the intersection between the neuroscience of music, and human social functioning to illustrate the importance of music to human behaviors. PMID:25278827
Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?
Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I
2011-02-01
Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.
Behavioral and cognitive effects of tyrosine intake in healthy human adults.
Hase, Adrian; Jung, Sophie E; aan het Rot, Marije
2015-06-01
The amino acid tyrosine is the precursor to the catecholamine neurotransmitters dopamine and norepinephrine. Increasing tyrosine uptake may positively influence catecholamine-related psychological functioning. We conducted a systematic review to examine the effects of tyrosine on behavior and cognition. Fifteen studies were reviewed. All studies except one involved tyrosine loading during a single test session. In most behavioral studies, there were no significant effects of tyrosine on exercise performance. In contrast, cognitive studies employing neuropsychological measures found that tyrosine loading acutely counteracts decrements in working memory and information processing that are induced by demanding situational conditions such as extreme weather or cognitive load. The buffering effects of tyrosine on cognition may be explained by tyrosine's ability to neutralize depleted brain catecholamine levels. There is evidence that tyrosine may benefit healthy individuals exposed to demanding situational conditions. For future research we recommend moving from studying the acute effects of a single tyrosine load in small samples to studying the behavioral and cognitive effects of tyrosine in larger groups over multiple weeks. Copyright © 2015 Elsevier Inc. All rights reserved.
Marceglia, Sara; Fumagalli, Manuela; Priori, Alberto
2011-01-01
The behavioral implications of deep brain stimulation (DBS) observed in Parkinson's disease patients provided evidence for a possible nonexclusively motor role of the subthalamic nucleus (STN) in basal ganglia circuitry. Basal ganglia pathophysiology can be studied directly by the analysis of neural rhythms measured in local field potentials recorded through DBS electrodes. Recent studies demonstrated that specific oscillations in the STN are involved in cognitive and behavioral information processing: action representation is mediated through β oscillations (13-35 Hz); cognitive information related to decision-making processes is mediated through the low-frequency oscillation (5-12 Hz); and limbic and emotional information is mediated through the α oscillation (8-12 Hz). These results revealed an important involvement of STN in decisional processes, cognitive functions, emotion control and conflict that could explain the post-DBS occurrence of behavioral disturbances.
Harris, Christine R; Prouvost, Caroline
2014-01-01
It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some "primordial" form that exists in human infants and in at least one other social species besides humans.
White matter and cognition: making the connection
Fields, R. Douglas
2016-01-01
Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society. PMID:27512019
Explicit instructions and consolidation promote rewiring of automatic behaviors in the human mind.
Szegedi-Hallgató, Emese; Janacsek, Karolina; Vékony, Teodóra; Tasi, Lia Andrea; Kerepes, Leila; Hompoth, Emőke Adrienn; Bálint, Anna; Németh, Dezső
2017-06-29
One major challenge in human behavior and brain sciences is to understand how we can rewire already existing perceptual, motor, cognitive, and social skills or habits. Here we aimed to characterize one aspect of rewiring, namely, how we can update our knowledge of sequential/statistical regularities when they change. The dynamics of rewiring was explored from learning to consolidation using a unique experimental design which is suitable to capture the effect of implicit and explicit processing and the proactive and retroactive interference. Our results indicate that humans can rewire their knowledge of such regularities incidentally, and consolidation has a critical role in this process. Moreover, old and new knowledge can coexist, leading to effective adaptivity of the human mind in the changing environment, although the execution of the recently acquired knowledge may be more fluent than the execution of the previously learned one. These findings can contribute to a better understanding of the cognitive processes underlying behavior change, and can provide insights into how we can boost behavior change in various contexts, such as sports, educational settings or psychotherapy.
On the specificity of face cognition compared with general cognitive functioning across adult age.
Hildebrandt, Andrea; Wilhelm, Oliver; Schmiedek, Florian; Herzmann, Grit; Sommer, Werner
2011-09-01
Face cognition is considered a specific human ability, clearly differentiable from general cognitive functioning. Its specificity is primarily supported by cognitive-experimental and neuroimaging research, but recently also from an individual differences perspective. However, no comprehensive behavioral data are available, which would allow estimating lifespan changes of the covariance structure of face-cognition abilities and general cognitive functioning as well as age-differences in face cognition after accounting for interindividual variability in general cognition. The present study aimed to fill this gap. In an age-heterogeneous (18-82 years) sample of 448 adults, we found no factorial dedifferentiation between face cognition and general cognition. Age-related differences in face memory were still salient after taking into account changes in general cognitive functioning. Face cognition thus remains a specific human ability compared with general cognition, even until old age. We discuss implications for models of cognitive aging and suggest that it is necessary to include more explicitly special social abilities in those models.
Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number
Gonçalves, Bruno; Perra, Nicola; Vespignani, Alessandro
2011-01-01
Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100–200 stable relationships. Thus, the ‘economy of attention’ is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior. PMID:21826200
Selective neuronal lapses precede human cognitive lapses following sleep deprivation.
Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak
2017-12-01
Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.
The Manipulative Complexity of Lower Paleolithic Stone Toolmaking
Faisal, Aldo; Stout, Dietrich; Apel, Jan; Bradley, Bruce
2010-01-01
Background Early stone tools provide direct evidence of human cognitive and behavioral evolution that is otherwise unavailable. Proper interpretation of these data requires a robust interpretive framework linking archaeological evidence to specific behavioral and cognitive actions. Methodology/Principal Findings Here we employ a data glove to record manual joint angles in a modern experimental toolmaker (the 4th author) replicating ancient tool forms in order to characterize and compare the manipulative complexity of two major Lower Paleolithic technologies (Oldowan and Acheulean). To this end we used a principled and general measure of behavioral complexity based on the statistics of joint movements. Conclusions/Significance This allowed us to confirm that previously observed differences in brain activation associated with Oldowan versus Acheulean technologies reflect higher-level behavior organization rather than lower-level differences in manipulative complexity. This conclusion is consistent with a scenario in which the earliest stages of human technological evolution depended on novel perceptual-motor capacities (such as the control of joint stiffness) whereas later developments increasingly relied on enhanced mechanisms for cognitive control. This further suggests possible links between toolmaking and language evolution. PMID:21072164
Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex
Schaefer, Anne; Sampath, Srihari C.; Intrator, Adam; Min, Alice; Gertler, Tracy S.; Surmeier, D. James; Tarakhovsky, Alexander; Greengard, Paul
2009-01-01
SUMMARY The genetic basis of cognition and behavioral adaptation to the environment remains poorly understood. Here we demonstrate that the histone methyltransferase complex GLP/G9a controls cognition and adaptive responses in a region-specific fashion in the adult brain. Using conditional mutagenesis in mice, we show that postnatal, neuron-specific deficiency of GLP/G9a leads to de-repression of numerous non-neuronal and neuron progenitor genes in adult neurons. This transcriptional alteration is associated with complex behavioral abnormalities, including defects in learning, motivation and environmental adaptation. The behavioral changes triggered by GLP/G9a deficiency are similar to key symptoms of the human 9q34 mental retardation syndrome that is associated with structural alterations of the GLP gene. The likely causal role of GLP/G9a in mental retardation in mice and humans suggests a key role for the GLP/G9a controlled histone H3K9 di-methylation in regulation of brain function through maintenance of the transcriptional homeostasis in adult neurons. PMID:20005824
Parasuraman, Raja; Jiang, Yang
2012-01-01
We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853
Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates
Petkov, Christopher I.; Jarvis, Erich D.
2012-01-01
Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species. PMID:22912615
Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders: Evidence Report
NASA Technical Reports Server (NTRS)
Slack, Kelley J.; Williams, Thomas J.; Schneiderman, Jason S.; Whitmire, Alexandra M.; Picano, James J.; Leveton, Lauren B.; Schmidt, Lacey L.; Shea, Camille
2016-01-01
In April 2010, President Obama declared a space pioneering goal for the United States in general and NASA in particular. "Fifty years after the creation of NASA, our goal is no longer just a destination to reach. Our goal is the capacity for people to work and learn and operate and live safely beyond the Earth for extended periods of time, ultimately in ways that are more sustainable and even indefinite." Thus NASA's Strategic Objective 1.1 emerged as "expand human presence into the solar system and to the surface of Mars to advance exploration, science, innovation, benefits to humanity, and international collaboration" (NASA 2015b). Any space flight, be it of long or short duration, occurs in an extreme environment that has unique stressors. Even with excellent selection methods, the potential for behavioral problems among space flight crews remain a threat to mission success. Assessment of factors that are related to behavioral health can help minimize the chances of distress and, thus, reduce the likelihood of adverse cognitive or behavioral conditions and psychiatric disorders arising within a crew. Similarly, countermeasures that focus on prevention and treatment can mitigate the cognitive or behavioral conditions that, should they arise, would impact mission success. Given the general consensus that longer duration, isolation, and confined missions have a greater risk for behavioral health ensuring crew behavioral health over the long term is essential. Risk, which within the context of this report is assessed with respect to behavioral health and performance, is addressed to deter development of cognitive and behavioral degradations or psychiatric conditions in space flight and analog populations, and to monitor, detect, and treat early risk factors, predictors and other contributing factors. Based on space flight and analog evidence, the average incidence rate of an adverse behavioral health event occurring during a space mission is relatively low for the current conditions. While mood and anxiety disturbances have occurred, no behavioral emergencies have been reported to date in space flight. Anecdotal and empirical evidence indicate that the likelihood of an adverse cognitive or behavioral condition or psychiatric disorder occurring greatly increases with the length of a mission. Further, while cognitive, behavioral, or psychiatric conditions might not immediately and directly threaten mission success, such conditions can, and do, adversely impact individual and crew health, welfare, and performance.
User-Centered Iterative Design of a Collaborative Virtual Environment
2001-03-01
cognitive task analysis methods to study land navigators. This study was intended to validate the use of user-centered design methodologies for the design of...have explored the cognitive aspects of collaborative human way finding and design for collaborative virtual environments. Further investigation of design paradigms should include cognitive task analysis and behavioral task analysis.
Brain-Based Aspects of Cognitive Learning Approaches in Second Language Learning
ERIC Educational Resources Information Center
Moghaddam, Alireza Navid; Araghi, Seyed Mahdi
2013-01-01
Language learning process is one of the complicated behaviors of human beings which has called many scholars and experts' attention especially after the middle of last century by the advent of cognitive psychology that later on we see its implication to education. Unlike previous thought of schools, cognitive psychology deals with the way in which…
A model of the human in a cognitive prediction task.
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1973-01-01
The human decision maker's behavior when predicting future states of discrete linear dynamic systems driven by zero-mean Gaussian processes is modeled. The task is on a slow enough time scale that physiological constraints are insignificant compared with cognitive limitations. The model is basically a linear regression system identifier with a limited memory and noisy observations. Experimental data are presented and compared to the model.
Impact of anxiety on prefrontal cortex encoding of cognitive flexibility
Park, Junchol; Moghaddam, Bita
2016-01-01
Anxiety often is studied as a stand-alone construct in laboratory models. But in the context of coping with real-life anxiety, its negative impacts extend beyond aversive feelings and involve disruptions in ongoing goal-directed behaviors and cognitive functioning. Critical examples of cognitive constructs affected by anxiety are cognitive flexibility and decision making. In particular, anxiety impedes the ability to shift flexibly between strategies in response to changes in task demands, as well as the ability to maintain a strategy in the presence of distractors. The brain region most critically involved in behavioral flexibility is the prefrontal cortex (PFC), but little is known about how anxiety impacts PFC encoding of internal and external events that are critical for flexible behavior. Here we review animal and human neurophysiological and neuroimaging studies implicating PFC neural processing in anxiety-induced deficits in cognitive flexibility. We then suggest experimental and analytical approaches for future studies to gain a better mechanistic understanding of impaired cognitive inflexibility in anxiety and related disorders. PMID:27316551
New approaches to investigating social gestures in autism spectrum disorder
2012-01-01
The combination of economic games and human neuroimaging presents the possibility of using economic probes to identify biomarkers for quantitative features of healthy and diseased cognition. These probes span a range of important cognitive functions, but one new use is in the domain of reciprocating social exchange with other humans - a capacity perturbed in a number of psychopathologies. We summarize the use of a reciprocating exchange game to elicit neural and behavioral signatures for subjects diagnosed with autism spectrum disorder (ASD). Furthermore, we outline early efforts to capture features of social exchange in computational models and use these to identify quantitative behavioral differences between subjects with ASD and matched controls. Lastly, we summarize a number of subsequent studies inspired by the modeling results, which suggest new neural and behavioral signatures that could be used to characterize subtle deficits in information processing during interactions with other humans. PMID:22958572
Acquisition of Autonomous Behaviors by Robotic Assistants
NASA Technical Reports Server (NTRS)
Peters, R. A., II; Sarkar, N.; Bodenheimer, R. E.; Brown, E.; Campbell, C.; Hambuchen, K.; Johnson, C.; Koku, A. B.; Nilas, P.; Peng, J.
2005-01-01
Our research achievements under the NASA-JSC grant contributed significantly in the following areas. Multi-agent based robot control architecture called the Intelligent Machine Architecture (IMA) : The Vanderbilt team received a Space Act Award for this research from NASA JSC in October 2004. Cognitive Control and the Self Agent : Cognitive control in human is the ability to consciously manipulate thoughts and behaviors using attention to deal with conflicting goals and demands. We have been updating the IMA Self Agent towards this goal. If opportunity arises, we would like to work with NASA to empower Robonaut to do cognitive control. Applications 1. SES for Robonaut, 2. Robonaut Fault Diagnostic System, 3. ISAC Behavior Generation and Learning, 4. Segway Research.
Apes have culture but may not know that they do
Gruber, Thibaud; Zuberbühler, Klaus; Clément, Fabrice; van Schaik, Carel
2015-01-01
There is good evidence that some ape behaviors can be transmitted socially and that this can lead to group-specific traditions. However, many consider animal traditions, including those in great apes, to be fundamentally different from human cultures, largely because of lack of evidence for cumulative processes and normative conformity, but perhaps also because current research on ape culture is usually restricted to behavioral comparisons. Here, we propose to analyze ape culture not only at the surface behavioral level but also at the underlying cognitive level. To this end, we integrate empirical findings in apes with theoretical frameworks developed in developmental psychology regarding the representation of tools and the development of metarepresentational abilities, to characterize the differences between ape and human cultures at the cognitive level. Current data are consistent with the notion of apes possessing mental representations of tools that can be accessed through re-representations: apes may reorganize their knowledge of tools in the form of categories or functional schemes. However, we find no evidence for metarepresentations of cultural knowledge: apes may not understand that they or others hold beliefs about their cultures. The resulting Jourdain Hypothesis, based on Molière’s character, argues that apes express their cultures without knowing that they are cultural beings because of cognitive limitations in their ability to represent knowledge, a determining feature of modern human cultures, allowing representing and modifying the current norms of the group. Differences in metarepresentational processes may thus explain fundamental differences between human and other animals’ cultures, notably limitations in cumulative behavior and normative conformity. Future empirical work should focus on how animals mentally represent their cultural knowledge to conclusively determine the ways by which humans are unique in their cultural behavior. PMID:25705199
Behavioral and neuroanatomical abnormalities in pleiotrophin knockout mice.
Krellman, Jason W; Ruiz, Henry H; Marciano, Veronica A; Mondrow, Bracha; Croll, Susan D
2014-01-01
Pleiotrophin (PTN) is an extracellular matrix-associated protein with neurotrophic and neuroprotective effects that is involved in a variety of neurodevelopmental processes. Data regarding the cognitive-behavioral and neuroanatomical phenotype of pleiotrophin knockout (KO) mice is limited. The purpose of this study was to more fully characterize this phenotype, with emphasis on the domains of learning and memory, cognitive-behavioral flexibility, exploratory behavior and anxiety, social behavior, and the neuronal and vascular microstructure of the lateral entorhinal cortex (EC). PTN KOs exhibited cognitive rigidity, heightened anxiety, behavioral reticence in novel contexts and novel social interactions suggestive of neophobia, and lamina-specific decreases in neuronal area and increases in neuronal density in the lateral EC. Initial learning of spatial and other associative tasks, as well as vascular density in the lateral EC, was normal in the KOs. These data suggest that the absence of PTN in vivo is associated with disruption of specific cognitive and affective processes, raising the possibility that further study of PTN KOs might have implications for the study of human disorders with similar features.
Soontornniyomkij, Virawudh; Kesby, James P.; Morgan, Erin E.; Bischoff-Grethe, Amanda; Minassian, Arpi; Brown, Gregory G.; Grant, Igor
2016-01-01
Methamphetamine (Meth) use is frequent among HIV-infected persons. Combined HIV and Meth insults may exacerbate neural injury in vulnerable neuroanatomic structures or circuitries in the brain, leading to increased behavioral disturbance and cognitive impairment. While acute and chronic effects of Meth in humans and animal models have been studied for decades, the neurobehavioral effects of Meth in the context of HIV infection are much less explored. In-depth understanding of the scope of neurobehavioral phenotypes and mechanisms in HIV/Meth intersection is needed. The present report summarizes published research findings, as well as unpublished data, in humans and animal models with regard to neurobehavioral disturbance, neuroimaging, and neuropathology, and in vitro experimental systems, with an emphasis on findings emerging from the National Institute on Drug Abuse (NIDA) funded Translational Methamphetamine AIDS Research Center (TMARC). Results from human studies and animal (primarily HIV-1 gp120 transgenic mouse) models thus far suggest that combined HIV and Meth insults increase the likelihood of neural injury in the brain. The neurobehavioral effects include cognitive impairment and increased tendencies toward impaired behavioral inhibition and social cognition. These impairments are relevant to behaviors that affect personal and social risks, e.g. worse medication adherence, riskier behaviors, and greater likelihood of HIV transmission. The underlying mechanisms may include electrochemical changes in neuronal circuitries, injury to white matter microstructures, synaptodendritic damage, and selective neuronal loss. Utilization of research methodologies that are valid across species is instrumental in generating new knowledge with clinical translational value. PMID:27484318
Soontornniyomkij, Virawudh; Kesby, James P; Morgan, Erin E; Bischoff-Grethe, Amanda; Minassian, Arpi; Brown, Gregory G; Grant, Igor
2016-09-01
Methamphetamine (Meth) use is frequent among HIV-infected persons. Combined HIV and Meth insults may exacerbate neural injury in vulnerable neuroanatomic structures or circuitries in the brain, leading to increased behavioral disturbance and cognitive impairment. While acute and chronic effects of Meth in humans and animal models have been studied for decades, the neurobehavioral effects of Meth in the context of HIV infection are much less explored. In-depth understanding of the scope of neurobehavioral phenotypes and mechanisms in HIV/Meth intersection is needed. The present report summarizes published research findings, as well as unpublished data, in humans and animal models with regard to neurobehavioral disturbance, neuroimaging, and neuropathology, and in vitro experimental systems, with an emphasis on findings emerging from the National Institute on Drug Abuse (NIDA) funded Translational Methamphetamine AIDS Research Center (TMARC). Results from human studies and animal (primarily HIV-1 gp120 transgenic mouse) models thus far suggest that combined HIV and Meth insults increase the likelihood of neural injury in the brain. The neurobehavioral effects include cognitive impairment and increased tendencies toward impaired behavioral inhibition and social cognition. These impairments are relevant to behaviors that affect personal and social risks, e.g. worse medication adherence, riskier behaviors, and greater likelihood of HIV transmission. The underlying mechanisms may include electrochemical changes in neuronal circuitries, injury to white matter microstructures, synaptodendritic damage, and selective neuronal loss. Utilization of research methodologies that are valid across species is instrumental in generating new knowledge with clinical translational value.
ERIC Educational Resources Information Center
Norris, Cynthia J.
1991-01-01
Explores the nature of human thought and resulting personality patterns, examining the impact of supervisory behavior on teacher development. Supervisors operate from any of four cognitive styles (facts, form, futures, or feelings). They must understand their own cognitive style and enhance their capacity for holistic thinking while encouraging…
Bridging the Gap between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory
ERIC Educational Resources Information Center
Eichenbaum, Howard; Fortin, Norbert J.
2005-01-01
The notion that non-human animals are capable of episodic memory is highly controversial. Here, we review recent behavioral work from our laboratory showing that the fundamental features of episodic memory can be observed in rats and that, as in humans, this capacity relies on the hippocampus. We also discuss electrophysiological evidence, from…
Conceptual models of information processing
NASA Technical Reports Server (NTRS)
Stewart, L. J.
1983-01-01
The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.
[Epilepsy, cognition and ketogenic diet].
Garcia-Penas, J J
2018-03-01
Most individuals with epilepsy will respond to pharmacologic treatment; however, approximately 20-30% will develop medically refractory epilepsy. Cognitive side effects of antiepileptic drugs are common and can negatively affect tolerability, compliance, and long-term retention of the treatment. Ketogenic diet is an effective and well-tolerated treatment for these children with refractory epilepsy without any negative effect on cognition or behavior. To review the current state of experimental and clinical data concerning the neuroprotective and cognitive effects of the ketogenic diet in both humans and animals. In different animal models, with or without epilepsy, the ketogenic diet seems to have neuroprotective and mood-stabilizing effects. In the observational studies in pediatric epilepsy, improvements during treatment with the ketogenic diet are reported in behavior and cognitive function, particularly with respect to attention, alertness, activity level, socialization, and sleep quality. One randomized controlled trial in patients with pediatric refractory epilepsy showed a mood and cognitive activation during ketogenic diet treatment. Ketogenic diet shows a positive impact on behavioral and cognitive functioning in children and adolescents with refractory epilepsy. More specifically, an improvement is observed in mood, sustained attention, and social interaction.
Arginine Vasopressin selectively enhances recognition of sexual cues in male humans.
Guastella, Adam J; Kenyon, Amanda R; Unkelbach, Christian; Alvares, Gail A; Hickie, Ian B
2011-02-01
Arginine Vasopressin modulates complex social and sexual behavior by enhancing social recognition, pair bonding, and aggression in non-human mammals. The influence of Arginine Vasopressin in human social and sexual behavior is, however, yet to be fully understood. We evaluated whether Arginine Vasopressin nasal spray facilitated recognition of positive and negative social and sexual stimuli over non-social stimuli. We used a recognition task that has already been shown to be sensitive to the influence of Oxytocin nasal spray (Unkelbach et al., 2008). In a double-blind, randomized, placebo-controlled, between-subjects design, 41 healthy male volunteers were administered Arginine Vasopressin (20 IU) or a placebo nasal spray after a 45 min wait period and then completed the recognition task. Results showed that the participants administered Arginine Vasopressin nasal spray were faster to detect sexual words over other types of words. This effect appeared for both positively and negatively valenced words. Results demonstrate for the first time that Arginine Vasopressin selectively enhances human cognition for sexual stimuli, regardless of valence. They further extend animal and human genetic studies linking Arginine Vasopressin to sexual behavior in males. Findings suggest an important cognitive mechanism that could enhance sexual behaviors in humans. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis.
Stillman, Chelsea M; Cohen, Jamie; Lehman, Morgan E; Erickson, Kirk I
2016-01-01
Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.
Fehér, Olga
2017-02-01
In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social-cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language.
Harris, Christine R.; Prouvost, Caroline
2014-01-01
It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some “primordial” form that exists in human infants and in at least one other social species besides humans. PMID:25054800
Requirements for psychological models to support design: Towards ecological task analysis
NASA Technical Reports Server (NTRS)
Kirlik, Alex
1991-01-01
Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.
The structure of creative cognition in the human brain
Jung, Rex E.; Mead, Brittany S.; Carrasco, Jessica; Flores, Ranee A.
2013-01-01
Creativity is a vast construct, seemingly intractable to scientific inquiry—perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain. PMID:23847503
Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations
Horschig, Jörn M.; Zumer, Johanna M.; Bahramisharif, Ali
2014-01-01
Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works. PMID:25018706
Darwin, Hume, Morgan, and the verae causae of psychology.
Clatterbuck, Hayley
2016-12-01
Charles Darwin and C. Lloyd Morgan forward two influential principles of cognitive ethological inference that yield conflicting results about the extent of continuity in the cognitive traits of humans and other animals. While these principles have been interpreted as reflecting commitments to different senses of parsimony, in fact, both principles result from the same vera causa inferential strategy, according to which "We ought to admit no more causes of natural things, than such as are both true and sufficient to explain their appearances". Instead, the conflict stems from Darwin's and Morgan's views about the true causes of human psychology. Darwin holds a thoroughly Humean philosophy of the human mind, from which he infers significant continuity between human and animal minds. In contrast, Morgan argues that Humean cognitive mechanisms cannot account for a class of uniquely human behaviors, and therefore, he concludes that there is a significant discontinuity between human and animal cognition. This historical debate is informative for current controversies in comparative psychology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Youssef, S A; Capucchio, M T; Rofina, J E; Chambers, J K; Uchida, K; Nakayama, H; Head, E
2016-03-01
According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases. © The Author(s) 2016.
Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan
2014-01-01
This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end.
Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan
2014-01-01
This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end. PMID:24520338
Chang, Steve W. C.; Platt, Michael L.
2013-01-01
Converging evidence from humans and non-human animals indicates that the neurohypophysial hormone oxytocin (OT) evolved to serve a specialized function in social behavior in mammals. Although OT-based therapies are currently being evaluated as remedies for social deficits in neuropsychiatric disorders, precisely how OT regulates complex social processes remains largely unknown. Here we describe how a non-human primate model can be used to understand the mechanisms by which OT regulates social cognition and thereby inform its clinical application in humans. We focus primarily on recent advances in our understanding of OT-mediated social cognition in rhesus macaques (Macaca mulatta), supplemented by discussion of recent work in humans, other primates, and rodents. Together, these studies endorse the hypothesis that OT promotes social exploration both by amplifying social motivation and by attenuating social vigilance. PMID:24231551
A Piagetian approach to infant referential behaviors.
Dice, Jaime L; Dove, Meghan K
2011-06-01
Near the end of the first year of life, infants begin producing referential behaviors that in adults indicate joint attention, or coordinating shared attention to an object with another person. These behaviors have been interpreted in the social cognitive literature as an indication that infants realize they are sharing attention to an object with another person. In this paper, we address theory and research on infant referential behaviors described as joint attention and offer an alternative explanation for the presence of these behaviors. Using Piaget's constructivist theory, we show how research in this area can be interpreted without assuming that infants have advanced social cognitive abilities. We argue that infants' referential behaviors are motor signifiers of thought and that infants recognize humans as particularly relevant objects for their goal-directed behaviors. Finally, we describe how the field of infant joint attention research should proceed if a comprehensive understanding of infant cognitive processes is to be desired. Copyright © 2011 Elsevier Inc. All rights reserved.
Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience.
Gabrieli, John D E; Ghosh, Satrajit S; Whitfield-Gabrieli, Susan
2015-01-07
Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet, however, propelled changes in educational or medical practices that improve people's lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict future education, learning, and performance in children and adults; criminality; health-related behaviors; and responses to pharmacological or behavioral treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures. With further advances in study designs and analyses, neuromarkers may offer opportunities to personalize educational and clinical practices that lead to better outcomes for people. Copyright © 2015 Elsevier Inc. All rights reserved.
Developmental Social Cognitive Neuroscience: Insights from Deafness
ERIC Educational Resources Information Center
Corina, David; Singleton, Jenny
2009-01-01
The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…
Health Promotion by Social Cognitive Means
ERIC Educational Resources Information Center
Bandura, Albert
2004-01-01
This article examines health promotion and disease prevention from the perspective of social cognitive theory. This theory posits a multifaceted causal structure in which self-efficacy beliefs operate together with goals, outcome expectations, and perceived environmental impediments and facilitators in the regulation of human motivation, behavior,…
Hadlington, Lee; Murphy, Karen
2018-03-01
The current study focused on how engaging in media multitasking (MMT) and the experience of everyday cognitive failures impact on the individual's engagement in risky cybersecurity behaviors (RCsB). In total, 144 participants (32 males, 112 females) completed an online survey. The age range for participants was 18 to 43 years (M = 20.63, SD = 4.04). Participants completed three scales which included an inventory of weekly MMT, a measure of everyday cognitive failures, and RCsB. There was a significant difference between heavy media multitaskers (HMM), average media multitaskers (AMM), and light media multitaskers (LMM) in terms of RCsB, with HMM demonstrating more frequent risky behaviors than LMM or AMM. The HMM group also reported more cognitive failures in everyday life than the LMM group. A regression analysis showed that everyday cognitive failures and MMT acted as significant predictors for RCsB. These results expand our current understanding of the relationship between human factors and cybersecurity behaviors, which are useful to inform the design of training and intervention packages to mitigate RCsB.
Dynamical aspects of behavior generation under constraints
Harter, Derek; Achunala, Srinivas
2007-01-01
Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514
Meng, Xiu-Hong; Liu, Ping; Wang, Hua; Zhao, Xian-Feng; Xu, Zhong-Mei; Chen, Gui-Hai; Xu, De-Xiang
2011-06-24
In human and rodent models, endocrine disrupting chemicals (EDCs) interfere with the development of cognition and behaviors. Fenvalerate is a potential EDC. The purpose of this study was to examine whether pubertal fenvalerate exposure altered behavioral development. Mice were orally administered with either vehicle or fenvalerate (7.5 or 30 mg/kg/day) from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris Water Maze. Aggressive performance was evaluated by aggressive behavior test. Anxiety-related activities were detected by three tests: open-field, plus-maze and black-white alley. Sensorimotor function was analyzed using beam walking and tightrope. Results found that the impairment for spatial learning and memory was more severe in fenvalerate-exposed female mice than in male mice. In addition, pubertal fenvalerate exposure inhibited aggressive behavior in males. Moreover, pubertal fenvalerate exposure increased anxiety activities in females. Altogether, these results suggest that pubertal fenvalerate exposure impairs spatial cognition and behavioral development in a gender-dependent manner. These findings identify fenvalerate as candidate environmental risk factors for cognitive and behavioral development, especially in the critical period of development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The Place of Foreign Languages in a Curriculum for Liberal Education
ERIC Educational Resources Information Center
Moravcsik, Julius; Juilland, Alphonse
1977-01-01
The study of foreign languages in the liberal arts curriculum is defended. Foreign languages reveal the rules characterizing cognitive human activities; they help us to understand both common bonds of humanity and varieties of human behavior. Language study should be central to humanities study. (CHK)
Working memory training promotes general cognitive abilities in genetically heterogeneous mice.
Light, Kenneth R; Kolata, Stefan; Wass, Christopher; Denman-Brice, Alexander; Zagalsky, Ryan; Matzel, Louis D
2010-04-27
In both humans and mice, the efficacy of working memory capacity and its related process, selective attention, are each strongly predictive of individuals' aggregate performance in cognitive test batteries [1-9]. Because working memory is taxed during most cognitive tasks, the efficacy of working memory may have a causal influence on individuals' performance on tests of "intelligence" [10, 11]. Despite the attention this has received, supporting evidence has been largely correlational in nature (but see [12]). Here, genetically heterogeneous mice were assessed on a battery of five learning tasks. Animals' aggregate performance across the tasks was used to estimate their general cognitive abilities, a trait that is in some respects analogous to intelligence [13, 14]. Working memory training promoted an increase in animals' selective attention and their aggregate performance on these tasks. This enhancement of general cognitive performance by working memory training was attenuated if its selective attention demands were reduced. These results provide evidence that the efficacy of working memory capacity and selective attention may be causally related to an animal's general cognitive performance and provide a framework for behavioral strategies to promote those abilities. Furthermore, the pattern of behavior reported here reflects a conservation of the processes that regulate general cognitive performance in humans and infrahuman animals. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Mental health from a cognitive-behavioral perspective].
Keegan, Eduardo
2012-01-01
This paper presents a succinct overview of the conception of mental health held by the cognitive-behavioral paradigm. For some of these models, human suffering is ubiquitious and largely unavoidable. Therefore, suffering cannot be linearly equated to pathology. Mental health implies acting towards achieving our valued goals, despite the negative emotions and thoughts that this may activate. The paper describes some cognitive and metacognitive phenomena characteristically associated to psychopathology, as well as some principles to establish the normalcy of both emotional experience and behavior. It establishes a difference between consultations motivated by mental disorders and those motivated by life crises and by a desire of achieving personal growth. Finally, the paper analyzes the conditions in which implementing treatment is desirable and necessary.
Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.
Armbruster-Genç, Diana J N; Ueltzhöffer, Kai; Fiebach, Christian J
2016-04-06
Recent research yielded the intriguing conclusion that, in healthy adults, higher levels of variability in neuronal processes are beneficial for cognitive functioning. Beneficial effects of variability in neuronal processing can also be inferred from neurocomputational theories of working memory, albeit this holds only for tasks requiring cognitive flexibility. However, cognitive stability, i.e., the ability to maintain a task goal in the face of irrelevant distractors, should suffer under high levels of brain signal variability. To directly test this prediction, we studied both behavioral and brain signal variability during cognitive flexibility (i.e., task switching) and cognitive stability (i.e., distractor inhibition) in a sample of healthy human subjects and developed an efficient and easy-to-implement analysis approach to assess BOLD-signal variability in event-related fMRI task paradigms. Results show a general positive effect of neural variability on task performance as assessed by accuracy measures. However, higher levels of BOLD-signal variability in the left inferior frontal junction area result in reduced error rate costs during task switching and thus facilitate cognitive flexibility. In contrast, variability in the same area has a detrimental effect on cognitive stability, as shown in a negative effect of variability on response time costs during distractor inhibition. This pattern was mirrored at the behavioral level, with higher behavioral variability predicting better task switching but worse distractor inhibition performance. Our data extend previous results on brain signal variability by showing a differential effect of brain signal variability that depends on task context, in line with predictions from computational theories. Recent neuroscientific research showed that the human brain signal is intrinsically variable and suggested that this variability improves performance. Computational models of prefrontal neural networks predict differential effects of variability for different behavioral situations requiring either cognitive flexibility or stability. However, this hypothesis has so far not been put to an empirical test. In this study, we assessed cognitive flexibility and cognitive stability, and, besides a generally positive effect of neural variability on accuracy measures, we show that neural variability in a prefrontal brain area at the inferior frontal junction is differentially associated with performance: higher levels of variability are beneficial for the effectiveness of task switching (cognitive flexibility) but detrimental for the efficiency of distractor inhibition (cognitive stability). Copyright © 2016 the authors 0270-6474/16/363978-10$15.00/0.
Looking for ideas: Eye behavior during goal-directed internally focused cognition☆
Walcher, Sonja; Körner, Christof; Benedek, Mathias
2017-01-01
Humans have a highly developed visual system, yet we spend a high proportion of our time awake ignoring the visual world and attending to our own thoughts. The present study examined eye movement characteristics of goal-directed internally focused cognition. Deliberate internally focused cognition was induced by an idea generation task. A letter-by-letter reading task served as external task. Idea generation (vs. reading) was associated with more and longer blinks and fewer microsaccades indicating an attenuation of visual input. Idea generation was further associated with more and shorter fixations, more saccades and saccades with higher amplitudes as well as heightened stimulus-independent variation of eye vergence. The latter results suggest a coupling of eye behavior to internally generated information and associated cognitive processes, i.e. searching for ideas. Our results support eye behavior patterns as indicators of goal-directed internally focused cognition through mechanisms of attenuation of visual input and coupling of eye behavior to internally generated information. PMID:28689088
Human Listening: Processes and Behavior.
ERIC Educational Resources Information Center
Weaver, Carl H.
This book is divided into three conceptual areas: a general presentation of listening behavior and its place in the communication process, the major social and psychological processes involved in the selection and cognition of aurally received data, and remedial measures for both the speaker and the auditor. "Listening behavior: an overview"…
Relational Frame Theory: An Overview of the Controversy
ERIC Educational Resources Information Center
Gross, Amy C.; Fox, Eric J.
2009-01-01
Although Skinner's "Verbal Behavior" (1957) was published over 50 years ago, behavior-analytic research on human language and cognition has been slow to develop. In recent years, a new behavioral approach to language known as relational frame theory (RFT) has generated considerable attention, research, and debate. The controversy surrounding RFT…
Latent Toxoplasma gondii infection leads to improved action control.
Stock, Ann-Kathrin; Heintschel von Heinegg, Evelyn; Köhling, Hedda-Luise; Beste, Christian
2014-03-01
The parasite Toxoplasma gondii has been found to manipulate the behavior of its secondary hosts to increase its own dissemination which is commonly believed to be to the detriment of the host (manipulation hypothesis). The manipulation correlates with an up-regulation of dopaminergic neurotransmission. In humans, different pathologies have been associated with T. gondii infections but most latently infected humans do not seem to display overt impairments. Since a dopamine plus does not necessarily bear exclusively negative consequences in humans, we investigated potential positive consequences of latent toxoplasmosis (and the presumed boosting of dopaminergic neurotransmission) on human cognition and behavior. For this purpose, we focused on action cascading which has been shown to be modulated by dopamine. Based on behavioral and neurophysiological (EEG) data obtained by means of a stop-change paradigm, we were able to demonstrate that healthy young humans can actually benefit from latent T. gondii infection as regards their performance in this task (as indicated by faster response times and a smaller P3 component). The data shows that a latent infection which is assumed to affect the dopaminergic system can lead to paradoxical improvements of cognitive control processes in humans. Copyright © 2013 Elsevier Inc. All rights reserved.
MoCog1: A computer simulation of recognition-primed human decision making
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1991-01-01
This report describes the successful results of the first stage of a research effort to develop a 'sophisticated' computer model of human cognitive behavior. Most human decision-making is of the experience-based, relatively straight-forward, largely automatic, type of response to internal goals and drives, utilizing cues and opportunities perceived from the current environment. This report describes the development of the architecture and computer program associated with such 'recognition-primed' decision-making. The resultant computer program was successfully utilized as a vehicle to simulate findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior in response to their environment. The present work is an expanded version and is based on research reported while the author was an employee of NASA ARC.
Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)
ERIC Educational Resources Information Center
Turkheimer, Eric
2011-01-01
Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…
Embodied cognition for autonomous interactive robots.
Hoffman, Guy
2012-10-01
In the past, notions of embodiment have been applied to robotics mainly in the realm of very simple robots, and supporting low-level mechanisms such as dynamics and navigation. In contrast, most human-like, interactive, and socially adept robotic systems turn away from embodiment and use amodal, symbolic, and modular approaches to cognition and interaction. At the same time, recent research in Embodied Cognition (EC) is spanning an increasing number of complex cognitive processes, including language, nonverbal communication, learning, and social behavior. This article suggests adopting a modern EC approach for autonomous robots interacting with humans. In particular, we present three core principles from EC that may be applicable to such robots: (a) modal perceptual representation, (b) action/perception and action/cognition integration, and (c) a simulation-based model of top-down perceptual biasing. We describe a computational framework based on these principles, and its implementation on two physical robots. This could provide a new paradigm for embodied human-robot interaction based on recent psychological and neurological findings. Copyright © 2012 Cognitive Science Society, Inc.
Different macaque models of cognitive aging exhibit task-dependent behavioral disparities.
Comrie, Alison E; Gray, Daniel T; Smith, Anne C; Barnes, Carol A
2018-05-15
Deficits in cognitive functions that rely on the integrity of the frontal and temporal lobes are characteristic of normative human aging. Due to similar aging phenotypes and homologous cortical organization between nonhuman primates and humans, several species of macaque monkeys are used as models to explore brain senescence. These macaque species are typically regarded as equivalent models of cognitive aging, yet no direct comparisons have been made to support this assumption. Here we used adult and aged rhesus and bonnet macaques (Macaca mulatta and Macaca radiata) to characterize the effect of age on acquisition and retention of information across delays in a battery of behavioral tasks that rely on prefrontal cortex and medial temporal lobe networks. The cognitive functions that were tested include visuospatial short-term memory, object recognition memory, and object-reward association memory. In general, bonnet macaques at all ages outperformed rhesus macaques on tasks thought to rely primarily on the prefrontal cortex, and were more resilient to age-related deficits in these behaviors. On the other hand, both species were comparably impaired by age on tasks thought to preferentially engage the medial temporal lobe. Together, these results suggest that rhesus and bonnet macaques are not equivalent models of cognitive aging and highlight the value of cross-species comparisons. These observations should enable improved design and interpretation of future experiments aimed at understanding changes in cognition across the lifespan. Copyright © 2018 Elsevier B.V. All rights reserved.
2010-01-01
and related tech- nologies . Washington, DC: National Academies Press. Neisser , U . (1967) . Cognitive psychology. New York: Appleton-Century-Crofts...behavior (see Neisser [1967] for a review of the early stages of information processing). The result is a characterization of human tasks as involving
ERIC Educational Resources Information Center
Eaves, Ronald C.; Williams, Thomas O., Jr.
2004-01-01
This study represents a beginning step in research that may ultimately show that the multitudes of human behavior that educators currently encounter may be reduced to three broad human attributes: arousal, affect, and cognition. The resulting simplicity should lead to improved understanding and better decision making by practitioners. Four…
Vijayraghavan, Susheel; Major, Alex J.; Everling, Stefan
2017-01-01
The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease. PMID:29259545
Discrimination of Complex Human Behavior by Pigeons (Columba livia) and Humans
Qadri, Muhammad A. J.; Sayde, Justin M.; Cook, Robert G.
2014-01-01
The cognitive and neural mechanisms for recognizing and categorizing behavior are not well understood in non-human animals. In the current experiments, pigeons and humans learned to categorize two non-repeating, complex human behaviors (“martial arts” vs. “Indian dance”). Using multiple video exemplars of a digital human model, pigeons discriminated these behaviors in a go/no-go task and humans in a choice task. Experiment 1 found that pigeons already experienced with discriminating the locomotive actions of digital animals acquired the discrimination more rapidly when action information was available than when only pose information was available. Experiments 2 and 3 found this same dynamic superiority effect with naïve pigeons and human participants. Both species used the same combination of immediately available static pose information and more slowly perceived dynamic action cues to discriminate the behavioral categories. Theories based on generalized visual mechanisms, as opposed to embodied, species-specific action networks, offer a parsimonious account of how these different animals recognize behavior across and within species. PMID:25379777
Synthetic cognitive development. Where intelligence comes from
NASA Astrophysics Data System (ADS)
Weinbaum (Weaver), D.; Veitas, V.
2017-01-01
The human cognitive system is a remarkable exemplar of a general intelligent system whose competence is not confined to a specific problem domain. Evidently, general cognitive competences are a product of a prolonged and complex process of cognitive development. Therefore, the process of cognitive development is a primary key to understanding the emergence of intelligent behavior. This paper develops the theoretical foundations for a model that generalizes the process of cognitive development. The model aims to provide a realistic scheme for the synthesis of scalable cognitive systems with an open-ended range of capabilities. Major concepts and theories of human cognitive development are introduced and briefly explored, focusing on the enactive approach to cognition and the concept of sense-making. The initial scheme of human cognitive development is then generalized by introducing the philosophy of individuation and the abstract mechanism of transduction. The theory of individuation provides the ground for the necessary paradigmatic shift from cognitive systems as given products to cognitive development as a formative process of self-organization. Next, the conceptual model is specified as a scalable scheme of networks of agents. The mechanisms of individuation are formulated in context-independent information theoretical terms. Finally, the paper discusses two concrete aspects of the generative model - mechanisms of transduction and value modulating systems. These are topics of further research towards an implementable architecture.
Tylén, Kristian; Allen, Micah; Hunter, Bjørk K; Roepstorff, Andreas
2012-01-01
Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an "understanding of the other," or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone "privately" manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.
Prolonged myelination in human neocortical evolution.
Miller, Daniel J; Duka, Tetyana; Stimpson, Cheryl D; Schapiro, Steven J; Baze, Wallace B; McArthur, Mark J; Fobbs, Archibald J; Sousa, André M M; Sestan, Nenad; Wildman, Derek E; Lipovich, Leonard; Kuzawa, Christopher W; Hof, Patrick R; Sherwood, Chet C
2012-10-09
Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders.
De Smedt, Johan; De Cruz, Helen
2010-11-28
This paper examines explanations for human artistic behavior in two reductionist research programs, cognitive neuroscience and evolutionary psychology. Despite their different methodological outlooks, both approaches converge on an explanation of art production and appreciation as byproducts of normal perceptual and motivational cognitive skills that evolved in response to problems originally not related to art, such as the discrimination of salient visual stimuli and speech sounds. The explanatory power of this reductionist framework does not obviate the need for higher-level accounts of art from the humanities, such as aesthetics, art history or anthropology of art.
A Review of Computer-Based Human Behavior Representations and Their Relation to Military Simulations
2003-08-01
described by Emery and Trist (1960), activity theory introduced by Vygotsky in the 1930s and formalized by Leont’ev (1979) and situated cognition theory by...II-6 B. Adaptive Resonance Theory (ART) .......................................................... II-6 1. Model...II-31 G. Cognitive Complexity Theory (CCT
Increasing Personal and Organizational Effectiveness. Treatise No. 6: "Promoting the Organization."
ERIC Educational Resources Information Center
New Mexico Research and Study Council, Albuquerque.
Understanding motivation is central to effective use of human resources. Cognitive and noncognitive theories have been developed to explain motivation. Cognitive theorists, including Maslow, argue that a person's behavior can be predicted when that person's internal needs, values, and feelings are understood. Noncognitive theorists consider…
Truth and Consequences: Believing as Adaptive Behavior.
ERIC Educational Resources Information Center
Sawyer, Llewlee L.
A theoretical cornerstone of cognitive therapy is the idea that the relationship between experience and cognition, the interpretation of experience, is recursive. Human beings can respond to a given experience with more than one description and/or explanation of the experience and these alternative interpretations can have different experiential…
Seeking Synthesis: The Integrative Problem in Understanding Language and Its Evolution.
Dale, Rick; Kello, Christopher T; Schoenemann, P Thomas
2016-04-01
We discuss two problems for a general scientific understanding of language, sequences and synergies: how language is an intricately sequenced behavior and how language is manifested as a multidimensionally structured behavior. Though both are central in our understanding, we observe that the former tends to be studied more than the latter. We consider very general conditions that hold in human brain evolution and its computational implications, and identify multimodal and multiscale organization as two key characteristics of emerging cognitive function in our species. This suggests that human brains, and cognitive function specifically, became more adept at integrating diverse information sources and operating at multiple levels for linguistic performance. We argue that framing language evolution, learning, and use in terms of synergies suggests new research questions, and it may be a fruitful direction for new developments in theory and modeling of language as an integrated system. Copyright © 2016 Cognitive Science Society, Inc.
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
[Prosocial personality. Why is cooperation and moral adjustment the rule?].
Kroeber, H-L
2011-01-01
Human beings are adapted for acting and thinking cooperatively in cultural groups and the most impressive cognitive achievements of humans are the products not of individuals acting alone but of individuals interacting. As they grow, human children are equipped to participate in this cooperative group thinking through a special kind of cultural intelligence, comprising species-unique social-cognitive skills and motivations for collaboration, communication, social learning and other forms of shared intentionality. Some mechanism of social learning and norm orientation are reported, leading to some presumptions about the roots of antisocial behavior.
NASA Astrophysics Data System (ADS)
Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli
2011-03-01
Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.
The emergence of cognitive hearing science.
Arlinger, Stig; Lunner, Thomas; Lyxell, Björn; Pichora-Fuller, M Kathleen
2009-10-01
Cognitive Hearing Science or Auditory Cognitive Science is an emerging field of interdisciplinary research concerning the interactions between hearing and cognition. It follows a trend over the last half century for interdisciplinary fields to develop, beginning with Neuroscience, then Cognitive Science, then Cognitive Neuroscience, and then Cognitive Vision Science. A common theme is that an interdisciplinary approach is necessary to understand complex human behaviors, to develop technologies incorporating knowledge of these behaviors, and to find solutions for individuals with impairments that undermine typical behaviors. Accordingly, researchers in traditional academic disciplines, such as Psychology, Physiology, Linguistics, Philosophy, Anthropology, and Sociology benefit from collaborations with each other, and with researchers in Computer Science and Engineering working on the design of technologies, and with health professionals working with individuals who have impairments. The factors that triggered the emergence of Cognitive Hearing Science include the maturation of the component disciplines of Hearing Science and Cognitive Science, new opportunities to use complex digital signal-processing to design technologies suited to performance in challenging everyday environments, and increasing social imperatives to help people whose communication problems span hearing and cognition. Cognitive Hearing Science is illustrated in research on three general topics: (1) language processing in challenging listening conditions; (2) use of auditory communication technologies or the visual modality to boost performance; (3) changes in performance with development, aging, and rehabilitative training. Future directions for modeling and the translation of research into practice are suggested.
Architecture of cognitive flexibility revealed by lesion mapping
Barbey, Aron K.; Colom, Roberto; Grafman, Jordan
2013-01-01
Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727
Long-term cognitive effects of human stem cell transplantation in the irradiated brain.
Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L
2014-09-01
Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.
Koshiba, Mamiko; Karino, Genta; Mimura, Koki; Nakamura, Shun; Yui, Kunio; Kunikata, Tetsuya; Yamanouchi, Hideo
2016-01-01
Educational treatment to support social development of children with autism spectrum disorder (ASD) is an important topic in developmental psychiatry. However, it remains difficult to objectively quantify the socio-emotional development of ASD children. To address this problem, we developed a novel analytical method that assesses subjects' complex behaviors using multivariate analysis, 'Behavior Output analysis for Quantitative Emotional State Translation' (BOUQUET). Here, we examine the potential for psycho-cognitive ASD therapy based on comparative evaluations of clinical (human) and experimental (animal) models. Our observations of ASD children (vs. their normally developing siblings) and the domestic chick in socio-sensory deprivation models show the importance of unimodal sensory stimulation, particularly important for tactile- and auditory-biased socialization. Identifying psycho-cognitive elements in early neural development, human newborn infants in neonatal intensive care unit as well as a New World monkey, the common marmoset, also prompted us to focus on the development of voluntary movement against gravity. In summary, striking behavioral similarities between children with ASD and domestic chicks' socio-sensory deprivation models support the role of multimodal sensory-motor integration as a prerequisite step for normal development of socio-emotional and psycho-cognitive functions. Data obtained in the common marmoset model also suggest that switching from primitive anti-gravity reflexes to complex voluntary movement may be a critical milestone for psycho-cognitive development. Combining clinical findings with these animal models, and using multivariate integrative analyses may facilitate the development of effective interventions to improve social functions in infants and in children with neurodevelopmental disorders.
Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior.
Parnaudeau, Sébastien; Taylor, Kathleen; Bolkan, Scott S; Ward, Ryan D; Balsam, Peter D; Kellendonk, Christoph
2015-03-01
Cognitive inflexibility is a core symptom of several mental disorders including schizophrenia. Brain imaging studies in schizophrenia patients performing cognitive tasks have reported decreased activation of the mediodorsal thalamus (MD). Using a pharmacogenetic approach to model MD hypofunction, we recently showed that decreasing MD activity impairs reversal learning in mice. While this demonstrates causality between MD hypofunction and cognitive inflexibility, questions remain about the elementary cognitive processes that account for the deficit. Using the Designer Receptors Exclusively Activated by Designer Drugs system, we reversibly decreased MD activity during behavioral tasks assessing elementary cognitive processes inherent to flexible goal-directed behaviors, including extinction, contingency degradation, outcome devaluation, and Pavlovian-to-instrumental transfer (n = 134 mice). While MD hypofunction impaired reversal learning, it did not affect the ability to learn about nonrewarded cues or the ability to modulate action selection based on the outcome value. In contrast, decreasing MD activity delayed the ability to adapt to changes in the contingency between actions and their outcomes. In addition, while Pavlovian learning was not affected by MD hypofunction, decreasing MD activity during Pavlovian learning impaired the ability of conditioned stimuli to modulate instrumental behavior. Mediodorsal thalamus hypofunction causes cognitive inflexibility reflected by an impaired ability to adapt actions when their consequences change. Furthermore, it alters the encoding of environmental stimuli so that they cannot be properly utilized to guide behavior. Modulating MD activity could be a potential therapeutic strategy for promoting adaptive behavior in human subjects with cognitive inflexibility. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Brunner, Dani; Balcı, Fuat; Ludvig, Elliot A
2012-02-01
Drug discovery for brain disorders is undergoing a period of upheaval. Faced with an empty drug pipeline and numerous failures of potential new drugs in clinical trials, many large pharmaceutical companies have been shrinking or even closing down their research divisions that focus on central nervous system (CNS) disorders. In this paper, we argue that many of the difficulties facing CNS drug discovery stem from a lack of robustness in pre-clinical (i.e., non-human animal) testing. There are two main sources for this lack of robustness. First, there is the lack of replicability of many results from the pre-clinical stage, which we argue is driven by a combination of publication bias and inappropriate selection of statistical and experimental designs. Second, there is the frequent failure to translate results in non-human animals to parallel results in humans in the clinic. This limitation can only be overcome by developing new behavioral tests for non-human animals that have predictive, construct, and etiological validity. Here, we present these translational difficulties as a "grand challenge" to researchers from comparative cognition, who are well positioned to provide new methods for testing behavior and cognition in non-human animals. These new experimental protocols will need to be both statistically robust and target behavioral and cognitive processes that allow for better connection with human CNS disorders. Our hope is that this downturn in industrial research may represent an opportunity to develop new protocols that will re-kindle the search for more effective and safer drugs for CNS disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Motor heuristics and embodied choices: how to choose and act.
Raab, Markus
2017-08-01
Human performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions, to complex sport behavior coining the term embodied choices. Thus both motor heuristics and embodied choices explain complex behavior such as studied in sport and exercise psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.
An integrated brain-behavior model for working memory.
Moser, D A; Doucet, G E; Ing, A; Dima, D; Schumann, G; Bilder, R M; Frangou, S
2017-12-05
Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association between the entire imaging and behavioral-health data sets; and a modular level, testing associations between subsets of the two data sets. The behavioral-health and neuroimaging data sets showed significant interdependency. Variables with positive correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for behavioral-health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and public health interventions to promote and maintain the integrity of the WM network.Molecular Psychiatry advance online publication, 5 December 2017; doi:10.1038/mp.2017.247.
The Impact of Social Pressure and Monetary Incentive on Cognitive Control.
Ličen, Mina; Hartmann, Frank; Repovš, Grega; Slapničar, Sergeja
2016-01-01
We compare the effects of two prominent organizational control mechanisms-social pressure and monetary incentive-on cognitive control. Cognitive control underlies the human ability to regulate thoughts and actions in the pursuit of behavioral goals. Previous studies show that monetary incentives can contribute to goal-oriented behavior by activating proactive control. There is, however, much less evidence of how social pressure affects cognitive control and task performance. In a within-subject experimental design, we tested 47 subjects performing the AX-CPT task to compare the activation of cognitive control modes under social pressure and monetary incentive beyond mere instructions to perform better. Our results indicate that instructing participants to improve their performance on its own leads to a significant shift from a reactive to a proactive control mode and that both social pressure and monetary incentive further enhance performance.
Modeling and simulating human teamwork behaviors using intelligent agents
NASA Astrophysics Data System (ADS)
Fan, Xiaocong; Yen, John
2004-12-01
Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human-agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork-shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.
Wahl, Devin; Coogan, Sean CP; Solon-Biet, Samantha M; de Cabo, Rafael; Haran, James B; Raubenheimer, David; Cogger, Victoria C; Mattson, Mark P; Simpson, Stephen J; Le Couteur, David G
2017-01-01
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. PMID:28932108
Enhancing S4 with Guidance from the Features of Other Behavior Modeling Systems
2010-11-01
recommendations for updating S4 into a more realistic system for modeling human cognition. We focus on three areas of cognition: perception , memory, and...Research Integration Tool (IMPRINT) .........................6 4. Improving the Cognitive Mechanisms of S4 7 4.1 Perception , Memory and Decision...Making in S4 ...........................................................7 4.2 Possible Improvements for Perception in S4
Development of a Universal Safety Behavior Management System for Coal Mine Workers
LI, Jizu; LI, Yuejiao; LIU, Xiaoguang
2015-01-01
Background: In China, over 80% of all work-related deaths in the mining industry occur in coal mines and human factors constitute 85% of the direct causes of coal mine accidents, which indicates that significant shortcomings currently exist in the safety behavior management of Chinese coal mine workers. We aimed to verify the impact of human psychological behavior in coal mine accidents systematically through experimental study, theoretical analysis and management application. Methods: Four test instruments (Sensory and cognitive capacity test, Sixteen-Personal Factor Questionnaire, Symptom Checklist 90 Questionnaire and the supervisors’ evaluation) were employed from November 2013 to June 2014 to identify unsafe behavior factors, the self-established Questionnaire of Safety Behavior Norms (QSBN) was also used to propose the safety behavior countermeasures of coal mine employees. Results: The mental health of most coal mine workers’ is relatively poor. The sensory and cognitive capacity of those in different work posts varies greatly, as does the sense of responsibility. Workers are susceptible to external influences, and score low in site management. When the 16-PF and SCL-90 sensory and cognitive assessments were combined, the psychological index predictive power was greatest for estimating sense of efficiency and degree of satisfaction in internal evaluations, while at the same time lowest for estimating control of introversion-extroversion and stress character. Conclusion: The psychological indicators can predict part of employee safety behavior, and assist a coal mine enterprise to recruit staff, develop occupational safety norms and improve the working environment. PMID:26258088
Mechanism based approaches for rescuing and enhancing cognition
Lynch, Gary; Gall, Christine M.
2013-01-01
Progress toward pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a “substrate map”) that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: (1) enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; (2) serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; (3) a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field. PMID:23966908
Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania
2012-01-01
Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve.
Observing Reasonable Consumers.
ERIC Educational Resources Information Center
Silber, Norman I.
1991-01-01
Although courts and legislators usually set legal standards that correspond to empirical knowledge of human behavior, recent developments in behavioral psychology have led courts to appreciate the limits and errors in consumer decision making. "Reasonable consumer" standards that are congruent with cognitive reality should be developed.…
Murphy, Karen
2018-01-01
Abstract The current study focused on how engaging in media multitasking (MMT) and the experience of everyday cognitive failures impact on the individual's engagement in risky cybersecurity behaviors (RCsB). In total, 144 participants (32 males, 112 females) completed an online survey. The age range for participants was 18 to 43 years (M = 20.63, SD = 4.04). Participants completed three scales which included an inventory of weekly MMT, a measure of everyday cognitive failures, and RCsB. There was a significant difference between heavy media multitaskers (HMM), average media multitaskers (AMM), and light media multitaskers (LMM) in terms of RCsB, with HMM demonstrating more frequent risky behaviors than LMM or AMM. The HMM group also reported more cognitive failures in everyday life than the LMM group. A regression analysis showed that everyday cognitive failures and MMT acted as significant predictors for RCsB. These results expand our current understanding of the relationship between human factors and cybersecurity behaviors, which are useful to inform the design of training and intervention packages to mitigate RCsB. PMID:29638157
The past, present, and future of cognitive architectures.
Taatgen, Niels; Anderson, John R
2010-10-01
Cognitive architectures are theories of cognition that try to capture the essential representations and mechanisms that underlie cognition. Research in cognitive architectures has gradually moved from a focus on the functional capabilities of architectures to the ability to model the details of human behavior, and, more recently, brain activity. Although there are many different architectures, they share many identical or similar mechanisms, permitting possible future convergence. In judging the quality of a particular cognitive model, it is pertinent to not just judge its fit to the experimental data but also its simplicity and ability to make predictions. Copyright © 2009 Cognitive Science Society, Inc.
Inverted-U shaped dopamine actions on human working memory and cognitive control
Cools, R; D’Esposito, M
2011-01-01
Brain dopamine has long been implicated in cognitive control processes, including working memory. However, the precise role of dopamine in cognition is not well understood, partly because there is large variability in the response to dopaminergic drugs both across different behaviors and across different individuals. We review evidence from a series of studies with experimental animals, healthy humans and patients with Parkinson’s disease, which highlight two important factors that contribute to this large variability. First, the existence of an optimum dopamine level for cognitive function implicates the need to take into account baseline levels of dopamine when isolating dopamine’s effects. Second, cognitive control is a multi-factorial phenomenon, requiring a dynamic balance between cognitive stability and cognitive flexibility. These distinct components might implicate the prefrontal cortex and the striatum respectively. Manipulating dopamine will thus have paradoxical consequences for distinct cognitive control processes depending on distinct basal or optimal levels of dopamine in different brain regions. PMID:21531388
SIGNAL DETECTION BEHAVIOR IN HUMANS AND RATS: A COMPARISON WITH MATCHED TASKS.
Animal models of human cognitive processes are essential for studying the neurobiological mechanisms of these processes and for developing therapies for intoxication and neurodegenerative diseases. A discrete-trial signal detection task was developed for assessing sustained atten...
Retrospective Cognition by Food-Caching Western Scrub-Jays
ERIC Educational Resources Information Center
de Kort, S.R.; Dickinson, A.; Clayton, N.S.
2005-01-01
Episodic-like memory, the retrospective component of cognitive time travel in animals, needs to fulfil three criteria to meet the behavioral properties of episodic memory as defined for humans. Here, we review results obtained with the cache-recovery paradigm with western scrub-jays and conclude that they fulfil these three criteria. The jays…
Affective and Cognitive Responses to Insects and Other Arthropods
ERIC Educational Resources Information Center
Lorenz-Reaves, Amanda R.
2017-01-01
Insects are the most abundant and diverse group of animals on Earth. Though as a group they do far more ecological good than harm, previous studies have shown that human attitudes toward insects are mainly negative. Attitudes have affective (emotions) and cognitive (beliefs, mental representations) components that interact to influence behavior.…
The Adequacy of Cognitive Psychology's Explanation of Consciousness from an Existential View.
ERIC Educational Resources Information Center
Slife, Brent D.; Barnard, Suzanne
Cognitive psychology has been considered to be at the vortex of a revolution in psychology. Schools of humanism and existentialism were originally needed as reactions to the narrowness of behaviorism. The "reactions" in psychology continue to be relevant and needed, particularly existential psychology. The qualities of consiousness in…
Infant Stimulation and the Etiology of Cognitive Processes.
ERIC Educational Resources Information Center
Fowler, William
What data, problems, and concepts are most relevant in determining the role of stimulation in human development? A critical analysis of the relationships between long term stimulation, behavior, and cognitive functioning and development points up biases and gaps in past as well as contemporary approaches. Each of the four sections of this paper…
The Gendered Family Process Model: An Integrative Framework of Gender in the Family.
Endendijk, Joyce J; Groeneveld, Marleen G; Mesman, Judi
2018-05-01
This article reviews and integrates research on gender-related biological, cognitive, and social processes that take place in or between family members, resulting in a newly developed gendered family process (GFP) model. The GFP model serves as a guiding framework for research on gender in the family context, calling for the integration of biological, social, and cognitive factors. Biological factors in the model are prenatal, postnatal, and pubertal androgen levels of children and parents, and genetic effects on parent and child gendered behavior. Social factors are family sex composition (i.e., parent sex, sexual orientation, marriage status, sibling sex composition) and parental gender socialization, such as modeling, gender-differentiated parenting, and gender talk. Cognitive factors are implicit and explicit gender-role cognitions of parents and children. Our review and the GFP model confirm that gender is an important organizer of family processes, but also highlight that much is still unclear about the mechanisms underlying gender-related processes within the family context. Therefore, we stress the need for (1) longitudinal studies that take into account the complex bidirectional relationship between parent and child gendered behavior and cognitions, in which within-family comparisons (comparing behavior of parents toward a boy and a girl in the same family) are made instead of between-family comparisons (comparing parenting between all-boy families and all-girl families, or between mixed-gender families and same-gender families), (2) experimental studies on the influence of testosterone on human gender development, (3) studies examining the interplay between biology with gender socialization and gender-role cognitions in humans.
Ma, Ning; Yu, Angela J
2015-01-01
Response time (RT) is an oft-reported behavioral measure in psychological and neurocognitive experiments, but the high level of observed trial-to-trial variability in this measure has often limited its usefulness. Here, we combine computational modeling and psychophysics to examine the hypothesis that fluctuations in this noisy measure reflect dynamic computations in human statistical learning and corresponding cognitive adjustments. We present data from the stop-signal task (SST), in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently presented stop signal. We model across-trial learning of stop signal frequency, P(stop), and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov model, and within-trial decision-making with an optimal stochastic control model. The combined model predicts that RT should increase with both expected P(stop) and SSD. The human behavioral data (n = 20) bear out this prediction, showing P(stop) and SSD both to be significant, independent predictors of RT, with P(stop) being a more prominent predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%. The results demonstrate that humans indeed readily internalize environmental statistics and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in RT variability can serve as a valuable tool for validating models of statistical learning and decision-making. More broadly, the modeling tools presented in this work can be generalized to a large body of behavioral paradigms, in order to extract insights about cognitive and neural processing from apparently quite noisy behavioral measures. We also discuss how this behaviorally validated model can then be used to conduct model-based analysis of neural data, in order to help identify specific brain areas for representing and encoding key computational quantities in learning and decision-making.
Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior
Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.
2014-01-01
The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877
Current advances in the cognitive neuroscience of music.
Levitin, Daniel J; Tirovolas, Anna K
2009-03-01
The study of music perception and cognition is one of the oldest topics in experimental psychology. The last 20 years have seen an increased interest in understanding the functional neuroanatomy of music processing in humans, using a variety of technologies including fMRI, PET, ERP, MEG, and lesion studies. We review current findings in the context of a rich intellectual history of research, organized by the cognitive systems underlying different aspects of human musical behavior. We pay special attention to the perception of components of musical processing, musical structure, laterality effects, cultural issues, links between music and movement, emotional processing, expertise, and the amusias. Current trends are noted, such as the increased interest in evolutionary origins of music and comparisons of music and language. The review serves to demonstrate the important role that music can play in informing broad theories of higher order cognitive processes such as music in humans.
Can Molecular Hippocampal Alterations Explain Behavioral Differences in Prenatally Stressed Rats?
Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined geno...
Soto-Icaza, Patricia; Aboitiz, Francisco; Billeke, Pablo
2015-01-01
Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are recently being studied by neuroscience. In this paper, we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders (ASD) can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development. PMID:26483621
Soto-Icaza, Patricia; Aboitiz, Francisco; Billeke, Pablo
2015-01-01
Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are recently being studied by neuroscience. In this paper, we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders (ASD) can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development.
Characterization of human-dog social interaction using owner report.
Lit, Lisa; Schweitzer, Julie B; Oberbauer, Anita M
2010-07-01
Dog owners were surveyed for observations of social behaviors in their dogs, using questions adapted from the human Autism Diagnostic Observation Schedule (ADOS) pre-verbal module. Using 939 responses for purebred and mixed-breed dogs, three factors were identified: initiation of reciprocal social behaviors (INIT), response to social interactions (RSPNS), and communication (COMM). There were small or no effects of sex, age, breed group or training. For six breeds with more than 35 responses (Border Collie, Rough Collie, German Shepherd, Golden Retriever, Labrador Retriever, Standard Poodle), the behaviors eye contact with humans, enjoyment in interactions with human interaction, and name recognition demonstrated little variability across breeds, while asking for objects, giving/showing objects to humans, and attempts to direct humans' attention showed higher variability across these breeds. Breeds with genetically similar backgrounds had similar response distributions for owner reports of dog response to pointing. When considering these breeds according to the broad categories of "herders" and "retrievers," owners reported that the "herders" used more eye contact and vocalization, while the "retrievers" used more body contact. Information regarding social cognitive abilities in dogs provided by owner report suggest that there is variability across many social cognitive abilities in dogs and offers direction for further experimental investigations. Copyright (c) 2010 Elsevier B.V. All rights reserved.
A Culture-Behavior-Brain Loop Model of Human Development.
Han, Shihui; Ma, Yina
2015-11-01
Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Where to look? Automating attending behaviors of virtual human characters
NASA Technical Reports Server (NTRS)
Chopra Khullar, S.; Badler, N. I.
2001-01-01
This research proposes a computational framework for generating visual attending behavior in an embodied simulated human agent. Such behaviors directly control eye and head motions, and guide other actions such as locomotion and reach. The implementation of these concepts, referred to as the AVA, draws on empirical and qualitative observations known from psychology, human factors and computer vision. Deliberate behaviors, the analogs of scanpaths in visual psychology, compete with involuntary attention capture and lapses into idling or free viewing. Insights provided by implementing this framework are: a defined set of parameters that impact the observable effects of attention, a defined vocabulary of looking behaviors for certain motor and cognitive activity, a defined hierarchy of three levels of eye behavior (endogenous, exogenous and idling) and a proposed method of how these types interact.
Tylén, Kristian; Allen, Micah; Hunter, Bjørk K.; Roepstorff, Andreas
2012-01-01
Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an “understanding of the other,” or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone “privately” manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions. PMID:23267322
Enhancing Human Cognition with Cocoa Flavonoids
Socci, Valentina; Tempesta, Daniela; Desideri, Giovambattista; De Gennaro, Luigi; Ferrara, Michele
2017-01-01
Enhancing cognitive abilities has become a fascinating scientific challenge, recently driven by the interest in preventing age-related cognitive decline and sustaining normal cognitive performance in response to cognitively demanding environments. In recent years, cocoa and cocoa-derived products, as a rich source of flavonoids, mainly the flavanols sub-class, have been clearly shown to exert cardiovascular benefits. More recently, neuromodulation and neuroprotective actions have been also suggested. Here, we discuss human studies specifically aimed at investigating the effects of acute and chronic administration of cocoa flavanols on different cognitive domains, such as executive functions, attention and memory. Through a variety of direct and indirect biological actions, in part still speculative, cocoa and cocoa-derived food have been suggested to possess the potential to counteract cognitive decline and sustain cognitive abilities, particularly among patients at risk. Although still at a preliminary stage, research investigating the relations between cocoa and cognition shows dose-dependent improvements in general cognition, attention, processing speed, and working memory. Moreover, cocoa flavanols administration could also enhance normal cognitive functioning and exert a protective role on cognitive performance and cardiovascular function specifically impaired by sleep loss, in healthy subjects. Together, these findings converge at pointing to cocoa as a new interesting nutraceutical tool to protect human cognition and counteract different types of cognitive decline, thus encouraging further investigations. Future research should include complex experimental designs combining neuroimaging techniques with physiological and behavioral measures to better elucidate cocoa neuromodulatory properties and directly compare immediate versus long-lasting cognitive effects. PMID:28560212
Enhancing Human Cognition with Cocoa Flavonoids.
Socci, Valentina; Tempesta, Daniela; Desideri, Giovambattista; De Gennaro, Luigi; Ferrara, Michele
2017-01-01
Enhancing cognitive abilities has become a fascinating scientific challenge, recently driven by the interest in preventing age-related cognitive decline and sustaining normal cognitive performance in response to cognitively demanding environments. In recent years, cocoa and cocoa-derived products, as a rich source of flavonoids, mainly the flavanols sub-class, have been clearly shown to exert cardiovascular benefits. More recently, neuromodulation and neuroprotective actions have been also suggested. Here, we discuss human studies specifically aimed at investigating the effects of acute and chronic administration of cocoa flavanols on different cognitive domains, such as executive functions, attention and memory. Through a variety of direct and indirect biological actions, in part still speculative, cocoa and cocoa-derived food have been suggested to possess the potential to counteract cognitive decline and sustain cognitive abilities, particularly among patients at risk. Although still at a preliminary stage, research investigating the relations between cocoa and cognition shows dose-dependent improvements in general cognition, attention, processing speed, and working memory. Moreover, cocoa flavanols administration could also enhance normal cognitive functioning and exert a protective role on cognitive performance and cardiovascular function specifically impaired by sleep loss, in healthy subjects. Together, these findings converge at pointing to cocoa as a new interesting nutraceutical tool to protect human cognition and counteract different types of cognitive decline, thus encouraging further investigations. Future research should include complex experimental designs combining neuroimaging techniques with physiological and behavioral measures to better elucidate cocoa neuromodulatory properties and directly compare immediate versus long-lasting cognitive effects.
Gureckis, Todd M.; Love, Bradley C.
2009-01-01
We evaluate two broad classes of cognitive mechanisms that might support the learning of sequential patterns. According to the first, learning is based on the gradual accumulation of direct associations between events based on simple conditioning principles. The other view describes learning as the process of inducing the transformational structure that defines the material. Each of these learning mechanisms predict differences in the rate of acquisition for differently organized sequences. Across a set of empirical studies, we compare the predictions of each class of model with the behavior of human subjects. We find that learning mechanisms based on transformations of an internal state, such as recurrent network architectures (e.g., Elman, 1990), have difficulty accounting for the pattern of human results relative to a simpler (but more limited) learning mechanism based on learning direct associations. Our results suggest new constraints on the cognitive mechanisms supporting sequential learning behavior. PMID:20396653
ERIC Educational Resources Information Center
Catalano, Hannah Priest; Knowlden, Adam P.; Sharma, Manoj; Franzidis, Alexia
2016-01-01
Although college-aged women are at high risk for human papillomavirus (HPV) infection, many college women remain unvaccinated against HPV. Testing health behavior theory can assist sexuality educators in identifying behavioral antecedents to promote behavior change within an intervention. The purpose of this pilot study was to utilize social…
Cognitive measure on different profiles.
Spindola, Marilda; Carra, Giovani; Balbinot, Alexandre; Zaro, Milton A
2010-01-01
Based on neurology and cognitive science many studies are developed to understand the human model mental, getting to know how human cognition works, especially about learning processes that involve complex contents and spatial-logical reasoning. Event Related Potential - ERP - is a basic and non-invasive method of electrophysiological investigation. It can be used to assess aspects of human cognitive processing by changing the rhythm of the frequency bands brain indicate that some type of processing or neuronal behavior. This paper focuses on ERP technique to help understand cognitive pathway in subjects from different areas of knowledge when they are exposed to an external visual stimulus. In the experiment we used 2D and 3D visual stimulus in the same picture. The signals were captured using 10 (ten) Electroencephalogram - EEG - channel system developed for this project and interfaced in a ADC (Analogical Digital System) board with LabVIEW system - National Instruments. That research was performed using project of experiments technique - DOE. The signal processing were done (math and statistical techniques) showing the relationship between cognitive pathway by groups and intergroups.
The Impact of Social Pressure and Monetary Incentive on Cognitive Control
Ličen, Mina; Hartmann, Frank; Repovš, Grega; Slapničar, Sergeja
2016-01-01
We compare the effects of two prominent organizational control mechanisms—social pressure and monetary incentive—on cognitive control. Cognitive control underlies the human ability to regulate thoughts and actions in the pursuit of behavioral goals. Previous studies show that monetary incentives can contribute to goal-oriented behavior by activating proactive control. There is, however, much less evidence of how social pressure affects cognitive control and task performance. In a within-subject experimental design, we tested 47 subjects performing the AX-CPT task to compare the activation of cognitive control modes under social pressure and monetary incentive beyond mere instructions to perform better. Our results indicate that instructing participants to improve their performance on its own leads to a significant shift from a reactive to a proactive control mode and that both social pressure and monetary incentive further enhance performance. PMID:26903901
ERIC Educational Resources Information Center
Lips, Hilary M.; And Others
The usefulness of the self-schema construct for understanding and predicting human behavior and the reason for the gender-relatedness of certain behaviors and experiences were investigated in three studies. The studies examined cognitive correlates of two gender-related behaviors that are more characteristic of and problematic for women than for…
The social brain in psychiatric and neurological disorders
Kennedy, Daniel P.; Adolphs, Ralph
2013-01-01
Psychiatric and neurological disorders have historically provided key insights into the structure-function relationships that subserve human social cognition and behavior, informing the concept of the ‘social brain’. In this review, we take stock of the current status of this concept, retaining a focus on disorders that impact social behavior. We discuss how the social brain, social cognition, and social behavior are interdependent, and emphasize the important role of development and compensation. We suggest that the social brain, and its dysfunction and recovery, must be understood not in terms of specific structures, but rather in terms of their interaction in large-scale networks. PMID:23047070
Corgnet, Brice; Espín, Antonio M.; Hernán-González, Roberto
2015-01-01
Even though human social behavior has received considerable scientific attention in the last decades, its cognitive underpinnings are still poorly understood. Applying a dual-process framework to the study of social preferences, we show in two studies that individuals with a more reflective/deliberative cognitive style, as measured by scores on the Cognitive Reflection Test (CRT), are more likely to make choices consistent with “mild” altruism in simple non-strategic decisions. Such choices increase social welfare by increasing the other person's payoff at very low or no cost for the individual. The choices of less reflective individuals (i.e., those who rely more heavily on intuition), on the other hand, are more likely to be associated with either egalitarian or spiteful motives. We also identify a negative link between reflection and choices characterized by “strong” altruism, but this result holds only in Study 2. Moreover, we provide evidence that the relationship between social preferences and CRT scores is not driven by general intelligence. We discuss how our results can reconcile some previous conflicting findings on the cognitive basis of social behavior. PMID:26594158
Richter, S. Helene; Vogel, Anne S.; Ueltzhöffer, Kai; Muzzillo, Chiara; Vogt, Miriam A.; Lankisch, Katja; Armbruster-Genç, Diana J. N.; Riva, Marco A.; Fiebach, Christian J.; Gass, Peter; Vollmayr, Barbara
2014-01-01
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved “ongoing” and cued “switch” trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the “ongoing” baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research. PMID:24834036
The Importance of Comparative Psychology for Developmental Science
ERIC Educational Resources Information Center
Liebal, Katja; Haun, Daniel B. M.
2012-01-01
The aim of this essay is to elucidate the relevance of cross-species comparisons for the investigation of human behavior and its development. The focus is on the comparison of human children and another group of primates, the non-human great apes, with special attention to their cognitive skills. Integrating a comparative and developmental…
Some NASA contributions to human factors engineering: A survey
NASA Technical Reports Server (NTRS)
Behan, R. A.; Wendhausen, H. W.
1973-01-01
This survey presents the NASA contributions to the state of the art of human factors engineering, and indicates that these contributions have a variety of applications to nonaerospace activities. Emphasis is placed on contributions relative to man's sensory, motor, decisionmaking, and cognitive behavior and on applications that advance human factors technology.
Traffic-related air pollution and brain development.
Woodward, Nicholas; Finch, Caleb E; Morgan, Todd E
Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP.
Vogeley, Kai; Bente, Gary
2010-01-01
"Artificial humans", so-called "Embodied Conversational Agents" and humanoid robots, are assumed to facilitate human-technology interaction referring to the unique human capacities of interpersonal communication and social information processing. While early research and development in artificial intelligence (AI) focused on processing and production of natural language, the "new AI" has also taken into account the emotional and relational aspects of communication with an emphasis both on understanding and production of nonverbal behavior. This shift in attention in computer science and engineering is reflected in recent developments in psychology and social cognitive neuroscience. This article addresses key challenges which emerge from the goal to equip machines with socio-emotional intelligence and to enable them to interpret subtle nonverbal cues and to respond to social affordances with naturally appearing behavior from both perspectives. In particular, we propose that the creation of credible artificial humans not only defines the ultimate test for our understanding of human communication and social cognition but also provides a unique research tool to improve our knowledge about the underlying psychological processes and neural mechanisms. Copyright © 2010. Published by Elsevier Ltd.
The cognitive architecture of anxiety-like behavioral inhibition.
Bach, Dominik R
2017-01-01
The combination of reward and potential threat is termed approach/avoidance conflict and elicits specific behaviors, including passive avoidance and behavioral inhibition (BI). Anxiety-relieving drugs reduce these behaviors, and a rich psychological literature has addressed how personality traits dominated by BI predispose for anxiety disorders. Yet, a formal understanding of the cognitive inference and planning processes underlying anxiety-like BI is lacking. Here, we present and empirically test such formalization in the terminology of reinforcement learning. We capitalize on a human computer game in which participants collect sequentially appearing monetary tokens while under threat of virtual "predation." First, we demonstrate that humans modulate BI according to experienced consequences. This suggests an instrumental implementation of BI generation rather than a Pavlovian mechanism that is agnostic about action outcomes. Second, an internal model that would make BI adaptive is expressed in an independent task that involves no threat. The existence of such internal model is a necessary condition to conclude that BI is under model-based control. These findings relate a plethora of human and nonhuman observations on BI to reinforcement learning theory, and crucially constrain the quest for its neural implementation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
McDougall, Graham J.
2009-01-01
The human brain has the potential for self-renewal through adult neurogenesis, which is the birth of new neurons. Neural plasticity implies that the nervous system can change and grow. This understanding has created new possibilities for cognitive enhancement and rehabilitation. However, as individuals age, they have decreased confidence, or memory self-efficacy, which is directly related to their everyday memory performance. In this article, a developmental account of studies about memory self-efficacy and nonpharmacologic cognitive intervention models is presented and a cognitive intervention model, called the cognitive behavioral model of everyday memory, is proposed. PMID:19065089
Connecting a cognitive architecture to robotic perception
NASA Astrophysics Data System (ADS)
Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial
2012-06-01
We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.
Albarracín, Dolores; McNatt, Penny S.; Klein, Cynthia T. F.; Ho, Ringo M.; Mitchell, Amy L.; Kumkale, G. Tarcan
2016-01-01
This meta-analysis examined the validity of various theoretical assumptions about cognitive and behavioral change following a communication recommending condom use. The synthesis comprised 82 treatment and 29 control groups included in 46 longitudinal reports with measures of perceived severity and susceptibility, attitudes and expectancies, norms, perceptions of control, intentions, knowledge, behavioral skills, or condom use. Results indicated that across the sample of studies, communications taught recipients about facts related to HIV and also induced favorable attitudes and expectancies, greater control perceptions, and stronger intentions to use condoms in the future. Moreover, messages that presented attitudinal information and modeled behavioral skills led to increased condom use. Results are discussed in the context of theories of human behavior and change and in reference to HIV-prevention interventions. PMID:12683737
DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory
Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro
2014-01-01
Background Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. Methods A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. Results We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. Conclusions The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5. PMID:24819610
DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.
Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro
2014-01-01
Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.
Pope, Sarah M; Russell, Jamie L; Hopkins, William D
2015-01-01
Imitation recognition provides a viable platform from which advanced social cognitive skills may develop. Despite evidence that non-human primates are capable of imitation recognition, how this ability is related to social cognitive skills is unknown. In this study, we compared imitation recognition performance, as indicated by the production of testing behaviors, with performance on a series of tasks that assess social and physical cognition in 49 chimpanzees. In the initial analyses, we found that males were more responsive than females to being imitated and engaged in significantly greater behavior repetitions and testing sequences. We also found that subjects who consistently recognized being imitated performed better on social but not physical cognitive tasks, as measured by the Primate Cognitive Test Battery. These findings suggest that the neural constructs underlying imitation recognition are likely associated with or among those underlying more general socio-communicative abilities in chimpanzees. Implications regarding how imitation recognition may facilitate other social cognitive processes, such as mirror self-recognition, are discussed.
Pope, Sarah M.; Russell, Jamie L.; Hopkins, William D.
2015-01-01
Imitation recognition provides a viable platform from which advanced social cognitive skills may develop. Despite evidence that non-human primates are capable of imitation recognition, how this ability is related to social cognitive skills is unknown. In this study, we compared imitation recognition performance, as indicated by the production of testing behaviors, with performance on a series of tasks that assess social and physical cognition in 49 chimpanzees. In the initial analyses, we found that males were more responsive than females to being imitated and engaged in significantly greater behavior repetitions and testing sequences. We also found that subjects who consistently recognized being imitated performed better on social but not physical cognitive tasks, as measured by the Primate Cognitive Test Battery. These findings suggest that the neural constructs underlying imitation recognition are likely associated with or among those underlying more general socio-communicative abilities in chimpanzees. Implications regarding how imitation recognition may facilitate other social cognitive processes, such as mirror self-recognition, are discussed. PMID:25767454
Moral judgments, emotions and the utilitarian brain.
Moll, Jorge; de Oliveira-Souza, Ricardo
2007-08-01
The investigation of the neural and cognitive mechanisms underlying the moral mind is of paramount importance for understanding complex human behaviors, from altruism to antisocial acts. A new study on patients with prefrontal damage provides key insights on the neurobiology of moral judgment and raises new questions on the mechanisms by which reason and emotion contribute to moral cognition.
ERIC Educational Resources Information Center
Hyde, Daniel C.; Spelke, Elizabeth S.
2011-01-01
Behavioral research suggests that two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants by recording event-related potentials…
Using Motivational Interviewing to reduce threats in conversations about environmental behavior
Klonek, Florian E.; Güntner, Amelie V.; Lehmann-Willenbrock, Nale; Kauffeld, Simone
2015-01-01
Human behavior contributes to a waste of environmental resources and our society is looking for ways to reduce this problem. However, humans may perceive feedback about their environmental behavior as threatening. According to self-determination theory (SDT), threats decrease intrinsic motivation for behavior change. According to self-affirmation theory (SAT), threats can harm individuals’ self-integrity. Therefore, individuals should show self-defensive biases, e.g., in terms of presenting counter-arguments when presented with environmental behavior change. The current study examines how change recipients respond to threats from change agents in interactions about environmental behavior change. Moreover, we investigate how Motivational Interviewing (MI) — an intervention aimed at increasing intrinsic motivation — can reduce threats at both the social and cognitive level. We videotaped 68 dyadic interactions with change agents who either did or did not use MI (control group). We coded agents verbal threats and recipients’ verbal expressions of motivation. Recipients also rated agents’ level of confrontation and empathy (i.e., cognitive reactions). As hypothesized, threats were significantly lower when change agents used MI. Perceived confrontations converged with observable social behavior of change agents in both groups. Moreover, behavioral threats showed a negative association with change recipients’ expressed motivation (i.e., reasons to change). Contrary to our expectations, we found no relation between change agents’ verbal threats and change recipients’ verbally expressed self-defenses (i.e., sustain talk). Our results imply that MI reduces the adverse impact of threats in conversations about environmental behavior change on both the social and cognitive level. We discuss theoretical implications of our study in the context of SAT and SDT and suggest practical implications for environmental change agents in organizations. PMID:26257676
Using Motivational Interviewing to reduce threats in conversations about environmental behavior.
Klonek, Florian E; Güntner, Amelie V; Lehmann-Willenbrock, Nale; Kauffeld, Simone
2015-01-01
Human behavior contributes to a waste of environmental resources and our society is looking for ways to reduce this problem. However, humans may perceive feedback about their environmental behavior as threatening. According to self-determination theory (SDT), threats decrease intrinsic motivation for behavior change. According to self-affirmation theory (SAT), threats can harm individuals' self-integrity. Therefore, individuals should show self-defensive biases, e.g., in terms of presenting counter-arguments when presented with environmental behavior change. The current study examines how change recipients respond to threats from change agents in interactions about environmental behavior change. Moreover, we investigate how Motivational Interviewing (MI) - an intervention aimed at increasing intrinsic motivation - can reduce threats at both the social and cognitive level. We videotaped 68 dyadic interactions with change agents who either did or did not use MI (control group). We coded agents verbal threats and recipients' verbal expressions of motivation. Recipients also rated agents' level of confrontation and empathy (i.e., cognitive reactions). As hypothesized, threats were significantly lower when change agents used MI. Perceived confrontations converged with observable social behavior of change agents in both groups. Moreover, behavioral threats showed a negative association with change recipients' expressed motivation (i.e., reasons to change). Contrary to our expectations, we found no relation between change agents' verbal threats and change recipients' verbally expressed self-defenses (i.e., sustain talk). Our results imply that MI reduces the adverse impact of threats in conversations about environmental behavior change on both the social and cognitive level. We discuss theoretical implications of our study in the context of SAT and SDT and suggest practical implications for environmental change agents in organizations.
Basso, Julia C.; Suzuki, Wendy A.
2017-01-01
A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research. PMID:29765853
Tracking the Construction of Episodic Future Thoughts
ERIC Educational Resources Information Center
D'Argembeau, Arnaud; Mathy, Arnaud
2011-01-01
The ability to mentally simulate possible futures ("episodic future thinking") is of fundamental importance for various aspects of human cognition and behavior, but precisely how humans construct mental representations of future events is still essentially unknown. We suggest that episodic future thoughts consist of transitory patterns…
Information Processing of Trauma.
ERIC Educational Resources Information Center
Hartman, Carol R.; Burgess, Ann W.
1993-01-01
This paper presents a neuropsychosocial model of information processing to explain a victimization experience, specifically child sexual abuse. It surveys the relation of sensation, perception, and cognition as a systematic way to provide a framework for studying human behavior and describing human response to traumatic events. (Author/JDD)
Synaptogenesis and heritable aspects of executive attention.
Fossella, John A; Sommer, Tobias; Fan, Jin; Pfaff, Don; Posner, Michael I
2003-01-01
In humans, changes in brain structure and function can be measured non-invasively during postnatal development. In animals, advanced optical imaging measures can track the formation of synapses during learning and behavior. With the recent progress in these technologies, it is appropriate to begin to assess how the physiological processes of synapse, circuit, and neural network formation relate to the process of cognitive development. Of particular interest is the development of executive function, which develops more gradually in humans. One approach that has shown promise is molecular genetics. The completion of the human genome project and the human genome diversity project make it straightforward to ask whether variation in a particular gene correlates with variation in behavior, brain structure, brain activity, or all of the above. Strategies that unify the wealth of biochemical knowledge pertaining to synapse formation with the functional measures of brain structure and activity may lead to new insights in developmental cognitive psychology. Copyright 2003 Wiley-Liss, Inc.
Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi
2017-03-01
The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.
Foundations to the unified psycho-cognitive engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Michael Lewis; Bier, Asmeret Brooke; Backus, George A.
This document outlines the key features of the SNL psychological engine. The engine is designed to be a generic presentation of cognitive entities interacting among themselves and with the external world. The engine combines the most accepted theories of behavioral psychology with those of behavioral economics to produce a unified simulation of human response from stimuli through executed behavior. The engine explicitly recognizes emotive and reasoned contributions to behavior and simulates the dynamics associated with cue processing, learning, and choice selection. Most importantly, the model parameterization can come from available media or survey information, as well subject-matter-expert information. The frameworkmore » design allows the use of uncertainty quantification and sensitivity analysis to manage confidence in using the analysis results for intervention decisions.« less
Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.
Elston, Thomas W; Pandian, Ashvini; Smith, Gregory D; Holley, Andrew J; Gao, Nanjing; Lugo, Joaquin N
2014-01-01
There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.
Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice
Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.
2014-01-01
There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639
Moral Enhancement Using Non-invasive Brain Stimulation
Darby, R. Ryan; Pascual-Leone, Alvaro
2017-01-01
Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances. PMID:28275345
Allison, T
2001-10-01
Humans are social animals who use specialized brain mechanisms to assess the actions of others. This system for social cognition can be studied by imaging techniques, and its damage can lead to inappropriate social and moral behavior. Neuroscience can thus enrich our understanding of behaviors traditionally thought to be outside the province of science.
The Neuroanatomy and Neuroendocrinology of Fragile X Syndrome
ERIC Educational Resources Information Center
Hessl, David; Rivera, Susan M.; Reiss, Allan L.
2004-01-01
Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene-brain-behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical…
Mechanisms of Song Perception in Oscine Birds
ERIC Educational Resources Information Center
Knudsen, Daniel P.; Gentner, Timothy Q.
2010-01-01
Songbirds share a number of parallels with humans that make them an attractive model system for studying the behavioral and neurobiological mechanisms that underlie the learning and processing of vocal communication signals. Here we review the perceptual and cognitive mechanisms of audition in birds, and emphasize the behavioral and neural basis…
ERIC Educational Resources Information Center
Grusec, Joan E.
1992-01-01
Social learning theory is evaluated from a historical perspective that goes up to the present. Sears and others melded psychoanalytic and stimulus-response learning theory into a comprehensive explanation of human behavior. Bandura emphasized cognitive and information-processing capacities that mediate social behavior. (LB)
Spontaneous Emotion Regulation to Positive and Negative Stimuli
ERIC Educational Resources Information Center
Volokhov, Rachael N.; Demaree, Heath A.
2010-01-01
The ability to regulate one's emotions is an integral part of human social behavior. One antecedent emotion regulation strategy, known as reappraisal, is characterized by cognitively evaluating an emotional stimulus to alter its emotional impact and one response-focused strategy, suppression, is aimed at reducing behavioral output. People are…
Animal models of speech and vocal communication deficits associated with psychiatric disorders
Konopka, Genevieve; Roberts, Todd F.
2015-01-01
Disruptions in speech, language and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language when compared to vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. Here, we review animal models of vocal learning and vocal communication, and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language and vocal communication. PMID:26232298
Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.
Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja
2016-11-01
Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Youdas, James W.; Krause, David A.; Hellyer, Nathan J.; Rindflesch, Aaron B.; Hollman, John H.
2013-01-01
Medical professionals and public consumers expect that new physical therapy graduates possess cognitive, technical, and behavioral skills required to provide safe and high-quality care to patients. The purpose of this study was to determine if a repertoire of ten professional behaviors assessed at the beginning of doctorate of physical therapy…
Investigation of possible causes for human-performance degradation during microgravity flight
NASA Technical Reports Server (NTRS)
Schroeder, James E.; Tuttle, Megan L.
1992-01-01
The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior.
Pietrelli, A; Lopez-Costa, J; Goñi, R; Brusco, A; Basso, N
2012-01-27
Recent research involving human and animals has shown that aerobic exercise of moderate intensity produces the greatest benefit on brain health and behavior. In this study we investigated the effects on cognitive function and anxiety-related behavior in rats at different ages of aerobic exercise, performed regularly throughout life. We designed an aerobic training program with the treadmill running following the basic principles of human training, and assuming that rats have the same physiological adaptations. The intensity was gradually adjusted to the fitness level and age, and maintained at 60-70% of maximum oxygen consumption (max.VO(2)). In middle age (8 months) and old age (18 months), we studied the cognitive response with the radial maze (RM), and anxiety-related behaviors with the open field (OF) and the elevated plus maze (EPM). Aerobically trained (AT) rats had a higher cognitive performance measured in the RM, showing that exercise had a cumulative and amplifier effect on memory and learning. The analysis of age and exercise revealed that the effects of aerobic exercise were modulated by age. Middle-aged AT rats were the most successful animals; however, the old AT rats met the criteria more often than the middle-aged sedentary controls (SC), indicating that exercise could reverse the negative effects of sedentary life, partially restore the cognitive function, and protect against the deleterious effects of aging. The results in the OF and EPM showed a significant decrease in key indicators of anxiety, revealing that age affected most of the analyzed variables, and that exercise had a prominent anxiolytic effect, particularly strong in old age. In conclusion, our results indicated that regular and chronic aerobic exercise has time and dose-dependent, neuroprotective and restorative effects on physiological brain aging, and reduces anxiety-related behaviors. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Christakis, D. A.; Ramirez, J. S. B.; Ramirez, J. M.
2012-01-01
Observational studies in humans have found associations between overstimulation in infancy via excessive television viewing and subsequent deficits in cognition and attention. We developed and tested a mouse model of overstimulation whereby p10 mice were subjected to audio (70 db) and visual stimulation (flashing lights) for six hours per day for a total of 42 days. 10 days later cognition and behavior were tested using the following tests: Light Dark Latency, Elevated Plus Maze, Novel Object Recognition, and Barnes Maze. In all tests, overstimulated mice performed significantly worse compared to controls suggesting increased activity and risk taking, diminished short term memory, and decreased cognitive function. These findings suggest that excessive non-normative stimulation during critical periods of brain development can have demonstrable untoward effects on subsequent neurocognitive function. PMID:22855702
A natural history of the human mind: tracing evolutionary changes in brain and cognition
Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W
2008-01-01
Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300–400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species’ cognitive and linguistic abilities. PMID:18380864
Interactions With Robots: The Truths We Reveal About Ourselves.
Broadbent, Elizabeth
2017-01-03
In movies, robots are often extremely humanlike. Although these robots are not yet reality, robots are currently being used in healthcare, education, and business. Robots provide benefits such as relieving loneliness and enabling communication. Engineers are trying to build robots that look and behave like humans and thus need comprehensive knowledge not only of technology but also of human cognition, emotion, and behavior. This need is driving engineers to study human behavior toward other humans and toward robots, leading to greater understanding of how humans think, feel, and behave in these contexts, including our tendencies for mindless social behaviors, anthropomorphism, uncanny feelings toward robots, and the formation of emotional attachments. However, in considering the increased use of robots, many people have concerns about deception, privacy, job loss, safety, and the loss of human relationships. Human-robot interaction is a fascinating field and one in which psychologists have much to contribute, both to the development of robots and to the study of human behavior.
Few believe the world is flat: How embodiment is changing the scientific understanding of cognition.
Glenberg, Arthur M
2015-06-01
Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human thinking is computer-like. Instead, as with all animals, our thoughts are based on bodily experiences, and our thoughts and behaviors are controlled by bodily and neural systems of perception, action, and emotion interacting with the physical and social environments. We are embodied; nothing more. Embodied cognition is about cognition formatted in sensorimotor experience, and sensorimotor systems make those thoughts dynamic. Even processes that seem abstract, such as language comprehension and goal understanding, are embodied. Thus, embodied cognition is not limited to 1 type of thought or another: It is cognition. (c) 2015 APA, all rights reserved.
Impact of Fermented Foods on Human Cognitive Function-A Review of Outcome of Clinical Trials.
Sivamaruthi, Bhagavathi Sundaram; Kesika, Periyanaina; Chaiyasut, Chaiyavat
2018-05-31
Food is an essential need for all living creatures which provides the energy to maintain life and grow further. Fermentation is a process used to preserve and advance the quality of foods, and those foods are known as fermented foods. Some foods offer health benefits to consumers apart from nutrition, and such foods are called as functional foods. Most functional foods are fermented foods, and the fermenting microorganism plays a precious role in the functional property of the food. Cognitive decline is closely associated with the productivity of an individual and the society. Even though cognitive decline is connected to aging, dietary pattern influences memory, anxiety and other social behaviors. Many scientific studies have explained the link between food habits and cognitive functions by in vitro and in vivo models. The present review compiled the clinical data on the impact of fermented foods on human cognitive function.
Chung, Dongil; Kim, Yang-Tae; Jeong, Jaeseung
2013-01-01
Schizophrenia is generally characterized by various positive and negative symptoms that are accompanied by significant social dysfunction. Various researchers investigated the functional impairments in schizophrenia including impaired theory of mind (TOM), poor integration of affective and cognitive information, and malfunctioning of adaptive and strategic learning process. However, most of the studies were limited to simplified cognitive tests or computerized choice games that exclude real social interaction. The aim of the current study was to investigate human strategies based on the incentives and particularly the cognitive and emotional motivations of free riding. We examined the decision patterns of 41 healthy subjects (HSs) and 37 schizophrenia patients (SZ) during the public goods game (PGG), one of the games simulating human cooperation and free riding in group interactions. Strategic decision processes during the iterative binary PGG were assessed in terms of cognitive understanding, loss sensitivity, and TOM. We found that greed and loss sensitivity both motivated free-riding behavior in the HS, but that they were more vulnerable to greedy incentives than to possible loss. More significantly, the SZ clearly displayed a lower prevalence of free riding and distinct decision patterns from HS. Nonstrategic and unexpectedly low free ridings in the SZ likely arise from poor integration of cognitive and affective information. We suggest that loss sensitivity and TOM as well as cognitive understanding are involved in regulation of the free riding and cooperative behavior.
Chung, Dongil; Kim, Yang-Tae; Jeong, Jaeseung
2013-01-01
Schizophrenia is generally characterized by various positive and negative symptoms that are accompanied by significant social dysfunction. Various researchers investigated the functional impairments in schizophrenia including impaired theory of mind (TOM), poor integration of affective and cognitive information, and malfunctioning of adaptive and strategic learning process. However, most of the studies were limited to simplified cognitive tests or computerized choice games that exclude real social interaction. The aim of the current study was to investigate human strategies based on the incentives and particularly the cognitive and emotional motivations of free riding. We examined the decision patterns of 41 healthy subjects (HSs) and 37 schizophrenia patients (SZ) during the public goods game (PGG), one of the games simulating human cooperation and free riding in group interactions. Strategic decision processes during the iterative binary PGG were assessed in terms of cognitive understanding, loss sensitivity, and TOM. We found that greed and loss sensitivity both motivated free-riding behavior in the HS, but that they were more vulnerable to greedy incentives than to possible loss. More significantly, the SZ clearly displayed a lower prevalence of free riding and distinct decision patterns from HS. Nonstrategic and unexpectedly low free ridings in the SZ likely arise from poor integration of cognitive and affective information. We suggest that loss sensitivity and TOM as well as cognitive understanding are involved in regulation of the free riding and cooperative behavior. PMID:21705433
NASA Astrophysics Data System (ADS)
Li, Bin
Spatial control behaviors account for a large proportion of human everyday activities from normal daily tasks, such as reaching for objects, to specialized tasks, such as driving, surgery, or operating equipment. These behaviors involve intensive interactions within internal processes (i.e. cognitive, perceptual, and motor control) and with the physical world. This dissertation builds on a concept of interaction pattern and a hierarchical functional model. Interaction pattern represents a type of behavior synergy that humans coordinates cognitive, perceptual, and motor control processes. It contributes to the construction of the hierarchical functional model that delineates humans spatial control behaviors as the coordination of three functional subsystems: planning, guidance, and tracking/pursuit. This dissertation formalizes and validates these two theories and extends them for the investigation of human spatial control skills encompassing development and assessment. Specifically, this dissertation first presents an overview of studies in human spatial control skills encompassing definition, characteristic, development, and assessment, to provide theoretical evidence for the concept of interaction pattern and the hierarchical functional model. The following, the human experiments for collecting motion and gaze data and techniques to register and classify gaze data, are described. This dissertation then elaborates and mathematically formalizes the hierarchical functional model and the concept of interaction pattern. These theories then enables the construction of a succinct simulation model that can reproduce a variety of human performance with a minimal set of hypotheses. This validates the hierarchical functional model as a normative framework for interpreting human spatial control behaviors. The dissertation then investigates human skill development and captures the emergence of interaction pattern. The final part of the dissertation applies the hierarchical functional model for skill assessment and introduces techniques to capture interaction patterns both from the top down using their geometric features and from the bottom up using their dynamical characteristics. The validity and generality of the skill assessment is illustrated using two the remote-control flight and laparoscopic surgical training experiments.
Hutcherson, Cendri A; Plassmann, Hilke; Gross, James J; Rangel, Antonio
2012-09-26
Cognitive regulation is often used to influence behavioral outcomes. However, the computational and neurobiological mechanisms by which it affects behavior remain unknown. We studied this issue using an fMRI task in which human participants used cognitive regulation to upregulate and downregulate their cravings for foods at the time of choice. We found that activity in both ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) correlated with value. We also found evidence that two distinct regulatory mechanisms were at work: value modulation, which operates by changing the values assigned to foods in vmPFC and dlPFC at the time of choice, and behavioral control modulation, which operates by changing the relative influence of the vmPFC and dlPFC value signals on the action selection process used to make choices. In particular, during downregulation, activation decreased in the value-sensitive region of dlPFC (indicating value modulation) but not in vmPFC, and the relative contribution of the two value signals to behavior shifted toward the dlPFC (indicating behavioral control modulation). The opposite pattern was observed during upregulation: activation increased in vmPFC but not dlPFC, and the relative contribution to behavior shifted toward the vmPFC. Finally, ventrolateral PFC and posterior parietal cortex were more active during both upregulation and downregulation, and were functionally connected with vmPFC and dlPFC during cognitive regulation, which suggests that they help to implement the changes to the decision-making circuitry generated by cognitive regulation.
Plassmann, Hilke; Gross, James J.; Rangel, Antonio
2012-01-01
Cognitive regulation is often used to influence behavioral outcomes. However, the computational and neurobiological mechanisms by which it affects behavior remain unknown. We studied this issue using an fMRI task in which human participants used cognitive regulation to upregulate and downregulate their cravings for foods at the time of choice. We found that activity in both ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) correlated with value. We also found evidence that two distinct regulatory mechanisms were at work: value modulation, which operates by changing the values assigned to foods in vmPFC and dlPFC at the time of choice, and behavioral control modulation, which operates by changing the relative influence of the vmPFC and dlPFC value signals on the action selection process used to make choices. In particular, during downregulation, activation decreased in the value-sensitive region of dlPFC (indicating value modulation) but not in vmPFC, and the relative contribution of the two value signals to behavior shifted toward the dlPFC (indicating behavioral control modulation). The opposite pattern was observed during upregulation: activation increased in vmPFC but not dlPFC, and the relative contribution to behavior shifted toward the vmPFC. Finally, ventrolateral PFC and posterior parietal cortex were more active during both upregulation and downregulation, and were functionally connected with vmPFC and dlPFC during cognitive regulation, which suggests that they help to implement the changes to the decision-making circuitry generated by cognitive regulation. PMID:23015444
Biomedical wellness challenges and opportunities
NASA Astrophysics Data System (ADS)
Tangney, John F.
2012-06-01
The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.
Cognitive Aspects of Power in a Two-Level Game
NASA Astrophysics Data System (ADS)
Juvina, Ion; Lebiere, Christian; Martin, Jolie; Gonzalez, Cleotilde
The Intergroup Prisoner's Dilemma with Intragroup Power Dynamics (IPD^2) is a new game paradigm for studying human behavior in conflict situations. IPD^2 adds the concept of intragroup power to an intergroup version of the standard Iterated Prisoner's Dilemma game. We conducted an exploratory laboratory study in which individual human participants played the game against computer strategies of various complexities. We also developed a cognitive model of human decision making in this game. The model was run in place of the human participant under the same conditions as in the laboratory study. Results from the human study and the model simulations are presented and discussed, emphasizing the value of including intragroup power in game theoretic models of conflict.
Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence
Cavanagh, James F.; Shackman, Alexander J.
2014-01-01
Evidence from imaging and anatomical studies suggests that the midcingulate cortex (MCC) is a dynamic hub lying at the interface of affect and cognition. In particular, this neural system appears to integrate information about conflict and punishment in order to optimize behavior in the face of action-outcome uncertainty. In a series of meta-analyses, we show how recent human electrophysiological research provides compelling evidence that frontal-midline theta signals reflecting MCC activity are moderated by anxiety and predict adaptive behavioral adjustments. These findings underscore the importance of frontal theta activity to a broad spectrum of control operations. We argue that frontal-midline theta provides a neurophysiologically plausible mechanism for optimally adjusting behavior to uncertainty, a hallmark of situations that elicit anxiety and demand cognitive control. These observations compel a new perspective on the mechanisms guiding motivated learning and behavior and provide a framework for understanding the role of the MCC in temperament and psychopathology. PMID:24787485
Cognitive Systems Engineering: The Next 30 Years
NASA Technical Reports Server (NTRS)
Feary, Michael
2012-01-01
This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.
Local Patterns to Global Architectures: Influences of Network Topology on Human Learning.
Karuza, Elisabeth A; Thompson-Schill, Sharon L; Bassett, Danielle S
2016-08-01
A core question in cognitive science concerns how humans acquire and represent knowledge about their environments. To this end, quantitative theories of learning processes have been formalized in an attempt to explain and predict changes in brain and behavior. We connect here statistical learning approaches in cognitive science, which are rooted in the sensitivity of learners to local distributional regularities, and network science approaches to characterizing global patterns and their emergent properties. We focus on innovative work that describes how learning is influenced by the topological properties underlying sensory input. The confluence of these theoretical approaches and this recent empirical evidence motivate the importance of scaling-up quantitative approaches to learning at both the behavioral and neural levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of motivation on control hierarchy in the human frontal cortex.
Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark
2015-02-18
The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.
Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task
Raschle, Nora M.; Fehlbaum, Lynn V.; Menks, Willeke M.; Euler, Felix; Sterzer, Philipp; Stadler, Christina
2017-01-01
The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI) during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral) within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in emotion related brain regions, and therefore support previous findings investigating emotion–cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly related to each other, as indicated by shared neural networks involved in both of these processes. Emotion processing, cognitive control, and their interaction are crucial for healthy functioning and a lack thereof is related to psychiatric disorders such as, disruptive behavior disorders. Future studies may investigate the neural characteristics of children and adolescents with disruptive behavior disorders. PMID:28919871
Casartelli, Luca; Chiamulera, Cristiano
2016-04-01
To understand others' minds is crucial for survival; however, it is quite puzzling how access to others' minds can be--to some extent--direct and not necessarily mediated by conceptual reasoning. Recent advances in neuroscience have led to hypothesize a role for motor circuits not only in controlling the elementary physical features of movement (e.g., force, direction, and amplitude), but also in understanding and shaping human behavior. The concept of "motor cognition" refers to these aspects, and neurophysiological, neuroimaging, and behavioral studies in human and nonhuman primates support this view. From a clinical perspective, motor cognition represents a challenge in several domains. A thorough investigation of the neural mechanisms mediating motor action/intention understanding and automatized/compulsive behaviors seems to be a promising way to tackle a range of neurodevelopmental and drug-related disorders. On the one hand, anomalies in motor cognition may have cascade effects on social functioning in individuals with autism spectrum disorder (ASD); on the other, motor cognition may help explain the pathophysiology of drug-seeking and drug-taking behaviors in the most severe phase of drug addiction (i.e., see drug dependence, motor low-order cue reactivity). This may represent a promising approach that could improve the efficacy of rehabilitative interventions. The only way to shed light on multifactorial disorders such as ASD and drug addiction is through the investigation of their multiple factors. This motor way can promote new theoretical and experimental perspectives that would help bridge the gap between the basic neuroscience approach and clinical practice.
ERIC Educational Resources Information Center
Wagenmakers, Eric-Jan; Farrell, Simon; Ratcliff, Roger
2005-01-01
Recently, G. C. Van Orden, J. G. Holden, and M. T. Turvey (2003) proposed to abandon the conventional framework of cognitive psychology in favor of the framework of nonlinear dynamical systems theory. Van Orden et al. presented evidence that "purposive behavior originates in self-organized criticality" (p. 333). Here, the authors show that Van…
The Pervasiveness of 1/f Scaling in Speech Reflects the Metastable Basis of Cognition
ERIC Educational Resources Information Center
Kello, Christopher T.; Anderson, Gregory G.; Holden, John G.; Van Orden, Guy C.
2008-01-01
Human neural and behavioral activities have been reported to exhibit fractal dynamics known as "1/f noise," which is more aptly named "1/f scaling." Some argue that 1/f scaling is a general and pervasive property of the dynamical substrate from which cognitive functions are formed. Others argue that it is an idiosyncratic property of…
Cognitive And Neural Sciences Division 1992 Programs
1992-08-01
Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body . Behavioral...prediction and enhancement of human performance in training and operational environments. A second goal is to understand the neurobiological constraints and...such complex, structured bodies of knowledge and skill are acquired. Fourth, to provide a precise theory of instruction, founded on cognitive theory
Linking ADHD to the Neural Circuitry of Attention
Mueller, Adrienne; Hong, David S.; Shepard, Steven; Moore, Tirin
2017-01-01
ADHD is a complex condition with a heterogeneous presentation. Current diagnosis is primarily based on subjective experience and observer reports of behavioral symptoms – an approach that has significant limitations. Many studies show that individuals with ADHD exhibit poorer performance on cognitive tasks than neurotypical controls, and at least seven main functional domains appear implicated in ADHD. We discuss the underlying neural mechanisms of cognitive functions associated with ADHD with emphasis on the neural basis of selective attention, demonstrating the feasibility of basic research approaches for further understanding cognitive behavioral processes as they relate to human psychopathology. The study of circuit-level mechanisms underlying executive functions in nonhuman primates holds promise for advancing our understanding, and ultimately the treatment, of ADHD. PMID:28483638
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
Formally grounding spatio-temporal thinking.
Klippel, Alexander; Wallgrün, Jan Oliver; Yang, Jinlong; Li, Rui; Dylla, Frank
2012-08-01
To navigate through daily life, humans use their ability to conceptualize spatio-temporal information, which ultimately leads to a system of categories. Likewise, the spatial sciences rely heavily on conceptualization and categorization as means to create knowledge when they process spatio-temporal data. In the spatial sciences and in related branches of artificial intelligence, an approach has been developed for processing spatio-temporal data on the level of coarse categories: qualitative spatio-temporal representation and reasoning (QSTR). Calculi developed in QSTR allow for the meaningful processing of and reasoning with spatio-temporal information. While qualitative calculi are widely acknowledged in the cognitive sciences, there is little behavioral assessment whether these calculi are indeed cognitively adequate. This is an astonishing conundrum given that these calculi are ubiquitous, are often intended to improve processes at the human-machine interface, and are on several occasions claimed to be cognitively adequate. We have systematically evaluated several approaches to formally characterize spatial relations from a cognitive-behavioral perspective for both static and dynamically changing spatial relations. This contribution will detail our framework, which is addressing the question how formal characterization of space can help us understand how people think with, in, and about space.
Rogers, Robert D
2011-01-01
Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive appraisal of reinforcers when selecting between actions, potentially accounting for its influence upon the processing salient aversive outcomes and social choice.
Editor's Introduction and Review: Coordination and Context in Cognitive Science.
Kello, Christopher T
2018-01-01
The role of coordination in cognitive science has been on the rise in recent years, in terms of coordination among neurons, coordination among sensory and motor systems, and coordination among individuals. Research has shown that coordination patterns corresponding to cognitive activities depend on the various contexts in which the underlying interactions are situated. The present issue of Topics in Cognitive Science centers on studies of coordination that address the role of context in shaping or interpreting dynamical patterns of human behavior. This introductory article reviews some of the prior literature leading up to current and future research on coordination and context in cognitive science. Copyright © 2017 Cognitive Science Society, Inc.
Food or threat? Wild capuchin monkeys (Sapajus libidinosus) as both predators and prey of snakes.
Falótico, Tiago; Verderane, Michele P; Mendonça-Furtado, Olívia; Spagnoletti, Noemi; Ottoni, Eduardo B; Visalberghi, Elisabetta; Izar, Patrícia
2018-01-01
Snakes present a hazard to primates, both as active predators and by defensive envenomation. This risk might have been a selective pressure on the evolution of primate visual and cognitive systems, leading to several behavioral traits present in human and non-human primates, such as the ability to quickly learn to fear snakes. Primates seldom prey on snakes, and humans are one of the few primate species that do. We report here another case, the wild capuchin monkey (Sapajus libidinosus), which preys on snakes. We hypothesized that capuchin monkeys, due to their behavioral plasticity, and cognitive and visual skills, would be capable of discriminating dangerous and non-dangerous snakes and behave accordingly. We recorded the behavioral patterns exhibited toward snakes in two populations of S. libidinosus living 320 km apart in Piauí, Brazil. As expected, capuchins have a fear reaction to dangerous snakes (usually venomous or constricting snakes), presenting mobbing behavior toward them. In contrast, they hunt and consume non-dangerous snakes without presenting the fear response. Our findings support the tested hypothesis that S. libidinosus are capable of differentiating snakes by level of danger: on the one hand they protect themselves from dangerous snakes, on the other hand they take opportunities to prey on non-dangerous snakes. Since capuchins and humans are both predators and prey of snakes, further studies of this complex relationship may shed light on the evolution of these traits in the human lineage.
Dufau, Stephane; Duñabeitia, Jon Andoni; Moret-Tatay, Carmen; McGonigal, Aileen; Peeters, David; Alario, F-Xavier; Balota, David A; Brysbaert, Marc; Carreiras, Manuel; Ferrand, Ludovic; Ktori, Maria; Perea, Manuel; Rastle, Kathy; Sasburg, Olivier; Yap, Melvin J; Ziegler, Johannes C; Grainger, Jonathan
2011-01-01
Investigating human cognitive faculties such as language, attention, and memory most often relies on testing small and homogeneous groups of volunteers coming to research facilities where they are asked to participate in behavioral experiments. We show that this limitation and sampling bias can be overcome by using smartphone technology to collect data in cognitive science experiments from thousands of subjects from all over the world. This mass coordinated use of smartphones creates a novel and powerful scientific "instrument" that yields the data necessary to test universal theories of cognition. This increase in power represents a potential revolution in cognitive science.
Cromwell, Howard Casey; Panksepp, Jaak
2011-10-01
Words such as cognition, motivation and emotion powerfully guide theory development and the overall aims and goals of behavioral neuroscience research. Once such concepts are accepted generally as natural aspects of the brain, their influence can be pervasive and long lasting. Importantly, the choice of conceptual terms used to describe and study mental/neural functions can also constrain research by forcing the results into seemingly useful 'conceptual' categories that have no discrete reality in the brain. Since the popularly named 'cognitive revolution' in psychological science came to fruition in the early 1970s, the term cognitive or cognition has been perhaps the most widely used conceptual term in behavioral neuroscience. These terms, similar to other conceptual terms, have potential value if utilized appropriately. We argue that recently the term cognition has been both overused and misused. This has led to problems in developing a usable shared definition for the term and to promotion of possible misdirections in research within behavioral neuroscience. In addition, we argue that cognitive-guided research influenced primarily by top-down (cortical toward subcortical) perspectives without concurrent non-cognitive modes of bottom-up developmental thinking, could hinder progress in the search for new treatments and medications for psychiatric illnesses and neurobehavioral disorders. Overall, linkages of animal research insights to human psychology may be better served by bottom-up (subcortical to cortical) affective and motivational 'state-control' perspectives, simply because the lower networks of the brain are foundational for the construction of higher 'information-processing' aspects of mind. Moving forward, rapidly expanding new techniques and creative methods in neuroscience along with more accurate brain concepts, may help guide the development of new therapeutics and hopefully more accurate ways to describe and explain brain-behavior relationships. Copyright © 2011 Elsevier Ltd. All rights reserved.
"Unwilling" versus "Unable": Chimpanzees' Understanding of Human Intentional Action
ERIC Educational Resources Information Center
Call, Josep; Hare, Brian; Carpenter, Malinda; Tomasello, Michael
2004-01-01
Understanding the intentional actions of others is a fundamental part of human social cognition and behavior. An important question is therefore whether other animal species, especially our nearest relatives the chimpanzees, also understand the intentional actions of others. Here we show that chimpanzees spontaneously (without training) behave…
ERIC Educational Resources Information Center
Arnhart, Larry
2006-01-01
Be it metaphysics, theology, or some other unifying framework, humans have long sought to determine "first principles" underlying knowledge. Larry Arnhart continues in this vein, positing a Darwinian web of genetic, cultural, and cognitive evolution to explain our social behavior in terms of human nature as governed by biology. He leaves it to us…
A social cognitive-based model for condom use among college students.
Dilorio, C; Dudley, W N; Soet, J; Watkins, J; Maibach, E
2000-01-01
Social cognitive theory has been used extensively to explain health behaviors. Although the influence of one construct in this model-self-efficacy-has been well established, the role of other social cognitive constructs has not received as much attention in human immunodeficiency virus (HIV) prevention research. More complete understanding of how social cognitive constructs operate together to explain condom use behaviors would be useful in developing HIV and sexually transmitted disease (STD) prevention programs for college students. The primary aim of this study was to test a social cognitive-based model of condom use behaviors among college students. Data were collected from a sample of college students attending six different colleges and universities. Participants were 18 to 25 years of age, single, and sexually active. For the sample of 1,380 participants, the mean age was 20.6 years (SD = 1.76). Most participants reported having had vaginal intercourse (95.8%) and oral sex (86.5%); 16% reported anal sex. Self-efficacy was related directly to condom use behaviors and indirectly through its effect on outcome expectancies. As predicted, self-efficacy was related to anxiety, but anxiety was not related to condom use. Substance use during sexual encounters was related to outcome expectancies but not to condom use as predicted. Overall, the findings lend support to a condom use model based on social cognitive theory and provide implications for HIV interventions. Interventions that focus on self-efficacy are more likely to reduce anxiety related to condom use, increase positive perceptions about condoms, and increase the likelihood of adopting condom use behaviors.
Emulation as an Integrating Principle for Cognition
Colder, Brian
2011-01-01
Emulations, defined as ongoing internal representations of potential actions and the futures those actions are expected to produce, play a critical role in directing human bodily activities. Studies of gross motor behavior, perception, allocation of attention, response to errors, interoception, and homeostatic activities, and higher cognitive reasoning suggest that the proper execution of all these functions relies on emulations. Further evidence supports the notion that reinforcement learning in humans is aimed at updating emulations, and that action selection occurs via the advancement of preferred emulations toward realization of their action and environmental prediction. Emulations are hypothesized to exist as distributed active networks of neurons in cortical and sub-cortical structures. This manuscript ties together previously unrelated theories of the role of prediction in different aspects of human information processing to create an integrated framework for cognition. PMID:21660288
Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J
2014-04-15
Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.
Cognitive-motor interactions of the basal ganglia in development
Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert
2014-01-01
Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214
Stress Impairs Optimal Behavior in a Water Foraging Choice Task in Rats
ERIC Educational Resources Information Center
Graham, Lauren K.; Yoon, Taejib; Kim, Jeansok J.
2010-01-01
Stress is a biologically significant social-environmental factor that plays a pervasive role in influencing human and animal behaviors. While stress effects on various types of memory are well characterized, its effects on other cognitive functions are relatively unknown. Here, we investigated the effects of acute, uncontrollable stress on…
Understanding Artful Behavior as a Human Proclivity: Clues from a Pre-Kindergarten Classroom
ERIC Educational Resources Information Center
Blatt-Gross, Carolina
2011-01-01
Concurrent to the present reduction of arts education in mainstream American schools, many evolutionary-minded scholars are asserting that artistic behavior contributes significantly to cognition, has been advantageous for our survival, and satisfies psychological needs that are biologically embedded. Supported by long-term and wide-spread art…
ERIC Educational Resources Information Center
Holmes, Mike; Latham, Annabel; Crockett, Keeley; O'Shea, James D.
2018-01-01
Comprehension is an important cognitive state for learning. Human tutors recognize comprehension and non-comprehension states by interpreting learner non-verbal behavior (NVB). Experienced tutors adapt pedagogy, materials, and instruction to provide additional learning scaffold in the context of perceived learner comprehension. Near real-time…
Producing and Recognizing Analogical Relations
ERIC Educational Resources Information Center
Lipkens, Regina; Hayes, Steven C.
2009-01-01
Analogical reasoning is an important component of intelligent behavior, and a key test of any approach to human language and cognition. Only a limited amount of empirical work has been conducted from a behavior analytic point of view, most of that within Relational Frame Theory (RFT), which views analogy as a matter of deriving relations among…
Order Information in Working Memory: An Integrative Review of Evidence From Brain and Behavior
ERIC Educational Resources Information Center
Marshuetz, Christy
2005-01-01
Evidence about memory for order information comes from a number of different methodologies: human cognition, patient studies, neuroimaging studies, and animal lesion and behavioral studies. The present article discusses (a) evidence that order and item memory are separable; (b) proposed mechanisms for order memory (interitem associations, direct…
Pattern Separation and Goal-Directed Behavior in the Aged Canine
ERIC Educational Resources Information Center
Snigdha, Shikha; Yassa, Michael A.; deRivera, Christina; Milgram, Norton W.; Cotman, Carl W.
2017-01-01
The pattern separation task has recently emerged as a behavioral model of hippocampus function and has been used in several pharmaceutical trials. The canine is a useful model to evaluate a multitude of hippocampal-dependent cognitive tasks that parallel those in humans. Thus, this study was designed to evaluate the suitability of pattern…
Wandering Minds and Wavering Rhythms: Linking Mind Wandering and Behavioral Variability
ERIC Educational Resources Information Center
Seli, Paul; Cheyne, James Allan; Smilek, Daniel
2013-01-01
Mind wandering is a pervasive feature of human cognition often associated with the withdrawal of task-related executive control processes. Here, we explore the possibility that, in tasks requiring executive control to sustain consistent responding, moments of mind wandering could be associated with moments of increased behavioral variability. To…
Generation of transgenic monkeys with human inherited genetic disease.
Chan, Anthony W S; Yang, Shang-Hsun
2009-09-01
Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.
Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania
2012-01-01
Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve. PMID:22737120
Kong, Ru; Li, Jingwei; Orban, Csaba; Sabuncu, Mert R; Liu, Hesheng; Schaefer, Alexander; Sun, Nanbo; Zuo, Xi-Nian; Holmes, Avram J; Eickhoff, Simon B; Yeo, B T Thomas
2018-06-06
Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.
The Neurotoxicity of General Anesthetic Drugs: Emphasis on the Extremes of Age.
Biddle, Chuck; Ford, Vincent
2017-01-01
A substantial body of research suggests that anesthetic exposure to patients who are very young or very old may impair cognitive, behavioral, and emotional development or recovery. In lower animal models of pre- and postnatal age, anesthetic exposure may impact inflammation, synaptogenesis, neuronal apoptosis, and glial cell development. To date, research in humans is inconclusive regarding the long-term cognitive and behavioral sequelae of general anesthesia in the young child. In older adults, postoperative cognitive dysfunction and cognitive delirium are identified as markers of anesthetic neurotoxicity. Existing neurological degenerative processes and other comorbidities in combination with the stress of surgery make evaluating the independent impact of anesthetic exposure difficult. Advances in research, imaging, and partnerships have enhanced the potential for understanding the impact of anesthetic exposure. In both populations, the resulting data and limitations faced in initial research efforts are catalysts for current prospective studies.
Whiting, Mark D; Kokiko-Cochran, Olga N
2016-01-01
Animal models play a critical role in understanding the biomechanical, pathophysiological, and behavioral consequences of traumatic brain injury (TBI). In preclinical studies, cognitive impairment induced by TBI is often assessed using the Morris water maze (MWM). Frequently described as a hippocampally dependent spatial navigation task, the MWM is a highly integrative behavioral task that requires intact functioning in numerous brain regions and involves an interdependent set of mnemonic and non-mnemonic processes. In this chapter, we review the special considerations involved in using the MWM in animal models of TBI, with an emphasis on maximizing the degree of information extracted from performance data. We include a theoretical framework for examining deficits in discrete stages of cognitive function and offer suggestions for how to make inferences regarding the specific nature of TBI-induced cognitive impairment. The ultimate goal is more precise modeling of the animal equivalents of the cognitive deficits seen in human TBI.
Reuter, Martin; Montag, Christian; Altmann, Steffen; Bendlow, Fabian; Elger, Christian; Kirsch, Peter; Becker, Albert; Schoch-McGovern, Susanne; Simon, Matthias; Weber, Bernd; Felten, Andrea
2017-10-01
The oxytocin system plays a prominent role in social behavior across species, and numerous genetic studies in humans have reported associations between polymorphisms on the oxytocin receptor (OXTR) gene and phenotypes related to social cognition, affiliation, perspective taking, and sociability in healthy subjects and in patients with atypical social behavior, such as in autism spectrum disorders (ASD). Recently, the first study demonstrating altered agonist-induced OXTR internalization and recycling for the exonic variant rs35062132 emerged. Beside this, there has been no further demonstration of the functionality of the OXTR variants especially there does not exist any for the regulatory units. To address this gap in the literature, we tested the functionality of the promoter flanking single nucleotide polymorphism (SNP) rs2268498, which has proven an interesting candidate for predicting social behavior in recent association studies. Results of genetic expression analyses in human hippocampal tissue showed a twofold difference in messenger RNA transcription, dependent on the presence or absence of the C-allele. This finding was corroborated by cloning, i.e., in vitro reporter gene expression analysis after transfection of OXTR promoter plasmids into HEK-293 cells. Our results underline the importance of OXTR rs2268498 for genetic research in social behavior and ASD.
Interactive decision-making in people with schizotypal traits: a game theory approach
Wout, Mascha van ’t; Sanfey, Alan G.
2010-01-01
Studies that have investigated whether deficits in social cognition observed in schizophrenia are also present in schizotypal individuals have largely been inconclusive, and none of these studies have examined social interactive behavior. Here, we investigated interactive decision-making behavior in individuals differing in the amount of schizotypal symptoms using tasks derived from Game Theory. In total 1691 undergraduate students were screened with the Schizotypal Personality Questionnaire-Brief version. We selected 69 people distributed across the full schizotypal continuum to participate in Ultimatum and Dictator Games in which they played against human and non-human, computer partners. The results showed that higher levels of schizotypal symptoms, particularly positive and disorganized schizotypy, were related to proposing higher offers to all partners. Additionally, the amount of interpersonal schizotypal symptoms was associated with an increased acceptance rate of very unfair offers from human partners, possibly reflecting a blunted emotional response to such offers. We conclude that positive and disorganized schizotypal symptoms are associated with less adequate bargaining behavior, similar to what has been recently observed in patients with schizophrenia. The observed similarities on Ultimatum Game behavior between patients with schizophrenia and individuals with more schizotypal symptoms contribute to the growing evidence that social cognitive deficits may represent a marker of vulnerability to schizophrenia. PMID:20538347
Otto, A Ross; Gershman, Samuel J; Markman, Arthur B; Daw, Nathaniel D
2013-05-01
A number of accounts of human and animal behavior posit the operation of parallel and competing valuation systems in the control of choice behavior. In these accounts, a flexible but computationally expensive model-based reinforcement-learning system has been contrasted with a less flexible but more efficient model-free reinforcement-learning system. The factors governing which system controls behavior-and under what circumstances-are still unclear. Following the hypothesis that model-based reinforcement learning requires cognitive resources, we demonstrated that having human decision makers perform a demanding secondary task engenders increased reliance on a model-free reinforcement-learning strategy. Further, we showed that, across trials, people negotiate the trade-off between the two systems dynamically as a function of concurrent executive-function demands, and people's choice latencies reflect the computational expenses of the strategy they employ. These results demonstrate that competition between multiple learning systems can be controlled on a trial-by-trial basis by modulating the availability of cognitive resources.
On aerobic exercise and behavioral and neural plasticity.
Swain, Rodney A; Berggren, Kiersten L; Kerr, Abigail L; Patel, Ami; Peplinski, Caitlin; Sikorski, Angela M
2012-11-29
Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging.
On Aerobic Exercise and Behavioral and Neural Plasticity
Swain, Rodney A.; Berggren, Kiersten L.; Kerr, Abigail L.; Patel, Ami; Peplinski, Caitlin; Sikorski, Angela M.
2012-01-01
Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging. PMID:24961267
Effects of male sex hormones on gender identity, sexual behavior, and cognitive function.
Zhu, Yuan-shan; Cai, Li-qun
2006-04-01
Androgens, the male sex hormones, play an essential role in male sexual differentiation and development. However, the influence of these sex hormones extends beyond their roles in sexual differentiation and development. In many animal species, sex hormones have been shown to be essential for sexual differentiation of the brain during development and for maintaining sexually dimorphic behavior throughout life. The principals of sex determination in humans have been demonstrated to be similar to other mammals. However, the hormonal influence on sexual dimorphic differences in the nervous system in humans, sex differences in behaviors, and its correlations with those of other mammals is still an emerging field. In this review, the roles of androgens in gender and cognitive function are discussed with the emphasis on subjects with androgen action defects including complete androgen insensitivity due to androgen receptor mutations and 5alpha-reductase-2 deficiency syndromes due to 5alpha-reductase-2 gene mutations. The issue of the complex interaction of nature versus nurture is addressed.
Paxton, Alexandra; Griffiths, Thomas L
2017-10-01
Today, people generate and store more data than ever before as they interact with both real and virtual environments. These digital traces of behavior and cognition offer cognitive scientists and psychologists an unprecedented opportunity to test theories outside the laboratory. Despite general excitement about big data and naturally occurring datasets among researchers, three "gaps" stand in the way of their wider adoption in theory-driven research: the imagination gap, the skills gap, and the culture gap. We outline an approach to bridging these three gaps while respecting our responsibilities to the public as participants in and consumers of the resulting research. To that end, we introduce Data on the Mind ( http://www.dataonthemind.org ), a community-focused initiative aimed at meeting the unprecedented challenges and opportunities of theory-driven research with big data and naturally occurring datasets. We argue that big data and naturally occurring datasets are most powerfully used to supplement-not supplant-traditional experimental paradigms in order to understand human behavior and cognition, and we highlight emerging ethical issues related to the collection, sharing, and use of these powerful datasets.
Pase, Matthew P; Kean, James; Sarris, Jerome; Neale, Chris; Scholey, Andrew B; Stough, Con
2012-07-01
Traditional knowledge suggests that Bacopa monnieri enhances cognitive performance. Such traditional beliefs have now been scientifically tested through a handful of randomized, controlled human clinical trials. The current systematic review aimed to examine the scientific evidence as to whether Bacopa can enhance cognitive performance in humans. A systematic review of randomized controlled trials is presented. Multiple databases were systematically searched by multiple authors. Relevant trials were objectively assessed for methodological quality. The subjects studied were adult humans without dementia or significant cognitive impairment. B. monnieri, including Bacopa extracts, were administered over long-term supplementation periods. Any validated cognitive test, whether a primary or secondary outcome. Six (6) studies met the final inclusion criteria and were included in review. Trials were all conducted over 12 weeks. Across trials, three different Bacopa extracts were used at dosages of 300-450 mg extract per day. All reviewed trials examined the effects of Bacopa on memory, while other cognitive domains were less well studied. There were no cognitive tests in the areas of auditory perceptual abilities or idea production and only a paucity of research in the domains of reasoning, number facility, and language behavior. Across studies, Bacopa improved performance on 9 of 17 tests in the domain of memory free recall. There was little evidence of enhancement in any other cognitive domains. There is some evidence to suggest that Bacopa improves memory free recall with evidence for enhancement in other cognitive abilities currently lacking perhaps due to inconsistent measures employed by studies across these cognitive domains. Research into the nootropic effects of Bacopa is in its infancy, with research still yet to investigate the effects of Bacopa across all human cognitive abilities. Similarly, future research should examine the nootropic effects of Bacopa at varied dosages and across different extracts.
Bridging the Gap between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory
Eichenbaum, Howard; Fortin, Norbert J
2005-01-01
The notion that non-human animals are capable of episodic memory is highly controversial. Here, we review recent behavioral work from our laboratory showing that the fundamental features of episodic memory can be observed in rats and that, as in humans, this capacity relies on the hippocampus. We also discuss electrophysiological evidence, from our laboratory and that of others, pointing to associative and sequential coding in hippocampal cells as potential neural mechanisms underlying episodic memory. PMID:16596982
Human Behavioral Representations with Realistic Personality and Cultural Characteristics
2005-06-01
personality factors as customizations to an underlying formally rational symbolic architecture, PAC uses dimensions of personality, emotion , and culture as...foundations for the cognitive process. The structure of PAC allows it to function as a personality/ emotional layer that can be used stand-alone or...integrated with existing constrained- rationality cognitive architectures. In addition, a set of tools was developed to support the authoring
Stutz, Aaron J.
2014-01-01
Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323
Stutz, Aaron J
2014-01-01
Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.
2017-01-01
Abstract The mammalian thalamocortical system generates intrinsic activity reflecting different states of excitability, arising from changes in the membrane potentials of underlying neuronal networks. Fluctuations between these states occur spontaneously, regularly, and frequently throughout awake periods and influence stimulus encoding, information processing, and neuronal and behavioral responses. Changes of pupil size have recently been identified as a reliable marker of underlying neuronal membrane potential and thus can encode associated network state changes in rodent cortex. This suggests that pupillometry, a ubiquitous measure of pupil dilation in cognitive neuroscience, could be used as an index for network state fluctuations also for human brain signals. Considering this variable may explain task-independent variance in neuronal and behavioral signals that were previously disregarded as noise. PMID:29379876
Amygdala lesions do not compromise the cortical network for false-belief reasoning.
Spunt, Robert P; Elison, Jed T; Dufour, Nicholas; Hurlemann, René; Saxe, Rebecca; Adolphs, Ralph
2015-04-14
The amygdala plays an integral role in human social cognition and behavior, with clear links to emotion recognition, trust judgments, anthropomorphization, and psychiatric disorders ranging from social phobia to autism. A central feature of human social cognition is a theory-of-mind (ToM) that enables the representation other people's mental states as distinct from one's own. Numerous neuroimaging studies of the best studied use of ToM--false-belief reasoning--suggest that it relies on a specific cortical network; moreover, the amygdala is structurally and functionally connected with many components of this cortical network. It remains unknown whether the cortical implementation of any form of ToM depends on amygdala function. Here we investigated this question directly by conducting functional MRI on two patients with rare bilateral amygdala lesions while they performed a neuroimaging protocol standardized for measuring cortical activity associated with false-belief reasoning. We compared patient responses with those of two healthy comparison groups that included 480 adults. Based on both univariate and multivariate comparisons, neither patient showed any evidence of atypical cortical activity or any evidence of atypical behavioral performance; moreover, this pattern of typical cortical and behavioral response was replicated for both patients in a follow-up session. These findings argue that the amygdala is not necessary for the cortical implementation of ToM in adulthood and suggest a reevaluation of the role of the amygdala and its cortical interactions in human social cognition.
Amygdala lesions do not compromise the cortical network for false-belief reasoning
Elison, Jed T.; Dufour, Nicholas; Hurlemann, René; Saxe, Rebecca; Adolphs, Ralph
2015-01-01
The amygdala plays an integral role in human social cognition and behavior, with clear links to emotion recognition, trust judgments, anthropomorphization, and psychiatric disorders ranging from social phobia to autism. A central feature of human social cognition is a theory-of-mind (ToM) that enables the representation other people's mental states as distinct from one's own. Numerous neuroimaging studies of the best studied use of ToM—false-belief reasoning—suggest that it relies on a specific cortical network; moreover, the amygdala is structurally and functionally connected with many components of this cortical network. It remains unknown whether the cortical implementation of any form of ToM depends on amygdala function. Here we investigated this question directly by conducting functional MRI on two patients with rare bilateral amygdala lesions while they performed a neuroimaging protocol standardized for measuring cortical activity associated with false-belief reasoning. We compared patient responses with those of two healthy comparison groups that included 480 adults. Based on both univariate and multivariate comparisons, neither patient showed any evidence of atypical cortical activity or any evidence of atypical behavioral performance; moreover, this pattern of typical cortical and behavioral response was replicated for both patients in a follow-up session. These findings argue that the amygdala is not necessary for the cortical implementation of ToM in adulthood and suggest a reevaluation of the role of the amygdala and its cortical interactions in human social cognition. PMID:25825732
Executive decision-making in the domestic sheep.
Morton, A Jennifer; Avanzo, Laura
2011-01-31
Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the 'gold-standard' laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform 'executive' cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals.
Executive Decision-Making in the Domestic Sheep
Morton, A. Jennifer; Avanzo, Laura
2011-01-01
Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the ‘gold-standard’ laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform ‘executive’ cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals. PMID:21305061
Fuzzy Cognitive and Social Negotiation Agent Strategy for Computational Collective Intelligence
NASA Astrophysics Data System (ADS)
Chohra, Amine; Madani, Kurosh; Kanzari, Dalel
Finding the adequate (win-win solutions for both parties) negotiation strategy with incomplete information for autonomous agents, even in one-to-one negotiation, is a complex problem. Elsewhere, negotiation behaviors, in which the characters such as conciliatory or aggressive define a 'psychological' aspect of the negotiator personality, play an important role. The aim of this paper is to develop a fuzzy cognitive and social negotiation strategy for autonomous agents with incomplete information, where the characters conciliatory, neutral, or aggressive, are suggested to be integrated in negotiation behaviors (inspired from research works aiming to analyze human behavior and those on social negotiation psychology). For this purpose, first, one-to-one bargaining process, in which a buyer agent and a seller agent negotiate over single issue (price), is developed for a time-dependent strategy (based on time-dependent behaviors of Faratin et al.) and for a fuzzy cognitive and social strategy. Second, experimental environments and measures, allowing a set of experiments, carried out for different negotiation deadlines of buyer and seller agents, are detailed. Third, experimental results for both time-dependent and fuzzy cognitive and social strategies are presented, analyzed, and compared for different deadlines of agents. The suggested fuzzy cognitive and social strategy allows agents to improve the negotiation process, with regard to the time-dependent one, in terms of agent utilities, round number to reach an agreement, and percentage of agreements.
Gu, Xiaosi; Kirk, Ulrich; Lohrenz, Terry M; Montague, P Read
2014-08-01
Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes. Copyright © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Cashdan, Elizabeth; Gaulin, Steven J C
2016-03-01
Males in many non-monogamous species have larger ranges than females do, a sex difference that has been well documented for decades and seems to be an aspect of male mating competition. Until recently, parallel data for humans have been mostly anecdotal and qualitative, but this is now changing as human behavioral ecologists turn their attention to matters of individual mobility. Sex differences in spatial cognition were among the first accepted psychological sex differences and, like differences in ranging behavior, are documented for a growing set of species. This special issue is dedicated to exploring the possible adaptive links between these cognitive and ranging traits. Multiple hypotheses, at various levels of analysis, are considered. At the functional (ultimate) level, a mating-competition hypothesis suggests that range expansion may augment mating opportunities, and a fertility-and-parental-care hypothesis suggests that range contraction may facilitate offspring provisioning. At a more mechanistic (proximate) level, differences in cue availability may support or inhibit particular sex-specific navigation strategies, and spatial anxiety may usefully inhibit travel that would not justify its costs. Studies in four different cultures-Twe, Tsimane, Yucatec Maya, and Faroese-as well as an experimental study using virtual reality tools are the venue for testing these hypotheses. Our hope is to stimulate more research on the evolutionary and developmental processes responsible for this suite of linked behavioral and cognitive traits.
Lonstein, Joseph S.; Lévy, Frédéric; Fleming, Alison S.
2015-01-01
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal “models” do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing the behavior. PMID:26122301
Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment
NASA Technical Reports Server (NTRS)
Frische, F.; Osterloh, J.-P.; Luedtke, A.
2011-01-01
This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.
The mirror mechanism and mu rhythm in social development.
Vanderwert, Ross E; Fox, Nathan A; Ferrari, Pier F
2013-04-12
Since the discovery of mirror neurons (MNs) in the monkey there has been a renewed interest in motor theories of cognitive and social development in humans by providing a potential neural mechanism underlying an action observation/execution matching system. It has been proposed that this system plays a fundamental role in the development of complex social and cognitive behaviors such as imitation and action recognition. In this review we discuss what is known about MNs from the work using single-cell recordings in the adult monkey, the evidence for the putative MN system in humans, and the extent to which research using electroencephalography (EEG) methods has contributed to our understanding of the development of these motor systems and their role in the social behaviors postulated by the MN hypothesis. We conclude with directions for future research that will improve our understanding of the putative human MN system and the functional role of MNs in social development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Neurobehavioral Model of Flexible Spatial Language Behaviors
Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schöner, Gregor
2012-01-01
We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that the system can extract spatial relations from visual scenes, select items based on relational spatial descriptions, and perform reference object selection in a single unified architecture. We further show that the performance of the system is consistent with behavioral data in humans by simulating results from 2 independent empirical studies, 1 spatial term rating task and 1 study of reference object selection behavior. The architecture we present thereby achieves a high degree of task flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural grounding for complex behavioral and cognitive processes. PMID:21517224
Cognitive Effects of Language on Human Navigation
ERIC Educational Resources Information Center
Shusterman, Anna; Ah Lee, Sang; Spelke, Elizabeth S.
2011-01-01
Language has been linked to spatial representation and behavior in humans, but the nature of this effect is debated. Here, we test whether simple verbal expressions improve 4-year-old children's performance in a disoriented search task in a small rectangular room with a single red landmark wall. Disoriented children's landmark-guided search for a…
Similarity increases altruistic punishment in humans
Mussweiler, Thomas; Ockenfels, Axel
2013-01-01
Humans are attracted to similar others. As a consequence, social networks are homogeneous in sociodemographic, intrapersonal, and other characteristics—a principle called homophily. Despite abundant evidence showing the importance of interpersonal similarity and homophily for human relationships, their behavioral correlates and cognitive foundations are poorly understood. Here, we show that perceived similarity substantially increases altruistic punishment, a key mechanism underlying human cooperation. We induced (dis)similarity perception by manipulating basic cognitive mechanisms in an economic cooperation game that included a punishment phase. We found that similarity-focused participants were more willing to punish others’ uncooperative behavior. This influence of similarity is not explained by group identity, which has the opposite effect on altruistic punishment. Our findings demonstrate that pure similarity promotes reciprocity in ways known to encourage cooperation. At the same time, the increased willingness to punish norm violations among similarity-focused participants provides a rationale for why similar people are more likely to build stable social relationships. Finally, our findings show that altruistic punishment is differentially involved in encouraging cooperation under pure similarity vs. in-group conditions. PMID:24218611
Orca Behavior and Subsequent Aggression Associated with Oceanarium Confinement
Anderson, Robert; Waayers, Robyn; Knight, Andrew
2016-01-01
Simple Summary Orca behaviors interacting with humans within apparent friendship bonds are reviewed, and some impediments to the human evaluation of delphinid intelligence are discussed. The subsequent involvement of these orcas and their offspring in aggressive incidents with humans is also documented and examined. This is particularly relevant given that the highest recorded rates of aggressive incidents have occurred among orcas who had previously established unstructured human friendship bonds prior to their inclusion within oceanaria performances. It is concluded that the confinement of orcas within aquaria, and their use in entertainment programs, is morally indefensible, given their high intelligence, complex behaviors, and the apparent adverse effects on orcas of such confinement and use. Abstract Based on neuroanatomical indices such as brain size and encephalization quotient, orcas are among the most intelligent animals on Earth. They display a range of complex behaviors indicative of social intelligence, but these are difficult to study in the open ocean where protective laws may apply, or in captivity, where access is constrained for commercial and safety reasons. From 1979 to 1980, however, we were able to interact with juvenile orcas in an unstructured way at San Diego’s SeaWorld facility. We observed in the animals what appeared to be pranks, tests of trust, limited use of tactical deception, emotional self-control, and empathetic behaviors. Our observations were consistent with those of a former Seaworld trainer, and provide important insights into orca cognition, communication, and social intelligence. However, after being trained as performers within Seaworld’s commercial entertainment program, a number of orcas began to exhibit aggressive behaviors. The orcas who previously established apparent friendships with humans were most affected, although significant aggression also occurred in some of their descendants, and among the orcas they lived with. Such oceanaria confinement and commercial use can no longer be considered ethically defensible, given the current understanding of orcas’ advanced cognitive, social, and communicative capacities, and of their behavioral needs. PMID:27548232
Understanding Minds in Real-World Environments: Toward a Mobile Cognition Approach.
Ladouce, Simon; Donaldson, David I; Dudchenko, Paul A; Ietswaart, Magdalena
2016-01-01
There is a growing body of evidence that important aspects of human cognition have been marginalized, or overlooked, by traditional cognitive science. In particular, the use of laboratory-based experiments in which stimuli are artificial, and response options are fixed, inevitably results in findings that are less ecologically valid in relation to real-world behavior. In the present review we highlight the opportunities provided by a range of new mobile technologies that allow traditionally lab-bound measurements to now be collected during natural interactions with the world. We begin by outlining the theoretical support that mobile approaches receive from the development of embodied accounts of cognition, and we review the widening evidence that illustrates the importance of examining cognitive processes in their context. As we acknowledge, in practice, the development of mobile approaches brings with it fresh challenges, and will undoubtedly require innovation in paradigm design and analysis. If successful, however, the mobile cognition approach will offer novel insights in a range of areas, including understanding the cognitive processes underlying navigation through space and the role of attention during natural behavior. We argue that the development of real-world mobile cognition offers both increased ecological validity, and the opportunity to examine the interactions between perception, cognition and action-rather than examining each in isolation.
Understanding Minds in Real-World Environments: Toward a Mobile Cognition Approach
Ladouce, Simon; Donaldson, David I.; Dudchenko, Paul A.; Ietswaart, Magdalena
2017-01-01
There is a growing body of evidence that important aspects of human cognition have been marginalized, or overlooked, by traditional cognitive science. In particular, the use of laboratory-based experiments in which stimuli are artificial, and response options are fixed, inevitably results in findings that are less ecologically valid in relation to real-world behavior. In the present review we highlight the opportunities provided by a range of new mobile technologies that allow traditionally lab-bound measurements to now be collected during natural interactions with the world. We begin by outlining the theoretical support that mobile approaches receive from the development of embodied accounts of cognition, and we review the widening evidence that illustrates the importance of examining cognitive processes in their context. As we acknowledge, in practice, the development of mobile approaches brings with it fresh challenges, and will undoubtedly require innovation in paradigm design and analysis. If successful, however, the mobile cognition approach will offer novel insights in a range of areas, including understanding the cognitive processes underlying navigation through space and the role of attention during natural behavior. We argue that the development of real-world mobile cognition offers both increased ecological validity, and the opportunity to examine the interactions between perception, cognition and action—rather than examining each in isolation. PMID:28127283
Hamidovic, Ajna; Kang, Un Jung; de Wit, Harriet
2008-02-01
The neurotransmitter dopamine is integrally involved in the rewarding effects of drugs, and it has also been thought to mediate impulsive behaviors in animal models. Most of the studies of drug effects on impulsive behaviors in humans have involved drugs with complex actions on different transmitter systems and different receptor subtypes. The present study was designed to characterize the effect of single doses of pramipexole, a D2/D3 agonist, on measures of cognitive and impulsive behavior, as well as on mood in healthy volunteers. Healthy men and women (N = 10) received placebo and 2 doses of pramipexole, 0.25 and 0.50 mg, in a within-subject, double-blinded study. Outcome measures included changes in cognitive performance, assessed by the Automated Neuropsychological Assessment Metrics, several behavioral measures related to impulsive behavior, including the Balloon Analogue Risk Task, Delay Discounting Task, Go/No-Go Task, Card Perseveration Task, and subjective ratings of mood assessed by Addiction Research Center Inventory, Profile of Mood States, and Drug Effects Questionnaire. Pramipexole decreased positive ratings of mood (euphoria, intellectual efficiency, and energy) and increased both subjectively reported sedation and behavioral sedation indicated by impaired cognitive performance on several measures of the Automated Neuropsychological Assessment Metrics. Single low to medium doses of this drug did not produce a decrease in impulsive responding on behavioral measures included in this study. The sedative-like effects observed in this study may reflect presynaptic actions of the drug. Higher doses with postsynaptic actions may be needed to produce either behavioral or subjective stimulant-like effects.
Does human cognition allow Human Factors (HF) certification of advanced aircrew systems?
NASA Technical Reports Server (NTRS)
Macleod, Iain S.; Taylor, Robert M.
1994-01-01
This paper has examined the requirements of HF specification and certification within advanced or complex aircrew systems. It suggests reasons for current inadequacies in the use of HF in the design process, giving some examples in support, and suggesting an avenue towards the improvement of the HF certification process. The importance of human cognition to the operation and performance of advanced aircrew systems has been stressed. Many of the shortfalls of advanced aircrew systems must be attributed to over automated designs that show little consideration on either the mental limits or the cognitive capabilities of the human system component. Traditional approaches to system design and HF certification are set within an over physicalistic foundation. Also, traditionally it was assumed that physicalistic system functions could be attributed to either the human or the machine on a one to one basis. Moreover, any problems associated with the parallel needs, or promoting human understanding alongside system operation and direction, were generally equated in reality by the natural flexibility and adaptability of human skills. The consideration of the human component of a complex system is seen as being primarily based on manifestations of human behavior to the almost total exclusion of any appreciation of unobservable human mental and cognitive processes. The argument of this paper is that the considered functionality of any complex human-machine system must contain functions that are purely human and purely cognitive. Human-machine system reliability ultimately depends on human reliability and dependability and, therefore, on the form and frequency of cognitive processes that have to be conducted to support system performance. The greater the demand placed by an advanced aircraft system on the human component's basic knowledge processes or cognition, rather than on skill, the more insiduous the effects the human may have on that system. This paper discusses one example of an attempt to devise an improved method of specificaiton and certification with relation to the advanced aircrew system, that of the RN Merlin helicopter. The method is realized to have limitations in practice, these mainly associated with the late production of the system specification in relation to the system development process. The need for a careful appreciation of the capabilities and support needs of human cognition within the design process of a complex man machine system has been argued, especially with relation to the concept of system functionality. Unlike the physicalistic Fitts list, a new classification of system functionality is proposed, namely: (1) equipment - system equipment related; (2) cognitive - human cognition related; and (3) associated - necessary combinatin of equipment and cognitive. This paper has not proposed a method for a fuller consideration of cognition within systems design, but has suggested the need for such a method and indicated an avenue towards its development. Finally, the HF certification of advanced aircrew systems is seen as only being possible in a qualified sense until the important functions of human cognition are considered within the system design process. (This paper contains the opinions of its authors and does not necessarily refledt the standpoint of their respective organizations).
Human performance in the modern cockpit
NASA Technical Reports Server (NTRS)
Dismukes, R. K.; Cohen, M. M.
1992-01-01
This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
Proactive learning for artificial cognitive systems
NASA Astrophysics Data System (ADS)
Lee, Soo-Young
2010-04-01
The Artificial Cognitive Systems (ACS) will be developed for human-like functions such as vision, auditory, inference, and behavior. Especially, computational models and artificial HW/SW systems will be devised for Proactive Learning (PL) and Self-Identity (SI). The PL model provides bilateral interactions between robot and unknown environment (people, other robots, cyberspace). For the situation awareness in unknown environment it is required to receive audiovisual signals and to accumulate knowledge. If the knowledge is not enough, the PL should improve by itself though internet and others. For human-oriented decision making it is also required for the robot to have self-identify and emotion. Finally, the developed models and system will be mounted on a robot for the human-robot co-existing society. The developed ACS will be tested against the new Turing Test for the situation awareness. The Test problems will consist of several video clips, and the performance of the ACSs will be compared against those of human with several levels of cognitive ability.
How do social norms influence prosocial development?
House, Bailey R
2018-04-01
Humans are both highly prosocial and extremely sensitive to social norms, and some theories suggest that norms are necessary to account for uniquely human forms of prosocial behavior and cooperation. Understanding how norms influence prosocial behavior is thus essential if we are to describe the psychology and development of prosocial behavior. In this article I review recent research from across the social sciences that provides (1) a theoretical model of how norms influence prosocial behavior, (2) empirical support for the model based on studies with adults and children, and (3) predictions about the psychological mechanisms through which norms shape prosocial behavior. I conclude by discussing the need for future studies into how prosocial behavior develops through emerging interactions between culturally varying norms, social cognition, emotions, and potentially genes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cognitive Functioning in Space Exploration Missions: A Human Requirement
NASA Technical Reports Server (NTRS)
Fiedler, Edan; Woolford, Barbara
2005-01-01
Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.
Co-development of manner and path concepts in language, action, and eye-gaze behavior.
Lohan, Katrin S; Griffiths, Sascha S; Sciutti, Alessandra; Partmann, Tim C; Rohlfing, Katharina J
2014-07-01
In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human-robot interaction. Copyright © 2014 Cognitive Science Society, Inc.
Geary, David C
2005-01-01
The evolved function of brain, cognitive, affective, conscious-psychological, and behavioral systems is to enable animals to attempt to gain control of the social (e.g., mates), biological (e.g., prey), and physical (e.g., nesting spots) resources that have tended to covary with survival and reproductive outcomes during the species' evolutionary history. These resources generate information patterns that range from invariant to variant. Invariant information is consistent across generations and within lifetimes (e.g., the prototypical shape of a human face) and is associated with modular brain and cognitive systems that coalesce around the domains of folk psychology, folk biology, and folk physics. The processing of information in these domains is implicit and results in automatic bottom-up behavioral responses. Variant information varies across generations and within lifetimes (e.g., as in social dynamics) and is associated with plastic brain and cognitive systems and explicit, consciously driven top-down behavioral responses. The fundamentals of this motivation-to-control model are outlined and links are made to Henriques' (2004) Tree of Knowledge System and Behavioral Investment Theory.
Pruetz, Jill D; LaDuke, Thomas C
2010-04-01
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.
Fischer, J; Hammerschmidt, K
2011-01-01
Comparative analyses used to reconstruct the evolution of traits associated with the human language faculty, including its socio-cognitive underpinnings, highlight the importance of evolutionary constraints limiting vocal learning in non-human primates. After a brief overview of this field of research and the neural basis of primate vocalizations, we review studies that have addressed the genetic basis of usage and structure of ultrasonic communication in mice, with a focus on the gene FOXP2 involved in specific language impairments and neuroligin genes (NL-3 and NL-4) involved in autism spectrum disorders. Knockout of FoxP2 leads to reduced vocal behavior and eventually premature death. Introducing the human variant of FoxP2 protein into mice, in contrast, results in shifts in frequency and modulation of pup ultrasonic vocalizations. Knockout of NL-3 and NL-4 in mice diminishes social behavior and vocalizations. Although such studies may provide insights into the molecular and neural basis of social and communicative behavior, the structure of mouse vocalizations is largely innate, limiting the suitability of the mouse model to study human speech, a learned mode of production. Although knockout or replacement of single genes has perceptible effects on behavior, these genes are part of larger networks whose functions remain poorly understood. In humans, for instance, deficiencies in NL-4 can lead to a broad spectrum of disorders, suggesting that further factors (experiential and/or genetic) contribute to the variation in clinical symptoms. The precise nature as well as the interaction of these factors is yet to be determined. PMID:20579107
Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach.
Benítez-Burraco, Antonio; Di Pietro, Lorena; Barba, Marta; Lattanzi, Wanda
2017-01-01
Schizophrenia (SZ) is a pervasive neurodevelopmental disorder that entails social and cognitive deficits, including marked language problems. Its complex multifactorial etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ incidence has always been high and quite stable in human populations, across time and regardless of cultural implications, for unclear reasons. It has been hypothesized that SZ pathophysiology may involve the biological components that changed during the recent human evolutionary history, and led to our distinctive mode of cognition, which includes language skills. In this paper we explore this hypothesis, focusing on the self-domestication of the human species. This has been claimed to account for many human-specific distinctive traits, including aspects of our behavior and cognition, and to favor the emergence of complex languages through cultural evolution. The "domestication syndrome" in mammals comprises the constellation of traits exhibited by domesticated strains, seemingly resulting from the hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more marked domesticated traits at the morphological, physiological, and behavioral levels. We also show that genes involved in domestication and neural crest development and function comprise nearly 20% of SZ candidates, most of which exhibit altered expression profiles in the brain of SZ patients, specifically in areas involved in language processing. Based on these observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the human faculty of language, resulting, at least in part, from changes in genes important for the domestication syndrome and primarily involving the neural crest. © 2017 S. Karger AG, Basel.
Emergence of modern human behavior: Middle Stone Age engravings from South Africa.
Henshilwood, Christopher S; d'Errico, Francesco; Yates, Royden; Jacobs, Zenobia; Tribolo, Chantal; Duller, Geoff A T; Mercier, Norbert; Sealy, Judith C; Valladas, Helene; Watts, Ian; Wintle, Ann G
2002-02-15
In the Eurasian Upper Paleolithic after about 35,000 years ago, abstract or depictional images provide evidence for cognitive abilities considered integral to modern human behavior. Here we report on two abstract representations engraved on pieces of red ochre recovered from the Middle Stone Age layers at Blombos Cave in South Africa. A mean date of 77,000 years was obtained for the layers containing the engraved ochres by thermoluminescence dating of burnt lithics, and the stratigraphic integrity was confirmed by an optically stimulated luminescence age of 70,000 years on an overlying dune. These engravings support the emergence of modern human behavior in Africa at least 35,000 years before the start of the Upper Paleolithic.
The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans.
Barks, Sarah K; Parr, Lisa A; Rilling, James K
2015-02-01
The human default mode network (DMN), comprising medial prefrontal cortex, precuneus, posterior cingulate cortex, lateral parietal cortex, and medial temporal cortex, is highly metabolically active at rest but deactivates during most focused cognitive tasks. The DMN and social cognitive networks overlap significantly in humans. We previously demonstrated that chimpanzees (Pan troglodytes) show highest resting metabolic brain activity in the cortical midline areas of the human DMN. Human DMN is defined by task-induced deactivations, not absolute resting metabolic levels; ergo, resting activity is insufficient to define a DMN in chimpanzees. Here, we assessed the chimpanzee DMN's deactivations relative to rest during cognitive tasks and the effect of social content on these areas' activity. Chimpanzees performed a match-to-sample task with conspecific behavioral stimuli of varying sociality. Using [(18)F]-FDG PET, brain activity during these tasks was compared with activity during a nonsocial task and at rest. Cortical midline areas in chimpanzees deactivated in these tasks relative to rest, suggesting a chimpanzee DMN anatomically and functionally similar to humans. Furthermore, when chimpanzees make social discriminations, these same areas (particularly precuneus) are highly active relative to nonsocial tasks, suggesting that, as in humans, the chimpanzee DMN may play a role in social cognition. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Synthesizing animal and human behavior research via neural network learning theory.
Tryon, W W
1995-12-01
Animal and human research have been "divorced" since approximately 1968. Several recent articles have tried to persuade behavior therapists of the merits of animal research. Three reasons are given concerning why disinterest in animal research is so widespread: (1) functional explanations are given for animals, and cognitive explanations are given for humans; (2) serial symbol manipulating models are used to explain human behavior; and (3) human learning was assumed, thereby removing it as something to be explained. Brain-inspired connectionist neural networks, collectively referred to as neural network learning theory (NNLT), are briefly described, and a spectrum of their accomplishments from simple conditioning through speech is outlined. Five benefits that behavior therapists can derive from NNLT are described. They include (a) enhanced professional identity derived from a comprehensive learning theory, (b) improved interdisciplinary collaboration both clinically and scientifically, (c) renewed perceived relevance of animal research, (d) access to plausible proximal causal mechanisms capable of explaining operant conditioning, and (e) an inherently developmental perspective.
Reconsidering the evolution of brain, cognition, and behavior in birds and mammals
Willemet, Romain
2013-01-01
Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behavior of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise statistical methods. The role of allometry in determining brain variables should be revised. In particular, bird and mammalian brains appear to have evolved in response to a variety of selective pressures influencing both brain size and composition. “Brain” and “cognition” are indeed meta-variables, made up of the variables that are ecologically relevant and evolutionarily selected. External indicators of species differences in cognition and behavior are limited by the complexity of these differences. Indeed, behavioral differences between species and individuals are caused by cognitive and affective components. Although intra-species variability forms the basis of species evolution, some of the mechanisms underlying individual differences in brain and behavior appear to differ from those between species. While many issues have persisted over the years because of a lack of appropriate data or methods to test them; several fallacies, particularly those related to the human brain, reflect scientists' preconceptions. The theoretical framework on the evolution of brain, cognition, and behavior in birds and mammals should be reconsidered with these biases in mind. PMID:23847570
Formal Assurance for Cognitive Architecture Based Autonomous Agent
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Eskridge, Thomas; Neogi, Natasha; Carvalho, Marco
2017-01-01
Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.
Behavioral Health Program Element
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.
2006-01-01
The project goal is to develop behavioral health prevention and maintenance system for continued crew health, safety, and performance for exploration missions. The basic scope includes a) Operationally-relevant research related to clinical cognitive and behavioral health of crewmembers; b) Ground-based studies using analog environments (Antarctic, NEEMO, simulations, and other testbeds; c) ISS studies (ISSMP) focusing on operational issues related to behavioral health outcomes and standards; d) Technology development activities for monitoring and diagnostic tools; and e) Cross-disciplinary research (e.g., human factors and habitability research, skeletal muscle, radiation).
Molecular imaging of the dopaminergic system and its association with human cognitive function.
Cropley, Vanessa L; Fujita, Masahiro; Innis, Robert B; Nathan, Pradeep J
2006-05-15
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) has recently been used to examine dopamine (DA) function and its relationship with cognition in human subjects. This article will review PET and SPECT studies that have explored the relationship between cognitive processes and components of the DA system (pre-, intra-, and postsynaptic) in healthy and patient populations such as Parkinson's disease (PD), schizophrenia, Huntington's disease, and aging. It is demonstrated that DA activity modulates a range of frontal executive-type cognitive processes such as working memory, attentional functioning, and sequential organization, and alterations of DA within the fronto-striato-thalamic circuits might contribute to the cognitive impairments observed in PD, schizophrenia, and normal aging. Although associations between DA and cognitive measures need to be considered within the context of fronto-striato-thalamic circuitry, it is suggested that striatal (especially caudate) DA activity, particularly via D2 receptors, might be important for response inhibition, temporal organization of material, and motor performance, whereas cortical DA transmission via D1 receptors might be important for maintaining and representing on-going behavior.
Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert
2015-06-17
Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. Copyright © 2015 the authors 0270-6474/15/359050-14$15.00/0.
Duggan, P S; Siegel, A W; Blass, D M; Bok, H; Coyle, J T; Faden, R; Finkel, J; Gearhart, J D; Greely, H T; Hillis, A; Hoke, A; Johnson, R; Johnston, M; Kahn, J; Kerr, D; King, P; Kurtzberg, J; Liao, S M; McDonald, J W; McKhann, G; Nelson, K B; Rao, M; Regenberg, A; Smith, K; Solter, D; Song, H; Sugarman, J; Traystman, R J; Vescovi, A; Yanofski, J; Young, W; Mathews, D J H
2009-05-01
The prospect of using cell-based interventions (CBIs) to treat neurological conditions raises several important ethical and policy questions. In this target article, we focus on issues related to the unique constellation of traits that characterize CBIs targeted at the central nervous system. In particular, there is at least a theoretical prospect that these cells will alter the recipients' cognition, mood, and behavior-brain functions that are central to our concept of the self. The potential for such changes, although perhaps remote, is cause for concern and careful ethical analysis. Both to enable better informed consent in the future and as an end in itself, we argue that early human trials of CBIs for neurological conditions must monitor subjects for changes in cognition, mood, and behavior; further, we recommend concrete steps for that monitoring. Such steps will help better characterize the potential risks and benefits of CBIs as they are tested and potentially used for treatment.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-03-14
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-01-01
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700
Neural Basis of Strategic Decision Making
Lee, Daeyeol; Seo, Hyojung
2015-01-01
Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically, as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex and temporal parietal junction might be recruited for cognitive processes unique to social decision making. PMID:26688301
Brominated Flame Retardants in Breast Milk and Behavioral and Cognitive Development at 36 Months
Adgent, Margaret A.; Hoffman, Kate; Goldman, Barbara Davis; Sjödin, Andreas; Daniels, Julie L.
2013-01-01
Background Polybrominated diphenyl ethers (PBDEs) are persistent flame retardants found in the environment, in household dust, and in humans. Breast feeding is a prominent route of exposure in infancy. PBDEs adversely affect neurodevelopment in animals. Here, we estimate associations between PBDEs in breast milk and behavior and cognitive skills in children at 36 months of age. Methods We prospectively studied 304 mothers and their children. We measured PBDEs in breast milk collected at 3 months postpartum. At 36 months, we measured child behavior with the parent-rated Behavioral Assessment System for Children 2 (n = 192), and cognitive skills with the Mullen Scales of Early Learning (n = 184). We analysed data with robust regression. Results We detected BDE-28, −47, −99, −100, and −153 in >70% of milk samples. For each congener, the highest quartile of breast milk PBDE concentration, versus the lowest, was associated with more anxious behavior, after confounder adjustment. Select congeners were associated with increased withdrawal (BDE-28) and improved activity of daily living skills (BDE-153). Cognitive skills tended to be positively associated with PBDEs, especially language and fine motor skills. However, most estimates were imprecise. Conclusions Here, lactational PBDE exposure was modestly and imprecisely associated with anxiety and withdrawal, but was also associated with improved adaptive and cognitive skills. Positive factors associated with breast feeding may have mitigated some of the hypothesized adverse neurodevelopmental outcomes associated with PBDEs. Further research is needed to inform our understanding of PBDE neurotoxicity and how sources of exposure might confound neurodevelopmental studies. PMID:24313667
Cognitive Function | Science Inventory | US EPA
Because chemicals can adversely affect cognitive function in humans, considerable effort has been made to characterize their effects using animal models. Information from such models will be necessary to: evaluate whether chemicals identified as potentially neurotoxic by screening methods actually do affect cognitive function; identify and characterize the mechanisms or pathways by which effects at these targets lead to cognitive dysfunction; address issues of susceptibility and variability, which require understanding the compensations and interactions that only a whole organism can engage; and improve our understanding of the neurobiological underpinnings of cognitive function.This chapter has several purposes. First, it provides working definitions of cognitive functions, such as learning, memory and attention, in terms frequently used by behavioral toxicologists. It is important to have a common vocabulary to assess methods used in this area of research. Second, it presents an overview of some of the procedures commonly used in behavioral toxicology to assess the effects of chemicals on cognitive function in animals. It should be noted that this overview is not intended to be comprehensive or complete, but is intended to illustrate specific points by discussing examples. Finally, this chapter discusses some critical experimental and conceptual variables that are important for studies on chemical-induced cognitive dysfunction, and touches on the potential p
The thinking ape: the enigma of human consciousness.
Paulson, Steve; Chalmers, David; Kahneman, Daniel; Santos, Laurie; Schiff, Nicholas
2013-11-01
What is the origin and nature of consciousness? If consciousness is common to humans and animals alike, what are the defining traits of human consciousness? Moderated by Steve Paulson, executive producer and host of To the Best of Our Knowledge, Nobel laureate psychologist Daniel Kahneman, philosopher David Chalmers, expert in primate cognition Laurie Santos, and physician-scientist Nicholas Schiff discuss what it means to be conscious and examine the human capacities displayed in cognitive, aesthetic, and ethical behaviors, with a focus on the place and function of the mind within nature. The following is an edited transcript of the discussion that occurred October 10, 2012, 7:00-8:15 PM, at the New York Academy of Sciences in New York City. © 2013 New York Academy of Sciences.
Blair, Clancy
2006-04-01
This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.
Multimodal Education: A Model with Promise.
ERIC Educational Resources Information Center
Gerler, Edwin R., Jr.; Locke, Don C.
1980-01-01
Describes a program that uses Lazarus's factors that contribute to human growth and development as the basis for its program. The modalities covered are given the headings behavior, affect, sensation and imagery, cognition, interpersonal, and diet/physiology. (IRT)
Why We Need "Why": Addressing Implicit Motivation in Human Sexuality Education
ERIC Educational Resources Information Center
Dyson, Donald A.
2005-01-01
Within the study of human sexuality, researchers have undergone a cognitive shift toward the use of self-report measures to identify motivations for sexual behaviors. This article creates an argument for a re-orientation to including implicit or "drive" motivations within the field in order to better understand the forces that likely determine…
Variables in Human Consequation/Feedback.
1979-07-31
that make consequators effective , in each case listed according to the aspects that characterize them and their relationships with consequators ; another...category consists of the purposes and effects of consequated actions. The compilation draws variables from both cognitive research in information...This report presents salient variables in consequation or feedback processes that affect human behavior. As comprehensive a compilation has not been
Culture and art: Importance of art practice, not aesthetics, to early human culture.
Zaidel, Dahlia W
2018-01-01
Art is expressed in multiple formats in today's human cultures. Physical traces of stone tools and other archaeological landmarks suggest early nonart cultural behavior and symbolic cognition in the early Homo sapiens (HS) who emerged ~300,000-200,000 years ago in Africa. Fundamental to art expression is the neural underpinning for symbolic cognition, and material art is considered its prime example. However, prior to producing material art, HS could have exploited symbolically through art-rooted biological neural pathways for social purpose, namely, those controlling interpersonal motoric coordination and sound codependence. Aesthetics would not have been the primary purpose; arguments for group dance and rhythmical musical sounds are offered here. In addition, triggers for symbolic body painting are discussed. These cultural art formats could well have preceded material art and would have enhanced unity, inclusiveness, and cooperative behavior, contributing significantly to already existing nonart cultural practices. © 2018 Elsevier B.V. All rights reserved.
The neurophysiology of sexual arousal.
Schober, Justine M; Pfaff, Donald
2007-09-01
Our understanding of the process and initiation of sexual arousal is being enhanced by both animal and human studies, inclusive of basic science principles and research on clinical outcomes. Sexual arousal is dependent on neural (sensory and cognitive) factors, hormonal factors, genetic factors and, in the human case, the complex influences of culture and context. Sexual arousal activates the cognitive and physiologic processes that can eventually lead to sexual behavior. Sexual arousal comprises a particular subset of central nervous system arousal functions which depend on primitive, fundamental arousal mechanisms that cause generalized brain activity, but are manifest in a sociosexual context. The neurophysiology of sexual arousal is seen as a bidirectional system universal to all vertebrates. The following review includes known neural and genomic mechanisms of a hormone-dependent circuit for simple sex behavior. New information about hormone effects on causal steps related to sex hormones' nuclear receptor isoforms expressed by hypothalamic neurons continues to enrich our understanding of this neurophysiology.
Effects of Cannabis Use on Human Behavior, Including Cognition, Motivation, and Psychosis: A Review.
Volkow, Nora D; Swanson, James M; Evins, A Eden; DeLisi, Lynn E; Meier, Madeline H; Gonzalez, Raul; Bloomfield, Michael A P; Curran, H Valerie; Baler, Ruben
2016-03-01
With a political debate about the potential risks and benefits of cannabis use as a backdrop, the wave of legalization and liberalization initiatives continues to spread. Four states (Colorado, Washington, Oregon, and Alaska) and the District of Columbia have passed laws that legalized cannabis for recreational use by adults, and 23 others plus the District of Columbia now regulate cannabis use for medical purposes. These policy changes could trigger a broad range of unintended consequences, with profound and lasting implications for the health and social systems in our country. Cannabis use is emerging as one among many interacting factors that can affect brain development and mental function. To inform the political discourse with scientific evidence, the literature was reviewed to identify what is known and not known about the effects of cannabis use on human behavior, including cognition, motivation, and psychosis.
Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review.
Pu, Yi; Cheyne, Douglas O; Cornwell, Brian R; Johnson, Blake W
2018-01-01
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG "deep source imaging" of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.
Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review
Pu, Yi; Cheyne, Douglas O.; Cornwell, Brian R.; Johnson, Blake W.
2018-01-01
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations. PMID:29755314
Neural Mirroring Systems: Exploring the EEG Mu Rhythm in Human Infancy
Marshall, Peter J.; Meltzoff, Andrew N.
2010-01-01
How do human children come to understand the actions of other people? What neural systems are associated with the processing of others’ actions and how do these systems develop, starting in infancy? These questions span cognitive psychology and developmental cognitive neuroscience, and addressing them has important implications for the study of social cognition. A large amount of research has used behavioral measures to investigate infants’ imitation of the actions of other people; a related but smaller literature has begun to use neurobiological measures to study of infants’ action representation. Here we focus on experiments employing electroencephalographic (EEG) techniques for assessing mu rhythm desynchronization in infancy, and analyze how this work illuminates the links between action perception and production prior to the onset of language. PMID:21528008
Research opportunities in human behavior and performance
NASA Technical Reports Server (NTRS)
Christensen, J. M. (Editor); Talbot, J. M. (Editor)
1985-01-01
Extant information on the subject of psychological aspects of manned space flight are reviewed; NASA's psychology research program is examined; significant gaps in knowledge are identified; and suggestions are offered for future research program planning. Issues of human behavior and performance related to the United States space station, to the space shuttle program, and to both near and long term problems of a generic nature in applicable disciplines of psychology are considered. Topics covered include: (1) human performance requirements for a 90 day mission; (2) human perceptual, cognitive, and motor capabilities and limitations in space; (3) crew composition, individual competencies, crew competencies, selection criteria, and special training; (4) environmental factors influencing behavior; (5) psychosocial aspects of multiperson space crews in long term missions; (6) career determinants in NASA; (7) investigational methodology and equipment; and (8) psychological support.
Attentional Switching in Humans and Flies: Rivalry in Large and Miniature Brains
Miller, Steven Mark; Ngo, Trung Thanh; van Swinderen, Bruno
2012-01-01
Human perception, and consequently behavior, is driven by attention dynamics. In the special case of rivalry, where attention alternates between competing percepts, such dynamics can be measured and their determinants investigated. A recent study in the fruit fly, Drosophila melanogaster, now shows that the origins of attentional rivalry may be quite ancient. Furthermore, individual variation exists in the rate of attentional rivalry in both humans and flies, and in humans this is under substantial genetic influence. In the pathophysiological realm, slowing of rivalry rate is associated with the heritable psychiatric condition, bipolar disorder. Fly rivalry may therefore prove a powerful model to examine genetic and molecular influences on rivalry rate, and may even shed light on human cognitive and behavioral dysfunction. PMID:22279432
Cognitive architectures, rationality, and next-generation AI: a prolegomenon
NASA Astrophysics Data System (ADS)
Bello, Paul; Bringsjord, Selmer; Yang, Yingrui
2004-08-01
Computational models that give us insight into the behavior of individuals and the organizations to which they belong will be invaluable assets in our nation's war against terrorists, and state sponsorship of terror organizations. Reasoning and decision-making are essential ingredients in the formula for human cognition, yet the two have almost exclusively been studied in isolation from one another. While we have witnessed the emergence of strong traditions in both symbolic logic, and decision theory, we have yet to describe an acceptable interface between the two. Mathematical formulations of decision-making and reasoning have been developed extensively, but both fields make assumptions concerning human rationality that are untenable at best. True to this tradition, artificial intelligence has developed architectures for intelligent agents under these same assumptions. While these digital models of "cognition" tend to perform superbly, given their tremendous capacity for calculation, it is hardly reasonable to develop simulacra of human performance using these techniques. We will discuss some the challenges associated with the problem of developing integrated cognitive systems for use in modelling, simulation, and analysis, along with some ideas for the future.
A Qualitative Analysis of Rater Behavior on an L2 Speaking Assessment
ERIC Educational Resources Information Center
Kim, Hyun Jung
2015-01-01
Human raters are normally involved in L2 performance assessment; as a result, rater behavior has been widely investigated to reduce rater effects on test scores and to provide validity arguments. Yet raters' cognition and use of rubrics in their actual rating have rarely been explored qualitatively in L2 speaking assessments. In this study three…
ERIC Educational Resources Information Center
Masini, Douglas Eugene
Observation of human behavior increasingly suggests there is a chasm between "what you do" (leadership, skill, behavior) and "what you know" (intellect, cognition, aptitude). To examine the gap between what is done and what is known regarding the teaching of children, a project first reviewed the literature on school-life…
Weed, M R; Taffe, M A; Polis, I; Roberts, A C; Robbins, T W; Koob, G F; Bloom, F E; Gold, L H
1999-10-25
A computerized behavioral battery based upon human neuropsychological tests (CANTAB, CeNeS, Cambridge, UK) has been developed to assess cognitive behaviors of rhesus monkeys. Monkeys reliably performed multiple tasks, providing long-term assessment of changes in a number of behaviors for a given animal. The overall goal of the test battery is to characterize changes in cognitive behaviors following central nervous system (CNS) manipulations. The battery addresses memory (delayed non-matching to sample, DNMS; spatial working memory, using a self-ordered spatial search task, SOSS), attention (intra-/extra-dimensional shift, ID/ED), motivation (progressive-ratio, PR), reaction time (RT) and motor coordination (bimanual task). As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles should assess function in particular brain regions. Monkeys were tested in transport cages, and responding on a touch sensitive computer monitor was maintained by food reinforcement. Parametric manipulations of several tasks demonstrated the sensitivity of performance to increases in task difficulty. Furthermore, the factors influencing difficulty for rhesus monkeys were the same as those shown to affect human performance. Data from this study represent performance of a population of healthy normal monkeys that will be used for comparison in subsequent studies of performance following CNS manipulations such as infection with simian immunodeficiency virus (NeuroAIDS) or drug administration.
The Evolution of a Connectionist Model of Situated Human Language Understanding
NASA Astrophysics Data System (ADS)
Mayberry, Marshall R.; Crocker, Matthew W.
The Adaptive Mechanisms in Human Language Processing (ALPHA) project features both experimental and computational tracks designed to complement each other in the investigation of the cognitive mechanisms that underlie situated human utterance processing. The models developed in the computational track replicate results obtained in the experimental track and, in turn, suggest further experiments by virtue of behavior that arises as a by-product of their operation.
Neural implementation of operations used in quantum cognition.
Busemeyer, Jerome R; Fakhari, Pegah; Kvam, Peter
2017-11-01
Quantum probability theory has been successfully applied outside of physics to account for numerous findings from psychology regarding human judgement and decision making behavior. However, the researchers who have made these applications do not rely on the hypothesis that the brain is some type of quantum computer. This raises the question of how could the brain implement quantum algorithms other than quantum physical operations. This article outlines one way that a neural based system could perform the computations required by applications of quantum probability to human behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning the Task Management Space of an Aircraft Approach Model
NASA Technical Reports Server (NTRS)
Krall, Joseph; Menzies, Tim; Davies, Misty
2014-01-01
Validating models of airspace operations is a particular challenge. These models are often aimed at finding and exploring safety violations, and aim to be accurate representations of real-world behavior. However, the rules governing the behavior are quite complex: nonlinear physics, operational modes, human behavior, and stochastic environmental concerns all determine the responses of the system. In this paper, we present a study on aircraft runway approaches as modeled in Georgia Tech's Work Models that Compute (WMC) simulation. We use a new learner, Genetic-Active Learning for Search-Based Software Engineering (GALE) to discover the Pareto frontiers defined by cognitive structures. These cognitive structures organize the prioritization and assignment of tasks of each pilot during approaches. We discuss the benefits of our approach, and also discuss future work necessary to enable uncertainty quantification.
Fay, Nicolas; Walker, Bradley; Swoboda, Nik; Garrod, Simon
2018-05-01
Human cognition and behavior are dominated by symbol use. This paper examines the social learning strategies that give rise to symbolic communication. Experiment 1 contrasts an individual-level account, based on observational learning and cognitive bias, with an inter-individual account, based on social coordinative learning. Participants played a referential communication game in which they tried to communicate a range of recurring meanings to a partner by drawing, but without using their conventional language. Individual-level learning, via observation and cognitive bias, was sufficient to produce signs that became increasingly effective, efficient, and shared over games. However, breaking a referential precedent eliminated these benefits. The most effective, most efficient, and most shared signs arose when participants could directly interact with their partner, indicating that social coordinative learning is important to the creation of shared symbols. Experiment 2 investigated the contribution of two distinct aspects of social interaction: behavior alignment and concurrent partner feedback. Each played a complementary role in the creation of shared symbols: Behavior alignment primarily drove communication effectiveness, and partner feedback primarily drove the efficiency of the evolved signs. In conclusion, inter-individual social coordinative learning is important to the evolution of effective, efficient, and shared symbols. Copyright © 2018 Cognitive Science Society, Inc.
Ralevski, Elizabeth; Perry, Edward B; D'Souza, D Cyril; Bufis, Vanessa; Elander, Jacqueline; Limoncelli, Diana; Vendetti, Michael; Dean, Erica; Cooper, Thomas B; McKee, Sherry; Petrakis, Ismene
2012-05-01
There are mixed reports on nicotine's effects on alcohol-induced impairment in cognitive performance and behavior in humans. The main objective of this study was to characterize the interactive effects of acute intravenous (IV) alcohol and nicotine administration on behavior and cognition in healthy nonsmokers. Healthy subjects aged 21-44 years participated in 3 test days. On each test day, they received in a double-blind randomized manner one of three IV alcohol infusion conditions using a "clamp": placebo, targeted breathalyzer of 40 mg%, or targeted breathalyzer of 80 mg%. Alcohol infusion was delivered over 20 min and lasted for 120 min. They also received both placebo and active nicotine in a fixed order delivered intravenously. Placebo nicotine was delivered first over 10 min at the timepoint when the breath alcohol was "clamped"; active nicotine (1.0 mcg/kg/min) was delivered for 10 min, 70 min after the alcohol infusion was clamped. Subjective effects of alcohol were measured using the Biphasic Alcohol Effects Scale and the Number of Drinks Scale. Cognitive inhibition and attention were measured by the Continuous Performance Task-Identical Pairs and working memory by the Rey Auditory Verbal Learning Task (RAVLT). Nicotine significantly reversed subjective intoxication and sedation of alcohol at the low dose. Alcohol impaired performance on the RAVLT, and nicotine further impaired verbal learning and recall at both doses of alcohol. The data showed that nicotine had an effect on subjective alcohol effects but did not reverse and actually worsened alcohol-induced deficits in memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Riensche, Roderick M.; Haack, Jereme N.
“Gamification”, the application of gameplay to real-world problems, enables the development of human computation systems that support decision-making through the integration of social and machine intelligence. One of gamification’s major benefits includes the creation of a problem solving environment where the influence of cognitive and cultural biases on human judgment can be curtailed through collaborative and competitive reasoning. By reducing biases on human judgment, gamification allows human computation systems to exploit human creativity relatively unhindered by human error. Operationally, gamification uses simulation to harvest human behavioral data that provide valuable insights for the solution of real-world problems.
Dynamic systems and inferential information processing in human communication.
Grammer, Karl; Fink, Bernhard; Renninger, LeeAnn
2002-12-01
Research in human communication on an ethological basis is almost obsolete. The reasons for this are manifold and lie partially in methodological problems connected to the observation and description of behavior, as well as the nature of human behavior itself. In this chapter, we present a new, non-intrusive, technical approach to the analysis of human non-verbal behavior, which could help to solve the problem of categorization that plagues the traditional approaches. We utilize evolutionary theory to propose a new theory-driven methodological approach to the 'multi-unit multi-channel modulation' problem of human nonverbal communication. Within this concept, communication is seen as context-dependent (the meaning of a signal is adapted to the situation), as a multi-channel and a multi-unit process (a string of many events interrelated in 'communicative' space and time), and as related to the function it serves. Such an approach can be utilized to successfully bridge the gap between evolutionary psychological research, which focuses on social cognition adaptations, and human ethology, which describes every day behavior in an objective, systematic way.
Response of dorsomedial prefrontal cortex predicts altruistic behavior
Waytz, Adam; Zaki, Jamil; Mitchell, Jason P.
2012-01-01
Human beings have an unusual proclivity for altruistic behavior, and recent commentators have suggested that these prosocial tendencies arise from our unique capacity to understand the minds of others (i.e., to mentalize). The current studies test this hypothesis by examining the relation between altruistic behavior and the reflexive engagement of a neural system reliably associated with mentalizing. Results indicated that activity in the dorsomedial prefrontal cortex (dorsal MPFC)—a region consistently involved in understanding others’ mental states—predicts both monetary donations to others and time spent helping others. These findings address long-standing questions about the proximate source of human altruism by suggesting that prosocial behavior results, in part, from our broader tendency for social-cognitive thought. PMID:22649243
Goal directed behavior and dyslexia.
Chiarenza, Giuseppe Augusto
Goal directed behavior is explained by two approaches: the first, which can be named as cybertetic (behavior is wieved as homeostatic and reflexive), and second, as cognitive approach, a learned response, (skills developed by whaching the behavior of another individual). The aim of the paper is to present a noninvasive method described as an interaction of human beings with environment, recording the electrical activity of the brain from the human scalp. Obtained results are in agreement of psychological theories that place at determined levels of age the acquisition of the capacities of abstract thinking and with the functional neuroanatomic studies according to which biological maturation is necessary for learning processes to develop. An acquired level of learning is in close relationship with the maturation level of the cerebral structures.
Cognition from life: the two modes of cognition that underlie moral behavior.
Andringa, Tjeerd C; Bosch, Kirsten A Van Den; Wijermans, Nanda
2015-01-01
We argue that the capacity to live life to the benefit of self and others originates in the defining properties of life. These lead to two modes of cognition; the coping mode that is preoccupied with the satisfaction of pressing needs and the co-creation mode that aims at the realization of a world where pressing needs occur less frequently. We have used the Rule of Conservative Changes - stating that new functions can only scaffold on evolutionary older, yet highly stable functions - to predict that the interplay of these two modes define a number of core functions in psychology associated with moral behavior. We explore this prediction with five examples reflecting different theoretical approaches to human cognition and action selection. We conclude the paper with the observation that science is currently dominated by the coping mode and that the benefits of the co-creation mode may be necessary to generate realistic prospects for a modern synthesis in the sciences of the mind.
Cognition from life: the two modes of cognition that underlie moral behavior
Andringa, Tjeerd C.; Bosch, Kirsten A. Van Den; Wijermans, Nanda
2015-01-01
We argue that the capacity to live life to the benefit of self and others originates in the defining properties of life. These lead to two modes of cognition; the coping mode that is preoccupied with the satisfaction of pressing needs and the co-creation mode that aims at the realization of a world where pressing needs occur less frequently. We have used the Rule of Conservative Changes – stating that new functions can only scaffold on evolutionary older, yet highly stable functions – to predict that the interplay of these two modes define a number of core functions in psychology associated with moral behavior. We explore this prediction with five examples reflecting different theoretical approaches to human cognition and action selection. We conclude the paper with the observation that science is currently dominated by the coping mode and that the benefits of the co-creation mode may be necessary to generate realistic prospects for a modern synthesis in the sciences of the mind. PMID:25954212
NASA Astrophysics Data System (ADS)
Petkov, C. I.
2014-09-01
Fitch proposes an appealing hypothesis that humans are dendrophiles, who constantly build mental trees supported by analogous hierarchical brain processes [1]. Moreover, it is argued that, by comparison, nonhuman animals build flat or more compact behaviorally-relevant structures. Should we thus expect less impressive hierarchical brain processes in other animals? Not necessarily.
... Cognitive Development parenting poor sleep Work stress Time change beds School Symptoms mental fatigue Headache mortality pain Apetite Technology ... adds Dr. Fiona Baker, sleep physiologist in SRI International’s Human Sleep Research Lab in the Center for ... behaviors such as caffeine or alcohol consumption ...
Rogers, Christina N; Ross, Amy P; Sahu, Shweta P; Siegel, Ethan R; Dooyema, Jeromy M; Cree, Mary Ann; Stopa, Edward G; Young, Larry J; Rilling, James K; Albers, H Elliott; Preuss, Todd M
2018-05-24
Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions. © 2018 Wiley Periodicals, Inc.
Robot Faces that Follow Gaze Facilitate Attentional Engagement and Increase Their Likeability.
Willemse, Cesco; Marchesi, Serena; Wykowska, Agnieszka
2018-01-01
Gaze behavior of humanoid robots is an efficient mechanism for cueing our spatial orienting, but less is known about the cognitive-affective consequences of robots responding to human directional cues. Here, we examined how the extent to which a humanoid robot (iCub) avatar directed its gaze to the same objects as our participants affected engagement with the robot, subsequent gaze-cueing, and subjective ratings of the robot's characteristic traits. In a gaze-contingent eyetracking task, participants were asked to indicate a preference for one of two objects with their gaze while an iCub avatar was presented between the object photographs. In one condition, the iCub then shifted its gaze toward the object chosen by a participant in 80% of the trials (joint condition) and in the other condition it looked at the opposite object 80% of the time (disjoint condition). Based on the literature in human-human social cognition, we took the speed with which the participants looked back at the robot as a measure of facilitated reorienting and robot-preference, and found these return saccade onset times to be quicker in the joint condition than in the disjoint condition. As indicated by results from a subsequent gaze-cueing tasks, the gaze-following behavior of the robot had little effect on how our participants responded to gaze cues. Nevertheless, subjective reports suggested that our participants preferred the iCub following participants' gaze to the one with a disjoint attention behavior, rated it as more human-like and as more likeable. Taken together, our findings show a preference for robots who follow our gaze. Importantly, such subtle differences in gaze behavior are sufficient to influence our perception of humanoid agents, which clearly provides hints about the design of behavioral characteristics of humanoid robots in more naturalistic settings.
Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory
Clemenson, Gregory D.
2015-01-01
The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many “enriching” aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. SIGNIFICANCE STATEMENT The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can stimulate neuroplasticity and improve hippocampal function and performance on hippocampally mediated memory tasks. Here, we suggest that the exploration of vast and visually stimulating environments within modern-day video games can act as a human correlate of environmental enrichment. Training naive video gamers in a rich 3D, but not 2D, video game, resulted in a significant improvement in hippocampus-associated cognition using several behavioral measures. Our results suggest that modern day video games may provide meaningful stimulation to the human hippocampus. PMID:26658864
Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory.
Clemenson, Gregory D; Stark, Craig E L
2015-12-09
The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many "enriching" aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can stimulate neuroplasticity and improve hippocampal function and performance on hippocampally mediated memory tasks. Here, we suggest that the exploration of vast and visually stimulating environments within modern-day video games can act as a human correlate of environmental enrichment. Training naive video gamers in a rich 3D, but not 2D, video game, resulted in a significant improvement in hippocampus-associated cognition using several behavioral measures. Our results suggest that modern day video games may provide meaningful stimulation to the human hippocampus. Copyright © 2015 the authors 0270-6474/15/3516116-10$15.00/0.
Exposure to Hedione Increases Reciprocity in Humans
Berger, Sebastian; Hatt, Hanns; Ockenfels, Axel
2017-01-01
Cooperation among unrelated humans is frequently regarded as a defining feature in the evolutionary success of our species. Whereas, much research has addressed the strategic and cognitive mechanisms that underlie cooperation, investigations into chemosensory processes have received very limited research attention. To bridge that gap, we build on recent research that has identified the chemically synthesized odorant Hedione (HED) as a ligand for the putative human pheromone receptor (VN1R1) expressed in the olfactory mucosa, and hypothesize that exposure to HED may increase reciprocity. Applying behavioral economics paradigms, the present research shows that exposure to the ligand causes differentiated behavioral effects in reciprocal punishments (Study 1) as well as rewards (Study 2), two types of behaviors that are frequently regarded as essential for the development and maintenance of cooperation. PMID:28512400
Psychopathy to Altruism: Neurobiology of the Selfish-Selfless Spectrum.
Sonne, James W H; Gash, Don M
2018-01-01
The age-old philosophical, biological, and social debate over the basic nature of humans as being "universally selfish" or "universally good" continues today highlighting sharply divergent views of natural social order. Here we analyze advances in biology, genetics and neuroscience increasing our understanding of the evolution, features and neurocircuitry of the human brain underlying behavior in the selfish-selfless spectrum. First, we examine evolutionary pressures for selection of altruistic traits in species with protracted periods of dependence on parents and communities for subsistence and acquisition of learned behaviors. Evidence supporting the concept that altruistic potential is a common feature in human populations is developed. To go into greater depth in assessing critical features of the social brain, the two extremes of selfish-selfless behavior, callous unemotional psychopaths and zealous altruists who take extreme measures to help others, are compared on behavioral traits, structural/functional neural features, and the relative contributions of genetic inheritance versus acquired cognitive learning to their mindsets. Evidence from population groups ranging from newborns, adopted children, incarcerated juveniles, twins and mindfulness meditators point to the important role of neuroplasticity and the dopaminergic reward systems in forming and reforming neural circuitry in response to personal experience and cultural influences in determining behavior in the selfish-selfless spectrum. The underlying neural circuitry differs between psychopaths and altruists with emotional processing being profoundly muted in psychopaths and significantly enhanced in altruists. But both groups are characterized by the reward system of the brain shaping behavior. Instead of rigid assignment of human nature as being "universally selfish" or "universally good," both characterizations are partial truths based on the segments of the selfish-selfless spectrum being examined. In addition, individuals and populations can shift in the behavioral spectrum in response to cognitive therapy and social and cultural experience, and approaches such as mindfulness training for introspection and reward-activating compassion are entering the mainstream of clinical care for managing pain, depression, and stress.
Psychopathy to Altruism: Neurobiology of the Selfish–Selfless Spectrum
Sonne, James W. H.; Gash, Don M.
2018-01-01
The age-old philosophical, biological, and social debate over the basic nature of humans as being “universally selfish” or “universally good” continues today highlighting sharply divergent views of natural social order. Here we analyze advances in biology, genetics and neuroscience increasing our understanding of the evolution, features and neurocircuitry of the human brain underlying behavior in the selfish–selfless spectrum. First, we examine evolutionary pressures for selection of altruistic traits in species with protracted periods of dependence on parents and communities for subsistence and acquisition of learned behaviors. Evidence supporting the concept that altruistic potential is a common feature in human populations is developed. To go into greater depth in assessing critical features of the social brain, the two extremes of selfish–selfless behavior, callous unemotional psychopaths and zealous altruists who take extreme measures to help others, are compared on behavioral traits, structural/functional neural features, and the relative contributions of genetic inheritance versus acquired cognitive learning to their mindsets. Evidence from population groups ranging from newborns, adopted children, incarcerated juveniles, twins and mindfulness meditators point to the important role of neuroplasticity and the dopaminergic reward systems in forming and reforming neural circuitry in response to personal experience and cultural influences in determining behavior in the selfish–selfless spectrum. The underlying neural circuitry differs between psychopaths and altruists with emotional processing being profoundly muted in psychopaths and significantly enhanced in altruists. But both groups are characterized by the reward system of the brain shaping behavior. Instead of rigid assignment of human nature as being “universally selfish” or “universally good,” both characterizations are partial truths based on the segments of the selfish–selfless spectrum being examined. In addition, individuals and populations can shift in the behavioral spectrum in response to cognitive therapy and social and cultural experience, and approaches such as mindfulness training for introspection and reward-activating compassion are entering the mainstream of clinical care for managing pain, depression, and stress. PMID:29725317
Deep-reasoning fault diagnosis - An aid and a model
NASA Technical Reports Server (NTRS)
Yoon, Wan Chul; Hammer, John M.
1988-01-01
The design and evaluation are presented for the knowledge-based assistance of a human operator who must diagnose a novel fault in a dynamic, physical system. A computer aid based on a qualitative model of the system was built to help the operators overcome some of their cognitive limitations. This aid differs from most expert systems in that it operates at several levels of interaction that are believed to be more suitable for deep reasoning. Four aiding approaches, each of which provided unique information to the operator, were evaluated. The aiding features were designed to help the human's casual reasoning about the system in predicting normal system behavior (N aiding), integrating observations into actual system behavior (O aiding), finding discrepancies between the two (O-N aiding), or finding discrepancies between observed behavior and hypothetical behavior (O-HN aiding). Human diagnostic performance was found to improve by almost a factor of two with O aiding and O-N aiding.
Jellett, Adam P; Jenks, Kyle; Lucas, Marcella; Scott, Rod C
2015-02-01
Children with epilepsy face significant cognitive and behavioral impairments. These impairments are due to a poorly characterized interaction between the underlying etiology, the effect of seizures and the effect of medication. The large variation in these factors make understanding the main drivers of cognitive impairment in humans extremely difficult. Therefore, we investigated the cognitive effect of seizures and the antiepileptic drug valproic acid in a rodent model of cortical dysplasia. Rats were divided into seizure-receiving and non-receiving groups. Rats experienced frequent early life seizures using the flurothyl inhalation method: 50 seizures between postnatal day 5 and 15 and then one seizure a day following that. Rats were further divided into drug-treated and vehicle treated groups. Valproic acid treated animals were treated from 5 days preceding behavioral testing in the Morris water maze at a clinically relevant concentration. We show here that the main driver of cognitive impairments are the brain malformations, and that persistent seizures in animals with brain malformations and valproic acid caused no additional impact. These findings suggest that neither an appropriate dose of a standard antiepileptic drug or intractable seizures worsen cognition associated with a malformation of cortical development and that alternative treatment strategies to improve cognition are required. Copyright © 2014 Elsevier B.V. All rights reserved.
A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.
Hocraffer, Amy; Nam, Chang S
2017-01-01
A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.
MSEE: Stochastic Cognitive Linguistic Behavior Models for Semantic Sensing
2013-09-01
recognition, a Gaussian Process Dynamic Model with Social Network Analysis (GPDM-SNA) for a small human group action recognition, an extended GPDM-SNA...44 3.2. Small Human Group Activity Modeling Based on Gaussian Process Dynamic Model and Social Network Analysis (SN-GPDM...51 Approved for public release; distribution unlimited. 3 3.2.3. Gaussian Process Dynamical Model and
ERIC Educational Resources Information Center
Lane, Jonathan D.; Wellman, Henry M.; Olson, Sheryl L.; Miller, Alison L.; Wang, Li; Tardif, Twila
2013-01-01
The emotional reactivity hypothesis holds that, over the course of phylogeny, the selection of animals with less reactive temperaments supported the development of sophisticated social-cognitive skills in several species, including humans (Hare, 2007). In the ontogenetic human case, an emotional reactivity hypothesis predicts that children with…
Rosati, Alexandra G; Warneken, Felix
2016-06-01
We recently reported a study (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015) examining whether chimpanzees possess several cognitive capacities that are critical to engage in cooking. In a subsequent commentary, Beran, Hopper, de Waal, Sayers, and Brosnan Learning & Behavior (2015) asserted that our paper has several flaws. Their commentary (1) critiques some aspects of our methodology and argues that our work does not constitute evidence that chimpanzees can actually cook; (2) claims that these results are old news, as previous work had already demonstrated that chimpanzees possess most or all of these capacities; and, finally, (3) argues that comparative psychological studies of chimpanzees cannot adequately address questions about human evolution, anyway. However, their critique of the premise of our study simply reiterates several points we made in the original paper. To quote ourselves: "As chimpanzees neither control fire nor cook food in their natural behavior, these experiments therefore focus not on whether chimpanzees can actually cook food, but rather whether they can apply their cognitive skills to novel problems that emulate cooking" (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015, p. 2). Furthermore, the methodological issues they raise are standard points about psychological research with animals-many of which were addressed synthetically across our 9 experiments, or else are orthogonal to our claims. Finally, we argue that comparative studies of extant apes (and other nonhuman species) are a powerful and indispensable method for understanding human cognitive evolution.
The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies
Modi, Meera E.; Young, Larry J.
2012-01-01
Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22206823
Wang, Li; Almeida, Luis E.F.; de Souza Batista, Celia M.; Khaibullina, Alfia; Xu, Nuo; Albani, Sarah; Guth, Kira A.; Seo, Ji Sung; Quezado, Martha; Quezado, Zenaide M.N.
2015-01-01
Strokes are perhaps the most serious complications of sickle cell disease (SCD) and by the fifth decade occur in approximately 25% of patients. While most patients do not develop strokes, mounting evidence indicates that even without brain abnormalities on imaging studies, SCD patients can present profound neurocognitive dysfunction. We sought to evaluate the neurocognitive behavior profile of humanized SCD mice (Townes, BERK) and to identify hematologic and neuropathologic abnormalities associated with the behavioral alterations observed in these mice. Heterozygous and homozygous Townes mice displayed severe cognitive deficits shown by significant delays in spatial learning compared to controls. Homozygous Townes also had increased depression- and anxiety-like behaviors as well as reduced performance on voluntary wheel running compared to controls. Behavior deficits observed in Townes were also seen in BERKs. Interestingly, most deficits in homozygotes were observed in older mice and were associated with worsening anemia. Further, neuropathologic abnormalities including the presence of large bands of dark/pyknotic (shrunken) neurons in CA1 and CA3 fields of hippocampus and evidence of neuronal dropout in cerebellum were present in homozygotes but not control Townes. These observations suggest that cognitive and behavioral deficits in SCD mice mirror those described in SCD patients and that aging, anemia, and profound neuropathologic changes in hippocampus and cerebellum are possible biologic correlates of those deficits. These findings support using SCD mice for studies of cognitive deficits in SCD and point to vulnerable brain areas with susceptibility to neuronal injury in SCD and to mechanisms that potentially underlie those deficits. PMID:26462816
Chimpanzee Food Preferences, Associative Learning, and the Origins of Cooking
Beran, Michael J.; Hopper, Lydia M.; de Waal, Frans B.M.; Sayers, Ken; Brosnan, Sarah F.
2015-01-01
A recent report suggested that chimpanzees demonstrate the cognitive capacities necessary to understand cooking (Warneken & Rosati, 2015). We offer alternate explanations and mechanisms that could account for the behavioral responses of those chimpanzees without invoking the understanding of cooking as a process. We discuss broader issues surrounding the use of chimpanzees in modeling hominid behavior and understanding aspects of human evolution. PMID:26659967
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
A Cognitive Simulator for Learning the Nature of Human Problem Solving
NASA Astrophysics Data System (ADS)
Miwa, Kazuhisa
Problem solving is understood as a process through which states of problem solving are transferred from the initial state to the goal state by applying adequate operators. Within this framework, knowledge and strategies are given as operators for the search. One of the most important points of researchers' interest in the domain of problem solving is to explain the performance of problem solving behavior based on the knowledge and strategies that the problem solver has. We call the interplay between problem solvers' knowledge/strategies and their behavior the causal relation between mental operations and behavior. It is crucially important, we believe, for novice learners in this domain to understand the causal relation between mental operations and behavior. Based on this insight, we have constructed a learning system in which learners can control mental operations of a computational agent that solves a task, such as knowledge, heuristics, and cognitive capacity, and can observe its behavior. We also introduce this system to a university class, and discuss which findings were discovered by the participants.
Story Immersion of Videogames for Youth Health Promotion: A Review of Literature.
Lu, Amy Shirong; Baranowski, Tom; Thompson, Debbe; Buday, Richard
2012-06-01
This article reviews research in the fields of psychology, literature, communication, human-computer interaction, public health, and consumer behavior on narrative and its potential relationships with videogames and story immersion. It also reviews a narrative's role in complementing behavioral change theories and the potential of story immersion for health promotion through videogames. Videogames have potential for health promotion and may be especially promising when attempting to reach youth. An understudied characteristic of videogames is that many contain a narrative, or story. Story immersion (transportation) is a mechanism through which a narrative influences players' cognition, affect, and, potentially, health behavior. Immersion promotes the suspension of disbelief and the reduction of counterarguments, enables the story experience as a personal experience, and creates the player's deep affection for narrative protagonists. Story immersion complements behavioral change theories, including the Theory of Planned Behavior, Social Cognitive Theory, and Self-Determination Theory. Systematic investigations are needed to realize the powerful potential of interactive narratives within theory-driven research.
Leimgruber, Kristin L.; Ward, Adrian F.; Widness, Jane; Norton, Michael I.; Olson, Kristina R.; Gray, Kurt; Santos, Laurie R.
2014-01-01
The breadth of human generosity is unparalleled in the natural world, and much research has explored the mechanisms underlying and motivating human prosocial behavior. Recent work has focused on the spread of prosocial behavior within groups through paying-it-forward, a case of human prosociality in which a recipient of generosity pays a good deed forward to a third individual, rather than back to the original source of generosity. While research shows that human adults do indeed pay forward generosity, little is known about the origins of this behavior. Here, we show that both capuchin monkeys (Cebus apella) and 4-year-old children pay forward positive and negative outcomes in an identical testing paradigm. These results suggest that a cognitively simple mechanism present early in phylogeny and ontogeny leads to paying forward positive, as well as negative, outcomes. PMID:24489830
ERIC Educational Resources Information Center
Kimura, Doreen
1992-01-01
Explores the neural and hormonal basis of human intellectual function that gives rise to sex differences in the brain. Discusses behavioral, neurological, endocrinological studies, and studies of the effects of hormones on brain functioning that show a relationship between cognitive variations and sex. (MCO)
[Acceptance and mindfulness-based cognitive-behavioral therapies].
Ngô, Thanh-Lan
2013-01-01
Cognitive behavioral therapy (CBT) is one of the main approaches in psychotherapy. It teaches the patient to examine the link between dysfunctional thoughts and maladaptive behaviors and to re- evaluate the cognitive biases involved in the maintenance of symptoms by using strategies such as guided discovery. CBT is constantly evolving in part to improve its' effectiveness and accessibility. Thus in the last decade, increasingly popular approaches based on mindfulness and acceptance have emerged. These therapies do not attempt to modify cognitions even when they are biased and dysfunctional but rather seek a change in the relationship between the individual and the symptoms. This article aims to present the historical context that has allowed the emergence of this trend, the points of convergence and divergence with traditional CBT as well as a brief presentation of the different therapies based on mindfulness meditation and acceptance. Hayes (2004) described three successive waves in behavior therapy, each characterized by "dominant assumptions, methods and goals": traditional behavior therapy, cognitive therapy and therapies based on mindfulness meditation and acceptance. The latter consider that human suffering occurs when the individual lives a restricted life in order avoid pain and immediate discomfort to the detriment of his global wellbeing. These therapies combine mindfulness, experiential, acceptance strategies with traditional behavior principles in order to attain lasting results. There are significant points of convergence between traditional CBT and therapies based on mindfulness meditation and acceptance. They are both empirically validated, based upon a theoretical model postulating that avoidance is key in the maintenance of psychopathology and they recommend an approach strategy in order to overcome the identified problem. They both use behavioral techniques in the context of a collaborative relationship in order to identify precise problems and to achieve specific goals. They focus on the present moment rather than on historical causes. However, they also present significant differences: control vs acceptance of thoughts, focus on cognition vs behavior, focus on the relationship between the individual and his thoughts vs cognitive content, goal of modifying dysfunctional beliefs vs metacognitive processes, use of experiential vs didactic methods, focus on symptoms vs quality of life, strategies used before vs after the unfolding of full emotional response. The main interventions based on mindfulness meditation and acceptance are: Acceptance and Commitment Therapy, Functional Analytic Therapy, the expanded model of Behavioral Activation, Metacognitive Therapy, Mindfulness based Cognitive Therapy, Dialectic Behavior Therapy, Integrative Behavioral Couples Therapy and Compassionate Mind Training. These are described in this article. They offer concepts and techniques which might enhance therapeutic efficacy. They teach a new way to deploy attention and to enter into a relationship with current experience (for example, defusion) in order to diminish cognitive reactivity, a maintenance factor for psychopathology, and to enhance psychological flexibility. The focus on cognitive process, metacognition as well as cognitive content might yield additional benefits in therapy. It is possible to combine traditional CBT with third wave approaches by using psychoeducation and cognitive restructuring in the beginning phases of therapy in order to establish thought bias and to then encourage acceptance of internal experiences as well as exposure to feared stimuli rather than to continue to use cognitive restructuring techniques. Traditional CBT and third wave approaches seem to impact different processes: the former enhance the capacity to observe and describe experiences and the latter diminish experiential avoidance and increase conscious action as well as acceptance. The identification of personal values helps to motivate the individual to undertake actions required in order to enhance quality of life. In the case of chronic illness, it diminishes suffering by increasing acceptance. Although the evidence base supporting the efficacy of third wave approaches is less robust than in the case of traditional cognitive or behavior therapy, therapies based on mindfulness meditation and acceptance are promising interventions that might help to elucidate change process and offer complementary strategies in order to help patients.
Zhou, Jie; Dovidio, John; Wang, Erping
2013-01-01
The moderating role of affective-cognitive consistency in the effects of affectively-based and cognitively-based attitudes on consummatory and instrumental behaviors was explored using two experimental studies in the intergroup context. Study 1 revealed that affectively-based attitudes were better predictors than cognitively-based attitudes regardless of affective-cognitive consistency for consummatory behaviors (e.g., undergraduates’ supportive behaviors toward government officials). Study 2, which investigated task groups’ supportive behaviors toward an immediate supervisory group, found that for these instrumental behaviors cognitively-based attitudes were better predictors than affectively-based attitudes only when affective-cognitive consistency was high. The present research also examined the mechanism by which affective-cognitive consistency moderates the relative roles of affectively-based and cognitively-based attitudes in attitude-behavior consistency. Results indicated that attitude-behavior consistency is eroded primarily because of the weaker relationship of affective or cognitive components to behaviors than to general attitudes. The reciprocal implications of research on attitudes and work on intergroup relations are considered. PMID:24244751
Radical behaviorist interpretation: Generating and evaluating an account of consumer behavior.
Foxall, G R
1998-01-01
This article considers an approach to the radical behaviorist interpretation of complex human social behavior. The chosen context is consumer psychology, a field currently dominated by cognitive models of purchase and consumption. The nature of operant interpretation is considered, and several levels of operant analysis of complex economic behavior in affluent marketing-oriented economies are developed. Empirical evidence for the interpretation is considered, and a case is made for the qualified use of the hypothetico-deductive method in the appraisal of operant interpretations of complex behaviors.
Radical behaviorist interpretation: Generating and evaluating an account of consumer behavior
Foxall, Gordon R.
1998-01-01
This article considers an approach to the radical behaviorist interpretation of complex human social behavior. The chosen context is consumer psychology, a field currently dominated by cognitive models of purchase and consumption. The nature of operant interpretation is considered, and several levels of operant analysis of complex economic behavior in affluent marketing-oriented economies are developed. Empirical evidence for the interpretation is considered, and a case is made for the qualified use of the hypothetico-deductive method in the appraisal of operant interpretations of complex behaviors. PMID:22478315
Computer modeling of human decision making
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1991-01-01
Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making.
A 3 year update on the influence of noise on performance and behavior.
Clark, Charlotte; Sörqvist, Patrik
2012-01-01
The effect of noise exposure on human performance and behavior continues to be a focus for research activities. This paper reviews developments in the field over the past 3 years, highlighting current areas of research, recent findings, and ongoing research in two main research areas: Field studies of noise effects on children's cognition and experimental studies of auditory distraction. Overall, the evidence for the effects of external environmental noise on children's cognition has strengthened in recent years, with the use of larger community samples and better noise characterization. Studies have begun to establish exposure-effect thresholds for noise effects on cognition. However, the evidence remains predominantly cross-sectional and future research needs to examine whether sound insulation might lessen the effects of external noise on children's learning. Research has also begun to explore the link between internal classroom acoustics and children's learning, aiming to further inform the design of the internal acoustic environment. Experimental studies of the effects of noise on cognitive performance are also reviewed, including functional differences in varieties of auditory distraction, semantic auditory distraction, individual differences in susceptibility to auditory distraction, and the role of cognitive control on the effects of noise on understanding and memory of target speech materials. In general, the results indicate that there are at least two functionally different types of auditory distraction: One due to the interruption of processes (as a result of attention being captured by the sound), another due to interference between processes. The magnitude of the former type is related to individual differences in cognitive control capacities (e.g., working memory capacity); the magnitude of the latter is not. Few studies address noise effects on behavioral outcomes, emphasizing the need for researchers to explore noise effects on behavior in more detail.
Social cognitive neuroscience and humanoid robotics.
Chaminade, Thierry; Cheng, Gordon
2009-01-01
We believe that humanoid robots provide new tools to investigate human social cognition, the processes underlying everyday interactions between individuals. Resonance is an emerging framework to understand social interactions that is based on the finding that cognitive processes involved when experiencing a mental state and when perceiving another individual experiencing the same mental state overlap, both at the behavioral and neural levels. We will first review important aspects of his framework. In a second part, we will discuss how this framework is used to address questions pertaining to artificial agents' social competence. We will focus on two types of paradigm, one derived from experimental psychology and the other using neuroimaging, that have been used to investigate humans' responses to humanoid robots. Finally, we will speculate on the consequences of resonance in natural social interactions if humanoid robots are to become integral part of our societies.
An evolutionary theory of human motivation.
Bernard, Larry C; Mills, Michael; Swenson, Leland; Walsh, R Patricia
2005-05-01
The authors review psychology's historical, competing perspectives on human motivation and propose a new comprehensive theory. The new theory is based on evolutionary principles as proposed by C. Darwin (1859) and modified by W. D. Hamilton (1964, 1996), R. L. Trivers (1971, 1972), and R. Dawkins (1989). The theory unifies biological, behavioral, and cognitive approaches to motivation. The theory is neuropsychological and addresses conscious and nonconscious processes that underlie motivation, emotion, and self-control. The theory predicts a hierarchical structure of motives that are measurable as individual differences in human behavior. These motives are related to social problem domains (D. B. Bugental, 2000; D. T. Kenrick, N. P. Li, & J. Butner, 2003), and each is hypothesized to solve a particular problem of human inclusive fitness.
Solaimani Khashab, Abas; Ghamari Kivi, Hosain; Fathi, Davod
2017-04-01
Objective: Grief is one of the most painful experiences of the humans after linking emotions. In the literature of trauma, grief and mourning can be seen on many topics. Intervention and treatment of grief seems necessary as the period of mourning is prolonged. Thus, this study aimed at understanding the effectiveness of cognitive behavioral therapy on spiritual well-being and emotional intelligence in the elderly bereavement. Method: This was an experimental study with pre-and posttest design, and control group. The population of this study was the elderly mourners in city of Ardabil in 15-2014. After conducting clinical interviews and diagnostic tests using the sampling method, 30 elderly mourners selected. Spiritual Well-Being questionnaire and Emotional Intelligence questionnaire were used for data collection. The questionnaire and pretest-posttest were used in this study. Data were analyzed using multivariate analysis of covariance. Results: The results of the data analysis revealed that cognitive behavioral therapy increased spiritual well-being and emotional intelligence of the mourners was not significantly different between the 2 groups (P<0.01). However, the means of Spiritual Well-Being and Emotional Intelligence at pretest was not significant in the intervention group compared with the control group (P>0.05). Conclusion: Method of cognitive behavioral therapy helps confront the emotional drain and grief acceptance, increasing the spiritual well-being and emotional intelligence of the elderly bereavement..
Solaimani Khashab, Abas; Ghamari Kivi, Hosain; Fathi, Davod
2017-01-01
Objective: Grief is one of the most painful experiences of the humans after linking emotions. In the literature of trauma, grief and mourning can be seen on many topics. Intervention and treatment of grief seems necessary as the period of mourning is prolonged. Thus, this study aimed at understanding the effectiveness of cognitive behavioral therapy on spiritual well-being and emotional intelligence in the elderly bereavement. Method: This was an experimental study with pre-and posttest design, and control group. The population of this study was the elderly mourners in city of Ardabil in 15-2014. After conducting clinical interviews and diagnostic tests using the sampling method, 30 elderly mourners selected. Spiritual Well-Being questionnaire and Emotional Intelligence questionnaire were used for data collection. The questionnaire and pretest-posttest were used in this study. Data were analyzed using multivariate analysis of covariance. Results: The results of the data analysis revealed that cognitive behavioral therapy increased spiritual well-being and emotional intelligence of the mourners was not significantly different between the 2 groups (P<0.01). However, the means of Spiritual Well-Being and Emotional Intelligence at pretest was not significant in the intervention group compared with the control group (P>0.05). Conclusion: Method of cognitive behavioral therapy helps confront the emotional drain and grief acceptance, increasing the spiritual well-being and emotional intelligence of the elderly bereavement. PMID:28659981
A Neuroscience Approach to Optimizing Brain Resources for Human Performance in Extreme Environments
Paulus, Martin P.; Potterat, Eric G.; Taylor, Marcus K.; Van Orden, Karl F.; Bauman, James; Momen, Nausheen; Padilla, Genieleah A.; Swain, Judith L.
2009-01-01
Extreme environments requiring optimal cognitive and behavioral performance occur in a wide variety of situations ranging from complex combat operations to elite athletic competitions. Although a large literature characterizes psychological and other aspects of individual differences in performances in extreme environments, virtually nothing is known about the underlying neural basis for these differences. This review summarizes the cognitive, emotional, and behavioral consequences of exposure to extreme environments, discusses predictors of performance, and builds a case for the use of neuroscience approaches to quantify and understand optimal cognitive and behavioral performance. Extreme environments are defined as an external context that exposes individuals to demanding psychological and/or physical conditions, and which may have profound effects on cognitive and behavioral performance. Examples of these types of environments include combat situations, Olympic-level competition, and expeditions in extreme cold, at high altitudes, or in space. Optimal performance is defined as the degree to which individuals achieve a desired outcome when completing goal-oriented tasks. It is hypothesized that individual variability with respect to optimal performance in extreme environments depends on a well “contextualized” internal body state that is associated with an appropriate potential to act. This hypothesis can be translated into an experimental approach that may be useful for quantifying the degree to which individuals are particularly suited to performing optimally in demanding environments. PMID:19447132
Zhang, Peng
2015-07-01
For several thousand years the ancient Chinese have accumulated rich knowledge, in the form of written literature and folklore, on the non-human primates widely distributed in China. I have used critical text analysis and discourse analysis to clarify when and how ancient Chinese distinguished gibbons from macaques. I divided the progress into four main stages, the Pre-Shang to Shang dynasty (before 1046 BC), the Zhou to Han dynasty (1046 BC-220 AD), the six dynasties to Song dynasty (220-1279 AD), and the Yuan to Qing dynasties (1279-1840 AD). I found that China's traditional cognition of gibbons and macaques emphasized the appearance of animals, organoleptic performance, or even whether or not their behavior was "moral". They described them as human-like animals by ethical standards but ignored the species itself. This kind of cognitive style actually embodies the "pursuit of goodness", which is the feature of Chinese traditional culture. This study presents some original views on Chinese traditional knowledge of non-human primates.
Neural Basis of Strategic Decision Making.
Lee, Daeyeol; Seo, Hyojung
2016-01-01
Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in the cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex (mPFC) and temporal parietal junction (TPJ) might be recruited for cognitive processes unique to social decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Program Predicts Time Courses of Human/Computer Interactions
NASA Technical Reports Server (NTRS)
Vera, Alonso; Howes, Andrew
2005-01-01
CPM X is a computer program that predicts sequences of, and amounts of time taken by, routine actions performed by a skilled person performing a task. Unlike programs that simulate the interaction of the person with the task environment, CPM X predicts the time course of events as consequences of encoded constraints on human behavior. The constraints determine which cognitive and environmental processes can occur simultaneously and which have sequential dependencies. The input to CPM X comprises (1) a description of a task and strategy in a hierarchical description language and (2) a description of architectural constraints in the form of rules governing interactions of fundamental cognitive, perceptual, and motor operations. The output of CPM X is a Program Evaluation Review Technique (PERT) chart that presents a schedule of predicted cognitive, motor, and perceptual operators interacting with a task environment. The CPM X program allows direct, a priori prediction of skilled user performance on complex human-machine systems, providing a way to assess critical interfaces before they are deployed in mission contexts.
Ramstead, Maxwell J. D.; Veissière, Samuel P. L.; Kirmayer, Laurence J.
2016-01-01
In this paper we outline a framework for the study of the mechanisms involved in the engagement of human agents with cultural affordances. Our aim is to better understand how culture and context interact with human biology to shape human behavior, cognition, and experience. We attempt to integrate several related approaches in the study of the embodied, cognitive, and affective substrates of sociality and culture and the sociocultural scaffolding of experience. The integrative framework we propose bridges cognitive and social sciences to provide (i) an expanded concept of ‘affordance’ that extends to sociocultural forms of life, and (ii) a multilevel account of the socioculturally scaffolded forms of affordance learning and the transmission of affordances in patterned sociocultural practices and regimes of shared attention. This framework provides an account of how cultural content and normative practices are built on a foundation of contentless basic mental processes that acquire content through immersive participation of the agent in social practices that regulate joint attention and shared intentionality. PMID:27507953
NASA Technical Reports Server (NTRS)
Hutto, Clayton; Briscoe, Erica; Trewhitt, Ethan
2012-01-01
Societal level macro models of social behavior do not sufficiently capture nuances needed to adequately represent the dynamics of person-to-person interactions. Likewise, individual agent level micro models have limited scalability - even minute parameter changes can drastically affect a model's response characteristics. This work presents an approach that uses agent-based modeling to represent detailed intra- and inter-personal interactions, as well as a system dynamics model to integrate societal-level influences via reciprocating functions. A Cognitive Network Model (CNM) is proposed as a method of quantitatively characterizing cognitive mechanisms at the intra-individual level. To capture the rich dynamics of interpersonal communication for the propagation of beliefs and attitudes, a Socio-Cognitive Network Model (SCNM) is presented. The SCNM uses socio-cognitive tie strength to regulate how agents influence--and are influenced by--one another's beliefs during social interactions. We then present experimental results which support the use of this network analytical approach, and we discuss its applicability towards characterizing and understanding human information processing.
Docosahexaenoic Acid and Cognition throughout the Lifespan
Weiser, Michael J.; Butt, Christopher M.; Mohajeri, M. Hasan
2016-01-01
Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action. PMID:26901223
Carr, Gregory V; Chen, Jingshan; Yang, Feng; Ren, Ming; Yuan, Peixiong; Tian, Qingjun; Bebensee, Audrey; Zhang, Grace Y; Du, Jing; Glineburg, Paul; Xun, Randy; Akhile, Omoye; Akuma, Daniel; Pickel, James; Barrow, James C; Papaleo, Francesco; Weinberger, Daniel R
2016-11-01
Overexpression in humans of KCNH2-3.1, which encodes a primate-specific and brain-selective isoform of the human ether-a-go-go-related potassium channel, is associated with impaired cognition, inefficient neural processing and schizophrenia. Here, we describe a new mouse model that incorporates the KCNH2-3.1 molecular phenotype. KCNH2-3.1 transgenic mice are viable and display normal sensorimotor behaviors. However, they show alterations in neuronal structure and microcircuit function in the hippocampus and prefrontal cortex, areas affected in schizophrenia. Specifically, in slice preparations from the CA1 region of the hippocampus, KCNH2-3.1 transgenic mice have fewer mature dendrites and impaired theta burst stimulation long-term potentiation. Abnormal neuronal firing patterns characteristic of the fast deactivation kinetics of the KCNH2-3.1 isoform were also observed in prefrontal cortex. Transgenic mice showed significant deficits in a hippocampal-dependent object location task and a prefrontal cortex-dependent T-maze working memory task. Interestingly, the hippocampal-dependent alterations were not present in juvenile transgenic mice, suggesting a developmental trajectory to the phenotype. Suppressing KCNH2-3.1 expression in adult mice rescues both the behavioral and physiological phenotypes. These data provide insight into the mechanism of association of KCNH2-3.1 with variation in human cognition and neuronal physiology and may explain its role in schizophrenia.
Krueger, Joachim I; Funder, David C
2004-06-01
Mainstream social psychology focuses on how people characteristically violate norms of action through social misbehaviors such as conformity with false majority judgments, destructive obedience, and failures to help those in need. Likewise, they are seen to violate norms of reasoning through cognitive errors such as misuse of social information, self-enhancement, and an over-readiness to attribute dispositional characteristics. The causes of this negative research emphasis include the apparent informativeness of norm violation, the status of good behavior and judgment as unconfirmable null hypotheses, and the allure of counter-intuitive findings. The shortcomings of this orientation include frequently erroneous imputations of error, findings of mutually contradictory errors, incoherent interpretations of error, an inability to explain the sources of behavioral or cognitive achievement, and the inhibition of generalized theory. Possible remedies include increased attention to the complete range of behavior and judgmental accomplishment, analytic reforms emphasizing effect sizes and Bayesian inference, and a theoretical paradigm able to account for both the sources of accomplishment and of error. A more balanced social psychology would yield not only a more positive view of human nature, but also an improved understanding of the bases of good behavior and accurate judgment, coherent explanations of occasional lapses, and theoretically grounded suggestions for improvement.
Virtual Reality for Artificial Intelligence: human-centered simulation for social science.
Cipresso, Pietro; Riva, Giuseppe
2015-01-01
There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.
Cognitive Behavior Therapy: Notes on Theory and Application with Children.
ERIC Educational Resources Information Center
Sigmon, Scott B.
Cognitive behavioral psychology is a new theoretical orientation. When applied in treatment, it is known as cognitive behavior therapy (CBT). CBT, although based primarily on an information processing model, rests firmly on the twin pillars of both behaviorism and cognitive psychology. Today cognitive therapy and behavioral therapy are terms which…
Dudschig, Carolin; Kaup, Barbara
2018-05-01
Human thought and language is traditionally considered as abstract, amodal, and symbolic. However, recent theories propose that high-level human cognition is directly linked to basic, modal biological systems such as sensorimotor areas. Despite this influential representational debate very little is known regarding whether the mechanisms involved in sensorimotor control are also shared with higher-level cognitive processes, such as language comprehension. We investigated negation as a universal of human language, addressing two key questions: (a) Does negation result in a conflict-like representation? (b) Does negation trigger executive control adjustments in a similar manner as standard information processing conflicts do (e.g., Simon, Flanker)? Electrophysiological data indicated that phrases such as "not left/not right" result in initial activation of the to-be-negated information and subsequently the outcome of the negation process. More importantly, our findings also suggest that negation triggers conflict-related adjustments in information processing in line with traditional conflict tasks. Trial-by-trial conflict adaptation patterns in both behavioral and electrophysiological data indicated that negation processing dynamically changes depending on the current cognitive state. In summary, negation processing results in cognitive conflict, and dynamic influences of the cognitive state determine conflict resolution, that is, negation implementation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The role of behavioral decision theory for cockpit information management
NASA Technical Reports Server (NTRS)
Jonsson, Jon E.
1991-01-01
The focus of this report is the consideration of one form of cognition, judgment and decision making, while examining some information management issues associated with the implementation of new forms of automation. As technology matures and more tasks become suitable to automation, human factors researchers will have to consider the effect that increasing automation will have on operator performance. Current technology allows flight deck designers the opportunity to automate activities involving substantially more cognitive processing.
Affective cognition: Exploring lay theories of emotion.
Ong, Desmond C; Zaki, Jamil; Goodman, Noah D
2015-10-01
Humans skillfully reason about others' emotions, a phenomenon we term affective cognition. Despite its importance, few formal, quantitative theories have described the mechanisms supporting this phenomenon. We propose that affective cognition involves applying domain-general reasoning processes to domain-specific content knowledge. Observers' knowledge about emotions is represented in rich and coherent lay theories, which comprise consistent relationships between situations, emotions, and behaviors. Observers utilize this knowledge in deciphering social agents' behavior and signals (e.g., facial expressions), in a manner similar to rational inference in other domains. We construct a computational model of a lay theory of emotion, drawing on tools from Bayesian statistics, and test this model across four experiments in which observers drew inferences about others' emotions in a simple gambling paradigm. This work makes two main contributions. First, the model accurately captures observers' flexible but consistent reasoning about the ways that events and others' emotional responses to those events relate to each other. Second, our work models the problem of emotional cue integration-reasoning about others' emotion from multiple emotional cues-as rational inference via Bayes' rule, and we show that this model tightly tracks human observers' empirical judgments. Our results reveal a deep structural relationship between affective cognition and other forms of inference, and suggest wide-ranging applications to basic psychological theory and psychiatry. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Bassett, Danielle S.; Mattar, Marcelo G.
2017-01-01
Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. PMID:28259554
Bassett, Danielle S; Mattar, Marcelo G
2017-04-01
Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cognitive-Behavioral Therapy: Nature and Relation to Non-Cognitive Behavioral Therapy.
Lorenzo-Luaces, Lorenzo; Keefe, John R; DeRubeis, Robert J
2016-11-01
Since the introduction of Beck's cognitive theory of emotional disorders, and their treatment with psychotherapy, cognitive-behavioral approaches have become the most extensively researched psychological treatment for a wide variety of disorders. Despite this, the relative contribution of cognitive to behavioral approaches to treatment are poorly understood and the mechanistic role of cognitive change in therapy is widely debated. We critically review this literature, focusing on the mechanistic role of cognitive change across cognitive and behavioral therapies for depressive and anxiety disorders. Copyright © 2016. Published by Elsevier Ltd.
The Paradox of Isochrony in the Evolution of Human Rhythm
Ravignani, Andrea; Madison, Guy
2017-01-01
Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general. PMID:29163252
Hadar, Aviad; Hadas, Itay; Lazarovits, Avi; Alyagon, Uri; Eliraz, Daniel; Zangen, Abraham
2017-01-01
Smartphone usage is now integral to human behavior. Recent studies associate extensive usage with a range of debilitating effects. We sought to determine whether excessive usage is accompanied by measurable neural, cognitive and behavioral changes. Subjects lacking previous experience with smartphones (n = 35) were compared to a matched group of heavy smartphone users (n = 16) on numerous behavioral and electrophysiological measures recorded using electroencephalogram (EEG) combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex (rPFC). In a second longitudinal intervention, a randomly selected sample of the original non-users received smartphones for 3 months while the others served as controls. All measurements were repeated following this intervention. Heavy users showed increased impulsivity, hyperactivity and negative social concern. We also found reduced early TMS evoked potentials in the rPFC of this group, which correlated with severity of self-reported inattention problems. Heavy users also obtained lower accuracy rates than nonusers in a numerical processing. Critically, the second part of the experiment revealed that both the numerical processing and social cognition domains are causally linked to smartphone usage. Heavy usage was found to be associated with impaired attention, reduced numerical processing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC) excitability. Memory impairments were not detected. Novel usage over short period induced a significant reduction in numerical processing capacity and changes in social cognition.
Cognitive/emotional models for human behavior representation in 3D avatar simulations
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-08-01
Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.
Human behavioral complexity peaks at age 25
Brugger, Peter
2017-01-01
Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953
Self-organization via active exploration in robotic applications. Phase 2: Hybrid hardware prototype
NASA Technical Reports Server (NTRS)
Oegmen, Haluk
1993-01-01
In many environments human-like intelligent behavior is required from robots to assist and/or replace human operators. The purpose of these robots is to reduce human time and effort in various tasks. Thus the robot should be robust and as autonomous as possible in order to eliminate or to keep to a strict minimum its maintenance and external control. Such requirements lead to the following properties: fault tolerance, self organization, and intelligence. A good insight into implementing these properties in a robot can be gained by considering human behavior. In the first phase of this project, a neural network architecture was developed that captures some fundamental aspects of human categorization, habit, novelty, and reinforcement behavior. The model, called FRONTAL, is a 'cognitive unit' regulating the exploratory behavior of the robot. In the second phase of the project, FRONTAL was interfaced with an off-the-shelf robotic arm and a real-time vision system. The components of this robotic system, a review of FRONTAL, and simulation studies are presented in this report.
The efficacy of cognitive behavioral therapy for Chinese people: A meta-analysis.
Ng, Ting Kin; Wong, Daniel Fu Keung
2018-07-01
Over the past decade, cognitive behavioral therapy has been applied to an increasingly wider range of disorders and problems in Chinese societies. However, no meta-analysis has been conducted to synthesize the studies on cognitive behavioral therapy for Chinese clients. The purpose of this meta-analytic study was to examine the overall efficacy of cognitive behavioral therapy for Chinese people. A literature search was conducted using electronic databases, including Web of Science, PsycINFO and PubMed. Pooled mean effect sizes were calculated using the random-effects model. The literature search identified 55 studies with 6763 Chinese participants. The overall short-term effect of cognitive behavioral therapy on the primary outcome was medium in size. Effect sizes were medium for anxiety, depression/well-being and caregiving stress and small for psychotic symptoms and addictive behaviors. The effects of cognitive behavioral therapy on process variables, dysfunctional thoughts and coping, were in the small range. The overall longer-term effect of cognitive behavioral therapy on the primary outcome was medium in size. Moderator analyses showed that the short-term effect was stronger for culturally adapted cognitive behavioral therapy than for unadapted cognitive behavioral therapy. Type of primary outcome, type of control group, recruitment method, study design, the format of delivery and region were found to moderate the efficacy of cognitive behavioral therapy. The findings of this study provide evidence for the overall efficacy of cognitive behavioral therapy for Chinese people and the benefit of cultural adaptation of cognitive behavioral therapy to Chinese culture.
Sutterer, Matthew J; Tranel, Daniel
2017-11-01
We highlight the past 25 years of cognitive neuroscience and neuropsychology, focusing on the impact to the field of the introduction in 1992 of functional MRI (fMRI). We reviewed the past 25 years of literature in cognitive neuroscience and neuropsychology, focusing on the relation and interplay of fMRI studies and studies utilizing the "lesion method" in human participants with focal brain damage. Our review highlights the state of localist/connectionist research debates in cognitive neuroscience and neuropsychology circa 1992, and details how the introduction of fMRI into the field at that time catalyzed a new wave of efforts to map complex human behavior to specific brain regions. This, in turn, eventually evolved into many studies that focused on networks and connections between brain areas, culminating in recent years with large-scale investigations such as the Human Connectome Project. We argue that throughout the past 25 years, neuropsychology-and more precisely, the "lesion method" in humans-has continued to play a critical role in arbitrating conclusions and theories derived from inferred patterns of local brain activity or wide-spread connectivity from functional imaging approaches. We conclude by highlighting the future for neuropsychology in the context of an increasingly complex methodological armamentarium. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Do humans have two systems to track beliefs and belief-like states?
Apperly, Ian A; Butterfill, Stephen A
2009-10-01
The lack of consensus on how to characterize humans' capacity for belief reasoning has been brought into sharp focus by recent research. Children fail critical tests of belief reasoning before 3 to 4 years of age (H. Wellman, D. Cross, & J. Watson, 2001; H. Wimmer & J. Perner, 1983), yet infants apparently pass false-belief tasks at 13 or 15 months (K. H. Onishi & R. Baillargeon, 2005; L. Surian, S. Caldi, & D. Sperber, 2007). Nonhuman animals also fail critical tests of belief reasoning but can show very complex social behavior (e.g., J. Call & M. Tomasello, 2005). Fluent social interaction in adult humans implies efficient processing of beliefs, yet direct tests suggest that belief reasoning is cognitively demanding, even for adults (e.g., I. A. Apperly, D. Samson, & G. W. Humphreys, 2009). The authors interpret these findings by drawing an analogy with the domain of number cognition, where similarly contrasting results have been observed. They propose that the success of infants and nonhuman animals on some belief reasoning tasks may be best explained by a cognitively efficient but inflexible capacity for tracking belief-like states. In humans, this capacity persists in parallel with a later-developing, more flexible but more cognitively demanding theory-of-mind abilities.
Reynolds, Conner D.; Jefferson, Taylor S.; Volquardsen, Meagan; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Lugo, Joaquin N.
2017-01-01
Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects. Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction. PMID:29946420
Patel, Tulpesh; Blyth, Jacqueline C; Griffiths, Gareth; Kelly, Deirdre; Talcott, Joel B
2014-01-01
Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. In this study, we used (1)H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. (1)H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind.
Sleep intensity and the evolution of human cognition.
Samson, David R; Nunn, Charles L
2015-01-01
Over the past four decades, scientists have made substantial progress in understanding the evolution of sleep patterns across the Tree of Life. Remarkably, the specifics of sleep along the human lineage have been slow to emerge. This is surprising, given our unique mental and behavioral capacity and the importance of sleep for individual cognitive performance. One view is that our species' sleep architecture is in accord with patterns documented in other mammals. We promote an alternative view, that human sleep is highly derived relative to that of other primates. Based on new and existing evidence, we specifically propose that humans are more efficient in their sleep patterns than are other primates, and that human sleep is shorter, deeper, and exhibits a higher proportion of REM than expected. Thus, we propose the sleep intensity hypothesis: Early humans experienced selective pressure to fulfill sleep needs in the shortest time possible. Several factors likely served as selective pressures for more efficient sleep, including increased predation risk in terrestrial environments, threats from intergroup conflict, and benefits arising from increased social interaction. Less sleep would enable longer active periods in which to acquire and transmit new skills and knowledge, while deeper sleep may be critical for the consolidation of those skills, leading to enhanced cognitive abilities in early humans. © 2015 Wiley Periodicals, Inc.
Route selection by rats and humans in a navigational traveling salesman problem.
Blaser, Rachel E; Ginchansky, Rachel R
2012-03-01
Spatial cognition is typically examined in non-human animals from the perspective of learning and memory. For this reason, spatial tasks are often constrained by the time necessary for training or the capacity of the animal's short-term memory. A spatial task with limited learning and memory demands could allow for more efficient study of some aspects of spatial cognition. The traveling salesman problem (TSP), used to study human visuospatial problem solving, is a simple task with modifiable learning and memory requirements. In the current study, humans and rats were characterized in a navigational version of the TSP. Subjects visited each of 10 baited targets in any sequence from a set starting location. Unlike similar experiments, the roles of learning and memory were purposely minimized; all targets were perceptually available, no distracters were used, and each configuration was tested only once. The task yielded a variety of behavioral measures, including target revisits and omissions, route length, and frequency of transitions between each pair of targets. Both humans and rats consistently chose routes that were more efficient than chance, but less efficient than optimal, and generally less efficient than routes produced by the nearest-neighbor strategy. We conclude that the TSP is a useful and flexible task for the study of spatial cognition in human and non-human animals.
Kalemenev, S V; Zubareva, O E; Frolova, E V; Sizov, V V; Lavrentyeva, V V; Lukomskaya, N Ya; Kim, K Kh; Zaitsev, A V; Magazanik, L G
2015-01-01
Cognitive impairment in six-week -old rats has been studied in the lithium-pilocarpine model of adolescent temporal lobe epilepsy in humans. The pilocarpine-treated rats (n =21) exhibited (a) a decreased exploratory activity in comparison with control rats (n = 20) in the open field (OP) test and (b) a slower extinction of exploratory behavior in repeated OP tests. The Morris Water Maze (MWM) test showed that the effect of training was less pronounced in the pilocarpine-treated rats, which demonstrated disruption of predominantly short-term memory. Therefore, our study has shown that lithium-pilocarpine seizures induce substantial changes in exploratory behavior and spatial memory in adolescent rats. OP and MWM tests can be used in the search of drugs reducing cognitive impairments associated with temporal lobe epilepsy.
Why women see differently from the way men see? A review of sex differences in cognition and sports
Li, Rena
2014-01-01
The differences of learning and memory between males and females have been well documented and confirmed by both human and animal studies. The sex differences in cognition started from early stage of neuronal development and last through entire life span. The major biological basis of the gender-dependent cognitive activity includes two major components: sex hormone and sex-related characteristics, such as sex-determining region of the Y chromosome (SRY) protein. However, the knowledge of how much biology of sex contributes to normal cognitive function and elite athletes in various sports are still pretty limited. In this review, we will be focusing on sex differences in spatial learning and memory – especially the role of male- and female-type cognitive behaviors in sports. PMID:25520851
Why women see differently from the way men see? A review of sex differences in cognition and sports.
Li, Rena
2014-09-01
The differences of learning and memory between males and females have been well documented and confirmed by both human and animal studies. The sex differences in cognition started from early stage of neuronal development and last through entire life span. The major biological basis of the gender-dependent cognitive activity includes two major components: sex hormone and sex-related characteristics, such as sex-determining region of the Y chromosome (SRY) protein. However, the knowledge of how much biology of sex contributes to normal cognitive function and elite athletes in various sports are still pretty limited. In this review, we will be focusing on sex differences in spatial learning and memory - especially the role of male- and female-type cognitive behaviors in sports.
Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan
Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.
Testing the Validity of a Cognitive Behavioral Model for Gambling Behavior.
Raylu, Namrata; Oei, Tian Po S; Loo, Jasmine M Y; Tsai, Jung-Shun
2016-06-01
Currently, cognitive behavioral therapies appear to be one of the most studied treatments for gambling problems and studies show it is effective in treating gambling problems. However, cognitive behavior models have not been widely tested using statistical means. Thus, the aim of this study was to test the validity of the pathways postulated in the cognitive behavioral theory of gambling behavior using structural equation modeling (AMOS 20). Several questionnaires assessing a range of gambling specific variables (e.g., gambling urges, cognitions and behaviors) and gambling correlates (e.g., psychological states, and coping styles) were distributed to 969 participants from the community. Results showed that negative psychological states (i.e., depression, anxiety and stress) only directly predicted gambling behavior, whereas gambling urges predicted gambling behavior directly as well as indirectly via gambling cognitions. Avoidance coping predicted gambling behavior only indirectly via gambling cognitions. Negative psychological states were significantly related to gambling cognitions as well as avoidance coping. In addition, significant gender differences were also found. The results provided confirmation for the validity of the pathways postulated in the cognitive behavioral theory of gambling behavior. It also highlighted the importance of gender differences in conceptualizing gambling behavior.
Giménez-Llort, L; Ratia, M; Pérez, B; Camps, P; Muñoz-Torrero, D; Badia, A; Clos, M V
2015-06-01
The present work describes, for the first time, the in vivo effects of the multitarget compound AVCRI104P3, a new anticholinesterasic drug with potent inhibitory effects on human AChE, human BuChE and BACE-1 activities as well as on the AChE-induced and self-induced Aβ aggregation. We characterized the behavioral effects of chronic treatment with AVCRI104P3 (0.6 μmol kg(-1), i.p., 21 days) in a sample of middle aged (12-month-old) male 129/Sv×C57BL/6 mice with poor cognitive performance, as shown by the slow acquisition curves of saline-treated animals. Besides, a comparative assessment of cognitive and non-cognitive actions was done using its in vitro equipotent doses of huprine X (0.12 μmol kg(-1)), a huperzine A-tacrine hybrid. The screening assessed locomotor activity, anxiety-like behaviors, cognitive function and side effects. The results on the 'acquisition' of spatial learning and memory show that AVCRI104P3 exerted pro-cognitive effects improving both short- and long-term processes, resulting in a fast and efficient acquisition of the place task in the Morris water maze. On the other hand, a removal test and a perceptual visual learning task indicated that both AChEIs improved short-term 'memory' as compared to saline treated mice. Both drugs elicited the same response in the corner test, but only AVCRI104P3 exhibited anxiolytic-like actions in the dark/light box test. These cognitive-enhancement and anxiolytic-like effects demostrated herein using a sample of middle-aged animals and the lack of adverse effects, strongly encourage further studies on AVCRI104P3 as a promising multitarget therapeutic agent for the treatment of cholinergic dysfunction underlying natural aging and/or dementias. Copyright © 2015. Published by Elsevier B.V.
Mouse model systems to study sex chromosome genes and behavior: relevance to humans
Cox, Kimberly H.; Bonthuis, Paul J.; Rissman, Emilie F.
2014-01-01
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960
Gold, L H; Fox, H S; Henriksen, S J; Buchmeier, M J; Weed, M R; Taffe, M A; Huitrón-Resendiz, S; Horn, T F; Bloom, F E
1998-01-01
A model is proposed in which a neurovirulent, microglial-passaged, simian immunodeficiency virus (SIV) is used to produce central nervous system (CNS) pathology and behavioral deficits in rhesus monkeys reminiscent of those seen in humans infected with human immunodeficiency virus (HIV). The time course of disease progression was characterized by using functional measures of cognition and motor skill, as well as neurophysiologic monitoring. Concomitant assessment of immunological and virological parameters illustrated correspondence between impaired behavioral performance and viral pathogenesis. Convergent results were obtained from neuropathological findings indicative of significant CNS disease. In ongoing studies, this SIV model is being used to explore the behavioral sequelae of immunodeficiency virus infection, the viral and host factors leading to neurologic dysfunction, and to begin testing potential therapeutic agents.
Cognitive Dissidents Bite the Dust--The Demise of University Education in Canada's Prisons.
ERIC Educational Resources Information Center
Duguid, Stephen
1993-01-01
Documents the demise of the 20-year university education program in British Columbia prisons as a new national strategy stressed correctional goals and behavior change over the humanities/moral development thrust of the Simon Fraser University curriculum. (SK)
Issues in Developing a Normative Descriptive Model for Dyadic Decision Making
NASA Technical Reports Server (NTRS)
Serfaty, D.; Kleinman, D. L.
1984-01-01
Most research in modelling human information processing and decision making has been devoted to the case of the single human operator. In the present effort, concepts from the fields of organizational behavior, engineering psychology, team theory and mathematical modelling are merged in an attempt to consider first the case of two cooperating decisionmakers (the Dyad) in a multi-task environment. Rooted in the well-known Dynamic Decision Model (DDM), the normative descriptive approach brings basic cognitive and psychophysical characteristics inherent to human behavior into a team theoretic analytic framework. An experimental paradigm, involving teams in dynamic decision making tasks, is designed to produce the data with which to build the theoretical model.
Primary prevention of adolescent pregnancy.
Schinke, S P; Blythe, B J; Gilchrist, L D; Burt, G A
1981-01-01
Teenage pregnancy is associated with many health, emotional and socioeconomic problems including higher rates of anemia, labor complications, mortality, legal and social struggles and hhigher divorce rates. Professional social workers need strategies to help teenagers avoid early, unwanted pregnancy. This paper offers promising experential and research backing for a primary prevention group work strategy for all adolescents. Social and health programs overlook educational, cognitive anc interpersonal factors biasing youths' ability to comprehend and regulate contraception. Primary prevention to assist adolescents in thinking analytically about their sexual behavior must stress problem solving and decision-making as well as facts about human reproduction and birth control. To implement decisions, youths also need interpersonal communication skills. Small groups are ideal for delivering cognitive-behavioral primary prevention. This approach is based on the premise that youths become pregnant not because of a lack of relevant information, but because they lack cognitive and behavioral skills necessary to use information. Group work involving role-playing helps develop communication skills. Results from 2 field studies describe short-term and longitudinal benefits of the prevention strategy. Professionals can reach significant numbers of youth in this way. By treating sexual issues and the risk of pregnancy as normal in adolescence, social workers can introduce information and pertinent skills to all teenagers. No one is singled out as deviant and the group format enables young people to discuss taboo topics, discovering what the norms are and gradually learning how to deal with peers, family members, techers and others. Adolescents in primary prevention groups gained knowledge, cognitive skills and communication acumen. Improved attitudes toward family planning, increased regular contraception and less unsafe sex resulted from this cognitive-behavioral approach. Primary prevention should begin early to be most effective. Other personal and social issures such as a alcohol and drug abuse, delinquency, marital and family conflicts, parenting difficulties and money management may be dealt with effectively using a cognitive-behavioral approach.
Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J
2016-07-01
Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. Additionally, human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sharp, B M
2018-05-26
The amygdala is involved in processing incoming information about rewarding stimuli and emotions that denote danger such as anxiety and fear. Bi-directional neural connections between basolateral amygdala (BLA) and brain regions such as nucleus accumbens, prefrontal cortex, hippocampus and hindbrain regions regulate motivation, cognition, and responses to stress. Altered local regulation of BLA excitability is pivotal to the behavioral disturbances characteristic of posttraumatic stress disorder (PTSD), and relapse to drug use induced by stress. Herein, we review the physiological regulation of BLA by cholinergic inputs, emphasizing the role of BLA nicotinic receptors. We review BLA-dependent effects of nicotine on cognition, motivated behaviors and emotional states, including memory, taking and seeking drugs, and anxiety and fear in humans and animal models. The alterations in BLA activity observed in animal studies inform human behavioral and brain imaging research by enabling a more exact understanding of altered BLA function. Converging evidence indicates that cholinergic signaling from basal forebrain projections to local nicotinic receptors is an important physiological regulator of BLA and that nicotine alters BLA function. In essence, BLA is necessary for: behavioral responses to stimuli that evoke anxiety and fear; reinstatement of cue-induced drug seeking; responding to second-order cues conditioned to abused drugs; reacquisition of amplified nicotine self-administration due to chronic stress during abstinence; and to promote responding for natural reward. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Albani, Sarah H; McHail, Daniel G; Dumas, Theodore C
2014-06-01
The hippocampus is not fully developed at birth and, with respect to spatial cognition, only begins to show signs of adult-like function at three postnatal weeks in rodents. Studying the developmental period spanning roughly two to four weeks of age permits an understanding of the neural framework necessary for the emergence of spatial navigation and, quite possibly, human episodic memory. However, due to developmental factors, behavior data collection and interpretation can be severely compromised if inappropriate designs are applied. As such, we propose methodological considerations for the behavioral assessment of hippocampal function in developing rats that take into account animal size, growth rate, and sensory and motor ability. We further summarize recent key interdisciplinary studies that are beginning to unravel the molecular machinery and physiological alterations responsible for hippocampal maturation. In general, hippocampal development is a protracted process during which unique contributions to spatial cognition and complex recognition memory come "on line" at different postnatal ages creating a unique situation for elucidating the neural bases of specific components of higher cognitive abilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Albani, Sarah H.; McHail, Daniel G.; Dumas, Theodore C.
2016-01-01
The hippocampus is not fully developed at birth and, with respect to spatial cognition, only begins to show signs of adult-like function at three postnatal weeks in rodents. Studying the developmental period spanning roughly two to four weeks of age permits an understanding of the neural framework necessary for the emergence of spatial navigation and, quite possibly, human episodic memory. However, due to developmental factors, behavior data collection and interpretation can be severely compromised if inappropriate designs are applied. As such, we propose methodological considerations for the behavioral assessment of hippocampal function in developing rats that take into account animal size, growth rate, and sensory and motor ability. We further summarize recent key interdisciplinary studies that are beginning to unravel the molecular machinery and physiological alterations responsible for hippocampal maturation. In general, hippocampal development is a protracted process during which unique contributions to spatial cognition and complex recognition memory come “on line” at different postnatal ages creating a unique situation for elucidating the neural bases of specific components of higher cognitive abilities. PMID:24769291
ERIC Educational Resources Information Center
Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.
2013-01-01
Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…
Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats.
Nemeth, Christina L; Paine, Tracie A; Rittiner, Joseph E; Béguin, Cécile; Carroll, F Ivy; Roth, Bryan L; Cohen, Bruce M; Carlezon, William A
2010-06-01
Disruptions in perception and cognition are characteristic of psychiatric conditions such as schizophrenia. Studies of pharmacological agents that alter perception and cognition in humans might provide a better understanding of the brain substrates of these complex processes. One way to study these states in rodents is with tests that require attention and visual perception for correct performance. We examined the effects of two drugs that cause disruptions in perception and cognition in humans-the kappa-opioid receptor (KOR) agonist salvinorin A (salvA; 0.125-4.0 mg/kg) and the non-competitive NMDA receptor antagonist ketamine (0.63-20 mg/kg)-on behavior in rats using the 5-choice serial reaction time task (5CSRTT), a food-motivated test that quantifies attention. We also compared the binding profiles of salvA and ketamine at KORs and NMDA receptors. SalvA and ketamine produced the same pattern of disruptive effects in the 5CSRTT, characterized by increases in signs often associated with reduced motivation (omission errors) and deficits in processing (elevated latencies to respond correctly). Sessions in which rats were fed before testing suggest that reduced motivation produces a subtly different pattern of behavior. Pretreatment with the KOR antagonist JDTic (10 mg/kg) blocked all salvA effects and some ketamine effects. Binding and function studies revealed that ketamine is a full agonist at KORs, although not as potent or selective as salvA. SalvA and ketamine have previously under-appreciated similarities in their behavioral effects and pharmacological profiles. By implication, KORs might be involved in some of the cognitive abnormalities observed in psychiatric disorders such as schizophrenia.
Kuljiš, Rodrigo O
2010-01-01
The biological substrate for cognition remains a challenge as much as defining this function of living beings. Here, we examine some of the difficulties to understand normal and disordered cognition in humans. We use aspects of Alzheimer's disease and related disorders to illustrate how the wealth of information at many conceptually separate, even intellectually decoupled, physical scales - in particular at the Molecular Neuroscience versus Systems Neuroscience/Neuropsychology levels - presents a challenge in terms of true interdisciplinary integration towards a coherent understanding. These unresolved dilemmas include critically the as yet untested quantum brain hypothesis, and the embryonic attempts to develop and define the so-called connectome in humans and in non-human models of disease. To mitigate these challenges, we propose a scheme incorporating the vast array of scales of the space and time (space-time) manifold from at least the subatomic through cognitive-behavioral dimensions of inquiry, to achieve a new understanding of both normal and disordered cognition, that is essential for a new era of progress in the Generative Sciences and its application to translational efforts for disease prevention and treatment.
ERIC Educational Resources Information Center
Williams, Frank E.
This volume, the final one in the series, presents about 400 ideas which teachers can use to teach creative thinking. The ideas are classified according to teacher behavior (strategies or modes of teaching) and by types of pupil behavior, as described in the rationale for the cognitive-affective instructional (CAI) model presented in volume 2. The…
Pragmatic and Idiosyncratic Acts in Human Everyday Routines: The Counterpart of Compulsive Rituals
2010-03-25
Mort3, and David Eilam1 1Department of Zoology, Tel-Aviv University, Ramat-Aviv 69978, Israel 2Departments of Psychology and Anthropology, Washington...Introduction Repetitive actions are prevalent in normal and abnormal behavior [7]. In normal behavior, repetitive performance takes the form of...unconscious as repository of chronic goals and motives, in: Gollwitzer PM, Bargh JA, Editors. The psychology of action: Linking cognition and
Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M
2016-01-01
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.
Schweller, Kenneth; Milne, Scott
2017-01-01
Abstract Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal’s sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species’ daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid. PMID:29491967
NASA Astrophysics Data System (ADS)
Ho, S. Ping
2016-04-01
Raising public awareness of human environmental problems has been considered an effective way to promote public participation in environmental sustainability. From the perspective individual level, such participation mainly include the willingness of adopting less consumptive lifestyles and following the principles of reuse, reduce, and recycle. However, in reality, the development of environmental sustainability falls into the "Enlightenment Fallacy," which asserts that enlightenment does not consequentially translate into meaningful reduction of pollution. We argue that environmental awareness is mainly at the level of cognition, which is built upon knowledge and facts; whereas the behaviors toward sustainability development are largely dominated by economic principles that focus on utility maximization. As such, the Enlightenment Fallacy can be explained by the "Tragedy of Commons" which occurrs in the prevailing capitalism based economic system. This is due to the sad fact assumed in modern Economics that human beings are in general self-interested with unending desires but few moral concerns. Thus, economic individuals, who seek mainly their maximal utility or benefit, will not make significant sacrifices for improving environmental sustainability, which cannot be achieved by only a few individuals. From this perspective, we argue that only those individuals who are less self-interested and have more compassion toward mankind and earth will actively participate in environmental sustainability. In this study, we examine empirically the Enlightenment Fallacy phenomenon and develop an empirical model to test the following four hypotheses concerning the inconsistency between the environmental cognition and the actual behaviors. Policy implications for promoting public participation will be suggested based on our empirical results. Hypothesis 1: Compassion (for mankind) has larger positive impacts than environmental cognition. Hypothesis 2: Social punishment and encouragement has larger positive impacts than environmental cognition. Hypothesis 3: The higher the individuals' need/desire for resource preservation is, the less the individuals' participation in environmental sustainability is. Hypothesis 4: The higher the individuals' compassion is, the less the impact of individuals' need for resource preservation on environmental participation is.
Dolins, Francine L; Schweller, Kenneth; Milne, Scott
2017-02-01
Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal's sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species' daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid.
de Borst, Aline W.; de Gelder, Beatrice
2015-01-01
Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations. PMID:26029133
Bering, Jesse M
2006-10-01
The present article examines how people's belief in an afterlife, as well as closely related supernatural beliefs, may open an empirical backdoor to our understanding of the evolution of human social cognition. Recent findings and logic from the cognitive sciences contribute to a novel theory of existential psychology, one that is grounded in the tenets of Darwinian natural selection. Many of the predominant questions of existential psychology strike at the heart of cognitive science. They involve: causal attribution (why is mortal behavior represented as being causally related to one's afterlife? how are dead agents envisaged as communicating messages to the living?), moral judgment (why are certain social behaviors, i.e., transgressions, believed to have ultimate repercussions after death or to reap the punishment of disgruntled ancestors?), theory of mind (how can we know what it is "like" to be dead? what social-cognitive strategies do people use to reason about the minds of the dead?), concept acquisition (how does a common-sense dualism interact with a formalized socio-religious indoctrination in childhood? how are supernatural properties of the dead conceptualized by young minds?), and teleological reasoning (why do people so often see their lives as being designed for a purpose that must be accomplished before they perish? how do various life events affect people's interpretation of this purpose?), among others. The central thesis of the present article is that an organized cognitive "system" dedicated to forming illusory representations of (1) psychological immortality, (2) the intelligent design of the self, and (3) the symbolic meaning of natural events evolved in response to the unique selective pressures of the human social environment.
Cocker, Paul J; Hosking, Jay G; Benoit, James; Winstanley, Catharine A
2012-07-01
Amotivational states and insufficient recruitment of mental effort have been observed in a variety of clinical populations, including depression, traumatic brain injury, post-traumatic stress disorder, and attention deficit hyperactivity disorder. Previous rodent models of effort-based decision making have utilized physical costs whereas human studies of effort are primarily cognitive in nature, and it is unclear whether the two types of effortful decision making are underpinned by the same neurobiological processes. We therefore designed a novel rat cognitive effort task (rCET) based on the 5-choice serial reaction time task, a well-validated measure of attention and impulsivity. Within each trial of the rCET, rats are given the choice between an easy or hard visuospatial discrimination, and successful hard trials are rewarded with double the number of sugar pellets. Similar to previous human studies, stable individual variation in choice behavior was observed, with 'workers' choosing hard trials significantly more than their 'slacker' counterparts. Whereas workers 'slacked off' in response to administration of amphetamine and caffeine, slackers 'worked harder' under amphetamine, but not caffeine. Conversely, these stimulants increased motor impulsivity in all animals. Ethanol did not affect animals' choice but invigorated behavior. In sum, we have shown for the first time that rats are differentially sensitive to cognitive effort when making decisions, independent of other processes such as impulsivity, and these baseline differences can influence the cognitive response to psychostimulants. Such findings could inform our understanding of impairments in effort-based decision making and contribute to treatment development.
Cocker, Paul J; Hosking, Jay G; Benoit, James; Winstanley, Catharine A
2012-01-01
Amotivational states and insufficient recruitment of mental effort have been observed in a variety of clinical populations, including depression, traumatic brain injury, post-traumatic stress disorder, and attention deficit hyperactivity disorder. Previous rodent models of effort-based decision making have utilized physical costs whereas human studies of effort are primarily cognitive in nature, and it is unclear whether the two types of effortful decision making are underpinned by the same neurobiological processes. We therefore designed a novel rat cognitive effort task (rCET) based on the 5-choice serial reaction time task, a well-validated measure of attention and impulsivity. Within each trial of the rCET, rats are given the choice between an easy or hard visuospatial discrimination, and successful hard trials are rewarded with double the number of sugar pellets. Similar to previous human studies, stable individual variation in choice behavior was observed, with ‘workers' choosing hard trials significantly more than their ‘slacker' counterparts. Whereas workers ‘slacked off' in response to administration of amphetamine and caffeine, slackers ‘worked harder' under amphetamine, but not caffeine. Conversely, these stimulants increased motor impulsivity in all animals. Ethanol did not affect animals' choice but invigorated behavior. In sum, we have shown for the first time that rats are differentially sensitive to cognitive effort when making decisions, independent of other processes such as impulsivity, and these baseline differences can influence the cognitive response to psychostimulants. Such findings could inform our understanding of impairments in effort-based decision making and contribute to treatment development. PMID:22453140
Huizink, Anja C; Mulder, Eduard J H
2006-01-01
Teratological investigations have demonstrated that agents that are relatively harmless to the mother may have significant negative consequences to the fetus. Among these agents, prenatal alcohol, nicotine or cannabis exposure have been related to adverse offspring outcomes. Although there is a relatively extensive body of literature that has focused upon birth and behavioral outcomes in newborns and infants after prenatal exposure to maternal smoking, drinking and, to a lesser extent, cannabis use, information on neurobehavioral and cognitive teratogenic findings beyond these early ages is still quite limited. Furthermore, most studies have focused on prenatal exposure to heavy levels of smoking, drinking or cannabis use. Few recent studies have paid attention to low or moderate levels of exposure to these substances. This review endeavors to provide an overview of such studies, and includes animal findings and potential mechanisms that may explain the mostly subtle effects found on neurobehavioral and cognitive outcomes. It is concluded that prenatal exposure to either maternal smoking, alcohol or cannabis use is related to some common neurobehavioral and cognitive outcomes, including symptoms of ADHD (inattention, impulsivity), increased externalizing behavior, decreased general cognitive functioning, and deficits in learning and memory tasks.
The effects of long-term stress exposure on aging cognition: a behavioral and EEG investigation.
Marshall, Amanda C; Cooper, Nicholas R; Segrave, Rebecca; Geeraert, Nicolas
2015-06-01
A large field of research seeks to explore and understand the factors that may cause different rates of age-related cognitive decline within the general population. However, the impact of experienced stress on the human aging process has remained an under-researched possibility. This study explored the association between cumulative stressful experiences and cognitive aging, addressing whether higher levels of experienced stress correlate with impaired performance on 2 working memory tasks. Behavioral performance was paired with electroencephalographic recordings to enable insight into the underlying neural processes impacted on by cumulative stress. Thus, the electroencephalogram was recorded while both young and elderly performed 2 different working memory tasks (a Sternberg and N-back paradigm), and cortical oscillatory activity in the theta, alpha, and gamma bandwidths was measured. Behavioral data indicated that a higher stress score among elderly participants related to impaired performance on both tasks. Electrophysiological findings revealed a reduction in alpha and gamma event-related synchronization among high-stress-group elderly participants, indicating that higher levels of experienced stress may impact on their ability to actively maintain a stimulus in working memory and inhibit extraneous information interfering with successful maintenance. Findings provide evidence that cumulative experienced stress adversely affects cognitive aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C
2013-01-01
Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less
Mattei, Tobias A
2014-12-01
In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.
Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans.
Barak, Boaz; Feldman, Noa; Okun, Eitan
2015-09-01
The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.
Cui, Zaixu; Gong, Gaolang
2018-06-02
Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.